
Perovskite-Like Layered Structure A2B2O7 Ferroelectrics and Solid

Solutions.
Gao, Zhipeng.; Gao, Zhipeng

 

 

 

 

 

The copyright of this thesis rests with the author and no quotation from it or information

derived from it may be published without the prior written consent of the author

 

 

For additional information about this publication click this link.

http://qmro.qmul.ac.uk/xmlui/handle/123456789/11738

 

 

 

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

http://qmro.qmul.ac.uk/xmlui/handle/123456789/11738


 

 

 

 

 

 

Perovskite-Like Layered Structure 

A2B2O7 Ferroelectrics and Solid 

Solutions 
 

 

 

 

 

 

 

 

 

Zhipeng Gao 

 

A thesis submitted for the degree of Doctor of Philosophy 

 
 

 

 

School of Engineering and Materials Science, 

Queen Mary, University of London 

November 2012



Abstract 

 

i 

Abstract  

In this project, the ferroelectric materials Pr2Ti2O7, La2Ti2O7, Sr2Nb2O7, La2-xCexTi2O7 

(x=0.15, 0.25, 0.35), Nd2-xCexTi2O7 (x=0.05, 0.25, 0.5, 0.75) and Sr2-xBaxNb2O7 (x=0.1, 

0.2, 0.3, 0.4, 0.5) were investigated. They have a provskite-like layered structure (PLS), 

and are well known for their super-high Curie points (>1200 ˚C). Their ceramics were 

fabricated using Spark Plasma Sintering.  

For Pr2Ti2O7, single phase, dense and textured ceramics were prepared. The Curie point 

is greater than 1560 °C which is the highest known Curie Point so far for ferroelectric 

materials. Pr2Ti2O7 was shown for the first time to be ferroelectric because it showed 

piezoelectric activity after poling.  

For the La2-xCexTi2O7 solid solution system, the ferroelectric and dielectric properties of 

cerium (Ce) substituted La2Ti2O7 (LTO) were investigated. The solubility limit of Ce in 

La2-xCexTi2O7 was found to be between 0.35 and 0.5 supported by XRD results. The a-, 

b- and c-axes of the unit cell decrease with increasing Ce substitution. The Curie points 

(Tc) of La2-xCexTi2O7 (x=0, 0.15, 0.25, 0.35) also decreases. The dielectric constant and 

loss increase with increasing Ce substitution. Electrical resistivity decreases due to Ce 

substitution. Cerium can increase the d33 of La2Ti2O7. The highest d33 was 3.9 ± 

0.1pC/N for La1.85Ce0.15Ti2O7. In the Nd2-xCexTi2O7 system, the cell volume increases 

from Nd2Ti2O7 to Nd1.25Ce0.75Ti2O7 and the Curie point (Tc) decreases with Ce increase.  
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For the Sr2-xBaxNb2O7 solid solution system, the effect of Ba substitution on the 

structure and ferroelectric properties of Sr2-xBaxNb2O7 (x<1.0) was investigated. The a-, 

b-, c- axes and cell volume increase with Ba addition because Ba
2+

 is a relatively large 

ion. A atomic displace move model was developed to explain the spontaneous lattice 

strain, spontaneous polarization and Curie point change in the orthorhombic phase 

(Cmc21) with increasing Ba substitution. The critical point of Sr2-xBaxNb2O7 solid 

solution (x<0.6) was determined by XRD and was supported by the XPS spectra of Ba 

2p and O 1s. Textured ceramics of Sr2-xBaxNb2O7 compounds were prepared using the 

spark plasma sintering technique and the piezoelectric activity can be improved by Ba 

substitution, which increases the domain switch mobility. The highest d33 was measured 

as 3.6± 0.1pC/N for Sr1.8Ba0.2Nb2O7. 

The thermal depoling behaviors of La2Ti2O7, and Sr2Nb2O7 were investigated due to 

their relatively high d33 piezoelectric constant and high Curie point. Both of them have a 

high resistance to thermal depoling, especially La2Ti2O7. Ginzburg - Landau theory was 

used to explain their behavior. The electric resistivity degradation of Sr2Nb2O7 was 

studied at different temperatures, and it was found to be stable below 800 °C.  
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Chapter I. Introduction  

Ferroelectricity is a property of certain materials which possess a spontaneous electric 

polarization (Ps) that can be reversed by the application of an external electric field.
1
 A 

consequence of Ps switching in ferroelectric materials is the occurrence of the 

ferroelectric hysteresis loop (Fig.1.1.1). Ferroelectric materials have 

non-centrosymmetric structures, which leads to the spontaneous polarization and 

ferroelectric property.
1,2

 All ferroelectrics are piezoelectric materials. Piezoelectricity is 

the ability of certain crystalline materials to develop an electric charge proportional to 

an applied mechanical stress. So, some of them are good candidates for piezoelectric 

applications due to their sensitivity, low cost and robustness. Many of these applications 

can be categorized into: ignitors, displacement transducers, accelerometers, and 

piezoelectric sensors.
3-5

 However, for all of these applications, the maximum operating 

temperature is limited by the "Curie point". The Curie point is the temperature at which 

the ferroelectric - paraelectric transition happens. Paraelectric phase has a 

centrosymmetric structure and no Ps, hence the paraelectric phase has no ferroelectric 

properties, and the Curie point sets the upper temperature limit on ferroelectric 

applications.
6,7

 Some extreme environments, such as aerospace, and power generating 

industries, involve applications that require them to work up to high temperature. 

Therefore, ferroelectric materials with a high Curie points are desirable for high 

temperature applications. Some typical ferroelectric materials with high Tc (>650°C) 
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are lithium niobate, LiNbO3 (Tc =1140°C), lithium tantalate, LiTaO3 (Tc = 620°C), and 

Aurivillius phase materials, represented by Bi4Ti3O12 (Tc=675°C) and CaBi2Nb2O9 (Tc= 

943°C).
5,8-11

  

The perovskite-like layer structure materials with formula AnBnO3n+2 are well known for 

their super-high Curie points (many are above 1000 
o
C). Especially, when n=4, the 

materials with formula of A2B2O7, such as Pr2Ti2O7, Sr2Nb2O7, Ca2Nb2O7, La2Ti2O7 and 

Nd2Ti2O7, have the highest Curie points of all ferroelectrics.
12-16

 Hence, they have great 

potential for high temperature applications. Except their high Curie points, the A2B2O7 

ferroelectric materials have a high permittivity and relatively low loss.
11

 The 

permittivity of a material describes how much electric field is 'generated' per unit charge 

in the material and it. In other words, permittivity is a measure of how an electric 

field affects a material.
11,12

 The materials with high permittivity have a widely use in 

electronic industry, for example, capacitors, energy storage unit, and inductors. 

However, as piezoelectric materials, the A2B2O7 polycrystalline ceramics have a 

relatively small piezoelectric constant and relatively high coercive field, which makes 

them difficult to pole. Grains in ceramics, oriented in different directions, restrict the 

movement of domain walls under electrical poling, making the coercive field (Ec), 

which is the electric field strength required to switch the Ps, of ceramics much larger 

than that for single crystals.
17,18

 On the other hand, ceramics have more single 

crystal-like properties when all of the grains are oriented (textured) in a certain direction. 
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There have been some techniques to make grain-oriented A2B2O7 ceramics by texturing 

such as Templated Grain Growth (TGG) and Hot Working (HW), but few results have 

been reported on their ferroelectric properties.
19-23

  

Due to their unique properties and requirements, it is very desirable to find ferroelectric 

materials which can be used in the extreme environment and find a proper way to 

fabricate. This thesis is focused on the investigation of these A2B2O7 ceramics and their 

solid solutions, fabricated by spark plasma sintering (SPS) and their properties were 

controlled by compositional modifications. Textured ceramics were obtained by a 

two-step method using SPS. Their dielectric, piezoelectric and ferroelectric properties 

were investigated and the stability of the properties have been studied. 

 

Fig.1.1.1. Typical hysteresis loop of ferroelectric materials. Circles with arrows 

represent the polarization state of the material at the indicated fields; Ps is spontaneous 

polarization; Pr is the residual polarization which is the value of polarization at zero 

field (point E); Ec is the field necessary to bring the polarization to zero called the 

coercive field,
24
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Chapter II. Literature Review 

2.1. Perovskite and perovskite-like layer structure 

The perovskite structured materials have been researched for many years because of 

their excellent properties. The standard structure is shown in Fig.2.1.1, B
b+

 is in the 

center of an oxygen octahedron while the O
2-

 are sited on the apices of octahedrons, and 

the positions between the octahedra are occupied by A
a+

. 

 

Fig.2.1.1. (a) A cubic perovskite-type unit cell(BaTiO3); (b) Network of O
2-

 ions 

octahedra in the structure.
1
  

There are three different basic layered structures based on the perovskite structure 

(ABO3) with oxygen rich layers. These structures are effectively produced by cutting 

the cubic perovskite structure accross the (100), (110), (111) planes and by insertion of 

additional oxygen atoms. They are known as Dion-Jacobson type structures, 

Perovskite-like layered structures (PLS) and hexagonal type structures, which have 

general forms of A’Ak-1BkO3k+1, AnBnO3n+2 and AmBm-1O3m, respectively.
2,3

 The 

Aurivillius ferroelectrics also have a perovskite layered structure. However the structure 
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is described as resulting from the regular stacking of [Bi2O2]
2+

 slabs and perovskite-like 

[Am-1BmO3m+1]
2-

 blocks.
4
  

In the AnBnO3n+2 formula of PLS compounds, n represents the number of BO6 octahedra 

that span one layer, and therefore specifies the thickness of the perovskite-layer. 

Sometimes, n is non-integral due to a mixture of layers with different thicknesses, and it 

then indicates the average number of octahera per layer. In this structure alkaline earth 

or lanthanide metals often occupy the A positions while the B cations are usually 

titanium or niobium.
2,3,5

 Some AnMnO3n+2 structures are shown in Fig. 2.1.2.  

 

Fig.2.1.2. Skeleton diagram of the non-distorted crystal structures of AnBnO3n+2 

members projected along a-axis.
3
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2.2. AnBnO3n+2 compounds 

Though they have the same formula, the AnBnO3n+2 PLS compounds have different 

crystallographic structures. The different crystal structures correspond to different 

distortions of the layers relative to the ideal centro-symmetric, orthorhombic structure. 

In these systems, the typical distortions are produced by tilting of the BO6 octahedra and 

displacement of either or both the A and B cations.
6
 Due to this, some of them have a 

centro-symmetric structure while some are noncentro-symmetric. An overview of the 

structure and properties of many AnBnO3n+2 compounds is presented in Tables 2.1-2.5, 

2.8 which contains the data and results of integer ratio compounds from the literature.  

2.2.1. n=2 group in AnBnO3n+2 

For n=2 members in the AnBnM3n+2 family, the formula is ABO4. Several compounds 

have been investigated. LaTaO4 is potentially a ferroelectric material, and has two 

structures, orthorhombic and monoclinic. The orthorhombic LaTaO4 (O-LaTaO4) has a 

noncentro-symmetric structure with space group Cmc21 and the lattice parameters are (a, 

b, c, β) = (3.92 Å, 14.70Å, 5.65 Å, 90°).
7,8

 Monoclinic LaTaO4 (M-LaTaO4) has 

centro-symmetric structure with space group P21/c and the lattice parameters are (a, b, c, 

β) = (7.615 Å, 5.565Å, 7.810 Å, 101.49°).
8
 The monoclinic phase exists at a high 

temperature (>1470K) and gradually transforms into the orthorhombic phase when the 

temperature is below 1470 K. The rate of monoclinic to orthorhombic transformation is 

slow in the temperature range 423-1470 K, and decreases with decreasing temperature. 
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The rate of this transformation becomes negligible below 423 K.
9-11

 So the two phases 

of orthorhombic and monoclinic LaTaO4 can be observed to coexist below 423 K. The 

spontaneous polarization in orthorhombic LaTaO4 was estimated as 1.6 µC/cm
2
.
9-11

 

LaTaO4 can be made by calcining powder mixtures of La2O3 and Ta2O3 at 

1200°C-1400°C for 10 hours.
12,13

 The structure is shown in Fig.2.2.1. 

 

Fig.2.2.1. The structure of LaTaO4 along the a axis.
14

 

LaNbO4 has monoclinic and orthorhombic structures.
10

 LaNbO4 prepared under normal 

pressure (LP) has I2/a space group with monoclinic structure, so it is centro-symmetric. 

Orthorhombic LaNbO4 can be prepared through hydroxide co-precipitation and heating 

to 1570K with a high pressure (HP) of 8GPa. LaNbO4 with orthorhombic structure is 

noncentro-symmetric with Cmc21 and the unit parameters are (a, b, c, β) = (3.94 Å, 

14.40 Å, 5.68 Å, 90°). It potentially has ferroelectric properties and the spontaneous 

polarization was estimated as 2 µC/cm
2
. LaNbO4 (HP) can transform into LaNbO4(LP) 
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at 870K under normal pressure. This transition is a second-order phase transition. There 

is no report about its ferroelectric properties.  

The solid solution system of LaNb1-xTaxO4 have been investigated by X-Ray diffraction 

(XRD).
15

 A two-phase region was observed in the composition region, 0.4<x<0.8, at 

room temperature. Single-phase LaNb1-xTaxO4 (0<x<0.4) with the monoclinic structure 

(I2/a) at room temperature was observed to transform to a tetragonal structure by 

high-temperature XRD. The phase transition temperature was shown to increase with 

increasing Ta-content (Fig.2.2.2) and these phase transition are all second order 

(Fig.2.2.3).
15

 Single-phase LaNb1-xTaxO4 (0.8<x<1) with a monoclinic crystal structure 

(P21/c) was shown to transform to an orthorhombic crystal structure by XRD and 

differential scanning calorimetry (DSC) (Fig.2.2.2).
15
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Fig.2.2.2. Phase diagram for LaNbO4-LaTaO4 system.
15 

 

 

Fig.2.2.3. The relationship between spontaneous strain and temperature for 

(LaNbO4)1-x(LaTaO4)x system.
15
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Table.2.1. ABO4, n=2.  

Compounds Symmetry Structure Ferroelectric Tc/°C Space Group 

PrTaO4
2,16

 Centro Monoclinic No N/A P21/c 

NdTaO4(HP)
17

 Centro Monoclinic No N/A P21/c 

NdTaO4(LP) 
17

 Centro Monoclinic No N/A I2/a 

CeTaO4
14,18

 Centro Monoclinic No N/A P21/c 

CeNbO4
19

 Centro Monoclinic No N/A P21/c 

LaTaO4
8
 Centro Monoclinic No N/A P21/c 

LaTaO4
8,14

 Non-centro Orthorhombic Possible Unknown Cmc21 

LaNbO4(LP)
10

 Centro Monoclinic No N/A I2/a 

LaNbO4(HP)
10

 Non-centro Orthorhombic Possible Unknown Cmc21 

Centro means centro-symmetric; Non-centro means non-centrosymmetric.  

Ferro: ferroelectric; Antiferro: anti-ferroelectric.  

HP: The sample was made under high pressure. LP: The sample was made under normal 

pressure. 
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2.2.2. n=3 group in AnBnO3n+2 

The n=3 compounds can be divided into two smaller groups according to their structure. 

One has three perovskites layers (n=3, Type I) and the other is a combination of two 

(n=2) and four (n=4) layers (Type II) as shown in Fig.2.2.4. 

 

Fig.2.2.4. Structures of type I and II members of n=3 compounds.
2,3

 

The type II group, La3Ti2TaO11 and Pr3Ti2TaO11 have been found to be 

noncentro-symmetric. The crystalline materials were obtained by a coprecipitation 

process.
20

 Both Pr3Ti2TaO11 and La3Ti2TaO11 belong to noncentro-symmetric 

orthorhombic, space group Pmc21. The lattice parameters are (a, b, c, β) = (3.87Å, 

20.30Å, 5.51Å, 90°) for Pr3Ti2TaO11 and (a, b, c, β) = (3.91Å, 20.20Å, 5.59Å, 90°) for 

La3Ti2TaO11.
2,3,20

  

Titov et al. estimated the spontaneous polarization (Ps) for La3Ti2TaO11 and Pr3Ti2TaO11 

as 6 μC/cm
2
 and 4 μC/cm

2
 respectively.

20
 However, there is no literature to support the 

evaluation. In contrast, compounds in the type I group, such as Sr2LaTa3O11, were found 
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to have centro-symmetric structures.
21

  

Sm3Ti2TaO11 with a pyrochlore structure (a=10.29Å) can be obtained using 

coprecipitation process. However, the pure phase of Nd3Ti2TaO11 was not obtained 

using coprecipitation.
20

 

Table.2.2. A3B3O11, n=3.  

Compounds Symmetry Structure Ferroelectric Tc/°C Space Group 

La3Ti2TaO11
20

 Non-centro Orthorhombic Possible Unknown Pmc21 

Pr3Ti2TaO11
20

 Non-centro Orthorhombic Possible Unknown Pmc21 

Sr2LaTa3O11
21

 Centro Orthorhombic No N/A Immm 
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2.2.3. n=4 group in AnBnO3n+2 

The n=4 group is the most researched group in the AnBnO3n+2 family, due to their 

excellent ferroelectric properties. Some of them have been confirmed as ferroelectric 

materials with super high Curie points, such as Sr2Nb2O7 (1327°C);
22,23

 Ca2Nb2O7 

(>1525°C);
22,24

 La2Ti2O7 (1461°C)
25-27

 and Nd2Ti2O7(1482°C).
25,28

 Their properties are 

discussed in detail in section.2.3. 

2.2.4. n=5 group in AnBnO3n+2 

In the n=5 group, most of the materials investigated are centro-symmetric. Sr5Nb4TiO17 

was found to be anti-ferroelectric below Tc ≥ 587°C.
29

 The crystal structure of 

Sr5Nb4TiO17 is orthorhombic with lattice parameters (a, b, c, β) = (3.95Å, 32.52Å, 

5.66Å, 90°) with space group Pnnm and is isostructural with Ca5Nb4TiO17.
2,29,30

 For 

Ce5Ti5O17 and Pr5Ti5O17, just the lattice parameters are available, which are (a, b, c, β) = 

(7.85Å, 5.52Å, 31.24Å, 97°) and (7.85Å, 5.52Å, 31.03Å, 96.5°).  

Sr5Nb5O16 is a special compound in this group. Though it does not look like AnBnO3n+2 

according to its formula, it can be considered as an oxygen-deficient n=5 type compared 

with ordered oxygen vacancies, so the formula can be represented as Sr5Nb5O17-δ 

(δ=1).
2
 Sr5Nb5O16 has a noncentro-symmetric structure, which indicates it could be a 

ferroelectric material. The lattice parameters are (a, b, c, β) = (3.99Å, 32.48Å, 5.68Å, 

90°).
31

 However, its physical properties have not yet been reported. The structure is 

shown in Fig.2.2.5. 
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Fig.2.2.5. Skeleton drawing of Sr5Nb5O16.
2
  

Table.2.3. A5B5O17, n=5.  

Compounds Symmetry Structure Ferroelectric Tc/°C Space Group 

Ca5Nb5O17
32

 Centro Monoclinic No N/A P21/c 

La5Ti5O17
2,3

 Centro Monoclinic No N/A P21/c 

Pr5Ti5017
2,3

 Centro Monoclinic No N/A Unknown 

Nd5Ti5O17
2,3

 Centro Monoclinic No N/A P21/c 

Sr5Nb5O17
2
 Centro Orthorhombic No N/A P21/c 

Sr5Nb5O16
31

 Non-centro Orthorhombic Possible Unknown Pmn21 

Sr5Nb4TiO17
29

 Centro Orthorhombic Anti-ferro 587 Pnnm 

Ce5Ti5O17
3
 Centro Monoclinic No N/A Unknown 

Ca5Nb4TiO17
2,3

 Centro Monoclinic No N/A P21/c 

Ca4NaNb5O17
2,3

 Centro Monoclinic No N/A P21/c 

NaCa4Nb5O17
 33

 Centro Monoclinic No N/A P21/c 

La5Ti4GaO17
2,3

 Centro Monoclinic No N/A Pmnn 

La5Ti4FeO17
2,3

 Centro Monoclinic No N/A Pmnn 

Pr5Ti4GaO17
2,3

 Centro Monoclinic No N/A P21/c 

Pr5Ti4FeO17
2,3

 Centro Monoclinic No N/A P21/c 

Nd5Ti4GaO17
2,3

 Centro Monoclinic No N/A P21/c 

Nd5Ti4FeO17
2,3

 Centro Monoclinic No N/A P21/c 
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2.2.5. n=6 and n=7 groups in AnBnO3n+2 

With an increasing number of perovskite layers, it becomes more difficult to form long 

range order in the structure, so that there are more defects and there are less compounds 

with an integral ratio. For the n=6 group, Sr6Nb4Ti2O20 has been confirmed as a 

ferroelectric material with Curie point Tc= 630°C.
2,34

 Its lattice parameters are (a, b, c, β) 

= (3.94Å, 38.4Å, 5.63Å, 90°). The dielectric constant was measured as 77 at 20°C, 

100kHz.
35

 Nd4Ca2Ti6O20 was suggested to be a ferroelectric material based on second 

harmonic generation. The structure parameters are (a, b, c, β) = (7.66Å, 36.64Å, 5.44Å, 

90).
6,36

 There are some other compounds in this group that are potentially ferroelectric 

due to their noncentro-symmetric structure.  

The n=7 compounds are difficult to synthesize due to their instability. The structure of 

Sr7Ti3Nb4O23 was studied. It has centro-symmetric structure. The crystal lattice is 

orthorhombic with parameters (a, b, c, β) = (3.93Å, 43.61Å, 5.61Å, 90°). The relative 

dielectric permittivity at 20°C has been reported as 61 at 100kHz. Another compound is 

Ca4Na3Nb7O23, which is also centro-symmetric. The structure is orthorhombic and the 

lattice parameters are (a, b, c, β) = (3.86Å, 5.5Å, 43.8Å, 90°).
34,35

  

To sum up, it seems to be a general rule that noncentro-symmetric and ferroelectric 

compounds exist in the even type structures n=2, n=3(II), n=4 and n=6. The uneven type 

structures n=3, n=5 have centro-symmetric space groups and are anti-ferroelectrics 

sometimes.
2,3
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Table.2.4. A6B6O20, n=6.  

Compounds Symmetry Structure Ferroelectric Tc/°C Space Group 

Sr6Nb4Ti2O20
35

 Non-centro Orthorhombic Yes 630 Cmc21 

Nd4Ca2Ti6O20
37

 Non-centro Orthorhombic Possible No report P21 

Ca6Nb4Ti2O20
2
 Non-centro Monoclinic Possible No report P21 

La4Ca2Ti6O20
2
 Non-centro Monoclinic Possible No report P21 



Chapter II. Literature Review 

 

20 

2.3. A2B2O7 (A4B4O14 n=4) compounds 

In the perovskite-like layered structure (PLS) family, the n=4 group has attracted the 

most attention, because of their high Curie points. In this relatively big group, many 

compounds have excellent ferroelectric properties. This group can be divided into two 

main sub-series: 1) rare earth element titanates; 2) niobates and tantalates. These are 

summarized in table.2.5 and table.2.8, respectively. 

Table.2.5. Rare earth element titanates (A2Ti2O7).  

 

Compounds Symmetry Structure Ferroelectric Tc/°C Space Group 

La2Ti2O7
26

 Non-centro Monoclinic Yes 1461 P21 

Ce2Ti2O7
38

 Non-centro Monoclinic Yes No report P21 

Pr2Ti2O7
38

 Non-centro Monoclinic Yes 1750 P21 

Nd2Ti2O7
28

 Non-centro Monoclinic Yes 1482 P21 

Sm2Ti2O7(LP)
3

9
  

Centro Cubic No N/A Fd3m 

Sm2Ti2O7(HP)
4

0
 

Non-centro Monoclinic Yes 1247 P21 

Eu2Ti2O7(LP)
41

 Centro Cubic No N/A Fd3m 

Eu2Ti2O7(HP)
4

2
  

Non-centro Monoclinic Yes 1077 P21 
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2.3.1. Lanthanum Titanate (La2Ti2O7) and solid solution 

The ferroelectric properties of La2Ti2O7 (LTO) were first characterized in the 1970s.
26,27

 

At room temperature, La2Ti2O7 has been found to possess a monoclinic structure (a, b, c, 

β) = (7.80Å, 13.011Å, 5.546Å, 98.6°) with space group P21.
26,27

 The structure 

transforms into an orthorhombic structure (a, b, c, β) = (3.954Å, 25,952Å, 5.607Å, 90°) 

with space group Cmc21 at 780
 o

C. At about 1500
 o

C, it transforms into a paraelectric 

phase with space group Cmcm.
25,43

 The structure of La2Ti2O7 can also change reversibly 

under high pressure and the phase transition takes place at 16.7GPa at room 

temperature.
44

 The space group of high-pressure phase was suggested to be either P2, 

Pm, P2/m, or P21.
44

 The structural change between the orthorhombic Cmc21 and 

monoclinic P21 La2Ti2O7 at 780°C is shown in Fig.2.3.1 and Fig.2.3.2.
45

 Displacements 

of the La atoms take place within the respective planes perpendicular to the a-axis, and 

by rotations of TiO6 octahedra around an axis parallel to the b axis and through the 

respective Ti atoms.
26,27,45

  

 

Fig.2.3.1. The linkages of TiO6 octahedra in the phase transition at 780 ˚C (P21: solid 

and Cmc21: dotted).
45
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Fig.2.3.2. A schematic drawing of structural transition from the Cmc21 (upper) to the 

P21 (lower).
45

  

La2Ti2O7 melts at 1790°C and the single crystal growth was carried out by a floating 

zone technique. It has density of 5.79g/cm
3
 and spontaneous polarization is along the 

c-axis. The piezoelectric constant d33 was measured as 16 pC/N. The D-E hysteresis 

loop applying a maximum electric field of 86 kV/cm is shown in Fig.2.3.3.
43,46

  

 

Fig.2.3.3. D-E hysteresis loop of single crystal La2Ti2O7 at room temperature and 50Hz 

along c-axis. Ps=5 μC/cm2, Ec=45 kV/cm at 86 kV/cm.
26 

 

a 

a 

c 
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In 1991, La2Ti2O7 ceramics were made using conventional solid-state reaction of mixed 

oxides (La2O3 and TiO2); evaporative decomposition of solutions; molten salt synthesis; 

and hot forging. Compared to other methods, the sample made by hot forging had the 

highest density (99%) and highest degree of grain orientation (Lotgering factor f = 0.79). 

Anisotropy of dielectric constants and other electrical properties was also observed. The 

electric structure of La2Ti2O7 was identified by Bruyer.
47

 Band structure calculations 

predicted an insulating ground state for La2Ti2O7 with a band gap energy of about 2.84 

eV.
47,48

  

Textured La2Ti2O7 ceramic was fabricated by sparking plasma sintering (SPS) (The 

texture technique will be discussed in section 2.6). These were poled and shown to be 

piezoelectrically active. After texturing, generally, most of the grains are plate-like and 

oriented.(Fig.2.3.4) The direction along which the grains are orientated is perpendicular 

to the SPS pressing direction. The degree of grain orientation is high (Lotgering factor f 

= 0.82). The piezoelectric constant was measured as 2.6 pC/N.
25

 

 

Fig.2.3.4. Scanning electron microscope micrograph of the textured La2Ti2O7.
25 
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The Curie point could be observed through the temperature dependence of the dielectric 

constant and loss tangent, which is 1461°C (Fig.2.3.5). The permittivity of La2Ti2O7 

ceramic was measured to be from 45 to 50.
25

 The resistivity of the ceramics are shown 

in Fig.2.3.8.  

 

Fig.2.3.5. Temperature dependence of the dielectric constant (ε) and loss (D) of 

La2Ti2O7 under 1MHz, 800kHz and 500kHz.
25

 

Because La2Ti2O7 has very high Curie point and high coercive field for a ceramic, some 

studies have been done on La2Ti2O7 based solid solution to improve properties.  

(La1-xNdx)2Ti2O7 compounds have been investigated by Shao et al.
49

 A series of 

compounds with the general formula (La1-xNdx)2Ti2O7 (0.0<x<1.0) was prepared by the 

sol–gel method. The XRD patterns of the series compounds are shown in Fig.2.3.6.
49

 

They all have a monoclinic structure with P21 space group. With the increase of x, an 

anisotropic evolution of the lattice parameters can be observed in the insert of Fig.2.3.6. 

The c-axis is constant with increasing x while a- and b-axes decrease.
49
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Fig.2.3.6. XRD patterns of (La1-xNdx)2Ti2O7 powders.
49

  

The dielectric properties of (La1-xNdx)2Ti2O7 have been studied.
49

 At low frequency, the 

dielectric constant increases with increasing x at first up to a maximum value when 

x=0.5, then it decreases.  

Recently, the solid solution system with the general formula (La1–xSmx)2Ti2O7 (0<x<1) 

has been synthesized and characterized. These compounds are isostructural with 

perovskite-type La2Ti2O7 until x = 0.8. Above this value (x>0.8), a mixture was 

obtained between the substituted perovskite layered phase and the pyrochlore Sm2Ti2O7 

phase.
39

 Electronic structure calculations of (La0.9Sm0.1)2Ti2O7 show that this compound 
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is an insulator with a band gap of about 2.77eV. 
39

  

Some other solid solution compounds of La2Ti2O7 have been reported, but the structure 

symmetry and ferroelectric properties have not been investigated. La1.5Ln0.5Ti2O7 (Ln= 

Pr, Gd, Er) were prepared using a polymeric complex method. The cell volume 

decreases from La2Ti2O7 to La1.5Er0.5Ti2O7. The details of the lattice parameters are 

shown in Table.2.6.
 50,51

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table.2.6. Lattice constant of La1.5Ln0.5Ti2O7 (Ln= Pr, Gd, Er).
50

  

Lattice parameter La2Ti2O7  La1.5Pr0.5Ti2O7  La1.5Gd0.5Ti2O7  La1.5Er0.5Ti2O7 

a (Å) 13.011 13.006 12.945 12.928 

b (Å) 5.546 5.535 5.495 5.489 

c (Å) 7.812 7.784 7.744 7.718 

V(Å
3
) 557.31 554.00 544.60 541.47 
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2.3.2. Neodymium Titanate (Nd2Ti2O7) and solid solution  

Single crystals of Nd2Ti2O7 (NTO) were synthesized by a floating zone technique. 

Nd2Ti2O7 has a similar structure to La2Ti2O7. It is a monoclinic structure with space 

group P21. The lattice parameters are (a, b, c, β) = (7.68Å, 13.02Å, 5.48Å, 98.47°) at 

room temperature. The ferroelectric phase changes into paraelectric phase at 1481°C. 

The spontaneous polarization is along the c-axis.
25,28,52

  

The melting point of Nd2Ti2O7 is 1800°C and the theoretical density is 6.08 g/cm
3
. For 

the single crystal, the coercive field (Ec) is 200 kV/cm and d33 is 6.5 pC/N.
28

 The band 

gap of Nd2Ti2O7 was predicted to have an energy of 1.63-3.65 eV.
48,51

 

Nd2Ti2O7 ceramics can be prepared by solid state calcination of the mixed oxide (Nd2O3 

and TiO2) and sintering in air from 1300
 o

C to 1500
 o
C.

53
 The highest density achieved 

was 95% at about 1375
 o

C.  

Textured ceramics of Nd2Ti2O7 were prepared by two-step sintering and hot forging in 

graphite dies in a SPS furnace. Nd2Ti2O7 ceramic was dark-blue in colour.
25

  

The dielectric constant was measured to be around 36 for the Nd2Ti2O7 ceramic. The 

Curie point can be confirmed using the dielectric anomalies in the temperature 

dependence of dielectric constant and loss (Fig.2.3.7).    
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Fig.2.3.7. Temperature dependence of dielectric constant and loss of Nd2Ti2O7 ceramic 

sintered at 1550 °C.
25

 

The electrical resistivities of La2Ti2O7 and Nd2Ti2O7 have been reported. Both of them 

are excellent dielectric materials. Even at high temperature up to 500°C, their resistivity 

is still about 10
8 

to 10
9 

Ω.cm (Fig.2.3.8). 

 
Fig.2.3.8. DC resistivity of textured ceramics as a function of temperature.

25 
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Nd2-xLixTi2O7-δ (x=0, 0.1, 0.15) solid solution has been obtained using a gel entrapment 

technique by Pai et al.
54

 The structure details are shown in Table. 2.7. With Li doping, 

the conductivity increases.   

Table.2.7. Cell parameters of Nd2-xLixTi2O7-δ.
54

 

Sample a(Å) b(Å) c(Å) β(°) V(Å
3
) 

Nd2Ti2O7 5.4677 13.027 7.6784 98.58 540.79 

Nd1.9Li0.1Ti2O7 5.4636 13.036 7.6802 98.69 540.50 

Nd1.85Li0.15Ti2O7 5.4662 13.012 7.6843 98.61 540.37 

The Nd2(Zr1-xTix)2O7 (x=0.2, 0.4, 0.6, 0.8) series compounds were investigated by 

Harvey.
55

 With increasing Nd2Zr2O7 content, the structure transforms from monoclinic 

PLS (P21) to cubic pyrochlore with space group Fd3m.
55

 The unit cell volumes 

decreases with increasing Nd2Ti2O7 content (Fig.2.3.9).
55

 

 

Fig.2.3.9. Unit cell volumes for series Nd2(Zr1-xTix)2O7.
55
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Some other compounds were synthesized, such as NdSmTi2O7, NdEuTi2O7 and 

NdPrTi2O7, but no literature is available about their ferroelectric properties.
5
 

The Gd2-xNdxTi2O7 compounds were synthesized and prepared by ceramic sintering. 

Using XRD, an increase in lattice parameter was observed as a function of x in the 

series Gd2-xNdxTi2O7 in the composition range 0.0<x<0.8. Compositions Gd2-xNdxTi2O7 

in the range 0.8<x<1.4 were biphasic. Above x=1.6, the solid solutions are monoclinic, 

isostructural with Nd2Ti2O7.
56

 The XRD patterns are shown in Fig.2.3.10. 

 

Fig.2.3.10. XRD patterns of (a) Gd2Ti2O7, (b) Gd1.8Nd0.2Ti2O7, (c) GdNdTi2O7, (d) 

Nd2Ti2O7. C=cubic pyrochlore; M=monoclinic. (*) indicate the presence of peaks for 

monoclinic phase along with cubic pyrochlore phase.
56
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2.3.3. Cerium Titanate (Ce2Ti2O7) 

It is difficult to prepare cerium titanate (Ce2Ti2O7) at high temperature, because Ce (III) 

compounds tend to form the thermodynamically stable Ce(IV) when the temperature is 

above 400 
o
C.

3,57,58
 The thermogravimetric analysis of several Ce compounds is shown 

in Fig.2.3.11. For all of the compounds, there is an increase of oxygen content between 

200 and 400
 o
C, which indicates the Ce

3+
 is not stable in air. 

 

Fig. 2.3.11. Thermo gravimetric analysis of Ce2Ti2O7, Ce2Si2O7, CeFeO3 and CeNbO4 

under air at atmospheric pressure.
57

 

To prepare Ce2Ti2O7 (CTO) compounds, it is preferable to use CeO2 and Ti2O3 as the 

starting materials. The mixture is placed in an argon atmosphere at 1200
 o

C to get 



Chapter II. Literature Review 

 

32 

Ce2Ti2O7 powder. Alternatively, the floating zone melting method was used with starting 

materials of TiO2 and CeO2 for synthesis of single crystals. An atmosphere of 98% 

argon and 2% hydrogen was used. Its structure is monoclinic with space group P21. The 

lattice constant is (a, b, c, β) = (7.74Å, 12.99Å, 5.5Å, 98.6°). The melting point is 

1790°C.
3,59,60

  

In 1985, the assumption of a linear dependence of Tc on the ionic radius of the 

rare-earth element in compounds Ln2Ti2O7 with PLS structure was made to speculate 

the Tc of CTO and NTO.
60

 But, for the NTO Tc is not 1885°C as assumed, which was 

confirmed as 1481°C.
25

 Also, there is no experiment confirming the Tc of CTO. 

Lichtenberg has reported that the crystal is ferroelectric based on the structure, but there 

are no details about its ferroelectric properties.
2,3,60

  

Ce2Ti2O7 films were made by a spin-coating method on Pt/Ti/SiO2/Si and Y2O3/Si 

substrates. Subsequently, the films were annealed under low-vacuum (6.664 Pa) at 

800°C for 30 min in a tube furnace.
61

 It was found that CTO and LTO had similar 

crystal structures at room temperature. Fig.2.3.12 shows the frequency dependence of 

dielectric constant and loss of the CTO, while the P-E loop is shown in Fig.2.3.13. The 

domain switch cannot be observed and the round shape indicates that Ce2Ti2O7 film has 

a relatively high conductivity. There is no literature reported on solid solutions based on 

Ce2Ti2O7 due probably to its instability in air at high temperature.  
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Fig.2.3.12. Dielectric constant and loss of Ce2Ti2O7 film.
61

  

 

Fig.2.3.13. P-E hysteresis loop of the Pt/Ce2Ti2O7/Pt structure.
61
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2.3.4. Praseodymium titanate (Pr2Ti2O7) 

A Single crystal of Praseodymium titanate (Pr2Ti2O7, PTO) was prepared by floating 

zone melting in a nitrogen atmosphere from a stoichiomeric mixture of Pr6O11 and TiO2. 

The crystal is transparent and grass green in color. Pr2Ti2O7 can also be made by solid 

phase synthesis. A powder mixture of Pr6O11 and TiO2 was calcinated at 850°C for 10 

hours followed by 1150
o
C for 10 hours under static air conditions.

2,51,62
  

The structure was confirmed as monoclinic with space group P21. The lattice constant is 

(a, b, c, β) = (7.704Å, 12.996Å, 5.485Å, 98.51°). The spontaneous polarization is along 

c-axis. The XRD data showed Pr2Ti2O7 is isostructural with La2Ti2O7. The distortion of 

the TiO6 octahedra is accompanied by changes in Ti-O bond length (1.78-2.25Å) and 

O-Ti-O bond angles (80.3°-103.4° and 163.3°-172.8°).
2,3,62,63

  

The Pr2Ti2O7 ceramic was made by self-propagated high temperature synthesis (SHS).
64

 

The density was measured to be 5.95g/cm
3
. The thermal properties were characterized 

by thermo gravimetric analysis (TG), differential thermogravimetric analysis (DTG) and 

differential thermal analysis (DTA).
64

 The SHS sample lost weight at about 430°C in 

nitrogen.
64

 Its dielectric constant at room temperature was found to be about 40.
65

  

The ferroelectric properties of PTO were first reported in 1980 for the first time.
63

 A 

phase transition corresponding to the Curie point occurs at 1750°C below its melting 

point at 1790°C. The electronic band gap was reported by Dong et al to be 2.99eV.
51
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2.3.5. Europium titanate (Eu2Ti2O7) and Samarium titanate (Sm2Ti2O7) 

Eu2Ti2O7 (ETO) prepared at atmospheric pressure has the pyrochlore structure (cubic), 

and has PLS structure if prepared at high pressure. The pyrochlore structure is 

centro-symmetric and has space group Fd3m with a=10.192Å.
40,42

 Eu2Ti2O7 with PLS 

structure was fabricated by a two-stage method. At room temperature (25°C), a pressure 

of 3~4 GPa was applied, then powder was sintered up to 1750°C under a pressure 8 

GPa.
40,42

  

Other literature reported Eu2Ti2O7 with PLS structure could be synthesized under 

ambient-pressure at 800°C for 15h by using EuTiO3 as the precursor by a one step 

method (Fig.2.3.14).
66

 The PLS phase of Eu2Ti2O7 has monoclinic structure with space 

group of P21, which is isostructural with La2Ti2O7 and the unit-cell parameters are (a, b, 

c, β) = (7.54Å, 12.86Å, 5.39Å, 98.3°).
2,3,66

 The ferroelectric properties of Eu2Ti2O7 have 

been studied by second harmonic generation. The curie point was estimated as ~1520°C 

and spontaneous polarization as 2.7 uC/cm
2
.
2,3,60

 The electrical conductivity of single 

crystal Eu2Ti2O7 has been investigated. Below 700K, The conductivity is due to 

extrinsic conduction suggested by the low activation energy and intrinsic charge carriers 

become dominant above 700K as most of the impurity charge carriers are exhausted up 

to the temperature supported by the high activation energy. The band gap for cubic 

Eu2Ti2O7 was measured as 2.5eV.
40,42,66-68
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Fig.2.3.14. (a) The ambient-pressure synthetic pathway. The light blue polyhedron: TiO6 

octahedra; the pink spheres: Eu cations. In the pyrochlore structure, green pheres: 

oxygen atoms which are not part of the TiO6 octahedra. (b) Powder XRD data for the 

EuTiO3 precursor. The amorphous PLS intermediate were generated at 500 and 650 °C, 

and the crystallization of PLS Eu2Ti2O7 was observed at 750, and 800 °C. At 900 °C, 

the Eu2Ti2O7 pyrochlore phase was come out (*) and it forms at higher temperatures.
66 
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Sm2Ti2O7 (STO) is similar to Eu2Ti2O7, it also has the pyrochlore structure (cubic) at 

atmosphere pressure and converts into the PLS structure under high pressure 

(5.4GPa).
67

 The pyrochlore Sm2Ti2O7 compound was synthesized by solid-state reaction 

methods. Sm2O3 and TiO2 (anatase) were well mixed with nominal composition of 

Sm2Ti2O7 and pressed into pellets. The mixture was heated up to 1100 °C for 48h. The 

pyrochlore phase has cubic structure with Fd3m space group and a=10.211Å. The PLS 

phase has monoclinic structure with P21 space group. The lattice parameters for PLS 

structure are (a, b, c, β) = (7.62Å, 5.43Å, 12.90Å, 98.4°). The pyrocholre phase is not 

ferroelectric. In contrast, the PLS structure like that of Eu2Ti2O7 is ferroelectric and the 

ferroelectric properties were estimated by second harmonic generation. The Tc was 

reported as 1077 °C. The spontaneous polarization is 2.1 uC/cm
2
.
69-71

  

Overall, in rare earth element titanates of general formula A2Ti2O7, the PLS structure 

material tends to be more stable with larger A-site cations.
59

 Lanthanide titanates 

Ln2Ti2O7 (Ln=La, Ce, Pr, Nd) with radius ratios of the cations rLn
3+

/rTi
4+

 ≥1.5 prefer 

the PLS structure and prefer to have P21 space group at room temperature. On the other 

hand, Ln2Ti2O7 (Ln=Gd-Lu) with radius ratios 1.22 ≤ rLn
3+

/rTi
4+

 ≤ 1.5 crystallize as the 

cubic pyrochlore structure. Sm2Ti2O7 and Eu2Ti2O7, which are in the middle of the 

series, crystallize with the PLS structure under high pressure conditions and pyrochlore 

structure under atmospheric pressure.
72  
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2.3.6. Strontium Niobate (Sr2Nb2O7) and solid solution 

Single-crystal Sr2Nb2O7 (SNO) has been investigated by Nanamatsu et al.
23

 It was 

produced by the floating zone melting method. SrCO3 and Nb2O5 were used as raw 

materials. Sr2Nb2O7 crystal is colourless and transparent with density 5.17g/cm
3
. The 

crystal is orthorhombic with space group of Cmc21.
23

 The lattice parameters are (a, b, c, 

β) = (3.95Å, 26.77Å, 5.69Å, 90°).
23,73,74

 The Ps direction is along c-axis. The structure 

is shown in Fig.2.3.15. 

 

Table.2.8. Niobates (A2Nb2O7) and Tantalates (A2Ta2O7).  

Compounds Symmetry Structure Ferroelectric Tc/°C Space Group 

Ca2Nb2O7
22

 Non-centro Monoclinic Yes >1525 P21 

Sr2Nb2O7
22

 Non-centro Orthorhombic Yes 1327 Cmc21 

Ca2Ta2O7
75

 Poly type  Poly type  Unknown Unknown Poly type  

Sr2Ta2O7
76

 Non-centro Monoclinic Yes -107 P21 

Ba2Ta2O7 No report No report No report N/A No report 
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Fig.2.3.15. View along a of the basic crystal structure of Sr2Nb2O7. NbO6 octahedra are 

shown as light gray shaded octagons. Spheres represent the Sr atoms.
77

  

Sr2Nb2O7 is ferroelectric and has three phase transitions. Below -156 °C it is 

ferroelectric with Ps in the bc-plane. The Ps rotate at 215 °C into the c-axis and it 

becomes a paraelectric phase at 1342 °C.
23

 The ferroelectric properties of single crystal 

Sr2Nb2O7 have been demonstrated by the dielectric constant anomaly and the P-E 

hysteresis loop shown in Fig.2.3.16 and Fig.2.3.17 respectively. The Pr = 7uC/cm
2
, Ec = 

6kV/cm at maximum applied field E0=25 kV/cm.
23,78
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Fig.2.3.16. Temperature dependence of dielectric constants of Sr2Nb2O7 crystal at 

1MHz.
79

  

 

Fig.2.3.17. D-E hysteresis loop of Sr2Nb2O7 b-plate crystal at room temperature and 

50Hz.
23

 

The ferroelectric properties of Sr2Nb2O7 textured ceramics have been investigated by 

Ning et al.
22

 The ceramics was textured by SPS using a two-step method (Section.2.4). 

The Curie point was reported to be ~1327 °C and d33 was measured as 2.8pC/N.
22

 The 

grains were plate like and oriented (Fig.2.3.18). The temperature dependence of the 

dielectric constants and P-E, I-E loops are shown in Fig.2.3.19 and Fig.2.3.20.  
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Fig.2.3.18. Scanning electron microscopic micrographs of Sr2Nb2O7 ceramic surfaces 

perpendicular to the SPS pressing direction.
22 

 

 

Fig.2.3.19. Temperature dependence of the dielectric constant and loss of textured 

Sr2Nb2O7 ceramics perpendicular and parallel to the spark plasma sintering (SPS) 

pressing direction.
22
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Fig.2.3.20. I-E and P-E hysteresis loops of textured Sr2Nb2O7 ceramic along the 

direction perpendicular to the pressing direction at 200°C.
22

  

Sr2Nb2O7 is the most studied compounds in the n=4 family, and there are many reports 

on solid solution systems. The (Sr1-xMx)2Nb2O7 (M=Ba, Ca, Zn, Cd, Pb) systems have 

been investigated.
80

 When M=Ba, Ca, Zn, Cd, Pb, the solid solution limits were 

reported at x= 0.3, 1, 0.25, 0.3, and 0.4 respectively.
80

 The system of (Sr1-xPbx)2Nb2O7 is 

shown in Fig.2.3.21. 

 

Fig.2.3.21. The demixing curve for Sr2Nb2O7-Pb2Nb2O7 system. The curve presents the 

isomorphous miscibility boundaries as functions of temperature.
81 
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For (Sr1-xCax)2Nb2O7,and Sr2(Ta1-xNbx)2O7 (Fig.2.3.22) the Curie point increases with 

increasing x. This reflects the fact that Tc decreases in the order Tc (Ca2Nb2O7) > Tc 

(Sr2Nb2O7) > Tc (Sr2Ta2O7). But for (Sr1-xBax)2Nb2O7 and (Sr1-xPbx)2Nb2O7, the Curie 

point both decrease with increasing x.
79

  The curie points of some Sr2Nb2O7 based solid 

solutions are shown in table.2.10. 
79 

 

Fig.2.3.22. Dielectric constants of solid solution ceramics Sr2(Ta1-xNbx)2O7.
79 

Table.2.10. Ferroelectric phase transition temperature (°C) of A2B2O7-system solid 

solution involving Sr2Ta2O7 and Sr2Nb2O7 as an end compound.
79

 

Solid solutions                      x 

0 0.1 0.2 0.4 0.6 0.8 1.0 

Sr2(Ta1-xNbx)2O7 -107  410 735 1000 1160 1342 

Sr2-2xCa2xTa2-2xNb2xO7 -107 305 600 1160 1450  >1500 

(Sr1-xCax)2Ta2O7 -107  320 710 1127 >1400  

(Sr1-xCax)2Nb2O7 1342  >1400    >1500 

(Sr1-xPbx)2Nb2O7 1342  1280 1225    

(Sr1-xBax)2Nb2O7 1342  1080 825 100   
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In the (Sr1-xMx)2Nb2O7 (M=Cu, Ni) series, solid solution ranges were determined to be 

0<x<0.2 and 0<x<0.1 for Cu and Ni, respectively based on the XRD results. The 

resistivity was reduced by the substitution of Cu and Ni, due to the increase in 

electronic conductivity with increasing transition-metal content.
82

  

For the Sr2-xEuxNb2O7 system, after heating at 1200
o
C for 20h if x<1 only the 

orthorhombic phase is produced, if x>1 orthorhombic and hexagonal phases coexist.
83

 

The (Ca2Nb2O7)0.5(La2Ti2O7)0.5, (CaLaTiNbO7), compound has a melting point of 

1630
o
C and a phase transition temperature point of 1430

o
C. The 

(Sr2Nb2O7)0.5(La2Ti2O7)0.5, (SrLaTiNbO7), has a phase transition temperature of 

1050
o
C.

60
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2.3.7. Strontium Tantalate (Sr2Ta2O7) and solid solution 

Single crystals of Sr2Ta2O7 were grown by the floating zone technique using SrCO3 and 

Ta2O5 as the raw materials.
84

 The single crystals were transparent and colourless with 

measured density of 7.05 g/cm
3
.
84

 Compared to Sr2Nb2O7, Sr2Ta2O7 has a very low 

ferroelectric phase transition temperature (-107
o
C). Hence it is a paraelectric phase at 

room temperature shown (Fig.2.3.23). It has an orthorhombic structure with space group 

Cmcm at room temperature and undergoes a transition to ferroelectric phase at about 

-107
o
C to orthorhombic symmetry with space group Cmc21. The lattice parameters are 

(a, b, c, β) = (3.94Å, 27.2Å, 5.69Å, 90°).
84-86

  

 

Fig.2.3.23. The crystal structure of Sr2Ta2O7 viewed (a) along a; (b) along c direction.
84

 

At room temperature, the structure is centro-symmetric, consistent with the paraelectric 

character of Sr2Ta2O7.
87

 The P-E hysteresis loop of Sr2Ta2O7 crystal was measured at 

-190
 o

C (Fig.2.3.24). The remanent polarization Pr and coercive field at a maximum 
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applied field E0=6.8 kV/cm were: Pr=0.69 uC/cm
2
 and Ec=0.4 kV/cm, respectively.

5,79  

 

Fig.2.3.24. D-E hysteresis loop of Sr2Ta2O7 c-plate crystal at -190 
o
C and 50Hz.

5
  

The Sr2-xEuxTa2O7 system is similar to the Sr2-xEuxNb2O7 system. After heating at 1350 

o
C for 20h, only the orthorhombic phase was observed in products for composition with 

x<1, while when x>1 orthorhombic and hexagonal phases coexisted.
83

 

For Sr2(Ta1-xNbx)2O7, (Sr1-xCax)2Ta2O7, and Sr2-xCaxTa2-xNbxO7 systems, the Curie 

points are presented in Table.2.10.
88

 The Curie points all increase with increasing x in 

all the three systems.
79

 Ferroelectric phase transition temperatures based on 

Sr2Ta2O7-system are shown in Fig.2.3.25 and Table.2.10.
5,79

 

 

Fig.2.3.25. Ferroelectric phase transition temperatures of A2B2O7-system solid solution 

as a function of solution ratio x.
79
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2.3.8. Calcium Niobate (Ca2Nb2O7) and solid solution 

Ca2Nb2O7 was first obtained using a floating zone method on an image furnace.
89

 CaO 

and Nb2O5 were used as raw materials. The crystal is colourless and transparent. At 

room temperature, Ca2Nb2O7 has monoclinic structure with space group P21 and the 

lattice parameters are (a, b, c, β) = (7.80Å, 13.39Å, 5.50Å, 98.34°).
90

 The projections of 

the monoclinic structure along a- and c- axes are shown in Fig.2.3.26. 

 

Fig.2.3.26. The structure of monoclinic Ca2Nb2O7 projected along the a-axis and the 

c-axis.
90 

The Ca2Nb2O7 ceramic was sintered by SPS and the grains showed a preferred grain 

orientation (Fig.2.3.27).
22

 Ca2Nb2O7 has a very high Curie point above 1580 
o
C which 

has been determined by the fact that no dielectric anomaly was found up to this 
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temperature shown in Fig.2.3.28. Most of the solid solution systems based on Ca2Nb2O7 

studied also involve other A2B2O7 compounds, so they have already been discussed in 

the previous sections.
 

 

Fig.2.3.27. SEM images of Ca2Nb2O7 ceramic.
22

 

 

Fig.2.3.28. Temperature dependence of the permittivity and loss of Ca2Nb2O7.
22
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2.3.9. Tungstates 

The literature about phase transitions in polytungstates of monovalent elements is rather 

poor. The compounds are of interest due to their ferroelectric and ferroelastic 

properties.
91

 Though they have a similar formula to PLS A2B2O7 materials, they do not 

have PLS structures. So, this family here is just for comparison.    

Li2W2O7 crystals were synthesized by heating an intimate mixture of Li2CO3 and WO3 

in a platinum crucible at 800°C for 5 hours and by cooling at a rate of 30-50°C/h.
91,92

 

They are colourless and transparent. Li2W2O7 has a triclinic structure, which is built up 

of distorted WO6 octahedra and LiO4 tetrahedra. It has several phase transition points at 

602°C, 674°C, 705°C and 734°C. It has melting point of 738°C.
91,93

 It is not known 

whether any of these phases are ferrolectric or ferroelastic. 

For Na2W2O7, there are two structures. Na2W2O7 (LP) is obtained by a solid-state 

reaction under normal pressure using Na2CO3 and WO3 as a precursor. Na2W2O7 (HP) 

can be made by treating Na2W2O7 (LP) at 3.2GPa and 1200°C.
94-96

 The Na2W2O7 (LP) 

has centro-symmetric structure with space group Cmca and the structure of Na2W2O7 

(HP) is noncentro-symmetric and isostructural to Sr2Nb2O7 with orthorhombic structure 

(Cmc21).
 95

 So, Na2W2O7 (HP) was suggested as a ferroelastric and ferroelectric material 

with melting point 738°C.
91,95

 The cell parameters of Na2W2O7 (HP) are (a, b, c, β) = 

(3.78Å, 26.61Å, 5.43Å, 90°). Heating of Na2W2O7 (HP) at ambient pressure and 1050K 

results in complete transformation to Na2W2O7 (LP).
91,95
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K2W2O7 was synthesized at high pressure 5-60 GPa and 500-1200°C. It is monoclinic 

with a space group of P21/c and lattice parameters (a, b, c, β) = (5.96Å, 13.65Å, 3.88Å, 

90.42°).
91

 It has melting point of 632°C.
91

 Compared to titanates and niobates, the 

tungstates have lower melting points which limit the possibility of observing a Curie 

point. 

Table.2.11. Tungstates
91

 

Compounds Symmetry Structure Ferroelectric Tc/°C Space Group 

Li2W2O7 Non-centro Triclinic No report No report No report 

Na2W2O7(LP) Centro Orthorhombic No N/A Cmca 

Na2W2O7(HP) Non-centro Orthorhombic No Report No report Cmc21 

K2W2O7 Non-centro Monoclinic No report No report P21/c 
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2.4. Spark Plasma Sintering (SPS) and texturing  

Spark plasma sintering (SPS) is a useful sintering technique to fabricate nanosized, high 

density, and textured materials. It is also known as field assisted sintering technique or 

pulsed electric current sintering.
97

 Pulsed high direct- current (DC) current and uniaxial 

pressure are utilized to consolidate powders rapidly. It has become increasingly used in 

research to prepare structural and functional ceramics owing to the effectiveness of the 

process to rapidly and efficiently consolidate a wide variety of materials with novel 

microstructures.
98

  

In the SPS technique, powders are first put in a graphite die firstly and then placed in a 

vacuum chamber. Then Joule heating is generated by the current passing through the die 

and the sample. In the meantime, a high uniaxial pressure is applied. The vacuum 

protects the graphite from oxidizing at high temperature (Fig.2.4.1-2.4.2). 

 

Fig.2.4.1. Photo of a SPS machine (FCT, Germany). 
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Fig.2.4.2. Schematic of a SPS furnace chamber (left) and a SPS die set (right).
99

 

To some extent, SPS is similar to hot pressing (HP) which also utilizes a uniaxial 

pressure during the sintering process. However, the SPS process has a number of 

advantages compared with conventional sintering methods such as HP.
97

 There are 

several main features attributed to the SPS sintering behavior: the high heating rate, the 

application of pressure and the effects of current.
100,101

  

In this study, the SPS furnace (25/1 FCT, Germany) (Fig. 2.4.1) was used. It can achieve 

a temperature up to 2200°C and a heating of rate up to 600°C/min. In the current study, 

the rapid heating rates (100°C/min) are used to produce highly dense and textured 

ferroelectric ceramics which cannot be achieved by the conventional sintering. 

For piezoelectric applications, ferroelectric ceramics have to be poled under an 

electrical field. In ferroelectric single crystal, ferroelectric domains are polarized along 

one of several crystalographically allowed directions. The polarization direction can be 

switched under a sufficiently large electrical field. In ferroelectric ceramics, the 
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crystallite grains are randomly oriented and may contain one or several ferroelectric 

domains. The domains are constrained by the differently oriented neighboring grains 

when the domains in one grain attempt to switch under electrical poling. This makes the 

coercive field (Ec) of ceramics much higher than those of single crystals. If the grains 

are orientated in one direction, Ec decreases and the piezoelectric and ferroelectric 

properties can be improved.
102,103

 Texture is the method to make preferred grain 

orientation in ceramics to improve the properties in certain directions.
104,105

 So, the 

materials with anisotropic crystal structure such as PLS, Aurivillius, and tungsten 

bronze materials, are suitable for the texture technique. Fig.2.4.3 shows the texture 

process, which can help domain orientation, making ceramics with greater piezoelectric 

properties. 

In the current study, a two-step hot-forging texturing method was utilized based on SPS 

sintering (Fig.2.4.3). The first step is to press the powder into a graphite die and sinter 

by SPS. In this step, the dense samples with minimal grain growth are obtained. Then, 

the sintered sample is placed into another larger die. It is then sintered at higher 

temperature to increase the grain size, and at the same time a high pressure is applied. 

During this step, the grains grow quickly, and the pressure constrains the growth 

direction and orientation of grains.
103,104
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Fig.2.4.3. Texturing mechanisms by a SPS two-step method. The first step is to dense 

samples with minimal grain growth. In the second step, the grains grow quickly, and the 

pressure constrains the growth direction and orientation of grains 
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Chapter III. Experiment Procedures 

3.1. Powder preparation 

Fine and homogeneous powder is required to make dense and single phase ceramics. 

The starting materials were La2O3 (99.99% purity, Alfa Aesar), CeO2 (99.9% purity, 

Segma-Adrich), Pr6O11 (99.9% purity, Segma-Adrich) Nd2O3 (99% purity, Alfa Aesar), 

TiO2 (99.95% purity, Alfa Aesar), SrCO3 (99% purity, Alfa Aesar), BaCO3 (99.8% purity, 

Alfa Aesar) and Nb2O5 (99.9% purity, Segma-Adrich). Starting materials were weighed 

out according to the stoichiometric formula of the desired composition. Then, wet ball 

milling was employed to mix the powders and reduce the particle size. The raw powder 

was placed in a cylindrical nylon pot containing ZrO2 milling balls and ground by ball 

milling (QM-3SP4, Nanjing University Instrument Plant, China) with ethanol 

(Fig.3.1.1(a)). For a high milling efficiency, the ratio of the volume of powders, ethanol 

and milling balls was about 1:2:3.
1
 The milling balls were a mixture of 5 mm and 10 

mm in diameter. After the wet ball milling, the mixture was dried in a drying oven (Elite) 

at 80 °C for 8 hours to evaporate the liquid. Then the dried material was sieved using a 

stainless steel sieve (aperture diameter 250 μm) to control the particle size.  

In this study, solid state reaction was used to produce all of the compounds studied. The 

mixed raw powders were put in alumina crucibles heated and calcined to a high 

temperature in a conventional chamber furnace (Elite, BRF 15/5) (Fig.3.1.1(b)). The 

ideal calcination temperature was chosen to be high enough to obtain single phase 
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materials, but low enough to permit easy re-milling. After calcination, the powders were 

re-milled and sieved to reduce particle size. 

 

Fig.3.1.1 Photos of (a) the QM-3SP4 planetary ball milling machine and (b) high 

temperature furnace. (Lenton, BRF 15/5) 

 

 

 

 

 

 

 

(a) (b) 
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3.2. Sintering by SPS 

The A2B2O7 powders were sintered in graphite dies by a Spark Plasma Sintering furnace 

(HPD 25/1 FCT, Germany) (Fig.2.4.1). Graphite dies and punches were used to sinter 

A2B2O7 powders due to its good electrical conductivity and mechanical strength at high 

temperature. Graphite foils were utilized to enclose the samples to stop contact between 

the dies and samples and maintain a good thermal and electrical contact between dies 

and punches.  

For untextured samples, which were sintered by a one-step method, A2B2O7 powders 

were put in graphite dies with 20 mm diameter and sintered by SPS. Textured A2B2O7 

ceramics were obtained using a two-step method. In the first step, the powders were 

sintered in a 20mm-diameter graphite die. The sintering temperature corresponded to 

the temperature range during which the shrinkage speed is high. After this stage, the 

densities of the ceramics were high (>95%), but the grains were only slightly larger than 

the starting powder.  

In the second step, the densified compacts were placed in larger graphite dies (30 mm 

diameter) to sinter at a higher temperature. After sintering, the sintered samples were 

annealed in air for 15-20 hours in a chamber furnace (Lenton, BRF 15/5) to remove any 

carbon contamination. This increased the resistivity of the samples for electrical 

measurement.  

Finally, the sample were cut into plates whose normal lines were parallel or 
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perpendicular to the pressing direction and are referred to as SPS [//] and SPS [┴] 

(Fig.3.2.1), respectively (Cutting machine: Accutom-5, Struers). Then the sample were 

ground and machine polished (Forcipol 1V, Metkon). 

 

 

Fig.3.2.1. Diagrammatic sketch of SPS (//) and SPS (┴) from a bulk ceramic.  

 

 

 

 

 



Chapter III. Experiment Procedures 

 

69 

3.3. Characterization 

3.3.1. Density measurement 

The Archimedes principle was used to measure the densities of the bulk ceramics.  The 

density was calculated from the following relationship:
2
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                                                        (3.1)

 

Where m1 is the mass of the dry sample; m2 is the mass of the sample after soaking in 

water; m3 is the mass weighed while the sample is immersed in water. ρ0 is the density 

of water, For a sample which is nearly fully dense or only contains closed porosity, so 

m1=m2. The relationship becomes: 
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3.3.2. X-ray diffraction, Scanning electron microscopy and X-ray Photoelectron 

Spectra 

X-ray diffraction (XRD) is a non-destructive analytical technique based on Bragg's Law, 

which provides information about the chemical composition and crystallographic 

structure of materials. In this work, X-ray diffraction (XRD) patterns for the powders 

and polished ceramics were obtained with an X-ray diffractometer (Siemens D5000) 

using Cu Kα radiation.  
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The X-ray diffraction pattern collection was done by experimental officer Dr. Rory 

Wilson. Samples were mounted on zero background silicon single crystal substrates. 

The powder samples were mounted either as a thin slurry in acetone or just sprinkled on 

as a fine powder. The solid samples were ground to have a smooth flat surface for 

diffraction to be taken from. Phase identification was accomplished by comparing the 

peaks (positions and relative intensities) from the samples with the data from a standard 

database provided by the International Center for Diffraction Data (ICDD). The 

comparison was done with the help of software package X’Pert HighScore version 2.0.  

The degree of grain orientation of the textured ceramics was estimated using the 

Lotgering orientation factor, f, from the XRD peak intensities I using the equation
3
:  
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 )00(hI  and  )(hklI  are the sum of the XRD peak intensities of all the (h00) and 

(hkl) peaks, respectively for ceramic. I0(h00) and I0(hkl) are the sum of the XRD 

intensities of all the (h00) and (hkl) peaks, respectively for powder.  

The microstructures of the ceramic samples were observed using a scanning electron 

microscope (SEM) (FEI, Inspect F). The samples for SEM characterisation were 
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polished using silicon carbide paper (up to grade 4000) and then thermally etched for 15 

min to reveal their grain structures. ESCALAB 250 X-ray Photoelectron Spectrometer 

(Thermo Corp.) with monochromatized Al Kα (1486.5 eV) X-ray source was employed 

to analyse the surface bonding states of the samples with a pass energy of 20 eV. 

3.3.3. Electrical measurements 

Electrodes were made by coating the samples with platinum paste (Gwent Electronic 

Materials Ltd, C2011004D5) and fired above 1000°C for electrical properties 

measurements. The electrode layer was prepared so that it was thin, uniform and 

adhered strongly to the ceramic substrate.  

The frequency dependence of the dielectric constants and losses were obtained using a 

Precision Impedance Analyzer (Agilent, 4294A). The capacitances C measured directly 

by the equipment were converted into the relative dielectric constants by the following 

equation: 

A

Ct

0
 

    

                                                      (3.5) 

Where t and A are the thickness and the electrode area of the sample, respectively; ε0 is 

the dielectric constant in vacuum (ε0 = 8.854*10
-12

 F/m). 

The temperature dependence of the dielectric constants and losses at different 

frequencies was obtained using a Precision LCR Meter (Agilent, 4284A). The meter 

was connected to a high temperature (Tmax=1600°C) tube furnace (Lenton, LTF 
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16/--/180). An alumina sample substrate was coated with Pt to be conductive. The 

heating rate was 3°C/min. The two Pt probes connect the substrate and the sample. The 

spot temperature of the sample was measured using a type R thermocouple according to 

the Seebeck effect. The voltage difference was measured by a multimeter (HP, 34401A) 

(Fig.3.3.1). 

All the data (frequency, capacitance, and dielectric loss) were recorded by a computer 

using a lab view software. The relative dielectric constants were derived from the 

capacitance. The accuracy of the temperature was evaluated by using materials with 

known Curie points (reference material: LiNbO3, 1140 ºC). 

 

Fig.3.3.1. Schematic illustration of the setup for high temperature dielectric and 

resistivity measurement. 
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The DC resistivity was measured using a high resistance meter (KEITHLEY, 6517A) . 

The samples for resistivity measurement were about 1 mm in thickness. The resistance 

data was recorded at 10 V after holding at different temperatures for 15 min. The 

electrical stability measurements were carried out by holding the samples at certain 

different temperatures and measuring the resistance as a function of time. 

The resistivity was derived from the resistance, R, according to the following equation: 

l

RA


                                                            (3.6)
 

Where l and A is the thickness and electrode area of the sample, respectively. 

The ferroelectric P-E and I-E hysteresis loops were measured by a ferroelectric 

hysteresis measurement tester (NPL, UK) in silicone oil ( SIL 300) at about 200°C and 

10 Hz. Samples for piezoelectric measurements were poled under various DC electric 

fields (150-200 kV/cm) in silicone oil (SIL 300) (Fig. 3.9). Then their piezoelectric 

constant d33 was measured by a quasi-static d33 meter (CAS, ZJ- 3B). The accuracy of 

the d33 meter for measuring small coefficients was calibrated by X-cut quartz 

(d33=2.3±0.1) pC/N. The thermal depoling or thermal stability of d33 measurements 

were tested by holding the samples at a certain range of temperatures (from room 

temperature to just above the Curie point) in the furnaces. Then d33 was measured at 

room temperature. 
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Chapter IV. Results - Praseodymium Titanate (Pr2Ti2O7) 

4.1. Introduction 

The materials with the PLS structure have been confirmed as ferroelectric materials 

with super high Curie point, such as Sr2Nb2O7 (1327°C, SNO)
1-3

; La2Ti2O7 (1461°C, 

LTO)
4,5

 and Nd2Ti2O7 (1482°C, NTO).
5,6

 Pr2Ti2O7 (PTO) also belongs to the A2B2O7 

family. The structure has been investigated by P.A.Koz'min et al.
7
 This confirmed it has 

a non-centrosymmetric structure and a high temperature phase transition (1750 °C).
8,9

 

However, this did not provide direct evidence that this phase transition corresponds to 

the ferroelectric Curie point because there was no report to confirm if PTO is 

ferroelectric.  

In this chapter, dense, textured PTO ceramic was prepared by spark plasma sintering 

using a two-step method for the first time and PTO was shown for the first time to be 

ferroelectric because it showed piezoelectric activity after poling (d33 = 0.5 ± 0.1pC/N).  
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4.2. Experiment Details 

The PTO powder was obtained by the mixed oxide route. Pr6O11 (99.9%) and 

TiO2(99.9%) were used as the starting materials. The powders were ball milled and then 

calcinated for 4h at 1300°C. The powders were then re-milled for 4 h to break any 

agglomerates and reduce the particle size. 

The synthesized powders were sintered by SPS. A heating rate of 100°C/min was used 

in all cases. The ceramic samples were sintered in a 20-mm-diameter graphite die under 

50MPa at 1200°C, 1250°C, 1300°C and 1350°C for 5mins. All the above samples were 

oxidized at a temperature 200°C below their sintering temperature for 15h to remove 

any carbon contamination and reverse any reduction produced during SPS.  

A textured ceramic sample was obtained using a two-step sintering method. First, the 

PTO powder was pressed in a 20-mm-diameter graphite die and sintered at 1150°C 

under 50 MPa for 3 min. In the second stage of texturing, the sample was placed in a 

larger die of 30 mm diameter and sintered at 1350°C under 80MPa for 5min. The 

sintered PTO disk was then annealed at 1200°C for 15h.  
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4.3. Results and Discussion 

Fig.4.3.1 shows the XRD patterns of the PTO powder and a polished surface of the 

untextured and textured ceramic sample. The diffraction peaks match the indexed peaks 

for the PTO (XRD PDF card: 04-005-7187) structure parameters, which means the 

materials are single phase within the sensitivity of the technique.  

 

Fig.4.3.1. The XRD patterns of the PTO powder and a polished surface of the 

untextured and textured ceramics. 
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Fig.4.3.2 shows the scanning electron microscope (SEM) images of calcined PTO 

powder before and after ball milling. After calcination, the powder has some 

agglomeration and the particle size was about 2 um. The ball milling process can break 

the agglomeration and reduce particle size. After ball milling, the average particle size 

was about 0.7 um and the particles became more homogeneous.  

    

Fig.4.3.2 SEM of PTO powder after calcinations at 1300 °C: (a) before ball milling; (b) 

after ball milling. 

Fig 4.3.3 shows the relative density of PTO ceramic samples sintered at several 

temperatures. The theoretical density of PTO is 5.95 g/cm
3
.
9
 The density increases with 

increasing sintering temperature, when the temperature was below 1350°C. When the 

sintering temperature increased further, the density decreased. At higher temperatures, 

the grains elongate, which facilitates the formation of pores at the grain boundaries, so 

the density decreased. After texturing, the density was 96.3%. 
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Fig. 4.3.3. Relative density plot of PTO ceramics sintered by SPS at different 

temperatures under a pressure of 50 MPa for 5mins. 

SEM images of polished PTO ceramics sintered at 1100°C, 1200°C, 1250°C, 1300°C 

and 1350°C are shown in Fig.4.3.4. Obviously, the sample sintered at 1100°C is not 

fully sintered and very porous which is consistent with the density result. The grain 

shape and size is still like the original powder. At 1200°C and 1250°C, the ceramics are 

well sintered and dense. The grain size is smaller than 2um and the shape of some of the 

grains is not plate-like. The grain size increased significantly from 1250°C to 1300°C, 

and at the same time the grains became plate like.   
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Fig.4.3.4. SEM images of PTO untextured ceramics sintered at 1100°C, 1200°C, 

1250°C, 1300°C and 1350°C. 

Fig.4.3.5 shows the SEM pictures of the polished surfaces of the textured PTO viewed 

perpendicular (┴) and parallel (//) to the SPS pressing direction. The grains prefer to 

grow along the direction perpendicular to the pressing direction during the texturing 

process which is consistent with the XRD results. Compared to untextured ceramic, the 

XRD patterns of the textured sample from a parallel (//) surface exhibit intense (h00) 

reflection (Fig.4.3.1). This indicates that the sintered ceramic samples were highly 

textured. The degree of grain orientation was measured by the Lotgering orientation 

factor f from the XRD peak intensities I (Section 3.3.2). The Lotgering factor f for 

textured PTO sample was 0.87 for planes parallel (//) to the SPS pressing direction, 

much higher than that of the untextured one-step sintered sample (0.53). 
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Generally, the plate-like grains are about 1 um in thickness and 2-5 um in the other two 

dimensions. Spontaneous polarization (Ps) is along the c-axis, which is perpendicular to 

the SPS pressing direction. So, the ferroelectric properties are expected to be better in 

the perpendicular direction.  

 

Fig.4.3.5. Textured PTO ceramic surfaces of (a) perpendicular direction (┴) and (b) 

parallel direction (//). 

The piezoelectric constant d33 was measured by poling the samples in silicone oil at 

200°C under various DC electric fields (15-35 kV/mm). The thickness of the samples 

used for poling was between 0.1mm and 0.3mm. For textured PTO ceramics, the 

piezoelectric constant d33 was 0.5 ± 0.1pC/N for SPS (┴) and 0 ± 0.1pC/N for SPS (//), 

respectively. For untextured ceramics the d33 was zero. Fig.4.3.6 shows the thermal 

depoling data of two poled samples of textured PTO. The value is very stable until 

sample softening (~1580°C). The stability of the d33 proves the Curie point of PTO is 

higher than 1580°C. The Curie point is reported in the literature as 1750°C.
9
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Fig.4.3.6. Thermal depoling of textured poled PTO ceramics. 

Fig.4.3.7 shows the frequency dependence of dielectric constant and loss of the samples 

sintered at different temperatures. The dielectric constants increase with grain size, 

which increases with the sintering temperatures. This can be explained by the 

decreasing effect of the grain boundaries, which are non-ferroelectric layers ("dead" 

layer) with a low dielectric permittivity.
10
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Fig.4.3.7. The frequency dependence of dielectric constant and loss of the untextured 

PTO samples sintered at different temperatures. 

Fig.4.3.8 shows the frequency dependence of dielectric constant and loss of textured 

PTO measured at room temperature. The loss decreases with increasing frequency from 

10
4
Hz to 10

7
Hz. The dielectric constant and loss of SPS (//) samples are lower than 

those of SPS (┴) samples as expected. The dielectric constant is almost frequency 

independent. Though there is no report of the dielectric constant of single crystal PTO, 

the results are consistent with the data for single crystal LTO 
4,5,11

, with the same 

structure, ie, the dielectric constant along the Ps direction is higher than the other 

directions. 
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Fig.4.3.8. The frequency dependence of dielectric constant and loss of textured PTO 

measured at room temperature. 

Fig.4.3.9 show the temperature dependence of dielectric constant and loss of textured 

PTO measured at three different frequencies of 100, 500 and 1000kHz. The dielectric 

constants and loss of PTO textured ceramic are greater along a direction perpendicular, 

(┴), rather than parallel, (//), to the pressing direction. As discussed above, the parallel 

direction (//) is perpendicular to the c-axis, Ps, direction. This is consistent with the 

frequency dependent dielectric constant data.  
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Fig.4.3.9. The temperature dependence of dielectric constant and loss of textured PTO 

measured at three different frequencies of 100kHz, 500kHz and 1000kHz. 
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Fig.4.3.10 shows the temperature dependence of dielectric constant and loss from 

400°C to 1200°C. There is a peak about 750°C, which shifts to a higher temperature 

with increasing frequency. This indicates the peak is due to point defects rather Curie 

point which would not shift with frequency. At even higher temperatures, the dielectric 

constant increases sharply on approaching the Curie point. The dielectric constant peak 

associated with the Curie point was not observed due to the temperature limitation of 

the furnace (1560°C) (Fig.4.9). 

 

Fig.4.3.10. Dielectric constant and loss from 400°C to 1200°C at different frequencies.  

Fig.4.3.11 shows the the DC resistivity of the textured PTO samples. The resistivity of 

PTO in both directions is about 10
6
Ω·cm at 600°C, which makes it a potential material 
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for high-temperature applications. The insert shows the Arrhenius relation between 

resisitivity and temperature which is )exp(
kT

Ea
A


  where Ea is the activation 

energy of the current carrier, A is a constant, ρ is resisitivity and k is Boltzmann constant. 

For SPS (┴) and SPS (//) samples, the activation energies are 0.93 ± 0.01eV and 0.96 ± 

0.01eV respectively. However, the band gap of PTO is about 2.99eV based on the 

calculation.
12

 The intrinsic activation energy should be the half of band gap. The 

experimental value of the activation energy of PTO is much smaller than this. This 

suggests that the electrical conductivity is also due to the point defects. 

 

Fig.4.3.11. The DC resistivity of the textured PTO samples. 
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4.4. Conclusion 

Single phase, dense and textured PTO ceramics were prepared. The lotgering orientation 

factor for a textured ceramic was 0.87. The Curie point is greater than 1560°C. PTO was 

shown for the first time to be ferroelectric because it showed piezoelectric activity after 

poling. The piezoelectric constant d33 was measured as 0.5 ± 0.1pC/N.  
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Chapter V. Results - La2-xCexTi2O7 solid solution system 

5.1. Introduction 

Of the PLS ceramics, La2Ti2O7 (LTO) is the most promising for high temperature 

piezoelectric applications because of its high Curie point (1461°C) and useful 

piezoelectric activity.
1
 Cerium has similar properties to lanthanum. In Aurivillius phase 

CaBi4Ti4O15, Ce doping has been reported to increase the high temperature electrical 

resistivity and piezoelectric constant d33.
2
 In some other Aurivillius materials,

 
such as 

Na0.25K0.25Bi2.5Nb2O9, cerium doping can increase the Curie point.
3
 Also, for 

Na0.5Bi0.5TiO3-BaTiO3, Ce doping increased the dielectric constant at room temperature 

and the depolarization temperature (Td).
4
 However, there is no reported research on Ce 

substituted PLS ferroelectric materials. In the current work, single phase, dense and 

textured La2-xCexTi2O7 (x=0.15, 0.25, 0.35) ceramics were prepared and their properties 

were characterized.  
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5.2. Experimental Details 

The La2-xCexTi2O7 (x=0.15, 0.25, 0.35, 0.5) compositions (LCTO15, LCTO25, LCTO35, 

LCTO50) were obtained by the mixed oxide route. La2O3 (99.99%), CeO2 (99.9%) and 

TiO2 (99.9%) were used as the starting materials. The powders were milled and then the 

powders were calcinated in air for 4h at 1300°C. The powders were re-milled for 4 h to 

break any agglomerates and reduce the particle size. The ball milling speed was always 

350 rpm. 

The synthesized powders were sintered in a SPS. A heating rate of 100°C/min was used 

in all cases. The untextured ceramics used for dielectric tests and Tc measurement were 

sintered at 1400°C under a pressure 80 MPa for 5min.  

The textured ceramic samples used for piezoelectric constant measurement (d33) were 

textured using a two-step sintering method. First, the LCTO15, LCTO25, LCTO35 

powders were pressed in a 20-mm-diameter graphite die and sintered at 1200°C under a 

pressure of 80 MPa for 3 min. After this stage, all these samples had relatively high 

density (>95%), but the grain size was only slightly larger than that of the starting 

powder. In the second step, the samples were placed in a larger die of 30 mm diameter 

and sintered at 1400°C under a pressure of 80MPa for 5min. The sintered disks were 

then heat treated in air at 1400°C for 20h to anneal and increase grain growth.  
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5.3. Results and Discussion 

Fig.5.3.1 shows the XRD patterns of the LCTO15, LCTO25, LCTO35 and LCTO50 

powders. The diffraction peaks of LCTO15, LCTO25 and LCTO35 match the indexed 

peaks for the LTO (XRD PDF card: 028-0517) structure parameters, which means the 

materials are single phase within the sensitivity of the technique. For LCTO50 there are 

several XRD peaks that do not match the indexed peaks for LTO, which indicates the 

solid solution limit for Ce in La2-xCexTi2O7 is less than x=0.5. The impurity is a mixture 

of Ce2O3 and La2TiO5. 

 

 

Fig.5.3.1. X-ray diffraction patterns of LCTO15, LCTO25, LCTO35 and LCTO50 

powders matching indexed peaks for LTO (XRD PDF card: 00-028-0517). The peaks of 

Ce2O3 and La2TiO5 are marked by a “*”.  
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Fig.5.3.2 shows the change of lattice parameters with increasing Ce substitution 

determined using the XRD data. The a-, b- and c- dimensions decrease with increasing 

Ce. This indicates the substituted Ce entered in the lattice. All of the compounds have 

the same structure as LTO, which is monoclinic with space group P21 at room 

temperature, and the structure changes into a paraelectric, centro-symmetric structure 

(Cmcm) at the Curie point.
5,6

 The spontaneous polarization is along the c-axis.
 

 

Fig.5.3.2. The lattice parameters of La2-xCexTi2O7 as a function of Ce content. The data 

for LTO (x=0) is from the literatures.
6,7

 

Fig.5.3.3(a-d) show the XPS peaks for the La 3d, Ce 3d, Ti 2p, and O 1s electron 

binding energies (BE) of the powder samples. Fig.5.3.3(a) shows the La 3d states. The La 

3d5/2 and La 3d3/2 components show a clear doublet structure for the LCTO15, LCTO25 
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and LCTO35 samples. The BE splitting between the components of both La 3d5/2 and 

La 3d3/2 lines is about 4.1 eV. This effect might be due to the interaction between 

bonding and antibonding states.
8
 Comparing these peak positions with the literature data, 

the La
3+

 state is stable in these materials.
8
 The peaks of Ce 3d were compared to reference 

data for Ce
3+

 and Ce
4+

 compounds (Fig.5.3.3b). The 3d5/2 and 3d3/2 of Ce
3+

 are split 

which is also due to the interaction between bonding and antibonding states. Some Ce
4+

 

exists in these materials indicated by the peak at 916.5 eV (*).
9,10

 For LCTO15, Ce
4+

 is 

hardly observed, however, with increasing Ce content, Ce
4+

 increases for LCTO25 and 

LCTO35. The Ti 2p peaks are shown in Fig.5.3.3(c). Compared with the literatures, the 

Ti
4+

 state is stable and does not change with increasing Ce content.
8
 Fig.5.3.3(d) shows 

the peaks for the O 1s state. Two components, A and B, could be identified from the O1s 

spectra deconvolution. Component A is at 529.7 eV and component B is at 531.7 eV. 

Compared to the literature, component A is the O
2-

 in the PLS structure and B with higher 

BE corresponds to the oxygen connecting Ce
3+

 or point defects.
8,11-13
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Fig.5.3.3 The X-ray photoelectrons spectroscopy (XPS) peaks of LCTO powder 

samples for: (a) La 3d; (b) Ce 3d; (c) Ti 2p; and (d) O 1s. 
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Fig.5.3.4 shows the XRD patterns of textured LCTO15, LCTO25, LCTO35 ceramics. 

The XRD patterns from a plane with its normal direction parallel to the SPS pressing 

direction exhibit intense (h00) reflections, which indicates that the ceramics are textured. 

The Lotgering orientation factor, f, was used to estimate the degree of grain orientation. 

The Lotgering factor f of LCTO15, LCTO25, LCTO35 were calculated as 0.71, 0.71, 

0.74 respectively for the parallel direction (//). 

 

Fig.5.3.4. XRD patterns of textured LCTO ceramics on parallel direction (//).  

Fig.5.3.5 shows the SEM micrographs of the polished surfaces of the textured LCTO15, 

LCTO25 and LCTO35 ceramics viewed perpendicular (┴) to the SPS pressing direction. 

The grains prefer to grow along directions perpendicular to the pressing direction. 

Compared to pure LTO ceramic,
1
 the grains become less plate-like due to Ce 

substitution which explains their lower lotgering orientation factor compared to LTO 

(0.80). On average, the plate-like grains are about 1.5um in thickness and 5um in the 
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other two dimensions for all of the ceramics. 

 

Fig.5.3.5. SEM images of the polished surface viewed perpendicular to the pressing 

direction (┴) of the (a) LCTO15; (b) LCTO25 and (c) LCTO35 ceramics. 

Fig.5.3.6(a-c) show the temperature dependence of the dielectric permittivity (ε) and 

loss (D) of LCTO15, LCTO25, LCTO35 untextured samples, respectively, measured at 

two different frequencies, 500 kHz and 1000 kHz. From these figures, the Tc of 

LCTO15, LCTO25 and LCTO35, are 1440±5°C, 1435±5°C, and 1387±5°C, 

respectively. The Tc of LTO has previously been reported as 1461±5°C.
1 

With 

increasing Ce substitution, the Tc decreases gradually. This might be explained by the 

substituted Ce, which has a smaller ionic size and higher electronegativity compared to 

La. The insert figs show the temperature dependent loss measured at 100 kHz, 10 kHz 

and 1 kHz. Frequency dependence broad peaks could be observed at the temperature 

range 400 – 800 °C suggesting there is a high concentration of point defect in the 

materials. There are loss peaks just below the Curie point, which are attributed to 

domain wall movement. 
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Fig.5.3.6. Temperature dependence of the dielectric constant and loss of LCTO 

untextured ceramics at different frequencies of 1MHz and 500 kHz. The insert figs are 

the data for temperature dependence loss measured at 100 kHz, 10 kHz and 1 kHz. 
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Fig.5.3.7 shows the frequency dependence of relative dielectric permittivity and loss of 

LCTO15, LCTO25 and LCTO35 untextured ceramics measured at room temperature 

compared with the data for LTO.
1
 The loss decreases with increasing frequency. In the 

lower frequency range (10
3
Hz to 10

5
Hz), the loss increases with increasing Ce 

substitution, from LTO to LCTO35. In the higher frequency range (10
5
Hz to 10

7
Hz) 

they are similar and low. This behavior may have been produced by the presence of the 

defect dipoles.
14

 This result is consistent with the temperature dependent loss result. The 

defect dipoles can switch, contributing to the loss value in the low frequency range. 

However, at high frequency the defect dipole cannot follow the electric field change, so 

the loss decreases to a small value. This behavior is also apparent in the permittivity 

change, which shows increasing apparent permittivity with decreasing frequency. In 

comparison, the permittivity of LTO is constant in the whole frequency range. 

Permittivity increases with increasing amount of Ce substitution. This might be 

explained by the Ce in the lattice, which changed the intrinsic dielectric property. 
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Fig.5.3.7. Frequency dependence of dielectric constant and loss of untextured ceramics 

of LTO,
1
 LCTO15, LCTO25, and LCTO35. 

The DC resistivity of the LTO,
1
 LTCO15, LTCO25, LTCO35 untextured ceramics are 

shown in Fig.5.3.8. Compared to the LTO ceramic, the resistivity of these compounds 

decreases with increasing Ce substitution. The insert in Fig.8 shows the Arrhenius 

relation between resistivity and temperature. For LTO, LCTO15, LTCO25 and LTCO35 

ceramics, the activation energies are 1.34, 0.56, 0.53 and 0.52eV. The band gap of 

La2Ti2O7 is reported as 2.8-3.2eV.
15

 The activation energy for LTO is about half of the 

band gap which indicates the DC conductivity is dominated by intrinsic charge carriers. 

Compared to this, the activation energies of LCTO15, LCTO25 and LCTO35 are much 

lower. This suggests that the DC conductivities of LCTO15, LCTO25 and LCTO35 are 

dominated by extrinsic charge carriers produced by the donor dopant and leads to 

semiconductive behavior (n-type).
16,17

 This is consistent with the results of XPS. 
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Fig.5.3.8. Direct-current electric resistivity of LTO,
8
 LCTO15, LCTO25 and LCTO35 

ceramics. The insert is the Arrhenius relation between resistivity and temperature. 

The piezoelectric constant d33 was measured in the direction perpendicular to pressing 

direction (Fig.5.3.9). The textured samples were poled in silicone oil at 120°C under 

various DC electric fields. The highest electric fields that could be achieved during 

poling were 19kV/mm, 19kV/mm and 16kV/mm for LCTO15, LCTO25 and LCTO35 

respectively. The x=0.15 composition showed an increased d33 (LCTO15, 3.9 ± 0.1pC/N) 

compared to LTO (2.6 ± 0.1pC/N) poled at 20kV, 220°C, which has even higher density 

(>98%) and Lotgering orientation factor (f=0.80). With further increasing Ce 

substitution, the d33 decreased from LCTO15 to LCTO35. This is because the defect 

concentration increases and resistivity decreases with increasing Ce substitution, 

leading to a reduction in the maximum poling field that could be applied.  
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Fig.5.3.9. Piezoelectric constant (d33) of the textured ceramics measured perpendicular 

to the pressing direction (┴). The data for LTO is from ref.[1]. 
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5.4. Conclusion 

Single phase, dense La2-xCexTi2O7(x=0, 0.15, 0.25, 0.35) ceramics were prepared by 

spark plasma sintering. The limit of Ce substitution in La2-xCexTi2O7 was found to be 

between 0.35 to 0.50. The a-, b- and c-axes of the unit cell decrease with increasing Ce 

substitution, which indicates that Ce enters the lattice. The Curie point (Tc) of 

La2-xCexTi2O7 (x=0, 0.15, 0.25, 0.35) decrease and dielectric constant and loss increase 

with increasing amount of Ce substitution. Electrical resistivity decreases due to the 

extrinsic charge carriers produced by Ce substitution. The highest d33 was 3.9 ± 

0.1pC/N for La1.85Ce0.15Ti2O7.  
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Chapter VI. Results - Nd2-xCexTi2O7 solid solution system 

6.1. Introduction 

The ferroelectric activity of single crystal of Nd2Ti2O7 (NTO) was confirmed for the 

first time in the 1970s.
1,2

 Nd2Ti2O7 has a PLS structure that is similar to La2Ti2O7 

(LTO).
1-4

 At room temperature, it has a monoclinic structure with space group P21.
2,5

 

The ferroelectric phase changes into the paraelectric phase at 1481°C, which is higher 

than LTO (1461°C).
4,6

 For single crystal NTO, the d33 was measured as 6.5 pC/N.
1
 

Nd2Ti2O7 powder can be prepared by solid state calcination of the mixed oxide (Nd2O3 

and TiO2) and textured NTO ceramic was prepared using SPS.
6
 The highest d33 was 

measured as 0.5 pC/N for textured ceramics.
6
 As discussed in the last chapter, Ce can 

improve the piezoelectric constant in PLS ferroelectric materials. The Nd2-xCexTi2O7 

solid solution system was prepared and the textured ceramics were densified for the first 

time. The ferroelectric properties were characterized and described in this chapter.  
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6.2. Experiment Details 

The Nd2-xCexTi2O7 (x=0.05, 0.25, 0.5, 0.75) compositions (NCTO5, NCTO25, NCTO50, 

NCTO75) were obtained by the mixed oxide route. The powders were ball milled at 

350rpm for 4 hours with ethanol as the milling medium and then calcinated for 4.5h at 

1250°C. The powders were then re-milled at 350rpm for 4h to break any agglomerates 

and reduce the particle size. 

The textured ceramics were obtained using a two-step sintering method. Heating rate of 

100°C/min was used in all cases. First, the NCTO5, NCTO25, NCTO50, NCTO75 

powder was pressed in a 20-mm-diameter graphite die and sintered at 1200°C under a 

pressure of 80 MPa for 3 min. In the second step, the sample was placed in a larger die 

of 30 mm diameter and sintered at 1350°C under a pressure of 80MPa for 5min. The 

sintered disks were then annealed in air at 1300°C for 20h.  
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6.3. Results and Discussion 

Fig.6.3.1 shows the XRD patterns of the NCTO5, NCTO25, NCTO50 and NCTO75 

powders. The diffraction peaks of NCTO5, NCTO25 and NCTO50 match the indexed 

peaks for the NTO (PDF NO. : 00-033-942) well. For NCTO75 there are several XRD 

peaks that do not match the indexed peaks for NTO, which indicates that the solubility 

limit for Ce is less than x=0.75. The main second phase is Nd4Ti9O24. 

 

Fig.6.3.1. The XRD patterns of the NCTO5, NCTO25, NCTO50 and NCTO75 powders. 
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Fig.6.3.2. The variation of  Nd2-xCexTi2O7 unit cell parameters. The data for NTO is 

from ref.[6]. 

The solid solution materials adopt the monoclinic structure with P21 space group. 

Fig.6.3.2 shows the lattice parameters change with the increasing Ce substitution based 

on the XRD data. The a- axis decreases slightly and the b- and c- axes increase with 

increasing x. The unit cell volume increases with increasing x. This is due to that Ce 

ionic size (134 Å) is bigger than Nd ionic size (127 Å). These results are in agreement 

with the existence of the Nd/Ce solid solutions. According to the literature, the 

spontaneous polarization is along c-axis direction.
1,6,7

  

Fig.6.3.3 shows SEM images of the NCTO5, NCTO25, NCTO50 and NCTO75 powders. 

The particle shape does not change with increasing Ce substitution. The powder size is 

about 0.5um on average.  
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Fig.6.3.3. SEM of the powders after ball milling: (a) NCTO5; (b) NCTO25; (c) NCTO5 

and (d) NCTO75. 

Fig.6.3.4 shows the XRD patterns of textured NCTO5, NCTO25, NCTO50 and 

NCTO75 ceramics. The XRD patterns from a plane parallel to the SPS pressing 

direction exhibit intense (h00) reflections, which indicates that the sintered ceramics 

samples are textured. The Lotgering factor f of NCTO5, NCTO25, NCTO50 and 

NCTO75 were calculated as 0.68, 0.66, 0.66 and 0.65 respectively for planes parallel to 

the SPS pressing direction.  
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Fig.6.3.4. The XRD patterns for the parallel direction of textured NCTO5, NCTO25, 

NCTO50 and NCTO75 ceramics. 

The densities of the sintered ceramics are presented in Fig.6.3.5, and the insert shows 

the theoretical densities. With increasing Ce, the theoretical density decreases due to the 

cell volume increasing (Fig.6.3.2). The ceramics have similar densities from 94% to 

91% after same sintering process.  
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Fig.6.3.5. The densities of the textured NCTO5, NCTO25, NCTO50 and NCTO75 

ceramics. 

Fig.6.3.6 and Fig.6.3.7 show the SEM pictures of the polished surfaces of the textured 

NCTO5, NCTO25, NCTO50 and NCTO75 ceramics viewed perpendicular (//) and 

parallel (┴) to the SPS pressing direction. The grains of NCTO5, NCTO25, NCTO50 

and NCTO75 ceramics are similar and plate-like. On average, the grains are about 1-2 

μm in thickness and 4-5 μm in the other two dimensions. The ferroelectric spontaneous 

polarization, Ps is along the c-axis, which is along the grain orientation direction and 

perpendicular to the SPS pressing direction. The grains are oriented perpendicular to the 

SPS pressing direction, which is consistent with the XRD results. For NCTO5, 

NCTO25, NCTO50 and NCTO75 ceramics, there are some pores at the grain boundary 

which reduced the density.  
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Fig.6.3.6. SEM micrographs of etched surface viewed parallel (//) to the pressing 

direction of the textured ceramics: (a) NCTO5; (b) NCTO25; (c) NCTO5; and (d) 

NCTO75. 

  

Fig.6.3.7. SEM micrographs of etched surface viewed perpendicular (┴) to the pressing 

direction of the textured ceramics: (a) NCTO5; (b) NCTO25; (c) NCTO5; and (d) 

NCTO75. 
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Fig.6.3.8 (a-d) shows the temperature dependence of dielectric constant and loss of 

NCTO5, NCTO25, NCTO50 and NCTO75, respectively, measured at two different 

frequencies of 500 kHz and 1000 kHz. From these figures, the Tc of NCTO5, NCTO25, 

NCTO50 and NCTO75, are 1475±5°C, 1465±5°C, 1455±5°C and 1445±5°C 

respectively. The Tc of Nd2Ti2O7 (NTO) has previously been reported as 1482±5°C.
6
 

The dielectric loss increases with increasing Ce substitution. The peaks of loss just 

below Tc is produced by domain wall movement. For NCTO75, there is a broad peak 

highlighted by an arrow below the Curie point. This is produced by second phase in 

material, which is also confirmed by the XRD result.  

 

 

Fig.6.3.8. The temperature dependence of dielectric constant and loss of (a) NCTO5, (b) 

NCTO25, (c) NCTO50 and (d) NCTO75. 
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The DC resistivity of the ceramics are shown in Fig.6.3.9. With increasing Ce 

substitution, the resistivity decreases. The insert in Fig.6.3.9 shows the Arrhenius 

relation between resisitivity and temperature. Based on the fitting, the energies are 1.52, 

0.47, 0.41 and 0.44 eV for NTO, NCTO25, NTO50 and NCTO75 samples. The 

activation energy of NCTO5 can be fitted into two parts according to different slopes. 

From 100°C to 400°C, the activation energy is 0.40eV (Ea1) which is similar to the 

values for NCTO25, NCTO50 and NCTO75. The activation energy of NCTO5 from 

500°C to 950°C is calculated as 1.55eV (Ea2). This indicates the conductivity 

mechanism of NCTO5 is different from high temperature (500°C-950°C) to low 

temperature (100°C-400°C). The band gap of NTO is reported as 2.8-3.6 eV. The 

activation energy for intrinsic charge carriers should be the half of band gap. Compared 

to this, the activation energies of NCTO25, NCTO50 and NCTO75 are much lower. It 

suggests that the DC conductivities of them is produced by an extrinsic charge carriers 

produced by Ce. The conductivity mechanism of NCTO5 is dominant by extrinsic 

charge carriers at low temperature (100°C-400°C) and is intrinsic conductivity at high 

temperature (500°C-950°C).  



Chapter VI. Results - Nd2-xCexTi2O7 solid solution system 

 

117 

 

Fig.6.3.9. Direct-current resistivity of NTO,
6
 NCTO5, NCTO25, NCTO50 and NCTO75 

textured ceramics. The insert is the ln-ln plots of resistivity versus 1/T. 

Fig.6.3.10 shows the frequency dependence of the dielectric constant and loss of 

NCTO5, NCTO25, NCTO50 and NCTO75 measured at room temperature. The loss of 

NTO and NCTO5 are similar in the whole frequency range. The loss value of the NTO 

and NCTO5 are small and stable, that means the Ce substituted Nd in the lattice well for 

NCTO5 compound and any loss contributed by the dipole defects is small. From 

NCTO25 to NCTO75 the loss increases with increasing Ce. The loss decreases with 

increasing frequency, which is almost the same when the frequency is close to 10
7 

Hz. 

The permittivity in the perpendicular direction is higher than the parallel direction, this 

is due to the layered structure which is consistent with the data for NTO single crystal, 

where the dielectric constant along the Ps direction, c-axis, is higher than the average 

value along the a- and b- axes. 
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Fig.6.3.10. Frequency dependence of dielectric constant and loss of NTO,
6
 NCTO5, 

NCTO25, NCTO50 and NCTO75 ceramics perpendicular (┴) and parallel (//) 

directions. 
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6.4. Conclusion 

The Nd2-xCexTi2O7(x=0.05, 0.25, 0.5, 0.75) textured ceramics were prepared by spark 

plasma sintering. The limit of Ce substitution in Nd2-xCexTi2O7 was found to be x<0.75. 

the a- axis decreases slightly and the b- and c- axes increase with increasing Ce 

substitution. The cell volume increases from Nd2Ti2O7 to Nd1.25Ce0.75Ti2O7. The Curie 

point (Tc) of Nd2-xCexTi2O7(x=0, 0.05, 0.25, 0.5, 0.75) decreases with increase Ce 

doping. The electrical resistivity decreases with increasing Ce due to the extrinsic 

charge carriers produced by Ce substitution.  
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Chapter VII. Results - Sr2-xBaxNb2O7 solid solution system 

7.1. Introduction 

Sr2Nb2O7 (SNO) was confirmed as a ferroelectric material and it has a high Curie point 

(Ceramic ~1327 °C).
1-3

 The substitution of Ba into Sr2Ta2O7, which has similar structure 

to Sr2Nb2O7, produced relaxor properties in Sr1.6Ba0.4Ta2O7.
4,5

 Although the solid 

solution limit of Sr2-xBaxNb2O7 ceramics has been reported as x=0.6 and the phase 

transition temperature decreases with increasing Ba,
3,5

 there are no experiment results 

reported on the ferroelectric properties and relaxor behavior of Sr2-xBaxNb2O7 

compounds and the mechanism of spontaneous polarization and Curie point change are 

not clear. In the current work, single phase, dense and textured Sr2-xBaxNb2O7 (x=0.1, 

0.2, 0.3, 0.4, 0.5) ceramics were prepared for the first time and their ferroelectric and 

dielectric properties were characterized.  
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7.2. Experiment Details 

The Sr2-xBaxTi2O7 (x=0.1, 0.2, 0.3, 0.4) compositions (SBNO1, SBNO2, SBNO3, 

SBNO4) were obtained by the mixed oxide route. The powders were ball milled at 

350rpm for 4 hours and then calcinated at 1250°C for 5h. The Sr2-xBaxTi2O7 (x=0.5, 0.6, 

1.0) compositions (SBNO5, SBNO6, SBNO10) were prepared in the same way as x=0.1 

to 0.4 compounds except that they were re-milled and calcined at 1250°C for another 

5h.  

Spark plasma sintering (SPS) with two-step method was used to densify and texture 

ceramics.
6
 The heating rate was 100°C/min in all cases. In the first step, the SBNO1, 

SBNO2, SBNO3, SBNO4 and SBNO5 powders were pressed in a 20-mm-diameter 

graphite die and sintered at 1200°C under a pressure of 80 MPa for 3 min. In the second 

step, the samples were placed in a larger die of 30 mm diameter and sintered at 1350°C 

under a pressure of 80MPa for 5min. The sintered disks were then annealed in air at 

1350°C for 20h.  

 

 

 

 



Chapter VII. Results - Sr2-xBaxNb2O7 solid solution system 

 

123 

7.3. Results and Discussion 

Fig.7.3.1 shows the XRD patterns of the powders. The diffraction peaks of SBNO1, 

SBNO2, SBNO3, SBNO4 and SBNO5 match the indexed peaks for the structure 

parameters of SNO (XRD PDF card: 028-1246) structure parameters, which means the 

materials are single phase within the sensitivity of the technique. SBNO6 and SBNO10 

have several XRD peaks that do not match the indexed peaks for SNO, which indicates 

that the solid solution limit of Ba in Sr2-xBaxNb2O7 is less than 0.6. This is consistent 

with the literature.
5
 The second phase is Ba5Nb4O15.

7
  

Fig.7.3.2 shows SEM images of the SBNO1, SBNO2, SBNO3, SBNO4 and SBNO5 

powders after ball milling. There is no apparent difference between the powder particle, 

and the particle size is 0.7 um. The shape of particle is typical plate-like. 
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Fig.7.3.1. The XRD patterns of the SBNO6 and SBNO10. The peaks of Ba5Nb4O15 have 

been marked by “*”. 
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Fig.7.3.2. SEM images of a) SBNO1; b) SBNO2; c) SBNO3; d) SBNO4; and e) 

SBNO5 powder after ball milling. 

Fig.7.3.3 (a-c) show the lattice parameters change with Ba increasing from SNO to 

SBNO5. SNO has lattice parameters (a, b, c, β) = (3.96Å, 26.78Å, 5.70Å, 90º)6
 with 

orthorhombic structure, which is consistent with the single crystal data.
3
 The Ps 

direction is along c-axis.
3
 From these lattice parameters, all of SBNO1-5 compounds 

have the same structure as SNO, but with the a-, b- and c-axes increasing with 

increasing Ba from SBNO1 to SBNO5. The theoretical densities (TD) also increase, 

which is shown in the insert of fig.7.3.3(d). This is because the mass of the Ba atom is 

greater than Sr atom. 
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Fig.7.3.3. The lattice parameters of Sr2-xBaxNb2O7 powders as a function of Ba content. 

The insert shows the theoretical densities.  

SNO have a centro-symmetric structure with space group Cmcm above Tc (Fig.7.3.4a), 

and noncentro-symmetric structure with space group Cmc21 below Curie point 

(Fig.7.3.4b).
8
 The spontaneous strain, which is induced by the noncentro-symmetric 

structure, can be used to estimate the spontaneous polarization. Here, the 

noncentro-symmetric structure is due to the tilting of the oxygen octahedral along a-axis. 

The structure is further from centro-symmetric when the oxygen octahedral is more 

tilted, which means the spontaneous strain is greater and the c-axis is shorter. In the 

present case, the a-, b- and c-axes all increase with Ba increasing. So, the ratio, c/a, was 
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used to estimate the spontaneous strain (Fig.7.3.3d). According to the structure, the 

spontaneous polarization of Sr2-xBaxNb2O7 decreases with increasing c/a ratio. 

Therefore the highest spontaneous polarization is expected for x ≦ 0.1. 

 

Fig.7.3.4. The structure of: (a) paraelectric phase; and (b) ferroelectric phase of 

Sr2Nb2O7. 

Fig.7.3.5 shows the XRD patterns of SBNO1, SBNO2, SBNO3, SBNO4 and SBNO5 

textured ceramics. The XRD patterns from the planes with their normal direction 

parallel to the SPS pressing direction exhibit intense (0k0) reflections, which indicates 

that the sintered ceramics samples are highly textured. The Lotgering factor f of SBNO1, 

SBNO2, SBNO3, SBNO4 and SBNO5 were calculated as 0.80, 0.81, 0.81, 0.82 and 

0.81, respectively, for the planes with their normal direction parallel to the SPS pressing 

direction. This means all these samples were well textured and to a similar extent. After 
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sintering, SBNO1, SBNO2, SBNO3, SBNO4 and SBNO5 ceramics had relative 

densities of 96.3%, 95,4%, 96.0%, 95.9% and 94.8%. 

 

Fig.7.3.5. The XRD patterns of textured SBNO1, SBNO2, SBNO3, SBNO4 and 

SBNO5 ceramics on parallel direction (//). 

Fig.7.3.6-7.3.7 show the SEM pictures of the polished surfaces of the textured SBNO1, 

SBNO2, SBNO3, SBNO4 and SBNO5 ceramics viewed perpendicular (//) and (┴) to 

the SPS pressing direction respectively. The grains are plate-like and prefer to grow 

along the direction perpendicular to the pressing direction. The structure is well textured, 

which is consistent with the XRD results. On average, the plate-like grains are about 1.5 

μm in thickness and 6 μm in the other two dimensions. According to the SEM images, 

Ba substitution does not change the appearance of the grains in these PLS ceramics. 
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Fig.7.3.6. SEM images of the polished surface of ceramics in parallel direction (//): a) 

SBNO1; b) SBNO2; c) SBNO3; d) SBNO4; and e) SBNO5. 

 

Fig.7.3.7. SEM images of the polished surface of ceramics in perpendicular direction 

(┴): a) SBNO1; b) SBNO2; c) SBNO3; d) SBNO4; and e) SBNO5. 
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Fig.7.3.8(a-e) show the current-electric field (I-E) and polarization-electric field (P-E) 

hysteresis loops for SBNO1, SBNO2, SBNO3, SBNO4 and SBNO5 respectively, 

measured at 120°C at 10Hz. The highest voltage that could be applied on the samples 

decreased with increasing Ba substitution from SBNO1 to SBNO5. When the voltage 

was increased further, breakdown occurred. For SBNO1, SBNO2, SBNO3 samples, 

ferroelectric switching is indicated by the current peak at about 8.0, 7.1 and 6.5 kV/mm, 

respectively, which means that ferroelectric switching is easier with increasing Ba 

content. In contrast, there is no apparent ferroelectric switching current peak for the 

SBNO4 and SBNO5 samples, but there is an extra broad small current peak in the I-E 

loop between -5 to 0 kV/mm marked by the (*) (Fig.6(d-e)), which produces a pinching 

on the P-E loops. This might be explained by the switching of defect dipoles induced by 

Ba substitution.
9
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Fig.7.3.8. the current-electric field (I-E) and polarization-electric field (P-E) hysteresis 

loops for textured ceramics at perpendicular direction (⊥ ): (a) SBNO1; (b) SBNO2; (c) 

SBNO3; (d) SBNO4; and (e) SBNO5. 

Fig.7.3.9(a-d) show the XPS peaks of Sr 3d, Ba 3d, Nb 3d and O 1s electrons. The 

binding energy (BE) of the Sr 3d5/2 and 3d3/2 states are 133.1 and 134.8±0.2 eV for all 

the compounds (SBNO1-5). This is in a good agreement of the values for SNO in the 

literature.
10,11

 For Ba 3d5/2 and 3d3/2, the values are 794.5 and 779.5±0.2 eV, which is 

(a) (b) 

(c) (d) 

(e) 
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consistent with the BE values for Ba in the perovskite structure.
10

 The Nb 3d state have 

BEs of 206.9 and 209.6±0.2 eV, for 3d5/2 and 3d3/2 respectively, and the values are 

similar to the value of Nb in SNO.
11

 So, in the SBNO solid solution system, Sr, Ba and 

Nb are stable and the valence does not change with increasing Ba substitution. 

Conversely, in the O 1s spectrum for SBNO1-5 two peaks (A and B) were observed. 

The A peak for all the compounds has a BE of about 529.6±0.2 eV. Compared with 

literature, this value indicates the main O 1s state which is reported as 529.4 eV in 

SNO.
11

 The BE value and intensity of the B peak increase with the Ba substitution. This 

indicates the O- Ba bonds increase with increasing Ba substitution.
12
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Fig.7.3.9. The XPS peaks for Sr2-xBaxNb2O7 textured ceramics (⊥ ): (a) Sr 3d; (b) Ba 3d; 

(c) Nb 3d and (d) O 1s electron. 
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Fig.7.3.10(a-e) show the temperature dependence of dielectric constant and loss of 

SBNO1-5 ceramics respectively, measured at three different frequencies of 100kHz, 

500kHz and 1000kHz. From these figures, the Tc of SBNO1-5 are 1253±5 °C, 

1175±5 °C, 1110±5 °C, 1075±5 °C and 940±5 °C respectively. The Tc of SNO has 

previously been reported as 1327±5 °C for ceramic.
6
 Nanamatsu also reported the Tc 

decreasing with increasing Ba substitution.
3
 The Tc decrease could be explained by the 

spontaneous strain decreasing with increasing Ba substitution.
13

 The insert figs in 

fig.8(a-d) show the amplification of temperature dependence loss from 200 – 1000 °C. 

There are frequency dependent broad loss peaks could be observed for SBNO1-5. With 

increasing Ba content, the position of the peaks move to higher temperatures and their 

intensity increases. These peaks suggest that there are point defects in the materials and 

their concentration increases with increasing Ba substitution, which is consistent with 

the hysteresis loops results. The loss peaks just below Tc for all these compounds can be 

attributed to ferroelectric domain wall movement.
14 
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Fig.7.3.10. The temperature dependence of dielectric constant and loss of textured 

ceramics (⊥ ) of (a) SBNO1; (b) SBNO2; (c) SBNO3; (d) SBNO4; and (e) SBNO5. The 

inserts show the temperature dependent loss with higher resolution in the temperature 

range of 200 – 1000 ̊C. 

Fig.7.3.11 shows the frequency dependence of dielectric constant and loss of SNO,
6
 

SBNO1-5 ceramics measured at room temperature in the perpendicular direction. 

Typically, all of the losses are low in the whole frequency range which makes them 

promising materials for application. The loss decreases with increasing frequency. This 

can be explained by the defects mentioned above, which raise the loss value in the low 

frequency range. SNO has the lowest permittivity, and with increasing Ba, the 
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permittivity increases from SBNO to SBNO4. The variation of permittivity could be 

explained by the Ps is more moveable with increasing Ba substitution, which produced 

an increasing extrinsic contribution to the electric displacement. The permittivity of 

SBNO1 to SBNO5 decreases slightly in the range of 10
3
 - 10

5
 Hz and they are almost 

unchanged at higher frequency (10
5
 - 10

7
). Conversely, the permittivity of SNO is stable 

for the whole range of frequencies (10
3
-10

7
Hz).  

 

Fig.7.3.11. Frequency dependence of dielectric constant and loss of SNO,
4
 SBNO1, 

SBNO2, SBNO3, SBNO4 and SBNO5 textured ceramics (⊥ ). 

The DC resistivity of SBNO1, SBNO2, SBNO3, SBNO4 and SBNO5 ceramics are 

shown in Fig.7.3.12. The resistivities of SBNO1, SBNO2, SBNO3 and SBNO4 are 

about 10
11 

Ω·cm at 200°C and decrease gradually with the same trend to about 10
5 

Ω·cm at 900°C. The resistivity of SBNO5 is lower than the other compounds at low 

temperature (<400°C), and then it has the same trend as the other compounds, 

decreasing from about 10
8
Ω/cm at 400°C to 10

5
Ω/cm at 900°C.  

The insert shows the Arrhenius relation between resistivity and temperature. For SNO, 

SBNO1, SBNO2, SBNO3, SBNO4 and SBNO5 the energies are 1.04, 0.96, 0.95, 0.95, 
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0.94 eV and 0.65 eV. The half band gap of SNO was reported as 1.44 eV,
17

 the 

activation energies of SNO to SBNO5 are lower, which reflects that the extrinsic charge 

carrier lower the activation energy. From SNO to SBNO5, the activation energy 

decreases with increasing Ba substitution. This might be explained by the point defects 

produced by the Ba substitution is increasing and affected the conductivity mechanism. 

This is also consistent with the hysteresis loop and temperature dependent permittivity 

results.
18

 

 

Fig.7.3.12. Direct-current resistivity of SNO,
4
 SBNO1, SBNO2, SBNO3, SBNO4 and 

SBNO5 textured ceramics (⊥ ).  

The piezoelectric constant d33 was measured by poling the samples in silicone oil at 

120°C under various DC electric fields (15-35 kV/mm). The measured d33 increases 

from SBNO1 to SBNO2 and then the d33 decreases with further increasing Ba content 

(Fig.7.3.13). The highest d33 is 3.6 ± 0.1pC/N for SBNO2, which is much higher than 

for SNO (lotgering factor: 0.86; density: 96.5%), reported as 2.8 pC/N.
6
 The 

ferroelectric behavior of all these materials are confirmed by the d33 and the hysteresis 

loop results. The maximum d33 for SBNO2 can be explained by the coercive field 
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decreasing with increasing Ba substitution from SNO
6
 to SBNO2, which makes 

ferroelectric switching easier, but the spontaneous strain also decreases, leading to the 

d33 decreasing with further increasing Ba. The thermal depoling data is shown in 

Fig.7.3.14. All of the compounds have very stable d33 below Tc. Especially SBNO1 and 

SBNO2, both of them can be used above 1150 ˚C. Compared to SNO,
35

 the d33 is more 

stable for SBNO1 and SBNO2, and there is no thermal depoling is observed up to Tc.  

 

Fig.7.3.13. Piezoelectric constant (d33) of textured ceramics (⊥ ). 

 

Fig.7.3.14. Effect of thermal depoling on piezoelectric properties; the d33 data plotted 

with homologous temperature. The insert is the real value of d33 after annealing. 
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7.4.Conclusions 

The solid solution system of Sr2-xBaxNb2O7 (x<0.6) were investigated. All these 

compounds were confirmed as very stable ferroelectric materials. The solid solution 

limit (x<0.6) of Sr2-xBaxNb2O7 was determined by XRD as x=0.6. The a-, b-, c- axes 

and cell volume increase with Ba
2+

 addition because Ba
2+

 (160 Å) has a larger ion 

radius than Sr
2+ 

(144 Å). The textured ceramics of Sr2-xBaxNb2O7 were prepared for the 

first time.  Substitution of Ba can decrease the spontaneous polarization and increase 

the mobility of domain switch. Sr2-xBaxNb2O7 (x=0.1, 0.2) are the most promising 

materials for high temperature applications due to their stable piezoelectric constant and 

high Curie point. The highest d33 was measured as 3.6± 0.1pC/N for Sr1.8Ba0.2Nb2O7. 
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Chapter VIII. Results – Thermal depoling and phase 

transitions in La2Ti2O7 and Sr2Nb2O7  

8.1. Introduction 

La2Ti2O7 and Sr2Nb2O7 with perovskite-like layered structure have super high Curie 

points (LTO ~ 1461 ˚C; SNO ~ 1342 °C) and they are the most promising candidates for 

the high temperature ferroelectric applications even in PLS family due to their relatively 

high piezoelectric constant (> 2.0 pC/N) compared to other PLS ceramics.
1-7

 However, 

the information on their thermal depoling behavior, which is critical to their application, 

is very limited. In the present work, the thermal stability of piezoelectric La2Ti2O7 and 

Sr2Nb2O7 ceramics was investigated. Their thermal depoling behavior and phase 

transition mechanism at Curie point have been studied. 

8.2. Experiment Details 

The LTO and SNO compounds were prepared by the solid reaction route. The 

calcination conditions were 1250 ˚C and 1200 ˚C for 4h for La2Ti2O7 and Sr2Nb2O7, 

respectively. To produce ceramics, La2Ti2O7 and Sr2Nb2O7 powders were sintered in 

graphite dies (20mm diameter) for 3 min at 1550 C and 1425 C, respectively, under a 

pressure of 100 MPa using SPS. A heating rate of 100 ˚C/min was used in all cases.  

The thermal stability of d33 was tested by holding the samples at high temperatures in 

the furnaces for 2 hours, then d33 was measured at room temperature. 
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8.3. Results and Discussion 

Fig.8.3.1 and Fig.8.3.2 show dielectric constant (ɛ) and dielectric loss (D) of LTO and 

SNO ceramics as a function of temperature at 1MHz, 500kHz and 100kHz measured 

during (a) heating and (b) cooling. The insert of Fig.8.3.1 (a) and Fig.8.3.2 (a) shows the 

dielectric constant at 100 kHz over a wide range of temperature. A heating rate of 3 

˚C/min was used in all cases. The insert in Fig.8.3.1 (b) and Fig.8.3.2 (b) shows a plot of 

1/ɛ as a function of temperature above the Curie point, for the dielectric constant (ɛ) 

measured during heating process (100 kHz). Fig.8.3.3 (a) shows the free energy (G0) as 

a function of polarization (P) for a first order and second order ferroelectric to 

paraelectric phase transition according to Ginzburg - Landau theory,
8-10

 respectively.  

The dielectric constant peaks indicate the ferroelectric to paraelectric phase transitions 

(Curie point, Tc). For LTO, the Tc for heating is observed as 1460 ˚C and for cooling as 

1430 ˚C. The Tc during heating is in a good agreement with the literature.
6
 From the 

Curie - Weiss fitting (Insert of Fig.8.3.1 (b)),
10,11

 the Curie - Weiss temperature (T0) is 

estimated as 1405 ˚C which is lower than Tc during heating . All of this suggests that 

The Curie transition for LTO is first order. In Ginzburg - Landau theory, the free energy 

is used to estimate the thermodynamic stability of ferroelectric and paraelectric phases 

(Fig.8.3.3 (a)). For LTO, only ferroelectric phase exists below T0. In this temperature 

range the switching of  spontaneous polarization (Ps) becomes easier with increasing 

temperature, thus contributing to the permittivity (ɛ) and mechanical loss (D).
12

 

Between T0 and Tc, the paraelectric phase could begin nucleating but the main phase is 
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still ferroelectric. However, the small amount of paraelectric phase can decrease the 

internal stress and the friction of ferroelectric phase, so that the mechanical loss drops 

and the permittivity still increases with increasing temperature. The ferroelectric and 

paraelectric phases coexist at Tc and the paraelectric phase exceeds the ferroelectric to 

become the main phase between Tc and T1.
10,11

 T1 is the temperature below which the 

ferroelectric phase can exist sub-stably. In the end, the ferroelectric phase disappears 

above T1. The T1 of LTO was estimated as 1592 ˚C according to Ginzburg - Landau 

theory.  

For SNO, the Tc (1328 ˚C) measured during heating and cooling were the same, which 

indicates the ferroelectric to paraelectric phase transition is a second order transition. 

Different from a first order ferroelectric to paraelectric phase transition, T0 is the same 

as Tc and T1 in a second order transition. The T0 of SNO was estimated as 1324 ˚C. 

Therefore, only ferroelectric phase exists below Tc and the paraelectric phase dominates 

above Tc for SNO. 
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Fig.8.3.1. Dielectric constant and dielectric loss of La2Ti2O7 ceramic as function of 

temperature (1150 - 1500 ˚C) at 1MHz; 500kHz and 100kHz measured During (a) 

heating and (b) cooling. The insert of (a) is the scan from 25 - 1500 ˚C at 100kHz;  and 

the insert of (b) is 1/ɛ as a function of temperature above Curie point.  

 

 

 

 



Chapter VIII. Results – Thermal depoling and phase transitions in La2Ti2O7 and Sr2Nb2O7  

 

147 

 

Fig.8.3.2. Dielectric constant and dielectric loss of Sr2Nb2O7 ceramic as function of 

temperature (1000 - 1400 ˚C) at 1MHz; 500kHz and 100kHz measured at (a) heating 

and (b) cooling processes. The insert of (a) is the scan from 25 - 1400 ˚C at 100kHz and 

the insert of (b) is the 1/ɛ as a function of temperature above Curie point. 
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The plot of relative piezoelectric constant d33 of LTO and SNO ceramics to homologous 

annealing temperature is shown in Fig.8.3.3 (b) and the insert is the real value of d33 as 

a function of temperature. From the insert of Fig.8.3.3 (b) the d33 of LTO was measured 

as 2.6 pC/N at room temperature. With increasing temperature, the d33 of LTO is very 

stable up to the 1540 ˚C which is surprising since this is even above the Tc of LTO. This 

might be explained by three factors. Firstly, it has a high Tc (1460 ˚C), so the 

ferroelectric structure of LTO is very stable. It has a first order phase transition at Tc, so 

the ferroelectric phase, which can stabilize the d33, can exist even above Tc (1460 ˚C) up 

to T1 (1592 ˚C). This is also observed in other ferroelectric materials which have a first 

order transition.
13

 Furthermore, there are only 180˚ domains in LTO and all the other 

PLS structure ferroelectric materials, which can "lock" each other and make the 

domains difficult to switch.
14,15

 This is also supported by its high coercive field (>100 

kV/cm) and the difficulty of poling it (220 ˚C, 200 kV/cm). Even if some of the 

ferroelectric domains disappear above Tc, it costs more energy to re-orientate the 

domain rather than keep the original direction, which is a kind of memory effect. 

Therefore, the d33 might drop above Tc due to some of the ferroelectric phase 

disappearing, but it could recover when the temperature is then reversed. 

SNO has a different thermal depoling behavior compared to LTO. Its d33 was initially 

measured as 2.8 pC/N at room temperature. It drops by almost a half after annealing at 

about 200 ˚C due to a ferroelectric to ferroelectric phase transition.
16

 The ferroelectric to 

paraelectric phase transition happens at Tc and the d33 drops to zero just below Tc.  
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Fig.8.3.3. (a) Free energy (G0) as a function of polarization (P) for ferroelectric 

materials. The ferroelectric to paraelectric phase transition is a first order transition for 

La2Ti2O7 and a second order transition for Sr2Nb2O7.(b) The plot of relative 

piezoelectric constant d33 of La2Ti2O7 and Sr2Nb2O7 ceramics to homologous 

temperature. The insert of (a) is the real value of d33 to temperature.   
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At room temperature LTO has P21 monoclinic symmetry with the spontaneous 

polarization (Ps) along the c-axis and lattice parameters are (a, b, c, β) = (7.80Å, 

13.011Å, 5.546Å, 98.6°). It then changes into Cmc21 orthorhombic symmetry at about 

780 ˚C, and then becomes paralelectric phase with Cmcm orthorhombic symmetry at 

Tc.
2,17,18

 SNO crystallizes into an incommensurate, modulated structure with the 

superspace group Cmc21(α00)0s0 at room temperature, with the Ps along the c-axis,.It 

changes into Cmc21 orthorhombic symmetry at about 215 ˚C and then changes into the 

paraelectric phase with Cmcm symmetry at Tc.
16,19-21

 

According to the P-E loops results for single crystals, the Ps is reported as 5 μC/cm
2
, 

and 9 μC/cm
2
 along the c-axes for LTO and SNO, respectively.

1,2,5
 However, the results 

are not accurate if the P-E loops were not saturated. Here, the Ps values for both LTO 

and SNO are calculated based on their atomic displacements. Atomic displacements 

along the c-axis from the corresponding positions in the paraelectric structure produce a 

net spontaneous polarization Ps. Displacements along the a- and b- axes are cancelled 

out due to the presence of centro-symmetric centers, and therefore do not contribute to 

the total Ps. Based on the atomic displacements, the total Ps of ferroelectric LTO and 

SNO were calculated using Shimakawa’s model:
22

    





i

ieii

V

Qxm
Ps                                                     (8.1)   

Where mi is the site multiplicity and Δxi is the atomic displacement along the c-axis, Qie 

is the ionic charge of the ion, and V is the volume of the unit cell.   

According to the crystal structure parameters of LTO and SNO reported by Ishizawa et 
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al and Daniels et al.
16,21

 The ion contribution to the total Ps are represented in Fig.8.3.4 

(a-d). At room temperature, LTO and SNO have Ps of 15.4 and 32.2 pC/N, respectively, 

which are much higher than the previously reported experimental results 

(Fig.8.3.4.(a)(c)). At 780 ˚C, the Ps of LTO changes slightly to 15.7 pC/N (Fig.8.3.4.(b)). 

It is worthy to mention here that when the structure of LTO changes from P21 to Cmc21, 

the structure become more symmetric, so the symmetrically unique positions for the 

ions decrease by a half. For SNO, Ps falls to 21.7 pC/N at 215 ˚C, which can explain the 

drop of d33 at about 200 ˚C (Fig.8.3.4.(d)). 

 

Fig.8.3.4. Ion contribution to total spontaneous polarization (Ps) of each ion of La2Ti2O7 

and Sr2Nb2O7. 
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8.4.Conclusion 

The phase transitions and thermal depoling behaviors of LTO and SNO have been 

investigated. LTO has a first order ferroelectric to paraelectric phase transition at its 

Curie point and SNO has a second order phase transition. Their spontaneous 

polarization have been accurately calculated. Both of them are stable, especially LTO, 

which make them excellent candidates for high temperature applications.  
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Chapter IX. Results – Resistivity, electrical degradation and 

conductivity mechanism of Sr2Nb2O7                                                                                                                                      

9.1. Introduction 

The thermal stability of high temperature piezoelectrics is very important due to their 

high operating temperatures. In dielectric and piezoelectric ceramics, different failure 

modes can be induced by electric field and temperature. Dielectric breakdown is an 

instantaneous breakdown caused by the applied electric field exceeding the dielectric 

strength of the material.
1
 Thermal breakdown is produced by self-heating due to a high 

leakage current in a dielectric material at high temperature.
1
 Resistivity degradation is 

characterized by an increase of the leakage current under certain temperature and DC 

electric field, even if the temperature and electric field are much lower than the critical 

values for dielectric or thermal breakdown (Fig.9.1.1).
1
 Because they represent limiting 

conditions for their application, both the dielectric and thermal breakdown are not 

serious problems during operation. However, degradation is a time dependent 

phenomenon that limits the lifetime of dielectric and piezoelectric materials. 
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Fig.9.1.1. Example of the degradation of barium titanate; current density J vs time t at a 

temperature T = 210 ˚C and a DC electric field E = 8.0 kV/cm. Solid line is 

(BaCa)(TiZr)O3 ceramic and dash line is SrTiO3 ceramic.
1
  

The first report on the insulation resistance degradation of BaTiO3 was published in 

1951.
2
 Since then, there have been several reports for perovskite titanates.

1,3,4
 Generally, 

the rate of the degradation increases with increasing temperature and DC field. The 

degradation rate can be affected by material parameters, such as, doping, grain size, 

second phases, porosity as well as electrode properties.
1,4-6

 In most cases, donor doping 

can stabilize the resistivity while acceptor doping increases the degradation rate. There 

is still an argument as to whether grain size can affect the degradation of resistivity. 

Porosity in ceramics was reported to stimulate the degradation.
4
 

Based on these studies, several theories were proposed to explain the degradation 

mechanism, which could be generally classified into two major categories. The first one 
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is the grain – boundary model.
3
 Grain boundaries generally exhibit higher resistivity 

than the bulk of the grains. After a DC electric field is applied, the electrons may 

concentrate on the grain boundary and a high electrical field across the grain boundaries 

can be established. This phenomenon is known as Maxwell – Wagner polarization.
7
 The 

model assumes that the local field leads to a breakdown process.  

The Reduction model considers oxygen vacancies with relatively high mobility.
4,6,8

 

Oxygen vacancies widely exist in titanate ceramics.
9
 They are positively charged and 

move towards the cathode. The oxygen vacancies pile up at the cathode and are 

oxidized by electrons injected from the cathode.
1
 Conversely, the oxygen vacancies are 

produced at the anode in the reaction:    

'2)(
2

1
2 eVgOO OO  

                                              (9.1) 

Therefore, the ceramic suffers an electrochemical reduction, which produces a growth 

of the n-conducting cathode region toward the anode. This increases the electronic 

conductivity. 

According to Rainer Waser's study of perovskite - type titanates, the migration of 

oxygen vacancies across grain boundaries is rate - limiting for the degradation process 

and the electric potential drop per grain boundary is the key parameter for the 

degradation rate.
1
 So, the grain boundary model is more consistent with the results. 

For the A2B2O7 PLS materials, many of them have high Tc and are good candidates for 

high temperature sensor materials.
10-12

 Therefore, their high temperature degradation 
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properties are important and there are no reports on this in the literature. In this chapter, 

Sr2Nb2O7 was chosen to study high temperature ( > 400 ˚C) electric degradation due to 

its relatively high d33 and excellent dielectric properties. The dielectric properties have 

also been investigated to help to understand the conductivity mechanisms.  
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9.2. Experiment Details 

The Sr2Nb2O7 (SNO) was obtained by the mixed oxide route. The powders were ball 

milled and then calcinated for 4.5 h at 1250°C. The powders were then re-milled to 

break any agglomerates and reduce the particle size. The calcined SNO powder was 

sintered using a two-step method in the SPS furnace.
10

  

The electrical stability measurements were carried out by holding the samples at 

different temperatures and measuring their resistance as a function of time. The voltages 

of 20V, 40V and 80V were used. All the SNO textured samples used for the electrical 

stability tests had the same electrode area (15 mm
2
) and thickness (0.6 mm). The DC 

conductivity was calculated from the DC resistivity of SNO. The resistance data was 

recorded at 20 V after holding at different temperatures for 15 min.  

The frequency dependent permittivity was obtained at different temperatures between 

25 – 800˚C. The real part (  ) of permittivity and loss (D) were recorded and the 

imaginary part (  ) could be calculated using the following equation: 

  D                                                            (9.2) 

The frequency dependent permittivity was collected after holding at different 

temperatures for 15min. 
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9.3. Results and Discusstion 

The electrical stability of SNO was measured under 20V, 40V and 80V at 400 °C, 

600 °C, and 800 °C, with a holding time for 24 h (Fig.9.3.1 - 9.3.3). It was observed that 

the resistivity of SNO is very stable during the holding period at all of the conditions. 

The resistivity of SNO is about 9×10
8 

Ω.cm at 400 °C, 5×10
7
 Ω.cm at 600 °C, and 

2×10
6
 Ω.cm at 800 °C respectively under 20 V (Fig.9.3.1). The value is about 10

9
 

Ω.cm at 400 °C, 7×10
7
 Ω.cm at 600 °C, and 2×10

6
 Ω.cm at 800 °C under 40 V 

(Fig.9.3.2), while it is 1.5×10
9
 Ω.cm at 400 °C, 7.5×10

7
 Ω.cm at 600 °C, and 2×10

6
 

Ω.cm at 800 °C under 80 V. All the values are in a good agreement with the literature.
10

 

The resistivity decreases with increasing temperature; this is because more charge 

carriers are activated at higher temperature. At the same temperatures, the resisitivities 

change slightly under different DC field and they are almost the same under 80V. This is 

because of the experimental error. The resistivity is calculated from the current and 

voltage in the tests, but the resistivity of SNO is very high, so the current is very low 

during the tests at 20V and 40V. 
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Fig.9.3.1. Electrical stability of SNO textured ceramics (⊥ ) measured under 20V at 

400 °C, 600 °C, and 800 °C. 

 

Fig.9.3.2. Electrical stability of SNO textured ceramics (⊥ ) measured under 40V at 

400 °C, 600 °C, and 800 °C. 
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Fig.9.3.3. Electrical stability of SNO textured ceramics (⊥ ) measured under 80V at 

400 °C, 600 °C, and 800 °C. 

The result of long term experiments at 800 °C, 80V is shown in Fig.9.3.4. There is no 

obvious resistivity drop observed during 125 h. Fig.9.3.5 shows the stability measured 

under 80V at 980 °C and 1000 °C respectively. The resistivity degradation can be 

observed after 14 hours holding at 980 °C and just 0.6 hour at 1000 °C. The 

experimental results suggest that SNO could be used below 800 °C for application.  
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Fig.9.3.4. Electrical stability of SNO textured ceramic (⊥ ) measured under 80V at 

800 °C for 125 hours. 

 

Fig.9.3.5. Electrical stability of SNO textured ceramic (⊥ ) measured under 80V at 

980 °C and 1000 °C. 
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Fig.9.3.6 shows the electrical degradation results for SNO textured ceramics in 

perpendicular direction (SPS (⊥ )) and parallel direction (SPS (//)). The value of 

resistivity in SPS (//) is higher than SPS (⊥ ). This is because the SNO has PLS 

structure and the layer structured direction has higher electrical resistivity in single 

crystal.
13,14

 Also, the grains in PLS material are plate-like and are orientated in the 

textured ceramic. In this case, the grain boundary density in SPS (//) is higher than SPS 

(⊥ ), so the resistivity in SPS (//) is higher than SPS (⊥ ) (Fig.9.3.7).
12

 The degradation 

time for the SPS (//) is longer than SPS (⊥ ). This result is in good agreement with 

Rainer Waser's study.
1,3

 There is a local field established on the grain boundary and the 

electric potential drop at the grain boundary is the key parameter for the degradation 

(Fig.9.3.7). In the parallel direction (//), the grain boundary density is much higher than 

in perpendicular direction (⊥ ) and the voltage is the same, so the electric potential drop 

on each grain boundary is smaller in SPS (//) than SPS (⊥ ). As grain - boundary theory, 

this local electric field is smaller and degradation time is longer. So, the resistivity 

degradation time is longer in in SPS (//) than SPS (⊥ ). 
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Fig.9.3.6. Electrical stability of SNO textured ceramic measured under 80V at 1000 °C 

in parallel direction (//) and perpendicular direction (⊥ ). 

 

Fig.9.3.7. Diagrammatic sketch of (a). SPS (//) and (b). SPS (┴) samples under the 

applied DC field (E). E’ is the local field established on the grain boundaries.  

The frequency dependence of dielectric constant real part (  ) and imaginary part (  ) 

measured at different temperatures is shown in Fig.9.3.8. The ln σAC to 1/T plots is 

shown in Fig.9.3.9. Here, T is the absolute temperature and σAC is the estimated 



Chapter IX. Results - Resistivity electrical degradation and conductivity mechanism of Sr2Nb2O7  

 

166 

contribution to the AC conductivity from the dielectric loss, which was calculated using 

following equation:
15

 

02   fAC                                                    (9.3) 

Here,    is the imaginary part of permittivity; f is the frequency and 0  is the 

vacuum dielectric constant.   

The activation energy of AC or DC conductivity can be calculated using the Arrhenius 

relation:
16

 

kT

Ea

kT

Ea





0

0

lnln

)exp(





                                               (9.4) 

Here, 0  is a constant; k is the Boltzmann constant; T is the absolute temperature and 

Ea is the activation energy.  

From Fig.9.3.9, three frequencies (100Hz, 1000Hz, 10000Hz) have been chosen to 

calculate the activation energy. The activation energy (Ea(AC)) is 0.25eV, 0.28eV and 

0.37eV at 10000Hz, 1000Hz and 100Hz respectively. Fig.9.3.10 shows the DC 

conductivity change with temperature increasing and the insert is the plots of ln(σDC) to 

1/T. From the equation (3), the slop is the activation energy for DC conductivity (Ea(DC)) 

which is 1.0eV. The activation energy is smaller than the activation energy for intrinsic 

charge carriers (~1.44 eV),
16

 which reflects the DC conductivity is dominated by the 

extrinsic charge carriers. 
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Ea(AC) are much smaller than Ea(DC) which means the charge carriers of AC conductivity 

are different from DC conductivity. Actually, the DC conductivity always contributes to 

the AC conductivity, but there are some other charge carriers, which cannot move 

long-range, that contribute to the AC conductivity. This is consistent with the results 

that the DC conductivity is much lower than AC conductivity and the activation energy 

for DC is much higher than AC. In our case, the real and imaginary permittivity both 

decrease with increasing frequency which means that the defect can only follow at low 

frequency and cannot respond with increasing frequency. The permittivity increases 

with increasing temperature and indicates more dipoles are activated at high 

temperature. All the switchable dipoles could contribute AC conductivity.  

 

Fig.9.3.8. The frequency dependence of dielectric constant real part (ε´) and imaginary 

part (ε") measured at different temperatures. 
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Fig.9.3.9. The plots of ln σAC to 1/T.  

 

Fig.9.3.10. The DC conductivity change with temperature increasing. The insert is the 

plots of ln σDC to 1/T.  
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9.4. Conclusion 

In this chapter the electric stability of SNO has been investigated. The experimental 

results suggest that SNO could be used in applications below 800°C. The degradation 

mechanism of SNO can be explained by the grain boundary model. The AC 

conductivity of SNO is dominated by dipole hopping. The activation energy for DC 

conductivity suggests that DC conductivity is dominated by extrinsic charge carriers. 
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Chapter. X. Conclusion and Future work 

10.1. Conclusions 

In this project, the ferroelectric ceramics of Pr2Ti2O7, La2Ti2O7, Sr2Nb2O7, 

La2-xCexTi2O7 (x=0.15, 0.25, 0.35), Nd2-xCexTi2O7 (x=0.05, 0.25, 0.5, 0.75) and 

Sr2-xBaxNb2O7 (x=0.1, 0.2, 0.3, 0.4, 0.5) were prepared. All of the compounds have a 

perovskite-like layered structure (PLS). For Pr2Ti2O7 and Sr2-xBaxNb2O7, the grains are 

plate-like. However, the grains of La2-xCexTi2O7 and Nd2-xCexTi2O7 are less plate-like 

compared to the unsubstituted compounds, La2Ti2O7 and Nd2Ti2O7, which is due to the 

influence of Ce substitution. All the compounds can be textured by a two-step sintering 

method using SPS. Generally, the compounds with more plate-like grains have a higher 

degree texture. The two step texture method was proved to be a good way to texture 

PLS ceramics.  

The lattice parameters were calculated based on the XRD data. The structure changes 

with substitution in all the solid solution systems. Ce substitution can decrease the cell 

volume in La2-xCexTi2O7, but increase cell volume in Nd2-xCexTi2O7. In Sr2-xBaxNb2O7, 

the volume increases with increasing Ba substitution. In this study, the substituted 

elements are in the same periodic group as substituting elements. The ions therefore 

have similar properties and the structure change can be explained by the difference in 

ion size on the A site. The ionic radius of Ce
3+

 is smaller than that of La
3+

, but larger 

than that of Nd
3+

, while Ba
2+

 is much bigger than Sr
2+

. 
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The electrical, piezoelectric and ferroelectric properties were characterized for these 

materials. Pr2Ti2O7 has the highest Curie point know of any known material, which is 

greater than 1560°C. In La2-xCexTi2O7(x < 0.35), Nd2-xCexTi2O7(x < 0.75), and 

Sr2-xBaxNb2O7 (x < 0.6) solid solution systems, all the substitutions decrease the Curie 

point. The piezoelectric constant for Pr2Ti2O7 is small, 0.5 ± 0.1pC/N. In these solid 

solution systems, though the Tc decreases, the piezoelectric activity is improved. The 

highest d33 values were 3.9 ± 0.1pC/N and 3.6± 0.1pC/N for La1.85Ce0.15Ti2O7 and 

Sr1.8Ba0.2Nb2O7, respectively which are higher than the d33 values of La2Ti2O7 (2.6± 

0.1pC/N) and Sr2Nb2O7 (2.8± 0.1pC/N). The Tc and d33 change in Sr2-xBaxNb2O7 could 

be explained by the spontaneous polarization decreasing and domain mobility 

increasing with increasing Ba substitution. The resistivities decrease sharply with 

increasing Ce substitution in both La2-xCexTi2O7(x < 0.35) and Nd2-xCexTi2O7(x < 0.75) 

systems. With Ba substitution, the drop of resistivity is not very obvious in 

Sr2-xBaxNb2O7 (x < 0.6). This is because the Ce has two possible valencies of Ce
3+

 and 

Ce
4+

 existing in the materials, so it acts as donor dopant in contrast to the situation in 

Sr2-xBaxNb2O7 wheresimple isovalent substitution occurs. 

The phase transitions and thermal depoling behaviors of La2Ti2O7 and Sr2Nb2O7,  have 

been investigated. La2Ti2O7 has a first order ferroelectric to paraelectric phase transition 

at its Curie point and Sr2Nb2O7 has a second order transition. La2Ti2O7 is super stable 

which makes it an excellent candidate for high temperature applications. The 

spontaneous polarizations of La2Ti2O7 and Sr2Nb2O7 have been calculated.  
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Overall, all the compounds have a high Tc (>900 ˚C) and the properties can be changed 

by the substitution. Some of the compounds in solid solution systems have very good 

ferroelectric and piezoelectric properties. This project makes a further contribution on 

the study of PLS ferroelectric materials for high temperature applications and has 

identified candidate materials for these applications. 
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10.2. Recommendations for Future work 

10.2.1.TEM study 

There is limited information of the TEM study on A2B2O7 ferroelectrics. Most of  

A2B2O7 materials have very high Curie point and the PLS structure. The 180º domains 

are only suggested rather than observed. So the transmission electron microscopy (TEM) 

study is recommended to utilize to obtain more information on the  ferroelectric 

domain structure. The information might be helpful to analyse why these materials have 

such stable structure and high Curie points. 

10.2.2. Two and three layers PLS ferroelectrics 

In the PLS family, some of the two and three layer compounds (LaTaO4, LaNbO4, 

Pr3Ti2TaO11, La3Ti2TaO11) were reported to have noncentro-symmetric structure, which 

make these materials potential ferroelectrics. However, little information is available on 

the ferroelectric properties of the two and three layers ferroelectrics due to the 

difficultly of processing them and inaccessible poling conditions. However, it may be 

possible to obtain good ferroelectric and piezoelectric properties in these unexplored 

materials. 

10.2.3. Electrical Degradation and Thermal depoling 

The electrical degradation behavior is critical for applications. The high temperature 

electrical stability of Sr2Nb2O7 was studied in this project. The degradation of resistance 
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depends on both intrinsic parameters (defects, grain size) and extrinsic parameters. It is 

also a statistical process. It would therefore be useful to perform a more systematic 

study in order to identify the mechanisms of degradation.  

The thermal depoling behaviours Sr2Nb2O7 and La2Ti2O7 have been studied, but why 

La2Ti2O7 is super stable is not clear. Further research is needed to answer this question. 

10.2.4 Grain size effect 

The grain size effect could significantly affect the ferroelectric and dielectric properties 

on ferroelectrics. It is poorly studied in PLS family. Hence, it would be very useful to 

investigate the influence of grain size on the electrical properties of these A2B2O7 

ceramics, as well as the effect on their ferroelectric domain structure. SPS is a good 

method to prepare the ceramics with nano-size grains due to the high heating rate and 

pressure. 
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