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Abstract 

 

Introduction: 

One of the pathological features of multiple sclerosis (MS) is the presence of a 

long lived chronic inflammation in the central nervous system (CNS) with 

presence of oligoclonal IgG and IgM bands (OCBs) in the cerebrospinal fluid 

(CSF) derived from clonally expanded B cells. In my PhD I have tested the 

hypothesis that the intrathecal B cells response is antigen driven and screened 

putative candidate antigenic epitopes. 

Materials and methods: 

Brain tissues were supplied from The UK Multiple Sclerosis Tissue Bank. Total 

RNA was extracted from the brain tissues from 14 patients with MS after 

homogenization of the snap frozen blocks and cDNA obtained. VH and VL 

fragments were amplified from IgM and IgG and cloned in an in house vector to 

build a phage display single chain fragment variable (scFv) antibody library. The 

library was used to analyse the VH and VL usage, somatic mutation and clonal 

expansion in the MS brain and to select for scFv specific to putative 

autoantigens candidates.   

Results and discussion: 

Two libraries of VH only and VH plus VL gene segments from MS brain’s B cells 

were built. The sequences analysis has revealed a biased usage of VH and VL 

and evidence of clonal expansion thus supporting an antigen driven response. 

The auto-antigen candidates chosen for screening the libraries were the myelin 

basic protein (MBP)-proteolipid protein (PLP) fusion protein MP4 and specific 

binders were selected as highlighted with monoclonal phage ELISA. 

Conclusion:  

A MS disease specific phage display antibody library was built to facilitate the 

analysis of the disease specific V gene usage in the MS brain. Selection using 

this library has provided a proof of concept that this library is functional. The 
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library will be used in the future to identify human antibody fragments against 

candidate autoantigens either for diagnostic or therapeutic applications. 
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Chapter 1: Introduction 

 

1.1 Multiple Sclerosis 

“....I was obliged to have my letters read to me, and their answers written for 

me, as my eyes were so attacked that when fixed upon minute objects 

indistinctness of vision was the consequence: Until I attempted to read, or to cut 

my pen, I was not aware of my Eyes being in the least attacked. Soon after, I 

went to Ireland, and without anything having been done to my Eyes, they 

completely recovered their strength and distinctness of vision ...” 

This is possibly the first patient’s description of multiple sclerosis (MS) and was 

taken from the diary of Sir Augustus D’Este, grandson of King George III (1822-

1848) (Pearce 2005).  

1.1.1 Epidemiology 

MS is a putative autoimmune disease of the central nervous system (CNS) and 

affects over 1 million individuals worldwide. MS is a long lasting neurological 

disease with a mean survival ranging from 30 to 40 years from the onset of 

disease symptoms, including patients with a benign course (Compston and 

Coles 2008; Kingwell et al. 2012). The risk of developing MS is higher in women 

with an increased trend described in the last decades leading to a sex ratio F:M 

of around 3.2 (Ramagopalan et al. 2010).  In the world the highest prevalence 

rates have been shown for Scotland and its offshore islands ranging from 145 to 

193 per 100.000 (Pugliatti et al. 2002), higher than other Nordic countries with 

the same latitude, pointing to the hypothesis of the association of high 

susceptibility and Scottish ancestry (Rothwell and Charlton 1998) and in 

contrast with rare cases observed in African blacks or Samis populations. The 

worldwide uneven geographical distribution is correlated to differences in racial 

susceptibility and it is described a classical relationship prevalence-latitude with 

areas of decreasing risk with a north to south gradient (Fig.1.1). The disease 

appears to be much more a person/population-related disease than a place-

related one (Compston and Coles 2008; Rosati 2001). 
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Figure 1.1 Prevalence and distribution of MS in different continents: Atlas 

showing the MS prevalence in the five continents. Medium prevalence depicted 
in orange, areas of exceptionally high frequency in red, and areas with low rates 
in grey-blue. Dotted arrows show major routes of migration from high-risk zone 
of northern Europe. Solid arrows showing migrants from low-risk to high-risk 
zones. Prevalence rates showed for some regions in text boxes (figure modified 
from Compston and Coles 2008; Rosati 2001).  
 

Scotland: 145-193/100.000 

Sardinia: 144-152/100.000 

England: 74-112/100.000 

Italy: 40-70/100.000 
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1.1.2 Susceptibility 

1.1.2.1 Genetics 

Presence of patients in the same family has been observed since the first 

descriptions of the disease and the results of numerous studies have 

highlighted an increased risk of developing MS in parallel with the increase in 

genetic material shared with an affected individual (OMIM 126200). MS 

genetics does not fit a classical Mendelian inheritance but there is a contribution 

of genetic factors leading to familial aggregation with a concordance rate for MS 

diagnosis of  about 30% in monozygotic twins and 3-4% in first-degree relatives 

and with respectively a 300-fold and a 20-40 fold increased MS risk (Ebers et al. 

1995). Among all the MS susceptibility loci identified by genome-wide 

association studies (GWAS) it is possible to divide two different categories 

based on the functional role of the immunogenetic involvement and the level of 

association: 1) HLA genes, involved in antigen processing and presentation, 

with a strong association and 2) non-HLA genes, involved in the immune 

response, but outside the MHC locus, with a lower association. The hallmark of 

the association studies in MS susceptibility are summarized by a Manhattan 

plot, with one skyscraper towering all the others due to the strongest 

association for SNPs in the HLA-region compared to non-HLA regions (Fig.1.2). 

 

 
Figure 1.2 GWAS Manhattan plot in MS: The association studies in MS 

susceptibility have a characteristic profile due to the striking association p-value 
of multiple SNPs in the HLA-DR locus on chromosome (ch) 6p21 that stands 
out from the plot. Non-HLA genes such as IL2RA, on ch10p15, and IL7RA, on 
ch5p13, showed also significantly evidence of association with MS (modified 
from Hafler et al. 2007). 
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Particular HLA alleles are strongly associated with MS risk. Studies reviewing 

the published data and pooled analysis of autoimmune disease-associated 

variants corroborate the findings showing HLA-DR2 and -DR3 serologically 

defined haplotypes as being associated with MS susceptibility in European 

populations (Fernando et al. 2008). The DRB1*15:01 allele has the strongest 

disease-specific association signal (Rioux et al. 2009) as confirmed by 

subsequent GWAS studies (Hafler et al. 2007; Patsopoulos et al. 2011; Sawcer 

et al. 2011). A GWAS by the IMSGC and the Wellcome Trust Case Control 

Consortium 2 (WTCCC2) has identified 95 distinct non-HLA regions associated 

with MS and with the most significant Gene Ontology (GO) terms linking these 

genes to lymphocyte function. The genes detected were, indeed, mainly of 

immunological relevance and belonged to cytokine pathways, co-stimulatory 

and signal transduction molecules confirming MS as an immune disorder 

targeting the brain (Sawcer et al. 2011). Not only the genetic background but 

also the interactions of the subject at risk with the environment play a role in the 

development of this complex disease.   

 

1.1.2.2 Environmental risk factors 

Although a specific genetic architecture is needed to develop MS, this cannot 

explain all the risk of this complex disease. Changes in risk occur with migration 

and geography. Environmental risk factors including infectious and non-

infectious factors have to be taken into account (Ascherio and Munger 2007a; 

Ascherio and Munger 2007b). Among the non-infectious factors the latitude 

gradient could be explained by the difference in intensity of ultraviolet light in 

band B (UVB) and consequently its impact on vitamin D (vitD) levels. In fact, a 

protective effect of vitD on MS susceptibility can be detected from childhood to 

aduthood and probably in utero (Simon et al. 2012). Recently, studies of early 

life exposure analyzing the dietary habits such as milk intake or vitD intake of 

mothers, while pregnant, or the so called “month of birth effect” have shown a 

correlation with increased risk of developing MS in  later life (Dobson et al. 

2012; Mirzaei et al. 2011). Cigarette smoking has also been shown to contribute 

significantly to MS susceptibility and  to have an effect on disease progression; 
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smokers have a  worse prognosis than non-smokers as defined using either the 

rate of progression in the expanded disability status scale or  MRI measures 

(Ascherio and Munger 2007b; Zivadinov et al. 2009). The mechanism of how 

cigarette smoking affects MS susceptibility has been shown to be independent 

from the action of nicotine, but possibly related to the cigarette smoke itself and 

its toxic components, mainly cyanide and nitric oxide (Hedstrom et al. 2009). In 

addition to these environmental risk factors, the causative role of an infectious 

pathogen in MS has been suggested as early as the first descriptions of the 

disease by Charcot and one of his students, Pierre Marie in the late 1800s 

(Tselis 2012). The presence of high concentrations of IgG in the brain and CSF 

of more than 90% of MS patients and possible epidemics of the disease in 

isolated populations and low (~30%) MS concordance in identical twins are 

quoted as evidence to support the role of an infection in MS (Gilden 2005; 

Gilden et al. 1996). To explain the epidemiology of MS, two hypotheses, having 

in common the presence of a widespread microbe as cause, have been 

proposed: the so called “poliomyelitis” and “prevalence” hypotheses. The first 

postulates that a viral infection can be harmful or protective depending on the 

age of the infection (Poskanzer et al. 1976); the latter postulates the presence 

of a pathogen more common in regions of high MS prevalence (Kurtzke 1993). 

Among the different infectious agents proposed as cause of MS (Giovannoni et 

al. 2006), EBV, a member of herpes viruses, has been implicated in several 

major autoimmune diseases, including systemic lupus erythematosus (SLE), 

rheumatoid arthritis (RA) and MS (Lunemann et al. 2007; Mehraein et al. 2004; 

Poole et al. 2009). Population based case-control studies and a meta-analysis 

have shown that the type of immune reaction to EBV and the age of EBV 

infection are associated with a different MS risk. Subjects who are EBV 

seronegative have a very “low  risk” of developing MS. Individuals with history of 

symptomatic EBV infection, i.e. infectious mononucleosis (IM), have an 

increased risk of developing MS (Ascherio and Munger 2007a; Thacker et al. 

2006; Zaadstra et al. 2008). Due to the extremely high prevalence of EBV 

infection in the general population, Canadian, European and American studies 

on paediatric populations showed significantly larger numerical difference 

between remote EBV exposure and MS in children (Alotaibi et al. 2004; Banwell 
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et al. 2007; Pohl et al. 2006). Findings highlighting that MS patients invariably 

have serologic evidence of remote EBV infection compared to control subjects. 

Nevertheless, there are some EBV seronegative cases of MS. A study on 

paediatric MS detected the disease in a low number of seronegative children (2 

out of 147 children analysed); if genuinely seronegative, these cases may 

represent the key to understand the role of EBV infection in MS (Pohl et al. 

2006).  

Once the genetic and environmental factors interact the disease is triggered 

and clinical disease ensues. The first clinicopathological studies of MS were 

made by Jean Martin Charcot 160 years ago. Charcot linked signs and 

symptoms of the disease with localized damage to nerve fibres of the brain and 

spinal cord. Since then, knowledge about MS has expanded greatly; we now 

know that the typical lesion associated with the disease is due to area of 

demyelination, resulting from acute inflammation with relative axonal 

involvement – the so called “lesion or plaque”.   
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1.1.3 Immunopathogenesis  

Inflammation, demyelination and neurodegeneration coexist in MS and 

determine the sequence of events underlying the development of the 

inflammatory plaque. The sequence of events in the formation of the plaque and 

its histopathological features can originate with a modification of the blood brain 

barrier (BBB) integrity. One hypothesis is that the BBB damage could be 

caused by a systemic infection up-regulating adhesion molecules on 

endothelium of the brain and altering CNS immune privilege (Frohman et al. 

2006). The different presentations of the disease onset, the variable clinical 

course and the differences seen in the lesions imaged by MRI seem to support 

a concept of diversity or heterogeneity in multiple sclerosis (Lassmann et al. 

1998). Studying acute lesions using 83 cases derived from autopsy and biopsy 

brain samples, Lucchinetti and colleagues in 2000 proposed a pathogenetic 

classification based on a distinction between the different pathological aspects 

of the disease. They proposed a degenerative/infective hypothesis with signs of 

oligodendrocyte dystrophy and a different autoimmune hypothesis with 

similarities to autoimmune encephalomyelitis. Lesions have been divided in 4 

distinct patterns based on pathological heterogeneity (Lucchinetti et al. 2000; 

Ludwin 2000). In all four patterns there is demyelination, but a distinct putative 

initial mechanism mediated by: macrophage toxins in pattern I; presence of 

autoantibodies and complement deposition in pattern II; endothelial cell 

damage, microvessel thrombosis with ischemic damage followed by 

oligodendrocyte apoptosis as in concentric Balo’s lesions in pattern III; 

metabolic damage with primary oligodendrocyte degeneration, resembling an 

oligodendropathy, in pattern IV (Lassmann et al. 2001). The concept that MS is 

a pathological heterogeneous disease has been very controversial as the tissue 

used in these studies were mainly from biopsy specimens which represents a 

selection bias; cases that are atypical and/or have an unusually aggressive 

clinical presentation at disease onset are more likely to be biopsied than 

“classical” MS (Pittock et al. 2005). These findings have been interpreted 

differently by other groups.  For example, one group has described 

oligodendrocyte apoptosis in very early lesions and has interpreted the 
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apoptosis being part of lesion formation rather than representing lesion 

heterogeneity (Barnett and Prineas 2004).  

The relapsing remitting course of MS at some point transitions into progressive 

deterioration with the accumulaton of irreversible disability related to the 

continuous loss of axons that follows demyelination (Trapp et al. 1998). There 

appears to be two distinct phases of MS. In the first, or very early phase, that 

develops over hours to days the newly forming lesion is predominated by 

oligodendrocyte apoptosis followed by transformation of activated microglia into 

amoeboid cells with a phagocytic phenotype. These cells then migrate to the 

cervical lymph nodes and result in the recruitment of a systemic immune 

response with enlargement of the lesion. The second phase over months to 

years corresponds to the gradual compartmentalization within the CNS of the 

immune response that is hypothesized to become isolated from systemic 

influence (Barnett and Sutton 2006) and it is characterized by areas of complete 

demyelination with lipid macrophages and presence of large numbers of T cells, 

B cells and IgG positive plasma cells supporting the theory that plaque 

formation starts before inflammatory damage  (Henderson et al. 2009). Other 

neuropathological studies analyzing acute and chronic active lesions have not 

confirmed the oligodendrocyte apoptosis concept and challenge the 

heterogeneity model of active demyelinating lesions. The results of the study 

demonstrated rather a homogeneous pattern of demyelination suggesting that 

heterogeneity could be a characteristic only of the early phase converging 

during established disease in a homogeneous dominant mechanism mediated 

by antibody and complement phagocytosis by macrophages (Breij et al. 2008). 

The presence of lymphoid tissue in the perivascular spaces in old plaques 

organized in a way that resembles the antibody-producing medulla of lymph 

nodes, with aggregates of lymphocytes, reticular cells and macrophages, 

suggests that the lesions present a persistent antigenic stimulus (Prineas 1979). 

Lymphoid follicle-like structures found in the inflamed cerebral meninges of 

some multiple sclerosis patients sustain a locally B-cell maturation and 

formation of a CNS-specific humoral immune response supplying an anatomical 

explanation for grey matter lesions (Howell et al. 2011; Magliozzi et al. 2007). 

Furthermore, the presence of B-cells in the Virchow-Robin perivascular spaces 
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could be interpreted as a transitional step followed by maturation to plasma 

cells and migration into the plaque areas (Esiri 1980), where the inciting antigen 

is located as shown by the phenomenon known as capping, observed on 

macrophages presenting IgG caps bound to Fc receptors and directed against 

myelin in the plaque rim (Prineas and Graham 1981). In different viral diseases 

of the CNS, with an inflammatory response, similar findings to MS were 

observed with Ig containing cells at the site of damage, excess of light chains 

and IgG as preponderant heavy chain class directing the attention towards an 

immune response against a viral antigen or supposed viral antigen, not yet 

defined with certainty, to which the individual has been previously exposed 

(Esiri 1983). However presence of plasma cells in recent and old plaques, 

oligoclonal bands in the CSF and clonal expansion of B-cells in the 

cerebrospinal fluid and brain parenchyma of MS patients support a disease 

specific Ig production. The data reported show a complex mechanism leading to 

plaque formation with involvement of different immune cell types and 

responses. 

 

1.1.3.1 Innate Immunity  

Innate immunity is a multi-component system composed of cellular barriers, i.e. 

the BBB in the CNS, and innate immune peripheral cells of myeloid origin, such 

as dendritic cells (DC), macrophages, monocytes, NK cells, NKT cells, mast 

cells, granulocytes, γδ T-cells but also microglia and astrocytes, of non-myeloid 

origin, in the CNS (Mayo et al. 2012).  The cellular component includes dendritic 

cells, known as professional antigen presenting cells (APCs), which are divided 

into two subsets, i.e. myeloid (mDCs) and plasmacytoid (pDCs) dendritic cells, 

based on their cell surface molecules. DCs are found in peripheral blood and in 

MS lesions. DCs are essential in determining the pro-inflammatory or regulatory 

fate of the T-cells and consequently the disease course. In RRMS and SPMS 

patients DCs exhibit altered function with enhanced production of pro-

inflammatory cytokines (Karni et al. 2006). Accumulation of pDCs has been also 

described in the inflamed meninges, of both acute and chronic MS lesions, 

highlighting their involvement in the immunopathogenesis of MS. INF-β therapy 
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may work in MS by interfering with DC maturation, increasing the regulatory 

ability of these cells (Lande et al. 2008). In animal models DCs have shown 

encephalitogenic properties being the only APC required to initiate adoptive 

transfer of EAE (Greter et al. 2005). Animal models have also shown that 

induction of EAE is regulated by toll-like receptors (TLRs); activated microglia 

express all known TLRs that have been shown to regulate neuroimmune 

responses (Aravalli et al. 2007; Marta et al. 2009). In addition, histopathological 

studies of actively demyelinating lesions have shown that microglia are found in 

areas of neuronal damage; they actively phagocytose neuronal debris and 

modulate the antineuronal adaptive response (Huizinga et al. 2012). The data 

reported suggest dual protective and detrimental, roles of the innate immune 

system in balancing the neuroinflammatory reaction in MS. The innate immune 

system also represents a potential new target to treat MS. 

 

1.1.3.2 Adaptive Immunity 

Genetic, histopathological and animal model studies have shown beyond doubt 

that the adaptive immune system is involved in the pathogenesis of MS. 

Numerous therapies targeting the adaptive immune response are used to treat 

MS. Studies on EAE, disease that  can be induced by injecting unaffected 

animals with autoreactive T-cells, have focused attention on myelin-specific 

CD4+ T-cells (Baker et al. 1990). Analogous with EAE, autoreactive T-cells 

have been found in the peripheral blood and CSF of MS patients (Bielekova et 

al. 2004; Zhang et al. 1994).  In the periphery naive T-cells differentiate into 

either pro-inflammatory encephalitogenic effector Th1, Th17 and Th9 cells that 

are presumably  activated by an unknown trigger, or regulatory Th2 and Tregs 

cells as a result of the the cytokines milieu produced by APCs (Boppana et al. 

2011). Naïve CD4+ T-cells after the initial encounter with the antigen are 

induced by APC secreting IL-12 to differentiate into Th1 cells with the 

subsequent production of interferon gamma (INF-γ) and tumor necrosis factor 

alpha (TNF-α). In comparison, the production of IL-23 by macrophages and 

dendritic cells combined with inflammatory cytokines TGF-β and IL-1β induces 

T cells to differentiate into Th17, cells characterized by production of IL-17 and 
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IL-22. EAE models emphasize the complex interactions between these two IL-

12p40-dependent polarities of pathogenic myelin-specific CD4+T-cells that are 

polarized by either IL-12 or IL-23; both are able to adoptively transfer disease 

(Kroenke et al. 2008). The IL12/IL23 p40 subunit was targeted in a phase II 

clinical trial with a neutralizing monoclonal antibody, ustekinumab. 

Ustekinumab-treated patients showed no reduction in number of new Gd-

enhancing lesions. IL-12 or IL-23 are involved early in the development of 

autoreactive T cells differentiation and ustekinumab may have missed the 

window in which it could have been effective (Richl et al. 2008; Segal et al. 

2008). Histological studies have confirmed that Th17 cells are involved in MS; 

Th17 cells have been described in perivascular cuffs of acute and chronic active 

MS lesions (Tzartos et al. 2008). In peripheral lymphoid organs reactivity of 

myelin-specific T-cells is suppressed by another subset of CD4+ T-cells 

expressing forkhead box p3 (Foxp3) and high levels of α-chain of the IL2 

receptor (CD25). CD4+CD25+Foxp3+ T-cells use a mechanism of suppression 

that requires cell-cell interactions. These cells are characterized by secretion of 

IL-10 and TGF-β and are crucial in the maintenance of self-tolerance (Venken 

et al. 2010). The immunological balance has been hypothesized to be 

dysregulated in MS by this lineage of T-cells, i.e. Foxp3 regulatory T-cells 

(Tregs), playing a compromised regulatory role (Comabella and Khoury 2012). 

Interestingly, CD4+CD25+Tregs obtained from the peripheral blood of RRMS 

patients are present  at the same frequency as in controls but show impaired 

suppressor function, on proliferation, when co-cultured with CD4+CD25- T-cells. 

This is supported by the lack of suppression of INF-γ secretion (Viglietta et al. 

2004). As described for CD4+ T-cells, adoptive transfer of myelin-specific CD8+ 

T-cells has encephalitogenic properties and induce EAE in certain mouse 

strains (Huang et al. 1992). In both perivascular regions and cell infiltrates of 

actively demyelinating MS lesions, histopathological studies have described 

CD8+ T-cells as the dominant T-cell subset, outnumbering CD4+ T-cells. 

Infiltrates in MS lesions have been reported to be dominated by clonally 

expanded CD8+ T-cells suggesting antigen-driven activation (Babbe et al. 

2000) and a pathogenic role with axonal damage resulting in neurodegeneration 

(Bitsch et al. 2000). Not only are different subsets of T cells involved in the 
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adaptive response in MS but B cells also appear to play an important role as 

detailed below. 

 

1.1.3.3 B cells and MS 

B-cells can contribute to MS pathogenesis as APC and/or as cells producing 

antibodies. This dual function explains the difficulties in delineating the exact 

role of the B cell in the immunopathogenesis of MS (Cross and Waubant 2011; 

Weber et al. 2011). As highlighted from pathological studies B-cells are present 

in different areas of the CNS in MS with a gradient of increasing B-cells 

infiltration from NAWM to recent plaques, with increasing inflammatory activity 

(Esiri 1977). B-cells presence permeates the CNS of MS patients in 

perivascular spaces, chronic and active plaques (Prineas 1979; Prineas and 

Wright 1978) but also as part of meningeal follicle-like structures seen in SPMS 

as an outcome of the hypothesised compartmentalization of the immune 

response in chronic inflammation (Aloisi and Pujol-Borrell 2006; Magliozzi et al. 

2007; Serafini et al. 2004). B-cells activity has been associated by some 

authors with the most frequent pattern of actively demyelinating lesions, the so 

called pattern II lesion that is positive for Igs and with complement deposition 

and activation (Lucchinetti et al. 2000) and with grey matter lesions, that point to 

Igs having an active and detrimental effect (Howell et al. 2011; Magliozzi et al. 

2007). B-cells are absent from the CSF in normal controls but are found in the 

majority of CSF samples from people with MS. The B-cells found in the CSF 

have a memory, and short-lived plasma blast, phenotype that seems to persist 

throughout the course of the disease and correlates with the intrathecal 

synthesis of Igs (Cepok et al. 2005a).  Intrathecal B cell maturation  is driven 

locally by CXCL13, with a resulting enrichment of plasmablasts and plasma 

cells (Haas et al. 2011). B-cells that are found in the CSF of MS patients are 

clonally expanded, presenting somatic hypermutation of Ig genes and 

expressing a biased VH repertoire indicating an antigen driven response and a 

germinal centre reaction (Baranzini et al. 1999; Colombo et al. 2000; Haubold et 

al. 2004; Owens et al. 1998; Owens et al. 2003; Qin et al. 1998; Smith-Jensen 

et al. 2000). The role of B-cells in the pathogenesis of MS is underscored by the 
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presence and persistent elevated levels of Igs in the CSF and detection of a 

CSF restricted oligoclonal electrophoretic profile (Kabat et al. 1942). The 

specificity and pathological significance of the intrathecal antibody response 

remains undefined. The analysis of the CSF Ig proteome compared with the 

transcriptomes of antibody secreting cells (ASC) from CSF and brain lesions 

has demonstrated an overlap between the two Ig repertoires showing that the 

antibodies found in the CSF are the shared product of ASC resident in the CNS 

at different levels (Obermeier et al. 2011; Obermeier et al. 2008). Finding further 

confirmed by the results of a study showing a  shared reactivity between the 

native CSF IgG and recombinant Abs (rAbs) generated from paired heavy and 

light V genes of clonally expanded plasma cells found in the CSF of MS patients 

(Yu et al. 2011). Even so, it has proven challenging to unveil the specific ligands 

of CSF Igs in absence of a known pathological causative agent. Several studies 

have selected different mimotopes from phage-displayed random peptide 

libraries (RPLs) biopanned against CSF and serum IgG of MS patients. 

Antibodies from CSF and serum of the same patient displayed the same binding 

specificities but CSF antibodies from different patients displayed different 

specificities. This finding supported the view of a CNS restricted individual-

specific response. Besides, selected phagotopes (epitopes expressed on 

phage) were reactive against sera from different MS patients and normal 

individuals underlining that these antibodies could be directed against rather 

ubiquitous antigens to which many individuals are exposed (Cortese et al. 

1998a; Cortese et al. 1998b; Cortese et al. 1996). Further investigated in search 

for the natural antigens mimicked, one of the mimotopes recognized by 

antibodies enriched in the CSF of MS patients cross-reacted between a protein 

of Herpes Simplex Virus type-1 and a protein from MS brain tissue, supporting 

the concept of mimicry as possible trigger of MS inflammatory process (Cortese 

et al. 2001). Other studies utilizing various RPLs did identify different amino acid 

motifs shared by EBV nuclear protein and alpha-beta crystallin (Rand et al. 

1998) or with significant linear homology with different EBV components 

(Fujimori et al. 2011) or with human collagen, 68 KDa neurofilament protein, 

different viruses from herpesviridae and papillomaviridae families (Dybwad et al. 

1997), but also with retroviral agents such as HERV-W and MSRV (Jolivet-
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Reynaud et al. 1999). The individual specificity is still debated as another study 

utilizing RPL not only showed that affinity selected epitopes/mimotopes cross-

react between rAbs and native IgG from the same patients but also share 

specificity with intratechally synthesized IgG from different MS patients but not 

control patients. Finding pointing to a potentially relevant common shared CNS 

antigen to the pathogenesis of MS (Yu et al. 2011). In fact as the antibodies are 

enriched only in the CSF, it is possible that only B cells with a specificity for 

antigens found in the CNS are able to survive and clonally expand. 

Furthermore, expression cDNA libraries obtained from human brain and 

oligodendrocite-precursor cell line screened with CSF and serum of MS patients 

reacted respectively with EBV proteins expressed in latency phase, EBNA-1 

and BRRF2 (Cepok et al. 2005b) or with Alu peptides (Archelos et al. 1998). 

Nevertheless, the specificity of the OCBs is still debated as well as the 

involvement of the main myelin antigens in the pathogenetic process. 

Controversial specificity of the OCBs confirmed by a study showing that none of 

the rAbs derived from MS CSF B-cells displayed immuno-reactivity to three of 

the main putative myelin auto-antigens tested (Owens et al. 2009). However 

recent studies have described reactivity of CSF antibodies, not only against 

native proteins, but also against denatured proteins, lipids and lipid complexes 

(Brennan et al. 2011). Nevertheless, the extraction of antibodies from MS 

lesions has revealed the presence of anti-myelin antibodies at higher 

concentration and affinity when compared with serum and CSF compartments, 

indicating the local production or accumulation in the inflammatory tissue of B 

cells products (O'connor et al. 2005).  

Approximately 30% of MS patients have CSF antibodies that react against MBP 

(Cruz et al. 1987). In children presenting with a first demyelinating episode 

intrathecal IgG anti-MOG antibody synthesis is seen in a minority of cases with 

CIS (Brilot et al. 2009). Some authors report the presence of anti-myelin 

antibodies as useful marker to predict conversion to MS after a first 

demyelinating episode (Berger et al. 2003), however, this finding was not 

confirmed by others (Kuhle et al. 2007). The diagnostic utility and significance  

of myelin autoantibodies is still debated as some other authors described low 

affinity Igs not only in neuroinflammatory diseases but also in healthy controls 



30 

 

(Lampasona et al. 2004). One of the main aims of my PhD has been to help 

clarify certain issues in relation to the ongoing debate on the specificity of 

intrathecal Igs in MS, with the hope of finding a prognostic marker. Interestingly, 

in a recent study to use an antibody phage display library, Gabibov and 

colleagues have shown that antibody from blood lymphocytes of 8 RRMS 

patients cross-react against MBP and EBV latent membrane protein 1 (LMP1) 

(Gabibov et al. 2011). The importance of the role of B cells as APC has been 

highlighted by the use of B cell depleting therapies (clinical trials and target Ags 

discussed further below).   
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1.1.4 Diagnosis, Clinical course and Prognosis 

The clinical onset of the MS may be acute or insidious and the severity can vary 

from the need for hospitalization to relatively non-specific symptoms. The most 

common symptoms that patients experience at the onset are in order of 

frequency sensory disturbances (34%), weakness (22%), visual loss (13%), 

ataxia (11%), diplopia (8%), vertigo (4.3%), abnormal gait, loss of dexterity or 

sphincter disturbances. Non-specific symptoms such as malaise, fatigue or 

headache may precede the onset of MS (Cree 2010; Swingler and Compston 

1992). Diagnostic criteria have evolved over the years with the aim of 

simplifying the diagnosis and to be applied consistently. The most contemporary 

criteria used are the 2010 revisited McDonald Criteria for Multiple Sclerosis 

(Polman et al. 2011), that replaced the widely-used Poser criteria (Poser et al. 

1983). Although the disease course of MS is characterized by multiple attacks 

affecting different regions of the CNS over time, the first symptomatic 

demyelinating event is known as a clinically isolated syndrome (CIS). Natural 

history studies show that patients presenting with a CIS that have lesions on 

their initial MRI scan have a 82% risk of having a second attack after 20 years 

of follow-up and only 21% risk if the brain MRI is normal (Fisniku et al. 2008; 

Miller et al. 2005a; 2005b). Attacks, exacerbations or “relapses” are linked to 

plaque formation and the following resolution of the inflammation and 

remyelination allow the patient to recover. The periods between relapses are 

called “remissions”, so that the alternating episodes of relapses and remissions 

give rise to the term relapsing-remitting MS (RRMS). The clinical course of the 

disease is divided in patterns and in most patients (80-85%) the disease initially 

follows a RRMS course characterized by relapses followed by varying degrees 

of recovery. The RR course is defined as by the occurrence of clearly defined 

relapses with, or without, full or partial recovery. Periods between relapses are 

characterized by a lack of disease progression. Often, the RRMS evolves into a 

stage when the disease progresses slowly, i.e. the secondary progressive 

phase. The SP stage is reached after a median time of 10-20 years (Koch et al. 

2010; Tremlett et al. 2006; Weinshenker et al. 1989). The SP course is defined 

as: initial RR disease course followed by progression with or without occasional 

relapses, minor remissions, and plateaus. Patients develop progressive 
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ambulatory disability, with some eventually becoming bed bound. There is a 

group of patients, who have a progressive course from the onset of the disease 

without relapses or remissions, this course has been defined primary 

progressive (PP) (Tullman et al. 2004; Wingerchuk et al. 2001). The PP course 

is defined as: disease progression from onset with occasional plateaus and 

temporary minor improvements allowed. The usual clinical pattern seen in MS 

follows the RR and SP course but a 10-15% of patients present PPMS (Hawker 

2010). The most common presenting symptoms described in PPMS are: motor 

deficit (38.9%), followed by sensory impairment (32.5%), cerebellar symptoms 

(16%) and brainstem involvement (5.3%). Optic neuropathy is uncommon as an 

initial feature (Cottrell et al. 1999). In the PPMS population there is no female 

preponderance as in the RRMS and SPMS, and the mean age of onset is older: 

40 years for PPMS versus 30 years for RRMS. The PPMS lesions evaluated by 

neuroimaging are identical to that of RRMS or SPMS. The number and total 

volume of plaques within the brain of patients with PPMS tend to be fewer than 

that observed in RRMS and SPMS, with a distribution of the lesions clustered 

around the ventricles (Di Perri et al. 2008). Furthermore, actively demyelinating 

plaques that show uptake of gadolinium-DPTA (Diethylene triamine pentaacetic 

acid) contrast on brain MRI are observed less often in PPMS (Tremlett et al. 

2005). Approximately 5% of patients with MS have progressive symptoms from 

onset and will also have rare relapses. This disease course is termed 

progressive-relapsing MS. (Fig.1.3) 
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Figure 1.3 MS clinical course patterns: Relapsing remitting MS (RRMS) 
presenting attacks with full recovery (A) or with sequelae and residual deficit 
(B); secondary progressive MS (SPMS) with progression of variable rate (A) or 
with occasional relapses and minor remissions (B); progressive relapsing MS 
(PRMS) with clear acute relapses with (A) or without (B) full recovery; and 
primary progressive MS (PPMS) without remissions (A) or with occasional 
temporary minor improvements (B).  

 

The diagnosis of MS relies on recognition of the clinical pattern of disease with 

demonstration of lesions that are distributed in time and space and to this 

purpose several paraclinical tests have been applied to help make the diagnosis 

of MS and exclude alternative diagnosis.  

There are three principal studies that are used to support the diagnosis of MS: 

neuroimaging, laboratory and electrophysiological tests. 
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1.1.4.1 Neuroimaging 

As highlighted in the diagnostic criteria a central and particularly useful 

diagnostic role is played by magnetic resonance imaging (MRI). MRI is a 

sensitive imaging technique in particular for detecting inflammatory 

demyelinating lesions in the white matter of the brain. The brain MRI is 

abnormal in 95% to 99% of cases of RRMS. An abnormal MRI is not sufficient 

to make the diagnosis of MS but it supports the clinical diagnosis in that it can 

be used to demonstrate both dissemination in time and place and is helpful in 

excluding other potential diagnoses. MS lesions appear as abnormal signal 

intensity on T2-weighted sequences: T2, proton density and fluid-attenuation 

inversion recovery (FLAIR); in fact, almost any alteration in brain tissue 

composition such as oedema, inflammation, demyelination, gliosis and axonal 

loss will increase the signal in such sequences highlighting acute and chronic 

phase lesions (Barkhof and Van Walderveen 1999). Gadolinium enhancement 

corresponds pathologically to active areas of inflammation and can be used as 

marker of blood-brain barrier integrity and typically persists for an average of 3 

weeks and then subsides (Cotton et al. 2003). Lesion that associated 

histopathologically with severe tissue destruction and axonal loss, are 

visualized on T1-weighted images as hypointense lesions called T1 “black 

holes”. MRI is an important prognostic tool in patients presenting with CIS; MRI 

useful to determine dissemination in space and time, which is some 

circumstances can be done with a single MRI scan. Recently new simpler MRI 

criteria based on the criteria proposed by Swanton et al. have been adopted by 

the 2010 revisited McDonald diagnostic criteria without compromising specificity 

and accuracy and increasing sensitivity (Swanton et al. 2006) (Montalban et al. 

2010; Swanton et al. 2007).    
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 DIS DIT Ref. 

McDonald 2001 

≥3 of the following: 

9 T2 lesions or 1 Gd-enhancing 
lesion;  ≥3 periventricular lesions; 
≥1 juxtacortical lesion; ≥1 posterior 

fossa lesion 
1 spinal cord lesion can replace 1 
brain lesion 

A Gd-enhancing lesion ≥3 months 
after CIS onset;  
A new T2 lesion with reference to 

a previous scan ≥3 months after 
CIS onset 

McDonald et al 
2001 

McDonald 2005 

≥3 of the following: 
9 T2 lesions or 1 Gd-enhancing 
lesion;  ≥3 periventricular lesions; 

≥1 juxtacortical lesion; ≥1 posterior 
fossa lesion or spinal cord lesion 
A spinal cord lesion can replace a 

infratentorial lesion 
Any number of spinal-cord lesions 
can be included in total lesion 

count 

A Gd-enhancing lesion ≥3 months 
after CIS onset;  
A new T2 lesion with reference to 

a baseline scan obtained ≥30 days 
after CIS onset 

Polman et al. 
2005 

New Criteria 

≥1 lesion in each of ≥2 
characteristic locations: 

periventricular, 
juxtacortical,posterior fossa, spinal 
cord 

All lesions in symptomatic region 
excluded in brainstem and spinal-
cord syndromes 

A new T2 lesion on follow-up MRI 
irrespective of timing of baseline 

scan 

Swanton et al. 
2006 

Table 1.1 MRI criteria MAGNIMS: Comparison of MRI criteria for 
dissemination in space (DIS) and time (DIT) (modified from Swanton, Rovira et 
al. 2007) 

 

1.1.4.2 Evoked potentials  

Multimodal evoked potentials are another set of diagnosic tools that can be 

used to demonstrate clinically silent lesions in specific anatomical pathways. 

Evoked potentials also provide functional information, for example slowed 

conduction that is indicative of demyelination (Fuhr and Kappos 2001). Several 

pathways can be evaluated, i.e. visual, brainstem auditory, somatosensory and 

motor evoked potentials (Leocani and Comi 2008).  

 

1.1.4.3 Laboratory 

The laboratory analysis of the cerebrospinal fluid (CSF) provides additional 

information regarding the CNS and, in case of neuroimmunological diseases, it 

provides information on the presence or absence of intrathecal inflammation 

(Gafson and Giovannoni 2012). Typical CSF parameters that are assessed are 

the cell count,  the CSF/serum albumin ratio to evaluate the blood-brain barrier 

(BBB), the IgG index a quantitative index of intrathecal Ig production that is 
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performed on paired CSF and serum samples, CSF glucose and lactate 

concentrations (Andersson et al. 1994; Deisenhammer et al. 2006).  

Of the quantitative CSF tests used to support the diagnosis of MS the IgG index 

has the highest sensitivity. An elevated IgG index indicates increased 

production of IgG within the CNS and is found in 70 to 90% of MS cases. The 

IgG index value results from the ratio of the quotient of IgG concentration in 

CSF and serum (QIgG) and the quotient of albumin concentration in CSF and 

serum (QAlb). 

IgG index = IgG CSF/IgG serum : albumin CSF/albumin serum 

The IgG index simply quantifies the amount of IgG that is synthesised within the 

CNS correcting for BBB leakage (Link and Tibbling 1977a; 1977b; Tibbling et al. 

1977) (Fig.1.4). 

 

  
Figure 1.4 CSF IgG index: Values for the quotient of IgG in CSF/IgG in serum 
(QIgG) are shown on the y axis and values for the quotient of albumin in 
CSF/albumin in serum (QAlb) are shown on the x axis. The graph evaluates 
blood brain barrier (BBB) function and IgG local synthesis. The red line 
separates the normal from abnormal BBB function and the hyperbolic line the 
local synthesis from not local synthesis (Andersson et al. 1994). 
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Qualitative test of intrathecal IgG synthesis, however, are more sensitive that 

quantitative indices. Isoelectric focusing (IEF) is considered the qualitative “gold 

standard” for detecting OCBs of the IgG class. IEF uses the same amount of 

IgG in paired CSF and serum specimens that are run in parallel (Davenport and 

Keren 1988; Kostulas et al. 1987). The strongest consensus is that protein 

separation by IEF followed by immunoblotting is the most sensitive test for 

detection of an abnormal Igs production in MS with a sharper and easier 

interpretation of the results; i.e.  an average number of 8 bands are detected in 

positive samples compared to 2 bands by other tests, i.e. agarose gel 

electrophoresis (AGE) (Fortini et al. 2003). The presence of OCBs is not MS 

specific and is found in CNS infections, paraneoplastic disorders of the CNS 

and other putative autoimmune diseases. The IEF immunoblot findings are 

classified into patterns based on where the synthesis of Igs takes place, 

intrathecally or peripherally (Andersson et al. 1994; Freedman et al. 2005). In 

the CSF of MS patients the increased intrathecal humoral immune response is 

not limited to Igs of class IgG but in 30-60% of cases Igs of class IgM are found 

(Villar et al. 2001) and the IEF patterns can be divided in two groups based on 

the type of Ig detected, IgG or IgM, or on the presence or absence of intrathecal 

synthesis (Fig.1.5). Even if IgG and IgM have different migration zones, the 

different patterns reflect the comparison of CSF and serum Igs migration. The 

intrathecal IgM synthesis (ITMS) in different neurological diseases seems to be 

a primary response in infectious diseases, as 83% of all the patients with 

infections analysed within 1 month from symptoms onset were positive and 

subsequently became negative within 3 months, while in MS patients it appears 

to be a persistent response with no association found between ITMS and 

disease duration confirming once again the temporal invariance and the finding 

of IgG OCBs negative patients that become positive later on  (Villar et al. 2001; 

Villar et al. 2002) (Fig.1.5).  

 



38 

 

 
Figure 1.5 Igs IEF Patterns: Type 1: normal pattern; Type 2: intrathecal Igs 

synthesis as seen in neuroinflammation, neuroinfections and typically MS; Type 
3: intrathecal Igs synthesis “plus” in systemic and paraneoplastic diseases; 
Type 4: systemic inflammation (oligoclonal mirror pattern); Type 5: monoclonal 
gammopathy (monoclonal mirror pattern or ladder pattern).  

 

The detection of Igs of class IgA in the CSF is controversial as the IEF 

technique gives artefactual results and there is no consensus on the detection 

of this class of Igs and consequently  this class of Igs is not used for diagnostic 

purposes (Mehta et al. 1984; Sindic et al. 1984). Nevertheless, 70% of MS 

patients have intrathecal cells producing IgA (Henriksson et al. 1985) and 7.3% 

of immunoglobulin-containing cells have been shown to be IgA-positive by an 

immunohistological study analysing 100 plaques and 100 NAWM areas (Esiri 

1977). Clonally expanded IgA-postive plasma cells with somatic hypermutations 

have been detected in brain lesions of MS patients and IgA antibodies have 

been localized to the surface of axons. The findings showed evidence of 

damage in MS plaques with plasma cells likely driven by environmental 

pathogens that share antigens with axons (Zhang et al. 2005).  
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In healthy individuals either kappa or lambda light chains are incorporated into 

complete immunoglobulins in roughly equal proportion. Light chains are 

synthesized in excess and are found in different biological fluids as polyclonal 

free light chains (FLC). FLC are considered to have different biological 

functions, such as enzymatic activity, specific antigen binding activities and 

immune regulation via binding to different cells, in particular mast cells (Thio et 

al. 2008; Van Der Heijden et al. 2006). Oligoclonal and monoclonal expansion 

of FLC occur in some autoimmune diseases, such as MS, and malignancies. In 

IgG OCBs positive MS patients the normal kappa/lambda ratio is altered with 

predominance of kappa light chains in 93% of cases of clinically definite MS 

(CDMS) (Jenkins et al. 2001; Mattson et al. 1982). Intrathecal synthesis of FLC 

is a marker of an ongoing immune response within the CNS and high levels of 

FLC can be detected in MS patients and patients with CNS infectious diseases.  

The diagnostic importance of OCBs is highlighted by the presence of a single 

band on the immunoblot. At the initial CSF examination, a single band or 

isolated monoclonal pattern can lead to three possible developments such as 1) 

conversion to an oligoclonal pattern, 2) persistence of the intrathecal 

monoclonal band and 3) disappearance of the band with normal immunoblot on 

follow up. In the cases that convert to an oligoclonal pattern the clinical 

diagnosis has mainly been shown to be MS (Davies et al. 2003). In fact the 

presence of a single band can make the difference with regard to a diagnosis of 

MS; the presence of a single band should hint for the presence of another 

disease apart from multiple sclerosis (Ben-Hur et al. 1996). The mentioned 

cases show the utility of FLC evaluation particularly as the presence of elevated 

KFLC has been correlated with dissemination in space of MS lesions and has 

been considered as a substitute for the detection of OCBs in MS diagnostic 

criteria.  
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In the clinical practice the absence of OCBs in patients with MS usually raises 

doubts on the reliability of the diagnosis and leads to review the diagnosis; but 

patients who fulfill the criteria as having CDMS and also CIS patients do not 

always show intrathecal synthesis of IgG OCBs. A recent meta-analysis has 

shown an overall OCB positivity of around 90% in CDMS and of around 70% in 

CIS patients, if only the studies using IEF with immunofixation were considered 

(Dobson et al. 2013). The OCBs negative group constitutes 5-50% of all MS 

patients depending on the populations studied. OCB positivity in the CSF, 

indeed, has a variable distribution in different MS populations with Northern 

European countries having the highest rates of positivity, ~95%, and Southern 

European, South American and Eastern, i.e. Japan (~53%), countries having a 

lower positivity rate (Lourenco et al. 2013). OCB-positive and OCB-negative MS 

patients have been analysed by different studies to determine whether 

constitute different subpopulations regarding clinical, demographic and genetic 

background. Conflicting data have been highlighted on the OCB-negative MS 

population with data showing a better, worse or equal disease progression and 

prognosis. A cross-sectional multicenter study did show a highly significant 

association among a younger age at onset, an increased EDSS and OCB 

positivity (Lechner-Scott et al. 2012), confirming a previous UK case-control 

study showing a better prognosis for disability in OCB-negative patients (Joseph 

et al. 2009). OCB positivity has been found also to correlate with a higher risk of 

progressive disease course confirming the same trend found also in a Canadian 

study (Lourenco et al. 2013). Lack of OCBs has also been correlated with low 

number of active plaques and low plasma cells infiltration in the brain and 

meninges based on a clinical-pathological study (Farrell et al. 1985). Findings 

possibly representing a non-antibody-mediated demyelination pattern 

(Lucchinetti et al. 2000) and pointing to a possible pathogenic role of 

autoantibodies (Stendahl-Brodin and Link 1980; Zeman et al. 1996). Other 

studies have shown the same clinical features between OCB-positive and OCB-

negative patients (Imrell et al. 2006) or a better clinical course with less 

disability and better prognosis in OCB-positive patients (Idiman et al. 2009) in 

presence of a particular genetic background. Infact OCB-positive and OCB-

negative populations seem to differ immunogenetically, with the association of 
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HLA-DRB1*15:01 allele and risk of MS being more prominent and restricted to 

OCB positive MS patients, whereas the OCB-negative subgroup of  patients 

being associated to the HLA-DRB1*0404 allele (Idiman et al. 2009; Imrell et al. 

2006; Mero et al. 2013). 

 

MRZ reaction 

The intrathecal synthesis of IgG is not only useful as a diagnostic tool but may 

point to the identification of the target antigen(s). In MS the antigenic target of 

intrathecal OCBs is still unknown and one of the aim of this project is to help 

clarify their specificity. Nevertheless, numerous studies have identified antibody 

reactivity against autoantigens (discussed below) as well as against different 

neurotropic viruses as part of the amnestic immune response. The frequency of 

intrathecal synthesis of specific IgGs in MS is 75% against measles (M), 60% 

rubella (R) and 55% varicella-zoster virus (Z). Detection of the combined 

intrathecal antibody synthesis against measles, rubella and/or zoster virus is 

named “MRZ reaction” (MRZR) and is found in around 90% of MS patients  

(Arnadottir et al. 1982; Reiber et al. 1998). MRZR has been recognized as a 

predictive or prognostic marker for the conversion from CIS to definite MS; 

approximately 60% of patients with acute monosymptomatic optic neuritis or 

CIS with intrathecal production of virus-specific oligoclonal antibodies (MRZR)  

go onto develop definite MS (Frederiksen and Sindic 1998). It has been 

reported that the MRZ reaction is as specific as OCBs detection for conversion 

from CIS to MS; the specificity increases when associated with 2 or more T2 

hyperintense lesions in MRI (Brettschneider et al. 2009).  
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1.1.5 Therapy 

Almost all current treatments available for MS target the immune system as 

different immune cell populations interact to cause damage. None of the current 

therapies has been shown to cure MS; in general these treatments are only 

partially effective. First-line treatments, known as disease-modifying treatments 

(DMTs), aim to modify the disease course reducing the number and severity of 

relapses and hence the acquisition of disability. At resent no treatment has 

been approved for the treatment of PPMS. The DMTs approved for the 

treatment of RRMS include several different interferon beta (INFβ) formulations 

and glatiramer acetate (GA). These agents main mechanisms of action are on 

different T-cell subsets. These agents have been described as shifting the 

immune response from a proinflammatory to an anti-inflammatory profile by 

inhibiting autoreactive Th1 cells and induction of regulatory T cells and Th2 

cells. INFβ also acts  by reducing lymphocyte trafficking into the CNS and 

modifying the cytokine milieu (Dhib-Jalbut and Marks 2010). Interferon therapy 

is limited by the development of binding and neutralizing antibodies in a subset 

of patients (Farrell et al. 2011; Farrell et al. 2012). The alternative DMT is GA, 

known as copolymer 1, is a synthetic amino acid polymer composed of a 

mixture of L-glutamic acid, L-lysine, L-alanine and L-tyrosine. GA may act 

directly on APCs and modify their cytokine profile and subsequently influence T 

cell differentiation with expansion of the Treg subset and shift to a regulatory 

phenotype of CD8+ T cells (Racke et al. 2010).  

Other current treatments approved for management of MS are generally 

considered second-line treatments for highly aggressive cases and are a mAb, 

natalizumab, and the oral agent, fingolimod. Both agents are 

immunosuppressants.  Natalizumab stops lymphocytes from crossing the 

endothelium of the CNS. In comparison, fingolimod, traps circulating 

lymphocytes in peripheral lymphatic tissues. Natalizumab is a humanized mAb 

that blocks the vascular cell adhesion molecule 1 (VCAM1) / very late antigen-4 

(VLA-4) ligand-receptor pair interaction. These molecules are expressed 

respectively on capillary endothelial cells, monocytes and lymphocytes. 

Natalizumab inhibits the transmigration of α4-integrin expressing lymphocytes 
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into the CNS parenchyma (Rudick et al. 2012). The down side of natalizumab 

therapy is that it also blocks normal CNS immune surveillance and as a result 

CNS infections, in particular progressive multifocal leukoencephalopathy (PML), 

are a problem with the drug. The current risk of PML is estimated at 2.13 cases 

per 1000 patients (95% CI, 1.85-2.44) (Rudick et al. 2012). In 2010 the first oral 

therapy, fingolimod, was licensed for the treatment of relapsing MS. Fingolimod 

is a sphingosine 1-phosphate (S1P) receptor modulator that internalises S1P 

receptor on circulating lymphocytes inhibiting their egress from secondary 

lymphoid organs and acting as immunomodulator (Sanna et al. 2004). Efficacy 

has been demonstrated by three phase 3 trials with respect to both relapses 

and MRI outcomes compared to placebo and INFβ therapy (Cohen et al. 2010; 

Kappos et al. 2010).  
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1.1.5.1 Clinical trials (anti CD20) 

In MS the presence of OCBs and reports of dramatic improvement from plasma 

exchange in patients with corticosteroid resistant relapses has resulted in  the 

targeting of B-cells as a therapeutic strategy (Rodriguez et al. 1993). The 

surface antigen CD20 is expressed specifically on B cell lineage from pre-B cell 

stage to memory B cell but not on differentiated plasma cells. The B-cell lineage 

can therefore be targeted via CD20. The chimeric antibody rituximab and the 

more humanized versions ocrelizumaband fully humanized version, 

ofatumumab have been tested in clinical trials. Outcomes from these trials have 

highlighted the importance of Ab-independent B-cell functions and the need of 

new target molecules specific for distinct B cell subsets (Barun and Bar-Or 

2012). Rituximab a chimeric murine/human IgG1 mAb has been tested in 4 

clinical trials in RRMS and PPMS. Two open label trials in RRMS have 

evaluated rituximab safety and tolerability as a monotherapy and efficacy as 

add-on therapy in patients on standard injectable DMTs. In RRMS the phase I 

trial confirmed safety and tolerability of two courses of rituximab, 1000mg given 

intravenously 15 days apart (Bar-Or et al. 2008) and the phase II trial showed a 

significant reduction in the number of new gadolinium-enhancing (GdE) lesions 

and number of patients experiencing relapses after 48 weeks (Hauser et al. 

2008). The trial met the primary and secondary end points suggesting that 

rituximab as a potential treatment for RRMS. Approximately 25-30% of the 

patients treated rituximab developed human anti-chimeric antibodies (HACA) 

against rituximab but no impact was found on the efficacy measures (Hauser et 

al. 2008). The add-on study was designed to evaluate the effect of rituximab 

using a 375mg/m2 weekly for 4 doses, as in the protocol approved for non-

Hodgkin’s lymphoma. The patients that finished the study experienced 88% 

reduction in GdE lesion counts compared to pretreatment MRI scans and 

tolerated the infusions well (Naismith et al. 2010). The phase II/III trial of 

rituximab in PPMS patients did not reach the primary efficacy outcome measure 

in the intent-to-treat group. There was no evidence of significant difference in 

time to confirmed disease progression (CDP) between the rituximab and 

placebo treated groups (p=0.1442). However, a significant effect on time to 

CDP (p=0.0088) was found in the subgroups of patients of younger age (<51 
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years) and with presence of GdE lesions on baseline MRI irrespective of 

disease duration. The results of the trial support the efficacy of rituximab on the 

inflammatory component of the PPMS and underscore once again the need to 

target neurodegeneration early in the progressive phase (Hawker et al. 2009). 

Patients with SPMS are currently being recruited into a clinical trial evaluating 

the efficacy of rituximab administered by combination of intravenous and 

intrathecal injection on the same day (NCT01212094; updated November 

2012). As shown by the previous studies rituximab treatment induces HACA in 

a variable percentage of patients but their contribution to reducing the efficacy 

of rituximab is controversial, but are associated with infusion reactions. A new 

generation of mAbs are being developed to overcome issues of resistance and 

adverse effects. A new anti-CD20 humanized mAb, ocrelizumab, has being 

tested in RRMS at two different doses, 600mg and 2000mg, compared to INFβ 

and placebo in a phase II trial. The results showed efficacy with significant 

reduction of total number of GdE lesions, of new and enlarging T2 lesions and 

surprisingly, considering the size of the study, on the annualized relapse rate for 

both doses used compared to placebo and DMT groups (p<0.0001). The death 

of a 41 years old woman for systemic inflammatory response syndrome (SIRS) 

has been a cause of concern for the safety profile of ocrelizumab (Chaudhuri 

2012; Kappos et al. 2011). In another autoimmune diseases, i.e. rheumatoid 

arthritis (RA) and SLE, in spite of the efficacy, ocrelizumab development was 

stopped due to an unfavorable risk/benefit profile (Barun and Bar-Or 2012). 

Another new generation mAb is the fully humanized anti-CD20 ofatumumab and 

its safety and efficacy profile is currently being analysed in MS 

(www.clinicaltrials.gov). The reduction of new GdE lesions and the lower 

relapse rate of patients undergoing B-cell depleting therapy have shown a 

central role of this cell population of cells in the pathophysiology of MS. 

Immunologic studies of patients treated with rituximab have revealed that 

depletion of circulating B-cells did not impact total and myelin-specific 

circulating antibodies and similarly at CSF level a depletion of almost 90% of B-

cells was associated with concomitant T-cells reduction but no significant 

differences were reported in IgG concentration, IgG index, IgG synthesis rate or 

oligoclonal band number when comparing pretreatment samples (Bar-Or et al. 
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2008; Cross et al. 2006; Naismith et al. 2010; Petereit et al. 2008). The 

proinflammatory cytokines produced by B cells from MS patients, such as 

lymphotoxin (LT) and tumor necrosis factor-α (TNF-α), could be the Ab-

independent therapeutic target that may explain the results. The B-cell depleting 

effect of rituximab also reduces the proliferative responses of T cells due to the 

reduced secretion of LT and TNF-α (Bar-Or et al. 2010). Interestingly treatment 

of an antibody mediated autoimmune demyelinating disease of the CNS, such 

as neuromyelitis optica (NMO), with repeated application rituximab as second-

line treatment has shown reduced relapses in almost all patients but no 

reduction of the pathogenic autoantibodies directed against AQP4 water 

channel, a disease specific marker (Lennon et al. 2004; Pellkofer et al. 2011). In 

summary the clinical trials utilizing anti-CD20 mAbs to deplete the B cell 

population have highlighted the important contribution of B-cell regulatory 

functions in the relapsing phase of the disease but also the persistence of 

autoantibodies that could be involved in the disease progression and 

neurodegeneration.  
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1.2 “Auto-antigens” in MS  

A variety of approaches have been used to identify antigens recognized by the 

Abs found in the serum, CSF and lesions of MS patients. The intrathecal Ig 

bands recognize many myelin, neuronal and viral proteins. However, this 

heterogeneous antigenic antibody response, only explains a small part of the 

antibody specificity in MS. These observations lead me to say that it is not yet 

clear whether the OCBs in MS, and the antigens they target, are directly related 

to the pathogenesis of MS or not. Autoantibodies reflect the presence, nature 

and intensity of an autoimmune response. Several CNS antigens, which include 

myelin antigens such as myelin basic protein (MBP), proteolipidic protein (PLP), 

myelin oligodendrocyte glycoprotein (MOG), myelin associated glycoprotein 

(MAG), nucleotide 3'-phosphodiesterase 2 ', 3'-cyclic (CNPase) but also 

neuronal, i.e. neurofilaments (Nf), and extracellular matrix, i.e. collagen, 

antigens have been described as target of autoantibodies, but their role in the 

pathogenesis of the disease is still debated. In my study I screened my MS 

antibody libraries against a fusion protein MP4 that allowed me to test two 

antigens simultaneously, MBP and PLP. 

Myelin oligodendrocyte glycoprotein (MOG) 

The myelin oligodendrocyte glycoprotein (MOG, 54 kDa) is quantitatively the 

minor component of myelin contributing to 0.05-0.1% by weight of the myelin 

proteins. Structurally the main isoform of MOG is composed of an extracellular 

domain (aa 1-121), two transmembrane domains (aa 122-150; aa 175-199) and 

two cytoplasmic domains (aa 151-174; aa 200-218); the extracellular portion of 

MOG has a structure similar to immunoglobulins (“Ig-like structure ") and is 

glycosylated. The mature MOG protein consists of 218 aa and has a high 

homology between different species (about 90%) (Ballenthin and Gardinier 

1996). An important function of MOG, depends on the exon 3, which, if present, 

inserts a premature stop codon and thus produces a soluble isoform of the 

protein. Given the limited amount of MOG in the myelin sheaths and the 

difficulty in purifying the protein in native form, the function of this soluble 

isoform is still unknown. Some commentaries on the biochemistry of MOG 

emphasise  MOGs possible involvement as an adhesion molecule, microtubule 
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stability regulator or complement activator (Johns and Bernard 1999). Most of 

the T cells recognize self-epitopes along the transmembranous and cytosolic 

domains of MOG (aa 146-154). The B lymphocyte epitopes are instead located 

in the extracellular domain of MOG (Haase et al. 2001). Given the important 

role of anti-MOG Abs in EAE, the presence of these Abs in CSF and serum of 

patients with MS has been studied extensively. The results are very 

controversial and showed a frequency of anti-MOG Abs in 0-80% of patients 

with MS and in 0-60% of healthy controls. Despite the controversy regarding the 

pathogenic importance of MOG antibodies in MS, these antibodies could be a 

useful prognostic marker: in a cohort of 103 patients with CIS conversion to 

clinically definite MS was anticipated by serum positivity for IgG anti-MOG and 

anti-MBP (Berger et al. 2003). IgG directed against the native protein MOG 

(linked to the membrane and glycosylated) have been found in patients with CIS 

and RRMS but marginally or absent in the progressive forms, further 

emphasizing the possible role of anti-MOG Abs in early disease (Lalive et al. 

2006). Recent data have shown that high titers of anti-native MOG antibodies 

are predominantly present in serum of a cohort of paediatric ADEM patients and 

children affected by a first demyelinating event (Brilot et al. 2009; Di Pauli et al. 

2011). Interestingly NMO cases AQP4 Ab-seronegative is  associated with 

positivity to anti-MOG Abs further confirming the involvement of MOG in the 

demyelinating process and in the spectrum of NMO disorder in the adult (Kitley 

et al. 2012).  

Myelin basic protein (MBP) 

MBP (14-21.5 kDa) is characterized by the presence of numerous positively 

charged residues and it is located on the cytoplasmic side of the myelin 

membrane constituting 30% of total myelin proteins (Boggs 2006). The MBP 

human gene, located on chromosome 18, is organized in 11 exons that encode 

for the "gene of oligodendrocyte lineage (Golli)-MBP", a form of fetal MBP that 

is expressed in bone marrow, thymus, spleen and progenitor cell lines of 

macrophages and B cells in the developing fetus. Only the last 7 of these 11 

exons codify for the "classical-MBP" in the differentiated nervous tissue and 

involved in the autoimmune reaction of MS (Harauz et al. 2009). After events of 
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alternative splicing and post-translational modification (phosphorylation, 

methylation, ADP-ribose, citrullination), the classic-MBP represents different 

isoforms, distinguished by their molecular weight and their distribution in 

different tissues of CNS (brain, cerebellum, spinal cord) (Pribyl et al. 1993). In 

animal models in which demyelinating diseases are induced such as EAE, it 

has been noted that MBP is one of the possible targets against which the 

inflammatory attack is triggered. Human T lymphocytes recognize a broad set of 

MBP epitopes, including a dominant epitope at the centre of the molecule (83-

99aa) and several others throughout the sequence of polypeptides (68-84aa, 

72-84aa, 121-150aa; 111-129aa; 145-170aa; 131-155 aa) (Pette et al. 1990). 

The immune response given by autoimmune T lymphocytes that recognize 

MBP varies between patients with MS according to the recognized epitope 

(Hafler et al. 1997). Regarding the B cell response high levels of anti-MBP Abs 

are found (isotype IgG) in serum and CSF of patients with RRMS and PPMS, 

particularly during relapse compared to periods of remission. The autoimmune 

response against MBP, by either T cells or autoAbs,  is their recognition of a  

common epitope that includes a sequence of 10 amino acids (85-96aa) (Warren 

et al. 1995). The presence of anti-MBP autoantibodies has not only been 

described in MS patients but also in healthy individuals with possible qualitative 

differences between the two sets of antibodies in terms of affinity, epitope 

specificity and proteolytic activity (Hedegaard et al. 2009). Recombinant Abs 

derived from blood lymphocytes of 8 RRMS patients have been successfully 

selected against MBP epitopes (Gabibov et al. 2011). Interestingly, it has been 

shown that posttranslational modifications of MBP occur in MS patients that 

accumulate over time. The modified form of MBP, citrullinated MBP (Cao et al. 

1999; Mclaurin et al. 1992), induces a stronger immune response than non-

citrullinated MBP (Tranquill et al. 2000). In a recent study using antigen arrays 

including 334 myelin and inflammation-related CNS antigens, epitopes of MBP 

were recognized by intrathecally produced autoantibodies with a patient specific 

pattern of reactivity confirming the complexity of the humoral response in each 

patient (Quintana et al. 2012).   
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Proteolipidic protein (PLP) 

PLP (30 kDa) is an integral membrane protein, highly hydrophobic and it is the 

major isoform of the PLP gene that encodes also a splicing variant, DM20. PLP 

crosses the myelin membrane stabilizing it and constitutes 50% of the weight of 

all the myelin proteins. The functions of this protein seem to be wider than 

simple myelin membrane adhesion. Recent studies have shown PLP expressed 

not only in the CNS but also in other peripheral organs including lymphoid 

tissues (Campagnoni and Skoff 2001). Despite having a basic net charge, PLP 

post-translational modifications such as the attachment of lateral lipid chains, 

mainly palmitic acid, increase its hydrophobicity and immunogenicity (Greer and 

Lees 2002; Pfender et al. 2008). It has been shown that in mouse models of 

EAE different PLP epitopes result to be encephalitogenic and mice immunized 

with PLP developed an acute form of disease (Tuohy et al. 1989). A later study 

showed that thiopalmitoylation of PLP epitopes enhanced immunogenicity and 

encephalitogenicity (Greer et al. 2001). In MS patients two longitudinal studies 

have shown correlation between increase in T-cell autoreactivity to PLP 

epitopes or whole PLP and onset of GdE lesions on MRI scans (Hellings et al. 

2002; Pender et al. 2000). Different authors have shown an antibody response 

to PLP epitopes with B cells secreting anti-PLP antibodies in serum and CSF of 

MS patients (Sellebjerg et al. 1998; Sun et al. 1991) characterizing a subset of 

MS patients (Warren and Catz 1994) with brainstem and/or cerebellum lesions, 

localization determined by antibody levels against a particular PLP epitope and 

HLA molecules  (Greer et al. 2008).   

MP4 fusion protein  

The autoantigens mentioned above have given controversial results with regard 

to the involvement of autoAbs in MS pathology. In the EAE model it has also 

been difficult to demonstrate the role of autoAb-mediated immune pathology 

due to the difficulties in dissecting out the role of antibodies from the role of 

other immune cells. The use of B cells KO mice has allowed investigators to 

demonstrate the encephalitogenic properties of some autoAbs. A recombinant 

chimeric fusion protein, MP4, containing epitopes from human MBP and an 

engineered form of PLP (ΔPLP4) has been used in the past as tolerogenic 
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therapy in the animal model and recently also to demonstrate the pathogenicity 

of autoAbs  (Elliott et al. 1996; Kuerten et al. 2011). Abs induced in WT B6 mice 

immunised with MP4 develop serum specific Abs compared to mice that are B 

cell deficient. Transfer of MP4-reactive serum to MP4-immunized B cells 

deficient mice is then able to induce EAE. The MP4 autoAbs have been shown 

histologically to stain spinal cord sections and to co-localize in demyelinated 

plaques (Kuerten et al. 2011). The results confirm the pathogenetic role of 

autoAbs in autoimmune diseases and in my study I used the same fusion 

protein to screen my Ab library from MS patients to be able to check if the data 

could apply to the human condition as detailed in chapter 5.   

Neurofilament protein light subunit (Nf-L) 

Neurofilaments are neuronal specific proteins and constitute the main part of 

the scaffold of the axonal cytoskeleton. Nf are heteropolymers and are 

composed of three subunits, light (Nf-L), medium (Nf-M) and heavy (Nf-H) 

subunit. The three isoforms present a highly conserved α-helical rod domain 

flanked by a carboxy-terminal head and an amino-terminal tail of variable 

lengths. Nf subunits have a calculated molecular weight based on their mass 

but the molecular mass determined by migration in sodium dodecyl sulphate 

(SDS) polyacrylamide gels (PAGE) present a range. This molecular weight 

difference is due to the level of phosphorylation (and glycosylation) that results 

in various phosphoforms with Nf-L weights corresponding to 61KDa to 68KDa, 

Nf-M weights 102.5 KDa to 150 KDa, Nf-H weights of  111 KDa to 190 to 210 

KDa, respectively based on the calculated or on that as determined by SDS-

PAGE migration mass (Petzold 2005). Evaluation of Nf levels found in the CSF 

has been considered a useful biological marker in various neurodegenerative 

diseases, such as amyotrophic lateral sclerosis, Alzheimer’s disease, MS and 

other diseases characterized by axonal loss (Giovannoni and Nath 2011; Kuhle 

et al. 2011). Furthermore, it has been shown that Nf can act as autoantigens 

with autoantibodies to Nf being found in the serum and CSF of different MS 

forms. Significantly elevated levels of serum anti-Nf-L IgG antibodies have been 

found in PPMS patients (Ehling et al. 2004). Intrathecal production of anti-Nf-L 

antibodies has been found significantly elevated in PPMS and SPMS and 
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correlated with disease duration and disability (Silber et al. 2002). Intrathecal 

production of anti-Nf-L antibodies has also been significantly correlated with 

MRI markers of inflammation and tissue destruction in MS, in particular with 

cerebral atrophy (Eikelenboom et al. 2003). The use of anti-Nf-L antibodies as 

surrogate markers of neurodegeneration in MS has been shown by numerous 

studies but the results are still controversial (Bartos et al. 2007). Further studies 

are needed to increase our knowledge on their role in the pathogenesis of MS.   

Alpha-beta crystallin (αB) 

αB is a characteristic example of small Heat Shock Proteins (sHSPs). sHSPs 

are known for their cellular function to delay the formation of insoluble protein 

aggregates, “holdase function”, under stressful  conditions (Delbecq and Klevit 

2013). In normal conditions αB is absent from human lymphoid tissues but it 

has been shown that in MS, EBV infection stress induces B cells to express αB 

crystallin leading to its presentation to T cells that can cross-react with CNS 

myelin (Van Sechel et al. 1999). In MS lesions enhanced level of αB crystallin 

expression is localized to the cytosol of oligodendrocytes and astrocytes and is 

seen from the earliest stages of lesional formation and can be used as a marker 

for very recent myelin uptake by macrophages. αB crystallin laden 

macrophages act as APC for presentation to T cells initiating or reinvigorating 

the immune response (Bajramovic et al. 2000). Furthermore, serum antibodies 

displaying a consistent and prominent reaction to αB crystallin versus other 

myelin proteins has been ascribed to focal αB accumulation in NAWM in MS 

brains in preactive lesions and exclusively to oligodendrocytes at this early 

stage (Van Noort et al. 2010).  Further studies on this antigen are needed to 

better understand its involvement in the adaptive responses in MS.  
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Extracellular matrix (ECM) antigens 

A study has shown perivascular fibrosis in different forms of MS and mainly in 

progressive MS as feature of chronicity. Increased transcript levels of fibrillar 

collagens and other ECM components have been observed in active and 

inactive MS lesions. Mainly found in chronic inactive lesions fibrillar collagen I 

and III could interact with the immune cells reducing the inflammatory cascade 

and inhibiting the demyelination enlargement of the lesions (Mohan et al. 2010). 

The presence in the CNS of new antigens due to the inflammatory cascade 

could lead to formation of reactive immune cells and autoantibodies production. 

The availability of in house collagen III has given me the opportunity to use this 

protein as target antigen in my screening.  
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1.3 Phage display 

1.3.1 Antibody molecule 

The human immunoglobulins (Ig)s are assembled from multiple gene segments. 

A typical immunoglobulin is formed from polypeptide chains termed heavy and 

light chains. Each chain is divided in a variable (V) region and a constant region 

(C). The heavy-chain V-region is the result of an ordered rearrangement of 

three gene segments: variable (V), diversity (D) and joining (J) gene segments 

joined in a single exon at genomic DNA level by a process termed somatic 

recombination (Alt et al. 1984). The same process determines the formation of 

the light-chain V-region using two different gene segments: V and J gene 

segments (Weigert et al. 1980). In my study I will refer to the single heavy or 

light chain rearranged exon as V gene. The rearranged heavy and light V genes 

joined with their respective constant gene segments are transcribed and then 

expressed as an antibody molecule (Fig.1.6).  

 

 

Figure 1.6 Schematic diagram of V-region: The single exon V gene is the 

result of the junction of VDJ segments in the heavy chain (VH) and VJ 
segments in the light chain (VL).  
 

The structure of an antibody molecule is Y-shaped and has distinct portions with 

distinct functions (Fig.1.7 and 1.8). The two arms are the regions that bind to 

the antigen and are called antigen binding fragment (Fab) regions and the tail 

forms a region called fragment crystallizable (Fc) region involved in complement 

and cell receptors binding (Poljak et al. 1973; Silverton et al. 1977). 
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Figure 1.7 3D structure of an IgG: 

The molecule appears formed of 
globular subunits. The VH, VL, CH1 
and CL subunits present a very similar 
three-dimensional folding 
(www.imgt.org). 

 

 

 

 

The light chain can be of two types, kappa (k) and lambda (λ), and the heavy 

chain of five types. The structure of heavy chain C region determines the name 

of the five Ig classes: IgM, IgD, IgG, IgA and IgE. Each IgG molecule, 150KDa, 

is composed of two identical heavy chains, 50KDa, and two identical light 

chains, 25KDa, connected by disulfide bonds. Heavy and light chains contain 

three sequences of hypervariability called complementary determining regions 

(CDR)s and are flanked by less variable ones called framework regions (FR)s. 

The pairing and folding of heavy and light chains and the juxtaposition of the 

three CDRs, CDR1, CDR2 and CDR3, form the antigen binding site (Fig.1.8).  

 

Figure 1.8 Schematic diagram of an antibody molecule and fragments: The 
variable (V) region of each chain contains three hypervariable regions termed 
complementary determining regions (CDR)s respectively CDR1, CDR2 and 
CDR3 that contribute to the formation of the antigen binding site. My library 
used VH and VL regions joined by a linker sequence to create a single chain 
variable fragment (scFv) (s-s = interchain disulfide bridges). 
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1.3.2 Antibody phage display 

The phage display technology is the most robust technology to generate and 

select recombinant Abs in vitro. The technology is based on the expression and 

consequent “display” of peptides or protein fragments on the capsid of 

bacteriophages, also known simply as “phages”. This bacteria-specific viruses 

are of two major types in nature: lytic and non-lytic, based on their capacity to 

break the bacterial cell after infection. The main non-lytic phages are the fd and 

M13 and present a rod like morphology, 1 μm long and 7 nm wide, that gives 

them the name of filamentous phages (Mao et al. 2009). The M13 phage 

particle is formed of 5 coat proteins surrounding a single stranded (ss) DNA 

core.  The major coat protein is PVIII (g8p) present in around 2700 copies to 

cover the length of the particle, the other 4 minor proteins, around 5 copies 

each, are distributed at the two opposite ends capping the phage with PVI (g6p) 

and PIII (g3p) at one end and PIX (g9p) and PVII (g7p) at the other one. PIII 

protein is also necessary for host recognition, binding of the F pilus, and 

infection. All 5 coat proteins have been used for displaying techniques but 

usually the g8p and g3p are the most often utilized (Sidhu 2001) (Fig.1.9).  

 

 

Figure 1.9 Schematic representation of a filamentous phage: The phage 

illustrated displays a single chain variable fragment molecule (scFv). The scFv 
is displayed fused to the g3p molecules, a minor coat protein, obtaining a so 
called monovalent display due to the use of a phagemid vector. In the circular 
ssDNA VH and VL amplified from MS patients have been cloned and are shown 
upstream the g3 gene.  
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In my study the antibody library was built cloning the gene of interest upstream 

the gIII gene and obtaining a phage exposing on the capsid the codified protein, 

VH and VL, fused with the phage minor capsid protein g3p (Winter et al. 1994) 

(Fig.1.9). The vectors used for gene cloning are usually plasmids and phages. 

In this application usually the V genes encoding the amplified antibodies are 

cloned in a phagemid, i.e. a hybrid vector containing elements from a phage 

and a plasmid. A phagemid is developed to contain both replication origins for 

double stranded and ssDNA and in particular for E. coli and M13. Furthermore, 

it contains a copy of the gene 3 and/or 8, a proper cloning site and an antibiotic 

resistance gene but lacks the necessary genes to generate a functional particle. 

The functional phage particle can be obtained only by “rescue” with a helper 

phage (KM13) supplying the essential genes necessary for amplification and 

packaging. The phagemid then can grow as plasmid and lead an independent 

existence in the infected bacteria or be encapsulated in a M13 phage but only 

by utilizing the missing proteins supplied by the helper phage infecting the same 

bacterial host (Hoogenboom et al. 1991). The pIT2 phagemid vector derived 

from pHEN1 (kindly provided by Dr. A. Nissim) was used in this work (Fig.1.10). 

This vector as phagemid contains only the fusion protein gene necessary for the 

display and no other phage genes. The V gene sequences for display are then 

inserted into the coding sequence of the coat protein gene III (gIII) and bound 

by a linker to obtain a fusion scFv-PIII. Between the displayed sequence and 

gIII an amber stop codon is present to allow to switch from displayed scFv to 

expressed soluble antibody fragments by transferring the vector into a non-

suppressor strain. Soluble fragments expressed under the presence of a pelB 

leader signal that directs their transfer into the periplasm. The presence of a 

functional M13 origin directs ssDNA encapsidation into phage particles and an 

ampicillin resistance gene allows antibiotic selection of transformants. The 

antibody cloned can then be purified or detected by presence of different tag 

sequences interposed between cloned VH-VL genes and g3 (Fig.1.10). 
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Figure 1.10 Phagemid vector map of pIT2: The earlier vector pHEN1 was 

modified to improve the cloning of VH and VL regions and to improve the 
different uses in the phage display library construction obtaining the pIT2 vector. 
RBS=ribosomal binding site 

 

The usage of a phagemid to clone these sequences increases though the risk 

of helper phage contamination in my library. A strategy to inactivate any 

contaminating helper phage, being generated during the co-infection, was 

developed by employing an helper phage with insertion of a trypsin-cleavable 

site between the D2 domain of the helper phage PIII, responsible for the binding 

to the F-pilus, and the D3 domain, responsible for anchoring PIII to the phage 

(Kristensen and Winter 1998; Riechmann and Holliger 1997). All the PIII 

domains are essential for phage infectivity and the protease sensitivity of the 

helper phage allows it to inhibit infection following proteolytic elution. The wild 

type PIII protein itself contains a trypsin-cleavable site that allows the phage 

library to be separated from the fusion protein during the elution step but with 

retention of infectivity. The trypsin-elution process then releases phages bound 

to the antigen during selection rounds, preserving their infectivity, but at the 

same time eliminates the helper phage contaminants by inhibiting their 

possibility to infect the bacterial host during propagation.  
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The main characteristic of the phage particle is the association between 

genotype (gene cloned) and respective phenotype (protein displayed), with the 

advantage to select at the same time the single protein and the corresponding 

codifying sequence. Besides, the binding specificity can be retained by the 

antibodies generated. 

The mentioned features applied to an antibody library displaying the structure of 

an antibody reformed entirely or in part allow to replicate the development of the 

B cell in the immune system. In fact, as shown in the figure below (Fig.1.11) all 

the steps can be mimicked by the phage technology.  

 

 
Figure 1.11 Mimicking the B cell development by phage technology: The 
generation of antibodies by the immune system is compared with the phage 
display technology. The different steps show the development of B cell from 
stem cell to plasma cell (1-5). The B cell encountering the antigen (Ag) 
proliferate (3), differentiate to produce plasma cells secreting Abs (5). The Abs 
binding affinity is enriched by mutations (4). In the phage technology the 
rearranged V genes are cloned in a phagemid and expressed on the phage 
surface (1-2).  The Abs are selected on Ag coated plates (3). Phages are 
enriched by further rounds of selection and their affinity increases (4). The 
plasma cell is mimicked by infection of bacteria with secretion of free antibody 
fragments (5) (Winter et al. 1994). 

In vitro 

In vivo 
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As result, the antibody genes are expressed and the gene products displayed 

on the surface of the phage as fusion proteins. The resulting collection of 

phages is called “antibody phage display library”, where each phage particle 

displays a single antibody.  

In general two kinds of libraries can be constructed based on the antibodies 

repertoire: immune, IgG derived, or naive, IgM derived. Human immune libraries 

are obtained from V genes derived from immunized individuals or patients and 

contain V genes heavily biased toward antibodies recognizing the immunogen. 

The resulting affinity of the antibodies isolated is far higher than that of the 

antibodies isolated from a naive library of the same size. Naive libraries are 

intended to be unbiased, and so antibodies can be selected against any 

antigen. They have been derived from either unimmunized human rearranged V 

genes or synthetic human V genes. The synthetic libraries are derived from 

naive repertoires introducing diversity by varying the lengths of the CDRs or 

targeting specific CDRs positions (De Wildt et al. 2000; Nissim et al. 1994). The 

synthetic library, Tomlinson I, used in this study as control library was supplied 

by Dr. Ahuva Nissim.  The library used the most common structure in the 

human antibody repertoire derived from the framework for VH, V3-23/DP47 and 

JH4b, and Vk, DPK9 and Jk1. The library diversity was obtained by tailored 

randomization via diversified (DVT) side chains introduced in 18 different amino 

acid positions in the antigen binding site (De Wildt et al. 2000). The high 

diversity present in the synthetic library allowed to compare a virtually naive 

repertoire, able to bind any antigen, with the biased immune repertoire obtained 

in my MS library.  
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Once the V genes have been ligated in the vector, the recombinant phagemid is 

inserted in E. coli cells, made competent by electroporation.  The ligation and 

transformation result to be the most crucial passages, and influence directly the 

diversity and dimension of the obtained library (Fig.1.12). The first naive scFv 

library obtained from peripheral blood B lymphocites had a size of 10^7 (Marks 

et al. 1991).  

 
Figure 1.12 Steps followed to build my antibody phage display library: The 
source of V genes have been the B cells infiltrating the brain of MS patients (1). 
IgM and IgG repertoires have been amplified by specific primers. VH and VL 
have been cloned sequentially in a phagemid vector obtaining an intermediate 
library of VH only (2-5). The final antibody libraries have been inserted in E. coli 
(6).  
 

Once an antibody library is obtained, antigen specific antibodies are isolated by 

selection on antigens. The diversity of the initial library relies on the diversity of 

the V genes cloned with highly different specificities represented and low 

percentage of phages able to bind the antigen of interest. The following process 

termed biopanning allows one to detect the presence of antibodies with 
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particular specificities directed towards antigens of interest. Two approaches 

can be used to identify tissue-specific molecules based on tissue of interest and 

expression of the molecule targeted: a) in vitro, by immobilizing the target 

molecule onto plastic, biopanning on cell surfaces or by using biotinylated 

targets and b) in vivo, by injection of the library into an animal (George et al. 

2003). In my case biopanning on autoantigens involved in MS pathogenicity 

coated onto solid supports (immunotubes) have been used to select specific 

antibodies from the library. The phages bind to the antigen based on their 

specificity and affinity but unspecific binding can occur. Multiple rounds of 

selection enrich the library with higher affinity binders decreasing the diversity of 

the library in favour of an increased percentage of specific binders reaching 

almost 100% in 4-5 rounds. The enrichment allows one to obtain a 

“monoclonal/oligoclonal” population of high affinity binders starting from a 

“polyclonal” library (Nissim et al. 1994) (Fig.1.13). 

 

 
Figure 1.13 Antibody phage display selection: Obtained the library the scFv 
binding to the antigens of interest are selected biopanning the library on coated 
immunotubes (1). After washing away the aspecific phages (2), the retained 
binders are eluted by trypsin and can infect their bacterial host (3). The enriched 
library is then rescued by co-infection with helper phages and another round of 
selection can start (4-5).  
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1.4 Hypothesis and Objectives 

 

Hypothesis: The analysis of B cell repertoire from MS brain infiltrates will shed 

light on the mechanism of B cell driven autoimmunity. Hence making phage 

display library from this repertoire will be a valuable source to identify potential 

autoantibodies in the MS and in the longer term help the development of 

targeted therapeutics.   

 

My objectives were: 

- To analyse the presence of immune infiltrates and follicle-like aggregates 

in the MS brain tissues  

- To build an antibody phage display library from B cells infiltrating MS 

brain tissues 

- To analyse the VH and VL repertoire represented in the B cells from MS 

brain tissues  

- To perform a parallel selection using the newly built MS library and the in 

house synthetic library and to test the potential of the MS library as 

source of Abs against known autoantigens in MS   

 

The objectives will be described and discussed in the following chapters.         
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Chapter 2: Materials and Methods 

2.1 Patients 

To evaluate the antigen-driven response of B cells infiltrating the brain I 

analysed 14 brain blocks from MS patients with primary (1), secondary (12) and 

relapsing (1) progressing MS and 2 control brains (patients not affected by 

neurological diseases). In the MS group the sex ratio (M:F) was 1:2.5, the 

average disease duration was 20 years and the median of age at death of 50.5 

years (range=34-77y). The two controls were both male with an average age of 

66 years (64 and 68y). The post mortem delay average was 17 hours for the 

MS and 24 hours for the control group (complete patients’ details in table 2.1). 

   
Patient 
case 

Sex 
Age at 
death 

(years) 

Disease 
duration 
(years) 

Form 
of MS  

Cause of death 
Post 

Mortem 
delay (hrs) 

1 103 F 77 21 SPMS Pneumonia 7  

2 154 F 34 11 SPMS Pneumonia 12 

3 160 F 44 16 SPMS Aspiration pneumonia 18 

4 179 F 70 21 SPMS 
Aspiration pneumonia, 

sepsis 
20 

5 307 M 55 21 SPMS Multiple Sclerosis 19 

6 311 F 45 16 SPMS Pneumonia 22 

7 317 F 48 29 SPMS Aspiration Pneumonia 21 

8 325 M 51 5 PPMS Bronchopneumonia 13 

9 330 F 59 39 SPMS Pneumonia 21 

10 335 M 62 37 SPMS 
Aspiration pneumonia, 

renal failure 
22 

11 341 F 52 22 RPMS Aspiration Pneumonia 8 

12 342 F 35 5 SPMS Multiple Sclerosis 9 

13 352 M 43 18 SPMS Bronchopneumonia 26 

14 377 F 50 23 SPMS Aspiration Pneumonia 22 

1control Co14 M 64 N.A. N.A. Myocardial infarction 18 

2control Co36 M 68 N.A. N.A. Heart failure 30 

Table 2.1  Details of MS patients and non neurological controls 
  

2.2 Immunohistochemistry 

Brain tissues from people with multiple sclerosis, screened for the presence of 

lymphoid follicle-like aggregates and provided by the UK Multiple Sclerosis 

Tissue Bank (ethics approved by Cambridgeshire 1 Research Ethics 

Committee, reference number 08/H0304/7), were used for this study. Snap 

frozen brain tissues were used to evaluate the expression of different lymphoid 

and myelin markers. Air dried, acetone fixed sequential cryosections 7-10 µm 
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thick were rehydrated with PBS and standard immunohistochemical staining 

procedures for frozen sections were performed making use of Vector 

laboratories consumables and detection kits. Briefly, the slides were labelled 

with a solvent resistant pen and demarcate with a hydrophobic barrier pen 

(Vector Laboratories, Burlingame, Calif). All the steps were performed at RT if 

not otherwise specified. Endogenous peroxidase activity was blocked by 

incubating the slides in 0.3% H2O2 solution in PBS for 10 minutes. The sections 

were then washed with PBS 5 minutes and blocked in normal horse serum 20 

minutes. The excess of blocking solution was blotted and the slides incubated 

30 minutes with primary antibody (Ab) diluted in buffer. All the primary and 

secondary Abs used in this study were diluted in PBS + 1% blocking serum. 

The optimal working concentration (dilution) of each primary antibody (list in 

table 3.1.1-3.1.3) was obtained by a titration experiment to determine the 

optimal antibody dilution for optimal results, i.e. high specific-staining signal and 

low background. After extensive washing with PBS, sections were incubated 30 

minutes with the corresponding biotinylated secondary antibody. Washed with 

PBS the sections were incubated 30 minutes with avidin-biotin horseradish 

peroxidase complex (ABC), using the ABC Vectastain Elite kit (Vector 

Laboratories, Burlingame, Calif), according to the manufacturer’s instructions 

followed by 3,3’-diaminobenzidine DAB (Vector Laboratories, Burlingame, Calif) 

as substrate for the HRP. As counterstain was used hematoxylin and then 

rinsed in water. All sections were sealed with Depex Polystyrene (DPX) and 

viewed with an OLYMPUS microscope, images were captured with a digital 

camera and an image software (CellP). Negative controls included were 

obtained omitting of the primary Ab and/or using an aspecific primary antibody. 

Myelin staining was performed using hematoxylin and eosin (H&E) and Oil Red 

O following the standard operating procedures used in the Blizard Institute - 

Core Pathology, QMUL.  

2.3 Laser capture microdissection  

A 10 µm thick section was collected by PEN (polyethylene–naphthalate) 

membrane slides for microdissection from Zeiss, after UV treatment, picking up 

from the annular cryocassette the tissue by holding the slide just above the 
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section and angle the slide down to touch a portion of the tissue. Then the 

slides were fixed in ice cold ethanol and stained as little as possible to save 

time for the RNA extraction. A Zeiss Axiovert 200M inverted laser capture 

microscope was used to analyse the sections and a monitor using the PALM® 

RoboSoftware (Carl Zeiss Ltd., UK; P.A.L.M, Bernried, Germany) to visualize 

them. Lesions, vessels and follicle-like aggregates were identified and 

selectively laser microdissected (laser energy: 85mW; laser focus: 7.5µm - 

75mW) from MS brain blocks supplied by Dr. Gusta Trillo-Pazos (Department of 

Virology and Department of Neuroinflammation, IoN, UCL, UK). Using the laser 

catapulting function (LPC), the dissected lymphoid aggregate was catapulted 

into separate specialised adhesive caps. From microdissected samples total 

RNA was extracted by RNeasy Micro extraction kit (Qiagen Ltd., UK) following 

the manufacturer’s instructions and cDNA obtained as detailed previously. 

2.4 Tissue homogenization, RNA extraction and cDNA 

synthesis 

Snap frozen tissue blocks from 14 MS brains, 2 control brains, 1 control lymph 

node and 1 tonsil were used to extract RNA. A portion of tissue was weighed 

and ~ 30 mg were harvested with a sterile blade without allowing the tissue to 

thaw during the handling by performing the cut on dry ice. The piece of tissue 

harvested was put directly in a glass vessel and disrupted/homogenized by 

manual glass tissue grinder and pestle (KONTES, Kimble Chase LLC, USA) or 

in tubes with ceramic beads and processed by tissue homogenizer Precellys 24 

(Bertin Technologies, France) using the protocol 2x15 seconds at 5000 rpm in 

both cases in presence of lysis buffer containing phenol and guanidine 

thiocyanate. Total RNA molecules longer than 200 bp were extracted by 

RNeasy Lipid tissue extraction kit (Qiagen Ltd., UK) following the 

manufacturer’s instructions. The eluted RNA was divided in two samples of 

which one was stored at -80°C and the other further treated with TurboTM 

DNase (Ambion, Life Technologies Ltd, UK) following the manufacturer’s 

instructions. cDNA was obtained from the two different RNA stocks (untreated 

and Turbo treated) using 2 µg RNA in a total volume of 20 µl and 

retrotranscribed by ThermoScriptTM reverse transcriptase (Invitrogen, Life 
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Technologies Ltd, UK) with a first step of denaturation at 65°C for 5 min, 

followed by 60 min at 55°C and 5 min at 85°C priming by oligo(dT)20 and/or 

random hexamers. The residual RNA in the reaction was eliminated using 

RNaseH (Invitrogen, Life Technologies Ltd, UK) at RT for 20 min. The cDNA 

produced was stored at -20°C.  

2.5 RT-PCR 

My experiments of quantitative real time PCR (qPCR) were performed using the 

SYBR Green chemistry. The SYBR Green dye binds only to double-stranded 

(ds) DNA, thus providing a fluorescent signal that reflects the amount of dsDNA 

product generated during quantitative real time (RT)-PCR (Zipper et al. 2004). 

Primers of reference and target genes were designed using an ad hoc software 

such as Beacon Designer 7.9 (Premier Biosoft International, USA) (trial 

version). All primers were designed to anneal in gene regions of no secondary 

structure formation under the same temperature condition of 60°C and chosen 

to span one exon-exon boundary when possible (sequences of reference genes 

primers in table 2.2 and of target genes primers in table 2.3).  

 

Reference 
Genes 

Primer Sequence 
Primer 

bp 
Amplicon 

length (bp) 

DNMBP 
For GCAGATGGTGATTAAGGTCTC 21 

117 bp 
Rev CAGTAAATCTTGTATGTTCCCTCA 24 

ENOX1 
For CACCACAAATAACAAGCAGAA 21 

176 bp 
Rev AGGTCATCAGATTCTCAAAACT 22 

GAPDH 
For CAAGATCATCAGCAATGCCTCCT 23 

92 bp 
Rev TGAGTCCTTCCACGATACCAAAGT 24 

HMBS 
For ATGTCTGGTAACGGCAATG 19 

66 bp 
Rev GCGAATCACTCTCATCTTTGG 21 

NUMA1 
For TGGGAACAACTTTCTCTCAGGTT 23 

78 bp 
Rev CGTCTCATCTGGAACTGTGGG 21 

RNF20 
For CGACTCAACCGACACTTAGC 20 

93 bp 
Rev TGTGCCGCCATACAGACT 18 

RPL37A 
For CGTACAATACCACTTCCGCTGTCA 24 

78 bp 
Rev GGAGCGTCTACTGGTCTTTCAACT 24 

TBP 
For TGACCCAGCATCACTGTTTC 20 

116 bp 
Rev TGGAACTCGTCTCACTATTCAATT 24 

TTC1 
For GAGCGGACAAGGTTGAGAACAA 22 

147 bp 
Rev TTCCCTCCTCCTTTAGTCTAGTGC 24 

XDH 
For TGCTGTGGAGGAGATGGGAAT 21 

72 bp 
Rev CGAGAGGCTGACTGAGTGGT 20 

Table 2.2 Sequences and details of reference genes primers  
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Target 
Genes 

Primer Sequence 
Primer 

bp 
Amplicon 

length (bp) 

AICDA 
For CCTTTTCACTGGACTTTGGTTATC 24 

73 bp 
Rev ATGTAGCGGAGGAAGAGCAAT 21 

CD20 
For ATCTCTGTTCTTGGGCATTTTGT 23 

123 bp 
Rev ACTATGTTAGATTTGGGTCTGGAG 24 

CD40 
For TTGTGCCAGCCAGGACAGAAACT 23 

78 bp 
Rev GCTTTCACCGCAAGGAAGGCATT 23 

CD40L 
For CAGAATCCTCAAATTGCGGCACAT 24 

75 bp 
Rev TTCAGCCCACTGTAACACAGATGT 24 

CXCL12 
For CGTCAAGCATCTCAAAATTCTCAA 24 

119 bp 
Rev GGTACTCCTGAATCCACTTTAGC 23 

CXCL13 
For TGAGGTGTAGATGTGTCCAA 20 

127 bp 
Rev GACTTGTTCTTCTTCCAGACTATG 24 

CXCR4 
For TACACTTCAGATAACTACACCGAG 24 

60 bp 
Rev TTCCTTCATGGAGTCATAGTCC 22 

CXCR5 
For CCTCACGCACCTCCCATCCTAATC 24 

71 bp 
Rev CTCCGTTGGCAAGGGCAGAAGTA 23 

CCR7 
For CTGGTGGTGGCTCTCCTTGTC 21 

67 bp 
Rev TGTAATCGTCCGTGACCTCATCTT 24 

CD77 
For CGCCTCCAGGATCGCACTCAT 21 

90 bp 
Rev TTGGTCAGGTTCCGCAGGTTCT 22 

LTbetaR 
For TGGAAGGGGAGGAAAATGGCAAGT 24 

86 bp 
Rev GCACGAGCGGCACGAGTTTAG 21 

Table 2.3 Sequences and details of target genes primers  

 

As the thermal cycling conditions chosen were the same for all the genes 

evaluated further optimization of qPCR was obtained varying the primers 

concentrations by primers matrix to compensate for variations in primers 

melting temperature. The thermal profile was of 4 steps: 1) 50°C for 2min, 2) 

95°C for 10min, 3) 40 cycles of 95°C for 15sec, 60°C for 30sec and 72°C for 

30sec, 4) 1 cycle of 95°C for 15sec and 55°C for 15sec. The step 4 was used to 

design melting curves. Reaction mixtures were set using Power SYBR® Green 

PCR Master Mix (Applied Biosystems®, Life Technologies Ltd, UK) and adding 

template, primers and water to a final volume of 25 µl as detailed below: 
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Recipe µl 

Template cDNA 5 

Master Mix 12.5 

Water 6.5 

Primer For 0.5 

Primer Rev 0.5 

Total volume 25 

 

Plates of 96/384 wells were used depending on the pipetting method and each 

sample was measured in triplicates with cDNA levels analysed using the ABI 

7900HT instrument (Applied Biosystems®, Life Technologies Ltd, UK). The data 

were collected by the SDS2.4 software supplied with the instrument. 

All Real-time PCR experiments were compliant with the Minimum Information 

for Publication of Quantitative Real-Time PCR Experiments guidelines (MIQE) 

(Bustin et al. 2009) (Table 2.4). 
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Table 2.4 MIQE checklist: Information necessary for evaluating qPCR 

experiments (Bustin et al. 2009) 
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2.6 Immune libraries construction 

The MS libraries built had the plasmid frame of pIT2, a plasmid derived from 

pHEN1 and optimized for V gene cloning. A clone, named 1-11E, already in use 

in our laboratory encoding a scFv with binding specificity to native and modified 

collagen type II and known to have good expression was kindly supplied by Dr 

C. Hughes (Hughes et al. 2010). The 1-11E plasmid pre-existing inserts were 

replaced, by a sequential process of enzyme digestions and ligations, with the 

inserts of my interest, i.e. V genes from B cells infiltrating the brain tissue of 

patients with MS.     

2.6.1 Inserts preparation 

Two libraries containing immunoglobulin heavy (VH) and light (VL) chain 

variable (V) genes or VH genes only were prepared from lymphocytes 

infiltrating brain tissue of 14 MS patients by polymerase chain reaction (PCR) 

amplification. Sequential PCR reactions were performed with the obtained first 

cDNA strand as template and using as forward primer either an IgG or an IgM 

isotype constant region primer for the heavy chains, or a κ or λ constant region 

primer for the light chains and as reverse primer a VH or VL family specific 

primer designed according to Marks et al. (Marks et al. 1991)  and the VBASE 

database (http://vbase.mrc-cpe.cam.ac.uk/). VH, Vκ and Vλ -genes were 

amplified separately in a nested PCR reaction changing only the forward primer 

(Fig.2.1). The primers used to amplify the V genes contained restriction sites 

compatible with the vector sites and precisely two different restriction sites for 

each VH and VL amplicon allowed to obtain a directional cloning. The restriction 

sites were specifically XhoI and NcoI for the VH insert with the back primer 

containing a NcoI site and with the internal forward primer in the nested PCR 

containing a XhoI site. The restriction site contained in the back primer of the VL 

inserts was a SalI site and a NotI site for the internal forward primer. The first 

step forward primer, annealing to the constant regions, of my nested PCR 

reactions did not contain any restriction site (Fig.2.1).  
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Figure 2.1 Schematic map of VH primers on mRNA: The primers used for 
my PCRs were designed to anneal specifically on VH sequence after splicing 
reducing the possibility of bias for DNA contamination. The scheme shows that 
my target sequence was obtained after 2 steps of amplification for both 
immunoglobulin heavy-chain isotypes considered (IgG and IgM are the isotypes 
found in the CSF of MS patients by isoelectrofocusing). MS cDNA was used as 
template to obtain amplicons of around 700 bp by use of an external primer 
annealing on the 3’ end of the constant domain 1. The resulting amplicons were 
used as template for a further step of amplification performed with an inner 
forward primer annealing on the 3’ end of the JH region. The final amplicon had 
a length of around 350-400 bp depending on the CDR3 length. The same steps 
were applied to amplify the light chains.   

 

The amplification of the variable domains was conducted with an equimolar 

mixture of an appropriate family-based annealing reverse primer and a forward 

junction region annealing primer both incorporating restriction sites allowing to 

force-clone the insert in the vector for sequencing and expression (sequences 

in table 2.5-2.7).  
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VH Restriction site inserted 

Primers BACK VH  NcoI 

VH1a 
GTCCTCGCAACTGCGGCCAGCCGGCCATGGCCCAGG

TGCAGCTGGTGCAG 

VH2a 
GTCCTCGCAACTGCGGCCCAGCCGGCCATGGCCCAG

GTCAACTTAAGGGAG 

VH3a 
GTCCTCGCAACTGCGGCCCAGCCGGCCATGGCCGAG

GTGCAGCTGGTGGAG 

VH4a 
GTCCTCGCAACTGCGGCCCAGCCGGCCATGGCCCAG

GTGCAGCTGCAGGAG 

VH5a 
GTCCTCGCAACTGCGGCCCAGCCGGCCATGGCCCAG

GTGCAGCTGTTGCAG 

VH6a 
GTCCTCGCAACTGCGGCCCAGCCGGCCATGGCCCAG

GTACAGCTGCAGCAG 

VH7a 
GTCCTCGCAACTGCGGCCCAGCCGGCCATGGCCCAG

GTCCAGCTGGTGCAA 
Primers FOR VH XhoI 

JH1-2 GAGTCATTCTCGTCTCGAGACGGTGACCAGGGTGCC 

JH3 GAGTCATTCTCGTCTCGAGACGGTGACCATTGTCCC 

JH4-5 GAGTCATTCTCGTCTCGAGACGGTGACCAGGGTTCC 

JH6 GAGTCATTCTCGTCTCGAGACGGTGACCGTGGTCCC 
External Primers FOR 

VH nested PCR 
no restriction site 

HuIgG1-4CH1 GTCCACCTTGGTGTTGCTGGGCTT  

HuIgM TGGAAGAGGCACGTTCTTTTCTTT 

Table 2.5 List of Primers for amplifications of human VH genes 
 

VL Restriction site inserted 

Primers BACK Vk SalI 

Vk1 AACGGGTCGACGAACATCCAGATGACCCAG 

Vk2 AACGGGTCGACGGTAATTGTGATGACCCAG 

Vk3 AACGGGTCGACGGAAATTGTCTTGACACAG 

Vk4 AACGGGTCGACGGACATCGTGATGACCCAG 

Vk5 AACGGGTCGACGGAAACGACACTCACGCAG 

Vk6 AACGGGTCGACGGAAATTGTGCTGACTCAG 
Primers FOR Vk NotI 

Jk1 
GAGTCATTCTCGACTTGCGGCCGCACGTTTGATTTCCA

CCTTGGTCCC 

Jk2 
GAGTCATTCTCGACTTGCGGCCGCACGTTTGATCTCC

AGCTTGGTCCC 

Jk3 
GAGTCATTCTCGACTTGCGGCCGCACGTTTGATATCCA

CTTTGGTCCC 

Jk4 
GAGTCATTCTCGACTTGCGGCCGCACGTTTGATCTCC

ACCTTGGTCCC 

Jk5 
GAGTCATTCTCGACTTGCGGCCGCACGTTTAATCTCCA

GTCGTGTCCC 
External Primer FOR 

Vk nested PCR 
no restriction site 

HuCkFOR AGACTCTCCCCTGTTGAAGCTCTT 

Table 2.6 List of Primers for amplifications of human Vk genes 
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VL Restriction site inserted 

Primers BACK Vλ SalI 

Vλ1a AACGGGTCGACGCAGTCTGTGCTGACTCAG 

Vλ2 AACGGGTCGACGCAGTCTGCCCTGACTCAG 

Vλ3a AACGGGTCGACGTCCTATGAGCTGACTCAG 

Vλ3b AACGGGTCGACGTCCTATGAGCTGACACAG 

Vλ4 AACGGGTCGACGCAGCTTGTGCTGACTCAA 

Vλ5 AACGGGTCGACGCAGGCTGTGCTGACTCAG 

Vλ6 AACGGGTCGACGAATTTTATGCTGACTCAG 
Primers FOR Vλ NotI 

Jλ1 
GAGTCATTCTCGACTTGCGGCCGCACCTAGGACGGTG

ACCTTGGTCCC 

Jλ2-3 
GAGTCATTCTCGACTTGCGGCCGCACCTAGGACGGTC

AGCTTGGTCCC 

Jλ4-5 
GAGTCATTCTCGACTTGCGGCCGCACCTAAAACGGTG

AGCTGGGTCCC 
External Primer FOR 

Vλ nested PCR 
no restriction site 

HuCλFOR TGAAGATTCTGTAGGGGCCACTGTCTT 

Table 2.7 List of Primers for amplifications of human Vλ genes 
 

The cDNA template was obtained by retrotranscription of RNA extracted from 

brain tissues as detailed in paragraph 2.3. PCR mixture and thermal conditions 

of the inserts amplification are reported below: 

Recipe µl  Cycles Temperature Time   

Template 5-7  1x 95°C 10 min   

dNTPs 10mM 1.25  

30x 

95°C 1 min   

Primer For 10µM 2  58°C 1 min   

Primer Rev 10µM 2  72°C 1 min   

KapaReady Mix 25  1x 72°C 10 min   

Water x       

Taq 0.5       
Total volume 50       

 

The products were analysed by running 10 µl volume in presence of 6x loading 

buffer on 1% agarose gels.  

2.6.2 Cloning of V genes into vector 

The cDNA used as template of my inserts was the result of pooling the same 

volume of each V gene PCR reaction. Considering the PCR efficiency the same 

for each reaction, my V gene inserts were resembling the same relative 

expression of VH and VL families as in the B cells infiltrating the brain. The PCR 

products were a reliable copy of the humoral immune response of the patients 

and I cloned the amplicons by digesting with NcoI and XhoI (for the heavy 
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chains) and NotI and SalI (for the light chains) overnight (O.N.) at 37°C followed 

by a boost of 1 µl of XhoI/NcoI or NotI/SalI for 2 hours as in the reaction detailed 

below: 

Recipe µl 

Insert 30 

XhoI 2 

NcoI 2 

10x Buffer 10 

Water 55 

BSA 1 

Total volume 100 

 

Digested PCR products were checked for presence of a single band, 

corresponding to approximately 400 bp, on 1% agarose gel to determine 

quantity and quality. The remaining volume was then run on a 0.8% low melting 

point preparative agarose gel and the band excised with a sterile blade being 

visualized by a UV transilluminator. The DNA was extracted using the QIAquick 

Gel extraction kit (Qiagen Ltd., UK). 
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2.6.2.1 Preparation of Vector 

The bacterial growth media formulations were prepared as detailed in table 2.8. 

2TY broth and TYE agar were prepared in double-distilled water and the pH 

adjusted to 7.4. The minimal media components were autoclaved separately 

except for the glucose and thiamine that were sterile filtered.  

 

2TY broth 

Tryptone 16 g/l Biogene Ltd, Kimbolton, Cambs, UK 

Yeast Extract 10 g/l Biogene Ltd. 

Sodium Chloride 5 g/l 
BDH Laboratory Supplies (BDH), supplied 
by VWR International Ltd, Lutterworth, UK 

TYE agar 

Tryptone 10 g/l Biogene Ltd. 

Yeast Extract 5 g/l Biogene Ltd. 

Sodium Chloride 8 g/l BDH 

Bacto-Agar 15 g/l Biogene Ltd. 

Minimal Salt       
(2x M9) 

Na2HPO4 12g/l NA 

KH2PO4 6g/l NA 
NaCl 1g/l NA 

NH4Cl 2g/l NA 

Minimal 
Media 

2x M9 500 ml NA 

3% Agar 500 ml NA 

20% Glucose 20 ml NA 

MgSO4 1M 2 ml NA 

CaCl2 1M 0.1 ml NA 

Thiamine (10 mg/ml) 1 ml NA 

Table 2.8 Bacterial growth media formulations 

 

The plasmid bacterial stock was cultured at 37°C O.N. in 10 ml 2xTY, 100µg/ml 

ampicillin, 1% glucose. Plasmid DNA was isolated using the Qiagen Plasmid 

Midiprep kit (Qiagen Ltd., UK). The plasmid was digested with NcoI and XhoI as 

detailed previously and run on a 0.8% low melting point agarose gel. The 

digested vector ~ 5Kb was excised out of the gel as for the inserts and 

extracted using the QIAquick Gel extraction kit (Qiagen Ltd., UK). An amount of 

10 µl of DNA was run on a 1% agarose gel to determine quantity and purity.   

The resulting DNA was purified by precipitation at -20°C for 15-20 min in a 

mixture of water, NH4 acetate and 3x volume of ethanol. After the ethanol 

precipitation the sample was centrifuged at 4°C at max speed for 15 min. The 

pellet was washed with increasing concentrations of ethanol, left to dry and 

resuspended in water.   



77 

 

2.6.2.2 Ligation  

To optimize the ratio for the ligation reaction, test ligations were performed in 

different ratios of insert to vector (1:1, 3:1, 5:1 and 10:1). To estimate the 

correct concentration of vector and insert, the preparations were run on agarose 

gel and quantified on an UV transilluminator. The desired ratio insert:vector was 

obtained adding the appropriate volumes to the test ligation reaction mixture in 

a total volume of 20 µl as reported below. Ligation reactions were incubated 

O.N. at 37°C. Large scale ligations were concentrated by ethanol precipitation. 

 

Recipe  µl 

Insert x 

Vector x 

Buffer 2 

Water x 

T4 ligase 1 
Total volume 20 

 

2.6.2.3 Preparation of competent E. coli TG1 

E. coli, TG1 strain, cells were cultured O.N. shaking in 2xTY medium and 

incubated at 37°C. The cultured bacteria were inoculated in baffled flasks and 

grown in a 37°C shaker, cooled on ice for 10 min before transferring to cold 

centrifuge bottles. The chilled culture was spun for 15 min at ~ 4500 rpm and 

the resulting pellet washed with multiple passages in HEPES solution. In the 

final step the pellet was resuspended in 10% glycerol. The cells were frozen as 

100µl aliquots at -80°C or kept on ice for fresh use. 

2.6.2.4 Transformation 

The electrocompetent bacteria were thawed if necessary and mixed with 4 µl of 

ligated phagemid in a 0.2 cm electroporation cuvette. The cuvette with the 

mixture was placed in the electroporator Biorad MicroPulser (Bio-Rad 

Laboratories Ltd., UK) and pulsed following the manufacturer’s instructions. The 

electroporated cultures were plated and incubated at 37°C O.N.. The plates 

were scraped and the library stock stored at -80°C. 
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2.6.2.5 Library size 

The evaluation of the MS libraries size was obtained by plating serial dilutions of 

the libraries on agar plates containing ampicillin for colony counting.  

2.6.2.6 Sequencing 

Sanger sequencing 

A small portion of the PCR products were cycle sequenced using the BigDye 

chemistry material kindly supplied by Dr Alex Pearson and then sent for 

sequencing to The Institute of Cancer Research, London, UK.  The PCR 

product templates were prepared by half-reactions with 1l PCR template per 

20µl total volume, and the extension reaction performed by thermal cycler 

according to the following schedule: 

Denaturation 3 minutes 96C 1x 

Denaturation 30 seconds 96C  
25x Annealing 15 seconds 50C 

Extension 4 minutes 60C 

 

The remaining PCR products were sent for sequencing directly to The Genome 

Centre (WHRI, QMUL) and sequenced by BigDye 3.1 chemistry with 

visualization on the ABI 3730xl capillary sequencer.   

The following primers were used in sequencing of the heavy and light chains of 

scFv from the MS antibody phage display libraries:  

PHEN:   5’_CTATGCGGCCCCATTCA_3’ 

LMB3:   5’_CAGGAAACAGCTATGAC_3’ 

2.7 Libraries selection 

The libraries were grown, rescued and screened following the methods 

described in Harrison et al. (Harrison et al. 1996) and following the protocol 

supplied with the Tomlinson library (MRC Centre for Protein Engineering, 

Cambridge, UK).  
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2.7.1 Rescue of MS and Tomlinson I libraries 

2.7.1.1 Production of KM13 helper phage from stock 

A volume of 200 µl of E. coli TG1 culture was infected in log phase with 10 µl of 

100 fold serial dilutions of KM13 helper phage derived from stock 1 (stock 

concentration >1013 plaque forming unit/ml, or pfu/ml) in a heated water bath at 

37°C for 30 min. TYE plates with no antibiotics were then covered pouring a 

mixture of the infected TG1 culture and 3 ml of molten H-Top agar and allowed 

to set. The plates were incubated O.N. at 37°C. From areas with well separated 

plaques a single one was picked and used to infect a fresh 5 ml TG1 culture at 

log phase and grown at 37°C for 2 hours. The culture was then transferred into 

a large flask containing 500 ml 2xTY medium and grown for a further 1 hour at 

37°C. The culture was then left growing at 30°C O.N. after adding 50 μg/ml 

kanamycin. The produced phages were recovered from the supernatant by 20% 

polyethylene glycol 2.5M NaCl (PEG/NaCl) precipitation on ice after spinning 

down the culture at 10.800g for 20 min. The PEG/NaCl solution was eliminated 

from the phage by repeated steps of centrifugation and the pellet finally 

resuspended in PBS with 15% glycerol and stored in aliquots at -80°C. The 

titration of the helper phage was performed for trypsin treated and non-treated 

phages by transduction of log phase TG1 cultures by 100-fold serial dilutions of 

1 µl helper phage (trypsin treated and non-treated), added to 3 ml of molten H-

Top agar and poured evenly onto TYE plates. The titer of the helper phage new 

stock and its trypsin sensitivity was evaluated counting as pfu/ml and the titer of 

the trypsin treated phage resulted 106 lower than for the non-trypsin treated 

phage (see results chapter 5). 

2.7.1.2 Production of large quantities of phages 

As described previously in 2.6.2.4 after scraping the plates the MS libraries 

stock was stored at -80°C. The Tomlison I library was supplied in phagemid 

form as bacterial stock. The same procedure was followed to grow all the 

libraries. An aliquot of the stock library was thawed and mixed with growing 

medium 2xTY supplemeted with 1% glucose and ampicillin 100 µg/ml. The 

library culture was grown until log phase, then 2x1011 KM13 helper phage were 
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added at a multiplicity of infection (MOI) of ~10:1 to 50 ml of the culture and 

incubated for 30 min without shaking in a heated water bath at 37°C. The 

infected culture was spun at 3600 rpm for 10 min and the bacterial pellet 

resuspended and transferred in a flask with 100 ml of medium 2xTY 

supplemeted with 0.1% glucose, ampicillin 100 µg/ml and kanamycin 50 µg/ml. 

The culture in the flask has then been grown shaking O.N. at 30°C. The 

produced library phages were recovered from the supernatant by adding 1 

volume of 20% polyethylene glycol 2.5M NaCl (PEG/NaCl) to 4 volumes 

supernatant and precipitated for 1 hour on ice after spinning down the O.N. 

culture at 4000 rpm for 30 min. Bacterial debris and dregs of PEG/NaCl solution 

were eliminated from the phages by repeated steps of centrifugation and 

resuspension in PBS and the rescued phages finally resuspended in PBS and 

stored at 4°C or stored in aliquots at -80°C adding 15% glycerol. 
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2.7.2 Target Protein Analysis 

2.7.2.1 SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

The proteins used in this study were supplied by colleagues: MP4 was obtained 

from Prof. David Baker and Dr. Gareth Pryce (Neuroimmunology group, ICMS), 

CIII was obtained in house from Dr. Assi Hendler and Dr. Rocky Strollo; human 

r-MOG1-125, Nf-L and CRYAB were obtained from Prof. Sandra Amor and Dr 

Fabiola Puentes (Neuroimmunology group, ICMS & Pathology department, 

Amsterdam, NL). The proteins of interest were separated mainly by their 

molecular weights using sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE). The 10% resolving and 5% stacking gels were 

prepared based on the recipes reported in Sambrook and Russell 2001. The 

reducing gels were loaded with a mixture of the different samples and loading 

buffer in a ratio of 3:1 for each well and 10μl SeeBlue® Plus2 Pre-Stained 

Standard marker (Invitrogen) into a separate well of each gel used for 

visualization of protein molecular weight ranges during the electrophoretic run.  

Gels were exposed to 150V for 60 minutes by a Biorad power supply (Bio-Rad 

Laboratories Ltd., UK), after which they were removed from the casing and the 

separated proteins visualised by Coomassie Blue staining (see below).  

2.7.2.2 Coomassie Blue Detection of Proteins 

The SDS-PA gels were stained for detection of separated proteins by soaking in 

a Coomassie Brilliant Blue R-250 dye solution shaking gently on an orbital 

shaker at RT O.N.. The proteins were visualised from the background by 

repeated washes with destaining solution for 1 hour (recipes in table 2.9).  
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Buffer Component Concentration Source 

Running Buffer 

Glycine 4g/l Sigma-Aldrich 

Tris-HCl 3g/l Sigma-Aldrich 

SDS 1g/l Sigma-Aldrich 

2x Reducing 
Sample Buffer 

Tris-HCl, pH 6.8 1.25mM NA 

Glycerol 20% (v/v) NA 

β-mercaptoethanol 2% (v/v) NA 

Bromophenol Blue 0.1% (w/v) NA 

SDS 0.1% (w/v) NA 

 Western Blotting 
Buffer 

Glycine 2.96g/l Sigma-Aldrich 

Tris (base) 5.82g/l Sigma-Aldrich 

20% SDS solution 188μl/l 
National Diagnostics 

(East Riding, Yorkshire, 
UK) 

Destain solution 
Methanol 30% (v/v) 

Fisher Scientific 
(Loughborough, UK) 

Glacial Acetic Acid 10% (v/v) BDH 

Coomassie Stain 
Coomassie Brilliant Blue 

R250 
Saturated 

(est. 10-70 g/l) 
Sigma-Aldrich 

Table 2.9 Protein analysis buffer formulations: All buffers were prepared in 
deionised water, with the exception of Coomassie Stain which was prepared in 
Destain solution  

 

The destained gels were scanned and saved as image files or dried between 

cellophane sheets and stored.  

 

2.7.2.3 Protein concentration 

The concentration of proteins when not supplied were evaluated by BCA 

Protein Assay (Thermo Fisher Scientific Inc., USA). The MBP-PLP fusion 

protein (MP4) concentration was evaluated by the reported assay.  
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2.7.3 Selection of antigen specific binders from phage libraries 

 

All the procedures of selection and screening have to be considered performed 

in accordance with the protocol supplied with the Tomlinson I & J bacteriophage 

libraries (MRC HGMP Resource Centre; 

http://www.hgmp.mrc.ac.uk/geneservice/ reagents/products/datasheets/scFv/ 

tomlinsonIJ.pdf) if not differently specified.   

 

Isolation of antigen specific binders was obtained by subjecting the library 

phages to 3-4 rounds of selection on various antigens. Hydrophilic 

immunotubes (Nunc, Thermo Fisher Scientific, DK) were coated with each 

antigen at a concentration of 10 μg/ml in PBS and incubated O.N. at 4°C. Non-

specific phage binding sites were inhibited by exposure for 2 hours to a blocking 

agent such as fat free milk powder 2% solution in PBS (MPBS). Around 1 ml 

MPBS solution containing phage was then poured in the immunotubes and 

allowed to bind for 2 hours at RT.  The unbound phages were mechanically 

discarded and after the 1st round to favor the selection of high affinity antibodies 

PBS washing steps had increased stringency. The bound phages were eluted 

by proteolityc cleavage with trypsin, amplified by transduction into E. coli TG1 

and successively plated on TYE plates containing 1% glucose and 100 μg/ml 

ampicillin. The further rounds of selection were performed rescuing the phages 

adding 5x1010 helper phage and following the protocol as in 2.7.1.2. The 

phages resulting from the first round were used for the following rounds 

repeating the above described selection on the same concentration of each 

immobilized antigen.   
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2.7.4 Screening by ELISA 

 

Populations of phage after each round of selection were analysed by polyclonal 

and monoclonal ELISA. Summaries of these procedures will be outlined below. 

 

2.7.4.1 ELISA with polyclonal and monoclonal phages  

Polyclonal phage ELISAs were performed as follows.   

The eluted phages from each round of selection were screened for binding 

specificity by ELISA to evaluate the enrichment of specific binders. 96 wells 

plates were coated overnight at 4°C with the same antigens used for the 

selection. The day after blocked with 2% MPBS and after washes serial 

dilutions of the precipitated phage pool were added to the plate wells. Similarly 

monoclonal phage ELISA was performed. Single colonies from a titration plate 

of the 3rd round of selection were inoculated into single wells of a 96-well plate 

containing 2xTY medium supplemented with 1% glucose and 100g/ml 

ampicillin and grown shaking O.N. at 37°C. About 2 µl of the O.N. cultures were 

transferred to a new plate with each well containing 200 µl of the same 

supplemented medium as previously and grown shaking for 2 hours. The 

original plate was then stored at -80°C as glycerol stock adding 15% glycerol. 

After 2 hours all the new single cultures in the wells reached presumably the log 

phase and 25 µl of medium containing 109 helper phage were added and 

incubated shaking for a further hour. The single clones were spun down and the 

pellet resuspended in 200 l 2xTY supplemented with 100g/ml ampicillin and 

50g/ml kanamycin and grown O.N. at 30°C. In parallel a 96-well plate was 

coated with the same antigen and at the same concentration used for the 

selection and incubated O.N. at 4°C. The day after, the supernatant from the 

single wells containing the produced monoclonal phage antibodies was 

screened for binding by ELISA.  

After polyclonal or monoclonal phage antibodies were added to the coated wells 

they were left for 1 hour to incubate and washed three times with PBS-0.1% 
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Tween 20. Detection of phages binding the coated antigen was obtained 

incubating 1 hour with peroxidase-conjugated anti-M13 (GE Healthcare) diluted 

1:5000 in 2% MPBS, followed by three times washing with PBS-0.1% Tween 

20.  The level of binding was evaluated by a colour reaction of the peroxidase 

with the substrate solution containing tetramethylbenzidine (TMB) 100 g/ml in 

100 mM sodium acetate pH 6 and 1:5000 of 30% hydrogen peroxide. The 

reaction was stopped by adding 50 l 1 M sulphuric acid and the OD signal read 

at 450 nm.  

 

2.7.4.2 ELISA with soluble scFv antibody fragments  

Individual clones of the VH+VL library were selected from the monoclonal 

phage ELISA of the last round of selection on MP4. The clones were grown and 

then used to infect exponentially growing HB2151 cells (a non-suppressor strain 

that allows expression of TAG codons as stop codons). The single colonies 

were grown O.N. at 37°C with the appropriate antibiotic. A small volume of the  

culture was then used to inoculate a larger volume (100ml-1L) and grown in low 

concentration of glucose (0.1%) at 37°C until the O.D.600 was approximately 

0.9. Reached O.D. 0.9 the culture is induced adding isopropyl β-D-

thiogalactoside (IPTG, final concentration 1 mM) and left to grow O.N. at 30°C. 

Supernatant and periplasmic preparations containing soluble antibody 

fragments were combined and used to evaluate the presence of the individual 

scFVs. The expression of a positive control clone 1-11E resulted at good levels 

as expected, confirming the correct execution of the process, but I did not 

obtain good expression from my clones (data not shown). Consequently I could 

not use scFv for ELISAs. 
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Chapter 3: Lymphoid network in MS brain tissues 

 

Background: 

The importance of B cells as main player in the pathogenesis of MS is not only 

based on their role of antibody secreting cells but also as key mediators of the 

humoral immune response, as innocent carrier of EBV latent infection in the 

CNS and as provider of continual LTβR signaling via LTαβ for the maintenance 

of the organization of the lymphoid stromal cell network (Mccarthy et al. 2006). 

B cells consequently appear to be an effective therapeutic target for monoclonal 

therapies (Dobson et al. 2011; Meier et al. 2012). As already discussed in 

chapter 1 the presence of oligoclonal bands in CSF and brain of PwMS led to 

search for a production site that could be as persistent (Allen et al. 2007) as the 

life-long intrathecal immunoglobulins presence. In the immune system the site 

of an oligoclonal response with antibody affinity maturation and generation of 

antibody secreting cells is the germinal centre (GC). In numerous autoimmune 

diseases the invading lymphoid tissue is known to organize itself at the level of 

specific peripheral organs resembling ectopically the lymphoid follicles as 

described in the meninges of secondary progressive MS cases (Aloisi and 

Pujol-Borrell 2006). The presence of ectopic lymphoid structures was described 

and studied in different autoimmune diseases such as myasthenia gravis 

(Roxanis et al. 2002), rheumatoid arthritis (Humby et al. 2009; Manzo et al. 

2010), Sjogren’s syndrome (Barone et al. 2008; Bombardieri et al. 2007), 

thyroiditis (Söderström and Biörklund 1974), and other autoimmune diseases. In 

fact, a correspondence can be found between secondary lymphoid organs and 

follicle-like structures. Lymphoid neogenesis can be considered one of the 

pathogenic mechanisms of brain damage in MS. Electron-microscopy studies 

have shown the presence of aggregates of lymphocytes in the perivascular 

spaces of chronic plaques confirming the persistence of the B cell response at 

the lesion site (Prineas 1979; Prineas and Wright 1978).  These early 

histological observations of perivascular lymphoid infiltrates in MS brain lesions, 

named perivascular cuffs, were confirmed and further expanded recently with 

the description of ectopic B-cell follicles in leptomeninges of around 40% of 
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secondary progressive MS patients (Magliozzi et al. 2007). The organization of 

lymphoid follicles is based on different lymphoid cell types and chemokines and 

the follicle-like structures found in different autoimmune diseases show a 

variable grade of organization. The finding of ectopic lymphoid aggregates in 

the inflamed meninges fits exactly the term “adaptive” for the immune response 

found in MS brain as it seems that the immune system is adapting itself to the 

brain environment to be able to respond in the same way the lymphoid tissue 

does during inflammation and/or infection (Fig.3.1).  

 

 

 

Figure 3.1.1 Follicle-like aggregate scheme: In many chronic inflammatory 
diseases the formation of ectopic lymphoid aggregates in peripheral target 
tissues is a common feature. Also, in a subset of patients with secondary 
progressive MS (SPMS) was described the presence of follicle-like aggregates 
formed by a network of immune cells. Each chronically inflamed tissue, though, 
develops a characteristic inflammatory process. In SPMS the lymphoid 
aggregates are found in the meninges entering the sulci in a perivascular 
location but not in the plaques and can be considered the anatomical correlate 
of the OCBs found in the CSF. The ectopic lymphoid follicles are found to 
contain macrophages, T-cells, B-cells, plasma cells and a network of follicular 
dendritic cells producing lymphoid chemokines, such as CXCL13.  
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Furthermore ectopic follicles were correlated with high inflammatory activity, 

early onset of disease and subpial type of cortical lesions, where the 

aggregates are usually found in close proximity causing a pial to white matter 

gradient of neuronal loss (Magliozzi et al. 2007; Magliozzi et al. 2010). The 

distribution of follicle-like aggregates is wide throughout the cerebral cortex and 

the cortical demyelination is significantly increased in follicle positive patients 

(F+) as shown by global measures of demyelination in complete coronal 

sections (Howell et al. 2011). Recently, the molecular analysis of B cell 

receptors from ectopic follicle-like aggregates B cells in comparison with B cells 

infiltrating the other brain compartments did show related B-cells populations 

undergoing clonal expansion, somatic mutations, isotype switching and skewed 

family usage (Lovato et al. 2011) resembling functionally a germinal centre 

reaction as described above and that I could define as an adaptive follicle 

formation.  

 

Objective: 

To evaluate the brain blocks used to build the Ab library for presence of immune 

cells  

Specific aims: 

- Histopathology: Brain blocks were screened by immunohistochemistry for 

presence of immune infiltrates and follicle-like structures 

- qPCR: MS tissues and controls were used to determine the most stable 

reference genes and to evaluate levels of expression of chemokines  
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3.1 Histopathology of supplied tissues 

Background 

The characteristic feature of MS is the plaque found disseminated in the CNS 

and defined as “grey induration” corresponding “to one of the modes of primary 

chronic inflammation” by Charcot in one of his lectures at La Salpetriere 

(Charcot 1877). As well, the characteristic pathological feature of the sclerotic 

MS plaque is demyelination interesting grey and white matter. The chronic 

inflammation is fundamental part of the histology associated with the axonal 

damage as reported since the seventies and eighties and as described in 

chapter 1. Briefly, the demyelinating lesion is the result of myelin sheaths and 

oligodendrocytes destruction, following the autoimmune attack directed against 

myelin epitopes by cellular and humoral immunity proceeding respectively 

through phagocytosis or opsonisation by macrophages (Bruck 2005). Myelin 

stains and immunohistochemistry has to be used to highlight the differences in 

composition of grey and white matter lesions with different extent of lymphoid 

infiltrate with grey matter lesions lacking the inflammatory markers usually found 

in white matter plaques (Vercellino et al. 2005; Wegner et al. 2006). Localization 

of the cortical lesions can be described following one of the first studies 

correlating neuropathology and in-vivo MRI by Kidd and colleagues that divided 

the lesions by the type of cortical venous supply of the cortex (Kidd et al. 1999) 

or simply by localizing the lesions within the cortical layers (Peterson et al. 

2001). These lesions may be circumscribed or involving multiple adjacent gyri, 

thus leading to a phenomenon termed “general subpial demyelination” (Bo et al. 

2003). Among the three types of cortical lesions, namely cortico-subcortical 

(leukocortical) lesions, affecting cortex and adjacent white matter, small, purely 

intracortical lesions, and subpial lesions directly abutting on the subarachnoid 

space, the latter are the most extensive and frequent, followed by cortico-

subcortical and purely intracortical lesions. Grey matter demyelination is not 

restricted to cerebral cortical areas, but also involves the deep grey matter 

nuclei (Huitinga et al. 2004). Considering the spinal cord, the grey matter is 

even more demyelinated than the white matter with no preponderance for the 

subpial lesions (Gilmore et al. 2006; Gilmore et al. 2009). Actually the findings 
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of meningeal ectopic follicle-like aggregates associated with high degree of 

meningeal inflammation and cortical lesions have evoked enormous interest 

and suggested that soluble factors diffusing from these structures could have a 

pathogenic role (Popescu and Lucchinetti 2012). 

Methods: 

In my study I tried to detect presence of inflammatory infiltrates, follicle-like 

aggregates and lesions by immunohistochemistry and different myelin stains to 

be able to screen the blocks and correlate the histopathology with molecular 

biology seeking for a functional correlation. The blocks were cut in sequential 

cryosections 7-10 µm thick by a microtome as detailed in chapter 2 and then 

stained to screen for lymphoid aggregates. In a preliminary work my specific 

immunohistochemistry staining used primary antibodies targeting inflammatory 

infiltrate, myelin antigens and EBV latent phase antigens as described in the 

literature for detection of MS lesions and demyelination. Immunohistochemistry 

was performed in collaboration with Dr. Gusta Trillo-Pazos and Prof. David 

Miller (Institute of Neurology, UCL) and the tissues stained with the markers 

detailed below (tables 3.1.1; 3.1.2; 3.1.3): 

Cell lineage  Marker used 

detection of B cells/B cell origin (with CD20)  CD79a 

macrophage/monocytes (including Kupffer cells and microglia)  CD68 

considered a pan B cell antigen and follicular dendritic cells  CD19 

most B cells, also follicular dendritic cells  CD20 

peripheral T cells, NK cells, thymocytes  CD3 

mature B cells, follicular dendritic cells  CD21 

Table 3.1.1 Primary antibody specificity targeting the lymphoid infiltrates 
 

Cell type   Marker used  

Astrocytes   GFAP  

Neurons   MAP2  

Oligodendrocytes    PLP  

Oligodendrocytes   CNPase  

Table 3.1.2 Primary antibody specificity targeting areas of demyelination  
 

Latent  Phase protein   

EBNA-1  Nuclear antigen 

LMP-1 
LMP-2 

 Membrane antigen 

Table 3.1.3 Primary antibody specificity for EBV screening 
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A block labeled P1C3 from the internal capsule of case MS136 and a block 

labeled P2D2 from the thalamus of the case MS182 were used.  The patients 

and blocks details are as follow: 

 
Patient 
case 

Sex 
Age at 
death 

(years) 

Disease 
duration 
(years) 

Form of 
MS  

Cause of death 
Post Mortem 
delay (hrs) 

1 136 F 77 21 SPMS Pneumonia 7  

2 182 F 34 11 PPMS Pneumonia 12 

 

Results: 

I was able to characterize structures resembling meningeal aggregates in 2 

progressive cases (Institute of Neurology, UCL) one secondary progressive and 

one primary progressive (data not shown) and in my knowledge no cases 

containing ectopic follicles have been described before in primary progressive 

form and in the deep grey matter. The quality of the staining did not allow us to 

differentiate the different immune cells but presence of immune aggregates 

could be detected from the staining of the cells nuclei. The staining with anti-

EBNA1 antibodies of a secondary progressive case did show nuclear staining 

(data not shown). No staining was present in the sections stained only with 

secondary antibody. 
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In a second set of experiments the cases used in the antibody library 

construction were stained by H&E and Oil Red O in collaboration with 

Christopher Evagora and Prof. Jo Martin (Blizard Institute Core Pathology, 

QMUL). The blocks presented immune infiltrates and aggregates as shown 

below in figure 3.1.2. 

 

a’)  

a’’)  

a’’’)   
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b)  

c)  

d)  
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e’)  

e’’)  

e’’’)  

Figure 3.1.2 Examples of immune infiltrates and aggregates: MS330 frontal 

lobe a’) perivascular infiltrate, a’’) perivascular cuff surrounding a vessel in the 
centre of a lesion and a’’’) meningeal inflammation;  MS342 frontal lobe: b) 
lesion edge and perivascular cuff on the lesion border; MS325 frontal lobe c) 
presence of meningeal inflammation and immune cells aggregate in a primary 
progressive case; MS103 frontal lobe d) presence of meningeal inflammation 
and lymphoid aggregate;  MS160 frontal lobe e’+e’’+e’’’) different lymphoid 
aggregates along the sulci of a secondary progressive case (*=lesion edge; 
scale bar=200 µm) 
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From the follicle-like aggregate found in the SPMS case 136 in collaboration 

with Dr. Gusta Trillo-Pazos and Prof. David Miller (Institute of Neurology, UCL) I 

decided to use laser capture microdissection (figure 3.1.3) to isolate the follicle-

like structure and extract RNA from this specific cellular network as detailed in 

chapter 2.  

    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1.3 Sequence of events in laser capture microdissection: the 

follicle-like structure from SPMS case 136 was microdissected and catapulted 
onto the adhesive cap by laser beam. 1) Section containing the region of 
interest (ROI) was visualized utilizing the computer-controlled stage and a 
colour CCD camera; 2) a green line was drawn on the video image to outline 
the region to be microdissected; 3-4) the computer system automatically guided 
the UV laser to cut the ROI and separate it from the surrounding specimen; 5-6) 
the dissected lymphoid aggregate was catapulted onto a separate adhesive cap 
and on the membrane slide the area previously occupied by the lymphoid 
aggregate was left empty. Extraction of total RNA was then performed on the 
selected group of cells.  
 

1 

2 

3 

4 

5 

6 

brain 
parenchyma 

lymphoid 
aggregate 

membrane slide 

brain 
parenchyma 

 

lymphoid 
aggregate 

lymphoid 
aggregate 

surrounding 
specimen 

lymphoid 
aggregate 

lymphoid 
aggregate 

adhesive cap 



96 

 

 

As the material available was very low, no evaluation of RNA integrity was 

performed for this sample and a single experiment was attempted to amplify 

VH1/3/4 genes (figure 3.1.4).  

 

 

 
Figure 3.1.4 1% Agarose gel PCR products from microdissected lymphoid 
aggregate: I was able to amplify VH genes from microdissected lymphoid 

aggregate. Using 1) VH1a, 2) VH2a and 3) VH3a back primers and as common 
forward primer a sequence annealing on JH4. Amplification of a product with 
appropriate length (~ 350-400 bp) was obtained but no sequencing and analysis 
was performed (data in need of further experimental confirmation).  
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3.2 Gene Expression 

Background 

Physiologically lymphocytes encounter the processed or soluble antigen in the 

lymph node where chances of interaction among different immune cells are 

increased. High endothelial cells and lymphatic endothelium express CC-

chemokine ligands, suc as CCL21 and CCL19, bound by the chemokine C 

receptor 7 (CCR7) present on lymphocytes and dendritic cells. Chemokines that 

start the homing cascade in secondary lymphoid organs and allow the immune-

cells to interact (Von Andrian and Mempel 2003). From studies on murine GCs 

by laser-capture microdissection it was shown that the polarization into dark and 

light zone of the GC is dictated by expression of chemokines CXCL12 and 

CXCL13 or B-cell homing chemokine (BLC)  and their receptors on GCs B cells 

CXCR4 and CXCR5 segregating centroblasts from centrocytes (Allen et al. 

2004). The centroblasts from the dark zone after completing the cell cycle enter 

in the FDCs network of the light zone as centrocytes and are selected by their 

capacity to interact with the antigen held on the FDCs. After encountering the 

Ag the centroblast becomes itself an APC and follows its default fate dying by 

apoptosis or, in case of CD40/CD40L interactions, survives and induces 

expression on B cells of LTαβ with maintenance signal for the FDCs (Boulianne 

et al. 2012). The T-cells have one of the main roles in the germinal centre 

organization and expressing CXCR5, a receptor for CXCL13, draw the 

migration path for the B cells in the light zone. The result of a germinal centre 

reaction is the affinity maturation and germinal centre B cells express the 

enzyme activation-induced cytidine deaminase (AICDA), also called simply 

activation-induced deaminase (AID), leading to somatic hypermutation and 

class switch recombination (Victora and Nussenzweig 2012) (Fig.3.2.1).  

 



98 

 

 
Figure 3.2.1 Cellular interactions in dark and light zone: Germinal centers 

(GCs) are the structures where affinity maturation takes place and B cells at this 
level express activation-induced cytidine deaminase (AICDA), enzyme involved 
in somatic hypermuation and class switch recombination. The most prominent 
anatomical feature of the GC is its compartmentalization in dark zone (DZ) and 
light zone (LZ). The DZ contains mainly fast dividing B cells positive for the 
proliferation marker Ki67. The cycling B cells express specifically the chemokine 
receptor CXCR4 responsible for retaining the centroblasts in the DZ where its 
ligand the stromal cell-derived factor 1 (SDF-1), also known as CXCL12, is 
highly expressed. In the LZ the B cells are interspersed among a network of 
follicular dendritic cells (FDC) and T cells. The LZ contains characteristically 
high density of CXCL13 directing the migration of centroblasts differentiated into 
centrocytes that then populate the LZ expressing the CXCR5 receptor. The GC 
reaction is also dependent on T cells in the LZ delivering a cognate help to B 
cells via CD40-CD40L interaction. The lymphoid microenvironment of the GC is 
maintained by the lymphotoxin axis and in this context the fate of B cells is 
sustained by the B cell activating factor (BAFF) playing an important role in 
survival and maturation so that GC-B cells can differentiate to plasmacells. 
 

Chemokines constitutively expressed in secondary lymphoid organs have been 

found also in tissues that are targeted by chronic inflammatory processes. In 

particular, elevated levels of CXCL12 and CXCL13 are found in CSF and brain 

of MS patients. These chemokines are the link to the intracerebral homing of 

immune cells and development of lymphoid neogenesis (Aloisi et al. 2008; 

Aloisi and Pujol-Borrell 2006). In fact it was shown by immunohistochemistry 

that the inflamed meninges harbor follicle-like structures containing various 

degree of macrophages, Ki67+ proliferating B cells, plasma cells, T cells and 

CD35+ CD21+ FDCs with expression of homing chemokines such as CXCL13 

(Serafini et al. 2004).  
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Methods 

To evaluate my samples for expression levels of different genes of interest 

(GOI) involved in inflammation and germinal centre reaction, minimum 

information for publication of quantitative real-time PCR experiments (MIQE) 

guidelines were followed during the experiments to make sure the results 

obtained could be reliable and the nomenclature appropriate as from the 

minimum information for biological and biomedical investigations (MIBBI)  

(Bustin et al. 2009; Kettner et al. 2010).  The tissues examined were supplied 

by different tissue banks (“Amsterdam Pathology department”, “Edinburgh 

Sudden Death Brain and Tissue Bank” and “The UK MS tissue bank”) and 

before starting with my experiments I checked the quality of the material 

supplied. Total RNA was extracted from 14 postmortem brain blocks from MS 

patients (complete demographic characteristic in table 2.1) and from 2 lymph 

nodes from different sources (Amsterdam and Edinburgh source) as detailed in 

chapter 2.  

The use of post-mortem human tissues and in particular brain tissues suffers 

several factors related with pre-mortem events (prolonged agonal state, 

hypoxia, acidosis fever and seizures) and with post-mortem events (delay 

between death and sample processing for storage and fixation or processing of 

frozen material) that can interfere with their utilization in molecular studies 

(Ferrer et al. 2008).  

Characteristics of the tissues supplied were summarized below (table 3.2.1): 

Parameters Mean Range StDev 

Age of death (years) 54 34-77 12.1 

Post-mortem delay (h) 18.8 7-30 6.6 

Brain pH (5 brain samples) 6.4 6.02-6.78 0.27 

Table 3.2.1 Samples characteristics: Demographic and post-mortem events 
of 14 MS brain samples, 2 brain controls and 1 lymphoid tissue used in my 
study 
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To evaluate for RNA extraction yield, RNA quality and level of degradation 

different methods were used: agarose gel electrophoresis, electropherogram 

patterns and UV spectroscopy by classical spectrophotometer (Ultrospec II, 

LKB Biochrom, UK) with cuvettes and nanodrop spectrophotometer for small 

samples (Nanodrop 1000, Thermo scientific, UK).  
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Results 

The RNA yield was analysed comparing the OD results from the two 

spectrophotometers obtaining a strong correlation between the measurements. 

Due to the strong correlation and to the lower amount of sample needed if not 

otherwise stated my RNA concentrations were measured by nanodrop with 

good relative measurements among samples (Fig.3.2.2).  
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a) 

Samples: ng/µl 260/280 260/230 

MS103 753.1 2.12 2.17 

MS154 973.8 2.13 1.97 

MS179* 272.7 2.08 1.44 

MS311 592.5 2.12 2.20 

MS317 258.4 2.08 2.26 

MS325 570.3 2.10 2.16 
b) 
 
 MS103              MS154              MS179 

       
 
 MS311    MS317    MS325 

         
Fig.3.2.2 Nanodrop quantification and evaluation of RNA extraction: From 
each sample 1 µl RNA was measured to evaluate concentration and purity. a) 
The table shows the concentration in nanogram (ng)/microliter (µl), ratio of 
sample absorbance at 260 and 280 nm (260/280) and ratio of sample 
absorbance at 260 and 230 nm  (260/230). Both ratio values are used to assess 
the purity of the sample or presence of proteins and other contaminats in the 
eluted sample. b) The absorbance spectra for the different samples show 
absorbance on the Y-axis and wavelength on the X-axis.  Nanodrop results of 
some of MS samples, *=sample 179 gave a low value indicating some sort of 
contamination (the same sample gave the lowest RIN value as shown in table 
3.2.2). 
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RNA degradation and DNA contamination were evaluated to obtain reliable 

results. The first method used to evaluate RNA degradation was agarose gel 

electrophoresis using RNA samples from healthy lymph node tissues, MS and 

control brain tissues. RNA was considered of high quality when the ratio of 

28S:18S bands was about 2.0 and higher. My samples were treated with a two-

step process to eliminate any possible DNA contamination (as my first 

experiment presented positive signal in the -RT control) and the RNAs obtained 

compared with different methods (Fig.3.2.3 and 3.2.4). 

 

 
Figure 3.2.3 RNA quality checked by 1% denaturing agarose gel: All 

samples were DNase treated on column but for each samples are shown 2 
lanes with on column treatment only and a further 2nd treatment with TurboTM 
DNase after on column treatment. The lanes were compared with RNA integrity 
number values of respective samples. Samples: LN=lymph node, Co=control 
brain, MS=MS brain, control RNA from Ambion.   
 

The ribosomal RNA ratio values did not allow a consistent objective comparison 

of the results on the various samples and did not supply a consistent 

quantitative unambiguous cut off to be considered for downstream experiments. 

A large amount of RNA is needed for visualization using agarose gel 

electrophoresis and the assessment very subjective, consequently the classical 

agarose gel results expressed as ribosomal ratio of 28S:18S bands have not 

been considered for discriminating my samples. The following step was to test 

my samples by microcapillary electrophoretic RNA separation (Bioanalyser 
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2100 Agilent and RNA nano chip) to obtain an RNA integrity number (RIN). The 

RNA samples were separated based on their molecular weights in gel filled 

microchannels and detected by laser-induced fluorescence. The correlation of 

fluorescence units and the amount of RNA of a certain size was plotted and 

shown as electropherogram. Regions (such as the 28S region or the fast 

region, i.e. the region between the 5S region and the 18S region), peaks (such 

as presence or absence of the 18S peak) and ratios (such as the total RNA 

ratio corresponding to the fraction of the area in the region of 18S and 28S 

compared to the total area under the curve) are different features describing the 

curve of the electropherogram taken into consideration and that contribute to 

determine the RNA integrity. RIN values were obtained by application of a 

software algorithm trained with different levels of degraded RNA measurements 

based on these features and leading to a user-independent procedure for 

standardization of RNA quality control (Schroeder et al. 2006). My samples 

were then differentiated in integrity categories based on the results obtained 

with a RIN cut off value above >7 chosen to accept samples for further 

evaluation in qPCR experiments due to the significant correlation of high RIN 

values with good outcome of the experiments as reported in the literature 

(Schroeder et al. 2006). The RIN in my samples was evaluated on the RNAs 

just after on column DNase treatment elution and after a 2nd treatment with 

TurboTM DNase (Fig.3.2.4).  
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             On column DNase treatment        Turbo DNase treatment 
 
 
                                RIN:8.5     RIN:7.9 
 

a)        
 
                                RIN:7.9     RIN:7.3 
 

b)       
 
 
 
                                RIN:7.6     RIN:7.5 

c)       
 
                                RIN:2.0      

d)       

 

Figure 3.2.4 Examples of electropherogram by 2100 bioanalyser: 
electropherograms before and after TurboTM DNase treatment of samples from  
different MS forms a) SPMS154; b)RPMS341; c)PPMS325; d)SPMS179 is one 
of the sample discarded from my analysis for low quality RNA (RIN=RNA 
integrity number). X-axis showing time and Y-axis showing fluorescence units. 

 

 

18S fragment 28S fragment 
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The mean RIN for the MS brain samples was 6.93±1.76 with on column 

treatment and 6.96±0.89 after 2nd TurboTM DNase treatment (Table 3.2.2).  

 

 
RNA Samples Sex 

Age at 
death 

pH 
Post mortem 

delay (h) 
RIN (DNase on 

column) 
RIN (Turbo 

DNase) 
 

a 

SPMS103 F 77 6,78-6,73 7 8.1 7.8 √ 

SPMS154 F 34 * 12 8.5 7.9 √ 

SPMS160 F 44 6,37-6,31 18 NA *  

SPMS179 F 70 6,39-6,36 20 2 *  

SPMS307 M 55 * 19 6.5 4.8  

SPMS311 F 45 * 22 3.6 *  

SPMS317 F 48 * 21 7.3 7.4 √ 

PPMS325 M 51 * 13 7.6 7.5 √ 

SPMS330 F 59 6,74-6,61 21 8.2 8.1 √ 

SPMS335 M 62 * 22 8 7.6 √ 

RPMS341 F 52 * 8 7.9 7.3 √ 

SPMS342 F 35 * 9 7.1 6.5  

SPMS352 M 43 * 26 6.8 6  

SPMS377 F 50 * 22 6.5 6.5  

b 
Co14 M 64 6,07-6,02 18 7.5 7.2 √ 

Co36 M 68 * 30 7.4 6.7 √ 

c 

TN_045/10_WHRI† * * * * 7.9 7.5 √ 

TN_34.02_Amsterdam * * * * 6.5 5.7  

LN_SD008/10_Edinburgh M  61 * 47 3.1 *  

Table 3.2.2 Post-mortem parameters and respective RINs: a) 14 MS brain 

samples; b) control brain samples; c) lymphoid tissue samples († kindly 
provided by Dr B. Hands from Centre for Experimental Medicine and 
Rheumatology, WHRI; * not evaluated; NA=RNA extremely degraded) (samples 
selected for further experiments are ticked in the last column)   
 
 
 
Some of my samples did not reach the RIN values requested despite all 

samples being processed in the same way. To understand the reason of this 

low level quality RNA I decided to evaluate peri and post-mortem events. 

Informations on agonal factors such as coma, hypoxia, pyrexia, seizures, 

dehydration, hypoglycemia, multiple organ failure, head injury, and ingestion of 

neurotoxic substances at time of death were missing. Alternatively, pH values 

as comprehensive result of these factors and post-mortem delay of the tissue 

blocks were taken into consideration. From the literature it is widely accepted 

that pH measurement is one of the most important parameters to correlate with 

RNA integrity (Atz et al. 2007; Durrenberger et al. 2010; Li et al. 2004; Mexal et 

al. 2006; Stan et al. 2006; Tomita et al. 2004). Average values of pH ranging 
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from 6.8 (6.5-7.1) to 6.3 (5.8–6.6) in control brains from various 

neuropathological collections have been described (Middleton et al. 2002; 

Torrey et al. 2000). In my samples the pH values were evaluated with two 

consecutive readings by an electronic pHmeter (Mettler Toledo MP220) after 

homogenizing 150 mg brain tissue in 1.5 ml ddH2O (pH=7.0). The pH values of 

my MS samples were in the 6.3-6.7 range and within the normal range instead 

surprisingly the control sample showed an acidic pH ~ 6.0. The results obtained 

with the bioanalyser and the post-mortem delay in my samples showed a small 

negative linear dependence (Pearson’s coefficient r=-0.24). A strong positive 

dependence (Pearson’s coefficient r=0.96) was shown, instead, correlating RIN 

with pH in the MS samples. Correlation coefficient that was drastically reduced 

considering the control sample (Co14) values in the analysis, indicating the 

presence of some other factor influencing the RNA integrity in this sample (table 

3.2.2; Fig.3.2.5).  
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a) 

 

 

b)          c) 

          
Figure 3.2.5 Correlation post-mortem parameters and RIN: a) almost no 
linear dependence was found between RIN values and post-mortem delay in 
MS (blu) and control (red) brain samples (r=-0.24); b) medium positive 
correlation between RIN and pH duplicates in all brain samples (r=0.43); c) 
strong positive correlation between RIN and pH duplicates when only MS brain 
samples without control sample (Co14) values were considered in the analysis 
(r=0.96). 

 

The samples selected for high quality RNA were 7 MS brain samples, 2 controls 

and 1 lymphoid tissue, the latter used as positive control. cDNA was generated 

from total RNA as detailed in chaper 2. To standardize my data reference genes 

were required to be expressed at constant level in the MS and control brain 

samples and that could be useful for comparison with lymphoid tissue as well. 

In literature the choice of reference genes is usually related to genes involved in 

cell metabolism and maintenance of cell function, called “housekeeping”, 

expressed at constant level in different experimental conditions and  able to 

eliminate the possible bias that could arise from sample processing changes 

Control sample values 
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mistaken for gene expression level changes. The candidate reference genes 

identified in my study were selected checking the results of a DNA chip study, 

measuring expression levels of 7000 genes from a pool of whole organs, that 

identified 47 transcripts expressed at the same level in 11 human adult and fetal 

tissues (Warrington et al. 2000) and from other qPCR relevant studies utilizing 

human post-mortem brain tissues (Coulson et al. 2008; Koppelkamm et al. 

2010). In a two step process I first identified the candidate genes and among 

the candidate genes I have selected 10 genes (Table 3.2.3), from different 

molecular pathways to avoid coregulation, for possible use in data normalization 

and examined the transcripts stability to determine the minimum number of 

genes required for reliable data normalization.  

Gene 

Symbol 
Full Name 

Transcript 

variant 
Pathway involved Ref Seq 

ENOX1 ecto-NOX disulfide-thiol exchanger 1 variant 1 plasma membrane transport NM_017993.3 

RNF20 ring finger protein 20 N.A. ubiquitination NM_019592.5 

RPL37A ribosomal protein L37a N.A. Subunit of ribosomal 60S NM_000998.4 

NUMA1 nuclear mitotic apparatus protein 1 N.A. Mitotic regulation NM_006185.2 

TTC1 tetratricopeptide repeat domain 1 N.A. 
molecular chaperones and 

protein folding 
NM_003314.1 

GAPDH 
glyceraldehyde-3-phosphate 

dehydrogenase 
N.A. carbohydrate metabolism NM_002046.3 

HMBS hydroxymethylbilane synthase variant 1 heme biosynthetic pathway NM_000190.3 

TBP TATA box binding protein variant 1 Initiation of transcription NM_003194.4 

DNMBP dynamin binding protein N.A. regulation of cell junctions NM_015221.2 

XDH xanthine dehydrogenase N.A. 
oxidative metabolism of 

purines 
NM_000379.3 

Table 3.2.3 Endogenous reference genes analysed for data normalization: 

Genes expressed in brain and lymphoid tissues were chosen and different 
metabolic pathways were selected to avoid coregulation.   

 

Once the genes were chosen, all primers were designed to anneal in gene 

regions of no secondary structure formation under the same temperature 

condition of 60°C and chosen to span one exon-exon boundary when possible. 

The 10 reference genes primers lengths were in the range of 18-24bp with a 

mean GC% content of 48% (range 36-60%) and a mean optimal annealing 

temperature of 58.8°C (range 57.2-60.5°C) compared with the 11 target genes 

primers lengths being in the range of 20-24 bp with a mean GC% content of 

48.9% (range 37.5-61.9%) and a mean optimal annealing temperature of 57°C 
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(range 55-62.4°C). The mean amplification product length in the reference 

genes was 103 bp (range 66-176 bp) and 88 bp (range 60-127 bp) in the target 

genes to minimize any RNA degradation bias and all the products spanned at 

least one exon-exon boundary to minimize eventual amplification of 

contaminant DNA (primers sequences list in table A.5-A.6 and design examples 

in Fig.3.2.6). The primers were checked for specificity of target and transcript 

variant against a nucleotide sequence database such as BLAST using Primer-

BLAST tool (Ye et al. 2012) (Fig.3.2.7).  
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Figure 3.2.6 Reference genes primers design for SYBR Green chemistry: I 
overcame the lower level of specificity due to the lack of fluorescent specific 
probe as in the TaqMan assays designing my primers in a very stringent way. 
The examples of the two reference genes reported show sequences targeted 
and their secondary structures at 60°C (temperature chosen for the annealing 
step), positions of exons within the gene, primers sequences and summary of 
amplicon length, melting temperatures (Tm) and optimal annealing 
temperatures (Ta OPT).   
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a) 

 
b) 

 
Figure 3.2.7 GAPDH and HMBS primers check against BLAST database: 
The GAPDH and HMBS primers were the only ones to retrieve multiple 
products. a) GAPDH primers amplified the same product from 2 variant 
transcripts of the target gene. b) HBMS primers amplified 3 variant transcripts 
from the target gene with 2 different products (inset: zoom primer sequence).     
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Primers concentration was investigated by an optimization matrix considering 

three different concentrations, 100 nM, 200 nM and 300 nM, and their 

combinations for the forward and reverse primers leaving the other conditions 

constant (Table 3.2.4 and Fig.3.2.8).  

 
 
 
 
 
 
 
 
 
 
 

Table 3.2.4 Optimization matrices for primers concentration: Matrix 

optimization with different primer combinations for reference genes. 

 

Quantification cycle (Cq) lowest values for the reference genes were obtained 

at primers concentration of 300/300 nM (Fig.3.2.8) and this concentration was 

used in setting my reactions (Fig.3.2.9). 

 
Figure 3.2.8 Optimization matrices results: Distribution of the mean Cq 
values of triplicates from different primer concentration combinations obtained 
for the different reference genes tested under identical thermal cycling 
conditions. The optimal primer concentration combination (lowest Cq value and 
no primer dimers) resulted 300/300 nM for the majority of the reference genes. 
NTC=no template control (undetermined values were represented with a Cq 
value=40). Error bars showing standard deviation of triplicates. Primer 
concentration combinations are given in nmol/L. 

Matrix [nM] 

a1 100/100 

a2 100/200 

b1 200/100 

a3 100/300 

c1 300/100 

b2 200/200 

b3 200/300 

c2 300/200 

c3 300/300 
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Figure 3.2.9 Reference genes expression range: cDNA from different MS 

(330, 103, 154, 317, 325, 335, 341), control (Co14, Co36) and lymphoid tissue 
(tonsil=TN) samples were used to set up multiple qPCR reactions for each of 
the reference genes on the same plate using the 300/300 combination. Plot 
showing the mean Cq from triplicate samples with primers combination of 
300/300 under the same thermal parameters. The XDH gene resulted 
undetermined in most of the samples (plotted as Cq=40). 

 

 

No double peaks of primer dimers by melting curves and no other products than 

the expected length amplicons by gel electrophoresis analysis were found 

confirming the specificity of the primers (Fig.3.2.10).  

 

           

 

 

330   Co36  TN  103    154   317    325    335   341   Co14 
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Figure 3.2.10 Reference genes dissociation curves and 2% agarose gel 
bands: Presence of primer dimers formation and additional non-specific bands 
were evaluated with dissociation curves and gel electrophoresis. At the end of 
the amplification cycles a thermal denaturation profile of the complex nucleic 
acid mixture was generated plotting the temperature on the X-axis versus the 
derivative of the fluorescence on the Y-axis. Gel wells were then loaded with the 
qPCR reactions from the plate. The dissociation curves are shown with the 
image of the relative qPCR amplicon generated and run on 2% agarose gel. All 
the reactions showed a single specific band of correct size (red arrow). 
Amplicon sizes are given in base pairs=bp. Marker molecular weight bands 
range of 300-50 bp was the same in all the samples. (XDH gene not 
represented has it didn’t amplify in any of my samples). 
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To identify the best reference genes the web-based RefFinder tool was used 

allowing to integrate different methods such as the model-based, NormFinder 

(Andersen et al. 2004), the pair-wise correlation, BestKeeper (Pfaffl et al. 2004) 

and Genorm (Vandesompele et al. 2002), and ΔCt approach (Silver et al. 2006). 

Considering  5 of the MS samples with highest RIN values, 2 control brain 

samples and a tonsil sample as positive control, and comparing the different 

approaches the best genes for stability value resulted slightly different 

depending on the method. The best candidate gene by comprehensive ranking 

resulted DNMBP (Table 3.2.5). 

 

 
Delta 
CT 

BestKeeper NormFinder Genorm 
Comprehensive 

ranking 

Most stable 
genes 

TBP DNMBP HMBS 
DNMBP/NUMA1 

DNMBP 

NUMA1 RNF20 DNMBP NUMA1 

 DNMBP NUMA1 TBP TBP TBP 

 HMBS HMBS NUMA1 RNF20 HMBS 

RANKING 
ORDER 

RNF20 TBP RNF20 TTC1 RNF20 

TTC1 TTC1 TTC1 HMBS TTC1 

 RPL37A RPL37A RPL37A RPL37A RPL37A 

 GAPDH GAPDH GAPDH GAPDH GAPDH 

Least stable 
genes 

XDH XDH XDH XDH XDH 

ENOX1 ENOX1 ENOX1 ENOX1 ENOX1 

Table 3.2.5 Candidate reference genes analysed with different methods  
 
 
 
 
Chapter discussion 

The immune system has evolved to optimize the encounter of the antigen-

presenting dendritic cells of the innate immunity with the antigen specific T and 

B cells of the adaptive immunity in structures called secondary lymphoid organs 

(SLOs) such as lymph nodes (LNs) and spleen that are organized in well 

defined areas rich in T or B cells. After birth such events can be resembled in 

the form of tertiary lymphoid organs (TLOs) in transplant rejection, autoimmune 

diseases and infections where persistence of the source of antigen leads to 

continuous need of leukocytes extravasation. The degree of internal 
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organization of an inflammation that becomes chronic differentiate between a 

chronic infiltrate organized as structured lesion such as a granuloma or as a 

TLO with defined areas rich in T or B cells. The presence of antigen specific B 

cells, T cells and dendritic cells in the TLOs can function as lymphoid tissue 

inducer cells and function as adaptive response to an increased demand of 

localized immune response (Neyt et al. 2012). The histopathology work in my 

study demonstrated the presence of lymphoid aggregates in some of the 

tissues supplied and led me to take the work further and utilize these samples 

to build my phage display library.  Hence, additional work will need to address if 

the aggregates found in the SPMS cases and in the PPMS cases contain the 

same cell types or if a different network is organized leading to define a 

functional TLO or another form of chronic inflammatory infiltrate. Better 

understanding of the environment in which the lymphoid cells can create their 

niches will provide possible targets for disrupting the inflammatory site. 

Furthermore, the micro-dissection experiments did show that it is possible to 

identify and isolate the lymphoid structure for further downstream applications 

such as RNA extraction for building antibody libraries or for qPCR. Apart from 

the ability to evaluate the quality of each sample used, this technique will allow 

better stratification of the tissues and will reduce the bias inserted in the library, 

for example in the library construction by exclusively pooling cDNA derived from 

the lymphoid structure of a similar form of disease. The use of a selected area 

will make the chances of obtaining a correct pairing of VH and VL much higher. 

The experiments performed showed that DNMBP is the most stable reference 

gene that can be used for brain and lymphoid samples. Nevertheless, in the 

current study I was unable to highlight increased gene expression of molecules 

required for specific lymphoid follicles processes (data not shown). The design 

of my qPCR experiments needs to be improved to better delineate the type of 

cytokines involved in the organization of the lymphoid network in the chronic 

lymphoid infiltrate and in the different types of disease. 
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Chapter 4: Immune phage-displayed libraries from B 

cells of MS patients’ brains  

 

Background: 

The phage display is one of the most successful technologies in generating 

antibodies of different specificities. The encounter of a naïve antigen-binding B 

cell with the target antigen, in some cases even in absence of CD4+ T cell 

signals, initiates the humoral immune response and leads to antibody 

production. B cells, after encountering an antigen, are subject to mutations, 

selection processes and clonal expansion constituting the molecular signature 

of an antigen-driven response as found in specific infections but also in tumors 

and autoimmune diseases of the nervous system and characterizing the B cell 

response in MS. Therefore, phage display human antibody generated from 

rearranged V-genes of the peripheral blood lymphocytes of immunised humans 

(Barbas et al. 1992; Mullinax et al. 1990) or from humans with disease will 

greatly enrich for the V-genes encoding antibodies complementary to the 

immunogen; thereby leading to the isolation of antibodies with excellent binding 

affinities (Barbas et al. 1994; Chester et al. 1994; Clackson et al. 1991). Indeed, 

antibody libraries from patients’ B cells were built to raise antibodies with high 

affinity. For example antibody libraries were built in systemic lupus 

erythematosus (SLE) (Zampieri et al. 2003), coeliac disease (CD) (Rhyner et al. 

2003) as well as in MS (Gabibov et al. 2011) and recombinant antibodies with 

specificity corresponding to natural autoAbs have also been raised.  

The novelty of this study was to analyse by use of phage display 

technique the type of repertoire present in the target diseased tissue: the 

brain  

The objective of my study was to construct immune phage antibody libraries 

from the B cells infiltrating the brain tissues of MS patients. My basic hypothesis 

was that MS auto-immune response is antigen driven. It is not clear what the 

triggers are but there are speculations that some viral infections, such as EBV 
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infection, are involved.  It is known from two other brain infectious diseases of 

the nervous system: subacute sclerosing panencephalitis (SSPE) and chronic 

varicella zoster virus (VZV) vasculopathy, that the Igs found in the CSF are 

directed against the respective causative agents, i.e. measles virus and VZV, 

with a typical signature of an antigen-driven immune response also present 

(Burgoon et al. 2003; Burgoon et al. 2005; Owens et al. 2001). Similarly, in 

germinomas, germ cell brain tumors, and in inflammatory myopathies the 

infiltrating B cells organize themselves in extranodal lymphoid follicles and after 

molecular characterization the results showed the molecular signature of an 

antigen-driven response (Bradshaw et al. 2007; Willis et al. 2009). In MS 

however, the exact causative agent is not known and the auto-immunity is 

possibly against multiple autoantigens. Building and analyzing the antibody 

repertoire from the MS brain could: a) shed light on the type of antibody 

repertoire and b) help us to further understand the relevant target by using 

these repertoires for selection against potential autoantigens.  
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Objective: 

To analyse the Ig repertoire derived from B cells present in the brain of MS 

patients searching for molecular characteristics of an antigen-driven immune 

response utilizing the phage display technique and comparing my results with 

the literature.  

Specific aims:  

a. Analysis of the VH repertoire: Family usage analysis was based on the 

knowledge that the heavy chain variable region (VH) segments can be 

classified into seven families, VH1-VH7, with a homology of at least 80% 

at nucleotide sequence level within the same family (Cook and 

Tomlinson 1995). The human immunoglobulin (VH) locus is located on 

three different chromosomes (Ch)  respectively Ch14q32.3, Ch15q11.2 

and Ch16p11.2, with the total number of VH segments in the human 

genome of 119 derived from 95 segments on Ch14, 8 segments on Ch15 

and 16 segments on Ch16 (Cook et al. 1994; Tomlinson et al. 1994). The 

7 families present 51 rearranged ORF genes (Cook and Tomlinson 1995) 

with different updates in the years so that 40 transcribed functional genes 

(Matsuda et al. 1998) and lately from 45 to 60 functional IGHV genes, 

due to allelic variants, were described (Boyd et al. 2010). The D locus is 

divided into 27 D segments that can be grouped in 7 families with four 

functional members in each family whilst the seventh has a unique 

functional segment, resulting in 25 functional genes (Corbett et al. 1997). 

In the JH locus were identified 6 genes (Ravetch et al. 1981; Ruiz et al. 

1999). 

b. Analysis of the VL repertoire: Family usage analysis was based on the 

knowledge that the Vk locus is composed of 51 potentially functional 

IGKV genes divided into 7 families and 3 clans (Barbie and Lefranc 

1998). The Vk locus contains a joining region with 5 functional genes and 

a unique IGKC gene. The Vλ locus was described to contain 51 genes 

with 30 functional ones organized into 10 families and 7 Jλ segments. 

Four of the joining genes are functional Jλ1, Jλ2, Jλ3, and Jλ7, the others 
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are non-functional (Williams et al. 1996). In the last few decades new 

genes have been described (Kawasaki et al. 1997) and at the moment 

the potential repertoire is composed of 73-74 genes divided into 11 

subgroups belonging to five clans with 33 functional genes (Pallares et 

al. 1998).  

c. Somatic hypermutations: V genes were analysed for presence, type and 

site of mutations within complementary determining regions (CDRs) and 

frameworks (FRs). The way in which B cells found in brain tissue can 

adapt to the antigen encountered is based on the process of affinity 

maturation. The B cell ability to recognize any possible antigen relies on 

two processes: during maturation on combinatorial diversity and 

junctional diversity due to somatic recombination; after antigen encounter 

on somatic hypermutation affecting the binding specificity and affinity of 

the receptor. 

d. Clonal expansion: Evaluation of clonally related sequences was 

performed by analysis of V genes rearrangements and comparison of 

CDR3 amino acid sequences. The antigen pressure selects the B cell 

clones able to survive with resulting clonal expansion of the precursors 

that have the highest affinity.  
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Methods: 

Samples were cut into pieces of 30 mg of brain tissue from each patient, 

homogenized and total RNA extracted by a single step protocol and first strand 

cDNA synthesized with oligo-dT (see Chapter 2 for further details). Briefly from 

the RNAs extracted a first cDNA pool of 3 patients was created and used as a 

source of VH gene fragments to construct the first antibody library. By cloning 

the PCR amplified VH gene into the pIT2 vector I first created a VH only library. 

This library was then used as a vector for cloning the light chain V regions from 

a cDNA pool of 14 patients to make the VH+VL library. In addition, the VH 

repertoire was expanded by including B cells from the additional 11 patients. In 

summary, I built two libraries of MS B cells one with VH repertoire only from 14 

MS patients and the other library with VH+VL repertoire from 3 and 14 patients, 

respectively (Fig.4.1).  
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Figure 4.1 Strategy of library construction: The library and consequently the 

repertoire analysed was built starting from cDNA of a pool of 3 MS patients 
heavy chain genes amplified and cloned in the in house vector 1-11E (pIT2) 
(supplied by Dr C. Hughes) using appropriate restriction sites. This first library 
was enriched with a pool of light or heavy chains from 14 MS patients obtaining 
2 distinct libraries: library VH+VL and library VH only.  

 

The V genes were amplified using a nested PCR approach and then cloned into 

the linearised plasmid after digestion with the appropriate enzymes: NcoI/XhoI 

for the VH inserts and SalI/NotI for the VL inserts. Initially, the VH region was 

amplified by a reverse family specific (VH1-7) primer in combination with an 

external µ or γ isotype specific forward primer. The VH insert to be cloned was 

then obtained amplifying the obtained PCR product with the family specific 

primer and with a different JH1-6 specific forward primer at the 3’ end. Both the 

primers contained the sequence for the restriction sites. Similarly, the Vλ and Vk 

and Jk1-5 and Jλ1-5 light chain specific primers were used to amplify Vk1-6 and 

Vλ1-6 families. The PCR products obtained were then digested and ligated into 
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the vector. After the libraries were built, clones were then sequenced by specific 

primers (details in chapter2 and fig.2.1)  

All the sequences obtained were compared with their respective germlines 

using the IMGT, the international ImMunoGeneTics database (Lefranc et al. 

1999; Lefranc et al. 2009; Ruiz et al. 2000), currently the most updated but, 

when necessary, checked with the databases VBase (http://vbase.mrc-

cpe.cam.ac.uk/) - compiled manually by analysing all human immunoglobulin 

variable gene segments and excluding all somatic mutations but not updated 

after 1997- and VBase2 (Retter et al. 2005). The VH and VL regions were 

analysed as nucleotide and amino acid sequences. Sequences were 

considered clonally related if they originated from the same VH gene segment 

and the amino acid sequence of the CDR3 was identical or different by only one 

amino acid even in presence of different somatic mutations in the VH region. 

The large amount of replacement mutations in the FRs was analysed taking into 

consideration the quality of the replaced aa residues (Zuckerman et al. 2010) 

and following the IMGT ranking of aa substitutions from very similar to very 

different. The results obtained analyzing my libraries were compared mainly 

with two data sets available from the literature: the expected repertoires (data 

distribution inferred from the germline genes if randomly expressed) and the 

observed repertoires. The latter was obtained by analyzing the transcriptome of 

healthy controls of different age groups with a view to reproduce the increased 

antigen challenge of the immune system with development.  

 
Statistics:  

The frequencies of V family usage observed in my library were compared by χ2 

goodness-of-fit test with the frequencies expected by random usage from the 

functional genes in the genome and from healthy controls finding significantly 

different distributions. The Student t-test was applied to evaluate differences in 

CDR3 lengths and two-tailed Fisher's exact test for the same data binned. The 

difference in median CDR3 length and the number of somatic mutations per 

base pair were evaluated by two-tailed Mann-Whitney test. P-values equal to or 

less than 0.05 were considered significant. All the calculations were performed 
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with Excel analysis tools (Office 2007, Microsoft Corporation, USA) or PASW 

Statistics 18 (SPSS Inc., IBM software, USA).       
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Results: 

V genes amplification 

The VH and VL products obtained by nested PCR reactions as detailed in 

paragraph 2.6.1 were analysed by running 10 µl volume in presence of 6x 

loading buffer on a 1% agarose gels (Fig. 4.2-4.5).  The resulted amplicons had 

a length of around 350-400 bp depending on the CDR3 length. The same steps 

were applied to amplify the light chains.  

 
Figure 4.2 1% Agarose of VH PCR products: 1 µg total RNA extracted from 

each of the 14 MS samples were pooled together and cDNA retrotranscribed 
starting from 2 µg of the pooled RNA. In a 2 step nested PCR reaction a first 
product of ~ 700 bp was obtained using an external primer amplifying the 
constant region (IgM or IgG), subsequentely the product was reamplified with a 
primer annealing to the JH region obtaining my target product of ~ 350-400 bp. 
In the photos 1% agarose gel electrophoresis run of 10 µl PCR products from 
the second step of the reactions for the VH family 1-7 and for IgM and IgG 
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Figure 4.3  1% Agarose gel of Vk PCR products: Amplicon length for the 
kappa variable region amplified with a family specific primer and a junction 
region primer was around 350 bp. The reactions in the lanes labelled Vk3 were 
repeated as I obtained negative results.  

 
a)                                                  b) 

       
Figure 4.4 1% Agarose gel of Vk3 PCR products: a) amplification of Vk3 

segments with external forward primer HuCk and b) nested with the Jk1-5 
primers (MS). The amplicon length decreased as expected from around 700bp 
to 350-400bp. 

 

400 
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Figure 4.5  1% Agarose gel of Vλ PCR products: Lambda variable region 
amplification by family specific and junction specific primers. Amplicon length 
expected around 350 bp.  

 

The attempt to amplify V genes from control brain samples gave negative 

results. The V genes amplified from the MS cases were used to build my 

antibody libraries and the diversity of the final VH+VL library was ~5.8*107 with 

an insert percentage of 82%. 

Analysis of the heavy chain repertoire:  

A total of 85 clones were picked for sequence analysis. The V genes were 

amplified and the PCR products derived from IgM and IgG variable regions 

analysed. After removal of duplicate sequences 47 unique sequences 

remained. All the sequences but one were productive (table 4.1).  
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a) 
ID 

IGVH 
gene 

FR1 (1-26) CDR1 (27-38) FR2 (39-55) CDR2 (56-65)  

1 1-24*01 QVQLVQSGA.EVKKPGASVKVSCKVS GYTL....TDLS MHWVRQAPGKGLEWMGS FDPE..DGET > 

2 
4-30-
4*01 

RCSCCESGP.GLVKPSQTLSLTCTVS GGSIS..SGDYY WSWIRQSPTKGLEWIGY IYYS...GST > 

3 1-46*01 QVQLLRSGA.EVKKPGASLKIYCKSS GNTF....TAYY MHWVRQAPGQGLEWMGV INPS..GGDT > 

4 1-69*02 QVQLVQSGA.EVKKPGSSVKVSCKAS GGTF....SSYI LIWVRQAPGQGLEWMGR IIPM..LNIP > 

5 1-69*10 QVQLVQSGA.EVKKPGASVKVSCKAS GATF....SSYA ISWVRQAPGQGLEWMGW VIPI..PHMP > 

6 1-69*06 QVQLVQSGA.EVQKPGSSVKISCKTS GYTF....SDYA ISWVRQAPGQGLEWMGG IIPV..FGTP > 

7 1-2*02 QVQLVQSGA.EVKKPGASVKVSCQAS GHTF....TAYY IHWVRQAPGQGLVWMGW INPD..GRGT > 

8 1-69*06 QVQLLQSGA.EVKKPGSSVKVSCKTS GGTF....SSYG FSWVRQAPGQGLEWMGG IIPM..FGTS > 

9 1-69*04 QVQLVQSGA.EVKKPGSSVKVSCKSS GDTF....RTYA ISWVRQAPGQGLEWMGR IIPV..LGIA > 

10 1-69*02 QVQLVQSGA.EVKKPGSSVKVSCKAS GGTF....STYT FSWVRQAPGQGLEWMGR IIPI..LGIT > 

11 1-46*01 QVQLLRSGA.EMKKPGASVKLSCKAS GYTF....IDHQ IHWVRRAPGQGLEWMGA INPR..GSTT > 

12 1-8*01 QVQLVQSGA.EVKKPGATVKLSCKAS GYTF....TSYD LNWVRQATGQGLEWMGW MIPN..NGNT > 

13 1-8*01 EVQLVQSGA.EVKKPGASVKVSCKAS GYTL....TSYD INWVRQASGQGLEWMGW INPN..TADT > 

14 2-70*01 QVNLRESGP.ALVKPKQTLTLTCTVS GFSLS..TSGMC VSWIRQPPGKALEWLAR IDWD...DDK > 

15 2-70*01 QVNLRESGP.ALVKPTQTLTLTCTFS GFSLS..TSGMC VSWIRQPPGKALEWLAR IDWD...DDK > 

16 2-5*01 QITLKESGP.TLVKPTQTLTLTCTFS GFSLS..TSGVG VGWIRQPPGKALEWLAL IYWN...DDF > 

17 2-5*10 QITLKESGP.TLVKPTQSLTLTCSFS GFSLS..ATGLG VGWIRQPPGRPLEWLAV IYWD...DEK > 

18 3-49*05 EVQLVESGG.GLVKPGRSLRLSCTAS GFTF....GDFS MSWFRQAPGKGLEWVGF IRSKTYGGTT > 

19 3-23*01 QVQLLRSGG.GSVQPGESLRLSCAVS GFTV....GSYA MSWVGQAPGKGLEWVSV ISGG..AGTT > 

20 3-33*01 EVQLVESGG.GVVQPGSSLRLSCAVS GFTF....SDYG MHWVRQAPGKGLEWVAV IWYD..GSHE > 

21 3-7*02 EVQLVESGG.DLVQPGGSLRLSCAAS GFTF....NTFW MTWVRQAPGRGLEWVAN INQD..EYER > 

22 3-11*05 QVQLVESGG.GLVKPGGSLRLSCAAS GFTF....SDYY MSWFRQAPGKGLEWLSY MSGN..SNYT > 

23 3-7*01 EVQLVESGG.GLVQPGGSLRLSCAAS GFAF....SGYW MSWVRQAPGKGLEWVAS IKQD..AGEK > 

24 3-11*01 EVQLVESGG.GLVKPGGSLRLSCAAS GFTF....DDYY MSWIRQVPGKGLECVSY IGHS..GDIV > 

25 3-30*03 EVQLVESGG.GVVQPGRSLRLSCAAS GFTF....ISYG MHWVRQAPGKGLEWVAV ISYD..GSIK > 

26 3-7*02 EVQLVESGG.GLVQPGGSLRLSCAAS GFTF....SSTW MSWVRQAPGKGLEWVAN IKSD..GSAK > 

27 3-49*04 QVQLVESGG.GLVQPGRSLRLSCKAS GFAF....GGYA MTWVRQAPGKGLEWVGL IRSKAYGGTT > 

28 1-69*04 QVQLVQSGS.EVKKPGSSVKVSCKAS GATF....SSYA ISWVRQAPGQGLEWMGW VIPI..PHMP > 

29 3-23*01 EVQLLESGG.GLVQPGGSLRLSCAAS GFTF....SSYA MSWVRQAPGKGLEWVSD ISAS..GGYT > 

30 3-7*02 EVQLVESGG.GLVQPGGSLRLSCVAS GVMF....SRQW MSWVRQAPGKGLEWVAN IKED..GSER > 

31 3-43*01 EVQLVESGG.VVVPPGGSLRLSCAAS GFIF....DDYT MHWARQGPEKGLEWVSL ISWD..SGFT > 

32 3-23*04 QVQLVESGG.GLAQPGESLRLSCVAS GFAL....NNFI MSWVRQAPGKGLEWVSS ITES...GNI > 

33 4-59*08 QVQLQESGP.GLLKPSETLSLTCTVS GGSI....SSDY WSWIRQPPGQTLEYIGY VYHS...GAT > 

34 4-59*01 QVQLQQSGP.GLVSPSETLFLTCSIS GGSM....KNFY WNWIRQSPGRGLEWIGH IYYS...GST > 

35 4-4*02 QVQLQESGP.GLVKPSGTLSLTCDVF GGSID...STYW WSWVRQPPGKGLEWIGE IYHS...GST > 

36 4-31*06 QVQLLQSGP.GLVKPSQTLSLTCTVS GGSIS..SGTYY WSWIRQHPGKGLECIGY IYDG...GST > 

37 3-23*01 QVQLLRSGG.GSVQPGESLRLSCAVS GFTV....GSYA MSWVRQAPGKGLEWVSV ISGG..AGTT > 

38 4-31*03 QVQLQESGP.GLVKPAQTLSLTCTVS GVSIS..TGGYY WTWIRQHPGKGLEWIGN IYYS...GRT > 

39 4-61*02 .VQLQESGP.RLVKPSQTLSLSCTVS GDSIT..SGSHF WTWIRQPAGKGLEWIGR LHTS...GST > 

40 1-69*02 QVQLVQSGA.EVKKPGSSVKVSCKAS GGTF....STYS FSWVRQAPGQGLEWMGR IIPI..LGIT > 

41 4-34*01 QVQLQQWGA.GLLKPSETLSLTCGVY GGSL....SGYF WSWIRQPPGKGLEWIGE IKES...GTT > 

42 4-31*03 QVQLQESGP.GLVKPSETLSLTCSVS GGSIS..NGDYY WSWIRQHPGKGLEWIGY ISYS...GST > 

43 3-7*02 EVQLVESGG.GLVQPGGSLRLSCAAS GFTF....SSTW MSWVRQAPGKGLEWVAN IKSD..GSAK > 

44 6-1*01 QVQLQQSGP.GLVMPSQTLSLTCAIS GDRVS..SNTAA WNWIRQSPSRGLEWLGR TYHRS.KWSN > 

45 6-1*01 QVQLQQSGP.GLVKPSQTLSLTCAIS GDSVS..STSAA WTWVRQSPSRGLEWLGR TYYRS.TWFN > 

46 5-51*03 EVQLVQSGA.EVKKPGESLEISCKTS GYTF....ITHW IAWVRQMPGKGLEWVGV IYPG..DTDT > 

‡ 1-2*02 QVQLLRSGA.EVKKPGASVKVSCKTF GYTF....TKYY MHWVRQAPGQGLEWMGW IDPS..SGDT > 
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b) 
 ID V gene and allele FR3 (66-104) CDR3 (105-117) 

> 1 IGHV1-24*01 IYAQKLQ.GRITMTEDRATDTAYMELSSLRSEDTAVYYC ARGMGYLIRYFDL 

> 2 IGHV4-30-4*01 SYNPSLQ.SRATISVDTSKNNFSLKLRSVTAADSARYYC VRGGYEVGRSGSVYGMDV 

> 3 IGHV1-46*01 RYTQKFQ.GRVAMTGDTSTSTVSLELTRLTSEDTAMYFC ASEVERRLVFDN 

> 4 IGHV1-69*02 NYAQKFE.GRVTLTADKSTSTAYMELRSLTSEDTAVYYC AGFCGTPNCDDV 

> 5 IGHV1-69*10 NYAQKFQ.GRVTIMADKSTDTAYLELSSLGSDDTAVYYC AYSQYYYDTSGPDSDFYYSYFMDV 

> 6 IGHV1-69*06 NYAQKFQ.GRVTIRADRSTTTVYMELSSLRSEDTAMYYC ARDPTRFTLFGRGEYYYGLEV 

> 7 IGHV1-2*02 NYVKKFQ.GRVTMTRDTSISTAYMELSSLRSDDTAVYYC ARGGASGGYDRPIDY 

> 8 IGHV1-69*06 NYAQKFR.DRVTISADKSTSTAYMELSSLRSEDTAVYYC ARGPLEFLWGSYRYEVFDH 

> 9 IGHV1-69*04 NYALKFQ.GRLTITADKATTTAYMALTSLGSEDTAVYFC ARDRDTSGSNDVFDI 

> 10 IGHV1-69*02 NYAQKFQ.GRVTITADKSTTTVYMDLSSLRSEDTAVYYC ASIGDNTGYFREAFTYYFDY 

> 11 IGHV1-46*01 TYAQKFQ.GRVTLTTDPSTTTVYMELSRLMSEDTARYIC ARATPYTIFGVSTYYRYFMDV 

> 12 IGHV1-8*01 GYAPKFQ.GRVAMTRDTSISTAYMELSSLTSEDTAVYYC VRGQFGYCSSPSCPEY 

> 13 IGHV1-8*01 DYAQNFR.GRVTMTTNSSIDTAYMVLSSLTFEDTAVYYC ARGGHIVGSTTDYYYALDV 

> 14 IGHV2-70*01 FYSTPLK.TRLTVSRDSSNNQVVLTMTDMDPVDTGTYYC ARMGPDNRAWYRFDY 

> 15 IGHV2-70*01 YYTTSLK.TRLTISKDTSKNQVVLTMTNMNPVDTGTYYC ARLIWFGESVFPTRGMDV 

> 16 IGHV2-5*01 HYSPSLK.SRLTITKDTSKNQVVLTLTNMDPVDTATYYC ARRLSHRYCSRGSCPNWFDP 

> 17 IGHV2-5*10 HYSSSLR.NRVSIVKDTSENHVVLTLTNVDPVDTATYYC ARLNVVVAPRFDR 

> 18 IGHV3-49*05 EYAASVK.DRFTISRDDSKSIAYLEMSSLKTEDTAIYYC ARVLKAPQGYSGSWYPVHY 

> 19 IGHV3-23*01 YYADSVK.GRFTISRDKSKNTLFLEISSLRAEDTAVYYC ASHGDYVRHYYFHMDV 

> 20 IGHV3-33*01 YYADSVK.GRFTISRDNSKNTLYLQMNSLRAEDTAVYYC AKVGDSDWGTSFFDY 

> 21 IGHV3-7*02 YYVDSVK.GRFTISRDNDRNSLYLEMNSLTADDTAVYYC VRQSGYLYSSSWGLHNYMWYLDV 

> 22 IGHV3-11*05 NYADSVK.GRFTLSRDNAKKLLYLQMNSLRAEDTALYYC ARNLYSSTWTGVGDY 

> 23 IGHV3-7*01 YYVDSVK.GRFAISRDNAKNSLYLQMNSLRGEDTAVYYC ARVRDNISIVGVVLNIGAFDI 

> 24 IGHV3-11*01 YYADSVR.GRFTISRDNANNSLFLQMNSLRAEDTAVYYC VRLIYAYGRDY 

> 25 IGHV3-30*03 YYADSVK.GRFTISRDNSKNTLFLQMNSLRAEDTAVYYC AKDHYYDSSVPAYYFDY 

> 26 IGHV3-7*02 DYVDSVR.GRFTISRDNAENSLSLQMNSLRAEDTAVYYC ARGYL 

> 27 IGHV3-49*04 DYAASVK.GRFSISRDDSKSLAYLQMNSLTTEDTAVYYC TRVLGYTYDKLDYFDS 

> 28 IGHV1-69*04 NYAQKFQ.GRVTIMADKSTDTAYLELSSLGSDDTAVYYC AYSQYYYDTSGPDSDFYYSYFMDV 

> 29 IGHV3-23*01 AYADSVK.GRFTISRDNSKNTLYLQMNSLRAEDTAVYYC AKSYSAFDY 

> 30 IGHV3-7*02 SHAGSVE.GRFTISRDNAKNSLYLQMNSLRAEDTAVYYC ALGPY 

> 31 IGHV3-43*01 YYADSVK.GRFTISRDNTKNSLSLQMDSLKTEDSGLYYC GKGISIGAVADAVDV 

> 32 IGHV3-23*04 FYADSVR.GRFTISRDISMNTLYLQMNNLRAEDTARYYC VPRRTASWFDP 

> 33 IGHV4-59*08 NYNPSLK.SRVSISIDTSKNQFSLRLTSVTAADTAFYYC ARRRAGAHLYGDYQNWFDP 

> 34 IGHV4-59*01 NYNPSLK.SRVTISLDASNRQLSLRLASVTAADTAVYYC AGGTSPWSSEYYFYF 

> 35 IGHV4-4*02 NYNPSLK.SRVTIPIDKSNNQFFLKMSSVTAADTAIYYC ARIQYCTDITCFYDWFDP 

> 36 IGHV4-31*06 YYNPSLM.SRATISIDTSKNQFSLKLSFVTAADTAVYYC ARGKWSGSYKGDAFDI 

> 37 IGHV3-23*01 YYADSVK.GRFTISRDKSKNTLFLEISSLRAEDTAVYYC ASHGDYVRHYYFHMDV 

> 38 IGHV4-31*03 NYNPSLK.SRVTVSVDTSKNQFSLRLTSVTAADTAMYYC ARDSSGHFEALNI 

> 39 IGHV4-61*02 NYNPSLK.SRVSISMDASKNQFSLNVSSVTAEDTAVYYC AGEGYCRSSTCYNKIHTNWFDL 

> 40 IGHV1-69*02 NYAQKFQ.GRVTITADKSTTTVYMDLSSLRSEDTAVYYC ASIGDNTGYFREAFTYYFDY 

> 41 IGHV4-34*01 NYNPSLK.SRVSISEDTPKNQFSLHLRSVTAADTAVYYC ARGYTGVVADY 

> 42 IGHV4-31*03 YYNPSLK.SRVTISVDTSKNQFSLKLSSVTAADTAVYYC ARSEELDY 

> 43 IGHV3-7*02 DYVDSVR.GRFTISRDNAENSLSLQMNSLRAEDTAVYYC ARGYL 

> 44 IGHV6-1*01 DYAVSVK.SRIAISPDTSKNQFSLQLNSVTPEDTAVYYC ARHGNWASNFDS 

> 45 IGHV6-1*01 DYAVSVK.SRATIKSDTSNNQFSLHLKSVTPEDTAVYYC AREVRNSWYDP 

> 46 IGHV5-51*03 RYSPSFQ.GQVSISVDRSTATAYLRWVRLKASDTAMYYC ARQPYDTAGYFATGDKWYGMDV 

> ‡ IGHV1-2*02 KIHRSFR.AGSP*PGTRPSARPTWS*TD*LLTTRPFITV RGPPRVRHMT 

Table 4.1 VH amino acid sequences: the table shows the 47 amino acid 
sequences of the VH clones analysed in my study. a) amino acid sequences of 
the FR1, CDR1, FR2 and CDR2; b) amino acid sequences of FR3 and CDR3. 
IMGT numbering was followed and amino acid changes with the closest 
germline are highlighted in red. The non productive sequence is shown with a 
grey background. 
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The amplified VH sequences showed an identity with their respective germlines 

in the range of 85.42-97.94% and the JH segments an average of 84% identity 

(range 68.3-97.4%). The degree of identity found leads one to think that the 

majority of the sequences were derived from an immune rather than a naïve 

repertoire. The usage of VH families was analysed and compared with the 

expected usage from randomly expressed germline genes and with studies 

describing the observed usage in the transcriptome of healthy controls. In fact, 

the analysis of healthy individuals Ig repertoire of different age groups and 

derived from different B cell populations by various techniques did show that the 

different subgroups are not used randomly. From all the studies available I have 

compared my repertoire with the frequencies of the VBase expected germlines 

detecting significantly different distributions (p ≤ 0.05) (Fig.4.6).  
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Figure 4.6 VH usage observed vs expected: The frequency of each family 
was calculated and compared with that of previously reported studies and to 
expected values as well. VH genes usage in brain samples and as expected 
from germline genes inferred randomly expressed (data adapted from Matsuda 
et al. 1998 and from VBase database). The distribution was significantly 
different from the VBase expected germline usage (p ≤ 0.05) but not from the 
usage described in Matsuda’s paper.  
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My repertoire was also compared with the existing literature data obtained from 

peripheral blood of 11 healthy adults and from cord blood of 2 healthy newborns 

transcriptomes (Boyd et al. 2010; Prabakaran et al. 2012) (Fig.4.7).   

Past studies have analysed VH family usage from peripheral blood of 1 young 

(25y) and 5 elderly individuals (≥65y) by construction of cDNA libraries from IgM 

and IgG variable regions (Wang and Stollar 1999), by cDNA libraries from IgM 

of 2 adults (Huang et al. 1992), from 3 adults by anchored PCR-Elisa (Rassenti 

et al. 1995), from 1 female donor by single-cell PCR (Brezinschek et al. 1995), 

by in-situ hybridization (Zouali and Theze 1991), and lately from 11 healthy 

individuals (Boyd et al. 2010)  and 2 newborns cord blood (Prabakaran et al. 

2012) by high-throughput DNA sequencing. My pool of 14 MS patients had a 

different distribution from the expected germline distribution (p ≤ 0.05) but also 

from the adults (p ≤ 0.001; VH7 was not considered in the test as it was equal to 

zero in both distributions) and newborns’ (p=4.2E-181) transcriptomes 

distribution (Fig.4.7).   
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Figure 4.7 VH usage MS vs Healthy Controls transcriptome: VH family 

distributions in productive sequences of brain samples and of 11 healthy adults 
PBLs and 2 newborns cord blood (data adapted from Boyd et al. 2010 and 
Prabakaran et al. 2012); statistically significant differences were observed 
between adults (p ≤ 0.001), newborns (p=4.2E-181) and MS repertoires. 
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Continuing on the loop 3 of the heavy chain variable domain I analysed the D 

segments. In my sample I have identified 19 different D segments out of the 25 

functional D segments. D3 was used in more than 30% of the sequences 

analysed, it is significantly higher than expected from germline random 

expression (p ≤ 0.001) (Fig.4.8 and Fig.4.9): D3-22 (16%), D2-2 (11%), D3-3 

(9%) and D6-13 (9%) and in just one sequence I identified D7-27 the only 

member of the D7 family.  
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Figure 4.8 D segments usage: The most used segment in my pool was D3-22 

(15% of recombinations) especially used in conjunction with VH1 family 
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Figure 4.9 D Usage: The rearranged sequences of the MS pool presented a 

significantly different utilization from the expected distribution based on the 
germline genes of D genes with D3 and D2 being the most represented (p ≤ 
0.001)   
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The last locus that interacts in the rearrangement of the CDR3 of the 

immunoglobulin antigen binding site is the JH. The segment is divided into six 

families with as many functional genes. The analysis of the usage of these 

segments from PBLs of adult and infant controls has shown a preferential 

utilization of the JH4 family (Minegishi et al. 1994; Yamada et al. 1991). The 

same bias was found in my pool with an usage of JH4 in almost half of the 

sequences analysed (48.9%), JH6 (22.2%), JH5 (17.8%) and JH3 (11.1%). I did 

not find any sequence using JH1 or JH2 in my VDJ rearrangement (Fig.4.10).   
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Figure 4.10 JH Usage: The JH usage of the pool was biased towards the 
specific utilization of JH4 gene as well as in the controls.  
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Analysis of the light chains repertoire: 

In my analysis I have sequenced 40 light chains amplicons of which 30 were 

kappa and 10 lambda. After removal of duplicate sequences of the kappa ones 

15 unique functional sequences and 1 pseudogene (IGKV2-29*01 P) remained 

(table 4.2).  

 

a) 
ID Vk gene FR1 (1-26) CDR1 (27-38) FR2 (39-55) 

CDR2 
(56-65) 

 

1 IGKV6-21*01 EIVLTQSPDFQSVPPKETVTITCRAS QSV......GGS LHWYQQKSGQSPKLLIR YG.......S > 

2 IGKV1-39*01 DIQMTQSPSSLSASVGDRVTITCRAS QSI......SSY LNWYQQRPGRAPKLLIY AA.......S > 

3 IGKV1-39*01 NIQMTQSPSSLSASVGDRITITCQAS QDI......YNY LNWYQQQPGKAPNLLIY AA.......S > 

4 IGKV2-28*01 EIVLTQSPLSLPVTPGEPASISCRSS QSLLHS.SGYNF LDWYLQRPGQSPQLLIY LG.......S > 

5 IGKV2D-29*01 .EIVLTQPLSLSVTPGQPASISCRSS QSLLHS.DGKTY LYWYLQRPGQAPQLLIY EV.......S > 

6 IGKV4-1*01 DIVMTQSPDSLAVSLGERATINCRSS QSVL.....YSS LAWYQQKSGQPPKMLIY GA.......S > 

7 IGKV5-2*01 ETTLTQSPAFMSATPGDKVNISCKAS QDI......DDD MNWYQQKPGEAAIFIIQ EA.......T > 

8 IGKV2-29*02 DIVMTQTPLSLSVTPGQPASISCKSS QSLLHS.DGKTY LFWYLQKPGQSPQLLIY EV.......S > 

9 IGKV1-39*01 DIQMTQSPSSLSASVGDRVTITCRAS QSI......SSY LNWYQQKPGKAPKLLIY YA.......S > 

10 IGKV2-30*01 EIVLTQSPLSLPVTLGQPASFSCRSS QSLVFS.DGNTY LNWFQQRPGQSPRRLIH KV.......S > 

11 IGKV5-2*01 ETTLTQSPAFMSATPGDKVNISWKAS QDI......DDD INWNQQKPGEGAIFIIQ EA.......T > 

12 IGKV1-12*01 DIQMTQSPSSLSASVGDRVTITCRAS QGI......SSW LGWYQQKPGKVPKLLIY AA.......S > 

13 IGKV4-1*01 DIVMTQSPDSLAVSLGERATINCKSS QSVFSSSSNKNY LAWYQQIPGQPPKLLIY WA.......S > 

14 IGKV1-33*01 NIQMTQSPPSLSASVGDRVTITCQAS QDM......SDH LNWYQQKPGKVPKLLIS DA.......S > 

15 IGKV2-28*01 DIVMTQSPLSLPVTPGEPASISCRSS QSLLHT.NGYNY LDWYLQRPGQSPQLLIY LG.......S > 

‡ IGKV2-29*01 P DIVMTQTPLSLSVTPGQPASISCKSS QTLLHS.DGKTY LYWYLQKPGQSPQLLIY EV.......S > 

 

            b) 
 ID Vk gene  FR3 (66-104) CDR3 (105-117) 

> 1  IGKV6-21*01  QSFSGVP.SRFSGSR..SGTDFTLTISGLEAEDAATYFC HQSSSLPFT 

> 2  IGKV1-39*01  NLQSGVP.SRFSGSG..SGTDFTLTISSLQPEDFATYYC QQYKSYSLT 

> 3  IGKV1-39*01  TLQSGVP.SRFSGSG..SGTDFTLTISSLQPEDFATYYC QQSYSTPLT 

> 4  IGKV2-28*01  NRASGVP.DRFSGSG..SGTDFTLKISRVEAEDVGVYYC MQALQTPQVT 

> 5  IGKV2D-29*01  NRFSGVP.ARFSGSG..SGTDFTLKISRVEAEDVGVYYC MQSIQDPLFT 

> 6  IGKV4-1*01  SRESGVT.DRFSGSG..SGTDFTLTISSLQAEDVAVYYC QQYYTAPRT 

> 7  IGKV5-2*01  TLVPGIP.PRFSGSG..YGTDFTLTINNIESEDAAYYFC LQHDNFPIT 

> 8  IGKV2-29*02  SRFSGVP.DRFSGSG..SGTDFTLRISRVEAEDVGVYYC MQGVHLPLT 

> 9  IGKV1-39*01  SLQSGVP.SRFSGSG..SGTDFTLTISSLQPEDFATYYC QQAANYPNT 

> 10  IGKV2-30*01  DRDSGVP.DRFSGSG..SGTDFTLKISRVEAEDVGVYYC MQGTHWPPS 

> 11  IGKV5-2*01  ILVPGIS.PRFSGSG..YGTDFTLTINNIESEDAAYYFC LQHDNFPFT 

> 12  IGKV1-12*01  SLQSGVP.SRFSGSG..SGTDFTLTISSLQAEDSATYYC QQADSFPT 

> 13  IGKV4-1*01  TRDSGVP.DRFSGSG..SGADFTLTISSLQAEDVAVYYC QQYFSIPLT 

> 14  IGKV1-33*01  TLETGVP.SRFGGRG..SGTEFNFTISRLQPEDIATYYC QQSDKLPLT 

> 15  IGKV2-28*01  NRASGVP.DRFSGSG..SGTDFTLKIGRVEAEDVGIYYC MQGLRAPWT 

> ‡  IGKV2-29*01 P SRFSGVP.DRFSGSG..SGTDFTLKVSRVEAEDVGVYY* MQPIHLPIT 

Table 4.2 Vk amino acid sequences: The table  shows the 15 amino acid 
sequences of the Vk clones analysed in my study and 1 pseudogene. a) amino 
acid sequences of the FR1, CDR1, FR2 and CDR2; b) amino acid sequences of 
FR3 and CDR3. IMGT numbering was followed and amino acid changes with 
the closest germline are highlighted in red. The pseudogene sequence is shown 
with a grey background 
 

A VJ rearrangement contained a rarely seen A26 functional gene and no VK3 

family members were found. With the limitations of the low number of 
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sequences analysed my pool differed from the expected germline distribution 

and from the adult and neonatal repertoire as Vk2, Vk4 and Vk5 occurred 

significantly more frequently (p ≤ 0.001) (Fig.4.11 and Fig.4.12). 
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Figure 4.11 Vk Usage: In the MS pool the family Vk3 was not found compared 

with an expected high expression in the adult repertoire; significantly more 
frequent were the Vk2, Vk4 and Vk5 families (p=1.1E-48, df=5). 
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Figure 4.12 Vk segments usage: Distribution of specific Vk genes 
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The sequence analysed presented joining segments of all 5 families with JK4 

being the most represented and Jk3 the least expressed (Juul et al. 1997; Klein 

and Zachau 1995). Jk4 and Jk5 were more frequent compared with the 

previous literature (Fig.4.13). 
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Figure 4.13 Jk Usage: MS pool JK usage with JK4 resulting the most frequent 
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The 10 different Vλ clones analysed were all functional (Table 4.3).  

a) 
ID Vlambda gene FR1 (1-26) CDR1 (27-38) FR2 (39-55) CDR2 (56-65)  

1 V6-57*01 NFMLTQPHS.VSESPGKTVTISCTGS SGSI....ASNY VLWYQQRPGSAPITIIY ED.......N > 

2 IGLV1-51*01 QSVLTQPPS.LSAAPGQRVTISCSGD SSNI....GNAY VSWYQKFPGAAPRLLIY DN.......N > 

3 IGLV6-57*01 NFMLTQPHS.VSESPGKTVTISCTGS SGSI....ASNY VQWYQQRPGSAPTTVIY ED.......N > 

4 IGLV1-40*01 QSVLTQPPS.VSGAPGQRVTIACTGS SSNI....GTYD VHWYQQLPGTAPKLLIH SN.......T > 

5 IGLV6-57*01 NFMLTQPHS.VSESPGKTVTISCTRS SGSI....ASDY VQWYQQRPGSSPSTIIY ED.......V > 

6 IGLV3-21*01 QAVLTQPSS.VSVAPGQTAKVTCGGD NIW......SKS VHWYQQKPGQAPVLVIH YD.......K > 

7 IGLV4-69*01 QVILTQPPS.ASASLGASVKLTCTLS SGHS.....NSA VAWHQQLPERGPRYLMN VNSD...GSH > 

8 IGLV1-47*01 SYVLTQPPS.ASGTPGQRVTISCSGS RSNI....GSNY VCWYQQLPGAAPKLLIY NS.......D > 

9 IGLV6-57*01 NFMLTQPHS.VSESPGKTVTISCTRS SGSI....ASYY VQWYQQRPGSSPTTVIY ED.......N > 

10 IGLV3-19*01 SSQLTQDPA.VSVALGQTVRITCQGD SLR......SYS ASWYQQKPGQAPLLVIY GE.......N > 

 

           b) 
 ID Vlambda gene FR3 (66-104) CDR3 (105-117) 

> 1 IGLV6-57*01 QRPSGVP.DRFSGSIDSSSNSASLTISGLKTEDEADYYC QSYDSSNHWV 

> 2 IGLV1-51*01 KRASGIP.ARFSGSK..SGTSATLAITGLQTGDEADYYC GTWDSSLSV 

> 3 IGLV6-57*01 QRPSGVP.DRFSGSIDSSSNSASLIISRLKTEDEADYYC QSYDSANLWV 

> 4 IGLV1-40*01 NRPSGVP.DRFSGSK..SGTSASLAITGVQAEDEADYYC QSYDSSLSGSRV 

> 5 IGLV6-57*01 RRPSGVP.ARFSGSIDRSSNSASLTISGLKTEDEADYYC QSYDSSTYV 

> 6 IGLV3-21*01 ERPSGIP.ERFSGSN..SEDTATLTISGVESGDEADYYC QVWDSDYDHRV 

> 7 IGLV4-69*01 NKGDGIP.DRFSGSS..SGAERYLIISRLQSEDEADYYC QTWDTGTV 

> 8 IGLV1-47*01 HRPSGVP.DRFSGSR..SGTSASLAISGLRSEDEADYYC AAWDDSLSGHWV 

> 9 IGLV6-57*01 HRPSGVP.DRFSGFIDSSSNSASLTISALKTEDEADYYC QSYDSNNQV 

> 10 IGLV3-19*01 DRPSGIP.DRLSGSR..SGNTASLTITGAQAEDEADYYC NSRDSSTIHLI 

 

 

The Vλ6 family represented half of the sequences analysed which is a subgroup 

rarely seen in previous PBLs studies; these studies include analysis of 5 cDNA 

libraries from 4 healthy adults (Ignatovich et al. 1997) or by single-cell PCR in 2 

adults (Farner et al. 1999) and 3 newborns (Richl et al. 2008) where Vλ1 and 

Vλ2 are the families most prominent. Comparing the frequencies of Vλ usage 

observed in my library with the frequencies expected by random usage from the 

functional genes in the genome I found significantly higher frequencies Vλ6 and 

no expression of Vλ2 (Fig.4.14). The JL3 family was represented in 6 unique 

functional sequences out of 10.  
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Figure 4.14 V Lambda Usage: The frequency of λ6 family was the highest in 
my MS pool compared with functional known germline genes (p=4.8E-78) and 
previous studies on adult and newborn PBLs (no other calculations were 
performed due to the low number of sequences analysed). 
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- Analysis of mutation and substitution patterns 

 

Heavy chain CDR3 mutation analysis 

The VH-CDR3s were analysed for length diversity, amino acid (aa) composition 

and net charge according to the IMGT unique numbering (positions considered 

105-117).  

 
ID 

CDR3 (105-117) ID CDR3 (105-117) 

26 ARGYL 19 ASHGDYVRHYYFHMDV 

30 ALGPY 27 TRVLGYTYDKLDYFDS 

43 ARGYL 36 ARGKWSGSYKGDAFDI 

42 ARSEELDY 37 ASHGDYVRHYYFHMDV 

29 AKSYSAFDY 25 AKDHYYDSSVPAYYFDY 

24 VRLIYAYGRDY 2 VRGGYEVGRSGSVYGMDV 

32 VPRRTASWFDP 15 ARLIWFGESVFPTRGMDV 

41 ARGYTGVVADY 35 ARIQYCTDITCFYDWFDP 

45 AREVRNSWYDP 8 ARGPLEFLWGSYRYEVFDH 

3 ASEVERRLVFDN 13 ARGGHIVGSTTDYYYALDV 

4 AGFCGTPNCDDV 18 ARVLKAPQGYSGSWYPVHY 

44 ARHGNWASNFDS 33 ARRRAGAHLYGDYQNWFDP 

1 ARGMGYLIRYFDL 10 ASIGDNTGYFREAFTYYFDY 

17 ARLNVVVAPRFDR 16 ARRLSHRYCSRGSCPNWFDP 

38 ARDSSGHFEALNI 40 ASIGDNTGYFREAFTYYFDY 

7 ARGGASGGYDRPIDY 6 ARDPTRFTLFGRGEYYYGLEV 

9 ARDRDTSGSNDVFDI 11 ARATPYTIFGVSTYYRYFMDV 

14 ARMGPDNRAWYRFDY 23 ARVRDNISIVGVVLNIGAFDI 

20 AKVGDSDWGTSFFDY 39 AGEGYCRSSTCYNKIHTNWFDL 

22 ARNLYSSTWTGVGDY 46 ARQPYDTAGYFATGDKWYGMDV 

31 GKGISIGAVADAVDV 21 VRQSGYLYSSSWGLHNYMWYLDV 

34 AGGTSPWSSEYYFYF 5 AYSQYYYDTSGPDSDFYYSYFMDV 

12 VRGQFGYCSSPSCPEY 28 AYSQYYYDTSGPDSDFYYSYFMDV 

 

The VH-CDR3 lengths varied in the range of 15 and 72 bp (mean 47.4 bp) 

representing 5 to 24 aa residues, with an average of 16 ± 6 aa residues 

(Fig.4.15). The 67.4% of the VH-CDR3s resulted having a length >15 aa.  

Comparing my data with the repertoire of a female healthy control (Brezinschek 

et al. 1995) the average CDR3 lengths resulted significantly different between 

the repertoires: 48 base pairs (bp) ±14 (mean±SD), compared with the healthy 

control repertoire, 41bp±13 (p=0.02; two-tailed distribution). Ranking the VH-

CDR3 lengths, there was a statistically significant difference between the MS 

pool and the healthy control repertoire (p=0.021). The usage of CDR3 lengths in 

the range of 60-72 was significantly higher (p=0.007) in the MS pool supporting 
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the bias towards longer CDR3 found in autoimmune diseases (Yurasov et al. 

2005)  (Fig.4.16).  
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Figure 4.15 Distribution lengths VH CDR3: CDR3 lengths spectrum derived 

from the sequences analysed.  The distribution of the CDR3 lengths was almost 
the same between the CDR3 ≤ 15 aa (47.8%) and the CDR3 > 15 aa (52.2%). 
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Figure 4.16 Comparison lengths VH CDR3 healthy vs MS: The distribution of 

the CDR3 lengths in bp of 46 productive sequences from my MS pool was 
compared with the distribution derived from 71 productive sequences of a 
female healthy donor PBLs (data adapted from Brezinschek HP 1995). The 
range 61-72 bp was statistically higher than control *(binned data analysed by 
two-tailed Fisher’s exact test; p=0.007). 
 
 

* 
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Furthermore, the status of mutations in my rearrangements from the MS pool 

was analysed. In my unique rearrangements I analysed 12990 nt and found 860 

total mutations with a total frequency (mutations/bp) of 6.62% of which 75% 

were replacement mutations and a replacement to silent mutation ratio (R/S) of 

2.96. The mutation frequency observed in my sample was significantly higher 

(p≤0.001; Yates correction applied) than the expected frequency of a VH gene 

(Insel et al. 1995) and from the frequency observed in PBLs from healthy 

controls (Harp et al. 2007). The comparison of the number of total and 

replacement mutations per base pair in the CDRs was significantly higher than 

in the FRs (respectively p≤0.001; p≤0.001). The overall distribution of the 

mutations across the genes showed that the majority were concentrated within 

the CDR2 (11.8%) and CDR1 (10%) compared with the FR average (5.4%) and 

with the highest ratio detected in the CDR2 (R/S=6.6). The sequences of the 

VH3 family presented the highest R/S ratio among the other families having a 

CDR R/S (CDR1+CDR2) equal to 10.12 compared to a FR R/S 

(FR1+FR2+FR3) equal to 1.78 (Fig.4.17). 
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Figure 4.17 VH family distribution of R/S ratio: The distribution in the 

different families was heterogeneous with VH2 and VH4 having almost the 
same silent replacement ratio in CDRs and FRs. 
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In  VH-CDR3 the amino acid usage was mainly tyrosine (13%), asparagine 

(10%), glycine (9.57%), alanine and arginine (8.71%) with more than 30% 

hydrophobic residues. The net charge composition of the VH-CDR3 was 

calculated (protein calculator 3.3) at pH=7.36 and the majority (73%) of the 

rearrangements had an acidic charge, range from -0.1 to -4.2. The range found 

was the same range of mature PBLs from controls and of previous studies on 

CSF B cells from PwMS (Harp et al. 2007). The distribution showed only a slight 

negative asymmetric tail (Fig.4.18).  
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Figure 4.18 Net Charge VH CDR3: In the sequences derived from the MS pool 
the vast majority of the CDR3s were neutrally charged or slightly charged 
(56%).  

 

The somatic hypermutation process is a two step process with AID activity for 

C/G followed by DNA polymerase η for A/T. The non-random targeting of the 

hypermutational machinery has also been shown to have preferential nucleotide 

sequence motifs, i.e. RGYW/WRCY (R=A/G, Y=C/T, W=A/T) and WA/TA 

(Dorner et al. 1998; Rogozin et al. 2001).  In my study I analysed CDRs and 

FRs of the heavy chain repertoire for non-silent mutations and the vast majority 

of mutations were within the classical targeting motifs with around 52% of all 

replacement mutations of the CDRs and around 43% of the FRs. The intact 

targeting of the typical hotspots in the RGYW/WRCY motifs have been 

described previously (Harp et al. 2007) in MS CSF B cell repertoires (Fig.4.19). 

The percentage of mutations targeting the motifs were determined for CDRs 

and FRs in the clones analysed. The mutations in the CDRs were: 27% WA, 
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26% TW, 35% RGYW and 18% WRCY; in the FRs the percentages were: 20% 

WA, 10% TW, 23% RGYW and 20% WRCY. 

 

Figure 4.19 Mutations: In my heavy chain repertoire the majority of 

replacement mutations within CDRs (~52%) and FRs (~43%) targeted the 
RGYW/WRCY motifs with no significant differences between the two regions.    

 

Furthermore, an antigen driven selection can determine an antibody gene 

mutation pattern. In MS a mutation pattern has been found when analysing the 

VH4 family which is known to be over utilized by CSF B cells. The analysis 

revealed 14 codons with an increased number of mutations in hot spots 31b, 

32, 40, 56, 57, 60, 81 and 89 or a decreased number of mutations in cold spots 

30, 43, 52, 77, 82, 82a and representing a potential mutational signature of 

conversion from CIS to CDMS (Cameron et al. 2009). My libraries were built 

from patients with progressive MS so I wanted to test the mentioned VH4 

mentioned codons for mutations. As seen in Fig.4.20 no preferential mutations 

were present in the hotspots regions.  
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Figure 4.20 Gene signature in the VH4 clones: VH4 amino acid sequences 

evaluated for the presence of an unique antibody gene signature. (*=germline - 
top sequence; highlighted in yellow CDRs). 

 

 

 

 

 



151 

 

 

The results showed that among all the replacement mutations found the codon 

81 (Chothia numbering) had the highest frequency of mutations but the spots 

considered couldn’t be divided into hot or cold spots as similar frequencies were 

present (Fig.4.21). 
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Figure 4.21 Hot and Cold spots of VH4 gene signature: Distribution of amino 
acid residue substitutions in V gene codons, as from Chothia numbering, in VH4 
sequences derived from 14 patients with MS 

 

Nevertheless, it is possible that a larger number of sequences needs to be 

analysed to be able to perform a proper analysis. In fact, the possibility to have 

a molecular signature of conversion in MS could be of extreme value as a 

prognostic biomarker and helpful in making therapeutic decisions. 
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After the analysis of the somatic hypermutation I analysed the aa substitutions 

given that the physical properties of the translated sequences can change 

based on the replacement mutation (a mutation yielding an aa replacement). A 

replacement mutation can give rise to a very similar but also a very different aa 

substitution compared with the respective germline. Surprisingly in my sample, I 

found that the very different replacement mutation was the one preponderant in 

the FRs mutations (Fig. 4.22).  

 

 
Figure 4.22 CDRs and FRs AA substitutions: The frequency of replacement 
mutations was higher in CDRs than FRs but interestingly the type of 
replacement was predominantly very different in the FRs (graphs adapted from 
Zuckerman NS et al. 2010)  
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Light chain CDR3 mutation analysis 

 

More than 80% of the unique sequences in the Vk had CDR3 lengths of 27 bp 

whereas the average number of residues in the Vλ was 30 bp; this represents 

an average of 9 ± 0.4 and 10 ± 1.4 aa residues respectively. Of the 177 

residues in the Vk sequences almost 50% of them were glycine (15%), 

phenylalanine (13%), threonine (11%) and proline (10%), compared to the 121 

residues in the Vλ sequences where 55% were constituted of serine (20%), 

asparagine (11%) and equal amounts of cysteine, valine and phelynalanine 

(8%). The calculated net charge at pH=7.36 of the Vk rearrangements had an 

average acidic charge of -0.24 (range 0.8 to -1.3) and of the Vλ rearrangements 

it was -1.16 (range  -0.1 to -2.1). The status of mutations in the light chains was 

analysed for 4356 nt of unique Vk and 2932 nt of unique Vλ rearrangements 

and in total 181 and 155 mutations respectively. This corresponds to a 

frequency of 4% and 5% of which 64% and 72% were replacement mutations. 

The R/S ratio was 1.78 for Vk and 2.7 for Vλ. The CDR1 and CDR2 had the 

highest percentage of mutations (6.8%, 6.7% for Vk and 6.7%, 15.7% for Vλ). 

Across the Vk and Vλ genes the CDR1 had the highest R/S ratio of 2.1 and 6.5 

respectively. The total R/S ratio of 4.5 in the Vk FRs was higher than the ratio of 

3.4 found in the CDRs; in the Vλ the total R/S ratio of CDRs was 9.5 compared 

with the 7.5 of FRs.   
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- Clonal expansion 

 

After exclusion of the identical sequences the remaining sequences originated 

from the same VH with an identical VH CDR3 or a CDR3 with one mutation: 

they can therefore be considered related sequences. Nevertheless, as the 

library was made from a pool of B cells from 14 patients I could not be sure 

these sequences were derived from the same donor. Examples of clonal 

expansion found in my samples are reported below: 

1) 

IMGT Numbering FR1 CDR1 FR2 CDR2 > 

Germline (1-26) (27-38) (39-55) (56-65) > 

IGHV4-31*03 ~GLVKPSQTLSLTCTVS GGSIS..SGGYY WSWIRQHPGKGLEWIGY IYYS…GST > 

Clone 1 ~GLVKPAQTLSLTCTVS GVSIS..TGGYY WTWIRQHPGKGLEWIGN IYYS...GRT > 

Clone 2 ~GLVKPAQTLSLTCTVS GVSIS..TGGYY WTWIRQHPGKGLEWIGN IYYS...GRT > 

 

IMGT Numbering FR3 CDR3 % identity N. mutations 

Germline (66-104) (105-117)  Nt AA 

IGHV4-31*03 YYNPSLK.SRVT I SVDTSKNQFSLKLSSVTAADTAVYYC     

Clone 1 NYNPSLK.SRVTVSVDTSKNQFSLRLTSVTAADTAMYYC ARDSSGHFEALNI 94.5 16 11 

Clone 2 NYNPSLK.SRVTVSVDTSKNQFSLRLTSVTAADTAMYYC ARDSSGHFEALNI 94.16 17 11 

 

2) 

IMGT Numbering FR1 CDR1 FR2 CDR2 > 

Germline (1-26) (27-38) (39-55) (56-65) > 

IGHV4-31*06 ~QESGP.GLVKPSQTLSLTCTVS GGSIS..SGSYY WSWIRQHPGKGLEWIGY IYYS...GST > 

Clone 1 ~QQSGP.GLVKPSQTLSLTCTVS GGSIS..SGTYY WSWIRQHPGKGLECIGY IYDG...GST > 

Clone 2 ~LQSGP.GLVKPSQTLSLTCTVS GGSIS..SGTYY WSWIRQHPGKGLECIGY IYDG...GST > 
 

  

 

IMGT Numbering FR3 CDR3 % identity N. mutations 

Germline (66-104) (105-117)  Nt AA 

IGHV4-31*06 YYNPSLK.SRVTISVDTSKNQFSLKLSSVTAADTAVYYC     

Clone 1 YYNPSLM.SRATISIDTSKNQFSLKLSFVTAADTAVYYC ARGKWSGSYKG 93.45 19 9 

Clone 2 YYNPSLM.SRATISIDTSKNQFSLKLSFVTAADTAVYYC ARGKWSGSYKG 93.10 20 10 

 

3) 

IMGT Numbering FR1 CDR1 FR2 CDR2 > 

Germline (1-26) (27-38) (39-55) (56-65) > 

IGHV1-69*02 ~KAS GGTF....SSYT ISWVRQAPGQGLEWMGR IIPI..LGIA > 

Clone 1 ~KAS GGTF....STYT FSWVRQAPGQGLEWMGR IIPI..LGIT > 

Clone 2 ~KAS GGTF....STYS FSWVRQAPGQGLEWMGR IIPI..LGIT > 

 

IMGT Numbering FR3 CDR3 % identity N. mutations 

Germline (66-104) (105-117)  Nt AA 

IGHV1-69*02 NYAQKFQ.GRVTITADKSTSTAYMELSSLRSEDTAVYYC     

Clone 1 NYAQKFQ.GRVTITADKSTTTVYMDLSSLRSEDTAVYYC ASIGDNTGYFR 96.18 11 6 

Clone 2 NYAQKFQ.GRVTITADKSTTTVYMDLSSLRSEDTAVYYC ASIGDNTGYFR 95.83 12 7 
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4) 

IMGT Numbering FR1 CDR1 FR2 CDR2 > 

Germline (1-26) (27-38) (39-55) (56-65) > 

IGHV3-23*01 EVQLLE SGG.GLVQPGGSLRLSCAAS GFTF....SSYA MSWVRQAPGKGLEWVSA ISGS..GGST > 

Clone 1 QVQLLRSGG.GSVQPGESLRLSCAVS GFTV....GSYA MSWVRQAPGKGLEWVSV ISGG..AGTT > 

Clone 2 QVQLLRSGG.GSVQPGESLRLSCAVS GFTV....GSYA MSWVGQAPGKGLEWVSV ISGG..AGTT > 

 

IMGT Numbering FR3 CDR3 % identity N. mutations 

Germline (66-104) (105-117)  Nt AA 

IGHV3-23*01 YYADSVK.GRFTISRDNSKNTLYLQMN SLRAEDTAVYYC     

Clone 1 YYADSVK.GRFTISRDKSKNTLFLE I S SLRAEDTAVYYC ASHGDYVRHYY 93,40 19 16 

Clone 2 YYADSVK.GRFTISRDKSKNTLFLE I S SLRAEDTAVYYC ASHGDYVRHYY 92,36 22 17 

 

5) 

IMGT Numbering FR1 CDR1 FR2 CDR2 > 

Germline 
(1-26) 

 
(27-38) (39-55) (56-65) 

> 

IGHV3-7*02 EVQLVESGG.GLVQPGGSLRLSCAAS GFTF....SSYW MSWVRQAPGKGLEWVAN IKQD..GSEK > 

Clone 1 EVQLVESGG.GLVQPGGSLRLSCAAS GFTF....SSTW MSWVRQAPGKGLEWVAN IKSD..GSAK > 

Clone 2 EVQLVESGG.GLVQPGGSLRLSCAAS GFTF....SSTW MSWVRQAPGKGLEWVAN IKSD..GSAK > 

 

IMGT Numbering FR3 CDR3 % identity N. mutations 

Germline (66-104) (105-117)  Nt AA 

IGHV3-7*02 YYVDSVK.GRFTISRDNAKNSLYLQMNSLRAEDTAVYYC     

Clone 1 DYVDSVR.GRFTISRDNAENSLSLQMNSLRAEDTAVYYC ARGYLWGKGTT 95.49 13 7 

Clone 2 DYVDSVR.GRFTISRDNAENSLSLQMNSLRAEDTAVYYC ARGYLWGKGTT 95.14 14 7 

 
 

(Differences of even 1 nucleotide in the VDJ recombination of each sequence 

were assumed to be due to somatic hypermutation as the error rate of the high-

fidelity DNA polymerase used in my experiment was of 1 error per 3.6x10^6 

nucleotides incorporated and the nucleotides inserted for each sequence 

analysed were in the range of ~10^4 - ~350bp for each insert analysed, 

multiplied  2x30 PCR cycles  before ligation -).  
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Chapter Discussion 

The antibody phage display technology generates high affinity and specificity 

recombinant antibodies against a variety of antigens. The process outcome 

selects antigen-specific antibody fragments that can be used as therapeutics 

and diagnostic reagents with different tissue penetration based on the fragment 

type. In my work the phage display technology was applied to study the immune 

repertoire of MS patients and at the same time also to isolate fragments specific 

to known MS autoantigens. The formation of a pool containing cDNA derived 

from 3 patients, and from 14 patients in the second step, did allow to obtain a 

larger repertoire to be used for antigen selection. The construction of the library 

gave me the possibility to study the VH and VL family usage, analyse the 

sequences and evaluate their specificity as expressed auto-antibodies. The 

sequence analysis of the variable regions did confirm an antigen-driven 

response. The nature of the eliciting antigen (self or foreign) remains, though, 

elusive in MS and as next step the library was panned against known antigens 

involved in MS pathogenesis. The strategy used to build the library did raise 

also some limitations:   

a) VH and VL family usage analysis 

The evaluation of the VH and VL family usage did not take into consideration 

the efficiency of the different pair of primers used to amplify the different families 

and also the possible bias during the cloning process due to the different length 

of amplicons inserted was not considered. A different approach, such as deep 

sequencing would have overcome this limitation as the analysis of the whole 

RNA isolated from a sample could be achieved without the need to design 

primers and thus any knowledge of the relative expression of each family gene. 

Comparing the data obtained with this method before and after the cloning 

process will  help in identifying any possible bias. 

b) Library was not exclusive from TLOs 

During an immune response against a pathogen the affinity for the target 

antigens increases radically with time, in a phenomenon known as affinity 

maturation. Affinity maturation takes place in SLOs in structures known as 
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germinal centres (GCs). GCs provide the environment to fine tune the Igs to be 

able to bind with high affinity by the combination of somatic hypermutation 

(SHM) and iterative rounds of affinity based selection. In different autoimmune 

diseases such as autoimmune thyroiditis and diabetes data suggest that the Ag-

driven somatic hypermutation and selection does not occur in the SLOs but 

locally at the inflammation site. In my sequence analysis the construction of the 

library from the B cells present in the brain with no separation among 

perivascular cuffs, brain infiltrates or ectopic lymphoid aggregates did not give 

the possibility to differentiate if the skewing of the repertoire found was derived 

from an Ag-driven selection in a germinal center (GC)-like reaction supported in 

the organized chronic infiltrate. Furthermore, the use of the whole tissue will not 

allow to differentiate from B cells infiltrating the brain and the ones derived from 

the peripheral blood eventually contained in the brain vessels. Similarly, B cells 

could undergo Ag-driven somatic hypermutation externally to the infiltrated 

tissue and then invade the brain, but not having the possibility to compare my 

findings with the repertoire found in the SLOs draining the brain of MS patients I 

could not ascribe the source of the mutations found to any of the compartments. 

Therefore the presence of an Ag-driven selection in the repertoire analysed is 

supported in my work but the germinal centre reaction cannot be ascribed 

positively to the lymphoid aggregates identified. The development of the laser 

capture experiments described in the previous chapter could help to answer 

these open questions as well.   

c) Library was done as pool and not derived from a single patient or single 

cell  

The library was constructed as a pool derived from cDNA of different MS 

patients. In my study, increasing the amount of possible VH and VL 

combinations decreased the probability to obtain a correct pairing by random 

combination. The possibility to work on a single patient at the time will give me 

the possibility to delineate if the VH and VL usage is patient specific or disease 

specific. The different contribution of  each patient to the amount of each VH 

and VL family couldn’t be evaluated as well as the contribution to the diversity 

found in the library. Furthermore, the strategy used to build the library did not 
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differentiate between IgG or IgM repertoire and the two repertoires could not be 

analysed separately. Selection of a more restricted amount of cells by laser 

capturing singly the inflammatory infiltrates will increase my chances to obtain a 

correct pairing. Eventually the possibility to evaluate the VH and VL pairing by 

single cell laser capturing will allow to identify the exact pairing of the VH and 

VL of the B cells involved in the ectopic lymphoid aggregates. A study analysing 

the single-cell repertoire by cell sorting in RRMS patients has shown that in the 

CSF the repertoire is derived from clonally expanded B cell populations (Owens 

et al. 2003). It has also been shown that antigen experienced B cell clones are 

shared among CSF, meningeal aggregates and corresponding parenchyma 

(Lovato et al. 2011; Obermeier et al. 2011). In this study, clonal variants have 

been identified but they could not be ascribed to the IgG or IgM repertoire or to 

the same patient. The laser capture technique should be further used to 

improve the analysis of the VH and VL family usage in MS patients in a faithful 

manner.  



159 

 

Chapter 5: MP4 specific scFv raised from the MS library 

 

Background: 

To the best of my knowledge the only antibody phage display that has been 

constructed from MS patients was from PBL of eight RRMS patients. The 

authors selected the library on MBP (native and treated) and raised multiple 

anti-MBP scFVs that bound to either linear MBP epitopes, native MBP or both. 

Interestingly, one of the scFv cross-reacted with EBV latent membrane protein 1 

(LMP1) supporting the molecular mimicry hypothesis of MS pathogenesis 

(Gabibov et al. 2011). These results showed the possibility of using an antibody 

phage display library built from MS B cells to make recombinant antibodies with 

specificity that may mimic natural autoAbs. In my study the specificities of the 

synthetic library and the two newly built MS libraries, containing VH only and 

VH+VL gene segments, were tested for their ability to be a source of antibodies 

against known MS autoantigens. Hence, the performance of the newly built 

libraries was compared to in house human synthetic library (De Wildt et al. 

2000). In addition, pre-selection with  the synthetic library was done with all 

auto-antigens available to test their performance as target proteins for selection.  

 

Objective: 

In my study I screened my antibody libraries to identify binders that could 

resemble the specificity of B cells found in MS brain infiltrates.  

Specific aims: 

- To biopan the Tomlinson I antibody phage display library on known 

autoantigens  

- To biopan the libraries built from V genes derived from MS patients on a fusion 

protein, MP4, carrying epitopes of MBP and PLP.   
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Methods:  

The libraries were built in a pIT2 phagemid vector, and the choice of a 

phagemid vector implied the need for a helper phage in different steps of the 

process; specifically in the rescue of the starting library and in the amplification 

of the eluted phages after a round of selection (see chapter 1.4.2 for details). 

The strategy to select specific binders from my libraries followed a two step 

process. I started my screenings enriching the in house Tomlinson I library as a 

positive control for the process that I was going to perform, and after positive 

results, I then performed panning with the MS libraries. The Tomlinson I library 

has a size of 1.47x108 with diversified side chains in 18 different amino acid 

positions between heavy and light chain antigen binding sites and it was used 

successfully in selecting a vast variety of antigens, including native or denatured 

proteins, impure antigens, and whole-cell extracts (De Wildt et al. 2000). The 

Tomlinson l library was biopanned on immunotube immobilised antigens and 

after each round of selection the output of eluted phages was analysed by 

polyclonal phage ELISA and by monoclonal phage ELISA mainly after the 3rd 

round. In my experiments the proteins for selection were chosen because they 

had been identified as potential autoantigens and targets of CSF OCBs in the 

literature (see chapter1). The proteins were kindly provided by colleagues and 

were analysed by SDS-PAGE (Fig.5.2). I considered antigens spanning among 

the possible myelin epitopes, axonal epitopes and matrix epitopes. These 

include: MP4, a recombinant fusion protein including portions of myelin basic 

protein (MBP) and proteolipid protein (PLP), the recombinant extracellular 

domain 1-125 of myelin-oligodendrocyte glycoprotein (MOG1-125) and αβ-

crystallin (CRYAB), axonal cytoskeletal protein neurofilament light (Nf-L) as a 

neuronal antigen and collagen type III (CIII) as an extracellular matrix protein. 

Below is the description of the MP4 fusion protein that I used as a target 

autoantigen for selection using both the synthetic and the newly built MS 

libraries.  
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MP4 fusion protein 

  MBP   160 aa (protein sequence) 

 

1    masqkrpsqr hgskylatas tmdharhgfl prhrdtgild sigrffggdr gapkrgsgkd 

61   shhpartahy gslpqkshgr tqdenpvvhf fknivtprtp ppsqgkgaeg qrpgfgyggr 

121  asdyksahkg fkgvdaqgtl skifklggrd srsgspmarr 

 

PLP   274 aa (protein sequence) 

 

1    mglleccarc lvgapfaslv atglcffgva lfcgcgheal tgtekliety fsknyqdyey 

61   linvihafqy viygtasfff lygalllaeg fyttgavrqi fgdyktticg kglsatvtgg 

121  qkgrgsrgqh qahslervch clgkwlghpd kityaltvvw llvfacsavp vyiyfntwtt 

181  cqsiafpskt sasigslcad armygvlpwn afpgkvcgsn llsicktaef qmtfhlfiaa 

241  fvgaaatlvs lltfmiaaty nfavlklmgr gtkf  

 

(underlined the sequences used in the fusion protein) 
 

ΔPLP4   (PLP residues 35–69, 87–154 and 177–237)           

Junction: llggledp 

 

MP4 (MBP+Junction+ΔPLP4) (protein sequence) 

 

masqkrpsqr hgskylatas tmdharhgfl prhrdtgild sigrffggdr gapkrgsgkd   

shhpartahy gslpqkshgr tqdenpvvhf fknivtprtp ppsqgkgaeg qrpgfgyggr  

asdyksahkg fkgvdaqgtl skifklggrd srsgspmarr llggledpgh ealtgtekli 

etyfsknyq dyeylinvi hafqlaegf yttgavrqi fgdykttic gkglsatvt 

ggqkgrgsr gqhqahsle rvchclgkw lghpdkity wttcqsiaf psktsasig 

slcadarmy gvlpwnafp gkvcgsnll sicktaefq mtfhlf 

 

 

 

Figure 5.1 Fusion protein MP4 schematic drawing  
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Results: 

a. Validation of the helper phage  

As elution was done by trypsin digestion, I first tested the sensitivity of the 

helper phage to the trypsin digestion. After trypsin digestion a reduction in 

phage infectivity was expected with a corresponding reduction in phage titer 

(see also chapter1.4.2) expressed as plaque forming units/ml (pfu/ml). I 

observed a 106 fold decrease in infectivity (Fig.5.2) showing the high trypsin 

sensitivity of my helper phage working stocks. 

 

 
Figure 5.2 Helper phage titer: The initial stocks were labelled stock 1 and 

stock 2. The titers of the helper phage expressed as plaque forming units 
(pfu)/ml were significantly different between the untreated and treated groups. 
The result of the titration plates evaluated in duplicates show a decrease of 106  
fold in both stocks after trypsin treatment. The data show mean±2SD; 
descriptive error bars show 2SD.  *p<0.05 (p=0.033 for stock1 untreated vs 
treated and p=0.039 for comparison of the untreated stocks) (Welch’s test). 

 

Stock 1 was used to produce my own stock following the protocol as in 

chapter2. 

 

  

* 

* 
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b. Evaluation of proteins used for biopanning 

The proteins used for biopanning and ELISAs were run by SDS-PAGE 

electrophoresis (Fig.5.3) 

 

a)             b) 

    
Figure 5.3 SDS-PAGE analysis of the proteins used for selections and 
ELISAs: Samples were combined with 4x reducing loading buffer and run in 
10% SDS-PAGE gels. After separation by electrophoresis, protein bands were 
visualised by staining with Coomassie Blue. a) MP4 ~40 KDa fusion protein CIII 
~140 KDa; b) human r-MOG1-125 ~14.2 kDa, Nf-L ~61 KDa (68 KDa).  

 

 

 

 

 

 

 



164 

 

c. Selection using in house synthetic library  

 C1- polyclonal phage analysis 

Selection was done using antigen coated immunotubes. I performed three 

rounds of panning on candidate autoantigens using 1012-1013 phage particles 

from the Tomlinson I library. All the antigens tested showed an increase of the 

eluted phage titer following each round of panning. In particular after 3 rounds 

of selection the library panned on rMOG resulted in a 6.4 fold titer increase 

although the final titer was the lowest of all other selections (<104). The panning 

on MP4 provided a 2 fold titer increase, on Nf-L a 33.3 fold titer increase, on 

CRYAB a 5x103 fold titer increase and on CIII a 13 fold titer increase (Fig.5.4).  

 

 
Figure 5.4 Tomlinson I library output after each round of selection: The 
library was biopanned on the autoantigens with very different results ranging 
from 2 fold (MP4) to 5x103 fold (CRYAB) increase in titer after 3 rounds. The 
titer of the eluted phages after each round is expressed as the mean LOG10 of 
the number of colony forming units/ml of duplicate plates.The output of the 
phage titer  panned on rMOG was low. 
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After titration the eluted phage pool was analysed by polyclonal phage ELISA 

a) MP4 polyclonal phage ELISA:  

It is possible that specific polyclonal phages were cross-reacting with MOG 

secondary to mimicry between the two proteins or multispecificity mediated by 

conformational diversity 
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b) 

rMOG Polyclonal phage ELISA
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  c) 

Nf-L Polyclonal phage ELISA
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  d) 

CRYAB Polyclonal phage ELISA
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Figure 5.5 Polyclonal phage ELISAs: ELISA plates were coated with the 

same autoantigen used for biopanning. Binding specificity of the eluted phages 
was checked after each round of selection. The phage from the 3rd round was 
also tested for cross-reactivity. 3rd round eluted phages against MP4 and rMOG 
both showed reciprocal cross-reactivity in both the selections. The 3rd round 
eluted phage against Nf-L cross-reacted with MP4 and rMOG. No clear cross-
reactivity was present for the eluted phage selected against CRYAB. The 
absorbance values shown were corrected for the background value. Detection 
of phage binders was obtained by an HRP-conjugated anti-M13 antibody.  
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C2-monoclonal phage ELISA 

From the 3rd round individual phage antibody fragments were prepared in 96 
well microtiter plates and the induced phages were used for monoclonal phage 
ELISA (Fig.5.7). Clones were sequenced if they showed binding, expressed as 
elevated O.D.450nm values. 
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Nf-L Monoclonal phage ELISA
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Figure 5.6 Tomlinson I library monoclonal phage ELISAs: The individual 
colonies from the 3rd round titration plates of CIII, CRYAB, Nf-L and MP4 were 
amplified in 96 wells plates and antibody phages used for ELISA. The clone ID 
resembles the alphanumeric position of the phage clones in the 96 well plate 
with numbers and colours on the X axis of the histograms. Arrows indicate the 
clones chosen for sequencing. Mean O.D.450nm CIII=0.37; CRYAB=0.3; Nf-
L=0.2; MP4=0.15 (control wells: A1, D6, H12) 
 

 

Clones which were positive in ELISA were taken forward for sequencing. 

Unique sequences from each selection are shown in Table 5.1. The sequences 

all belonged to the VH3-23/DP47 family as expected and all the CDR3s had a 

slightly negative net charge (mean= -0.42 at pH=7.36) (charge=-1.3 or charge=-

0.3) (Table 5.2). 
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Antigen Clone V gene CDR3 

CIII 

C3 IGHV3-23*01 CAKGDATFDYW 

C5 IGHV3-23*01 CAKNYSDFDYW 

C6 IGHV3-23*01 CAKNGNTFDYW 

C8, C9 IGHV3-23*01 CAKSYSYFDYW 

C1 IGHV3-23*01  CAKTTGSFDYW 
    

CRYAB 
C6 IGHV3-23*01 CAKTSSSFDYW 

D7, B5, C9, B9 IGHV3-23*01  CAKYGTSFDYW 
    

MP4 
C2, A6, E3, E10, 

D5 
IGHV3-23*01 CAKGAASFDYW 

    

Nf-L D7 IGHV3-23*05 CAKNAYAFDYW 

 Table 5.1 Sequences of the 3rd round clones: From the 3rd round of 
selection against various autoantigens individual colonies were amplified and 
screened by monoclonal phage ELISA. The clones with highest O.D. in the 
monoclonal phage ELISA were sequenced. Each autoantigen group contained 
1 (MP4 antigen) or few clones.  

 

Since selection with this library was just to validate the protein antigen as well 

as the selection technique I decided not to proceed for soluble ELISA with this 

library. 
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D. Selection using the newly built MS library 

 

I compared selection using the VH only library versus the VH+VL library on MP4 

as a target. The selection with the synthetic library resulted in only one unique 

clone for MP4. It would therefore be interesting to use MP4 as the first antigen 

for biopanning to see if I get more diversity of MP4 specific scFv.  

 

Around 1012-1013 of resuspended phage was pooled and used as input for all 

the rounds. The results showed a 3.8x102-fold enrichment of the eluted phage 

output from the VH only library against MP4 after 3 rounds of selection. The 

VH+VL library presented a 4.4x103 enrichment against MP4 (Fig.5.7).  

 

 

Figure 5.7 MS antibody libraries output after each round of selection: 

Around 1012-1013 phage of the two libraries was used as input for each round 
and checked for specificity against immunotubes coated with MP4 (this protein 
could show eventual nonspecific binding and explain low levels of specific 
reactivity in the ELISA analysis). The titer of the eluted phage after each round 
is expressed as mean LOG10 of the number of colony forming units/ml of 
duplicate plates and shows increased binders’ titer in each round. 
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As these libraries were newly built and are from patients, I firstly wanted to 

monitor randomly the sequence diversity of phage clones through the selection 

process of the VH only library on MP4 (Table 5.2). 

 

As shown in the table sequences that appear in the first round are still present 

in the third round so there was a selection and enrichment process of specific 

clones 

 

 

Round 
of 

selection 

Sequence 
ID 

V-GENE and 
allele 

AA JUNCTION (IMGT Numbering) 

1st 
Round 

1  IGHV4-61*02  CAREYSSAWSPRYNYYNYMDVW 

2  IGHV5-51*01  CARRLCSSTSCYFGGLDWFDPW 

3  IGHV1-69*06  CARELF*QWIYYYCTLDVW 

4  IGHV3-53*01  CARGGYSYFLDYW 

5  IGHV1-8*01  CVRGQFGYCSSPSCPEYW 

6  IGHV2-5*01  CARRLSHRYCSRGSCPNWFDPW 

7  IGHV1-8*01 CVRGQFGYCSSPSCPEYW 

8  IGHV3-7*02 CALGPYW 

9  IGHV6-1*01 CARQASSGWYLSYAMDVW 

    

2nd 
Round 

1  IGHV3-72*01 CARDYFDSGRYFPDVW 

2  IGHV5-51*03 CARRGCSSTSCYLGLDWFDPW 

3  IGHV3-53*01 CARGGYSYFLDYW 

4  IGHV1-69*11 CARGRSGSGAFAWGPKRTFNYGLDVW 

5  IGHV1-2*02 CARDETQRPAQTWYISECDPNYFYFYGMDVW 

6  IGHV4-39*01 CVRHGGGRFYCTGGSCFSAYYFDSW 

7  IGHV2-5*01 CARRLSHRYCSRGSCPNWFDPW 

8  IGHV5-51*03 CARRGCSSTSCYLGLDWFDPW 

    

3rd 
Round 

1  IGHV3-72*01 CARDYFDSGRYFPDVW 

2  IGHV3-66*01 CATPRGYRAW 

3  IGHV4-61*02 CARGDYGDFFDYW 

4  IGHV5-51*03 CARRGCSSTSCYLGLDWFDPW 

5  IGHV2-5*10 CVHRPREDFWSGWDYYYGLDVW 

6  IGHV1-2*02 CARDETQRPAQTWYISECDPNYFYFYGMDVW 

7  IGHV6-1*01 CAREVRNSWYDPW 

8  IGHV1-2*02 CARDETQRPAQTWYISECDPNYFYFYGMDVW 

9  IGHV3-66*01 CATPRGYRAW 

10  IGHV2-5*01 CVHRPREDFWSGWDYYYGLDVW 

Table 5.2 Enrichment on MP4 of the phage antibodies pool derived from 
VH only library: All the sequences resulted in frame and productive but one in 

the 1st round (highlighted in red), not found in the following rounds. The same 
sequences found in different rounds were labelled with the same background 
colours. 
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D2: polyclonal and monoclonal ELISA 

 

The phage pool from the different rounds of selections was also analysed by 

polyclonal and monoclonal ELISA. The resulted mean absorbance of the pool of 

individual phage antibody fragments analysed by monoclonal ELISA was 2.5 

fold higher in the VH+VL derived phages compared to the VH only library and 

3.2 fold higher compared to the Tomlinson I derived ones. This result indicates 

a stronger binding for the VH+VL library fragments (Fig.5.8 and 5.9). 
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Figure 5.8 MP4 Polyclonal phage ELISA: VH only and VH+VL libraries were 
biopanned against immobilized MP4. Phages eluted from each round of 
selection were analysed for binding in polyclonal phage ELISA. An extra round 
of selection was performed (4th round) with VH+VL derived phage but only a 
weak increase in absorbance was observed indicating that 3 rounds were 
satisfactory for a good level of enrichment. The level of absorbance was 
calculated as the mean of different dilutions (1:2; 1:4, 1:8). Detection was 
obtained by an HRP-conjugated anti-M13.    
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b)

MP4 Monoclonal phage ELISA
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Figure 5.9 MP4 Monoclonal phage ELISAs: a) VH only library and b) VH+VL 
library derived phage antibody fragments analysed by monoclonal phage 
ELISA. The mean absorbance of the VH+VL library derived phage antibody 
fragments resulted in 0.48 compared with the mean absorbance of 0.19 of the 
VH only library derived phage antibody fragments and with the mean 
absorbance of 0.15 of the Tomlinson I derived phage antibody fragments. 
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Sequencing analysis of monoclonal phage clones 
 
As final step in the selection I analysed the sequence of phage binders as seen 

by the monoclonal ELISA clones from the pool of selected phages comparing 

the two VH only and VH+VL libraries. To determine if the phages were derived 

from different or identical clones I sequenced 7 of the clones from the VH only 

monoclonal phage ELISA and 11 clones from the VH+VL monoclonal phage 

ELISA.  The resulted sequences showed 3 and 7 unique clones for VH and 

VH+VL library, respectively (Table 5.3).  
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a) VH only  

VH gene 
N. of 

clones 
Clones 

ID 
CDR1 CDR2 CDR3 

Light 
chain  

IGHV2-5*10 1 HF4 
GFSLSTSGV

G 
IFWDDDK 

VHRPREDFWS
GWDYYYGLDV 

(IGKV1
-39*01) 

IGHV2-5*01 3 
HA11, 
HB8, 
HC11 

GFSLSTSGV
G 

SYWNDDK 
VHRPREDFWS
GWDYYYGLDV 

IGHV1-
69*06 

3 
HD6, 
HE4, 
HA3 

GGTFTRYA IIPLFGTT 
ARDQDADFWSI
YRQYYYYGMD

V 

 
 
b) VH+VL (random pairing) 

 V genes 
N. of 

clones 
Clones 

ID 
CDR1 CDR2 CDR3 

VH 
IGHV3-
11*03 

2 
HLA1; 
HLE4 

GFTFSDYY ISSSGSYT 
ARDLGRDYGLNWF

DP 

VL 
IGLV5-
45*03  

SGINVAAYR YKSDSDR VIWHNSAWV 

VH 
IGHV3-
11*03  

2 
HLB2; 
HLD7 

GFTFSDYY MSGNSNYT 
ARNLYSSTWTGVG

DY 

VL 
IGLV2-
11*01  

SSDVGGFDY DVS CAYAGSDTYV 

VH 
IGHV1-
69*01  

1 HLB7 
GGSFSSDF IIPLFGTP 

ARSPISYYNSGSYF
DL 

VL 
IGKV4-

1*01  
QSVLNSSNN

KNY 
WAS QQYYSSLLT 

VH 
IGHV3-
23*04  

5 

HLB8; 
HLE11; 
HLF1; 
HLF7; 
HLF12 

GFALNNFI ITESGNI VPRRTASWFDP 

VL 
IGLV1-
51*01  

SSNIGNAY DNN GTWDSSLSV 

VH 
IGHV3-
23*04   

1 HLF3 
GFALNNFI ITESGNI VPRRTASWFDP 

VL 
IGLV1-
51*01  

QSVFYMSHN
KNS 

WAS QQYYTTPFT 

Table 5.3 Sequences from the 3rd round of selection of VH only and 4th 
round of VH+VL libraries: Clones from the last round of selection with high 
absorbance cut-off were analysed. 7 colonies for the VH only library and 11 
colonies for VH+VL library were selected. The analysis of the sequences 
revealed 3 different clones in the VH only library and 5 clones in the VH+VL 
library.  
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In summary the MS library may represent a better source of MP4 specific 

antibodies:  

  a) The 3 rounds of selection performed with the synthetic library on MP4 

show only a 2 fold increase of titer compared with a 102 and 103 increase in titer 

respectively of VH only and VH+VL MS biased libraries respectively.  

 b) In the polyclonal ELISA I saw an increase in level of absorbance from the 

1st to the 3rd round. Although the synthetic library had higher polyclonal ELISA 

O.D the sequence implied that only one clone was enriched. In addition, the 

monoclonal ELISA showed 88% of binders (O.D.>0.2) in the VH+VL library 

compared to 42% in the synthetic library. The average O.D. of the monoclonal 

ELISA wells was 0.14 in the synthetic library compared to 0.47 in the VH+VL 

library. Furthermore, I observed at least 7 unique clones in the VH+VL library 

while in the synthetic library I identified only one sequence.   

 

Chapter discussion 

An important question raised from the presence of lymphoid aggregates: what is 

the Ag(s) targeted in the enrichment of the B cells carrying auto-reactive 

specific receptors found in the aggregates? The study of B cells specificities via 

biopanning of the library resulted in isolation of target-specific antibody 

fragments to known MS autoantigens, thus indicating that VH-VL pairing was 

functional and possibly resembled the in vivo pairing. In fact, the presence of 

OCBs in the CSF of MS patients and their relation with B cells infiltrating the 

brain tissue imply a specific immune response restricted to the CNS and raised 

against persistent epitopes. Attempts to identify the specificity of the CSF 

antibodies using a faithful pairing of VH and VL derived from CSF B cells during 

different stages of the disease via the production of recombinant mAbs showed 

myelin staining at the edge of demyelinating lesions but no reactivity was 

demonstrated against the expected myelin antigens such as MOG, PLP or MBP 

(Owens et al. 2009; Von Budingen et al. 2008). The panel of recombinant mAbs 

expressed in my library could be representative of the whole antibody repertoire 

in the patients analysed. If this is the case, the pooled antibody phage display 
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strategy used in my study increases the viability of antibody specificities from 

MS patients that can be analysed at the same time. But it is not possible to 

exclude that other autoantigens play an important role in MS pathogenesis 

supporting the view that each patient could develop an his/her own 

autoreactivity against CNS antigens. Nevertheless, the specificity of the 

antibodies in MS patient is still an open debate as MBP specific antibodies were 

found in another study analysing the CSF B cell specificity from RRMS patients 

as Fab fragments (Lambracht-Washington et al. 2007). These results have 

been supported also from the results of a study using a phage display library of 

scFvs constructed from blood B cells of RRMS patients that showed clones 

selected against MBP (Gabibov et al. 2011). Both latter studies have shown that 

the antibodies studied were polyreactive. In my study the VH+VL library panned 

on MP4 resulted in binders specific for myelin antigens that could correspond to 

natural autoantibodies from progressive MS patients even though with the 

limitations imposed by the random pairing of VH and VL from different patients. 

The fusion protein MP4 used for selection using my libraries raised different 

specific binders which may further be characterised for their specific target 

epitope(s). 
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Chapter 6: Discussion 

 

MS is a chronic inflammatory autoimmune disease with involvement of different 

immune cells in the pathogenesis targeting the brain of PwMS. Identification of 

the causative agent of MS was the aim of many studies but, so far, no specific 

trigger agent(s) has been uncovered. The presence of immune cells infiltrating 

the brain tissue points to an ongoing autoimmune reactivity of some type. In a 

subset of secondary progressive cases of MS (40%) the infiltrated immune cells 

tend to organize themselves in aggregates resembling lymph nodal follicles. 

Follicle-like aggregates were described in the meninges along and in depth of 

cerebral sulci mainly of the temporal, cingulate, insula and frontal cortex (Howell 

et al. 2011; Magliozzi et al. 2004; Magliozzi et al. 2007).  

- Lymphoid network 

In my work follicle-like aggregates were detected not only in secondary 

progressive but also in primary progressive cases. The location of the lymphoid 

aggregates was meningeal in frontal and temporal lobes but also in the deep 

grey matter at level of the thalamus and internal capsule. My findings show a 

diffuse involvement of the brain not only at cortical level with presence of 

lymphoid neogenesis in the progressive forms of MS. The areas touched by the 

CSF could be the main sites where the immune cells can organize themselves 

and aggregate. The tissues used for the library construction were analysed by 

qPCR and stable reference genes were determined. The lymphoid infiltrates 

and aggregates found in my samples, however, are being currently 

characterized by measuring inflammatory and germinal centre cytokines 

expression levels.  

 - Library construction and analysis 

The novelty of the phage display technique is the link between the displayed 

proteins and their coding genes.  Different antigen and antibody phage display 

libraries were built with the intent to reproduce and analyse the variety of the 

possible target antigens and specific functional reactive antibodies in numerous 
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systemic and organ specific autoimmune as well as in infectious diseases. In 

fact, the use of the phage display technology in infectious diseases of the 

nervous system facilitated the identification of the causative agent that triggers 

the specific humoral immune response. Panning of phage display Ag library 

built from SSPE brain identify the measles virus (MV) epitope recognised by the 

natural antibodies extracted from the infected brain (Burgoon et al. 2001; 

Owens et al. 1997). Similarly in VZV vasculopathy the CSF OCBs react 

specifically with VZV antigens (Burgoon et al. 2003).  The mentioned studies 

demonstrated that the natural Igs found in patients affected by infectious 

diseases are reactive specifically against the viral agent involved. At the same 

time the Igs sequences expressed in SSPE brain were analysed and showed 

reduced identity with their closest germline and high R/S ratio in their CDRs as 

result of affinity maturation and pointing to an Ag-driven response. The same 

SSPE brain derived Ig sequences were cloned and functional transfectoma-

derived monoclonal antibodies have been obtained confirming the high 

specificity against their corresponding disease related MV Ags (Burgoon et al. 

1999).  

- Restricted VH and VL usage 

Numerous studies have described an Ag-driven response also in autoimmune 

diseases. Reviewing the past literature regarding the cells producing antibody in 

brain and CSF of MS patients, it has been shown that the VH genes from the 

cells infiltrating the brain and found at CSF level have the same molecular 

features of an Ag-driven response characterized by presence of somatic 

mutations, CDRs increased R/S mutations ratio and restricted use of VH family 

germlines. A skewed VH family usage pattern has been described and 

confirmed by different studies analysing the V genes CSF repertoire. The 

analysis of V genes derived from different B cells populations (CD19+ and 

CD138+) from CSF of MS patients with different forms of disease has shown a 

consistent VH4 family bias (Owens et al. 2007; Qin et al. 1998). The altered 

distribution of the VH family usage has been described to be already detectable 

after the first clinical presentation and strongly correlates with conversion to MS 

in the next 6 months (Bennett et al. 2008). The skewed VH gene family usage 
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and in some studies even the same segments have been described analysing 

the repertoire of the B cells infiltrating all the brain areas, including meninges, 

plaques, NAWM and CSF (Baranzini et al. 1999; Lovato et al. 2011). Striking 

usage (60%) of the VH4 family was described in a MS brain with acute plaques 

and half of the different VH4 sequences being represented by the VH4-39 

segment (Owens et al. 1998). In my analysis of V genes derived from B cells 

infiltrating the brain tissue of a pool of 14 MS cases, I found significantly 

different VH1 (30%) and VH2 (9%) family usage compared with PBL of adult 

healthy individuals (respectively 22% and 4%), but no biased VH4 usage was 

observed (20% MS pool  vs 22% for the healthy controls). My data differ from 

the previously reported literature but an increased usage of VH1 and VH2 

families has also been described. In fact, it was shown that not only the VH4 but 

also the VH2 family in one-third of cases is biased (Bennett et al. 2008). A 

patient specific VH biased immune response was identified also in a NMO brain 

with the VH2 family resulting overrepresented (Owens et al. 2001). 

Furthermore, my results are consistent with another study highlighting an 

increase in VH1 and VH4 usage, specifically of VH1-69, VH4-34 and VH4-39  

(Baranzini et al. 1999). My data derive from 14 MS cases pooled and the results 

obtained derive from a mixture of patient specific VH bias. Consistent with my 

data the results of a study describing a unique skewed repertoire in the brains 

of MS and SSPE patients, confirming the common Ag-driven response in both 

the diseases (Smith-Jensen et al. 2000). Nevertheless, it should be considered 

that may be the number of sequences analysed were not enough to show the 

real pattern and analysis of a larger number of sequences before cloning could 

be ideal to this purpose. No peripheral blood from the same patients was 

available for analysis and it has not been possible to confirm that the biased 

detected family usage was restricted to the brain. The analysis of the D showed 

a broad utilization, with 80% D segments represented, and confirming previous 

literature data of overuse of specific D segments (D3-22, D2-2, D3-3 and D6-13 

constituted ~45% of the D segments) in MS (Baranzini et al. 1999) as well as in 

the general population (!!! INVALID CITATION !!!). Similarly, the analysis of the 

JH segment usage highlighted a significant over-representation of the JH4 

family compared with the expected germline frequencies (MS pool vs expected 
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germline JH usage: p=7E-20). The over-representation of JH4 has already been 

described in other autoimmune diseases, in MS and in healthy individuals 

(Baranzini et al. 1999). Hence the results found for D and JH highlight a bias not 

related to the specific immune response but to molecular mechanisms. In the 

analysis of the light chains was found an abnormal k/λ light-chain ratio as 

previously described in the MS literature (Jenkins et al. 2001), but the low 

number of sequences analysed does not allow to evaluate properly the entity of 

this finding in the brain. Among the kappa families Vk2, Vk4 and Vk5 were the 

most represented. The Vk3 family, usually constituting more than 50% of the 

kappa adult healthy individual repertoire, was not found in my repertoire. Among 

the lambda families Vλ6 represented more than the 50% of the sequences 

analysed. The usage of the light chains families confirm a restricted family 

usage.  

- Somatic hypermutation analysis 

Once activated by the target antigen the immunoglobulin loci of the B cells 

undergo mutations at an extremely high rate compared to most somatic cells to 

improve the antigen binding of the receptor. The mentioned mechanism known 

as hypermutation occurs typically in strategic positions that are away from 

residues essential for V gene folding (cold spots) within FRs and preferring 

residues that give an advantage in affinity maturation (hot spots) within the 

CDRs (Jolly et al. 1996). The presence of mutations in FRs and CDRs was 

evaluated and the number of replacement mutations in the CDRs resulted 

significantly higher than in the FRs (p≤0.001). Typically germinal centres B cells 

present somatically hypermutated V genes and the presence of this molecular 

event in B cells obtained from MS brain tissue is consistent with the described 

presence of ectopic germinal centre-like reactions occurring in the CNS of MS 

patients behaving as a germinal centre-like environment (Corcione et al. 2004; 

Serafini et al. 2004). The overall and replacement mutations identified in the 

study had the typical molecular characteristic of a GC reaction with high 

mutational frequencies targeting the CDRs but presented as well no difference 

in the mutational targeting of the classical RGYW/WRCY motifs suggesting an 

independent clonal expansion from the classical GCs. The results confirm the 
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hypothesis that brain of MS patients could represent an immunological niche 

where B cells, GC-derived, undergo an upregulation of recombination activating 

genes (RAGs) and atypical mutations process that do not target the 

RGYW/WRCY motifs. Thus indicating that MS brain’s GC-like reactions are not 

classical ones (Monson et al. 2005).   

In the early phases of B cell development the majority of antibody produced are 

self-reactive and display long and positively charged VH CDR3 (Wardemann et 

al. 2003). The same characteristics were described in MS and other 

autoimmune diseases. The VH CDR3 from the pool analysed showed a length 

> 15 aa consistent with autoreactive B cells but a charge composition similar to 

mature B cells. My data are consistent with the data previously reported in MS 

(Harp et al. 2007).  

From a diagnostic point of view the analysis of the mutations in the B cell 

population V genes was proposed as potential marker for disease conversion 

from CIS to CDMS. The targeting of particular residues in the general affinity 

maturation concept can be narrowed to the possibility of finding cold spots and 

hot spots in a specific antigen response as in different infectious disease and in 

MS. The described prevalence of VH4 usage in patients with MS has induced to 

search a possible marker of definite MS conversion in CIS patients. A unique 

pattern was shown from the mutation analysis of VH4 genes in MS rearranged 

sequences derived from CSF B cells compared with peripheral blood ones from 

healthy controls. The unique pattern of mutations in VH4 genes recognizes 8 

hot spots and 4 cold spots depending on the frequency of replacement 

mutations in the codons considered and the higher or lower frequency 

compared with that of the B cells from the blood. The predictivity of this 

signature was explored in CIS patients with the possibility to identify the ones 

that would convert to clinically defined MS within 5-18 months from their first 

demyelinating event and identifying the antigen specificity of the antibodies 

derived from the CSF B cells signature-enriched may reveal antigens involved 

in the initiation of the humoral response (Cameron et al. 2009). The analysis of 

VH family usage in my repertoire did not highlight a VH4 bias and the analysis 
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of the mutation frequencies in the VH4 sequences did not show differences 

between hot and cold spots.  

- Clonal expansion 

Another aspect of the antigen-driven immune response is the clonal expansion. 

The presence of CSF OCBs, a diagnostic hallmark of MS, is the result of the B 

cells clonal expansion present in the CNS of patients with MS. Numerous 

studies have described the overlap of CSF proteome and IgG transcriptomes 

from B cells at different levels such as CSF, brain parenchyma and meningeal 

aggregates (Obermeier et al. 2011; Obermeier et al. 2008). After CSF analysis 

the isoelectrically focused proteins, visualized as oligoclonal bands, are the 

result of antibody producing cells clonally expanded, with a B cell clone defined 

as 2 or more single B cells from the same donor having the same heavy and 

light chain rearrangements resulting in an identical amino acid sequence of the 

CDR3 region (Harp et al. 2007; Owens et al. 2003). Confirmation of identity 

between oligoclonal bands and antibodies produced by B cell clones was given 

by studies utilizing monoclonal antibodies derived from these cells (Von 

Budingen et al. 2008) and from studies applying rabbit anti-idiotypic antibodies 

against clonally expanded plasma cells antibodies able to recognize specific 

VH-CDR3 idiotopes and at the same time able to cross-react with OCBs (Von 

Budingen et al. 2010). Different studies have further confirmed that the B-cell 

clones producing the immunoglobulins found in the CSF travel among different 

brain anatomical areas such as parenchymal infiltrates, extraparenchymal 

lymphoid tissue aggregates and CSF directing their products against brain 

tissue constituents (Lovato et al. 2011; Obermeier et al. 2011). In my study the 

related sequences identified in clonal populations were 10 out of 46 sequences 

analysed. My cases were progressive MS and I would expect to see clonal 

expansion. This was previously described IgG repertoire of MS CSF B cells 

population, especially in late phases, but not in IgM (Owens et al. 2003). My 

repertoire was composed of IgM and IgG derived sequences and did not allow 

us a precise differentiation of the two isotype derived repertoires.  

 



185 

 

- Selection 

In the second phase of my study I used the built antibody phage display MS 

libraries for selection against MP4. MP4 is a fusion protein presenting multiple 

epitopes from MBP and PLP. In the animal model MP4 reactive serum 

transferred in MP4-immunized B cell deficient mice induce EAE showing a 

pathogenic role for the auto-Abs (Kuerten et al. 2011). In PwMS auto-reactivity 

to MBP and PLP have been shown in matched serum and CSF with patient-

specific specificity (Quintana et al. 2012). In my study I was able to raise anti-

MP4 specific antibody fragments using either VH or VH+VL MS library. The VH 

library was paired with synthetic VL so I did not expect it to resemble the natural 

antigen driven selection. Although the VH+VL was built from the natural 

repertoire only, the combined VH and VL might not be identical to the natural 

auto-antibodies as I did not build the library by single cell PCR approach. 

Nevertheless, I could see Ag driven selection as VH3 was predominant in the 

anti-MP4 clones raised rather than VH2 and VH1 in the library. The number of 

clones analysed was too small to assess clonal expansion. In addition, it was 

quite obvious that the VH+VL library performed better than the VH and the 

synthetic library: a) much higher increase in titer (103 fold enrichment of the 

VH+VL library vs 102 and 2 fold enrichment) and b) diversity of selected clones.    

Summary 

In this project I was able to build an antibody phage display library from B cells 

infiltrating the brain of progressive MS patients. The library was a single-pot 

human scFv library built from IgG and IgM repertoire. The analysis of the 

repertoire cloned in the library did show a biased usage of the VH and VL family 

germlines. The most represented VH families were the VH1 and VH2. The VH4 

family was reported to be the most represented one in PwMS from the past 

literature. Finding not confirmed in my analysis. Presence of an antigen driven 

immune response was confirmed. Furthermore I did build an intermediate VH 

only library from the same repertoire. Both the libraries were screened against 

MP4, a fusion protein containing epitopes of MBP and PLP. As comparison a 

synthetic library, Tomlinson I, was used an screened against the same antigen. 

Different level of enrichment were present in the libraries screened with the 
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VH+VL library presenting the highest affinity binders. The possibility of pairing, 

even if randomly, the VH and VL could have given a binding advantage to this 

library. The clones identified in the library could resemble what happens in the 

patients and support the presence of autoantibodies against MBP or PLP 

epitopes involved in MS pathogenesis. 

Further work  

The antigenic target of the OCBs and the target responsible for MS onset have 

yet to be established. The possibility to build antibody phage display libraries 

directly from the B cells infiltrating the target organ, the brain, of the immune 

response could lead to identify such targets and help to develop diagnostic 

means and therapeutics. An individual differentiation of the repertoire cloned 

and an increase of the library diversity by increasing the number of patients’ 

repertoires could delineate a better view of the antigens involved in the 

pathogenic process. The possibility to identify and dissect specific B cells could 

improve further the characterization of the immune process. The comparison of 

the organ specific with peripheral blood libraries could help to find useful 

biomarkers for disease progression. Furthermore the possibility to compare 

progressive form with acute form of disease could further elucidate the timing of 

the immune response. The present work is just the tip of an iceberg of 

possibilities that I would like to explore. 
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