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Sparse Approximation and Dictionary Learning

with Applications to Audio Signals

Daniele Barchiesi

Abstract

Over-complete transforms have recently become the focus of a wide wealth of research in
signal processing, machine learning, statistics and related fields. Their great modelling
flexibility allows to find sparse representations and approximations of data that in turn
prove to be very efficient in a wide range of applications. Sparse models express signals as
linear combinations of a few basis functions called atoms taken from a so-called dictionary.
Finding the optimal dictionary from a set of training signals of a given class is the objective
of dictionary learning and the main focus of this thesis. The experimental evidence
presented here focuses on the processing of audio signals, and the role of sparse algorithms
in audio applications is accordingly highlighted.

The first main contribution of this thesis is the development of a pitch-synchronous
transform where the frame-by-frame analysis of audio data is adapted so that each frame
analysing periodic signals contains an integer number of periods. This algorithm presents
a technique for adapting transform parameters to the audio signal to be analysed, it
is shown to improve the sparsity of the representation if compared to a non pitch-
synchronous approach and further evaluated in the context of source separation by binary
masking.

A second main contribution is the development of a novel model and relative algorithm
for dictionary learning of convolved signals, where the observed variables are sparsely ap-
proximated by the atoms contained in a convolved dictionary. An algorithm is devised to
learn the impulse response applied to the dictionary and experimental results on synthetic
data show the superior approximation performance of the proposed method compared to
a state-of-the-art dictionary learning algorithm.

Finally, a third main contribution is the development of methods for learning dictio-
naries that are both well adapted to a training set of data and mutually incoherent. Two
novel algorithms namely the incoherent k-svd and the iterative projections and rotations
(ipr) algorithm are introduced and compared to different techniques published in the
literature in a sparse approximation context. The ipr algorithm in particular is shown
to outperform the benchmark techniques in learning very incoherent dictionaries while
maintaining a good signal-to-noise ratio of the representation.
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Chapter 1

Introduction

1.1 Overview: the big picture

Signal processing essentially consists in extracting meaningful information from data that

describe events of interest. Typically, a continuous signal deriving from a process like a

sound or an image is sampled in time or space and quantised in magnitude, returning a

discrete succession of numbers called samples.

The digital samples can be directly used for visualisation or reproduction purposes, but

bear little meaning if employed in more sophisticated applications. For example, consider

the problems of recognising the type of instrument that plays in a musical recording,

removing the noise present in an image, or making a prediction about the future price

of a commodity based on its value at times in the past. In all these examples little or

nothing can be inferred by looking at the succession of samples. Signal processing acts on

digital data transforming it in order to provide a representation that allow to highlight

salient features, separate different components or discern meaningful trends.

The upper plot in Figure 1.1 depicts the samples of the time-domain waveform repre-

senting a guitar audio recording and the lower plot shows its time-frequency representation

obtained using a Fourier transform1. While the former representation can only be used to

infer a rough estimate of the amplitude envelope of the sound, the latter provides informa-

1The image was obtained using Sonic Visualizer, a tool for audio visualisation and
analysis developed at the Centre for Digital Music that can be downloaded from
http://www.sonicvisualiser.org/

http://www.sonicvisualiser.org/
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Figure 1.1: Time domain waveform (top) and spectrogram (bottom) of a guitar recording
excerpt. In the bottom plot the y axis represent frequencies mapped to a logarithmic
scale and the bright areas correspond to regions of the time-frequency plane containing
high energy. Note boundaries are visible that are consistent with the envelope that can
be inferred by looking at the waveform in the upper plot. In addition, the fundamental
frequency and its harmonics are recognisable for each note.

tion about the frequency content of the signal at different times. This is useful for music

transcription applications or for inferring the timbre of the instrument and automatically

classifying the audio excerpt as played by a guitar.

The representation or approximation of a signal imply the choice of a dictionary, that

is, a collection of elementary functions called atoms that are used to decompose the signal.

Any signal that lives in a given space can be represented in an infinite number of ways

using different dictionaries provided that the dictionary spans the space, which means that
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at least one linear combination of the atoms coincides with the signal to be represented.

For example, any two-dimensional vector defined by a pair of (x, y) coordinates can be

represented by any dictionary that contains a pair of linearly independent atoms in the

two dimensional real space of (x, y) coordinates.

For many decades, orthonormal dictionaries have been widely utilised for their math-

ematical simplicity: in this case, the number of atoms coincides with the dimension of the

space containing the signals to be represented, and the transform coefficients are simply

computed by calculating inner products. The ubiquitous Fourier transform, the discrete

cosine transform, the discrete wavelet transform, the Karhunen-Loève transform derived

from the principal component analysis and the class of lapped orthonormal transforms

are all examples of orthonormal transforms [70].

More recently, over-complete representations have been investigated for their flexibil-

ity and enhanced modelling power. In this case, the dictionary contains a larger number

of atoms compared to the dimension of the space containing the signals to be repre-

sented, and the representation coefficients are derived using non-linear algorithms. The

redundancy introduced by using more atoms than strictly necessary and the enhanced

complexity of the algorithms required to compute over-complete representations are of-

ten outweighed by the superior adaptivity of this class of transforms to the data to be

modelled. A sparse representation or approximation is a transform where the signal is

either exactly represented or approximated using only a small number of coefficients with

significant magnitude. Sparsity is often employed as a measure of adaptivity or modelling

power.

The notion of sparsity is deeply rooted in the ubiquitous scientific appeal for concise-

ness. Sparse approaches have been associated with the principles of parsimony expressed

by the famous Occam’s razor: competing models of the world should be judged based on

the number of assumptions and parameters they require, favouring the ones that provide

simple explanation of complex physical phenomena. That is, the models containing a

small number of active components.

Continuing with our trivial example, a sparse approximation of vectors in a two-

dimensional space only uses one atom and the corresponding coefficient. Over-complete

transforms offer an undoubted advantage when seeking sparse approximations of signals,
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Figure 1.2: Principal component analysis (left) and over-complete dictionary (right)
learned on a set of points in a two-dimensional space. pca learns an orthonormal dictio-
nary whose first atom is oriented in the direction that contains the greater variance in the
dataset, but all the points oriented in different directions cannot be well approximated
by either one of the atoms. The over-complete dictionary depicted on the right is learned
with the objective to provide a sparse approximation of the points in the training set,
and the atoms are oriented along the three directions that exhibit most variance in the
data.

as illustrated in Figure 1.2 which shows a set of points in the two dimensional real space.

The arrows in the left plot represent the atoms of a complete, orthonormal dictionary ob-

tained using principal component analysis (pca), while the ones in the right plot depict

an over-complete dictionary learned from the data in order to provide a sparse approx-

imation. Despite being defined to optimally identify the direction of greater variance

within the data, pca returns a complete dictionary that cannot be aligned with the three

directions of prevalent variance and, therefore, cannot lead to a sparse approximation

of most of the data. On the contrary, the over-complete dictionary is able to efficiently

approximate most of the points using only one of the atoms in the dictionary, and to

identify the three directions in the dataset.

Learning over-complete representations for sparse approximation is the objective of
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dictionary learning and is the main focus of this thesis. Dictionary learning is an exciting

and relatively recent field that has received a great interest in the scientific community [90].

The research endeavours have been devoted to understand the role of dictionaries in sparse

problems and the mathematical foundation of sparse representations and approximations,

as well as to explore different applications that can greatly benefit from the principles of

parsimony and simplicity underlying sparse approaches.

1.2 Thesis structure

The focus of the work presented in this thesis is to present a series of contributions to

the field of dictionary learning. Although sparse approximations are used in almost every

branch of signal processing, the experimental evidence that will be shown here focuses on

the processing of audio signals, and the role of sparse algorithms in audio applications

will be accordingly highlighted.

Chapter 2 offers a more formal and thorough background dealing with signal represen-

tations. It starts from a description of orthonormal dictionaries and of the class of lapped

orthogonal transforms. It then introduces sparse over-complete representations, some of

the most popular algorithms used to find sparse representations or approximations and an

overview of the methods for dictionary learning that have been proposed in the literature

and that are at the basis of most of the main contributions of this thesis.

Chapter 3 is a digression from the main theme of over-complete representations in

that it describes a study on different complete transforms to assess their performance

for source separation applications. The disjointness of time-frequency representations

of simultaneously playing musical instruments is employed as a measure of suitability

of a given representation for audio source separation by binary masking. A novel pitch-

synchronous lapped orthogonal transform is introduced where the frame-by-frame analysis

of audio data is adapted so that each frame analysing periodic signals contains an integer

number of periods. Although not strictly regarded as a dictionary learning method, this

algorithm presents nonetheless a technique for adapting transform parameters to the

audio signal to be analysed and it is shown to improve sparsity of the representation if

compared to a non pitch-synchronous approach. The results regarding disjointness, on

the other hand, indicate that the modified discrete cosine transform (mdct) generally
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outperforms the proposed pitch-synchronous approach and that sparsity and disjointness

are not correlated, an interesting experimental finding that challenges an assumption

often made in the source separation literature.

Chapter 4 describes a novel method for dictionary learning of convolved signals. It

starts by showing that the sparse approximation of a known sparse signal is greatly de-

graded if convolution is introduced. From this motivation, a model is proposed where

the observed variables are sparsely approximated by the atoms contained in a convolved

dictionary, and formulates an algorithm to learn the impulse response applied to the

dictionary. Experimental results on synthetic data show the superior approximation per-

formance of the proposed method compared to a state-of-the-art dictionary learning al-

gorithm, and hint at possible applications for de-convolution and source separation.

Chapter 5 deals with learning dictionaries that are both well adapted to a training

set of data and mutually incoherent. The mutual coherence is a measure of the similarity

between any two different atoms in the dictionary, and learning incoherent dictionaries has

been demonstrated to be important for sparse recovery problems. Two novel algorithms,

namely the incoherent k-svd (ink-svd) and the iterative projections and rotations (ipr)

algorithm are introduced and compared to other techniques previously published in the

literature. In particular, ipr is applied to the sparse approximation of audio signals and

is shown to learn very incoherent dictionaries while maintaining a good signal-to-noise

ratio. In addition, experimental evidence is presented in support of the use of incoherent

dictionaries for sparse approximation.

Chapter 6 includes a summary of the main topics covered in the thesis.

1.3 Main contributions

This thesis is a report about three years of research on sparse approximation and dictio-

nary learning during which I was lucky to collaborate with other brilliant students and

researchers at the Centre for Digital Music at Queen Mary University of London. Some of

the topics described in Chapters 3, 4 and 5 are the result of my own work and some others

received a substantial contribution from my colleagues. The following list summarises the

main contributions of this thesis specifying what parts should be considered to be my

own work and what other parts have to be attributed to other researchers.



1.4. Publications and other deliverables 21

Pitch-synchronous lapped orthogonal transform : a novel lapped orthogonal trans-

form is described in Section 3.1 that is aimed at analysing a periodic signal using

windows containing an integer number of periods. I conceived and implemented

the transform, along with the LOTbox, a Matlab toolbox implementing lapped or-

thogonal transforms. Dimitrios Giannoulis used the LOTbox to design and run the

experiments on the disjointness of time-frequency representations that are described

in Section 3.3.

Dictionary learning of convolved signals : Chapter 4 describes a novel model for

dictionary learning of convolved signals and a learning algorithm used to optimize

its parameters that was designed and implemented by myself, along with numerical

experiments aimed at studying its performance.

Incoherent dictionary learning : Chapter 5 introduces two algorithms for learning

dictionaries that are well adapted to a set of training signals and mutually incoher-

ent. The ink-svd algorithm described in Section 5.3.2 was conceived and imple-

mented by Boris Mailhé, while my contribution consisted in designing and running

the numerical experiments presented in Section 5.3.3. The iterative projections

and rotations algorithm introduced in Section 5.4 was ideated and implemented by

myself, along with the numerical experiments aimed at studying its performance.

1.4 Publications and other deliverables

The following papers have been published or submitted and currently under review in

peer reviewed journals and conferences. Most of the results presented in Chapters 3, 4

and 5 are published in these works.

• D. Barchiesi and M. D. Plumbley. Learning Incoherent Dictionaries for Sparse

Approximation using Iterative Projections and Rotations. Submitted and currently

under review in the journal “IEEE Transactions on Signal Processing”.

• D. Barchiesi and M. D. Plumbley. Learning Incoherent Dictionaries for Sparse

Approximation using Iterative Projections and Rotations. Sparsity, Dictionaries

and Projections in Machine Learning and Signal Processing, ICML Workshop, June

2012.
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• B. Mailhé, D. Barchiesi, and M. D. Plumbley. ink-svd: Learning incoherent dic-

tionaries for sparse representations. In Proceedings of the IEEE International Con-

ference on Acoustics, Speech and Signal Processing (ICASSP), March 2012.

• D. Giannoulis, D. Barchiesi, A. Klapuri, and M. D. Plumbley. On the disjointness

of sources in music using different time-frequency representations. In Proceedings

of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics

(WASPAA), pages 261–264, October 2011.

• D. Barchiesi and M. D. Plumbley. Dictionary learning of convolved signals. In

Proceedings of the IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 5812–5815, May 2011.

• D. Barchiesi and M. D. Plumbley. Dictionary learning of convolved signals. IN-

SPIRE Network Conference on Information Representation and Estimation, Septem-

ber 2010.

In addition, the following technical reports and software toolboxes have been produced

as part of the research undertaken.

• D. Barchiesi and M. D. Plumbley. Learning Incoherent dictionaries using iterative

projections and Lie group optimization. Technical report n. EECSRR-12-02, Queen

Mary University of London, May 2012.

• D. Barchiesi and M. D. Plumbley. Dictionary Learning of Convolved Signals. Tech-

nical report n. EECSRR-10-04, Queen Mary University of London, November 2010.

• D. Barchiesi and M. D. Plumbley. Sparse representations for blind deconvolution

and source separation. EECS Postgraduate Conference, Queen Mary University of

London, June 2010. Awarded the ”Best Poster Prize”.

• D. Barchiesi and M. D. Plumbley. Lapped orthogonal transforms toolbox. Available

at http://code.soundsoftware.ac.uk/projects/lots.

• D. Barchiesi and M. D. Plumbley. Incoherent dictionary learning SMALLBox add-

on. Available at https://code.soundsoftware.ac.uk/projects/incoherentdl.
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Finally, the following publications resulted from projects not related to the scope of

the present thesis, and their contributions will not be included in the present work.

• R. Tame, D. Barchiesi and A. Klapuri. Headphone Virtualisation: Improved Lo-

calisation and Externalisation of Non- individualised HRTFs by Cluster Analysis.

133rd Convention of the Audio Engineering Society, May 2012.

• D. Barchiesi and J. Reiss. Reverse Engineering of a Mix. Journal of the Audio

Engineering Society, 58(7/8):563-576, July/August 2010.

• D. Barchiesi and J. Reiss. Automatic target mixing using least-squares optimiza-

tion of gains and equalisation settings. In Proceedings of the 12th International

Conference on Digital Audio Effects (DAFx-09), pages 7-14, Sep. 2009.

• D. Barchiesi and J. Reiss. Automatic target mixing using genetic optimization of

gain and equalisation settings. Digital Music Research Network One-Day Workshop

(DMRN+3). Dec. 2008.

1.5 Notation

Table 1.1 indicates the notation adopted in this thesis.
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vvv, MMM Vectors and matrices are indicated by bold lowercase and uppercase
letters respectively.

k, K Scalar values and constants are indicated by lowercase and uppercase
letters respectively.

mmmk Indicates the vector obtained from the k-th column of the matrix MMM .
mmmk Indicates the vector obtained from the k-th row of the matrix MMM .
uuu = [vvv;www] Is a vector obtained by the concatenation of vectors uuu and www along the

rows dimension.
AAA = [BBB, ccc] Is a matrix obtained by the concatenation of the matrix BBB and the

vector ccc along the columns dimension.
Λ Index sets are indicated by uppercase Greek letters. The restriction of

a matrix or vector to the rows (or columns) indexed by a set Λ extends
the previous notation and is indicated as MMMΛ or MMMΛ.

c? Indicates the optimal value of the variable c, as returned by an opti-
mization algorithm.

v̂vv Indicates the Fourier transform of the vector vvv. This notation is ex-
tended to matrices where M̂MM indicates the matrix whose columns are
the Fourier transforms of the columns of the matrix MMM .

c∗ Indicates complex conjugate of the variable c.
(·)T , (·)H Indicates matrix or vector transposition and matrix or vector Hermitian

respectively (the latter is a transposition followed by complex conjuga-
tion).

||vvv||p Indicates the `p norm of a vector defined as ||vvv||p = (
∑

i |vi|p)
1/p. The

limit for p→∞ is defined as ||vvv||∞ = max
i
|vi|.

〈vvv, www〉 Indicates the inner product between two vectors defined as 〈vvv, www〉 =∑N
n=1 v

∗
nwn.

||MMM ||F Indicates the Frobenius norm of a matrix defined as ||MMM ||F =√∑
i,j |mij |2.

||MMM ||p,q Indicates the mixed p, q norm of a matrix defined as:

||MMM ||p,q =

 J∑
j=1

(
I∑
i=1

|mi,j |p
)q/p1/q

.

When p = q this norm can be computed by forming a single vector from
the elements ofMMM and calculating its norm. In particular, for p = q = 2
the matrix mixed norm corresponds to the Frobenius norm.

vvv ∗ www Indicates the linear convolution of the two vectors defined as

(vvv ∗ www) [n] =
I∑
i=1

v[i]w[n− i]

.

Table 1.1: Notation
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Chapter 2

Background

2.1 Bases and dictionaries

Let
{
φφφk ∈ RN

}K
k=1

be a collection of K atoms in a space of dimension N . The set of

atoms is said to span the space and is called a basis of RN if any signal yyy ∈ RN can be

represented by the following linear combination

yyy =
K∑
k=1

xkφφφk (2.1)

where xk is the coefficient or weight associated with the k-th atom. Note that the space in

which the signals live may not necessarily be RN , but can be any Hilbert space equipped

with an inner product 〈·, ·〉 [70]. However, we will restrict our discussion to real or complex

signals in finite dimensions unless otherwise specified as this case is relevant to the signal

processing applications considered in this work.

Equation (2.1) can be expressed using a compact notation by defining the dictionary

matrix ΦΦΦ ∈ RN×K as the matrix containing the atoms φφφk in each one of its columns.

yyy = ΦΦΦxxx (2.2)

where the vector xxx ∈ RK contains the weights associated to every atom. Equation (2.2)

is often referred to as a synthesis model in which the signal yyy is interpreted as synthesised

from a finite number of elementary functions, the atoms in the dictionary [30].
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2.1.1 Orthonormal dictionaries

An orthonormal dictionary is defined as a set of K = N atoms that satisfy the following

property: 〈
φφφi, φφφj

〉
=

 1 if i = j

0 if i 6= j
(2.3)

which implies that the squared `2 norm of the atoms ||φφφk||22 = 〈φφφk, φφφk〉 = 1 and that the

inner product between any two different atoms is zero. An orthogonal dictionary only sat-

isfies the property that different atoms are mutually orthogonal, but does not necessarily

contain normalized atoms. Two dictionaries whose atoms have different norms but the

same mutual inner products are considered equivalent for representing or approximating

a signal through the model (2.2) as the norm differences can be encoded in the magni-

tude of the coefficients xxx. It is common to work with normalized dictionaries and in the

reminder of the thesis we will consider atoms with unit norm unless otherwise specified.

The dictionary matrix ΦΦΦ deriving from an orthonormal basis is an orthonormal matrix,

so that ΦΦΦTΦΦΦ = ΦΦΦΦΦΦT = III is the identity matrix. For orthonormal dictionaries, the

coefficients xk introduced in equation (2.1) are simply calculated by the inner product

between the signal yyy and the atoms:

xk = 〈yyy, φφφk〉 (2.4)

In fact, if we express (2.4) in matrix notation as xxx = ΦΦΦT yyy, it can be easily shown by

substituting in (2.2) that:

yyy = ΦΦΦΦΦΦT yyy = IIIyyy = yyy.

Orthonormal transforms include the discrete Fourier transform (dft), the discrete cosine

transform (dct), the orthonormal discrete wavelet transform (dwt) and the class of

lapped orthogonal transforms (lots)1.

When analysing a signal using a dictionary, the coefficients in the transformed domain

carry information about the characteristics of the signal based on the properties of the

1Here orthogonal is used to keep the nomenclature consistent with the literature on the topic,
although the dictionaries will be generally assumed to be orthonormal.
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atoms. For example, the atoms of a N -dimensional dct-i are defined as [70]:

φφφk [n] =
ck√
N

cos

[
πk

N

(
n+

1

2

)]
ck =

 1 if k = 0
√

2 if k 6= 0
.

Each φφφk is a cosine function parametrized by the factor k ∈ {0, 1, . . . , N − 1} that deter-

mines its frequency, and the inner product between different atoms and the signal to be

analysed bears information regarding the activity present at different frequencies. Figure

2.1 shows the time-domain waveform of a 5 seconds piano recording and its dct trans-

form. It can be seen that most peaks in the transform domain occur between 500Hz and

2000Hz which correspond to a typical range of frequencies present in a piano recording.

However, the information resulting from this transform globally pertains to the whole

musical excerpt. This occurs because the dct atoms cover the entire time interval of

the musical signal and are only localised in frequency (whereas the time-domain repre-

sentation that represents a signal as a linear combination of Dirac atoms is only localised

in time). The Heisenberg uncertainty principle poses a lower bound on the area of the

time-frequency plane covered by a given atom, resulting in a trade-off between time and

frequency resolution [70].

Had we wanted to achieve a better time resolution and reveal structures such as the

note boundaries and harmonic partials visible in Figure 1.1, we would have needed to use

atoms that are both localised in time and in frequency. The class of lapped orthogonal

transforms provides a framework for constructing orthonormal dictionaries with this type

of atoms.

2.1.2 Lapped orthogonal transforms (lots)

The simpler way of realizing a globally orthonormal transform by using time-localised

functions is dividing the interval Γ
def
= {1, 2, . . . , N} into P smaller, disjoint intervals

γp = {ap, . . . , ap+1}, such that the union
⋃P
p=1 γp = Γ covers the entire time axis. We can

then assign an orthonormal basis ΦΦΦp such that ΦΦΦpΦΦΦ
T
p = III locally to each of the intervals

and thus define a block orthonormal basis of the space RN which can be expressed using
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Figure 2.1: Time domain waveform (top) and dct transform (bottom)
of a 5 seconds piano excerpt taken from the rwc database available at
http://staff.aist.go.jp/m.goto/RWC-MDB/ (track number 1 of the Jazz Music Database).

a block matrix notation:

ΦΦΦ =



ΦΦΦ1 000 000 000

000 ΦΦΦ2 000 000

000 000
. . . 000

000 000 000 ΦΦΦP


(2.5)

It can be trivially shown that ΦΦΦΦΦΦT = III and, therefore, the dictionary ΦΦΦ consists in

locally orthonormal bases that are also globally orthonormal. Analysing a signal yyy with

such transform is equivalent to extracting intervals γp from yyy through rectangular windows

and applying the respective local transform.

Unfortunately, all periodic transforms (including dft and dct) implicitly assume a

http://staff.aist.go.jp/m.goto/RWC-MDB/
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periodic extension of the signal to be analysed which creates artificially high frequencies

when the value of the signal at the boundaries of each block does not correspond to

zero. The spurious coefficients resulting from the windowing effect are misleading in the

analysis of the frequency content of the signals and, moreover, lead to a representation

that is not compressible (i.e., one where the sorted magnitude of the coefficients does not

decay slowly), which is inadequate for coding applications.

The lapped orthogonal transform has been introduced in order to partition the signal

using smooth, overlapping windows that mitigate the windowing artefacts, while main-

taining the local and global orthonormality of the transform [72]. A lapped orthogonal

basis of the space RN can be written as in equation (2.5), except that consecutive local

orthonormal bases are windowed using smooth window boundaries and do overlap. By

ensuring that the windows satisfy reconstruction properties and by allowing a maximum

overlap of 50% it is possible to ensure that the dictionary ΦΦΦ is globally orthonormal (see

also [70] for more details on the theory and algorithms on fast implementations of the

lots).

Within the framework of lots, it is possible to specify different local orthonormal

transforms, different partitioning of the signal and overlap between consecutive windows,

obtaining a wide range of transforms. The modified cosine transform (mdct) is a notable

example of a lot that has been widely used in the analysis and coding of audio signals

[101, 72, 12]. It is obtained by using type-iv discrete cosine transform (dct-iv) bases,

constant partitioning of the signal and 50% overlap between consecutive windows.

2.2 Over-complete dictionaries

Orthonormal transforms are not the only way to express signals as linear combinations

of atoms contained in a dictionary. A dictionary containing atoms φφφk ∈ RN is said to be

complete if it spans the space RN . The following conditions are equivalent in ensuring

that the dictionary is complete:

• ΦΦΦ contains N linearly independent atoms.

• The rank of the dictionary Rank (ΦΦΦ) = N equals the size of the space spanned by

it.
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A full-rank dictionary containing K > N atoms is called over-complete. Traditionally,

over-complete dictionaries have been analytically designed to provide a signal represen-

tation that offers a better time-frequency resolution than what can be achieved by or-

thonormal transforms. Gabor and wavelet transforms are two notable examples of such

over-complete dictionaries.

2.2.1 Gabor and wavelet transforms

The class of Gabor transforms explicitly defines atoms that are localised in time and

frequency, providing a representation where the tradeoff between time and frequency

resolution can be parametrically adjusted. A discrete Gabor atom is usually indexed

with a pair of time and frequency centres (τ, ξ) ∈ Z and is defined as:

φφφτ,ξ[n] =W[n− ατ ] exp [2πiβξn] (2.6)

where W is a windowing function and the parameters α and β control the spacing of

the atoms in the time-frequency plane. Figure 2.2 depicts a graphic representation of

the time-frequency plane and of a Gabor atom with the relative parameters defining the

time-frequency centres of φφφτ,ξ.

Appropriate choices of W, α and β allow the dictionary to tile and cover the whole

time-frequency plane and to provide a complete transform. Generally, the domain of

the pair (τ, ξ) is such that the number of coefficients deriving from a Gabor transforms

is greater than the number of samples of the signal to be analysed. In this case the

Gabor dictionary leads to an over-complete representation that has been often restricted

to the class of bi-orthogonal transforms [85], that is, a pair of analysis dictionary ΦΦΦa and

synthesis dictionary ΦΦΦs that satisfy the following relation:

ΦΦΦsΦΦΦa
T = III. (2.7)

This ensures that, even when working with over-complete representations, the coefficients

can be calculated using the inner product xτ,ξ =
〈
φφφτ,ξ, yyy

〉
.

Wavelet transforms [70] were proposed to construct non-uniform tilings of the time-

frequency plane. The principal idea driving the design of wavelets is that low frequency
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Figure 2.2: Time frequency plane representation of a Gabor atom with time centre loaded
at τα and frequency centre located at ξβ. The grey area indicates the tile of the time-
frequency plane occupied by the atom and do not necessarily correspond to the support
of the function φφφτξ in the time or frequency domain.

signals exhibit long time supports and can be analysed using fine frequency resolutions,

whereas high frequency signals are finely localised in time and can be analysed with

coarser frequency resolutions. Instead of being defined by their time shifts and frequency

modulations as in (2.6), wavelet atoms are shifted and scaled versions of a so-called mother

wavelet and lead to time-scale representations. Figure 2.3 shows time-frequency tilings of

a Gabor transform and of a wavelet transform highlighting the non-uniform partitioning

of the time-frequency plane achieved by wavelets.

Generalisations of wavelets such as wavelet packets and cosine trees can be used

to partition the time-frequency plane in more adaptive ways [70]. The coefficients of

the discrete wavelet transform (dwt) and of its generalisations are computed using fast

algorithms that rely on analysis and reconstruction filters, a concept closely related to

the analysis and synthesis dictionaries used in bi-orthogonal transforms.
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Figure 2.3: Tiling of the time-frequency plane resulting from a Gabor transform (left)
and a wavelet transform (right). Gabor atoms φφφτ,ξ partition the plane uniformly, while
wavelet atoms φφφτ,s employ a time-scale tiling where fine frequency resolution and coarse
time resolution is used for low-frequency component while fine time resolution and coarse
frequency resolution is used for high-frequency components.

2.3 Sparse models

Gabor and wavelet transforms are only special cases of general over-complete representa-

tions. The over-complete representation model can be written as is (2.2) with K > N :

yyy = ΦΦΦxxx (2.8)

or relaxed to an over-complete approximation model that can be written as

yyy ≈ ΦΦΦxxx. (2.9)

Unlike in the case of complete dictionaries, the representation of a signal using an over-

complete dictionary is not unique. In fact, given a coefficients vector xxx such that (2.2)

is satisfied, we can construct a second vector xxx′ = xxx + x̄xx by choosing x̄xx ∈ N (ΦΦΦ) in the

null-space of the dictionary matrix, so that yyy = ΦΦΦxxx′. In other words, an over-complete
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representation admits an infinite number of solutions that occupy a space whose dimension

equals the dimension of the null-space of ΦΦΦ, i.e. K − Rank (ΦΦΦ).

Among all the possible solutions, a sparse representation is the one with the smallest

number of non-zero coefficients in xxx, and can be defined as a solution of the following

optimization problem:

xxx? = arg min
xxx∈RK

||xxx||0 (2.10)

such that yyy = ΦΦΦxxx

where the `0 pseudo-norm ||·||0 counts the number of non-zero coefficients of its argument.

A sparse approximation, on the other hand, is the natural relaxation of (2.10) where the

sparse linear combination is constrained to belong to a so-called ε-ball centred around

the observed data yyy, that is a region of the space RN whose Euclidean distance from the

observed signal is not larger than ε and quantifies the modelling error:

xxx? = arg min
xxx∈RK

||xxx||0 (2.11)

such that ||yyy − ΦΦΦxxx||2 ≤ ε.

This error constrained optimization has an alternative formulation, the sparsity con-

strained sparse approximation, that is defined as seeking the linear combination of S

atoms that provides the best approximation in terms of the residual norm of the approx-

imation:

xxx? = arg min
xxx∈RK

||yyy − ΦΦΦxxx||2 (2.12)

such that ||xxx||0 ≤ S.

It has been shown that a solution to the above problems is np hard, that is, it

cannot be attained by an algorithm in polynomial time [24]. A method to solve (2.10),

for example, would search over all possible linear combinations of atoms, starting from

approximations that only use one atom and proceeding by increasing the number of active

atoms until a combination that exactly represents the signal is found. Algorithms that
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follow this strategy can be categorised as brute force methods, and require evaluating

a large number of possible solutions. Fixing a number of active atoms S, the number

of different combinations is
(
K
S

)
= K!

S!(K−S)! . Unfortunately, the number given by the

binomial expression is computationally impractical for most signal processing tasks that

involve dimension of the order of 102 − 104.

Searching over all possible linear combinations of S atoms provides a general inter-

pretation of the model (2.9). Given a dictionary containing K atoms, a signal can be

approximated by vectors ỹyy = ΦΦΦxxx belonging to the union of all possible subspaces gener-

ated by combinations of S � K atoms. The notion of union of subspaces can be extended

to the analysis sparsity model that will be briefly discussed in Section 2.9.1 where the

signal is interpreted as analysed by a linear operator that promotes co-sparsity (i.e. a

large number of zero coefficients in the transformed domain) [31, 44].

2.4 Algorithms for sparse approximations

During the last few decades many algorithms have been proposed and benchmarked in

order to approximate the solution to (2.10) in polynomial number of iterations [115]

and a significative research effort has been devoted to understand the accuracy of these

approximations [92, 113, 111, 114]. The methods can be classified in three different

categories: Greedy algorithms construct an approximation using generally one atom at

a time with the objective of choosing the optimal atom at every step; convex relaxation

methods rely on the fact that the `0 pseudo-norm can be approximated by the `1 norm

leading to a convex optimization problem that can be solved in polynomial time; non-

convex optimization methods are a more recent class of techniques that approximate the

`0 objective with an `p norm where 0 < p < 1 leads to non-convex minimisation problems.

2.4.1 Greedy algorithms

The first method appearing in the literature to approximate the solution of (2.10) is

the matching pursuit (mp) algorithm proposed by Mallat and Zhang [71]. A signal yyy is

iteratively approximated using the atoms φφφk contained in the dictionary ΦΦΦ through the

following steps:

I - Initialise the coefficients as the zero vector xxx = 000 and set the residual as rrr = yyy.



2.4. Algorithms for sparse approximations 35

Algorithm 1: Matching pursuit (mp)
Input: yyy,ΦΦΦ, I, ε
Output: xxx?

// Initialisation
1 i← 1;
2 rrr ← yyy;
3 while i ≤ I or ||rrr||2 ≤ ε do

// Atom selection
4 ccc = ΦΦΦT rrr;
5 k? = arg max

k
|ck|;

// Residual update
6 rrr ← rrr − ck?φφφk? ;
7 i← i+ 1;
8 end

II - Compute the inner products between the residual and the atoms in the dictionary

ck = 〈rrr, φφφk〉.

III - Select the atom that results in the largest absolute inner product k? = arg max
k={1,...,K}

|ck|.

IV - Update the residual by subtracting the contribution of the optimal atom rrr ←

rrr − ck?φφφk? .

V - Repeat steps II to IV until a stopping criterion is met.

The orthogonal marching pursuit (omp) [82] has been proposed as an improved greedy

algorithm where the atom selection is unchanged but the residual update is performed

by projecting the current residual onto the subspace spanned by the atoms selected up

to that point. Algorithms 1 and 2 summarise the steps of mp and omp respectively.

In the omp algorithm, the set of active indexes Λ is defined and initialised as the empty

set. Inner products are calculated between the residual and a sub-dictionary whose atom

indexes are restricted to be in Λc that is the complement of the active set in line 5 (i.e,

only the inner products of unused atoms are evaluated at each step). After selecting the

atom exhibiting the larger absolute inner product as in mp and updating Λ to include the

chosen index, the residual update is performed by calculating the vector of coefficients xxx?Λ

derived from projecting the signal onto the subspace spanned by the active atoms. This

is achieved by computing the Moore-Penrose pseudo-inverse ΦΦΦ†Λ of the sub-dictionary

ΦΦΦ†Λ
def
= (ΦΦΦΛ

TΦΦΦΛ)−1ΦΦΦΛ
T that contains the active atoms in line 8.
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Algorithm 2: Orthogonal matching pursuit (omp)
Input: yyy,ΦΦΦ, I, ε
Output: xxx?

// Initialisation
1 i← 1;
2 rrr ← yyy;
3 Λ← ∅;
4 while i ≤ I or ||rrr||2 ≤ ε do

// Atom and support selection
5 ccc = (ΦΦΦΛc)

T rrr;
6 k? = arg min

k
|ck|;

7 Λ← Λ
⋃
k?;

// Residual update
8 xxx?Λ = ΦΦΦ†Λyyy ;
9 rrr ← yyy − ΦΦΦΛxxx

?
Λ;

10 i← i+ 1;
11 end

Unlike in the mp algorithm, in the omp inner products are computed only for the

atoms that do not belong to the active set because the residual at each step is orthogonal

to the space spanned by the atoms belonging to the active set. This means that, at each

iteration, the inner products 〈rrr, φφφk〉 = 0 ∀k ∈ Λ and the same atom cannot be selected

twice. Moreover, if the dictionary is a basis that spans the space RN the algorithm

converges to a representation with zero residual error after at most N steps.

The advantage of using the omp algorithm in terms of convergence properties comes

at the computational cost incurred by computing one pseudo-inverse per iteration. This

essentially solves the least squares problem xxx?Λ = arg min
xxxΛ

||yyy − ΦΦΦxxxΛ||2.

More recent greedy algorithms have been proposed by modifying and improving the

strategy followed by mp and omp . The regularised orthogonal matching pursuit (romp)

[77], the compressive sampling matching pursuit (CoSaMP)[76], the subspace pursuit

[19] are all examples of recent contributions to the class of greedy algorithms for sparse

representation that are oriented to compressive sampling applications and explicitly of-

fer convergence guarantees in terms of the restricted isometry property (see [16] for an

overview of compressive sampling, a popular technique for the acquisition of sparse signals

based on sparse representations that is briefly described in Section 2.9.1).
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Algorithm 3: Iterative hard thresholding (iht)
Input: yyy,ΦΦΦ, S, I, ε
Output: xxx?

// Initialisation
1 i← 1;
2 rrr ← yyy while i ≤ I or ||rrr||2 ≤ ε do

// Gradient descent
3 ccc = ΦΦΦT rrr;
4 xxx← xxx− ccc;

// Hard thresholding
5 xxx← [xxx]λ;

// Residual update
6 rrr ← yyy − ΦΦΦxxx

7 end

The iterative hard thresholding (iht) algorithm [8] is an example of a greedy approach

to the solution of a penalised problem of the form:

xxx? = arg min
xxx∈RK

||yyy − ΦΦΦxxx||2 + λ ||xxx||0 . (2.13)

Algorithm 3 summarises its main steps. This strategy resembles a gradient descent op-

timization because at each step the vector ccc = ΦΦΦT rrr = ∇xxx||yyy − ΦΦΦxxx||22 is calculated and

subtracted to the previous solution. The updated solution is then element-wise hard-

thresholded using the thresholding parameter λ:

[xk]λ =

 xk if |xk| ≥
√
λ

0 if |xk| <
√
λ

(2.14)

and based on the new solution the residual is updated accordingly. Depending on λ one

or more new components may enter or leave the active set at any iteration, but generally

the solution is forced to be sparse by the thresholding step. The hit algorithm has been

shown to be as reliable as the omp algorithm in retrieving the representation of a sparse

signal from an incomplete set of measurements [8, 93].
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2.4.2 Convex relaxation algorithms

A convex relaxation of the problem (2.10) consists in formulating a sparse representation

problem as:

xxx? = arg min
xxx∈RK

||xxx||1 (2.15)

such that yyy = ΦΦΦxxx

where the `1 norm is used in place of the `0 pseudo-norm as it is the closest convex

surrogate function to the original objective of (2.10).

The rationale behind convex relaxation strategies relies on a geometric insight about

the space occupied by the infinite number of solutions of an over-complete system of

equations. Figure 2.4 depicts the case K = 2, N = 1 that can be easily visualised in two

dimensions, although the concepts described can be generalised in higher dimensions.

The constraint set of (2.15), that is, the set of solutions of an over-determined system

of equations is an affine expression that defines an hyper-plane embedded in the space

RK occupied by the representation coefficients xxx. In the case of our example, we consider

the plane R2 and a line which corresponds to the set of solutions that satisfy ΦΦΦxxx = yyy. A

sparse representation lies on this hyperplane and results in a small number of non-zero

coefficients compared to the dimension K. In our case, a sparse representation is one

where only one of the two coefficients differs from zero, i.e. the intersection between the

line ΦΦΦxxx = yyy and either one of the axis x1 or x2.

The circle and diamond shapes in Figure 2.4 represent contours lines with constant `2

and `1 norm respectively, and different outward concentric levels correspond to increasing

values of the relative norm. It can be seen from the figure that seeking the solution with

the smallest `1 norm promotes sparsity in that it tends to correspond to the corners of

the `1 contours that intersect with the axis.

The optimization (2.15) has been proposed by Chen et al. as the basis pursuit (bp)

algorithm [17] whose goal is to select from an over-complete dictionary the optimal basis

that minimises the `1 norm of the representation coefficients. The bp algorithm turns the

optimization (2.15) into a standard linear program by defining an augmented dictionary

Φ̄ΦΦ
def
= [ΦΦΦ,−ΦΦΦ] which include negative copies of the atoms in its columns and solving the
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Sparse

Non Sparse

x1

x2y = �x

Figure 2.4: Coefficients space and solutions of an under-determined system of equations
with K = 2 and N = 1. The line ΦΦΦxxx = yyy represent the set of points that satisfy the
representation constraint of (2.10). The minimum `1 and `2 solutions are indicated as
the intersection of the constraint set with the contours lines representing locations of
equal `1 norm (diamonds) and `2 norm (circles). The sparse representation is located
in correspondence with the minimum `1 solution unless the constraint set lies on the `1
contour line, in which case any non-sparse solution would be equivalent to a sparse one
in terms of `1 minimisation.

optimization problem:

x̄xx? = arg min
x̄xx∈R2K

111T x̄xx (2.16)

such that yyy = Φ̄ΦΦx̄xx

x̄xx � 000
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where x̄xx ∈ R2K is an augmented coefficients vector whose elements are constrained to be

greater than zero (here we used the notation � to indicate element-wise inequality) and

111 indicates a vector of ones and is introduced to express the `1 norm as an inner product

〈111, x̄xx〉 = ||x̄xx||1. This linear program can be solved with any suitable convex optimization

method [11] and results in the optimal x̄xx? that can be easily translated to the solution

xxx? of (2.15) by splitting it in two consecutive vectors x̄xx? = [vvv?;uuu?] of length K and

subtracting the second vector to the first one xxx? = vvv? − uuu?.

The basis pursuit de-noising algorithm (bpd) is a natural generalisation of (2.15)

which can be used to approximate a signal that cannot be exactly represented by a linear

combination of a few atoms

xxx?λ = arg min
xxx∈RK

1

2
||yyy − ΦΦΦxxx||22 + λ ||xxx||1 . (2.17)

In this unconstrained minimisation the parameter λ rules the trade-off between the ap-

proximation accuracy expressed by the first term of the objective function and the sparsity

of the solution promoted by the minimisation of the `1 norm of the coefficients. Assuming

additive Gaussian noise, the parameter λ can be set proportionally to the variance of the

noise, so that the noiseless case corresponding to limλ→0 xxx
?
λ coincides with the solution

of (2.15). The optimization (2.17) is a quadratic program that can be solved with any

standard convex optimization algorithm [11] and has a convenient Bayesian interpreta-

tion as the maximum a posteriori (map) estimate of the signal under the assumptions

that the noise follows a Gaussian distribution and that the coefficients follow a Laplacian

distribution.

More precisely, consider the sparse approximation model (2.9) that can be written as

yyy = ΦΦΦxxx+ nnn by introducing the noise vector nnn and suppose that xxx and nnn are drawn inde-

pendently from the respective prior distributions Pxxx and Pnnn. The likelihood of observing

a signal given that this is generated from some given coefficients is p(yyy|xxx) = Pnnn(yyy −ΦΦΦxxx)

and the prior probability of observing the coefficients is p(xxx) = Pxxx(xxx). The Bayes rule

p(xxx|yyy) =
p(yyy|xxx)p(xxx)

p(yyy)
(2.18)

linking the posterior conditional probability of the coefficients given that we observe a
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given signal to the likelihood and the prior probability of the coefficients allows to define

the maximum-a-posteriori solution as:

xxx?map = arg max
xxx∈RK

p(xxx|yyy) (2.19)

= arg min
xxx∈RK

− log p(xxx|yyy)

= arg min
xxx∈RK

− log p(yyy|xxx)− log p(xxx).

Assuming a Gaussian noise prior Pnnn(yyy−ΦΦΦxxx) ∝ exp
(
− ||yyy − ΦΦΦxxx||22 /2

)
, a Laplacian prior

on the coefficients Pxxx(xxx) ∝ exp (−λ∑k |xk|) and substituting into (2.19) we obtain

xxx?map = arg min
xxx∈RK

1

2
||yyy − ΦΦΦxxx||22 + λ ||xxx||1 (2.20)

that coincides with the bpd formulation (2.17). It is worth noting that this map solution

is not the only valid Bayesian interpretation of penalised least-squares problems, as shown

by Gribonval [43].

Another strategy for defining and solving a convex relaxation of the sparse represen-

tation problem is the least absolute shrinkage and selection operator (lasso) algorithm

proposed by Tibshirani [110] and further developed by Osborne et al. [80]. The optimiza-

tion problem is formulated as follows:

xxx?κ = arg min
xxx∈RK

||yyy − ΦΦΦxxx||22 (2.21)

such that ||xxx||1 ≤ κ

where the parameter κ controls the level of sparsity of the solution.

Figure 2.5 offers a geometric interpretation of the lasso algorithm that is worth

comparing to Figure 2.4. Here xxx?K indicates a large value of the parameter κ that satisfies

yyy = ΦΦΦx?K , i.e. a solution for which the value of the objective function in (2.21) is zero.

For lower values of κ, the solution xxx?κ is the intersection between the constraint set (that

is, the shaded area delimited by the contours plot of the `1 norm) and the contours plot

of the quadratic cost function of (2.21) depicted as dashed ellipsoids. Once again we can

see that the `1 norm promotes sparsity, while the `2 solution would be one where both
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x?
0

x?
1

x?
K

x1

x2

||y ��x||2

Figure 2.5: Geometric interpretation of the lasso algorithm. The solution xxx?κ lies on the
intersection between the constraint set bounded by the `1 norm ball and the contours
levels representing increasing values of the quadratic function that is the objective of
(2.21). The homotopy algorithm finds the solution of (2.21) following a greedy strategy
that starts from xxx?0 = 000 and follows the solution path resulting from increasing κ.

the components x1 and x2 are active.

The homotopy algorithm [80] introduced to solve (2.21) is an iterative method that

starts form the solution xxx?0 = 000 and traces a solution path which follows increasing values

of the parameter κ until the desired constraint is reached. Enlarging the feasible set by

increasing the value of κ causes new atoms to enter the active set Λ and may result in
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other atoms to exit it. The least angle regression (lars) algorithm proposed by Efron et

al. [29] is a simplification of homotopy where atoms are only allowed to enter the active

set every time the solution gets updated.

Drori and Donoho [28] reviewed the `1 minimisation algorithms and built theoreti-

cal and empirical phase-transition diagrams which show for what values of sparsity and

dictionary redundancy the various algorithms are able to recover a sparse solution to an

under-determined system of equations. They use the parameter σ = N/K which measures

the redundancy of the dictionary as the ratio between the dimension of the signals and

the number of atoms and the sparsity level ρ = S/N as the ratio between the number of

active atoms and the dimension of the signals. As σ decreases implying more redundant

dictionaries, the sparsity level ρ must also decrease to guarantee correct recovery. For

appropriate values of σ and ρ, lasso, lars and omp succeed in recovering an S-sparse

solution in S steps. Moreover, Donoho and Tsaig show [26] how the lars algorithm

bridges the gap between `1 optimization algorithms and greedy methods such as omp by

iteratively finding a solution of (2.21) adding one atom to the active set at each step.

2.5 Applications of sparse over-complete models

This section gives an overview of some of the algorithms that appeared in the literature

during the last decade which make use of sparse representations or approximations to solve

typical signal processing problems. The research on sparse methods and the advances in

the related field of compressed sensing are very popular fields with contributions regularly

appearing from a vast research community (see, for example, the blog Nuit Blanche2 for

almost-daily updates on the latest events and publications). Therefore, this is by no means

an exhaustive list of contributions, but rather a partial account focused on applications

to audio signals analysis and processing.

Audio coding and de-noising

Sparse representations are by definition suitable for audio coding where the goal is to rep-

resent (in the case of lossless coding) or approximate (in the case of lossy coding) an audio

signal using the smallest possible bit-rate, that is, the smallest amount of information or

amount of significant coefficients per second.

2http://nuit-blanche.blogspot.co.uk/

http://nuit-blanche.blogspot.co.uk/
http://nuit-blanche.blogspot.co.uk/
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Davies and Daudet [23] devise a modulated complex lapped transform (mclt) that is a

generalisation of lapped orthogonal transforms for the coding of audio signals and suggest

a multi-resolution analysis where an over-complete sparse approximation is used for audio

processing. The authors also define an iteratively reweighed least squares algorithm for

coding audio signals using the proposed mclt. Ravelli et al. [88] suggest instead an union

of 8 mdct transforms for audio coding and shows through a comparison with state-of-

the-art algorithms the superior performance of sparse over-complete approximations at

low bit-rates.

Audio signals often display regular harmonic structures and recurring patterns both in

time and frequency. Starting from this motivation, Daudet [22] introduced the molecular

matching pursuit algorithm where molecular structures are defined as groups of atoms

that occur together in a time-frequency representation. The distinction between tonal and

transient molecules makes the algorithm suitable for audio analysis and coding. Extending

this work, Leveau et al. [59] suggest to employ instrument specific harmonic molecules

for the representation of audio signals. These are grouped in successive time frames and

also used for polyphonic instrument recognition.

The work by Vincent and Plumbley [117] follows a similar rationale in proposing a

Bayesian probabilistic model to represent audio signals at very low bit-rates using note-

like representations consisting of harmonic partials. The resulting so-called object coding

represents an ambitious goal that blurs the boundaries between coding and transcription,

another challenging application in audio signal processing. Coding is also intimately

linked with de-noising, as sparse representations that capture salient features of audio

signals through significant coefficients are also likely to discard any additive noise in the

set of non-significant coefficients. This is the rationale behind the basis pursuit de-noising

algorithm [17] and of more recent algorithms specifically tailored to audio signals [37].

Apart from designing atoms that are specifically tailored to the representation of audio

signals, advances in coding applications can be pursued by studying the distribution of

sparse approximation coefficients. Kowalski and Torrésani [57] propose a probabilistic

model of the analysis coefficients resulting from the inner product between the atoms in

a dictionary made of a union of bases and the signal to be coded. The coefficients are

further classified in significant and not significant components and this distinction proved
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to be useful for de-noising applications.

In the area of speech processing, a popular technique is the linear predictive coding

(lpc) where current samples of speech are expressed as linear combination of past samples

in an auto-regressive model. Giacobello et al. [39] propose a reweighed `1 algorithm for

lpc of speech that leads to a sparse residual in the time domain, which can be in turn

sparsely coded [40].

Audio restoration

Coding is not the only application of sparse approximation for the processing of audio

signals. The audio in-painting framework introduced by Adler et al. [3] by analogy with

the perhaps better known image in-painting includes several problems in audio restoration

such as bandwidth extension, packet loss, de-clipping and impulsive noise removal which

are tackled using an unified model. The signal is decomposed using a frame based sparse

time-frequency transform (usually a discrete cosine or discrete Gabor dictionary), the

locations of un-reliable data are assumed to be known and the audio is restored in every

frame by solving an inverse problem using the orthogonal matching pursuit algorithm.

The results obtained in terms of signal-to-noise-ratio are comparable to state-of-the-art

algorithms and commercial software. As a particular example of audio in-painting, Mous-

sallam et al. [74] employ a decomposition with full-bandwidth atoms on a signal with

reduced bandwidth for bandwidth extension.

Source separation

Source separation is another application where sparse models have been used extensively.

Its formal definition is given in Section 3.3.1, along with distinctions between different

categories of source separation problems. Generally speaking, the goal of this class of

applications is to extract a set of unknown source signals from a set of mixtures. For

example, the so-called cocktail party problem consists in extracting a single speech con-

versation from a mixture of background chattering; whereas in a musical audio processing

scenario source separation aims at separating different instruments that are playing si-

multaneously from mixture observations.

Zibulevsky and Pearlmutter [123] rely on the assumption that source signals are sparse

in a given dictionary to propose a maximum a posteriori estimation of the sources given

the observed mixtures, and present results on the separation of audio signals. A similar
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assumption is present in the work of Georgiev et al. [38] whose goal is to identify a mixing

matrix that is then inverted to retrieve the source signals. Kowalski et al. [58] propose an

optimization framework for undetermined convolutive source separation based on sparsity

of the source signals and using an iterative thresholding algorithm. Sudhakar et al. [107]

devise a framework for filter identification from convolutive mixtures that exploits the

sparsity of the filters in the time domain and the sparsity of the source signals in a trans-

formed domain. Sudhakar and Gribonval [108] also tackle the problem of permutation

indeterminacy suffered by frequency domain methods for convolutive blind source separa-

tion observing that the `1 norm of filter matrix increases with permutations and seeking

therefore to optimize the filters with minimal `1 norm in the time domain. Benichoux

et al. [7] propose a sparse approach to the recovery of multiple room impulse responses

that is based on a statistical model of the impulse responses sparsity and envelope. Bobin

et al. [9] use morphological component analysis for source separation where the source

signals are assumed to be sparse in dictionaries that are dissimilar for different sources.

Finally, Gribonval and Lesage [45] summarise the research contributions and challenges

encountered by sparse approaches for blind sources separation.

Additional applications

Other applications of sparse approaches include speech recognition and classification. For

the former, Fazel and Chakrabartty [34] propose the sparse auditory reproducing kernel

features as representations that are coded using a dictionary of gamma tone functions

[104] and used for speech recognition. In the latter application Huang and Aviyente

[49] propose a framework that joins discrimination methods such as linear discriminant

analysis to the sparse representation optimization with the objective to promote sparsity

of the representation.

2.6 Dictionary learning for sparse approximation

The sparse models (2.8) and (2.9) described in Section 2.3 rely on the assumption that

signals can be expressed as a sparse linear combination of atoms contained in a given

dictionary. Although there exist dictionaries which have been designed to mathemat-

ically model the properties of certain classes of functions and can be used to sparsely

approximate or represent these signals, a more adaptive solution consists in learning the
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dictionary from examples of data of a given class [90].

Given a set of M observed signals {yyym}Mm=1 ∈ RN which can be stacked along the

columns of the matrix YYY ∈ RN×M , the goal of dictionary learning is to optimize a

dictionary ΦΦΦ ∈ D ⊆ RN×K belonging to a class of admissible dictionaries, such that:

YYY ≈ ΦΦΦXXX (2.22)

and the matrix XXX ∈ RK×M which contains the coefficients of the representations along

its columns is sparse. This means that each signal yyym is associated with a sparse repre-

sentation xxxm which contains a small number of nonzero coefficients.

The model (2.22) contains an inherent ambiguity in that, given a solution pair (ΦΦΦ, XXX)

it is possible to define an equivalent solution (ΦΦΦ′ = ΦΦΦAAA,XXX ′ = BBBXXX) by multiplying the

dictionary and the coefficients by a pair of matrices AAA and BBB such that AAABBB = III is the

identity. As will be discussed in Chapter 5 it is possible to leverage this ambiguity to

promote desirable properties of the dictionary. However, a scaling ambiguity correspond-

ing to the case where AAA is a diagonal matrix and BBB = AAA−1 will be from now on avoided

by defining the set of admissible dictionaries D = {ΦΦΦ : ||φφφk||2 = 1 ∀k} as the one where

atoms are of unit norm. For the reminder of the thesis normalized dictionaries will be

considered without an explicit notation except when otherwise specified.

The optimization problems defined to learn dictionaries from a matrix YYY of training

signals follow the ones introduced to find sparse approximations. A sparsity constrained

formulation of dictionary learning can be written by analogy with (2.12) as follows:

(ΦΦΦ?, XXX?) = arg min
ΦΦΦ∈D,XXX∈RK×M

||YYY − ΦΦΦXXX||F (2.23)

such that ||xxxm||0 ≤ S ∀m

where the sparsity of the representation coefficients is enforced in the approximation of

every signal and the objective function is the Frobenius norm of the residual. Likewise,
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an error-constrained optimization can be defined in analogy to (2.11) as:

(ΦΦΦ?, XXX?) = arg min
ΦΦΦ∈D,XXX∈RK×M

||XXX||0,0 (2.24)

such that ||YYY − ΦΦΦXXX||F ≤ ε

where the mixed norm notation is extended to the `0 pseudo-norm applied to the matrix

XXX which counts its total number of non-zero elements, and the parameter ε determines the

allowed error of the sparse approximation of the training data. Finally, an un-constrained

optimization can be defined as:

(ΦΦΦ?, XXX?) = arg min
ΦΦΦ∈D,XXX∈RK×M

||YYY − ΦΦΦXXX||F + λ ||XXX||0,0 (2.25)

where the parameter λ rules the tradeoff between sparsity and approximation error.

Given the ambiguity inherent in the dictionary learning model and the np-hard na-

ture of sparse approximation optimizations, (2.23), (2.24) and (2.25) are not convex. Even

substituting the `0 pseudo-norm with the `1 norm as in the sparse approximation formu-

lation (2.15) does not resolve this issue as the interplay between sparse approximation

coefficients and dictionary makes optimizing both variables at the same time extremely

challenging. One common strategy employed by dictionary learning algorithms is to tackle

the optimizations in a block-coordinate descent fashion, starting from an initial dictionary

ΦΦΦ(0) and performing the following two steps at each iteration t:

Sparse coding : given a fixed dictionary ΦΦΦ(t) the matrix of spare representation coef-

ficients XXX(t) can be computed as a standard sparse approximation problem using

any solver that is suitable to the particular formulation. For example, if dictionary

learning is defined as a sparsity constrained optimization, then any method that

seeks a best S-term approximant to the observed signals can be employed, such as

omp or lars.

Dictionary update : given a fixed matrix of sparse approximation coefficients XXX(t),

the dictionary ΦΦΦ(t+1) is updated in order to improve the objective of the dictionary

learning optimization, subject to optional constraints.

It is worth noting that the space D of dictionaries with unit-norm atoms is not a convex
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set, as shown in appendix A.1. This implies that the result of the dictionary update

step is a dictionary that does not necessarily contain normalized atoms. However, a

normalization step can be added such that:

ΦΦΦ(t+1) ← ΦΦΦ(t+1)ΞΞΞ−1 (2.26)

XXX(t) ← ΞΞΞXXX(t) (2.27)

where ΞΞΞ is a diagonal matrix whose elements ξk,k =
∣∣∣∣∣∣φφφ(t+1)

k

∣∣∣∣∣∣
2
contain the norm of

the dictionary. This way, every atom in the updated dictionary is normalized and the

coefficients in the matrix XXX(t) are updated such that the product ΦΦΦ(t+1)ΞΞΞ−1ΞΞΞXXX(t) =

ΦΦΦ(t+1)XXX(t) remains unchanged.

Several algorithms have been proposed to solve the dictionary update step and pursue

a local minima of the relevant optimization problem. Some of them are described in the

next section and the interested reader can find more information in the review paper by

Rubinstein et al. [90].

2.7 Algorithms for dictionary learning

2.7.1 SparseNet

Olshausen and Fields in their seminal paper [78] propose a dictionary learning algorithm

aimed at representing vectors obtained from patches of natural images. In their formula-

tion, the authors define a penalised optimization problem in the form:

(ΦΦΦ?, XXX?) = arg min
ΦΦΦ∈D,XXX∈RN×M

1

2
||YYY − ΦΦΦXXX||2F + λP(XXX) (2.28)

where the first term is the usual quadratic function of the residual which ensures that

the representations is close to the observed data in an `2 measure, the second term is

a penalty that induces sparsity in the representation and the parameter λ controls the

relative importance of the two objectives.

The authors experimented with different sparsity inducing penalty functions, including

P(XXX) =
∑

k,m log(1 + xk,m) and P(XXX) = ||XXX||1,1
def
=
∑

k,m |xk,m|, and tackled the opti-

mization of (2.28) with a gradient descent strategy. Algorithm 4 summarises the steps of

the SparseNet dictionary learning algorithm. For a given number of iterations, the sparse
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Algorithm 4: SparseNet dictionary learning

Input: YYY ,ΦΦΦ(0), I, λ, η
Output: ΦΦΦ?, XXX?

// Initialisation
1 i← 1;
2 while i ≤ I do

// Sparse coding
3 for m = 1 : M do
4 xxxm ← arg min

xxx∈RK
||yyym − ΦΦΦxxxm||22 + λP (xxxm);

5 end
// Dictionary update

6 Φ̄ΦΦ← (YYY − ΦΦΦXXX)XXXT ;
7 ΦΦΦ← ΦΦΦ− ηΦ̄ΦΦ;

// Dictionary normalization
8 ΦΦΦ← ΦΦΦΞΞΞ;
9 i← i+ 1;

10 end

coding is performed on each signal independently by using the current dictionary and

solving the optimization in Line 4 using any suitable sparse approximation algorithm.

The dictionary update is then performed in a batch fashion by computing the gradient

of the cost function w.r.t. the dictionary Φ̄ΦΦ
def
= ∇ΦΦΦ

(
||YYY − ΦΦΦXXX||2F

)
= (YYY − ΦΦΦXXX)XXXT . The

dictionary is then updated by standard gradient descent using the step size η and nor-

malized through the diagonal matrix ΞΞΞ whose (k, k)-th elements ξk,k = 1/ ||φφφk||2 are the

inverse of the norm of the corresponding atom.

As the bpd algorithm can be interpreted as a map estimation of the approximation

coefficients under a Gaussian noise distribution and a Laplacian coefficients distribution,

the SparseNet algorithm and the successive dictionary learning technique proposed by

Lewicki and Sejnowski [60] can be thought in probabilistic terms as an approximated

maximum likelihood (ml) estimation of the dictionary. Let p(YYY |ΦΦΦ) be the likelihood of

observing a set of signals YYY given a dictionary ΦΦΦ. This cannot be directly maximised

but it can be expressed in terms of the likelihood p(YYY |ΦΦΦ, XXX) (that is the probability of

observing a set of signals YYY given a dictionary and a matrix of approximation coefficients)

and the prior probability of the coefficients p(XXX):

p(YYY |ΦΦΦ) =

∫
XXX
p(YYY , |ΦΦΦ, XXX)p(XXX)dXXX (2.29)
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where the integral is a marginalisation over the latent variable XXX. Unfortunately the

computation of this integral is not practical and therefore an approximated ml strategy

consists in considering the mode of the distribution p(YYY , |ΦΦΦ) instead, which in turns leads

to the iterative method consisting of sparse coding and dictionary update stages described

in Section 2.6 (see [4, 60] for more details on the probabilistic interpretation of dictionary

learning).

Interestingly, the set of dictionary atoms φφφk learned from natural images in the paper

by Olshausen and Fields [78] resulted to be spatially localised, oriented and bandpass

functions. These properties are not present in the atoms learned using non-sparse tech-

niques such as principal component analysis and are believed to describe the behaviour

of the receptive fields of the cells in the primary visual cortex, a conjecture that arose the

interest of the neurobiology research community on sparse representations.

A similar first order approach has been adopted by Smith and Lewicki [104] who

learned atoms from speech and natural sounds. In this case, the resulting functions

resemble asymmetric sinusoids with sharp attacks and gradual decays of different length

(so-called gammatone functions), a property that is thought to be common to the impulse

response of the cochlear filters that process sounds in our inner ear.

2.7.2 Method of optimal directions and k-svd

Engan et al. [32] proposed the method of optimal directions (mod) where the optimization

explicitly constraints a sparse solution as in (2.23). To tackle this optimization they use

a block coordinate descent method where the sparse representation step can be employed

with any algorithm which attempts to find an optimal k-term approximation, such as omp

or lars, and the subsequent dictionary update step is performed computing the pseudo-

inverse of the current sparse representation. Algorithm 5 summarises the optimization

followed by mod.

The sparse coding is performed on each signal by fixing a maximum number of active

atoms S, and the dictionary update is carried out by computing the pseudo-inverse of the

current sparse approximation coefficients as in line 6. This provides the locally optimal

solution to the minimisation ΦΦΦ? = arg min
ΦΦΦ∈RN×K

||YYY − ΦΦΦXXX||F.

The k-svd algorithm introduced by Aaron et al. [4] aims at minimising the same

optimization problem, but differs from mod in the dictionary update step. Given the
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Algorithm 5: Method of optimal directions (mod)

Input: YYY ,ΦΦΦ(0), I, S
Output: ΦΦΦ?, XXX?

// Initialisation
1 i← 1;
2 while i ≤ I do

// Sparse coding
3 for m = 1 : M do
4 xxxm ← arg min

xxx∈RK
||yyym − ΦΦΦxxxm||22 s.t. ||xxxm||0 ≤ S;

5 end
// Dictionary update

6 ΦΦΦ← YYY XXX†;
// Dictionary normalization

7 ΦΦΦ← ΦΦΦΞΞΞ;
8 t← t+ 1;
9 end

objective function of (2.23) C(ΦΦΦ, XXX) = ||YYY − ΦΦΦXXX||F, the approximant term can be written

as a sum of rank-1 matrices:

C(ΦΦΦ, XXX) =

∣∣∣∣∣
∣∣∣∣∣YYY −

K∑
k=1

φφφkxxx
k

∣∣∣∣∣
∣∣∣∣∣
F

=

∣∣∣∣∣∣
∣∣∣∣∣∣
YYY −∑

k′ 6=k
φφφk′xxx

k′

− φφφkxxxk
∣∣∣∣∣∣
∣∣∣∣∣∣
F

.

Let the partial residual matrix be EEEk
def
= YYY −∑k′ 6=k φφφk′xxx

k′ , then the atom φφφk and the

corresponding row of sparse approximation coefficients xxxk can be jointly optimized to

locally minimise the cost function C by calculating the best rank-1 approximation of

EEEk. Moreover, since the support of the sparse approximation coefficients should not

be modified during the dictionary update step, EEEk and its rank-1 approximation are

restricted to the columns corresponding to the signals that use the k-th atom in their

sparse approximation, that is, the indexes corresponding to non-zero elements of the

vector xxxk.

Algorithm 6 summarises the k-svd algorithm. While the sparse coding step included

in lines 3 to 5 does not differ from the one performed by mod, the dictionary update is

carried out on each atom φφφk independently using the following strategy:

I - For each dictionary atom φφφk, the set Λk of nonzero elements of the k-th row of XXX
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Algorithm 6: k-svd dictionary learning

Input: YYY ,ΦΦΦ(0), I, S
Output: ΦΦΦ?, XXX?

// Initialisation
1 i← 1;
2 while i ≤ I do

// Sparse coding
3 for m = 1 : M do
4 xxxm ← arg min

xxx∈RK
||yyym − ΦΦΦxxxm||22 s.t. ||xxxm||0 ≤ S;

5 end
// Dictionary update

6 for k = 1 : K do
7 Λk ← i ⊆ {1, . . . ,M} s.t. xk,i 6= 0;

8 EEEk ←
[
YYY −∑j 6=k φφφjxxx

j
]

Λk
;

9 (UUU,ΣΣΣ, VVV )← svd (EEEk);
10 φφφk ← uuu1;
11 xxxΛk ← σ1,1vvv1

T ;
12 end

// Dictionary normalization
13 ΦΦΦ← ΦΦΦΞΞΞ;
14 i← i+ 1;
15 end

(that is, the set of training data which use the k-th atom in their approximation)

is identified in line 7.

II - A partial residual matrix is calculated and its columns are restricted to the active

set of signals that use the k-th atom for their sparse approximation in line 8.

III - The atom φφφk and the coefficients [xxxk]Λk are updated using the solution of the best

rank-1 approximation of the matrix EEEk, which can be calculated using its svd in

lines 9 to 11.

Dai et al. [20] extended the simultaneous update of dictionary and sparse approxima-

tion coefficients to arbitrary subsets of atoms and relative coefficients in the active set Λ

using a gradient descent and line search strategy. Their so-called simultaneous codeword

optimization (simco) strategy is also regularised by a penalty function that promotes well

conditioned sub-dictionaries, a concept closely related to the mutual coherence measure

for incoherent dictionary learning that will be developed in Chapter 5.

Dictionary learning has been interpreted by several authors as a generalisation of
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vector quantisation [4, 112, 103]. In vector quantisation, a set of representative vectors or

codebook is learned from the training set, and each point is represented by one of these

vectors. The k-means algorithm is perhaps the simplest and most widely used vector

quantisation strategy; it starts by choosing k vectors in the training set at random as the

initial codebook and it iterates the following steps: i) assign each point in the training set

to the closest of the k elements of the codebook ii) update each element of the codebook

with the mean of the vectors associated with it at the previous step. Once the vector

quantisation algorithm has run for a certain number of iterations and a codebook has

been defined, each point in the training set is approximated by one of the elements of

the codebook, that is a sparse representation with the number of active atoms S = 1. A

dictionary learning algorithm, on the other hand, allows each point of the training set to

be approximated by a sparse linear combination of the elements of the codebook, or atoms

of the dictionary. The name k-svd echoes the k-means algorithm, but also indicates that

the dictionary is optimized by performing K singular value decompositions.

In a recent contribution, Mailhé and Plumbley analysed the local optimality of the

SparseNet, mod and k-svd dictionry updates for the objective (2.23), showing that

k-svd can perform better than the other ones, especially if initialised with the solution

returned by the SparseNet algorithm [64].

2.8 Applications of dictionary learning

Classification

Traditionally, the goal of dictionary learning is to optimize a set of atoms that provide

a sparse representation of observed data. Since the seminal papers by Chen et al. [17],

sparse representation have been used for de-noising purposes and this remains one of the

main applications where dictionary learning algorithms have been employed with great

success. From a machine learning prospective, this is an unsupervised learning problem

where a low dimensional model is learned from a set of training data. However, there are

supervised tasks like classification that can benefit from learning adaptive dictionaries for

sparse representations [69, 68, 65].

Rodriguez and Sapiro [89] introduced a dictionary learning algorithm for representa-

tion and discrimination whose goal is twofold: on one hand, the set of learned atoms is
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optimized in order to provide a sparse representation of training data, as in traditional

dictionary learning. On the other hand, in the representation coefficients domain training

data belonging to the same class should be close to each other (in an `2 measure), and far

apart from data belonging to different classes. Given a set of training data, each vector

yyym is associated with a class cm ∈ C = {1, . . . , Q}, where Q is the total number of classes,

so to define a supervised classification problem. The mixed objective is accomplished by

specifying a dictionary learning problem as follows:

(ΦΦΦ?, XXX?) = arg min
ΦΦΦ∈D,XXX∈RK×M

||YYY − ΦΦΦXXX||2F + θC(XXX) (2.30)

such that ||xxxm||0 ≤ S ∀m

where the first term is the usual quadratic function of the residual, the penalty C(XXX) is a

linear discriminant function of the coefficients and the parameter θ controls the relative

importance of the two objectives. Let Λq be the subset of indexes corresponding to signals

belonging to the q-th class, and let x̄xxΛq = 1
Mq

∑
m∈Λq

xxxm be the q-th class centroid (that

is, the mean of the sparse approximation coefficients of signals belonging to class q). C(XXX)

is minimised when the intra-class variance of the vectors in XXXΛq is small and the inter-

class variance of the class centroids x̄xxΛq is large. The optimization of function (2.30) is

tackled by a supervised k-svd algorithm where the dictionary update is performed in the

same way of the original method [4], while the sparse representation step is accomplished

using the class supervised simultaneous orthogonal matching pursuit (ssomp), a modified

omp which takes into account the linear discriminant penalty during the atom selection

stage.

Schnass and Vandergheynst proposed a different approach to the classification problem

[96, 95] which accomplish the same goal of simultaneous representation and discrimination

in the coefficients domain where the dictionary ΦΦΦ is assumed to be a concatenation of

class specific orthonormal bases ΦΦΦ = [ΦΦΦ(1) · · ·ΦΦΦ(Q)] each of which satisfies:

∣∣∣∣∣∣ΦΦΦ(j)
T yyyi

∣∣∣∣∣∣
2∣∣∣∣∣∣ΦΦΦ(i)

T yyyi

∣∣∣∣∣∣
2

< 1 ∀j 6= i ∈ Λi. (2.31)

This means that the norm of the representation coefficients of points belonging to class
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i must be greater when the data are analysed with the respective orthonormal base ΦΦΦ(i)

rather than with any other ΦΦΦ(j), j 6= i. The problem here becomes optimizing a set of Q

orthonormal bases which meet the above constraint. This is accomplished by a projection

onto convex sets algorithm, which is an iterative method that alternatively projects an

initial set {ΦΦΦq}Qq=1 onto the sets of orthonormal basis and onto the set of basis that satisfy

the above condition respectively.

Interestingly, although no sparsity is explicitly involved in this algorithm, the inco-

herence objective between set of orthonormal bases and data belonging to a given class

means that a large number of inner products
〈
yyy(i), φφφ(j)k

〉
≈ 0 is close to zero and can be

linked with the concept of co-sparsity mentioned in section 2.9.1.

Music transcription and source separation

Abdallah and Plumbley [2] propose a dictionary learning algorithm that is formulated

as a probabilistic model and is inspired by the method published in [60] to learn atoms

that efficiently represent the magnitude spectrum of polyphonic music. When applied to

synthetic harpsichord musical excerpts, the learned atoms display a harmonic structure

that resembles the spectrum of single notes, while the matrix of approximation coefficients

can be interpreted as an activation matrix that indicates which notes are active at any

specific time. Polyphonic music transcription can be thus tackled with this technique in

a unsupervised fashion that is similar to the approach followed by non-negative matrix

factorization algorithms.

Scholler and Purwins [97] employ a first-order dictionary learning such as the one

detailed in Section 2.7.1 to learn atoms from mixtures of percussion sounds that contain

several classes of percussion instruments. They use matching pursuit to code audio signals

and, once the sparse approximation coefficients are obtained, they train a classifier using

a support vector machine in order to discriminate between bass drums, snare drum and

hi-hat, a task that is essential in drums transcription. Their results show that features

obtained from sparse approximation coefficients are more robust to noise than traditional

timbre descriptor features.

Bobin et al. [10] proposed the morphological component analysis (mca) as a novel

sparse model where observed data are approximated using a sum of sparse linear combi-

nations of atoms belonging to different dictionaries with dissimilar structures (e.g., edges
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and textures present in images that can be efficiently represented using curvelets and

local cosine functions respectively). In a successive work [9] mca is extended to a multi-

channel case and employed to tackle source separation problems using an algorithm that

resembles dictionary learning by gradient descent.

In the multi-channel mca a matrix of observed signals is modelled as a mixture of mor-

phological components that are in turn approximated using several different dictionaries.

The columns of the unknown mixing matrix and the sparse approximation coefficients of

the corresponding morphological component are optimized following a two-steps strategy

that resembles the one introduced in Section 2.6 to learn dictionaries for sparse approxi-

mation. In particular, the coefficients are updated using a soft-thresholding method and

the mixing matrix weights using a gradient descent update.

2.9 Additional background

This section presents additional topics on sparse approximation and dictionary learning

that are not essential for understanding the reminder of the thesis and its main contribu-

tions, but complement what discussed so far to offer a more comprehensive overview of

the field and its related themes.

2.9.1 Additional models and algorithms for sparse approximation

Non-convex optimization for sparse approximation

The family of `1 optimization algorithms has been used as a convex relaxation strategy

to solve sparse approximation problems that are expressed in terms of an `0 pseudo-

norm, as in the optimizations (2.10), (2.11), (2.12) and (2.13). Alternatively, `p norms

with 0 < p < 1 can be considered and generally lead to the formulation of non-convex

optimization problems.

The sparse reconstruction by separable approximation (SpaRSA) algorithm proposed

by Wright et al. [119] is a general framework for the solution of minimisation problems

of the form:

xxx? = arg min
xxx∈RK

||yyy − ΦΦΦxxx||22 + λP(xxx) (2.32)

where the first term of the minimisation is a quadratic error term and the function P(xxx) =∑
k Pk(xk) is a separable sparsity-inducing penalty function (that is, a function that
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can be expressed as a sum of functions of the individual coefficients). This has the

main advantage of being readily applicable to cases where the penalisation term is not

necessarily the `1 norm, but can be any non-convex `p norm with 0 < p < 1.

Wipf and Nagarajan [118] review so-called iterative re-weighted schemes to solve the

penalised least-square problem (2.32). The general idea common to the various tech-

niques is to start from an estimate of the solution xxx(0) and a set of initial weights www(0).

The representation coefficients are iteratively updated by solving at each iteration t the

problem

xxx(t+1) = arg min
xxx∈RK

||yyy − ΦΦΦxxx||22 + λ
∑
k

w
(t)
k Pk(xk) (2.33)

and the weights are also updated usually employing a function Q proportional to the

inverse of each component w(t+1)
k = Q

(
1/x

(t+1)
k

)
.

The authors in [118] also propose a novel re-weighted optimization formulation that

can be extended to non-separable penalisation functions and compare their approach

to convex relaxation methods reporting superior performance for sparse recovery and

approximation.

Compressive sampling

Compressed sensing or compressive sampling is a novel model for the acquisition of signals

that relies on sparse representations [16]. One of the classical tenets in signal processing

is that a function must be sampled at a Nyquist frequency that is twice its maximum

frequency in order to be able to accurately reconstruct it. By assuming that a signal

yyy ∈ RN is sparse in a given dictionary ΦΦΦ ∈ RN×K , compressive sampling allows to

reconstruct it from P < N measurements realized through the measurement matrix

MMM ∈ RP×N . The compressive sampling model can be expressed as:

zzz = MMMyyy = MMMΦΦΦxxx (2.34)

where zzz ∈ RP is the observable measurement and yyy is the unknown signal to be recovered.

Knowing MMM and ΦΦΦ, the coefficients xxx can be retrieved from zzz by solving the sparse
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representation problem:

xxx? = arg min
xxx∈RK

||xxx||0 (2.35)

such that zzz = MMMΦΦΦxxx

and the signal can be reconstructed by yyy? = ΦΦΦxxx?.

In the context of compressive sampling, it is crucial that algorithms for sparse rep-

resentation succeed in recovering the sparse representation coefficients that generate the

signal to allow its reconstruction (or, less strictly, it is necessary that the support Λ of

the sparse representation is correctly recovered as the magnitude of the coefficients can

be easily retrieved by calculating the pseudo-inverse of the sub-matrix restricted to the

support xxx?Λ = (MMMΦΦΦ)†Λyyy). The restricted isometry property (rip) is a condition that links

the properties of the measurement matrix, the dictionary and the sparse vectors of coeffi-

cients to the success of sparse recovery, which in turn ensures the reliability of compressive

sampling [14].

Let AAA def
= MMMΦΦΦ, for each sparsity level S and for any S-sparse vector of coefficients xxx

the restricted isometry constant δS is the smaller positive number for which the following

relation holds:

(1− δS) ||xxx||22 ≤ ||AAAxxx||22 ≤ (1 + δS) ||xxx||22 . (2.36)

This condition loosely means that the Euclidean length of an S-sparse signal is almost

preserved by the application of the linear operator AAA as long as the rip constant is not

close to 1, which in turn implies that S-sparse signals do not belong to the null-space of

the matrix AAA. Candès et al. proved that `1 minimisation algorithms succeed in recovering

the sparse representation coefficients as long as δ2S <
√

2 − 1 [14]. The rip is in turn

dependent on the cross-coherence between the atoms of the dictionary and the rows of

the measurement matrix, which is defined as the maximum absolute correlation between

the two set of vectors:

µ(MMM,ΦΦΦ)
def
= arg max

p,k
〈mmmp, φφφk〉. (2.37)

A low cross-coherence means that the rip condition is satisfied for a large set of sparse

signals, and by choosingMMM to be a random matrix the probability of achieving a low cross-



60 Chapter 2. Background

coherence is nearly optimal, meaning that random sampling matrices offer an universal

encoding strategy, as suggested by Candès and Tao [15].

Analysis sparsity

The sparse models introduced in Section 2.3 assume that a signal yyy is synthesised from a

small number of atoms, that is, a synthesis sparse model. An alternative view that has

emerged in recent years is the so-called analysis sparse model [75, 44, 31]. In this case, a

signal yyy ∈ RN is multiplied or analysed by an analysis matrix MMM ∈ RK×N with K ≥ N

resulting in a vector of coefficients xxx ∈ RK .

xxx = MMMyyy. (2.38)

The coefficients are said to be co-sparse if the number of zero components is large. Ge-

ometrically, this means that the signal lives in a space that is orthogonal to many rows

of the analysis matrix MMM . An analysis sparse approximation problem can be defined in

parallel to the one proposed for the sparse synthesis model.

ỹyy? = arg min
ỹyy∈RN

||yyy − ỹyy||22 + λ ||MMMỹyy||0 (2.39)

where ỹyy is a signal approximant that is optimized following a tradeoff between the

quadratic representation error and the level of co-sparsity.

As pointed out by Elad at al. [31] the synthesis and analysis models are equivalent

for (under)-complete representations but dramatically differ in an over-complete setting.

Understanding the relations between synthesis and analysis models and the potentialities

of the latter in the range of applications that have been successfully tackled with the

former is an open and thriving research field. Furthermore, a parallel between algorithms

for sparse synthesis and analysis approximation is emerging, and is an object of current

research.

2.9.2 Additional models and algorithms for dictionary learning

Dictionary learning for `1 exact sparse coding

Dictionary learning for sparse approximation allows for a non-zero residual that accounts

for any modelling error between a set of observed data and their sparse approximation.
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We can alternatively define an exact sparse model as:

(ΦΦΦ?, XXX?) = arg min
ΦΦΦ∈D

||XXX||1,1 (2.40)

such that YYY = ΦΦΦXXX

where the signals are exactly represented by linear combinations of the atoms in ΦΦΦ and

the sparse objective function is relaxed to the `1,1 mixed norm of the representation

coefficients. Plumbley [84] proposed a gradient descent algorithm for solving this problem

that makes use of the geometry of a dual problem that is defined analogously to the one

proposed to find the solution of the basis pursuit (2.15). This method starts from an

initial dictionary that satisfies the exact sparse representation constraint, and calculates

updates that minimise the objective function while remaining in the constraint set.

Majorization algorithm

Yaghoobi et al. proposed an algorithm for dictionary learning using a majorization

method [120] that offers an alternative optimization framework to the strategies detailed

so far. In this technique, an optimization problem is formulated to solve a penalised ob-

jective such as the one defined in (2.28) using a convex penalisation term, and the set of

admissible dictionaries D (that is usually constrained to contain atoms with unit norm)

is relaxed to be either the set of dictionaries with bounded Frobenious norm or the set of

dictionaries with atoms of bounded `2 norm. These two constraint sets can be shown to

be convex and, therefore, both the sparse coding and the dictionary update step can be

performed using convex optimization tools without the need of normalization.

A majorisation-minimisation algorithm is employed to solve the sub-problems of dic-

tionary learning. This is a general strategy for convex optimization that, given a convex

function F(ω) starts from an initial point ω(0) and performs at each iteration t the fol-

lowing operations:

I - Define a surrogate function G
(
ω(t), ξ

)
≥ F(ω) that majorises the original function

using, for example, a second-order Taylor expansion of the function F(ω) around

the point ω(t).

II - Find the value ξ? = arg min
ξ

G
(
ω(t), ξ

)
that minimises the surrogate function.
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III - Update ω(t+1) = ξ?, calculate F
(
ω(t+1)

)
and iterate from step I.

Tackling the dictionary learning problem with a majorisation-minimisation strategy al-

lows one to benefit from the wide body of research undertaken in the field of convex

optimization and to specify additional constraints on the dictionary.

Online algorithms

The methods described so far perform a batch learning of the dictionary ΦΦΦ from a set of

M training samples. Alternatively, it is possible to optimize the dictionary in an online

fashion, continuously updating the atoms as new training samples become available.

Mairal et al. [66, 67] proposed a method to solve the problem:

(ΦΦΦ?, XXX?)(T0) = arg min
ΦΦΦ∈D,XXX∈RK×M

∣∣∣∣∣∣YYY (T0) − ΦΦΦXXX(T0)
∣∣∣∣∣∣

F
+ λ

∣∣∣∣∣∣XXX(T0)
∣∣∣∣∣∣

1
(2.41)

where the super-script T0 indicates that the matrices of signals and coefficients contain

online data acquired at discrete times t = 1, . . . , T0. This is an online version of the

unconstrained minimisation (2.25) where the sparsity penalty has been relaxed to the

`1 norm of the approximation coefficients. The sparse coding is performed using lars

and the dictionary update is performed one atom at a time using a block coordinate

descent strategy. For this algorithm, the use of mini-batches (that is, a small number of

training samples considered in each optimization step), has been shown to improve the

representation performance in image processing applications.

Skretting and Engan [103] developed an online version of the mod algorithm where

all the dictionary atoms are updated every time a new training vector becomes available

using a fast matrix inversion to compute the pseudo-inverse of the current approximation

coefficients. In addition, the authors introduced a forgetting factor which allows a search

then converge strategy: the dictionary atoms are allowed to change abruptly during the

first iterations of the algorithm when only a few training samples are considered. Then,

as the training set becomes bigger, the forgetting factor has the effect of stabilising the

algorithm promoting its convergence to a fixed point.

Sparse dictionaries

Jafari and Plumbley [52] propose a greedy dictionary learning algorithm for sparsely

approximate speech signals. Atoms are selected from the training data by iteratively
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choosing the sparsest speech frames, promoting sparsity in the dictionary itself as well

as in the approximation coefficients. The resulting greedy adaptive dictionary learning

algorithm (gad) has been used for speech approximation and de-nonising with perfor-

mance comparable to the principal component analysis method. The gad has also been

extended by the same authors to the analysis of other audio signals than speech [51].

Rubinstein et Al. [91] offer a different view on sparse atoms by learning dictionaries of

the form ΦΦΦ = ΨΨΨAAA where ΨΨΨ is a fixed dictionary and AAA is a matrix of sparse representation

coefficients. By optimizing AAA, each atom φφφk = ΨΨΨaaak is a sparse linear combination of the

vectors contained in the fixed dictionary ΨΨΨ. The advantage of this approach is that

the fixed dictionary can bear a fast implementation of the matrix-vector multiplication

speeding up the learning process and constituting a trade-off between the flexibility of

adaptive dictionary learning algorithms and the fast implementation of most traditional

transforms.

Shift-invariant dictionary learning

Shift-invariant dictionary learning consists in optimizing a set of atoms that can be ar-

bitrarily shifted in time or space to approximate a single observed signal belonging to a

very high dimensional space. This is particularly suited, for example, for the modelling of

audio signals because atoms can be learned from a single audio stream rather than from

a set of lower dimensional training samples that are obtained by a windowing operation.

Jost et al. proposed the matching of time-invariant filters (MoTIF) algorithm to learn

shift-invariant atoms [54]. In this method, a shifting operator is used to place a given atom

at a particular time shift and the corresponding delay is optimized in order to maximise

the correlation between the atom and the training signal, so that a matching pursuit

strategy can be employed to find both the optimal shift and the optimal combination

of atoms. An adjoint shifting operator is then introduced to extract portions of the

training signal that are approximated using a given atom and that should be used in the

dictionary update step. In the MoTIF algorithm this is realized by solving a generalised

eigenvalue problem, while in the shift-invariant k-svd proposed by Mailhé et al. [63] the

atoms update is obtained jointly with the optimization of the corresponding set of sparse

approximation coefficients, as for the original k-svd algorithm.
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2.9.3 Other matrix factorisation models and algorithms

Non-negative matrix factorization

Non-negative matrix factorization (nmf) is a popular technique which has been proven

to be successful for audio signal processing applications, such as source separation and

automatic music transcription [36, 81, 35, 53]. Although it is not traditionally included

among dictionary learning methods, the goal of nmf is exactly the one described in

equation (2.22), that is, approximating a matrix of observed data with a product between

a dictionary that contains elementary atoms and a matrix of coefficients which describe

which atoms are contributing to the observed variables. The nmf optimization problem

can be expressed as follows:

(ΦΦΦ?, XXX?) = arg min
ΦΦΦ∈D,XXX∈RK×M

L(YYY ,ΦΦΦXXX) (2.42)

such that ΦΦΦ, XXX � 000

where the objective is a function of the approximation error and the symbol � indi-

cates element-wise inequality, implying that all the variables considered are non-negative

element-wise. In many applications of nmf to audio signals, the power spectrum or mag-

nitude spectrum resulting from a short time Fourier transform (stft) are modelled as

the product between the atoms in the columns of the matrix ΦΦΦ and the correspondent

coefficients stored in the matrix XXX. A notable difference between dictionary learning and

nmf is that often the number of atoms K < N is smaller than the dimension of the

spectrograms, resulting in an over-determined system of equations. In choosing the loss

function L(YYY ,ΦΦΦXXX), the Itakura-Saito divergence [35] is often preferred to the usual euclid-

ian distance due to its scaling invariance and expectation-maximisation (em) strategies

are employed in the optimization. Alternatively, it is possible to perform underdeter-

mined nmf whenever the number of atoms K > N . In this case sparsity can be used to

constraint the solution, which makes nmf a non-negative version of dictionary learning.

Latent variable decompositions

Shashanka et al. [99] introduced a latent variable model which resembles nmf, but whose

probabilistic formulation allows for richer, more sophisticated models to be defined start-

ing from its general framework. In this work, each vector of the magnitude spectrum
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deriving from a (stft) of audio signals is interpreted as a scaled histogram of a ran-

dom process containing two latent variables whose generative model can be explained as

follows:

• Latent variable s determines which instrument/speech contributes to the magnitude

spectrum according to its probability distribution Pt(s), which is time-dependent.

• Latent variable z determines which multinomial component (specific to the instru-

ment picked at the previous stage) contributes to the magnitude spectrum according

to its probability distribution Pt(z|s), also time-dependent.

• A frequency bin f is selected according to the multinomial distribution of the com-

ponent picked at previous stages Ps(f |z). This is fixed in time and represents one

of the atoms of the representation.

The process is repeated and generates the magnitude spectrum in each stft window,

such that its probability distribution can be expressed by marginalization over the latent

variables:

Pt(f) =
∑
s

Pt(s)
∑

z∈{zzzs}

Pt(z|s)Ps(f |s)

where the set {zzzs} contains all the components associated with the s-th instrument. It

is possible to express this probabilistic model as a matrix factorization analogous to nmf

and learn the atoms and time-dependent activations with an em strategy. This has been

proved to be effective for signal processing tasks such as blind source separation [86] and

dereverberation [102].

2.10 Summary

This chapter contains an overview of the main concepts of the most relevant literature in

the fields of sparse approximation and dictionary learning. Starting from the definition

of dictionaries and their role in signal processing, orthonormal bases have been defined as

a traditional way of analysing and processing signals. The lapped orthogonal transform

has been presented as a framework for realizing transforms that are applied to signals in a

high dimensional space and that are both globally and locally orthonormal. They will be

the starting point for the realization of a pitch-synchronous transform that is described

in Chapter 3, and is at the base of popular transforms used for audio processing.
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Over-complete dictionaries have been introduced as a more general and flexible class

of transforms than orthonormal dictionaries and lead to the concept of sparse approxima-

tions, that is, expressing signals as a linear combination of a small number of atoms in the

dictionary. Sparse approximations models and algorithms have been presented, including

greedy methods, convex relaxation algorithms and non-convex optimization strategies.

Selected applications of sparse approximations and the related models of compressive

sampling and analysis sparsity have been detailed.

Sparse approximation relies on dictionaries that are suitable for expressing signals

using a small number of active atoms, and dictionary learning answers the problem of

learning such dictionaries from a set of training data of a given class, an unsupervised

task that has been interpreted as a generalisation of vector quantisation algorithms. A

few selected algorithms for dictionary learning have been detailed and others have been

more briefly mentioned, along with related methods for matrix factorization. Finally, be-

sides the applications of sparse approximations that are allowed by learning dictionaries

adapted to a given class of signal, a number of applications that are specifically associ-

ated with dictionary learning have been presented, including supervised problems such as

classification and unsupervised ones such as music transcription and source separation.
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Chapter 3

Studying sparsity and disjointness of

audio transforms

The work presented in this chapter resulted from a collaboration with Dimitrios Gian-

noulis, a PhD student at the Centre for Digital Music at Queen Mary University of

London. The study of disjointness of audio time-frequency transforms appeared in a joint

publication at the Workshop on Applications of Signal Processing to Audio and Acoustics

(waspaa) [41].

Although there has been constant communication and substantial overlap between the

work undertaken by myself and by Dimitrios Giannoulis, my main contribution consisted

in the design and implementation of the pitch-synchronous lapped orthogonal transform

(lot) presented in Section 3.1 and of the LOTbox detailed in Appendix B.1, whereas

Dimitrios focused on the experimental evaluation described in Section 3.3.

3.1 Pitch-synchronous transforms using lots

Lapped orthogonal transforms (lots) have been introduced in Section 2.1.2 as a way to

perform a window-based analysis of one dimensional signals using bases that are both

locally and globally orthonormal [72]. Within the framework of lots different types,

lengths and overlaps of the local orthonormal bases can be specified, making lots a

class of parametric transforms. Some notable examples include the non-overlapping stft

obtained using Fourier local bases, constant window length and no overlap and the mdct
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obtained using dct-iv local bases, constant window length and 50% overlap.

When analysing audio signals, it is possible to adapt the various parameters to the

local characteristics of the recording, switching for example between dct and wavelet

bases whenever the signal is estimated to be a steady state or transient part of the

audio recording; or by dynamically adapting the window lengths of the local orthonormal

transforms to the signal to be analysed. In this section this latter strategy is employed

to obtain a pitch-synchronous lot.

Pitch-synchronous transforms

When examining the frequency content of audio signals with a window-based transform,

frames are extracted from the signal stream and independently analysed by employing

time-frequency transforms. When analysing periodic signals, spurious frequency compo-

nents are introduced whenever the windowing process extracts a fractional number of

periods of the function to be analysed, because treating frames independently from each

other introduces sudden jumps at the frames boundaries. For this reason it is beneficial

to include in each window an integer number of periods of the function to be transformed.

The effect of different window lengths on the absolute value of the Fourier transform

of a periodic function can be seen in Figure 3.1. A pure sinusoid is analysed in three

ways:

• Rectangular window, pitch synchronous: an integer number of periods are extracted

using a rectangular window. The magnitude of the corresponding Fourier transform

displays a clear peak in correspondence to the frequency of the sinusoid and a steep

decay in adjacent frequencies.

• Hann window, non pitch synchronous: a fractional number of periods are extracted

using a Hann window hhh ∈ RN defined as hhh[n]
def
= 1

2

(
1− cos

(
2π n−1

N−1

))
. The signal

is set to zero at the boundaries of the window, and the magnitude of the corre-

sponding Fourier transform decays very quickly, but the peak around the frequency

of the sinusoid is less clear.

• Rectangular window, non pitch synchronous: a fractional number of periods are

extracted using a rectangular window. The magnitude of the corresponding Fourier
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Figure 3.1: The figures display the frequency analysis of a sinusoidal function obtained
by windowing the signal using different window lengths. In a) the function is analysed by
windowing 3 of its periods and the magnitude of its Fourier transform in the corresponding
plot clearly displays a peak in correspondence to the frequency of the sinusoid and a steep
decay in adjacent frequencies. In b) the function is analysed by windowing 3.25 periods
using a Hann window and the magnitude of the corresponding Fourier transform decays
quickly but displays a less clear peak. Finally, in c) the sinusoid is analysed by windowing
3.25 periods using a rectangular window and the magnitude of the corresponding Fourier
transform displays a clear peak but decays more slowly. The ξ sparsity measure reveals
that the magnitude of the Fourier transform of a) is the sparsest, followed by b) then
c). The grey lines in the lower row of plots represent the Fourier transform of the signals
when corrupted by Gaussian noise at +10dB and −20dB respectively. As expected the
pitch-synchronous transform exhibits a clearer peak leading to a better discrimination of
the fundamental frequency.

transform displays a clear peak but decays slowly around it, making the frequency

analysis less robust to noise or interference, as highlighted in Figure 3.1.

This toy example can be generalised to the analysis of general periodic signals analysed

with any linear transform. Given the fact that periodic functions can be represented as

sums of pure sinusoids through their Fourier series, and given that a linear transform

of a sum of functions coincides with the sum of the transforms, a window-based linear

transform that analyses a periodic signal by extracting an integer number of periods will
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result in a representation that is free from spurious components. This desirable property

is reflected in the compressibility of a transform, that is the rate at which the sorted

magnitude of the transformed coefficients decays to zero, and is visible in the lower row

of plots in Figure 3.1.

The notion of compressibility has been employed in the context of approximation

theory to measure how much information about a signal is contained in a subset of its

larger coefficients in a transformed domain [25]. When a signal is compressible it means

that it can be reconstructed using a small number of the most significant coefficients in

the transformed domain leading to a small approximation error. This is the principle

at the root of sparse approximation as it is defined in Section 2.3 and, in particular, in

equation (2.12).

Compressibility can be therefore associated to sparsity, and one simple measure of

sparsity proposed in the literature is defined as the ratio between the `1 and the `2 norms

of the coefficients in the transformed domain [109]:

ξ(vvv) =
||vvv||1
||vvv||2

(3.1)

where vvv is a vector in RN or CN . The rationale behind this measure is that, for realistic,

possibly noisy signals, the transformed coefficients will rarely be exactly zero, but will

follow a distribution that exhibits a strong peak around values very close to zero. The

`1 norm is a good measure of this approximate sparsity because it is the closest convex

approximation of the `0 sparsity objective (a fact that also motivates the convex relaxation

algorithms for sparse approximation detailed in Section 2.4.2). In Figure 3.1 the ξ sparsity

measure is indicated, showing that the rectangular window pitch synchronous transform

is the most compressible, followed by the Hann window non pitch synchronous and by

the rectangular window non pitch synchronous transforms.

Background work on pitch-synchronous audio transforms

Previous work on pitch-synchronous transforms include a method proposed by Abad

[1] for note detection in a polyphonic musical mix. In this algorithm a wavelet bases

is designed so that the atoms’ frequencies are located at the discrete intervals defined

by the equal tempered tuning employed by instruments in western music. Evangelista

[33], on the other hand, devised a pitch-synchronous wavelet transform where the atoms
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are explicitly modelled on the periodic components of the signal to be analysed. Both

the mentioned pitch-synchronous wavelet transform and the novel pitch-synchronous lot

algorithm detailed in the next Section rely on estimating the frequency content of a signal

to be analysed and use this information as a parameter of the relevant transform. The

main difference consists in that the proposed method employs lots rather than wavelets.

3.1.1 The pitch-synchronous lot algorithm

A lot can be used for a frame-by-frame analysis of periodic signals and the length of each

frame can be freely adjusted as long as the overlap between consecutive windows does

not exceed 50% of the window length. The main idea behind the pitch-synchronous lot

is to locally adapt the window lengths to the pitch of the signal to be analysed, in order

to have local orthonormal transforms of signals containing an integer number of periods.

To this aim, given a pitched monophonic audio signal, a pitch estimation algorithm

can be employed to extract the fundamental frequency of the signal at each instant in

time and used to define a set of window lengths that are used as parameters of the lot.

Figure 3.2 visually displays the main stages of the pitch synchronous lot transform, and

Algorithm 7 details them in a pseudo-code format.

Let yyy ∈ RN be the signal to be analysed, w0 an initial window length and ε a tolerance

level, the algorithm proceeds through the following steps:

I - Compute a function fff ∈ RN that contains estimates of the fundamental frequency

of the audio signal at each sample in time and a relative salience function ggg ∈ RN

that indicates how reliable the estimation is at each sample (discarding, for example,

portions of audio that are silent or very noisy). Any suitable pitch estimation

function can be utilised for this purpose, in the present implementation of the pitch

synchronous lot, the methods by Klapuri and Virtanen have been chosen for this

task [55, 56].

II - Threshold the function fff so that only reliable estimates are kept while setting

the unreliable frequency estimates to zero. This is done by using the tolerance
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parameter ε that is given as an input to the algorithm.

f̃n
def
= Thresh(fn) =

 fn if gn ≥ ε ||ggg||∞
0 otherwise

(3.2)

III - Compute an adaptive partitioning of the time axis by defining a set of window

lengths www ∈ RQ that are adapted to the fundamental frequency of the signal. This

is accomplished through the following steps:

• Define two index counters n and q for the vectors f̃ff and www respectively.

• Start by assigning the current window length wq to the fixed reference length

w0 that is defined as an input to the algorithm.

• Define a time interval that starts from the current pointer n and extends for

a length given by wq. If the norm of f̃ff in this interval is greater than zero

(that is, following from the previous thresholding step, if there are reliable

frequency estimates in this interval), adjust the current window length by

performing iteratively the following:

– Calculate the average frequency in the interval [n, n+ wq]:

f̄ =
1

wq

n+wq∑
i=n

fi (3.3)

– Adjust the current window length wq by calculating the closest number

of samples to w0 that contain an integer number of periods based on f̄ .

w̄q =
⌊⌊
w0f̄/Fs

⌋
Fs/f̄ + 0.5

⌋
(3.4)

where b·c indicates the floor operation that returns the largest integer

smaller or equal than its argument and Fs is the sampling frequency of

the signal yyy.

• Update the index q by adding one and the index n by adding wq.

IV - Perform a lot analysis of the signal yyy using the vector of window lengths www as

the parameter governing the length of the local orthonormal transforms. Note
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Algorithm 7: Pitch-synchronous analysis of audio signals.
Input: yyy, w0, ε,Fs
Output: xxx
// Calculate f0 and salience functions

1 [fff, ggg]← PitchEst(yyy);
2 fff ← Thresh(fff, ggg, ε);
// Calculate adaptive partitioning

3 n← 1;
4 q ← 1;
5 while n ≤ length(yyy)− w0 do
6 wq ← w0;
7 if ||fff [n : n+ w0]|| > 0 then
8 for i=1:10 do
9 f̄ ← 1

www[q]

∑
fff [n : n+ wq];

10 wq ←
⌊⌊
w0f̄/Fs

⌋
Fs/f̄ + 0.5

⌋
;

11 end
12 end
13 n← n+ wq;
14 q ← q + 1;
15 end
16 xxx← lot(yyy, www)

that the type of local orthonormal transforms and their overlap are parameters not

addressed by this algorithm and can be specified according to the nature of the

signal to be analysed. However, in the case of overlapping windows the length of

the transforms should be updated accordingly, in order to ensure that an integer

number of periods of the signal are analysed in each window.

The main motivation driving the design of a pitch-synchronous lot consists in ob-

taining a compressible or sparse representation of periodic signals. This is the focus of

the next section which describes experimental results on a periodic audio signal.

3.2 Sparsity of lots

This section deals with the evaluation of the sparsity of different lots for the analysis

of a periodic audio signal. An oboe recording taken from the Iowa musical instruments

dataset1 was used for evaluation. The audio sample consists in a chromatic scale recorded

with sampling rate at 44100Hz and quantised at 16 bits per sample. An oboe was chosen

because its regular harmonic structure and the absence of vibrato makes it particularly

amenable to a sparse modelling. Experiments with complex multi-track recordings which
1http://theremin.music.uiowa.edu/MIS.html

http://theremin.music.uiowa.edu/MIS.html
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Figure 3.2: Pitch-synchronous analysis of an audio signal. The time-domain waveform is
analysed by a pitch estimation algorithm and an f0 track is produced which estimates
the fundamental frequency of the signal at each instant in time. The f0 track is comple-
mented by a salience function that describes the reliability of the estimation, discarding
for examples estimates on silent or noisy portions of the audio signal. An adaptive parti-
tioning of the time axis is performed by adjusting window lengths to contain an integer
number of periods of signal based on the estimated fundamental frequency. The set of
window lengths are finally utilised as a parameter of the lot where the length of the local
orthonormal bases are adapted to the pitch of the audio signal.

constitute a more realistic dataset will be described in the next section. In all the trans-

forms we used windows of 2048 samples (corresponding to about 46ms, a duration that

is suitable for analysing harmonic structures in the audio signals).

Figure 3.3 shows the results of the experiment that are summarised in table 3.1:

The waveform in the time domain has a sparsity measure ξ ≈ 660. As soon as a
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Figure 3.3: Sparsity of different lots applied on an oboe recording

stft with no overlapping windows is applied, the sparsity measure drops to ξ ≈ 144.

The harmonic partials of the oboe notes are visible, although blurred by the spurious

components introduced by the window artefacts. A stft with 50% overlapping windows

achieves a sparsity level ξ ≈ 135, while a non overlapping stft with adaptive windows

length achieves a slightly better sparsity ξ ≈ 125. In this case, the proposed pitch-

synchronous lot was used. The best sparsity is by far achieved when analysing the audio

recording using mdct. In this case ξ drops to approximately 59. As can be seen, the

structure of the harmonic partials is clear and the windowing artefacts are not prominent.

The results obtained analysing the oboe recording indicate that the proposed pitch
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Transform Overlap Window Length ξ H̃

Identity n.a. n.a. 661 12.4
stft 0 Constant 144 0.7
stft 50% Constant 135 0.6
stft 0 Pitch-synchronous 125 0.5

dct-iv 50% Constant 59 0.1

Table 3.1: Sparsity index ξ and empirical entropy H̃ of different lots applied to an oboe
recording.

synchronous lot leads to a more compressible representation if compared to a non adap-

tive stft with zero or 50% overlap. However, it is outperformed by the mdct which

achieves a much more sparse representation (as measured by the sparsity index ξ). Addi-

tional informal experiments indicated that realizing a pitch-synchronous mdct does not

have a noticeable impact in the sparsity of the transformed coefficients, and indicates that

for the purpose of analysis or approximation, mdct should be regarded as the preferred

choice when dealing with audio signals.

In addition to the ξ sparsity measure, the entropy H of the transformed signal was

evaluated. This quantity has been used in information theory to describe the information

content of a signal [98], and it is defined for a probability distribution p(x) as follows:

H = −
∫
p(x) log2 p(x). (3.5)

When observing a vector of coefficients xxx, as returned by the lots algorithm, empiric

probabilities can be computed by considering a histogram hl ∈ RL that counts the number

of occurrences of the coefficients that fit in a range indexed by l (for the purpose of

this experiment the number of value ranges was set to L = N). A vector of empiric

probabilities p̃l = hl/N can be obtained by dividing the number of occurrences by the

size of the vector. A discretised version of equation (3.5) can be defined as:

H̃ = −
∑
p̃l>0

p̃l log2 p̃l (3.6)

where the sum is only taken on non-zero values of p̃l, i.e. values that occur at least once.

The sparsity of a signal is related to its entropy, since a large number of coefficients

that are exactly (or approximately) zero and a small number of significative coefficients
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leads to a small entropy H̃. Table 3.1 confirms this trend showing that the smallest

entropy is reached by the mdct transform. Sparsity and entropy can be associated to

the cost of coding a signal (as measured by the bits needed to represent its symbols or

coefficients), and it is small for representations with small H̃. It is worth mentioning

that, in the case of a pitch-synchronous transform, the cost of coding must also take into

account the overhead needed to store the windows locations.

The results presented in this section do not necessarily imply that a strategy consisting

in adaptively adjusting the parameters of a lot to the properties of the signal to be

analysed should be generally discarded in favour of a standard mdct. Other adaptive

transforms can be designed starting from the framework of lots, for example by adjusting

the type of the local orthonormal transforms. Additionally, further investigation can be

carried out to better understand why an adaptive mdct does not significantly outperform

a non-adaptive one.

These are interesting problems that are for the moment being left for future investi-

gation. The reminder of this chapter focuses on studying lots in the context of source

separation, which is one of the most popular and widely studied problems in audio signal

processing.

3.3 Measuring disjointness of time-frequency representations

3.3.1 Source separation

Source separation [18] is a classic signal processing application that deals with analysing

some observable signals to extract a set of unknown sources based on a given mixing

model. Let
{
sss ∈ RN

}M
m=1

be a set of source signals and
{
yyy ∈ RN

}P
p=1

a set of mixtures.

A so-called instantaneous mixing model can be written as:

yyyp =

M∑
m=1

am,psssm (3.7)

where am,p is the mixing weight describing the contribution of the m-th source to the

p-th mixture.

A more accurate mixing model for describing how audio sources contribute to observ-

able mixtures is the convolutive mixing model, where a set of impulse responses {hhhm,p}

are introduced to describe the acoustic path leading from the m-th source to the p-th
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Figure 3.4: Convolutive mixing model. A set of source signals are recorded using a set of
microphones to obtain observed mixtures. An impulse response which models the acoustic
reflections in the ambient is associated to each acoustic path that goes from each source
to each microphone.

mixture:

yyyp =
M∑
m=1

hhhm,p ∗ sssm. (3.8)

The convolutive mixing model is displayed graphically in Figure 3.4.

Whenever the mixing weights or the impulse responses are unknown the source sepa-

ration problem is said to be blind. A further distinction is usually introduced with regards

to the number of sources and mixtures: if M ≤ P the source separation is said to be

overdetermined or exactly determined, while if M > P the problem is described as under-

determined. This nomenclature comes from the fact that a source separation is an inverse

problem whose determinacy depends on the relative number of unknowns and equations.

Considering the simple instantaneous mixing model, for example, let SSS ∈ RN×M

be a matrix of source signals containing the vectors sssm in each of its columns and let

YYY ∈ RN×P contain the observed mixtures in each of its columns. Then a mixing matrix
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AAA ∈ RM×P can be defined in order to write (3.7) in a compact matrix notation:

YYY = SSSAAA. (3.9)

Given the mixing matrix (or its estimate ÃAA in the case of a blind source separation),

estimating a set of source signals is done by solving the inverse problem:

SSS? = arg min
SSS∈RN×M

∣∣∣∣∣∣YYY − SSSÃAA∣∣∣∣∣∣
F
. (3.10)

Note that the equation above has an analytic solution SSS? = YYY ÃAA
†
if AAA is square and

invertible (i.e., only if the problem is determined). More generally, and specifically when

dealing with under-determinate source separation, the source signals can be estimated as

sss?m = Fm (YYY ) where Fm is a suitable function used to extract the m-th source from the

matrix of observed mixtures. This is the approach followed by binary masking algorithms.

3.3.2 Underdetermined blind source separation by binary masking

Source separation problems are particularly challenging when the mixing matrix is un-

known and the number of sources is greater than the number of mixtures. In particular,

the estimation of a set of sources from a single mixture will be considered from now

on, and in this underdetermined blind setting a popular strategy that has proved to be

successful in the case of audio source separation is the use of binary masks [122].

The overall structure of a binary masking algorithm can be described as follows: a

mixture yyy is mapped by a linear operator T into a transformed domain (usually a time-

frequency or time-scale representation), and M binary masks {Mm}Mm=1 are defined in

order to extract the source signals. After each mask has been applied in the transformed

domain, the corresponding source sss?m can be estimated by inverting the transform:

sss?m = Fm(yyy) = T −1 (MmT (yyy)) . (3.11)

Choosing a suitable transform is crucial for the success of the source separation algo-

rithm. In particular, the operator T should lead to a representation where the coefficients

belonging to different sources do not overlap with each other, so that a suitable mask can

be used to extract each source with the maximum fidelity and the minimum possible
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interference from the other ones.

W-Disjoint orthogonality as a measure of disjointness

Let us consider a linear mixture of M sources yyy =
∑M

m=1 sssm. The transformed mixture

can be written as:

T (yyy) =

M∑
m=1

T (sssm) (3.12)

We can define an oracle maskM?
m for each source (given that the individual sources are

available) as:

M?
m =

 1 if |T (sssm)| > |T (zzzm)|

0 otherwise
(3.13)

where zzzm
def
=
∑

j 6=m sssj is the mixture of the sources interfering with sssm.

Given a maskMm and the original sources, we can measure the preserved signal ratio

(psr) defined as the portion of the energy of the m-th source that is preserved after the

masking operation in the transformed domain:

psrm =
||Mm (T (sssm))||22
||T (sssm)||22

(3.14)

and the signal to interference ratio (sir), which measures the amount of interference

caused by the interfering sources after the masking:

sirm =
||Mm (T (sssm))||22
||Mm (T (zzzm))||22

(3.15)

Finally, the W-disjoint orthogonality (wdo) is defined as:

wdom = psrm −
psrm
sirm

For reference purpose, we keep the term w-disjoint orthogonality that was originally coined

by the authors in [122] to emphasise the dependance of the disjointness on the window

used in a stft, even though the model presented in this section is more general because

it refers to any linear invertible transform.

In an ideal situation, the psr tends to 1 and the sir tends to infinity, leading to a

wdo ≈ 1, while a wdo value close to zero or negative indicates that the ideal mask
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extracts equal or more energy from the interference rather than from the desired source.

It is worth stressing that wdo is an oracle measure that requires the original source

signals in order to evaluate if a given transform leads to a representation where the sources

can be separated. Therefore, a wdo close to one should be considered as a necessary but

not sufficient condition for the success of source separation by binary masking. Nonethe-

less, it provides with a useful estimate of how well a transform can perform for this given

task.

3.3.3 Experimental setting and results

The following transforms were tested and compared in terms of the disjointness of their

representations.

Short time Fourier transform (stft) : 50% frame overlap and a Hamming window

were employed since they are a common choice of parameters that ensure the invert-

ibility of the transform using inverse Fourier transform and overlap-add synthesis.

Constant Q transform (CQT) [13]: a time-frequency representation similar to stft

but with logarithmic frequency resolution so that the Q-factors (ratios of the centre

frequencies to bandwidths) of all the frequency bins are the same. This is suitable

for pitched audio signals because the fundamental frequency and and the frequency

of the harmonics of most instruments are logarithmically spaced.

Pitch-synchronous stft : the method proposed in Section 3.1 realized as a particular

instance of lot where the time-domain signal is analysed by using windows whose

length is adapted to its pitch. Only the bass guitar was chosen to be analysed with

a pitch-synchronous transform because it consists of a periodic, usually monophonic

signal whose pitch can be reliably estimated.

Modified discrete cosine transform (mdct) : realized as a particular instance of

lot with fixed window size, 50% overlap and dct-iv local bases.

We used a dataset of 18 multitrack songs of various genres from pop-rock to heavy

metal so as to have a representative and heterogeneous collection of modern popular music.

The tracks we focused on per song are: guitar, bass, drums and vocals. For measuring the

disjointness the measurements were performed on random 2.9 seconds segments from the
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songs that were previously normalized to unit energy. During the selection, we ensured

that none of the sources to be measured were silent in the segment.

Figure 3.5 shows the boxplot of the wdo measured for different pairs of instruments

from all the songs in the dataset (here the pitch-synchronous stft only appears with

pairs including the bass guitar). Focusing on the median disjointness, we can observe that

mdct outperforms the other transforms in all cases and that, within the mdct subplots,

a window length of 2048 samples (about 46ms given that the sampling rate is 44.1kHz)

leads to the best results in most of the cases, except for when analysing the bass which,

being a periodic and low frequency signal, benefits from a higher frequency resolution

allowed by longer windows. Moreover, we can observe that certain pairs of instruments

like bass and vocals or drums and vocals are more disjoint than the rest, which can

be explained by the fact that these instruments are usually not highly harmonically or

rhythmically correlated.

Given the wide range of musical genres considered in the evaluation, the data presented

in Figure 3.5 exhibit a high variance. For this reason, in Figure 3.6 we present wdo

measurements relative to the value achieved by a mdct with 1024 samples windows.

This allows a comparison of the improvement or decrease in disjointness achieved by the

various methods with respect to the reference in each song. In these plots, the same trends

just described can be identified, but the variance of the data is much smaller, showing

that our evaluation is statistically significant if we consider relative measures. In other

words, the plot highlights that it is possible to achieve a consistent improvement in the

wdo of pairs of instruments by using mdct with a 1024 samples window length rather

than any other of the tested transforms.

wdo measurements were also conducted for each track considering the interference

resulting from all the other instruments (rather than simply on pairs of instruments as

in the previous results). In this case, we observed that the median disjointness is around

values contained in the range [0.6, 0.7], a decrease between 16% and 28% with respect

to the wdo = 0.843 reported for a four tracks speech mixture [122]. Again, this can be

explained by the harmonic and rhythmic correlation present in most musical recordings

and absent in independent speech tracks.
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Figure 3.5: wdo measurements of different pairs of instruments for various transforms.
The central mark of the boxplots is the median, the edges of the boxes are the 25th and
75th percentiles, the whiskers extend to the most extreme data points not considered
outliers, and outliers are plotted individually.
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Figure 3.5: (continued) wdo measurements of different pairs of instruments for various
transforms. The central mark of the boxplots is the median, the edges of the boxes are
the 25th and 75th percentiles, the whiskers extend to the most extreme data points not
considered outliers, and outliers are plotted individually.
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Figure 3.6: Ratios of wdo measurements relative to wdomdct1024 for different pairs of
instruments. The central mark of the boxplots is the median, the edges of the boxes are
the 25th and 75th percentiles, the whiskers extend to the most extreme data points not
considered outliers, and outliers are plotted individually.
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Figure 3.6: (continued) ratios of wdo measurements relative to wdomdct1024 for different
pairs of instruments. The central mark of the boxplots is the median, the edges of the
boxes are the 25th and 75th percentiles, the whiskers extend to the most extreme data
points not considered outliers, and outliers are plotted individually.
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described in Section 3.3.3. The ξ measure appearing on the x-axis is the average sparsity
measures of the pair of instruments considered.

3.3.4 Correlation between sparsity and disjointness

Additional analysis was carried out on the mixtures of pairs of musical tracks to assess the

correlation between disjointness and sparsity, revealing that there is not any significant

correlation between the two quantities.

Considering mdct with a window size of 4096 samples, both the wdo between dif-

ferent pairs of instruments and the sparsity measure ξ were computed in every frame

singularly for each of the two instruments in a pair. The two measures were then aver-

aged over the total number of frames and over the two instruments. The scatter plot in

Figure 3.7 displays the results obtained.

As can be noted, no significant correlation can be identified between the two quantities,

suggesting that in the analysis of musical audio signals using mdct with a 4096 window

size, a sparse representation does not imply a disjoint one and vice versa. This result

contradicts a common assumption made in the source separation community which links

the sparsity of a transform to the degree of disjointness of different sources in the transform

domain (see [58, 122] for example).

Although additional investigation is required to understand the relation between ξ
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and wdo and, more in general, between the sparsity of a transform and its effect on

source separation performance, a possible explanation of the results obtained considers

the nature of musical audio signals. Unlike speech signals that are analysed in a vast

number of source separation studies including [122], the musical audio signals exhibit

harmonic spectra whose components are much more likely to overlap between different

pairs of instruments. Therefore, a transform that provides a sparse representation of such

components does not result in a disjoint transform if the components naturally overlap.

3.4 Summary

In this chapter a novel pitch-synchronous transform lot has been presented. A quasi-

periodic signal can be defined as a function that is periodic on time intervals of limited

duration. The design of the pitch-synchronous lot aims at realizing a frame-by-frame

analysis of a quasi-periodic signal where the length of every frame is adapted to the

frequency of the signal in order to contain an integer number of its periods.

The proposed method utilises a pitch estimation step that can be carried out with any

suitable algorithm and is used to infer a set of window lengths to be inputed as a parameter

of a lot. The framework of lots was chosen as the starting point for the realization of

the pitch-synchronous transform because of its great flexibility, its fast implementation

realized through a window-based algorithm and its wide use in the analysis of audio

signals.

Numerical examples on a pure sinusoidal signal and on a monophonic oboe recording

showed that a non-overlapping, pitch-synchronous stft achieves a sparser representa-

tion of the signals (as measured in terms of the ratio between the `1 and the `2 norms

of the representation coefficients) if compared to a non-pitch synchronous stft. How-

ever, the pitch-synchronous transform is outperformed by a mdct, and realizing a pitch-

synchronous mdct does not lead to significant improvements like in the case of the stft

counterpart. This negative result is worth of further investigation.

Different lots including mdct, standard stft and the proposed pitch-synchronous

stft have been compared along with the cqt transform to assess the disjointness of their

representation coefficients in the context of undetermined source separation by binary

masking of a set of musical tracks. Again, the mdct proved to be overall the best
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choice as it led to the more disjoint representation (as measured by the wdo). This

result confirms previous investigation [109] and further motivates the use of mdct for the

processing of audio signals.

A counterintuitive result was obtained regarding the correlation between sparsity and

disjointness of a transform: considering the best performing transform in terms of disjoint-

ness, no correlation was found between the sparsity of the coefficients in the transformed

domain and the overlap of their supports. This contradicts the commonly made assump-

tion that sparsity induces disjointness, at least in the case of the audio signals employed

in the experiment shown.
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Chapter 4

Dictionary learning of convolved signals

Sparse approximation techniques have been extensively used for de-noising purposes. For

example, Chen et al. [17] show in their seminal paper on basis pursuit that it is possible

to effectively remove Gaussian noise from sparse signals by solving the approximation

problem (2.17).

The penalised minimisation defined in equation (2.17) results in a mixed objective that

minimises the reconstruction error of the signal and the `1 norm of the approximation

coefficients, inducing sparsity in the vector of approximation coefficients. The rationale

behind their approach is that the non-zero coefficients of the approximation correspond

to atoms that capture much more salient information about the signal than about the

additive noise. This also implies that a small additive random perturbation of a signal

that admits an exact sparse representation using a given dictionary should not lead to

a large approximation error when approximating the perturbed signal with the same

dictionary.

On the other hand, convolution can be thought as a different perturbation that is intro-

duced for example every time a physical phenomenon is measured by means of transducers

(e.g. recording an audio signal by means of a microphone). In this case, the recorded

variable can be modelled as the convolution of the original signal of interest, the source

signal, with the impulse response of the system in which the measurement takes place.

Unlike additive noise, this process greatly affects the approximation residual obtained

using sparse representation algorithms, as will be shown in Section 4.2.



92 Chapter 4. Dictionary learning of convolved signals

Starting from this motivation, this chapter deals with learning a convolved dictionary

which can be used to sparsely represent the observations, given the assumption that the

underlying source signals belong to a class for which there exists an analytic or learned

dictionary that leads to a sparse representation. Lou et al. [61] employed a similar

idea involving sparse approximation on a convolved dictionary for de-blurring of natural

images, with the substantial difference that in this paper the impulse response is known

a priori, while the method proposed here aims at learning it from data. Hence the

main contribution of the work presented in this chapter consists in interpreting the blind

estimation of the unknown channel as a dictionary learning problem, and in devising an

optimization algorithm to learn its paramenters.

4.1 Sparse approximation and convolution model

Suppose that a set of M source signals
{
sssm ∈ RN

}M
m=1

admits an exact sparse represen-

tation in a dictionary ΦΦΦ ∈ D ⊆ CN×K :

sssm = ΦΦΦxxxm ||xxxm||0 ≤ S ∀m = 1, . . . ,M. (4.1)

This means that each source signal has an exact sparse representation using the dictionary

ΦΦΦ with at most S active atoms.

Suppose that we do not directly observe the variables sssm but rather a set of convolved

observations
{
yyym ∈ R(N+L−1)

}M
m=1

:

yyym[n] =
L−1∑
l=0

sm[l]h[n− l] (4.2)

that are the result of a single input single output (siso) causal convolutive system char-

acterised by the impulse response hhh of length L.

Let

h̆hh
def
=

 hhh

000

 (4.3)

be a vector in RN+L−1 resulting from zero-padding the impulse response with N − 1

zeros. T (vvv) is a Toeplitz operator that takes a vector vvv ∈ RI as an input and returns

a matrix VVV = T (vvv) ∈ RI×I whose columns contain circularly shifted versions of the
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vector, so that Vi,j = v[(i−j+I) mod I]+1. The Topeplitz convolutive matrix HHH def
= T

(
h̆hh
)
∈

R(N+L−1)×(N+L−1) contains shifted versions of the zero-padded impulse response in each

column:

HHH
def
=



h[0] 0 0 0 0

h[1] h[0]
. . .

...
...

... h[1]
. . . 0

...

h[L− 1]
...

. . . h[0] 0

0 h[L− 1]
. . . h[1] h[0]

... 0
. . .

... h[1]

...
...

. . . h[L− 1]
...

0 0 0 0 h[L− 1]



. (4.4)

A new dictionary ΨΨΨ containing convolved atoms can be written as:

ΨΨΨ = HHHΦ̆ΦΦ (4.5)

where the zero-padded dictionary Φ̆ΦΦ ∈ R(N+L−1)×K can be expressed as:

Φ̆ΦΦ
def
=

 ΦΦΦ

000

 . (4.6)

The observed signals resulting from the convolution described by equation (4.2) can

be stacked into the columns of a matrix YYY ∈ R(N+L−1)×M , and the model can be written

in a compact matrix form as:

YYY = HHHΦ̆ΦΦXXX = ΨΨΨXXX. (4.7)

This means that the observed signals cannot be sparsely represented using the original

dictionary ΦΦΦ, but a new dictionary ΨΨΨ whose atoms ψψψk = hhh ∗ φφφk are obtained by the

convolution between the original atoms and the impulse response of the system.

Whenever the impulse response hhh of the measurement system is unknown, one could

still use the atoms of the dictionary Φ̆ΦΦ to attempt a sparse approximation of the observed

signals. However this results in a large approximation error, as shown in Section 4.2.
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Variable Value Description
Ensemble rse Real Fourier dictionary ensemble

M 500 Number of observed signals
K 200 Number of atoms of the dictionary

||xxx||0 /K 0.05 Normalised diversity of source signals
S 15 Sparsity constraint for omp-s
ε 10−2 Error constraint for omp-e

Table 4.1: Parameters of the experiment studying the effect of convolution on sparse
approximation. The dimensions of the problem and the values of parameters such as
sparsity constraints and error constraints are within ranges typically used in signal pro-
cessing applications that employ a frame-by-frame processing of audio and image data.

4.2 Effect of convolution on sparse approximation

The goal of this section is to show the poor conditioning of sparse approximation in the

presence of convolution. That is, how much the approximation error grows relative to the

Euclidean distance between anechoic source signals and convoluted observations, when

these are approximated using the dictionary Φ̆ΦΦ rather than ΨΨΨ.

To this aim, a matrix of observed signals YYY was synthesised by generating sparse

linear combinations of the atoms contained in a dictionary ΨΨΨ, as in the model (4.7). The

parameters used for the simulation are summarised in Table 4.1. In particular, we firstly

defined M = 500 source signals of dimension N = 100 as sparse linear combinations of

the atoms contained in a two times over-complete real Fourier dictionary, that is one of

the standard matrix ensembles implemented in the SparseLab toolbox1. The normal-

ized diversity of the source signals, defined as the ratio between the number of nonzero

coefficients of the representations and the number of atoms in the dictionary, was set to

||xxx||0 /K = 0.05. We produced the observations by convolving the sources with a sparse

non-negative impulse response hhh of length L = 50.

Both the sparsity constrained orthogonal matching pursuit (omp-s) and the error

constrained orthogonal matching pursuit (omp-e) were tested as sparse approximation

algorithms. They are two alternative formulations corresponding to the optimizations

introduced in equations (2.12) and (2.11), and are based on the algorithm introduced

in [82], but differ in their stopping criteria. The former aims at solving the following

1http://sparselab.stanford.edu

http://sparselab.stanford.edu
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optimization:

arg min
XXX∈RK×M

||YYY − ΦΦΦXXX||F (4.8)

such that ||xxxm||0 ≤ S ∀m = 1, . . . ,M

while the latter attempts to solve the problem:

arg min
XXX∈RK×M

||XXX||0,0 (4.9)

such that ||YYY − ΦΦΦXXX||F ≤ ε.

Hence, testing the sparsity constrained formulation involves assessing the residual norm

of the sparse approximation for a given number of active atoms S, while evaluating the

error constrained algorithm means measuring the number of active atoms employed to

approximate the signals to a given level of accuracy.

The experiments were run multiple times varying the number of non-zero elements

of hhh from 1 to L, starting from the identity operator of the convolution operation δδδ0

and linearly increasing the number of non-zero coefficients of the impulse response. This

causes an increasing average distance between the source signals and the observations

measured by:

d̄ (SSS, YYY ) =
1

M

∣∣∣∣∣∣YYY − S̆SS∣∣∣∣∣∣
F

=
1

M

M∑
m=1

∣∣∣∣∣∣yyym − Φ̆ΦΦxxxm

∣∣∣∣∣∣
2
. (4.10)

Here the columns of S̆SS and YYY contain the sources and convolved observations respectively.

The sizes of the variable is within the range of values commonly used for a frame-by-frame

processing of audio or images.

Figures 4.1 and 4.2 depict the results of the experiment for the two versions of omp.

Let us first analyse the results for omp-s. We ran the sparse approximation using the

dictionary Φ̆ΦΦ on the convolved variables YYY setting the number of active atoms to S = 15.

The sparsity constraint S was chosen to be 50% larger than the true number of active

atoms used to synthesise the anechoic source signals to be resilient to modelling errors.

In a more realistic situation where the signals to be analysed are not synthesised from a

known dictionary, the fact that the residual norm of omp is monotonically decreasing as

a function of the number of atoms ensures a better approximation quality when choosing
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Figure 4.1: omp-s results on convolved signals (averaged values over 100 trials of the ex-
periment). The two black curves represent the average distance between the reconstructed
signals and the sources or the observed variables respectively. For comparison purpose,
the red dashed line represents the average distance between the observed variables and
random signals, while the red solid line is the error tolerance defined for omp-e (whose
results are detailed in Figure 4.2).

a larger number of active atoms.

As can be seen in the left side of the plot 4.1, when the impulse response is simply

hhh = δδδ0 the source and observed variables are the same and omp-s is able to represent them

with negligible error. However, as the convolution causes the observed YYY to differ from

S̆SS, the error in the representation quickly increases, to the point where omp-s becomes

almost comparable with a random approximation (that is, to the error resulting from

approximating the observed signals with random vectors).

The behaviour of omp-e is similar: fixing a tolerance ε = 10−2, the algorithm is able

to represent the observed signals using the right number of active elements in the trivial

case hhh = δδδ0. However, as soon as the average distance d̄ (SSS, YYY ) increases, the number of

active elements needed rapidly rises over 80% of a completely dense representation.

The steep error curve displayed in the two figures confirms that convolution is a
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Figure 4.2: omp-e results on convolved signals (averaged values over 100 trials of the
experiment). The black and red dashed lines represent the true number of active atoms
used to generate the test signals and the number of active atoms of a completely dense
representation respectively. S is the constraint parameter used for omp-s.

process that has a strong impact on the quality of sparse approximation, and motivates

the design of an algorithm that can be used to learn the impulse response hhh and, therefore,

approximate the observed variables using the atoms in the convolved dictionary ΨΨΨ.

4.3 Dictionary learning of convolved signals

The results shown in Section 4.2 are not surprising if we consider the model presented

in Section 4.1: the observed variables are no longer sparsely represented using the atoms

in the dictionary Φ̆ΦΦ, but can be represented using the the dictionary ΨΨΨ = HHHΦ̆ΦΦ whose

atoms ψψψk = hhh ∗ φφφk are the convolution of the original atoms and the impulse response

hhh. Since the impulse response of the system is unknown, the objective of this section is

to develop a novel dictionary learning algorithm in order to learn it from the observed

signals, leveraging the assumption that the resulting convolved dictionary should lead to

a sparse approximation with small residual error.
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Besides the approximation objective described above, the research presented in this

section can be contextualised and linked to source separation tasks. Jaureguiberry et al.

[53] presented a method for nonnegative matrix factorisation in which equalization filters

are learned in a supervised setting from a set of known source signals and used for separat-

ing filtered observations. Their contribution is linked to the proposed algorithm in that it

includes a convolutive filter (the equalisation process) into the analysis of audio sources,

but uses nmf instead of the general dictionary learning considered in this thesis. In addi-

tion, Benichoux et al. [7] employed a study of the statistical properties of reverberation

filters to realise a constrained estimation of room impulse responses. Mr. Benichoux

and I initiated a collaborative research project aimed at combining and extending our

algorithms. We tackled a convolutive source separation task by constraining the time

domain representation of the reverberation filters and the sparse approximation of the

source signals. Although preliminary results have been encouraging, this research project

is not yet mature enough to constitute a significant contribution and to be included in

this thesis.

4.3.1 Dictionary learning in the Fourier domain

The general strategy employed in the optimization of the dictionary learning of convolved

signals follows an alternate optimization of sparse approximation coefficients and impulse

response that is common to dictionary learning algorithms.

Before describing the optimization process used to learn the impulse response, a fre-

quency domain formulation of the convolution model is derived in this section. This is

useful to express equation (4.7) in terms of the impulse response hhh rather than the con-

volution matrix HHH and define a relative impulse response optimization step that will be

described in Section 4.3.2.

Let us first define a cost function C (hhh,XXX) that represents the total error of the approx-

imation as a function of the impulse response and of the sparse approximation coefficients:

C (hhh,XXX) =
1

2

∣∣∣∣∣∣YYY −HHHΦ̆ΦΦXXX
∣∣∣∣∣∣2

F
(4.11)

We can express (4.11) in the frequency domain by multiplying both the observations ma-

trix YYY and their sparse approximation HHHΦ̆ΦΦXXX by the dft matrix FFF ∈ C(N+L−1)×(N+L−1)



4.3. Dictionary learning of convolved signals 99

whose columns contain the Fourier basis:

fff l =
1√

N + L− 1
exp

[
2πi

N + L− 1
ln

]
. (4.12)

Here the normalized version of the dft, such that FFFHFFF = III is used. Since it is defined

as an orthonormal transform, the Fourier operator does not modify the magnitude of

the residual expressed in equation (4.11) and leads to an equivalent cost function in the

Fourier domain:

C
(
ĥhh,XXX

)
=

1

2

∣∣∣∣∣∣FFFHYYY − FFFHHHHΦ̆ΦΦXXX
∣∣∣∣∣∣2

F
(4.13)

where the hat symbol identifies variables in the Fourier domain and will be applied from

now on column-wise if applied to matrix arguments.

Note that, given a vector vvv, every element of its Fourier transform v̂l = 〈fff l, vvv〉 results

from the inner product with the Fourier bases. When using a matrix notation, the

Hermitian operator (·)H must be used in place of the matrix transposition to calculate

the inner products because FFF contains complex variables.

There is a relation that links convolution of two vectors in the time domain to the

element-wise multiplication of the components of their respective Fourier transforms [79].

The element-wise multiplication between the components of a vector vvv and the compo-

nents of the vector www can be expressed by the product D (vvv)www, where the operator D (·)

returns a diagonal matrix whose diagonal entries are the elements of its vector argument.

Let ψψψk = hhh ∗ φφφk be a convolved atom. This can be expressed in terms of the Fourier

transforms φ̂φφk and ĥhh as follows:

ψ̂ψψk = D
(

ˆ̃
hhh
)

ˆ̃
φφφk (4.14)

where h̃hh and φ̃φφk are obtained periodically extending the vectors hhh and φφφk. Equation

(4.14) is named circular convolution from the fact that it is equivalent to the convolution

between vectors that have been circularly or periodically extended. This is equivalent

to the linear convolution defined in equation (4.7) if the vectors have been zero-padded

as described in Section 4.1. In this case convolution in the time domain is equivalent to

element-wise multiplication in the frequency domain, and the cost function (4.13) can be

expressed as:

Ĉ
(
ĥhh,XXX

)
=

1

2

∣∣∣∣∣∣∣∣ŶYY −D(ˆ̆
hhh

)
ˆ̆
ΦΦΦXXX

∣∣∣∣∣∣∣∣2
F

. (4.15)
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For clarity of notation, the zero-pad symbol (̆·) will be from now on omitted in the

equations, assuming that variables have been zero-padded as a pre-processing step.

One last simplification of the cost function (4.15) can be derived by considering a prop-

erty of the Fourier transform of real signals. Given a real vector vvv ∈ RN , the Hermitian

symmetry of its Fourier transform v̂vv implies that v̂N−j+1 = v̂∗j ∀j = 1, . . . , b(N + L)/2c+

1. This constraint can be taken into account by only estimating the first J = d(N+L)/2e

Fourier coefficients of the vector ĥhh, and setting the remainders as complex conjugate.

The cost function in the frequency domain (4.15) becomes:

C
(
ĥhh1:J , XXX

)
=

1

2

∣∣∣∣∣∣∣∣ŶYY 1:J −D
(
ĥhh
)1:J

Φ̂ΦΦ
1:J
XXX

∣∣∣∣∣∣∣∣2
F

(4.16)

where the superscripts (·)1:J indicate that only the first J rows of the various variables

are taken into account.

4.3.2 Block coordinate descent optimization

This section describes an optimization algorithm aimed at solving the problem:

(hhh?, XXX?) = arg min
hhh∈RL,XXX∈RK×M

||YYY −HHHΦΦΦXXX||F (4.17)

such that ||xxxm||0 ≤ S ∀m.

This optimization follows from the convolutive model introduced in Section 4.1 and is

akin to the dictionary learning problem as defined in equation (2.23), with the notable

difference that here a dictionary ΦΦΦ is kept fixed and the impulse response vector hhh is

optimized instead.

The joint minimisation of the cost function (4.17) over the variables hhh and XXX is an

underdetermined problem in that the number of variables is KM +L and the number of

observations is NM , with K ≥ N > L. A so-called block coordinate descent optimization

can be employed following the same strategy used by dictionary learning algorithms where

the two variables are updated one at a time and the optimization of one is based on the

previous value of the other.

This is an iterative optimization strategy that starts from an initial guess of the

impulse response hhh(0) (that can be initialised, for example, as a random vector or as the
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convolution identity δδδ0), and proceeds for a fixed number of iterations i = 1, . . . , I by

solving the following sub-problems at each iteration i:

Source signals optimization : given a fixed hhh(i), a convolved dictionary ΨΨΨ(i) = T
(
hhh(i)
)

ΦΦΦ

is computed and used to obtain a sparse approximation XXX(i) of the observed signals

YYY .

Impulse response optimization : given a matrix of sparse approximation coefficients

XXX(i), a new impulse response hhh(i+1) is computed in order to minimise (4.11) or its

equivalent in the frequency domain (4.16).

Source Signals optimization

Given a fixed impulse response hhh(i), the cost function (4.11) (or, its equivalent in the

frequency domain (4.16)) represents a classic sparse approximation problem where we seek

a matrix XXX that minimises the residual norm of the representation over the dictionary

ΨΨΨ = HHH(i)Φ̆ΦΦ, given a constraint on the sparsity of the solution vectors.

arg min
XXX∈RK×M

||YYY −ΨΨΨXXX||2F (4.18)

such that ||xxxm||0 ≤ S ∀ m = 1, . . . ,M.

This can be tackled using any suitable sparse approximation algorithm such as omp-s.

Alternatively, the sparsity assumption can be relaxed to an `1 constraint, which leads to

a convex problem that can be solved with various methods, such as basis pursuit [17] or

homotopy [80].

Impulse Response optimization

The impulse response optimization step can be solved starting from (4.16) and defining

an equivalent quadratic program. Given that the Frobenious norm of a matrix MMM can

be expressed as the trace of the Gram matrix GGG def
= MMMHMMM , ||MMM ||F = Tr (GGG), the cost

function defined in equation (4.16) can be written as:

Ĉ(ĥhh1:J) =
1

2
Tr

[(
YYY 1:J −D

(
ĥhh
)1:J

Φ̂ΦΦ
1:J
XXX

)H(
YYY 1:J −D

(
ĥhh
)1:J

Φ̂ΦΦ
1:J
XXX

)]
. (4.19)

To avoid double superscripts in the notation, the row indexes (·)1:J will be omitted from

now on, implicitly assuming that the impulse response in the Fourier domain is optimized
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only considering its first J components. Expanding the above equation while omitting the

terms that do not depend on ĥhh leads to the definition of an impulse response optimization

problem which can be written as:

ĥhh
?

1:J = arg min
ĥhh1:J

1

2

[
Tr

(
ŜSS
HD

(∣∣∣ĥhh∣∣∣2)ŜSS)− Tr
(
ŶYY
HD

(
ĥhh
)
ŜSS
)
− Tr

(
ŜSS
HD

(
ĥhh
∗)
ŶYY
)]
(4.20)

where the operator (·)∗ indicates complex conjugate and the matrix ŜSS contains the Fourier

transform of the estimated source signals SSS = ΦΦΦXXX.

We can simplify this expression considering a property of diagonal matrices. Let DDD

be a diagonal matrix, and AAA and BBB two arbitrary matrices.

Tr
(
AAAHDDDBBB

)
=
∑
i

[
AAAHDDDBBB

]
i,i

=
∑
i

∑
j

[
AAAH
]
i,j

[DDDBBB]j,i

=
∑
i

∑
j

a∗j,i
∑
k

dj,kbk,i

=
∑
j

dj,j
∑
i

bj,ia
∗
j,i

= d (DDD)T d
(
BBBAAAH

)

where the operator d (·) returns a vector whose elements are the diagonal entries of its

matrix argument.

Therefore, the unconstrained minimisation of the frequency response ĥhh becomes:

ĥhh
?

= arg min
ĥhh

1

2

[
ĥhh
HD

(
ĥhh
)

d
(
ŜSSŜSS
H)− ĥhhT d

(
ŜSSŶYY

H)− ĥhhH d
(
ŶYY ŜSS

H)]
. (4.21)

Let’s introduce for clarity of notation the vectors

ααα
def
= d

(
ŜSSŜSS
H)

(4.22)

βββ
def
= d

(
ŶYY ŜSS

H)
. (4.23)
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The cost function in equation (4.21) can be written as:

1

2

[
ĥhh
HD

(
ĥhh
)
ααα− ĥhhTβββ∗ − ĥhhHβββ

]
=

1

2

[
ĥhh
HD (ααα)ĥhh− ĥhhHβββ∗ − ĥhhHβββ

]
(4.24)

where the equivalence comes from the commutative property of the element-wise multi-

plication D
(
ĥhh
)
ααα = D (ααα)ĥhh. Minimising this cost function with respect to the impulse

response means solving a quadratic program in the complex variable ĥhh. This is equivalent

to the least-square problem:

ĥhh
?

= arg min
ĥhh∈CJ

∣∣∣∣∣∣D (ααα)
1
2 ĥhh−D (ααα)−

1
2βββ
∣∣∣∣∣∣2

2
. (4.25)

Equation (4.25) can be expressed in the time domain by considering the Fourier trans-

form ĥhh = FFFHhhh:

hhh? = arg min
hhh∈RN+L−1

1

2

∣∣∣∣∣∣D (ααα1/2
)
FFFHhhh−D

(
ααα−1/2

)
βββ
∣∣∣∣∣∣2

2
. (4.26)

The length of the impulse response L can be taken into account in the optimization by

constraining the last N − 1 components of the optimization variable in (4.26) to be zero.

For clarity of notation we define the variables

ΓΓΓ
def
= D

(
ααα1/2

)
FFFH (4.27)

ξξξ
def
= D

(
ααα−1/2

)
βββ. (4.28)

The optimization (4.26) becomes:

hhh? = arg min
hhh∈RL

1

2
||ΓΓΓ1:Lhhh− ξξξ||22 (4.29)

which is over-determined because ΓΓΓ1:L ∈ C(N+L−1)×L and can be solved by computing

the pseudo-inverse:

hhh? = ΓΓΓ†1:Lξξξ. (4.30)

Constrained Optimization

In the experiments presented in Section 4.2 we employed a sparse and non-negative im-

pulse response that was convolved with the synthetic source signals. The choice of sparsity
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and non-negativity constraints is particularly suited for audio signals in that the early

reflections coming from the surfaces of the ambient in which the signals are recorded can

be modelled as a sparse non-negative impulse response [6].

These constraints can be introduced into the impulse response optimization (4.29).

Firstly, we can assume that the vector hhh is non negative, turning the minimisation (4.29)

into a non negative least squares problem which can be solved via quadratic programming.

We can then constraint the `1 norm of the solution to be smaller than a fixed value Q1,

inducing sparsity on the impulse response coefficients.

This can be done in a very simple way considering that the `1 norm of a nonnegative

vector is the sum of its entries. The optimization problem becomes:

hhh? = arg min
hhh∈RL

1

2
||ΓΓΓ1:Lhhh− ξξξ||22 (4.31)

such that hhh ≥ 000

111Hhhh ≤ Q1.

The labels dhhh-bcd and shhh-bcd are the acronyms of dense hhh block coordinate descent

and sparse hhh block coordinate descent and will be employed from now on to identify the

two optimization problems (4.29) and (4.31).

Ambiguities

The cost function of the problem (4.17) contains an inherent ambiguity because it is

possible to multiply the matrices HHH and XXX by an arbitrary scalar and its inverse resulting

in the same function value, that is:

||YYY −HHHΦΦΦXXX||F =

∣∣∣∣∣∣∣∣YYY − (CHHH) ΦΦΦ

(
1

C
XXX

)∣∣∣∣∣∣∣∣
F

∀ C ∈ R \ {0} . (4.32)

To prevent the optimization from introducing a large discrepancy between the norms

of the impulse response matrix HHH and of the sparse approximation coefficients matrix XXX,

a normalization step is added in a way that is analogous to the normalization introduced

after the dictionary update step of dictionary learning algorithms that is explained in

Section 2.6.

In a traditional dictionary learning setting, the normalization step relies on an am-
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biguity of the objective function where the dictionary and the matrix of approximation

coefficients can be multiplied by a diagonal matrix and its inverse respectively main-

taining the same value. By defining a diagonal normalization matrix ΞΞΞ whose diagonal

elements contain the inverse of the `2 norm of the atoms of the dictionary returned by

the dictionary update step, the atoms are kept normalized.

In the learning setting described here such ambiguity does not hold, since given an

arbitrary diagonal matrix DDD 6= CIII which is not trivially a scaled identity matrix:

||YYY −HHHΦΦΦXXX||F 6=
∣∣∣∣YYY − (DDDHHH) ΦΦΦ

(
DDD−1XXX

)∣∣∣∣
F
. (4.33)

Instead of keeping the atoms of the dictionary normalized, we choose not to modify

the initial Frobenious norm of the dictionary:

||HHHΦΦΦ||2F = ||ΦΦΦ||2F = K (4.34)

where we assumed a normalized dictionary ΦΦΦ and K is the number of atoms.

Therefore, once the impulse response has been optimized solving the problem (4.29)

or (4.31), we redistribute the energy between the matrix HHH and the coefficients XXX so that

the equality (4.34) is satisfied.

R =

√
K

||HHHΦΦΦ||F
hhh← Rhhh

XXX ← 1

R
XXX

This is analogous to the normalization step introduced after the dictionary update of

dictionary learning algorithms that is described in Section 2.6. Note that other more

general ambiguities such as multiplication with a diagonal or permutation matrix do not

occur in this case.

Algorithm 8 summarises the optimization of the dictionary learning of convolved sig-

nals model.
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Algorithm 8: Dictionary learning of convolved signals

Input: YYY ,ΦΦΦ, hhh(0), I
Output: hhh?, XXX?

// Initialisation
1 i← 1;
2 while i ≤ I do

// Source signals optimization

3 HHH ← T
(
h̆hh
)
;

4 ΨΨΨ← HHHΦ̆ΦΦ;
5 XXX ← arg min

XXX∈RK×M
||YYY −ΨΨΨXXX||2F s.t. ||xxxm||0 ≤ S ∀ m;

6 SSS ← Φ̆ΦΦXXX;
// Impulse response optimization

7 ααα← d
(
ŜSSŜSS
H)

;

8 βββ ← d
(
ŶYY ŜSS

H)
;

9 ΓΓΓ← D
(
ααα1/2

)
FFFH;

10 ξξξ ← D
(
ααα1/2

)
βββ;

// Choose constrained or unconstrained optimization of the impulse
response

11 switch hhh optimization type do
12 case dhhh-bcd
13 hhh← solution of optimization (4.29);
14 endsw
15 case shhh-bcd
16 hhh← solution of optimization (4.31);
17 endsw
18 endsw

// Impulse response and coefficients normalization

19 R←
√
K

||HHHΦΦΦ||F
;

20 hhh← Rhhh;
21 XXX ← 1

RXXX;
22 end

4.4 Numerical experiments

In this section we will describe several numerical tests performed on synthetic data in

order to evaluate the proposed block coordinate descent optimization and to compare it

with the k-svd dictionary learning algorithm [4]. The main goal is to assess whether the

proposed model and algorithm are better suited to learn signals generated as sparse linear

combinations of convolved signals compared to a standard dictionary learning algorithm.

The source signals were generated according to the model described in Section 4.1 using

the parameters defined in Section 4.2 and were convolved with a sparse non-negative
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impulse response with normalized diversity ||hhh||0 /L = 0.05.

4.4.1 Sparse vs dense impulse response estimation

To tackle the optimization problem (4.17) we used the sparsity-constrained version of

omp and chose the sparsity parameter S to allow for 50% more active elements than

originally used to generate the signals, as previously done in the numerical experiments

presented in Section 4.2. For the impulse response estimation step we may or may not

introduce additional constraints, which leads to:

1. shhh-bcd : at each step of the algorithm, the impulse response hhh is updated solving the

optimization problem (4.31) using a nonnegative version of the lasso algorithm2,

which constrains the solution to be sparse and nonnegative (again, we set the spar-

sity constraint to allow for a 50% tolerance on the number of active elements). The

lasso algorithm was chosen because it solves an `1 constrained minimisation while

at the same time using a fixed number of active atoms, and it is therefore a valid

technique for the solution of the problem (4.31).

2. dhhh-bcd : at each step of the algorithm, the impulse response hhh is updated by

solving the optimization problem (4.29). As explained in Section 4.3.2, this is an

overdetermined problem whose solution can be derived analytically and corresponds

to the least-squares solution of the system.

The two methods above, along with the k-svd dictionary learning algorithm3 were

initialised with the known dictionary ΦΦΦ and an initial impulse response hhh(0) whose ele-

ments were generated randomly from a Gaussian distribution with zero mean and unit

variance. The learning algorithms were run for 50 iterations.

Figure 4.3 shows the average distance d̄ of the representations defined as in equation

(4.10). The data are displayed on a logarithmic scale and averaged over 100 independent

trials of the experiment that correspond to different random initialisations.

As can be seen, dhhh-bcd is the only method which improves its value during all the

iterations. On the other hand, the convergence of k-svd and shhh-bcd is significantly

slower, with the latter performing worse. In other words, the impulse response learned

2we used the SolveLasso function contained in the SparseLab toolbox.
3we used the ksvd function available as part of the SmallBox toolbox
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Figure 4.3: Average distance between observed convolved variables and sparse approxi-
mation model as a function of the iteration number of bcd and k-svd (average over 100
trials of the experiment).

using dhhh-bcd allows a sparse approximation of the convolved signals which is more ef-

fective in terms of the residual error if compared to the k-svd algorithm or with the

constrained shhh-bcd .

Figure 4.4 offers a more precise comparison between k-svd and dhhh-bcd by showing

the boxplot of the average distance as a function of the iteration number. The plots display

the distribution of the average distance at each iteration over the 100 independent trials

that were run starting from random initialisations of hhh(0) and convolved observations. The

data are arranged and displayed according to their percentile, with the boxes comprising

points that fall between the 25-th and the 75-th percentile, the central mark indicating

the median that corresponds to the 50-th percentile and whiskers extending until points

that fall within values not considered outliers (a data point is considered an outlier if its

value falls outside intervals above and below the boxes of size 1.5 times the size of the

boxes).

In the upper plot referring to dhhh-bcd the median error drops from 10−1 at the first

iteration to a value lower than 10−2 at iteration 50. Similarly, all the average distances not

considered outliers drop to values below 10−2 by the 50-th iteration, with a few outliers

remaining to values around 10−1. On the other hand, k-svd seems to be more robust to
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Figure 4.4: Boxplot comparison of the average distance obtained with dhhh-bcd and k-svd
over 100 trials of the experiment. For each iteration, the central mark is the median, the
edges of the boxes are the 25th and 75th percentiles, the whiskers extend to the most
extreme data points not considered outliers, and outliers are plotted individually.

outliers than the proposed methods but consistently achieves a worst average error.

Similar results have been obtained by considering an impulse response hhh of length

L = 60 samples generated according to the image method proposed by Allen and Berkley

[6] and implemented by McGovern [73]. The image method is a technique for generating

the impulse response describing the acoustic path between a source and a microphone

situated in a room of known dimensions. It is based on the assumption that acoustic

waves can be modelled as beams that are reflected by the surfaces of the room, and

provides a realistic simulation of room reverberation. The room parameters chosen in

this simulation are illustrated in Figure 4.5. The results of the experiment are shown in

Figures 4.6 and 4.7. As for the previous experiment, the k-svd algorithm is outperformed
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2m

3m

Figure 4.5: Room parameters used to generate an impulse response according to the
image method. The floor dimensions (width times length) are 2x3 meters and the height
of the room is 3m. The loudspeaker is located at position [0, 1, 1.5]m, while the microphone
is located at position [1, 1, 1.5]m, assuming that the coordinates represent length, width
and height respectively. The reflective coefficient of the walls modelling the degree of
acoustic reflectivity of the material in the room was set to 0.5 from a range that goes
from 0 (totally absorbent) to 1 (totally reflective).

by the dhhh-bcd mouthed, and similar trends can be observed regarding the box plots in

Figures 4.4 and 4.7.

In general, the fact that dhhh-bcd outperforms shhh-bcd suggests that constraining the

solution to belong to the feasible set from where the test data were generated is not a

good strategy, while performing an unconstrained optimization of the impulse response

allows for the necessary flexibility required to minimise the non-convex cost function

whenever the initialisation is far from a local minimum. Moreover, the fact that k-svd

is outperformed by dhhh-bcd indicates that taking into account the particular structure of

the dictionary and reducing therefore the number of free parameters of the optimization

from the whole set of atoms to the impulse response coefficients can lead to significant

improvements.
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Figure 4.6: Average distance between observed convolved variables and sparse approxi-
mation model as a function of the iteration number of bcd and k-svd (average over 20
trials of the experiment).
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Figure 4.7: Boxplot comparison of the average distance obtained with dhhh-bcd and k-svd
over 20 trials of the experiment. For each iteration, the central mark is the median, the
edges of the boxes are the 25th and 75th percentiles, the whiskers extend to the most
extreme data points not considered outliers, and outliers are plotted individually.
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4.4.2 Sparsity phase-transition

The block coordinate descent strategy described in section 4.3.2 proved to be effective in

learning a dictionary for a problem with sparse source signals and a sparse non-negative

impulse response. In particular, the version employing an unconstrained estimation of

the impulse response is able to provide a representation of the observed signals with

small residual error. However, as in every sparse approximation problem, the number of

active atoms contributing to the synthesis of the input data plays a crucial role. For this

reason, we tested the algorithms varying the normalized diversity of source signals and

impulse response between 1% and 25% of the respective dimensions, again comparing the

results with the k-svd algorithm. Figure 4.8 shows the contours plot of the residual error

achieved at the end of the optimization by the various methods, along with a comparison

plot which shows the best performing technique in each point of the sources/impulse

response normalized diversity plan.

As we might expect, the two variants of the proposed block coordinate descent method

perform well when the source signals and the impulse response are sparse, exhibiting a

slightly stronger dependence on the sources normalized diversity. The results for the k-

svd algorithm, on the other hand, seem to depend strongly on the normalized diversity

of the impulse response, presenting also a slight drop in correspondence with a source

normalized diversity of 0.05. Overall, the comparison plot reveals that, as long as the

sources normalized diversity is below 10% of the signals dimension N , and the impulse

response is sufficiently sparse, then k-svd is outperformed by dhhh-bcd . This condition

is not unrealistic and corresponds to the common assumption S � N made throughout

most of the literature on sparse representation.

4.5 Summary

In this chapter a novel method for dictionary learning of convolved signals was presented.

Starting from the observation that convolution strongly affects the residual error of sparse

approximation, a new strategy for the sparse approximation of convolved signals has been

devised.

A model where observed signals are obtained as sparse linear combinations of a con-

volved dictionary was used to obtain an optimization problem aimed at learning from
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Figure 4.8: bcd and k-svd results for various densities of source signals and impulse
response (average over 20 trials). The values appearing along the contours plots represent
the average distance between the observed data and their sparse approximation achieved
after 50 iterations by the various algorithms on a logarithmic scale. Since the dictionary
is two times over-complete, a completely dense representation corresponds to a source
normalized diversity ||xxx||0 /K = 0.5.

observed data a matrix of sparse approximation coefficients and an impulse response

applied to the dictionary atoms. Following a strategy analogous to the one employed

in traditional dictionary learning which consists in sparse coding followed by dictionary

update, the matrix XXX and the vector hhh are optimized keeping the dictionary ΦΦΦ fixed.

Both an unconstrained and a constrained version of the impulse response optimiza-

tion step labelled dhhh-bcd and shhh-bcd respectively have been employed to approximate

sets of synthetic signals and compared to the k-svd dictionary learning algorithm. The

results show that dhhh-bcd outperforms the two other methods. They suggest that, in

the case of convolved observations generated from anechoic signals that admit a sparse

representation in a known dictionary, learning the impulse response can be more efficient

than learning a new dictionary with a standard dictionary learning algorithm. Moreover,

the unconstrained version of the proposed algorithm outperforms the constrained one,

even if the observed data have been generated according to a constrained model.

Finally, numerical experiments comparing signals generated with different levels of
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normalized diversity show the range of parameters within which the above claim holds.

Overall, as long as signals and impulse responses are sparse, dhhh-bcd is a better choice

than k-svd for sparse approximation.

Future research should investigate dictionary learning of convolved signals on non-

synthetic data, including audio and images. In addition, the work initiated in collabo-

ration with Mr. Benichoux on constrained convolutive source separation that has been

mentioned in Section 4.3 can prove to be a worthwhile research avenue for the future.
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Chapter 5

Incoherent dictionary learning

5.1 Learning incoherent dictionaries

This Chapter deals with learning dictionaries for sparse approximation that allow one to

express a set of training signals with a small residual error and contain atoms that are

dissimilar to each other. This mixed objective comprising extrinsic and intrinsic properties

of the dictionary is analysed in the context of sparse recovery and sparse approximation,

and novel optimisation algorithms are proposed to address it.

5.1.1 Sparse approximation and dictionary learning models

We consider a sparse synthesis model where a signal yyy ∈ RN is approximated by a sparse

linear combination of atoms {φφφk}Kk=1, φφφk ∈ RN , as already introduced in Section 2.3.

Arranging the atoms along the columns of the dictionary matrix ΦΦΦ, we can express the

model as in (2.9):

yyy ≈ ΦΦΦxxx (5.1)

where xxx is a sparse vector of representation coefficients, with ||xxx||0 ≤ S. The parameters of

this model can be determined by solving a sparse approximation problem and optimizing:

xxx? = arg min
xxx

||yyy − ΦΦΦxxx||2 (5.2)

such that ||xxx||0 ≤ S



116 Chapter 5. Incoherent dictionary learning

as already introduced in (2.12). A batch sparse approximation model is defined as in

(2.22) by stacking a set of observed signals {yyym ∈ RN}Mm=1 along the columns of the

matrix YYY ∈ RN×M :

YYY ≈ ΦΦΦXXX (5.3)

where XXX is a sparse matrix whose columns contain the vectors xxxm of representation

coefficients. Corresponding dictionary learning problems can be proposed as detailed in

Section 2.6 and tackled through the alternate optimization consisting in sparse coding

followed by dictionary update as detailed in Section 2.7.

The sparse approximation (5.2) that is at the core of the sparse coding step of dic-

tionary learning has been proved to be an NP hard problem [24], and a great number of

sub-optimal algorithms that run in polynomial time [17, 76, 77, 82] have been developed

in order to tackle it, as already detailed in Section 2.4. An important research effort has

been devoted to understand how the different strategies and algorithms for sparse mod-

elling perform in different settings. For example, sparse recovery deals with retrieving a

sparse signal from a set of incomplete measurements and has applications in the field of

compressive sampling [16], while sparse approximation is concerned with how efficiently

a general signal can be approximated by linear combinations of a few atoms from an

over-complete dictionary [25, 111].

The theorems that have been proposed in the literature to this aim link the success

of the algorithms with the coherence of the dictionary.

5.1.2 Dictionary coherence and its role in the performance

of sparse algorithms

The coherence of a dictionary indicates the degree of similarity between different atoms or

different collections of atoms. A simple measure that has been proposed in the literature

is the mutual coherence µ(ΦΦΦ), which is defined as the maximum absolute inner product

between any two different atoms of the dictionary:

µ(ΦΦΦ)
def
= max

i 6=j

∣∣〈φφφi, φφφj〉∣∣ (5.4)

and is zero for orthogonal bases. For clarity of notation, in the reminder of this Chapter

the dependancy on the dictionary ΦΦΦ will be omitted whenever unambiguous from the
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context.

Tropp [111] showed that, given a sparse signal generated according to the model (5.1),

the orthogonal matching pursuit algorithm (omp) [82] is guaranteed to retrieve the correct

support of the representation coefficients from an observed signal yyy and a given dictionary

ΦΦΦ if:

µ <
1

(2S − 1)
(5.5)

and further refined this bound by considering the cumulative coherence which involves the

sum of correlations between an atom φφφi and an S-dimensional sub-dictionary that does

not include it. The bound (5.5) is referred to as a worst-case bound, and it is linked to the

condition number of an arbitrary sub-dictionary of the matrix ΦΦΦ [114]. Less pessimistic

results can be obtained by considering random sub-dictionaries, an insight that leads to

average-case bounds expressed as the probability of success or failure of a sparse recovery

algorithm [93].

In general, the results reported in the literature indicate that sparse recovery succeeds

in a wide range of problem settings whenever the mutual coherence µ is low and the

cumulative coherence grows slowly as a function of the number of active atoms. In

particular, equation (5.5) implies that only signals which are synthesised from S < 1
2 + 1

2µ

active atoms are guaranteed to be correctly recovered. However, it can be proved [106]

that for a N ×K dictionary, the mutual coherence is lower-bounded by:

µ ≥
√

K −N
N(K − 1)

. (5.6)

As an illustrative example, a dictionary containingK = 200 atoms in N = 100 dimensions

has a mutual coherence that is lower-bounded by µ ≥ 0.07, and the sparse representation

of a signal generated with such a dictionary is guaranteed to be correctly retrieved if the

number of active atoms is Smax ≤ 7.

Based on results for sparse recovery, Gribonval and Vandergheynst [47] extended the

work of Tropp [111] and proved a stability result regarding the matching pursuit (mp)

[71] algorithm. In particular they prove that, given a signal yyy and an optimal S-term

sparse approximation ŷyyS (that is, the solution that would be returned by a combinatorial

search over all the possible sets of S atoms),
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• At each step t < TS , mp produces an approximation ỹyy(t) using the correct atoms

from the support of the optimal approximation ŷyyS .

• The approximation error at step TS given by
∣∣∣∣∣∣yyy − ỹyy(TS)

∣∣∣∣∣∣
2
≤ C ||yyy − ŷyyS ||2 is upper-

bounded by the approximation error attained by the optimal approximation multi-

plied by a constant.

The number of steps TS that can be proved to select the correct support of the sparse

approximation is inversely proportional to the coherence of the dictionary. In other words,

a low coherence ensures that the mp algorithm correctly identify the support of a brute

force combinatorial solution for a large number of steps.

It is fair to stress that the bounds detailed above are only sufficient (and not nec-

essary) conditions for proving stability and recovery results. They do not imply that

incoherent dictionaries are necessarily better for sparse approximation. However, ex-

perimental results presented in Section 5.5 will highlight the advantages of mutually

incoherent dictionaries in the context of sparse approximation.

5.1.3 Learning incoherent dictionaries

If the advantage of learning incoherent dictionaries for coding applications lies in the

success of approximation algorithms, the results on sparse recovery place the emphasis

on retrieving the true support of the signals to be analysed. This is a desirable property

whenever sparse approximations are sought in order to reveal an underlying structure or

clustering in the data.

For example, morphological component analysis [10, 9] decomposes a signal over a set

of dictionaries that have been previously learned from different training data consisting of

morphologically dissimilar classes (i.e., edges and textures for an image, or different classes

of instruments for a musical audio signal). The mutual incoherence between different

learned sets of atoms is a prerequisite that allows for a sparse coding where the position

of the non-zero coefficients can be informative for classification and source separation

applications.

In addition, Dai et al. [20] recently observed that the k-svd dictionary learning al-

gorithm [4] can converge to ill-conditioned dictionaries that perform poorly for sparse

approximation. They proposed a novel technique to address this issue that introduces a
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penalised optimisation in the dictionary update step. Tropp [114] showed that the coher-

ence of a dictionary is linked to the condition number of its sub-dictionaries (i.e, matrices

defined by selecting a subset of the atoms), and used this relation to prove average-case

results on sparse recovery for `1 based algorithms. This implies that achieving a low

mutual coherence results in well-conditioned sub-dictionaries and further motivates the

objective of the work presented in this Chapter.

Finally, Gleichman and Eldar introduced the blind compressed sensing framework

[42] as a generalisation of the compressive sampling technique introduced in Section 2.9.1

where the dictionary in which the signals are supposed to be sparse is unknown. In their

formulation, a set of compressively sampled variables ZZZ = MMMΦΦΦXXX is derived from a known

measurement matrix MMM and an unknown dictionary ΦΦΦ. Dictionary learning is employed

in order to factorise the observed data as ZZZ ≈ ΨΨΨXXX and a post-processing step is employed

to factorise the learned dictionary in the product ΨΨΨ ≈MMMΦΦΦ to then reconstruct the signals

YYY = ΦΦΦXXX exploiting constraints on ΦΦΦ. In this context, learning an incoherent dictionary

ΨΨΨ can promote a unique factorization and a correct recovery of the signals YYY .

5.2 Previous work on incoherent dictionaries

This Section presents previous work on learning incoherent dictionaries, including meth-

ods that inspired the algorithms that constitute the main contributions of this Chapter

or provided benchmark techniques for the evaluation of the proposed techniques.

5.2.1 Constructing Grassmannian frames with iterative projections

A Grassmannian frame is a collection of atoms that have unit norm and minimal mutual

coherence. It can be proved that, for an N × K dictionary, the mutual coherence is

bounded by (5.6), and the lower bound is reached when the dictionary is an equiangular

tight frame, that is, a Grassmannian frame where any pair of different atoms have the

same absolute inner product [106]. It is also worth noting that equiangular tight frames do

not exist for any pair (N,K), but necessarily (and not sufficiently) requireK ≤ 1
2N(N+1)

if the atoms are real or K ≤ N2 if the atoms are complex.

Constructing Grassmannian frames is an open research problem for which there is

generally no analytic solution. One possible approach is to use an iterative projection

method [116]. To illustrate this algorithm, we define two constraint sets, namely the
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structural constraint set Kµ0 as the set of symmetric square matrices with unit diagonal

values and off-diagonal values with magnitude smaller or equal than µ0:

Kµ0

def
= {KKK ∈ RK×K : KKK = KKKT ,diag(KKK) = 111,max

i>j
|ki,j | ≤ µ0 ≤ 1}. (5.7)

and the spectral constraint set F as the set of symmetric positive semidefinite square

matrices with rank smaller than or equal to N :

F def
=
{
FFF ∈ RK×K : FFF = FFF T , eig(FFF ) ≥ 000, rank(FFF ) ≤ N

}

In the above expressions, the operators diag(·) and eig(·) return the vector of diagonal

elements and the vector of eigenvalues of their arguments respectively.

The iterative projection algorithm starts from an initial dictionary ΦΦΦ, calculates its

Gram matrix GGG
def
= ΦΦΦHΦΦΦ, and iteratively projects it onto the sets Kµ0 and F until a

stopping criterion is met.

• Projection onto the structural constraint set. Given an arbitrary Gram matrix GGG,

its projection KKK = PKµ0
(GGG) onto the structural constraint set can be obtained by

setting its diagonal values to one and by limiting the magnitude of its off-diagonal

values:

1. Set diag(KKK) = 111

2. Limit the off-diagonal elements so that, for i 6= j,

ki,j = Limit(gi,j , µ0)
def
=


gi,j if |gi,j | ≤ µ0

µ0 if gi,j > µ0

−µ0 if gi,j < −µ0

• Projection onto the spectral constraint set. Given an arbitrary dictionary ΦΦΦ, its

Gram matrix GGG is by construction a symmetric, positive semidefinite matrix. Its

projection FFF = PF (GGG) onto the spectral constraint set F can be obtained through

the following steps:

1. Calculate an eigenvalue decomposition (evd) GGG = QQQΛΛΛQQQT



5.2. Previous work on incoherent dictionaries 121

2. Threshold the eigenvalues by keeping only the N largest positive ones.

Λ̄ΛΛ = [Thresh(ΛΛΛ, N)]i,i
def
=

 λi,i if i ≤ N and λi,i > 0

0 if i > N or λi,i ≤ 0

where the eigenvalues in ΛΛΛ are ordered from the largest to the smallest. Fol-

lowing this step, at most N eigenvalues of the Gram matrix are different from

zero. It is worth noting that in the original formulation of the ip algorithm

[116] the N largest eigenvalues in the matrix ΛΛΛ are set to K/N as this results

in the spectrum of the Gram matrix of an equiangular tight frame. However,

relaxing this constraint as proposed here led to better numerical results.

3. Update the Gram matrix as FFF = QQQThresh(ΛΛΛ, N)QQQT , so that rank(FFF ) ≤ N .

Once the Gram matrix has been iteratively projected onto the two sets and the stop-

ping criterion has been met, it is factorized as the product

GGG = ΦΦΦTΦΦΦ (5.8)

through the following steps:

1. Calculate an eigenvalue decomposition (evd) GGG = QQQΛΛΛQQQT

2. Set ΦΦΦ = Thresh(ΛΛΛ, N)
1
2QQQT

so that ΦΦΦTΦΦΦ = QQQThresh(ΛΛΛ, N)QQQT .

Note that at this point, the dictionary is not guaranteed to have a mutual coherence

bounded by µ0. The intersection between the sets F and Kµ0 may be empty for certain

values of N,K and µ0 (in fact, it is empty whenever µ0 is lower than the bound (5.6)).

The iterative projections algorithm is only guaranteed to converge to an accumulation

point [116] consisting of a pair of matrices F̄FF ∈ F and K̄KK ∈ Kµ0 that are not necessarily

located at a minimal distance between the constraint sets. However, we found in our

numerical experiments that the algorithm works well for values of µ0 close to the lower

bound (5.6), providing a dictionaries with constrained mutual coherence.

Algorithm 9 summarises the steps of the ip method.
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Algorithm 9: Iterative projections (ip)
Input: ΦΦΦ, µ0, I
Output: ΦΦΦ?

// Initialisation
1 i← 1;
// Calculate Gram matrix

2 GGG← ΦΦΦTΦΦΦ;
3 while i ≤ I or µ(ΦΦΦ) ≤ µ0 do

// Project Gram onto the structural constraint set
4 diag(GGG)← 111;
5 GGG← Limit(GGG,µ0);

// Project Gram onto the spectral constraint set
6 [QQQ,ΛΛΛ]← evd(GGG);
7 ΛΛΛ← Thresh(ΛΛΛ, N);
8 GGG← QQQΛΛΛQQQT ;
9 i← i+ 1;

10 end
// Obtain incoherent dictionary from its Gram matrix

11 ΦΦΦ? ← ΛΛΛ
1
2QQQT ;

5.2.2 Method of optimal coherence-constrained directions (mocod)

Ramirez et al. [87] proposed a dictionary learning algorithm inspired by the method

of optimal directions (mod) [32] in which the sparse approximation is performed using a

novel penalty term derived from a probabilistic formulation of the sparse model (5.1), and

the dictionary update step is modified in order to promote mutually incoherent atoms.

In particular, the incoherence objective is pursued by introducing in the dictionary

learning optimization the term ||GGG− III||F where each element gij of the Gram matrix

GGG
def
= ΦΦΦTΦΦΦ contains the inner product between the i-th and the j-th atom of the dic-

tionary. This expression measures the Frobenius distance between the Gram matrix of

the dictionary and the identity matrix, which corresponds to the Gram matrix of an

orthonormal dictionary whose mutual coherence is zero.

Overall, the optimization presented in [87] reads as:

(ΦΦΦ?, XXX?) = arg min
ΦΦΦ,XXX

||YYY − ΦΦΦXXX||2F+τ
∑
m,n

log(|xkm|+β)+ζ ||GGG− III||2F+η

K∑
k=1

(
||φφφk||22 − 1

)2
.

(5.9)

In this unconstrained minimisation, the first term represents the modelling error, while

the desired properties of dictionary and representation coefficients are enforced through

penalty terms. In particular, the penalty factor multiplied by τ promotes sparsity of
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the representation coefficients, while the factors multiplied by ζ and η promote mutual

incoherence and unit norm of the dictionary atoms respectively.

In order to solve this optimization, the sparse approximation is followed by a mocod

dictionary update step, obtained by setting to zero the derivative of the above cost func-

tion with respect to the dictionary ΦΦΦ. The resulting update can be written as [87]:

ΦΦΦ′ =
(
YYY XXXT + 2(ζ + η)ΦΦΦ

) [
XXXXXXT + 2ζGGG+ 2η diag(GGG)

]−1
.

Note that setting to zero the penalty factors ζ and η results in the mod update [32].

5.2.3 Incoherent dictionary design and dictionary preconditioning

Yaghoobi et al. [121] proposed a dictionary design method for coding of audio signals

where the parameters of gammatone atoms [104] are optimized in order to minimise

the mutual coherence of the resulting dictionary. In this work, the authors are inspired

by the iterative projections method described in Section 5.2.1 (that also is at the core

of one of the ipr algorithm described in Section 5.4), and show through experimental

results the advantages of using an incoherent dictionary for sparse recovery and sparse

approximation. Despite the similarity in the motivation and in part of the optimization

technique between the work by Yaghoobi et al. and the algorithm that will be proposed

in Section 5.4, dictionary design is substantially different from dictionary learning: while

the former involves optimizing the parameters of a set of parametric functions that are

designed to be suited for a given class of signals, the latter is adapted to an arbitrary

set of observed variables and can therefore be extended to classes of signals for which

an efficient dictionary is not known. Moreover, in the case of dictionary design there is

not a mixed objective consisting of good approximation and mutual incoherence because

the former is implicitly assumed given the nature of the parametric functions and of the

signals to be analysed. For this reason the experimental comparisons in the reminder of

this chapter are limited to dictionary learning algorithms.

Apart from incoherent dictionary learning or design, Schnass and Vandergheynst [94]

presented a method for dictionary preconditioning that aims at tackling the problem of

coherent dictionaries for sparse recovery. In this work, a sensing matrix is multiplied

by a coherent dictionary in order to obtain an equivalent sparse recovery problem with
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low cross-cumulative coherence (i.e. the cumulative coherence between atoms of the

sensing matrix and atoms of the dictionary), and improve the performance of greedy

sparse approximation algorithms. Although related to the present work, we choose not

to further detail or benchmark this algorithm as it does not involve dictionary learning.

5.3 Incoherent k-svd

The work presented in this Section resulted from a collaboration with Dr. Boris Mailhé,

a post-doctoral research assistant at the Centre for Digital Music at Queen Mary Univer-

sity of London. The incoherent k-svd algorithm appeared in a joint publication at the

International Conference on Acoustics, Speech and Signal Processing (icassp) [62].

Although there has been constant communication with my co-author while working

on this project, my main contribution consisted in the design and implementation of the

experimental section that is aimed at evaluating the incoherent k-svd algorithm. The

ideation and implementation of the method itself is to be attributed to Boris Mailhé.

Both the method and the experimental results presented in Section 5.4 have been

designed and implemented by myself.

5.3.1 Dictionary de-correlation

Apart from a penalised optimization such as that described in Section 5.2.2, an alternative

strategy for learning incoherent dictionaries can be pursued by including a de-correlation

step into the iterative scheme illustrated in Section 2.6. At each iteration of the dictionary

learning algorithm consisting of sparse approximation followed by dictionary update, we

add the following optimization problem:

ΦΦΦ? = arg min
ΦΦΦ∈D

C(ΦΦΦ) (5.10)

such that µ(ΦΦΦ) ≤ µ0

where the objective C(ΦΦΦ) is a cost function that expresses the approximation quality of

the dictionary and µ0 is a fixed target mutual coherence level. Therefore, an incoherent

dictionary learning algorithm realized with a de-correlation step starts from an initial

ΦΦΦ(0) and proceeds by solving the following sub-problems at each iteration t:
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Sparse coding : given a fixed dictionary ΦΦΦ(t), a sparse approximation XXX(t) is optimized

using any suitable algorithm.

Dictionary update : given a fixed matrix of approximation coefficients XXX(t), a new

(possibly mutually coherent) dictionary Φ̃ΦΦ
(t+1)

is updated in order to improve the

objective of the dictionary learning optimization, subject to optional constraints.

Dictionary de-correlation : given XXX(t) and Φ̃ΦΦ
t+1

, a de-correlated dictionary ΦΦΦ(t+1) is

optimized according to (5.10).

The mutual coherence constraint present in (5.10) is non-convex, as shown in Ap-

pendix A.1. Therefore a gradient descent optimization of (5.10) is not guaranteed to

keep the solution into the constraint set.

5.3.2 The ink-svd algorithm

In the ink-svd algorithm, the de-correlation problem consists in finding the closest dic-

tionary to a given dictionary (in a Frobenius norm sense), subject to a mutual coherence

constraint. The optimization (5.10) can be explicitly written as:

ΦΦΦ? = arg min
ΦΦΦ∈D

∣∣∣∣∣∣Φ̃ΦΦ− ΦΦΦ
∣∣∣∣∣∣

F
(5.11)

such that µ(ΦΦΦ) ≤ µ0

where Φ̃ΦΦ is the matrix resulting from the dictionary update stage of the learning algorithm.

In order to devise an algorithm to tackle this optimization, let us first consider a simple

example consisting in a dictionary formed by only two atoms.

De-correlation of two atoms

Let the initial dictionary Φ̃ΦΦ be composed of only two atoms φ̃φφ1 and φ̃φφ2 of unit norm with

a correlation higher than µ0. In this simple case we can directly express the optimum of

Problem (5.11).

Let us assume without loss of generality that
〈
φ̃φφ1, φ̃φφ2

〉
> 0 (the opposite case can be

derived by considering the pair (φ̃φφ1,−φ̃φφ2)) and let θ̃ be the half-angle between φ̃φφ1 and φ̃φφ2.

Problem (5.11) only has two degrees of freedom because of the normalization constraint.

We choose the half-angle θ? between φφφ?1 and φφφ?2 and the angle α between the directions of
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Figure 5.1: De-correlation of two atoms. For the optimal de-correlation we have α = 0
and the pair (φφφ?1, φφφ

?
2) would be symmetric with respect to uuu1.

the sums φ̃φφ1 + φ̃φφ2 and φφφ?1 +φφφ?2 for parameters as shown on Figure 5.1. In the orthonormal

basis

(uuu1, uuu2) =

 φ̃φφ1 + φ̃φφ2∣∣∣∣∣∣φ̃φφ1 + φ̃φφ2

∣∣∣∣∣∣
2

,
φ̃φφ1 − φ̃φφ2∣∣∣∣∣∣φ̃φφ1 − φ̃φφ2

∣∣∣∣∣∣
2

 (5.12)

all the considered vectors have a simple expression:

Φ̃ΦΦ =
(
φ̃φφ1, φ̃φφ2

)
=

cos θ̃ cos θ̃

sin θ̃ − sin θ̃

 (5.13)

ΦΦΦ? = (φφφ?1, φφφ
?
2) =

cos(α+ θ?) cos(α− θ?)

sin(α+ θ?) sin(α− θ?)

 . (5.14)

We can then express the mutual coherence constraint as:

|〈φφφ?1, φφφ?2〉| = |cos 2θ?| ≤ µ0 (5.15)
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and the objective function as:

∣∣∣∣∣∣φ̃φφ1 − φφφ?1
∣∣∣∣∣∣2

2
= 2− 2 cos(θ̃ − θ? − α)∣∣∣∣∣∣φ̃φφ2 − φφφ?2

∣∣∣∣∣∣2
2

= 2− 2 cos(θ̃ − θ? + α)∣∣∣∣∣∣Φ̃ΦΦ− ΦΦΦ?
∣∣∣∣∣∣2

F
= 4− 4 cos(θ̃ − θ?) cos(α). (5.16)

If we assume without loss of generality that cos(θ̃− θ?) > 0, then the cost function (5.16)

is minimal for α = 0 and θ? as close to θ̃ as possible: Problem (5.11) is solved by rotating

φφφ1 and φφφ2 symmetrically with respect to their mean until their correlation reaches µ0.

The angle θ? is the angle that reaches the equality in Equation (5.15):

cos 2θ? = µ0 (5.17)

θ? =
arccosµ0

2
(5.18)

and the dictionary Φ? is given by equation (5.14).

General case

In the general case, the previous method provides the steepest descent direction if only

one pair of atoms reaches the maximal correlation. However, the coherence function

is non-convex with respect to ΦΦΦ so following a steepest descent does not guarantee to

find a global minimum. Instead of using a descent method, we chose to de-correlate the

dictionary by iterating de-correlations of pairs of atoms. The core idea is simple: as

long as there are any atoms with correlation higher than µ0, select a pair of them and

de-correlate them with the method explained in Section 5.3.2.

However, decorrelating two atoms can potentially change correlations with other

atoms in the dictionary, so finding the next pair would require to update the correla-

tions after each pair de-correlation. We speed up the process by decorrelating some pairs

in parallel. Instead of selecting one pair of atoms at a time, we partition the whole dic-

tionary into high correlation pairs (and single atoms that do not need to be modified),

decorrelate all those pairs and only then update the correlations. This is detailed on

Algorithm 10.

The partitioning detailed in Algorithm 11 is performed in a greedy way: starting with
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Algorithm 10: ink-svd decorrelation

Input: Φ̃ΦΦ, µ0

Output: ΦΦΦ?

1 while µ(Φ̃ΦΦ) > µ0 do
2 E = partition(Φ̃ΦΦ, µ0);
3 for ∀(φφφi, φφφj) ∈ E do
4 decorrelate(φφφi, φφφj);
5 end
6 end

Algorithm 11: ink-svd partition

Input: Φ̃ΦΦ, µ0

Output: E
// Initialisation

1 ΦΦΦ← Φ̃ΦΦ;
2 E ← ∅;
3 while µ(ΦΦΦ) > µ0 do
4 (i, j) = arg max

i,j

∣∣∣(ΦΦΦTΦΦΦ− III)i,j

∣∣∣;
5 ΦΦΦ← ΦΦΦ \ {φφφi, φφφj};
6 E ← E ∪ {(φφφi, φφφj)};
7 end

the whole dictionary, pairs of atoms with the highest correlation are grouped together and

removed from the set of considered atoms until there are no pairs left with correlation

higher than µ0.

5.3.3 Experimental results

We tested the ink-svd dictionary learning algorithm in order to assess if it converges to

a dictionary that exhibits bounded mutual coherence and good approximation quality.

The test signal we used is the musical excerpt music03_16kHz, a 16 kHz guitar recording

that is part of the data included in SMALLbox [21], a Matlab toolbox for testing and

benchmarking dictionary learning algorithms used in our evaluation. This contains the

code needed to reproduce the results presented here1 and will be further detailed in

Appendix B.2. A musical audio signal was chosen because previous informal experiments

resulted in k-svd learning a highly coherent dictionary for this type of data. Additional

experiments about incoherent dictionary learning that make use of different audio signals

are detailed in Section 5.5.4.
1http://small-project.eu/software-data/smallbox

http://small-project.eu/software-data/smallbox
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We divided the recording into 50% overlapping blocks of 256 samples (corresponding

to 16ms) with rectangular windows and arranged the resulting vectors as columns of the

training data matrix YYY . Then, we initialised three twice over-complete dictionaries for

sparse approximation using respectively:

• a randomly chosen subset of the training data YYY

• an over-complete dct dictionary

• an over-complete Gabor dictionary.

We run the k-svd dictionary learning algorithm for 20 iterations, allowing for 12 non-

zero coefficients in each representation (which corresponds to about 5% of active elements

if compared with the dimension of the signals N). We included the proposed ink-svd

de-correlation algorithm and compared it with the iterative projection algorithm that is

detailed in section 5.2.1, using the implementation presented in [30, p.30].

Figure 5.2 depicts the results of the experiment. The y-axis illustrates the signal-to-

noise-ratio snr achieved by the dictionary at the end of the optimization, that is defined

as:

snr(YYY ,ΦΦΦXXX) = 20 log10

||YYY ||F
||YYY − ΦΦΦXXX||F

. (5.19)

The three plots correspond to the three different dictionary initialisations. In particular,

we note that when the dictionary is initialised with random examples from the training

data, k-svd achieves a good approximation quality of about snr ≈ 24dB at the expense

of a high mutual coherence µ ≈ 0.95. On the other hand, ink-svd is able to achieve

a lower coherence µ = 0.5 while maintaining a snr> 20dB and, after this value, the

approximation quality drops linearly with the mutual coherence. The iterative projection

method (labelled as Grassmannian) achieves a correlation µ ≈ 0.45, but with a worst snr

≈ 8dB.

The other two plots corresponding to DCT and Gabor initialisations display overall a

poorer approximation quality. In these cases, Grassmannian fails to significantly decor-

relate the dictionaries and achieves a very poor snr, while ink-svd is able to decorrelate

the dictionaries up to µ = 0.2 with a small loss in approximation accuracy.
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Figure 5.2: Signal to noise ratio as a function of the coherence value for different choices
of dictionary initialisation and de-correlation functions. The levels µmax = 1 and µmin =√

(K −N)/N(K − 1) indicate the maximum and minimum coherence attainable by a
N ×K dictionary.
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5.4 Iterative projections and rotations algorithm

Both the iterative projections algorithm introduced in Section 5.2.1 and the ink-svd

algorithm described in Section 5.3.2 do not take into account the objective of dictionary

learning, that is to approximate a set of training signals using a sparse model. The

former simply aims at de-correlating a dictionary by lowering its mutual coherence to a

fixed level µ0, while the latter attempts to solve the optimization (5.11) whose objective is

to converge to an incoherent dictionary that is close (in a Frobenoius norm) to the matrix

returned by the dictionary update step of dictionary learning. This is motivated by the

assumption that dictionaries that are closer to each other are supposed to be suitable to

approximate a certain class of signals and, therefore, if solving (5.11) leads to a dictionary

with lower mutual coherence that is close to Φ̃ΦΦ, then it will be similarly well adapted to

approximate the signals in YYY .

A better strategy consists in including the dictionary learning objective (2.23) into the

dictionary de-correlation optimization (5.10) by setting C(ΦΦΦ) = ||YYY − ΦΦΦXXX||F, and overall

seeking a solution to the following optimization problem:

ΦΦΦ? = arg min
ΦΦΦ∈D

||YYY − ΦΦΦXXX||F (5.20)

such that µ(ΦΦΦ) ≤ µ0

||xxxm||0 ≤ S ∀m

For this purpose, after performing a sparse approximation that satisfies the sparsity con-

straint and a dictionary update, we employ a dictionary de-correlation that is based on

the iterative projections algorithm which consists of two steps:

I - Dictionary de-correlation: obtained through an iterative projection algorithm, this

step ensures that the mutual coherence constraint is satisfied.

II - Dictionary rotation: this step optimizes the dictionary with respect to the objective

function (5.20) without affecting its mutual coherence.

5.4.1 Dictionary rotation

The iterative projection algorithm can be used to de-correlate a dictionary starting from

the matrix returned by the dictionary update step. However, we found that optimizing
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the Gram matrix with the only objective being reducing the mutual coherence means that

the decomposition (5.8) is likely to lead to an updated dictionary that exhibits a poor

approximation performance, as shown by the numerical experiments presented in Section

5.3.3. To resolve this issue, we employ a dictionary rotation2 which does not modify the

mutual coherence and that is optimized for the dictionary learning objective (5.20).

The key observation to be made is that the decomposition (5.8) is not unique, since

for any orthonormal matrix WWW such that WWW TWWW = III we obtain:

(WWWΦΦΦ)T (WWWΦΦΦ) = ΦΦΦTWWW TWWWΦΦΦ = ΦΦΦTΦΦΦ = GGG.

Therefore, it is possible to apply an orthonormal matrix to the dictionary obtained from

the iterative projection algorithm in order to minimise the residual norm expressed in

(5.20). The resulting optimization problem can be expressed as follows:

WWW ? = arg min
WWW∈O(N)

1

2
||YYY −WWWΦΦΦXXX||2F (5.21)

where O(N) is the set of N ×N orthonormal matrices. After tackling the optimization

(5.21) with a Lie group method detailed in Appendix D, I found that a closed-form

solution to this problem can be traced back to an algorithm proposed by Horn et al. [48]

to align sets of points measured in different coordinate systems for stereo photogrammetry

and robotics applications.

Let us define ỸYY def
= ΦΦΦXXX as the matrix containing the sparse approximation of the

observed data. The minimisation problem (5.21) can be expressed using the identity

||AAA||2F = Tr(AAATAAA) as:

WWW ? = arg min
WWW∈O(N)

Tr
(
YYY TYYY

)
+ Tr

(
ỸYY
T
ỸYY
)
− 2 Tr

(
YYY TWWWỸYY

)
.

Since the first two terms do not depend on WWW and since for every pair of matrices AAA and

BBB, Tr(AAABBB) = Tr(BBBAAA), we can instead consider the maximisation problem:

WWW ? = arg max
WWW∈O(N)

Tr
(
WWWỸYY YYY T

)
. (5.22)

2Rotation is from now on employed with an abuse of terminology, referring to any linear
transformation obtained through an orthonormal matrix that include flips and rotations.
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The notation CCC def
= ỸYY YYY T indicates the sample covariance between the observed signals

and their sparse approximations, which can be decomposed using an svd as CCC = UUUΣΣΣVVV T .

The objective function in (5.22) can be written as:

Tr
(
WWWUUUΣΣΣVVV T

)
= Tr

(
ΣΣΣVVV TWWWUUU

)
= Tr (ΣΣΣQQQ)

where the matrix QQQ def
= VVV TWWWUUU is orthonormal as it results from the product of three

orthonormal matrices. Considering that ΣΣΣ is diagonal, the following holds:

Tr (ΣΣΣQQQ) =

N∑
n=1

σnqnn.

The singular values σn are non-negative by definition, and the entries qnn are upper-

bounded by 1 because the norm of the vectors qqqn is unitary. Therefore, the value q?nn = 1

maximises the above equation, and implies QQQ? = III. This can be obtained by setting:

WWW ? = VVV UUUT .

5.4.2 Optimisation algorithm

The whole dictionary decorrelation could be performed only once after dictionary learning,

but we found in our numerical experiments that this strategy led to poor approximation

results, as exposed in Section 5.5.5. Instead, we choose to rotate the dictionary at every

step of the iterative projections that are performed after every dictionary update. This

strategy leads to an algorithm that adapts the dictionary to the approximation objective

(5.20) at each step of the de-correlation.

Considering the dictionary decorrelation alone, we initialise the algorithm with the

dictionary ΦΦΦ(0) returned by the update step of dictionary learning and perform at each

iteration t the following steps summarised in Algorithm 12:

I - Compute the Gram matrix: GGG(t) = ΦΦΦ(t)TΦΦΦ(t).

II - Calculate the projection onto the structural constraint set: KKK(t) = PKµ0

(
GGG(t)

)
.

III - Factorise KKK(t) as in (5.8) including thresholding its eigenvalues. This returns an

updated dictionary ΦΦΦ(t+1) whose Gram matrix GGG(t+1) = PF (KKK(t)) is projected onto
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the spectral constraint set.

IV - Rotate the dictionary using an optimal orthonormal transform by updating ΦΦΦ(t+1) =

WWW ?ΦΦΦ(t+1).

Note that the rotation step does not modify the Gram matrix of the dictionary because

this does not change the pair-wise correlations between atoms, and therefore is irrelevant

for the purpose of the convergence of the iterative projections algorithm to a dictionary

with bounded coherence. The convergence analysis of the general dictionary learning

optimization described by (5.20) is very difficult and is outside the scope of the present

work. The interested reader can find insights on related problems by reading the work of

Aaron et al. [5], Gribonval and Schnass [46] or Mailhé and Plumbley [64].

Nonetheless, it is worth highlighting the fact that the rotation step finds the optimal

solution of the problem (5.21), and therefore is guaranteed to improve (or leave un-

changed) the cost function (5.20) without violating its constraints set. This is sufficient

to say that adding a rotation step to the dictionary de-correlation algorithm improves

the approximation quality of dictionary learning if compared to the iterative projections

algorithm alone.

The ipr algorithm includes the calculation of the optimal rotation matrix described

in 5.4.1 which replaces our early formulation based on a Lie group method. As well as

offering a closed-form solution to a problem that was previously tackled with an iterative

method, this substantially improved the computational time required by the algorithm

and allowed for a simpler analysis of its complexity.

Since M ≥ K ≥ N , the running time of the algorithm per iteration is dominated (in

order) by the following steps:

• Computation of the evd of the Gram matrix GGG requiring O(K3) operations.

• Computation of the covariance matrix CCC requiring O(N2M) operations.

• Computation of the svd of the covariance matrix CCC requiring O(N3) operations.

In the numerical experiments presented in Section 5.5, we observed that these three op-

erations accounted for around 90% of the computational time required by every iteration

of the ipr algorithm, whose order of magnitude is comparable to the one relative to the

time required by running a dictionary update step using k-svd or mod.



5.5. Numerical Experiments 135

Algorithm 12: Iterative projections and rotations (ipr)
Input: YYY ,ΦΦΦ, XXX,µ0, I
Output: ΦΦΦ?

// Initialisation
1 i← 1;
2 while i ≤ I and µ(ΦΦΦ) > µ0 do

// Calculate Gram matrix
3 GGG← ΦΦΦTΦΦΦ;

// Project ont structural constraint set
4 diag(GGG)← 111;
5 GGG← Limit(GGG,µ0);

// Factorise Gram matrix and project onto spectral constraint set
6 [QQQ,ΛΛΛ]← evd(GGG);
7 ΛΛΛ← Thresh(ΛΛΛ, N);
8 ΦΦΦ← ΛΛΛ1/2QQQT ;

// Rotate dictionary
9 CCC ← YYY (ΦΦΦXXX)T ;

10 [UUU,ΣΣΣ, VVV ]← svd(CCC);
11 WWW ← VVV UUUT ;
12 ΦΦΦ←WWWΦΦΦ;
13 i← i+ 1;
14 end

5.5 Numerical Experiments

We tested the proposed ipr decorrelation method with the k-svd dictionary learning

algorithm in order to assess if it converges to a dictionary that exhibits bounded mutual

coherence and good approximation quality. The test signal we used is the same employed

in the experiments described in Section 5.3.3.

We divided the recording into 50% overlapping blocks of 256 samples (corresponding

to 16ms) with rectangular windows and arranged the resulting time-domain signals as

columns of the training data matrix YYY . Then, we initialised a twice over-complete dic-

tionary for sparse approximation using either a randomly chosen subset of the training

data or an over-complete Gabor dictionary. We run the dictionary learning algorithms

for 50 iterations, allowing for S = 12 non-zero coefficients in each representation (which

corresponds to about 5% of active elements if compared with the dimension of the audio

frames N). When testing the algorithm proposed in [87], we used omp as a sparse approx-

imation step setting the stopping criterion to the maximum number of active atoms S and

mocod for the dictionary update. ink-svd and ipr were implemented using omp for the

sparse approximation step and k-svd for the dictionary update. Table 5.1 summarises
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Algorithm (Reference) Sparse Approximation Dictionary Update Dictionary Decorrelation
Sapiro et al. [87] omp mocod -
Mailhé et al. [62] omp k-svd ink-svd
Proposed method omp k-svd ipr

Table 5.1: Algorithms for learning incoherent dictionaries

the tested algorithms.

5.5.1 mocod updates

The unconstrained optimization illustrated in (5.9) relies on the penalty factors ζ and η in

order to promote incoherence of the dictionary and unit norm of the atoms respectively. To

evaluate the mocod dictionary update for the purpose of incoherent dictionary learning,

we tested different values of these factors on a logarithmic scale between 10−2 and 104,

assessing the resulting mutual coherence and signal-to-noise ratio (snr) achieved by the

optimized dictionary, the latter being defined as:

snr(YYY ,ΦΦΦXXX) = 20 log10

||YYY ||F
||YYY − ΦΦΦXXX||F

.

Figure 5.3 depicts the results of our experiment using respectively randomly chosen

data from the training set (which is the default initialisation of the original implementation

of the k-svd algorithm) and a twice over-complete Gabor dictionary for the initialisation.

We run the experiment 20 times to increase the significance of our results whenever

the initialisation involved choosing a random subset of the training data as the initial

dictionary.

When ζ → 0 and η → ∞, the optimization (5.9) converges to a standard dictionary

learning where the atoms are not forced to be incoherent, but are constrained to have

unit norm. This case corresponds to the left corner of the surface plots in Figure 5.3.

We can note that a data initialisation produces a highly coherent dictionary with the

best approximation quality, while a Gabor initialisation results in a lower coherence at

the expense of a worse snr. Continuing our analysis in the case of data initialisation,

keeping η →∞ and increasing the coherence penalty factor ζ results in a dictionary with

lower mutual coherence, but also in a worse approximation quality. This behaviour is

further illustrated by the mutual coherence-reconstruction scatter plot, which depicts µ
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Figure 5.3: mutual coherence and reconstruction error achieved using the mocod dictio-
nary update and randomly chosen samples from the training set as the initial dictionary.
The surf plots show the mutual coherence and snr of the sparse approximation as a
function of the two regularisation parameters η and ζ in equation (5.9). In the scatter
plots, the points correspond to dictionaries obtained at different trials and with different
values of the parameters η and ζ. The levels µmax = 1 and µmin =

√
(K −N)/N(K − 1)

indicate the maximum and minimum coherence attainable by a N ×K dictionary.

against snr of the sparse approximation for every learned dictionary and exhibits a clear

(although highly variable) trend. In the case of Gabor initialisation, on the other hand,
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Figure 5.3: (continued) mutual coherence and reconstruction error achieved using the
mocod dictionary update and a Gabor frame as the initial dictionary. The surf plots
show the mutual coherence and snr of the sparse approximation as a function of the
two regularisation parameters η and ζ in equation (5.9). In the scatter plots, the points
correspond to dictionaries obtained at different trials and with different values of the
parameters η and ζ. The levels µmax = 1 and µmin =

√
(K −N)/N(K − 1) indicate the

maximum and minimum coherence attainable by a N ×K dictionary.

it seems that the parameter ζ does not affect mutual coherence and reconstruction error

for high values of η, while decreasing the penalty factor η has generally a negative effect
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on both µ and snr of the learned dictionaries.

To understand the poor performance of the mocod algorithm, especially when ini-

tialised with a Gabor dictionary, we inspected µ and snr of the sparse approximation at

every iteration, along with the percentage change of the dictionary with respect to the

Frobenious norm, that is defined as:

100

∣∣∣∣∣∣ΦΦΦ(t+1) − ΦΦΦ(t)
∣∣∣∣∣∣

F∣∣∣∣∣∣ΦΦΦ(t)
∣∣∣∣∣∣

F

(5.23)

were ΦΦΦ(t) indicates the dictionary at iteration t.

The main observation that underlies the poor performance of mocod is that the

percentage change of the dictionary does not converge to zero and, therefore, the algorithm

does not converge to a fixed point of the objective function (5.9). Whenever η is small

(that is, when the dictionary atoms are not forced to be unit norm), the optimization is

very unstable and we often observed that the mutual coherence ends being greater than

the one of the initial dictionary, especially for low values of ζ.

When η is large, the algorithm still does not converge to a fixed point of the objective

function, but the mutual coherence and snr are much more stable. In this case different

initialisations lead to different behaviours: in the case of data initialisation, the mutual

coherence drops and the snr oscillates, while in the case of Gabor initialisation, the snr

does not change significantly and the mutual coherence slightly increases. Moreover, the

minimum mutual coherence achieved by mocod in the results shown is never smaller

than µ = 0.3, and further experiments with penalisation terms η = ζ = 1010 confirmed

that the algorithm is unable to reach lower mutual coherence levels.

Unlike mocod, ink-svd and the proposed ipr algorithm allow us to set a target

coherence µ0 and to run the dictionary decorrelation iteratively until it is achieved.

5.5.2 ipr and ink-svd

After experimenting with different combinations of dictionary learning and decorrelation

iteration numbers, we found that consistently good results can be achieved by performing

50 iterations of the k-svd dictionary learning combined with 5 iterations of the relevant

decorrelation method. This also led to comparable running times, as will be discussed
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Figure 5.4: Mutual coherence and reconstruction error achieved using the proposed
iterative projections and rotations (ipr) algorithm and ink-svd dictionary decorrelation,
initialised with (a) randomly chosen samples from the training set as the initial dictionary
or (b) a twice over-complete Gabor dictionary. The error bars in (a) represent the standard
deviation resulting from 10 independent trials of the experiment and indicate that the
results are consistent, regardless the random element introduced in the initialisation.

in Section 5.5.3. We set the target mutual coherence in logarithmically spaced intervals

from µ = 0.05 to µ = 1 and compared the two algorithms by evaluating the achieved

snr. When applying the methods to an initial dictionary formed by randomly selected

vectors from the training set, we run the experiment for 10 independent trials to obtain

more significant results.

Figure 5.4 depicts the results of our experiment. As can be noted, both algorithms

succeed in matching the target coherence levels for both initialisations except for the
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lower end on the left side of the plots, with ipr performing slightly better in achieving

the smallest mutual coherence in the case of data initialisation, reaching a value of around

0.055 compared to the 0.06 of ink-svd. Whenever the target coherence µ0 is bigger than

the coherence level achieved without dictionary decorrelation, the two methods simply act

as a k-svd without any mutual coherence constraint. In the case of data initialisation, we

can observe that ink-svd obtains a good snr for mutual coherence values greater than

µ = 0.3, after that its performance degrades substantially. On the contrary, the proposed

ipr does not perform as well for high coherence values, but does not significantly degrade

from µ = 0.3 to µ = 0.05.

The results for Gabor initialisation, on the other hand, favour the proposed algorithm

showing a better snr and no significant approximation degradation for all the target

coherence values.

5.5.3 Running times

Figure 5.5 shows the running times of the ipr and ink-svd algorithms for different coher-

ence levels, tested on a iMac with a 3.06GHz Intel Core 2 Duo processor running Matlab

R2011a and the cputime function. The ipr values are not dependant on the coherence

level and are just below 100 seconds, whereas ink-svd takes longer to compute less co-

herent dictionaries. This is because ink-svd acts in a greedy fashion by decorrelating

pair of atoms until the target mutual coherence is reached (or until a maximum number

of iterations) and therefore the number of pairs of atoms to decorrelate increases for low

values of the target coherence.

The time required to compute a non de-correlated dictionary can be found in the right

end of the plots and is around 20 seconds, which is also consistent with the average time

of 23 seconds needed by the mocod algorithm. This means that the cost of ipr is about

5 times the cost of a standard k-svd for the problem sizes considered in our experiments.

5.5.4 Sparse approximation results

The relation between the coherence of a dictionary and its approximation properties for

different classes of signals is a complex topic. In this Section a formal convergence analysis

of the tested dictionary learning algorithms is not attempted as this is outside the scope

of the present work. However, I will present some experimental results which suggest
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Figure 5.5: Running times of ipr and ink-svd for different mutual coherence levels and
dictionaries initialised with (a) randomly chosen samples from the training set or (b) a
twice over-complete Gabor dictionary. The error bars indicate the standard deviation
resulting from 10 independent trials of the experiments.

that incoherent dictionaries are indeed useful for sparse approximation, also pointing the

interested reader to other related work that might fuel further research in this area.

The trade-off between mutual coherence and snr of the sparse approximation visible

in Figures 5.3d, 5.4a and 5.4b is consistent with the fact that the different decorrelation

methods aim at solving penalised or constrained optimization problems. If we compare

the general dictionary learning problem introduced in Section 2.6 to the incoherent for-

mulations presented in this thesis, the penalty factors used to promote incoherence in

the unconstrained optimization (5.9) and the feasible set consisting of dictionaries with

bounded mutual coherence in the constrained problem (5.20) suggest that an incoher-
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ent dictionary is expected to have a worse approximation performance if compared to

a coherent one. On the other hand, dictionary learning is a non-convex optimization

problem that to the best of our knowledge lacks strong and general convergence results,

relying instead on the ability of practical algorithms to converge to local minima of the

optimization cost function.

Additional assumptions regarding the intrinsic properties of a learned dictionary can

be promoted through penalised or constrained problems in order to steer the optimiza-

tion towards a local minimum. This is the approach followed by Dai et al. [20], who

devised a penalised optimization to learn dictionaries where the condition number of

groups of atoms employed in the sparse approximation of the signals in the training set is

low. In cases where a standard k-svd would converge to a dictionary with ill-posed sub-

dictionaries, the authors documented the superior performance of their proposed method

for the sparse approximation of the signals in the training set. A mutually incoherent dic-

tionary learned through the ipr algorithm is designed to approach the spectral properties

of an orthonormal transform, and therefore it is reasonable to expect the condition num-

ber of its sub-dictionaries to be low. However, a more thorough investigation is necessary

to fully support this claim.

For the purpose of the experimental evaluation of the ipr algorithm, we tested whether

the mutual coherence versus snr trade-off is consistent over different training and testing

signals. We considered the following test material:

• music03_16kHz, a 5 seconds guitar recording distributed as part of the SMALLbox

that was used to train the dictionaries in the experiments presented so far.

• track n.6 of the jazz section of the rwc music database3, which is a 30 seconds

electric guitar recording.

• track n.1 of the jazz section of the rwc music database, which is a 30 seconds

acoustic piano recording.

After running the ipr dictionary learning algorithm on the guitar recording track n.6

using the data initialisation, the same problem parameters specified in Section 5.5 and

the target mutual coherence levels specified in Section 5.5.2, we employed the learned

3available at http://staff.aist.go.jp/m.goto/RWC-MDB/
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dictionaries to approximate the two remaining test signals, using the omp algorithm and

5% of active atoms, as in the learning phase.
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Figure 5.6: Mutual coherence versus snr of the sparse approximation using a dictionary
learned from track n.6 of the jazz section of the rwc database using data initialisation,
omp and 5% of active atoms in the sparse coding step of dictionary learning. In the
testing phase, omp with 5% of active atoms was also used to approximate signals from
the training set, from music03_16kHz that is a different guitar recording and from track
n.1 of the jazz section of the rwc database that is a piano recording.

Figure 5.6 displays the results of the experiment. If we compare these values to the

ones presented in Figure 5.4a, we can note that the trade-off between mutual coherence

and snr is no longer present, and that the approximation of the training set (which in

the case of the training guitar is inversely proportional to the residual norm in the cost

function (5.20)) is around 12 and 13 dB for the two guitar signals and around 10 dB

for the piano signal. The absence of a steep peak in correspondence with a dictionary

with high mutual coherence and the overall worse approximation performance can be

explained by the fact that music03_16kHz is a relatively short signal (5 seconds), that as

a consequence when learning a dictionary from this signal the number of training vectors

compared to the size of the dictionary is relatively small and that we observed a few

signals that could be approximated very well using only one atom in the dictionary. This

does not happen when learning a dictionary from a longer training set obtained using

track n.6 (a 30 seconds signals) and results in overall worse but more consistent results.

Figure 5.6 shows that essentially a dictionary with a low mutual coherence is as good as

a coherent dictionary when used to approximate the training set and the guitar recording
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used as one of the testing sets. There is however a slight improvement in the snr obtained

when approximating the piano signal, which means that in this case a dictionary with a

low mutual coherence better generalises its approximation capabilities to a different class

of signals.

This insight is further confirmed by the data presented in Figure 5.7, which depict

the percentage change in the snr of the sparse approximation between dictionaries with

different mutual coherences and dictionaries returned by the baseline k-svd algorithm

that does not enforce any mutual coherence constraint. The percentage improvement

between a baseline value b and a test data b′ is defined as 100 b
′−b
b . In the case considered

here, let SNR (YYY ,ΦΦΦk-svdXXXk-svd) be the signal to noise ratio resulting form the dictionary

and coefficients matrix returned by the k-svd algorithm. The values shown in Figure 5.7

are defined as

100
SNR (YYY ,ΦΦΦXXX)− SNR (YYY ,ΦΦΦk-svdXXXk-svd)

SNR (YYY ,ΦΦΦk-svdXXXk-svd)
(5.24)

and represent the relative improvement of the snr of the sparse approximation that can

be achieved by using incoherent dictionaries relative to the baseline. This is in turn a

function of the approximation error ||YYY − ΦΦΦXXX||F that reaches infinity in the case of perfect

reconstruction and monotonically decreases dropping below zero when the approximation

error resulting from incoherent dictionaries exceeds the baseline error resulting from the k-

svd algorithm. This measure was chosen instead of a simple comparison of approximation

errors because being based on snr values it is independent from the norm of the signal

to be analysed. Moreover, by comparing different values of snr, it is independent from

the absolute value of the baseline snr.

Figure 5.7 reveals that, when learning an incoherent dictionary using a given number of

active elements during the sparse coding step, a substantial improvement can be obtained

over coherent dictionaries when approximating signals using a larger number of active

atoms (in this case either 10% or 20% compared to the dimension of the training signals

N). This improvement in the lower end of mutual coherence values ranged from 10% to

27% in Figure 5.7(a) depending on the signal to be approximated. It is more significative

in the case corresponding to the approximation of piano signals through a dictionary

learned on guitar signals, suggesting that the mutual coherence constraints improves the

generalisation of the approximation performance.
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Figure 5.7: Mutual coherence versus percentage change in the snr of the sparse approxi-
mation using a dictionary learned from track n.6 of the jazz section of the rwc database
using omp and 5% of active atoms in the sparse coding step of dictionary learning. In
the testing phase, (a) omp or (b) mp with 10% or 20% of active atoms were used to
approximate signals from the training set, from music03_16kHz that is a different guitar
recording and from track n.1 of the jazz section of the rwc database that is a piano
recording.
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Moreover, consistent and more significant results can be obtained if the sparse ap-

proximation is performed using the mp algorithm, as shown in Figure 5.7(b). In this case,

the percentage improvement over a baseline coherent dictionary reached values over 70%.

It is worth noting that in this last example, the labels mp 10% and mp 20% refer to the

iterations of the sparse approximation algorithm that do not necessarily coincide to the

number of active atoms employed in the approximation given that mp allows for atoms

to be selected multiple times.

5.5.5 Additional experiments

ipr as a post-processing step

To analyse wether the dictionary decorrelation could be performed only once after running

an unconstrained dictionary learning algorithm, ipr was tested after running k-svd as

a post-processing step. The experiment parameters were the same as those described in

Section 5.5. The following two strategies were employed:

• Perform the de-correlation only once, starting from the dictionary learned by k-svd

and setting the coherence parameter in linearly spaced intervals of 0.1 increment in

the range µ = [0.1, 1].

• Perform the de-correlation iteratively reducing the mutual coherence from the value

of the learned dictionary to µ = 0.1 in steps of 0.1, starting each de-correlation with

the dictionary returned by the previous step.

Figure 5.8 depicts the results obtained with the latter strategy which led to a slightly

better outcome compared to the former. The results, however, are far from the ones

achieved by including the de-correlation within the dictionary learning algorithm. The

lower graph also shows that this approach is unable to reach the target coherence levels

in the case of Gabor initialisation.

5.6 Summary and topics for further research

In this chapter we introduced the incoherent dictionary learning problem that consists in

learning a dictionary that is both well adapted to a set of training signals and mutually

incoherent. The motivation of learning incoherent dictionaries comes in part from theo-

retical results that show how a low mutual coherence is a sufficient condition for proving
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Figure 5.8: snr of the sparse approximation obtained by using ipr as a post-processing
step after learning a coherent dictionary with k-svd using (a) data and (b) Gabor dic-
tionary initialisation.

the success of sparse recovery algorithms, in part from experimental results regarding

sparse approximations and in part from intuitions about several application areas where

incoherent dictionaries might prove a superior performance.

The iterative projection algorithm and the method of coherence constrained directions

have been detailed as previous attempt to design or learn incoherent dictionaries. A dic-

tionary de-correlation step has been proposed as an additional sub-problem of dictionary

learning after the dictionary update stage, and two novel algorithms, namely the incoher-

ent k-svd and the iterative projections and rotations method, have been introduced to

solve it.

The mixed objective of low mutual coherence and high approximation quality achieved

by the learned dictionaries has been assessed through numerical experiments on audio sig-
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nals. Unlike ip and mocod, the proposed in-ksvd and ipr proved to be able to achieve

very low mutual coherence levels, close to the lower bound that has been derived in the

context of frame theory. ipr in particular also achieved a consistently high snr of the

sparse approximation regardless the level of mutual coherence, and was found to be faster

than ink-svd, making its performance superior overall. Additional numerical experi-

ments on different audio signals demonstrated how incoherent dictionaries are desirable

for sparse approximation whenever the number of active atoms used in the testing phase

is larger than the number of active atoms employed during the learning phase. This

suggests better generalisation properties of incoherent dictionaries.

Exploring the applications of the proposed work is one of the main objectives for future

investigation. Incoherent dictionary learning can be applied to coding technologies, both

for audio and for other types of signals that are amenable to sparse approximations. In

this context, being able to control the mutual coherence of a dictionary can be used as a

proxy for setting the generalisation capability of the atoms. Incoherent dictionaries can

be thus employed whenever the training signals available for learning are a subset of a

class of functions expected to exhibit a larger variance or to span a larger subspace.

Supervised problems can also benefit from the proposed algorithm in the context of

dictionary learning for classification or morphological component analysis. ipr acts on the

Gram matrix of the dictionary by thresholding the correlation between different atoms.

This approach could be adapted to de-correlate only certain subsets of the dictionary that

correspond to different morphological components or sources so to have sub-dictionaries

that are constrained to have a low cross-coherence.

I have been recently awarded funding for a research proposal that includes inves-

tigating the incoherent dictionary learning in the context of audio scene classification.

This project concerns the analysis of non-musical non-speech audio sources. It is aimed

at designing an automatic tagging system that categorizes different events based on the

sounds they produce (e.g., identifying different sports programs from their audio track

or different acoustics scenes and events as proposed in the ieee aasp challenge4). For

this purpose, foreground and background audio sources (such as the sound of a racket

hitting a ball and the background chattering of the audience in a tennis match), can be

4http://www.elec.qmul.ac.uk/digitalmusic/sceneseventschallenge/

http://www.elec.qmul.ac.uk/digitalmusic/sceneseventschallenge/
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separated and independently input to a machine learning algorithm responsible for the

classification. The separation can be performed by assuming that the spectral represen-

tations of foreground and background sounds span incoherent sub-spaces, or consists in

morphologically diverse components.

To conclude on the scope of future research regarding incoherent dictionary learning,

an interesting topic for investigation consists in extending the de-correlation strategy to

more accurate measures of coherence, such as the cumulative coherence proposed by Tropp

[111]. This should also be complemented by a more accurate theoretical understanding

of the interplay between coherence and approximation performance.
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Chapter 6

Conclusions

6.1 Summary of main contributions

This thesis dealt with dictionary learning for sparse approximation, orthonormal and

over-complete transforms and their application to the analysis of audio signals. The

contributions of the work presented here can be included in three main areas corresponding

to the topics covered in Chapters 3, 4 and 5.

Starting from Chapter 3 that studies sparsity and disjointness of audio transforms,

the principal conclusions to be drawn from the work presented are as follows.

• The mdct is overall the best choice among a range of popular transforms currently

used for the analysis of audio signals.

– It provides a sparse representation of audio signals that makes it suitable for

coding applications, outperforming other lots for this task.

– It provides a disjoint representation of pairs of musical audio signals making

it suitable for source separation applications. It outperforms other lots and

the cqt for this task.

– It leads to better results compared to the pitch-synchronous stft that is a

novel adaptive lot proposed for analysing quasi-periodic functions such as

pitched musical audio signals.

Further research would be needed to better study the merits of a pitch-synchronous
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mdct and to investigate the relationship between sparsity and disjointness of a

transform, two quantities that do not appear to be correlated as commonly assumed.

From the study of adaptive orthonormal transforms presented in Chapter 3, the re-

minder of the thesis is dedicated to the investigation of over-complete transforms in the

context of dictionary learning for sparse approximation. Chapter 4 focuses on the sparse

approximation of convolved signals.

• When a group of signals are sparse in a known dictionary and are convolved to an

impulse response generating a set of convolved signals, it is more efficient to learn

the convolution filter than a new dictionary for sparse approximation.

– A novel model and algorithm for dictionary learning of convolved signals is

formulated. The proposed technique learns an impulse response instead of

an entire dictionary and allows to approximate the observed variables with a

smaller error compared to the k-svd dictionary learning algorithm.

– In the analysis of audio signals, it is relevant to consider an impulse response

constrained to be sparse and non-negative. In this case, the corresponding con-

strained optimisation shhh-bcd is outperformed by the unconstrained dhhh-bcd.

This suggests that optimising the objective in this situation requires a tradeoff

between allowing for too many degrees of freedom, as in the case of k-svd,

and allowing for too few, as in shhh-bcd.

– dhhh-bcd outperforms k-svd whenever the source signals are sparse (that is,

synthesised from a number of atoms that is smaller than 10% compared to

the dimension of the signals). This conclusion was obtained by testing the

proposed method and k-svd for different levels of normalized diversity of the

source signals and of the impulse response.

Additional research should be carried out to assess the performance of dhhh-bcd when

applied to real-world signals rather than synthetic ones.

From the analysis of convolved signals presented in Chapter 4, Chapter 5 is dedicated

to intrinsic properties of dictionaries and to how they are relevant in applications.
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• Dictionaries for sparse approximation that are well adapted to a set of training sig-

nals can be constrained to be also mutually incoherent. This property is important

for sparse recovery and is desirable for sparse approximation.

– Two novel algorithms, the ink-svd and the ipr are presented and compared

to existing methods for incoherent dictionary learning. The two proposed

techniques are the only ones that allow to achieve mutual coherence levels

close to the theoretical lower-bound.

– The ipr in particular allows to learn dictionaries with very low mutual coher-

ence without significantly affecting their approximation performance. ipr is

also computationally less expensive than ink-svd making it the best perform-

ing method overall.

– Experiments suggest that mutually incoherent dictionaries can achieve better

generalisation compared to coherent ones when more active atoms are used

during the testing phase compared to the learning phase.

Additional investigation is needed to better understand the relation between mu-

tual coherence and approximation capabilities of a dictionary, as well as to explore

additional applications of incoherent dictionaries.

6.2 Back to the big picture

Signal transforms have been introduced in Section 1.1 as a way to extract meaningful

information from data. They are used to infer properties and realize processes that are

useful in applications, helping to make sense of and leverage on the huge amount of data

that is produced nowadays.

Throughout this thesis, various signal models have been introduced that typically de-

compose observed signals into elementary building blocks. The pitch-synchronous lot

presented in Chapter 3, for example, expresses signals as combinations of basis functions

that are localised in both time and frequency, providing a sparse representation of the

data. The model for dictionary learning of convolved signals introduced in Chapter 4 de-

composes a set of convolved observations into the product of an impulse response matrix,

a dictionary and a set of coefficients. The incoherent dictionary learning, on the other
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hand, relies on a model comprising only dictionary and approximation coefficients and

introduces a constraint on an important intrinsic property of the dictionary.

There exist an infinite number of possible models and decompositions, each of which

essentially aims at extracting or identifying information based on assumptions about

the nature of the signals to be analysed. This thesis expands the toolbox available to

the signal processing community by proposing novel models and algorithms, and offers

comparisons with existing methods that highlight the strengths and limitations of the

various techniques.

This last point highlights that there is not a single answer which can be used in every

situation, but that there are principles that guide the design of new solutions built on

an existing body of knowledge to push its boundaries. The principle of parsimony at

the core of sparse approximation is one of those, and in the context of the big picture of

signal processing, it can lead to a succinct explanation of properties of signals that have

its roots in the dictionary utilized.

The investigation in dictionary learning for sparse approximation is still in many ways

in its infancy. As in every thriving research field, many unanswered questions stem from

every answered query, and the creative potential for adapting old methods and developing

new ones is great and compelling.

The ideas and results presented in this work are a step contributing to this journey.
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Appendix A

Derivations

A.1 On the convexity of the set of admissible dictionaries

A.1.1 The set of dictionaries with unit norm atoms is non-convex

In this appendix we prove that the set of dictionaries with unit-norm atoms D def
= {ΦΦΦ ∈

RN×K : ||φφφk||2 = 1} is non-convex.

Let us consider a simple case where N = K = 2 and let us define two dictionaries

ΦΦΦ,ΨΨΨ ∈ D that contain unit-norm atoms. A set is convex if and only if taking any two of

its elements, their convex combination also lies in the set. Therefore, we need to study a

dictionary ΞΞΞ
def
= θΦΦΦ + (1 − θ)ΨΨΨ with θ ∈ [0, 1] resulting from the convex combination of

the two elements of D.

The constraint characterising the set D can be expressed in terms of the Gram matrix

of the dictionaries. In particular, considering the matrix ΦΦΦ, the following holds:

GGG(ΦΦΦ)
def
= ΦΦΦTΦΦΦ =

 〈φφφ1, φφφ1〉 〈φφφ1, φφφ2〉

〈φφφ2, φφφ1〉 〈φφφ2, φφφ2〉

 =

 1 A

A 1

 (A.1)

where A ∈ [−1, 1] and the same holds for GGG(ΨΨΨ) =

 1 B

B 1

 with B ∈ [−1, 1].

Let us write now the Gram matrix of the convex combination GGG(ΞΞΞ) in terms of GGG(ΦΦΦ)
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and GGG(ΨΨΨ).

GGG(ΞΞΞ) = (θΦΦΦ + (1− θ)ΨΨΨ)T (θΦΦΦ + (1− θ)ΨΨΨ)

= θ2GGG(ΦΦΦ) + (1− θ)2GGG(ΨΨΨ) +
(
θ − θ2

) (
ΦΦΦTΨΨΨ + ΨΨΨTΦΦΦ

)
.

If we define the matrix

CCC
def
= ΦΦΦTΨΨΨ =

 c11 = 〈φφφ1, ψψψ1〉 c12 = 〈φφφ1, ψψψ2〉

c21 = 〈φφφ2, ψψψ1〉 c22 = 〈φφφ2, ψψψ2〉


containing inner products between the atoms in ΦΦΦ and ΨΨΨ, GGG(ΞΞΞ) can be expressed as:

GGG(ΞΞΞ) = θ2GGG(ΦΦΦ) + (1− θ)2GGG(ΨΨΨ) +
(
θ − θ2

) (
CCC + CCCT

)
= θ2

 1 A

A 1

+ (1− θ)2

 1 B

B 1

+
(
θ − θ2

) 2c11 c12 + c21

c12 + c21 2c22


The constraint that requires the atoms in ΞΞΞ to be normalized can be expressed as follows:

θ2 + (1− θ)2 + 2c11

(
θ − θ2

)
= θ2 + (1− θ)2 + 2c22

(
θ − θ2

)
= 1

which can be turned into the following:

(
θ2 − θ

)
(1− c11) = 0(

θ2 − θ
)

(1− c22) = 0.

The equalities are satisfied in three cases: if θ = 0 or θ = 1 then the convex combination

returns trivially either ΦΦΦ or ΨΨΨ and does not give any information about the convexity of

the set D. For θ ∈ (0, 1), the above constraints are satisfied if and only if c11 = c22 = 1,

which in turns implies that the inner products 〈φφφ1, ψψψ1〉 = 〈φφφ2, ψψψ2〉 = 1 that only holds

if ΦΦΦ = ΨΨΨ. The same proof generalises to the case where the number atoms and their

dimension is greater than 2 leading to a higher number of equations of the same form.

The non-convexity of the set D implies that when updating a dictionary ΦΦΦ ∈ D using,

e.g. a gradient descent update as in the SparseNet algorithm described in Section
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2.7.1 or any other dictionary update that do not explicitly constrain the update to the

admissible set, then the resulting dictionary might not belong to D anymore. This is

solved using a normalization step after the dictionary update.

A.1.2 The set of dictionaries with bounded mutual coherence is not convex

Let us now consider the set of dictionaries with bounded mutual coherence that is intro-

duced in Section 5.3.1 as the constraint set of the dictionary de-correlation problem; it

can be shown using a simple example that this set is also not convex.

Let N = K = 2 and consider a pair of orthonormal dictionaries ΦΦΦ =

 1 0

0 1

 and

ΨΨΨ =

 0 1

1 0

. Since they contain two orthonormal atoms, the mutual coherence of both

dictionaries is zero; if we take their convex combination:

ΞΞΞ = θΦΦΦ + (1− θ)ΨΨΨ =

 θ 1− θ

1− θ θ

 (A.2)

then the mutual coherence of the resulting dictionary is:

µ(ΞΞΞ) = 2θ(1− θ) (A.3)

that is zero for θ = 0 or θ = 1 and greater than zero for θ ∈ (0, 1).

The non-convexity of the set of dictionaries with bounded mutual coherence implies

that the optimization (5.10) defined for de-correlating a dictionary cannot be solved with

standard convex optimization tools.
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Appendix B

Software

B.1 LOTBox

LOTbox is a Matlab toolbox that implements lapped orthogonal transforms (lots)

which I developed as the accompanying software for the work presented in Chapter 3.

The toolbox can be downloaded from the software repository:

https://code.soundsoftware.ac.uk/projects/lots as a zip archive and installed sim-

ply by adding all the files to the current Matlab path.

The main functions implemented in the LOTbox are the following:

• lot.m and ilot.m: implementation of the forward and inverse lapped orthonormal

transform. The function takes as an input the signal and the parameters of the

transform (that are a set of window lengths, the type of local orthonormal trans-

forms, the length of the tail determining the amount of overlap between consecutive

windows and the type of tail function). The forward and inverse transforms are

implemented using a fast algorithm described in [70].

• lappedwindow.m: the fast algorithm for calculating lots employed by lot.m and

ilot.m requires extracting frames from a signal using a window defined through

this function. The frames are then processed using local orthonormal transforms.

• dct.m and idcti.m: implementation of the forward and inverse dct of types i-iv.

The dct-iv in particular is needed to compute the mdct as a special case of lot.

https://code.soundsoftware.ac.uk/projects/lots
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• lotplot.m: plot function that displays the coefficients returned by the forward lot

in a spectrogram-like fashion.

Although many software implementation of special cases of lots such as stft or

mdct are available, to the best of my knowledge at the time of development there was

not a Matlab toolbox allowing a computation of lots that includes specifying different

window lengths or local orthonormal transforms exploiting the full potential and flexibility

of this class of transforms.

The code implementing the pitch-synchronous lot described in Algorithm 7 is unfor-

tunately not available for download. This is because the algorithm for pitch estimation

that was employed as part of it is now protected by a copyright licence that does not allow

neither commercial nor academic distribution. Although this affects the immediate re-

producibility of the results presented in Chapter 3, similar experiments can be performed

by selecting another suitable pitch estimation algorithm.

B.2 SMALLBox

SMALLbox [21] is a Matlab toolbox for rapid prototyping and benchmarking of dic-

tionary learning techniques that is being developed by a team at the Centre for Digital

Music at Queen Mary University of London.

The toolbox can be downloaded from the software repository

https://code.soundsoftware.ac.uk/projects/smallbox along with extensive

documentation.

SMALLbox comprises a collection of toolboxes developed by third party organisations

for convex optimisation, sparse approximation and dictionary learning. By providing a

common framework for these tools, it allows to test and develop new algorithms or

modifications of existing methods while maintaining a common interface between the

various components. As part of the development of SMALLbox, I contributed to the

design of an add-on structure that allows to realize additional code which is not

included in the core of the SMALLbox distribution, but that can be nonetheless

interfaced to its components.

The incoherent dictionary learning SMALLbox add-on was developed to as the

accompanying software to Chapter 5. It can be downloaded from

https://code.soundsoftware.ac.uk/projects/smallbox
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https://code.soundsoftware.ac.uk/projects/smallbox along with a relative

documentation that explains the SMALLbox add-ons installation process.

The main functions implemented in the incoherent dictionary learning SMALLbox

add-on are the following:

• dico_update_mocod.m: implements the mocod dictionary update described in

Section 5.2.2.

• SMALL_test_mocod.m: script that tests the mocod dictionary learning algorithm

used to obtained Figure 5.3.

• dico_decorr_symetric.m: implements the ink-svd dictionary decorrelation

algorithm described in Section 5.3.2.

• SMALL_test_coherence2.m: script that tests the ipr and ink-svd dictionary

learning algorithms used to obtained Figure 5.4.

• ipr.m: implements the ipr dictionary decorrelation Algorithm 12.

In addition to the functions that implement or test the proposed algorithms, the folder

classes contains a object-oriented implementation of dictionaries for sparse

approximation, including functions for calculating quantities such as the mutual

coherence of a dictionary. The dictionary class structure can be useful for research on

sparse approximation beyond the scope of incoherent dictionary learning. Its

object-oriented modularity makes it particularly suited to serve as a starting point for a

more comprehensive toolbox.

https://code.soundsoftware.ac.uk/projects/smallbox
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Appendix C

Dictionary learning of convolved signals

with overlap and save model

This appendix presents a variation of the model for dictionary learning of convolved

signals and of the relative optimisation algorithm that is adapted to cases when the

convolved observations result from the frame-by-frame analysis of an underlying

high-dimensional signal.

C.1 Overlap and save algorithm

The model introduced in Section 4.1 and the optimization described in Section 4.3

assume that the observed signals yyym ∈ RN+L−1 are generated according to equation

(4.2) independently for each index m, whereas in some cases (such as the analysis of

audio signals, for example) they are instead the consequence of a frame-by-frame

processing of an underlying high-dimensional source signal. In order to update the

model and optimisation to this situation, we consider the way high-dimensional signals

are numerically convolved with impulse responses in a frame-by-frame fashion.

Perhaps the simplest and widely known algorithm for block based convolution of one

dimensional signals is the overlap and save method presented for the first time by

Stockham Jr. [105]. Its block diagram is shown in Figure C.1: a potentially infinite

anechoic signal is divided into frames of length N and each of them is convolved with

the impulse response of length L < N by the multiplication of the respective Fourier
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Figure C.1: Overlap and save algorithm for block-based linear convolution. A source
signal is divided into blocks of length N and convolved with an impulse response of
length L through multiplication of the respective Fourier transforms. After taking the
idft of the resulting signal, the last N −L samples are appended to the vector yyy and the
successive frame taken from the source sss is shifted by N − L samples.

transforms. Since this results in a circular convolution of the two sequences as explained

in Section 4.3, only the last N − L samples of the output are selected and appended to

the output vector containing the linear convolution of the two sequences (the interested

reader can refer to [105] for a more thorough explanation of this algorithm).

The overlap and save algorithm can be expressed using a compact matrix notation by

considering the matrix YYY ∈ R(N−L)×M as containing non overlapping frames of the

convolved observation, the matrix SSS ∈ RN×M containing in its columns frames of the

source signal that overlap by N − L frames and a partial Fourier matrix

F̃FF
def
= FFFL+1:N ∈ C(N−L)×N which contains the last N − L rows of the idft matrix of

dimension N .

YYY = F̃FF D
(

ˆ̆
hhh

)
ŜSS

= F̃FF D
(

ˆ̆
hhh

)
Φ̂ΦΦXXX

= F̃FF Ψ̂ΨΨXXX. (C.1)



C.2. Dictionary learning of convolved signals block coordinate descent optimization with overlap and save model 165

This expression is similar to the model introduced in (4.7) except from the fact that the

vectors sssm and h̆hh whose Fourier transforms are multiplied together are of length N

rather than N + L− 1, and that the partial Fourier matrix F̃FF is introduced. Learning

the parameters of this model can be done following a method similar to the one

described in Section 4.3.2 consisting of a block coordinate descent optimisation of sparse

approximation coefficients and impulse response.

C.2 Dictionary learning of convolved signals block coordinate descent

optimization with overlap and save model

Source signals optimization

Regarding the optimization of the source signals given a fixed impulse response, the

model (C.1) can be used to define an optimization problem where a matrix of

approximation coefficients is computed by solving the following:

XXX? = arg min
XXX∈RK×M

∣∣∣∣∣∣YYY − F̃FF Ψ̂ΨΨXXX
∣∣∣∣∣∣

F
(C.2)

such that ||xxxm||0 ≤ S ∀m = 1, . . . ,M.

Here the convolved dictionary in the Fourier domain Ψ̂ΨΨ = D
(

ˆ̆
hhh

)
Φ̂ΦΦ is obtained using the

current estimate of the impulse response. To avoid writing double superscripts, the

zero-pad operation on the impulse response will be implicitly assumed from now on and

omitted from the notation. The estimated source signals can be obtained by the

expression SSS = ΦΦΦXXX.

Impulse response optimization

In order to derive an expression for the optimization of the impulse response, we need to

express the cost function

C(hhh) =
∣∣∣∣∣∣YYY − F̃FF Ψ̂ΨΨXXX

∣∣∣∣∣∣2
F

(C.3)

as a function of the vector hhh.

We start by considering that the squared Frobenious norm of a matrix BBB is the trace of

the Gram matrix BBBHBBB. Fixing an estimate of the source signals SSS, the objective
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function can therefore be written as

C
(
ĥhh
)

=
1

2
Tr

[(
YYY − F̃FF D

(
ĥhh
)
ŜSS
)H (

YYY − F̃FF D
(
ĥhh
)
ŜSS
)]

=
1

2

{
Tr
[
ŜSS
HD

(
ĥhh
∗)
F̃FF
H
F̃FF D

(
ĥhh
)
ŜSS
]
− Tr

[
ŜSS
HD

(
ĥhh
∗)
F̃FF
H
YYY
]
− Tr

[
YYY HF̃FF D

(
ĥhh
)
ŜSS
]

+ C
}

with C = Tr
[
YYY HYYY

]
a constant that does not depend on the impulse response. Before

analysing the terms of this equation, we need two simple lemmas about traces.

Let BBB and CCC be two arbitrary matrices and ΛΛΛ = D (λλλ) be a diagonal matrix. Then, we

can write:

Tr [BBBΛΛΛCCC] =
∑
i

[BBBΛΛΛCCC]ii =
∑
i

∑
j

Bij [ΛΛΛCCC]ji =
∑
i

∑
j

Bij
∑
k

ΛjkCki

=
∑
i

∑
j

BijλjCji =
∑
j

λj
∑
i

CjiBij =
∑
j

λj [CCCBBB]jj

= λλλT d (CCCBBB)

Therefore, the following equality holds:

Tr
[
BBBHΛΛΛHCCCΛΛΛBBB

]
= λλλH d

(
BBBBBBHΛΛΛHCCC

)

Assuming that the matrix CCC is Hermitian (that is CCCH = CCC), and given that

d (MMM) =
[
d
(
MMMH

)]∗
we can write:

Tr
[
BBBHΛΛΛHCCCΛΛΛBBB

]
= λλλH

[
d
(
CCCΛΛΛBBBBBBH

)]∗
and derive an expression for the diagonal elements of the matrix

[
CCCΛΛΛBBBBBBH

]
ii

=
∑
j

Cij

[
ΛΛΛBBBBBBH

]
ji

=
∑
j

Cij
∑
k

Λjk

[
BBBBBBH

]
ki

=
∑
j

Cijλj

[
BBBBBBH

]
ji

=
∑
j

Cji

[
BBBBBBH

]
ji
λj

d
(
CCCΛΛΛBBBBBBH

)
=
[
CCC ◦

(
BBBBBBH

)]
λλλ

where ◦ indicates the element-wise or Hadamard product of two matrices. Therefore, we
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have:

Tr
[
BBBHΛΛΛHCCCΛΛΛBBB

]
= λλλH

[
CCC ◦

(
BBBBBBH

)]∗
λλλ

Equipped with these two results, we can express (C.3) as:

C(ĥhh) =
1

2

[
ĥhh
H

ΓΓΓĥhh− ĥhhHβββ − ĥhhTβββ∗ + C
]

=
1

2

[
ĥhh
H

ΓΓΓĥhh− 2<
(
ĥhh
H
βββ
)

+ C
]

where:

ΓΓΓ
def
=
[(
F̃FF
H
F̃FF
)
◦
(
ŜSSŜSS
H)]∗

βββ
def
= d

(
F̃FF
H
YYY ŜSS

H)

Since ΓΓΓ is a symmetric positive definite matrix, this is a standard quadratic function of

the complex variable ĥhh. The optimization of the impulse response given the current

matrix of approximation coefficients XXX can be turned into a quadratic optimization

problem involving the current estimate of the source signal:

hhh? = FFF

{
arg min

ĥhh

1

2

[
ĥhh
H

ΓΓΓĥhh− 2<
(
ĥhh
H
βββ
)

+ C
]}

(C.4)

This optimization can be solved by calculating the pseudo-inverse of the matrix ΓΓΓ,

which results in:

hhh? = FFFΓΓΓ†βββ. (C.5)
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Appendix D

A Lie group method for dictionary rotation

The dictionary rotation performed as part of the ipr algorithm to adapt the dictionary

ΦΦΦ to the representation of a set of training signals YYY can be realized by multiplying ΦΦΦ

by an orthonormal matrix optimized according to (5.21), which is the closed-form

solution discussed in Section 5.4.1. Alternatively, a Lie group method can be employed

as described in this appendix.

Re-stating the problem (5.21), we are seeking the solution of a least-squares problem

involving the minimisation of the residual norm, subject to an orthonormal constraint

on the matrix to be optimized:

arg min
WWW∈O(N)

||YYY −WWWΦΦΦXXX||F (D.1)

where O(N) is the space of orthonormal matrices of dimension N . This optimization is

similar to a problem encountered for non-negative independent component analysis

(nn-ica), making it possible to borrow methods employed in that field for our purpose.

We refer the interested reader to [83] for an exhaustive explanation of nn-ica and the

relative optimization techniques. Here, we limit our discussion to the one that has been

employed in the ipr algorithm, namely a conjugate gradient optimization constrained to

the SO(N) manifold of special orthogonal matrices with positive determinant.
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D.1 Constrained optimization in the SO(N) manifold

The set O(N) is a manifold embedded in the space of general N ×N matrices. If we

associate to this set the matrix multiplication operation, we obtain a group, which is

defined as an algebraic structure consisting of a set together with an operation which

satisfies the following properties:

1 - Closure under the operation: the multiplication of any two orthogonal matrices

returns an orthogonal matrix.

2 - Associativity: matrix multiplication is associative. Given the matrices AAA,BBB and CCC,

the equality AAABBBCCC = (AAABBB)CCC = AAA(BBBCCC) holds.

3 - Existence of an identity element: the orthogonal identity matrix III maps any matrix

AAA to itself IIIAAA = AAA.

4 - Existence of an inverse element: the set includes, for every element WWW ∈ O(N), an

inverse element WWW−1 ∈ O(N), such that WWW−1WWW = III. For orthogonal matrices,

WWW−1 = WWW T .

It has been proved that the group described so far is a disconnected Lie group, which

loosely means that we can associate a system of coordinates, as in a vector space RN×N ,

to a local region of the manifold (much like two-dimensional cartographic maps are

associated with local regions of the earth), but that we can only move smoothly from

one point to another in the manifold if these do not belong to disconnected regions [83].

We would rather consider connected Lie groups, where this complication does not occur

and we can move around the manifold in every direction. The subset SO(N) ⊂ O(N) of

orthogonal matrices with determinant equal to one, with the matrix multiplication

operation, is a connected Lie group. Therefore, we choose to modify the problem (5.21)

by imposing the constraint WWW ∈ SO(N). This results in a proper rotation1 of the

dictionary expressed by the following:

ŴWW = arg min
WWW∈SO(N)

||YYY −WWWΦΦΦXXX||F . (D.2)

1As opposed to the more general, improper rotation that results from solving (5.21).
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In order to solve (D.2), one option is to choose an update that is locally tangent to the

manifold (by exploiting the local isomorphism between the manifold and the relative

vector space, as in the cartographic analogy) and then to project back the updated

matrix onto the manifold SO(N) [27]. However, we found that this method exhibited

slow convergence in our experiments. Instead, we perform the optimization in a Lie

algebra associated to the constraint manifold.

D.2 Conjugate gradient descent in the Lie algebra so(N)

A Lie algebra is a vector space with an associated binary operation called Lie bracket

(see [83] for a more detailed exposition). It can be shown that the space of

skew-symmetric matrices, that is, any matrix BBB that satisfies BBB = −BBBT , with the

matrix commutator operation [AAA,BBB] = AAABBB −BBBAAA is a Lie algebra associated with the

constraint manifold SO(N), and we denote it by so(N). Moreover, any element

belonging to this Lie algebra can be mapped into an element belonging to the Lie group

SO(N) by a matrix exponential (and vice versa using the matrix logarithm). That is,

for every BBB ∈ so(N), exp(BBB) ∈ SO(N). Here the matrix exponential is defined as

exp(BBB) =
∞∑
p=1

1

p!
BBBp. (D.3)

A Lie group method [50] can be used to optimize a cost function working in the Lie

algebra while satisfying the manifold constraint. Its steps can be summarised as follows:

I - Start from a matrix BBB = log(WWW ) ∈ so(N), for example from the zero matrix, that

corresponds to the matrix logarithm of the identity 000 = log(III) ∈ so(N).

II - Find an update ∆BBB that improves the cost function and move in the Lie algebra

to an updated BBB′ = BBB + ∆BBB.

III - Map the updated matrix onto the constraint manifold VVV = exp(BBB′) ∈ SO(N).

IV - Calculate WWW ′ = VVVWWW ∈ SO(N).

It is possible to perform steps I to IV iteratively by using the method of parallel

transport (the interested reader can find more detailed information in [83] and references

therein), which allows us to work in the Lie algebra so(N) and use any of the tools
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developed for numerical optimization in vector spaces. In our proposed algorithm, we

employ a conjugate gradient optimization that consists of the following steps at each

iteration i = {1, 2, . . . , I}:

I - Calculate the gradient of the unconstrained cost function

C(WWW ) = 1
2 ||YYY −WWWΦΦΦXXX||2F.

(∇WWWC)(i) =
(
WWW (i)ΦΦΦXXX − YYY

)
(ΦΦΦXXX)T (D.4)

II - Map the gradient to the Lie algebra, obtaining:

RRR(i) = 2 skew

[
(∇WWWC)(i)

(
WWW (i)

)T]
(D.5)

where skew(AAA) = 1
2

(
AAA−AAAT

)
is the skew-symmetric component of the matrix AAA.

III - Find a conjugate search direction in the Lie algebra as:

HHH(i) = −RRR(i) + γHHH(i−1)

where

γ =

〈
RRR(i), RRR(i) −RRR(i−1)

〉
〈
RRR(i−1), RRR(i−1)

〉
is the Polak-Ribière formula [100] and 〈AAA,BBB〉 = Tr[AAATBBB] indicates the matrix

inner product.

IV - Perform a line search in the direction HHH(i) as:

t?(i) = arg min
t∈R

C
(

exp
(
tHHH(i)

))

V - Update the orthogonal matrix as:

WWW (i+1) = exp
(
t?(i)HHH(i)

)
WWW (i)

The steps of the ipr algorithms with the Lie group method dictionary rotation are

summarised in Algorithm 13.
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Algorithm 13: Iterative projections and rotations with Lie group method rotation
Input: ΦΦΦ, YYY ,XXX,µ0, IIP , IR
Output: ΦΦΦ?

// Initialisation
1 iIP ← 1;
2 iR ← 1;
3 while iIP ≤ IIP and µ(ΦΦΦ) > µ0 do

// Perform one iteration of the iterative projections algorithm 9
4 ΦΦΦ← ip(ΦΦΦ, µ0, 1);

// Rotate dictionary
5 WWW ← III // Initialise rotation matrix
6 HHH ← 000 // Initialise search direction
7 for iR = 1 : IR do

// Find an update direction and step in the Lie algebra
8 ∇WWW ← (WWWΦΦΦXXX − YYY )(ΦΦΦXXX)T ;

9 RRR← 2 skew
[
(∇WWWC)WWW T

]
;

10 HHH ← −RRR+ γHHH;
11 t← arg min

t∈R
C (exp (tHHH));

// Map the update to the constraint manifold
12 WWW ← exp (tHHH)WWW ;
13 end
14 ΦΦΦ←WWWΦΦΦ;
15 iIP ← iIP + 1

16 end

It is worth noting about this technique that it is a first-order method to solve (D.2)

which only requires the computation of the unconstrained gradient at line 8 to define an

update direction in the Lie algebra so(N). However, the minimisation at line 11 that is

needed to define an optimal step-size and the matrix exponential at line 12 employed to

map the updated matrix onto the manifold SO(N) are computationally expensive and

largely outweigh the resources needed to compute the closed-form solution of the

rotation step detailed in Algorithm 12 of Section 5.4.1. Moreover, the Lie group method

is an iterative algorithm that restricts the admissible set of solutions of (5.21) to the Lie

manifold SO(N) that is a sub-set of the space of orthonormal matrices O(N).

Although Algorithm 13 remains an interesting application of Lie group methods to a

dictionary rotation problem and might be a useful starting point if the optimization

(5.21) is substituted by a more general objective function that does not admit a

closed-form solution, the strategy detailed in Section 5.4.1 is comparatively faster, more

general and more accurate than the method described in this appendix, and it is
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therefore preferred in the implementation of the ipr algorithm.
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