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ABSTRACT 

Medulloblastoma (MB) is the commonest intracranial childhood malignancy and 

despite recent advances, current therapeutic approaches are still associated with 

high morbidity and mortality. A novel molecular classification has recently been 

proposed for these tumours – WNT Group (best prognosis), SHH Group 

(intermediate prognosis), Group 3 (worst prognosis) and Group 4 (intermediate 

prognosis). BMI1, a transcriptional repressor of the Polycomb group genes, is 

overexpressed in MB, most significantly in those of Group 4 MBs. Bone 

Morphogenetic Proteins (BMPs) are morphogens belonging to TGF-β superfamily of 

growth factors, and are known to inhibit MB cell proliferation and induce apoptosis in 

vitro, and to inhibit tumour growth in vivo. Our team have recently demonstrated that 

Bmi1 regulates cell adhesion properties during cerebellar development through 

repression of the BMP pathway. The aim of this project is to assess whether BMI1 

overexpression may contribute to MB pathogenesis through repression of the BMP 

pathway. 

Here we demonstrate that BMI1 knock down derepresses BMP pathway, and using 

a novel xenograft model of human MB of Group 4, we show that BMI1 controls 

tumour volume and intraparenchymal invasion. In in vitro assays on MB cell lines we 

show that cell adhesion and motility is controlled by BMI1 in a BMP dependent 

manner and that deregulation of extracellular matrix proteins are key mediators of 

this effect. Furthermore, we demonstrate that BMP treatment to BMI1 

overexpressing MB cells reduces cell proliferation and invasion, suggesting BMI1 as 

a possible biomarker for those tumours that could benefit from treatment with BMP 

agonist small molecules.   
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CHAPTER 1 Introduction        

   

1.1 Development of the cerebellum  
 

1.1.1 Overview of the normal cerebellum: 

   

Cerebellum (Latin: ‘little brain’), contains more than half of the total neurons of the 

brain, and plays an important role in our daily living (Wang and Zoghbi 2001). It 

primarily controls motor activity, regulating movements, co-ordination, muscle tone 

and balance; and integrates sensory and motor data from brain stem, spinal cord 

and cerebral cortex. Grossly, the cerebellum is divided along the medial-lateral axis 

into vermis (located along the midsagittal plane), intermediate zones (directly lateral 

to vermis), and the two lateral hemispheres (located lateral to intermediate zones) 

[Fig 1.1 A]. The two fissures namely posterolateral fissure and primary fissure, divide 

the cerebellar cortex along the anterior-posterior axis into flocculonodular lobe, 

posterior lobe and anterior lobe respectively (Fig 1.1 A). These lobes are further 

divided along the anterior-posterior axis into ten lobules at the vermis and eight 

lobules at the heimspheres (Fig 1.1 B). All the above divisions of the cerebellum bear 

functional relevance. Histologically, the mature cerebellar cortex has three layers – 

1) the Molecular Layer (ML), containing Stellate and Basket neurons, 2) the Purkinje 

Layer (PL) containing Purkinje cells and Bergman glia (a type of radial glial cells), 

and 3) the Internal Granular Layer (IGL), containing granule neurons, Golgi cells and 

glial cells (Fig 1.1 C). The Purkinje cells, Golgi cells, Stellate cells and Basket cells 

are inhibitory neurons (GABAergic, releasing γ-aminobutyric acid) and the granule 

neurons are excitatory (glutamatergic, releasing glutamate). While Golgi cells 

provide inhibitory feedback to granule neurons, Stellate and Basket cells modulate 
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Purkinje cells which provide the primary output from the cerebellar cortex to the deep 

cerebellar nuclei. The axons of the granule cells are projected to the ML where they 

bifurcate in opposite directions to form Parallel fibres, which make excitatory 

synapses with Purkinje cells (Fig 1.1 C). In addition to the above cells, the cerebellar 

cortex contains Mossy fibres and Climbing fibres (Fig 1.1 C). The former originate 

from the spinocerebellar, pontocerebellar and vestibulocerebellar pathways and 

make excitatory synapses onto the granule cells (and the cerebellar nuclei).  The 

latter originate in the inferior olive and make excitatory synapses onto the Purkinje 

cells (and the cerebellar nuclei).  

 

Fig. 1.1 Morphology of normal cerebellum. 

(A) Gross anatomy of the cerebellum. (B) Diagrammatic representation of sagittal section at the 
vermis, showing division of cerebellar cortex into 10 lobules, I – X (there would be 8 lobules in the 
lateral hemispheres). Approximate locations of the deep cerebellar nuclei are represented in the white 
matter (WM). (C) Diagram representing the cells of the cerebellar cortex. Outer molecular layer (ML) 
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containing interneurons Basket and Stellate cells, middle Purkinje cell layer (PL) with Purkinje cells 
which has extensive dendritic arborisations, and the inner granule cell layer (IGL), containing granule 
neurons which send their axons to the molecular layer. In addition, there are Mossy and Climbing 
fibres entering into the cortex, and their connections are shown in brown and purple respectively. The 
glial cells are present in the WM and in the PL. The glial cells in the PL are called Bergmann glia. The 
excitatory synapses are marked with +, and inhibitory with -. 

 

The cerebellar white matter contains fibre tracts, along with astrocytes, 

oligodendrocytes and neurons of the deep cerebellar nuclei (Altman J 1997; Behesti 

and Marino 2009). The deep cerebellar nuclei are - the fastigial nucleus (most 

medially located), the interposed nuclei (situated lateral to the fastigial nucleus), the 

dentate nucleus (largest nucleus, located lateral to the interposed nuclei) and 

functionally connected vestibular nuclei (actually located in the medulla). Three fibre 

bundles carry the cerebellar inputs and outputs, connecting the cerebellum to other 

parts of the brain and spinal cord, namely - the inferior cerebellar peduncle, the 

middle cerebellar peduncle and the superior cerebellar peduncle.  

 

Although historically the cerebellum has been known to mainly coordinate motor 

functions,  its role in cognition, memory and language functions has been postulated 

based on neuropsychiatric manifestations in patients with cerebellar disorders 

(Timmann and Daum 2007). However despite several study models, no concrete 

circuitry evidence has been established so far, and the consensus is that the role of 

cerebellum in the above functions are inferential (Koziol, Budding et al. 2013).  

1.1.2 Cerebellar development 

 

The development of the cerebellum begins in humans from an early embryonic stage 

and extends until the first postnatal years. Due to this protracted period of 

development, the cerebellum is susceptible to a spectrum of complex developmental 

disorders including genetic/sporadic syndromes (hypoplasia of cerebellar vermis in 
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Dandy-Walker syndrome), non-genetic abnormalities (cerebellar hypoplasia 

secondary to congenital cytomegalovirus infection), metabolic abnormalities 

(cerebellar atrophy secondary to pyruvate dehydrogenase deficiency) and neoplasia 

(Ramaekers, Heimann et al. 1997). There is considerable evidence that the origin of 

medulloblastoma is intimately related to the development of the cerebellum 

(reviewed in (ten Donkelaar, Lammens et al. 2003; Marino 2005; Gilbertson and 

Ellison 2008). Therefore it is relevant to first discuss the normal cerebellar 

developmental process in order to understand the pathogenesis of medulloblastoma.    

The mouse has been extensively used as a model of human CNS development 

because it has close anatomic, physiologic and genetic similarity to humans. 

Moreover the ease of genetic manipulation of gene expression which can be 

achieved in mouse models is also very appealing. Hence, mouse models to study 

the molecular mechanisms of cerebellar development and medulloblastoma 

pathogenesis have been extensively used due to the high degree of conservation of 

cerebellar anatomy and function between mouse and human (Chizhikov and Millen 

2003; Kho, Zhao et al. 2004). A word of caution is however warranted because of the 

inherent limitations of any experimental models.  In the following cerebellum 

development sections, the process of mouse development is mainly discussed, and 

where available, processes and time points in human development is mentioned.   

1.1.2.1 Early embryogenesis   

 

In vertebrates, the central nervous system (CNS) is derived from the neural plate 

(epithelial structure arising from the dorsal ectoderm of the gastrula) during 

embryogenesis. The neural plate subsequently closes to form the neural tube; and 

the brain develops from the rostral (head end) part of the neural tube. The neural 



24 
 

tube soon forms flexures giving rise to three primary brain vesicles – the 

prosencephalon (forebrain), the mesencephalon (midbrain) and the 

rhombencephalon (hind-brain). The prosencephalon acquires further lateral 

extensions to form the telencephalon which is connected at the midline with the 

diencephalon. The mesencephalon remains as a single structure. The 

rhombencephalon is separated from the mesencephalon by the cephalic flexure and 

the cervical flexure separates it from the spinal cord. The pontine flexure divides the 

rhombencephalon into the metencephalon and the myelencephalon at embryonic 

day 9 (E9) in mouse. In vertebrates the rhombencephalon is known to arise from 

seven segments of the neural tube called rhombomeres 1-7 (Garel, Fallet-Bianco et 

al. 2011).  

The cerebellum develops from the roof of metencephalon (dorsal rhombomere 1), 

with contributions from the mesencephalon (Hatten and Heintz 1995). The cerebellar 

development occurs in several interconnected stages, controlled by multiple genetic 

events which can be categorized into four categories – 1) establishing cerebellar 

territory, 2) specification of cerebellar cell types, 3) proliferation, differentiation and 

migration of the cells and, 4) formation of the cerebellar circuitry.  

1.1.2.2 Establishment of the cerebellar territory (cerebellar anlage):  

 

The anterior-posterior boundaries of the developing cerebellum are determined by 

Fgf8 (fibroblast growth factor 8) and Wnt1 (wingless homologue 1) signals from the 

Isthmic Organizer (IO), which is located at the junction of mesencephalon and 

metencephalon (Sato, Joyner et al. 2004). In turn IO is formed as a result of 

expression of two main genes - Otx2 (mouse homologue of Drosophilia gene 

orthodenticle) and Gbx2 (mouse homologues of the Drosophilia gene and 
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unplugged) which are expressed at E8, in mesencephalon and in metencephalon 

respectively  

Some of the other genes that are important for establishing IO include En1 and En2 

(homeobox genes engrailed 1 & 2), Pax2 and Pax5 (paired box genes), Hoxa2 

(homeobox A2) and Lmx1b (Lim homeobox 1b). The mechanisms controlling the 

dorsal – ventral patterning of the developing cerebellum are not well established, but 

there is suggestion that it may be controlled by Bone morphogenetic proteins 

(BMPs), Sonic Hedgehog (Shh) and the expression of Lmx1a (Lim homeobox 1a) 

(Chizhikov and Millen 2003). The cerebellar anlage is formed between E10 and E11. 

Further to this, the cerebellum continues to develop for the rest of the embryonic 

period undergoing extensive morphological changes. Subsequently, from the alar 

plates two germinal centers are formed – 1) the Ventricular zone – a mouth-like 

structure at the roof (dorsal) of the 4th ventricle, adjacent to cerebellar anlage, and 2) 

the Rhombic lip – a specialised region of ventricular zone, adjacent to the roof of the 

4th ventricle (Fig 1.3 A). In contrast to most other brain regions, the cells of the 

cerebellum originate from these two distinct germinal zones (Fig 1.3 B). 

 

1.1.2.3 Morphogenesis of the cerebellum: 

 

Under this subheading, the next two stages of cerebellar development, namely the 

specification of the cerebellar cell types, and the proliferation/differentiation/migration 

of the cells, will be discussed. By fate mapping it is known that the cerebellar cell 

types arise at different developmental stages and from different locations (Hatten 

and Heintz 1995) and their development will be discussed below. 
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1.1.2.3.1 Purkinje cells and interneurons originate from the ventricular 

neuroepithelium: 

 

The cells of the deep cerebellar nuclei, Purkinje cells, and later Golgi cells, Stellate 

cell, Basket cells develop from multipotent precursor cells called the ventricular 

neuroepithelium (Hallonet and Le Douarin 1993) which express bHLH (basic helix 

loop helix) factor Ptf1a (pancreas specific transcription factor 1a). The ventricular 

neuroepithelium is located in the ventricular zone in the roof of the 4th ventricle as 

discussed above, which is also known as the primary germinal zone. Purkinje cells 

are specified at E13, when they exit the cell cycle and start to migrate along the 

radial glial cells towards the cerebellar primordium. From E14-E17 they migrate over 

the already formed deep cerebellar nuclei. In humans, the generation of the deep 

cerebellar nuclei and Purkinje cells are estimated to occur at around 5th – 6th week of 

gestation (ten Donkelaar, Lammens et al. 2003). These cells then arrest and await 

the inward migration of the granule neurons. This timely arrest of migration is driven 

by the reelin pathway (Hatten 1999). Purkinje cells rely on signalling from granule 

neuronal precursors for their migration, but their differentiation is thought to be 

independent of them. Towards late embryogenesis, the Climbing fibres from the 

inferior olive begin to connect to the Purkinje cells, which are thought to promote 

their development. At this stage, they express markers such as NST-1 (Hsp70-4, 

heat shock protein). Purkinje cells develop extensive arborisation towards their final 

maturation phase and start to establish synapses with granule neurons. Wnt3 is 

thought to influence this phase of development (Salinas, Fletcher et al. 1994).  

Earlier we learnt the role of Wnt1 signals from IO in the development of the 

cerebellar anlage. Furthemore, Wnt signaling is implicated in early CNS 

development (Salinas and Zou 2008) and in the regulation of growth and 
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differentiation of the developing cerebellum both in the embryonic and early 

postnatal stages (Schuller and Rowitch 2007). Mutations in the WNT pathway have a 

well-established role in human medulloblastoma development (discussed later in 

section 1.2.4). Therefore it is relevant to discuss Wnt signalling pathway briefly at 

this stage (other molecular pathways of relevance are discussed in the sections 

below).  

In the absence of Wnt signalling, intracellular β-catenin is phosphorylated by casein 

kinase Iα (CK1α) and/or CKIε at Ser45. In turn this enables glycogen synthase 

kinase 3β (GSK3β) to phosphorylate serine/threonine kinase residues 41, 37 and 33, 

which triggers ubiquitylation and proteasomal degradation of β-catenin. 

Phosphorylation and eventual degradation of β-catenin takes place in a multiprotein 

complex containing the axin (the scaffold protein), adenomatous polyposis coli (APC, 

the tumour suppressor gene product) and GSK3β. Wnt signalling is activated by the 

binding of Wnt ligands (which are secreted glycoproteins) to the transmembrane 

receptor Frizzled (Frz). In the presence of Wnts, dishevelled (Dsh, the activity of 

which is modulated by the kinase PAR1) blocks β-catenin phosphorylation by 

inhibiting GSK3 (α- and β-isoforms). The exact mechanism of GSK3 inhibition by 

Wnts is unclear and has been the focus of intensive research (Metcalfe and Bienz 

2011). Recently, a cell-biological model was proposed (Taelman, Dobrowolski et al. 

2010): Wnt proteins induce the uptake of GSK3 into multivesicular bodies (MVBs), 

an event that sequesters the enzyme away from newly synthesised β-catenin 

substrate in the cytoplasm, thus blocking its phosphorylation. The unphosphorylated 

(stabilised) β-catenin enters the nucleus and associates with LEF/TCF transcription 

factors, which leads to the transcription of Wnt-target genes. Some of the Wnt-target 

genes are c-MYC, CCND1 (cyclin D1), and NRSF/REST (RE1-silencing transcription 
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factor), which are involved in the proliferation, inhibition of apoptosis, and 

differentiation of cells (Huelsken and Behrens 2002; Ille and Sommer 2005; Rossi, 

Caracciolo et al. 2008). An overview of the Wnt signalling pathway is represented in 

Fig. 1.2A. 

 

In addition to the above, various growth factors are thought to influence the 

development of the Purkinje cells such as Ngf (nerve growth factor), acetylcholine, 

BDNF (brain-derived neurotrophic factor) and ciliary neurotrophic factor. Similarly, 

Rorα (RAR-related orphan receptor α) and Bcl2 (B-cell leukemia/lymphoma 2) genes 

are thought to play a role in this process (Wang and Zoghbi 2001).  

 

1.1.2.3.2 Granule neurons originate from the rhombic lip: 

 

In contrast to other cells of the cerebellum, which are derived from the ventricular 

zone, the granule neurons are derived from the rhombic lip, also known as second 

germinal zone. As mentioned before, the rhombic lip is the dorsolateral part of the 

alar plate formed at E9 – E10, between the 4th ventricle and the roof plate in the 

metencephalon, which forms the proliferative zone along the hindbrain (Wingate 

2001). Granule neurone progenitor cells (GNPs) from the rostral (upper or head end) 

part of the rhombic lip cells start to migrate outwards at about E13. Three members 

of TGF-β family, namely Bmp6, Bmp7 and Gdf7 expressed in the roof plate are 

known to play an important role in GNP specification (Alder, Lee et al. 1999). These 

cells populate the cerebellar anlage, reaching the superficial part, which form the 

external granular (or germinal) layer [EGL] by the end of embryonic period, which is 

known as secondary germinal zone. In humans, the EGL persists from several post 

natal months up to 1 or 2 years of age (Lemire RJ 1975). Math1 (atonal homologue 1 
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or Atoh1), which is expressed in the mid to hind brain region at about E9 – E10, is 

considered essential for the genesis of cerebellar GNPs (Ben-Arie, Bellen et al. 

1997) and its expression persists in the rhombic lip and its derivatives. At this stage 

the GNPs also express Nestin and other markers such as zinc finger proteins 

RU49/Zipro1, Zic1 and Zic 3.  

The Notch1 activity is known to prevent the induction of Math1 by antagonising the 

BMP signalling pathway at the level of Msx2 expression, thereby balancing between 

neural induction and maintenance of neural progenitors in the embryonic 

development of the rhombic lip (Machold, Kittell et al. 2007). Furthermore, 

postnatally Notch 2 is shown to inhibit differentiation and maintain cerebellar granule 

cell precursor proliferation (Solecki, Liu et al. 2001). As Notch signalling pathway 

mutations are associated with medulloblastoma development (reviewed in (Hatten 

and Roussel 2011)), it is  briefly discussed at this stage. Notch receptor acts as a 

membrane-tethered transcription factor, which is activated by Jagged (JAG) or Delta-

like (DDL) family members, cleaving the extracellular domain and releasing 

intracellular domain of Notch, which translocates to the nucleus (Fig 1.2 B), where it 

interacts with CBF1 [or other CSL family members such as Su(H) or Lag-1] of 

transcriptional regulators, leading to activation of target genes namely, Myc, p21, 

and the HES-family members (Ehebauer, Hayward et al. 2006).  
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Fig. 1.2 Diagrammatic representation of Wnt and Notch signalling pathways. 
 
(A) Wnt pathway. (B) Notch pathway.   

 

Once the GNPs form the EGL, they continue to proliferate in the outer EGL, driven 

by RU49/Zipro1, Zic1 and Math1. Cell proliferation in the outer EGL at this stage also 

requires input from Purkinje cells through secretion of Shh (Wechsler-Reya and 

Scott 1999). As Shh pathway mutations are associated with medulloblastoma 

development (discussed later in section 1.2.4), due to its effects on GNP 

proliferation, this pathway is briefly discussed here.  

The Shh pathway (Fig 1.6) is maintained in an ‘off’ state by Ptch (patched 

transmembrane protein) which inhibits smoothened protein (Smo). Upon ligand 

binding of Shh (secreted by Purkinje cells), Ptch-mediated repression is alleviated 

and a signal is transduced to the nucleus to promote the proliferation of granule cells 

via Gli (GLI-Kruppel) 1 and Gli 2, and possibly N-Myc mediated signalling cascade 

[Fig 1.6] (Marino 2005). The evidence that Shh pathway plays a role in GNP 

proliferation is strengthened by the association of Ptch (patched) mutation [leading to 

activation of Shh pathway] with  Gorlin’s or naevoid basal cell carcinoma syndrome 
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and medulloblastoma (Wechsler-Reya and Scott 2001). Expression of Gli1 and Gli 2 

which mediate Shh pathway, is shown to be in turn modulated by Zic proteins, 

suggesting that Zic proteins control GNP proliferation by affecting Shh pathway 

(Mizugishi, Aruga et al. 2001). Furthermore, Bmi1 (a Polycomb gene) is shown to be 

expressed in EGL precursor cells (at E16.5 & P8 in mouse and 26th gestational week 

and post natal 8 months in humans) and it is  thought to promote clonal expansion of 

GNPs (Leung, Lingbeek et al. 2004). The role of Bmi1 gene, which is thought to be a 

downstream target of Shh pathway, in cerebellar development and in 

medulloblastoma pathogenesis is discussed in detail later (section 1.3.2).  In 

addition, GNP proliferation in the outer EGL is also dependent on genes involved in 

cell cycle such as Cyclin D2.  

 

The GNPs then cease to proliferate and migrate from outer EGL into the inner EGL. 

This change from a proliferative to a postmitotic phase involves cell-cycle inhibitors 

such as p27/Kip1 (cyclin dependent kinase inhibitor 1b), which is expressed in the 

inner EGL (Miyazawa, Himi et al. 2000). In the inner EGL, GNPs lose their Math1 

expression, and begin to express other bHLH transcription factors NeuroD1 (Miyata, 

Maeda et al. 1999) and NSCL1 (Duncan, Bordas et al. 1997). The cell number at this 

stage is controlled by trophic factors such as BDNF and IGF1 (insulin-like growth 

factor 1) which modulate apoptosis (Goldowitz and Hamre 1998). 

Next, the GNPs differentiate (forming axons, the Parallel fibres) and migrate inwards 

along the Bergmann glia at around 16 – 25 weeks of postnatal age in humans. They 

migrate into their definitive site, the internal granular layer (IGL), under a single layer 

of Purkinje cells (Fig 1.3 C) separated by a transient layer, lamina dissecans. The 

cells at this stage mainly express Tag1 (tubulin-associated glycoprotein 1) and Tuj1 
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(class 3 β-tubulin), which are mature neuronal markers. They also express Dcc 

(deleted in colorectal carcinoma) and components of Dcc/netrin pathway, Unc5h2 

and Unc5h3, which are involved in cell migration and axonal projection. Several 

other genes have been implicated in the migration and differentiation of GNPs such 

as Pax6 (paired box homeotic gene 6) expressed in EGL, Girk2 (encoding inward-

rectifying K+ channel) and Grid2 (encoding δ2 glutamate receptor subunit). Several 

extracellular proteins that are known to be important at this stage are – astrotactin, 

thrombospondin, tenascin and neuregulin.  

 

The final stages of GNP cells maturation to form the granule neurons take place in 

the IGL, at which point they express mature markers such as GC5 (golgin candidate 

5) and GABA receptors (Raetzman and Siegel 1999). At this stage, the Mossy fibres 

(from the precerebellar nuclei) develop contact with the granule neurons, which is 

partly mediated by Wnt7a released by granule neurons (Hall, Lucas et al. 2000), and 

the granule neurons extend connections to the Golgi cells, which is mediated by a 

protein, called contactin (Stoeckli 2010).  
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Fig. 1.3 Schematic representation of cerebellar development*  
 
(A) & (B) Embryonal development of the cerebellum. (A) The cerebellar anlage is formed in the roof 
of the metencephalon with contribution from the mesencephalon, subsequently giving rise to two 
germinal centres – the ventricular zone or primary germinal zone and the rhombic lip adjacent to 4

th
 

ventricle. (B) Represents the boxed germinal centres from (A) and depicts migration of the precursor 
cells. The cells originating from neuroepithelium of the ventricular zone (VZ) migrate radially to give 
rise to Purkinje cells, Golgi cells, Basket cells and Stellate neurons. Granule neuron progenitor cells 
(GNPs) located in rhombic lip (RL) migrate dorsally to populate the external germinal layer (EGL) or 
the secondary germinal zone. (C) Late embryonic and postnatal development, showing clonal 
expansion of GNPs in the EGL which will then become postmitotic, differentiate and migrate inwards 
to generate the internal granular layer (IGL) under the Purkinje cells (PC). On the right hand side, the 
putative sites of origin of medulloblastoma, namely EGL and Neuroepihelium (NE) of VZ is shown.   
* This picture is adapted from Marino S, Trends in Mol Med, 2005. 
 

Apart from the granule neurons, the rhombic lip also generates cells of the 

precerebellar nuclei, namely pontine nucleus, lateral reticular nucleus, external 

cuneate nucleus, reticulotegmental nucleus (origin of Mossy fibres) and inferior olive 
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nucleus (origin of Climbing fibres), as demonstrated by the expression of Math1 

during their development (Ben-Arie, Bellen et al. 1997).  

 

1.1.2.4 Formation of cerebellar circuitry and completion of morphological 

development.  

 

As a final step in cerebellar development, there is the formation of the intricate 

neuronal circuitry which is crucial for cerebellar functions. This process is associated 

with terminal differentiation of the cerebellar neurons (Hatten and Heintz 1995). The 

main aspects of the development of the cerebellar circuit have been discussed in the 

relevant sections above, and an overview of the circuitry is depicted in Fig 1 C. 

Although these connections are present across the cerebellum, it is important to note 

that cerebellum is functionally highly compartmentalised (term coined following cell 

lineage experiments in Drosophila) into distinct modules (Herrup and Kuemerle 

1997). The morphological development of the cerebellum is completed by about post 

natal day 15 (P15) in mice (Millen, Wurst et al. 1994) and second postnatal year in 

the human. The post natal proliferation of progenitor cells in the EGL and the 

subsequent migration of granule neurons and ingrowth of cerebellar afferents results 

in a significant growth and foliation of the cerebellum.  

 

The origins and fates of different precursor cells and the molecular mechanisms that 

regulate their development are summarised in Table 1.1.   
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Table 1.1 Summary of the main genes and pathways regulating the different stages of cerebellar 

development.  

Stage of 
development 

Genes/proteins/molecules implied* 
 

Cerebellum anlage Otx2, Gbx2, Fgf8, Wnt1, En1/2, Pax2/5, BMP and Smad pathway**, Shh**, 
Hoxa2 
 

Purkinje cell 
development 

Ngf, BDNF, Ciliary neurotropic factor, acetyl choline, Nt4/5, Rorα, Reelin 
pathway (migration) 
 

Granule neuron 
development 

For generation/proliferation - Math1, Shh pathway**, Bmi1**, Ccnd2, p27, 
NeuroD1, NSCL1, TGF-β pathway**, Notch pathway. 
 
For migration - Tag1, Tuj1, Pax6, Dcc/netrin pathway, Unc5h2/3, Girk2, 
astrotactin, Thrombospondin**, tenascin, neuregulin. 
 

* Ref: Wang and Zoghbi, Nature Reviews 2001; Tong and Kwan, Mol. Cell. Biol. 2013. 
**These genes/pathways/molecules are relevant for this current study.  

 

1.1.2.5 Cells of origin of medulloblastoma   

 

Medulloblastoma is traditionally thought to arise from the granule cell progenitors 

located in the EGL (Kadin, Rubinstein et al. 1970; Reddy and Packer 1999; Marino, 

Vooijs et al. 2000), and possibly from precursor cells located in the ventricular 

neuroepithelium (Marino 2005; Gilbertson and Ellison 2008). Stem cells have also 

been isolated from post natal cerebellar white matter by means of sorting for the 

stem cell marker CD133 (Lee, Kessler et al. 2005). There is a shifting paradigm from 

viewing medulloblastoma as a single entity to different distinct subtypes, based on 

their genetic profiles and cell of origin (discussed later in section 1.2.6). There is 

evidence that MB subtypes demonstrate distinct anatomical differences in their origin 

and development (Gibson, Tong et al. 2010); such as - WNT tumours are related to 

4th ventricle close to dorsal brain stem and SHH tumors within the cerebellar 

hemispheres. While the cellular origin for WNT and SHH Group have been 

implicated as dorsal brainstem progenitors and cerebellar GNPs respectively, the 

origin of more aggressive Group 3 is thought to be from cerebellar stem cells 
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(reviewed in (Eberhart 2012)). The exact cellular origin for Group 4 remains to be 

elucidated.   
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1.2 Medulloblastoma 
 

Medulloblastoma (MB, medulloblastoma cerebelli), was first described as a primitive 

neuroectodermal tumour (PNET) by Bailey and Cushing in 1925 (Bailey and Cushing 

1925). Prior to that, MB were theoretically grouped under divergent tumours such as 

sarcomas, neuroblastomas, spongioblastomas (poorly differentiated gliomas 

including astrocytic, ependymal and oligodendroglia) and primitive tumours with 

capacity for multi-lineage differentiation (Rorke 1994). The WHO (World Health 

Organisation), ICD-O (International Classification of Disease for Oncology), 

recognised MB as one of the PNET and classified them under embryonal tumours 

[ICD-O code 9470/3] (Louis, Ohgaki et al. 2007). Other tumours of the central 

nervous system that are merged under PNET umbrella, primarily due to their 

histological similarity, are ependymoblastoma and supratentorial PNET.  

Medulloblastoma is defined as a malignant, invasive embryonal tumour of the 

cerebellum, occurring preferentially in children, with predominantly neuronal 

differentiation, and tendency to metastasize via CSF pathways (Giangaspero, Binger 

et al. 2000).  

WHO working group recognise four escalating grades in CNS tumours depending on 

histological severity – grade I (low proliferative potential, predicting good outcome) to 

grade IV (highly malignant, predicting worst outcome). Medulloblastoma corresponds 

histologically to WHO grade IV.     

Medulloblastoma in children are known to commonly arise within the vermis (>75%), 

whereas in adults it is more common to originate in the cerebellar hemispheres 

(Bourgouin, Tampieri et al. 1992; Tortori-Donati, Fondelli et al. 1996).  
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1.2.1 Epidemiology  

 

Brain and CNS cancers are the second most common cancers in the childhood, 

following leukemia, accounting to >27% of all cancers in 0-14 years age, with 

approximately 410 cases diagnosed each year in the UK (CRUK 2008-2010). 

Medulloblastoma is the commonest solid tumour in children, and is also the 

commonest brain malignancy, accounting to approximately 19 – 22% of all brain 

tumours (CCRG 2010). Age adjusted annual incidence rates for MB are 0.5 - 0.7 per 

100,000 children (Stevens, Cameron et al. 1991; McKean-Cowdin, Razavi et al. 

2013). National Cancer Institute’s SEER (Surveillance, Epidemiology and End 

Results) data (1973 - 2009) analysis by McKean et al. predicts that the combined 

incidence of MB-PNET shows an increasing trend as compared to previous decades, 

although this may be due to the changes in the classification of these tumours 

(McKean-Cowdin, Razavi et al. 2013).  

 

The peak incidence of MB is between 4 – 9 years of age (41%), followed by 0 - 3 

years (32%), 10 – 14 years (18%) and 15 – 19 years [9%] (McNeil, Cote et al. 2002).  

In general, childhood MB show a bimodal distribution, peaking at 3-4 years of age 

and then at 8-9 years. Collins' law highlights the importance of age at diagnosis to 

predict the outcome which is based on the period of risk for recurrence (PRR), 

defined as age at diagnosis plus 9 (Brown, Tavare et al. 1995; Zhang and Zhou 

1999). More than 70% of medulloblastoma occur in patients younger than 16 years 

of age. It is rare in adults, accounting to less than 1% of all adult malignancies. In 

adults, the majority (80%) of medulloblastoma occurs before the age of 40 years, 

and is very rare beyond the fifth decade of life (Giordana, Schiffer et al. 1999).  
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This decrease in incidence with increasing age is well in agreement with the 

embryonal nature of MB and favours genetic factors as etiology rather than 

environmental factors.  Occasional reports attempting to associate parental 

exposure/contact with chemicals (such as pesticides, hydrocarbons, and N-nitroso 

compounds) and metals with development of MB have been published , although 

none of which is conclusive (Bunin, Kuijten et al. 1993; Colt and Blair 1998; Zahm 

and Ward 1998). A study has reported detection of low frequency simian virus 

(SV40)- like sequences in MB samples, without detection of large T antigen 

(Weggen, Bayer et al. 2000). Another study has shown detection of John 

Cunningham (JC) virus genome in significant proportion of MB samples, with 

presence of JC Virus T antigen in tumour cells (Krynska, Del Valle et al. 1999). 

However, an aetiological role of the above polyomaviruses in medulloblastoma 

pathogenesis has not been established (Huang, Reis et al. 1999; Giangaspero, 

Binger et al. 2000).   

MB has a higher predilection in males, with approximately 65% of patients being 

male and 35% female. SEER data showed an annual incidence of combined MB-

PNET of 0.84 and 0.58 per 100,000 for males and females respectively (McKean-

Cowdin, Razavi et al. 2013). Based on ethnic background, MB-PNET was noted to 

be common in Caucasian population (82%) compared to African-Caribbean (9%) or 

other backgrounds [9%] (McNeil, Cote et al. 2002).   

The prognosis of MB depends on several factors such as age at diagnosis, stage of 

the tumour/presence of metastasis, histological and/or molecular subtype, and 

treatment received. However, overall survival rate for MB is 50 – 60 % (Verlooy, 

Mosseri et al. 2006; Rutkowski, von Hoff et al. 2010) and the median survival rate is 

better in females compared to males  (McNeil, Cote et al. 2002). There are 



40 
 

conflicting evidence reported regarding survival figures in adults, but the overall data 

does not suggest a significant difference in survival outcomes in adults compared to 

children (Davis, Freels et al. 1998; Smoll 2012) 

1.2.2 Clinical features  

 

The presenting clinical symptoms are: 1) Cerebellar, due to the primary tumour, 

namely – ataxia and disturbed gait (in children where the majority of tumours are in 

the vermis) and ispilateral dysmetria (in adults where most of the tumours are in the 

hemisphere). 2) Secondary to hydrocephalus, such as headache, lethargy, vomiting 

and other symptoms of raised intracranial pressure. In younger children with no 

verbal communication, behavioral changes and decreased social interactions are 

noted. Visual disturbances may also occur due to cranial nerve compression. 3) 

Rarely related to leptomeningeal dissemination, such as weakness, due to spinal 

cord or nerve root compression [radiculopathy] (Giangaspero, Binger et al. 2000; 

Jallo and A. 2012). Spinal cord metastasis via leptomeningeal route at the time of 

presentation is seen in up to 33% of cases (Hsieh, Wu et al. 2008). In addition, there 

may be symptoms due to associated supratentorial metastases (14 - 15%), 

spontaneous haemorrhage (5-6%) or systemic metastases [9%] (Park, Hoffman et 

al. 1983).  

Common differential diagnoses based on clinical features include brain stem 

gliomas, cavernous sinus syndrome, cerebellar haemorrhage, cerebral aneurysms 

and craniopharyngioma. Clinical evaluation combined with radiological (CT/MRI 

scans) examination and CSF cytology aid in detection of the extent and spread of 

the disease, which helps stratify patients for appropriate treatment scheme, which 

may or may not include craniospinal irradiation (Jakacki, Burger et al. 2012).  
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Furthermore, the extent and dissemination of MB are classified based on Chang’s 

staging system (Table 1.2) which guides the treatment strategies and outcomes 

(Chang, Housepian et al. 1969; Dufour, Beaugrand et al. 2012).  

Table 1.2 Chang’s Staging System for Medulloblastoma* 

Variable 
 

Greatest tumour dimension and disease spread 

 
Tumour classification 

T1 <3 cm 

T2 >3 cm 

T3a >3 cm with spread into the aqueduct of Sylvius and/or foramen of 
Luschka, cerebral subarachnoid space, third or lateral ventricles 

T3b >3 cm with unequivocal spread into the brainstem; for T3b, surgical 
staging maybe used in the absence of involvement at imaging 

T4 >3 cm with spread beyond the aqueduct of Sylvius and/or the foramen 
magnum 

 
Metastasis classification 

M1 Microscopic tumour cells in CSF 

M2 Gross nodular seeding in cerebellum 

M3 Gross nodular seeding in spinal subarachnoid space 

M4 Metastasis beyond cerebrospinal axis 

*Ref. Chang et al. Radiology, 1969. 

 
Although the above clinical variables are essential for patient stratification, 

classification of MB based on histology must not be underestimated. Histological 

classification has been and still remains the mainstay in neuropathology diagnosis, 

and proves to be a useful combination tool to tailor the treatment and predict 

prognosis (Davis, Freels et al. 1998; Packer, Rood et al. 2003; von Hoff, Hartmann 

et al. 2010).  

 

1.2.3 Histological classification  

 

The latest morphological classification of medulloblastoma (WHO classification of 

tumors of the CNS, 2007) lists the following subtypes (Ellison, Love et al. 2004; 
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Louis, Ohgaki et al. 2007; Gilbertson and Ellison 2008): 1) Classic, 2) Desmoplastic, 

3) Medulloblastoma with extensive nodularity (MBEN), 4) Anaplastic, and 5) Large-

cell MB.   

Classic MB is the commonest type of histology observed in more than 70% of MB 

(Burger and Scheithauer 1994). They are composed of uniformly arranged, small 

round to oval tumour cells with hyperchromatic nuclei and indistinct cytoplasm (Fig 

1.4 A). Nuclear molding (denting the neighboring) may be a marked feature due to 

the dense population of tumour cells. Neuroblastic (Homer-Wright) rosettes, which 

are tumour cells arranged in a circular fashion tangled around cytoplasmic 

processes, are observed in about 40% of classic MB. A high proportion of tumours 

show nuclear polymorphism, high mitotic activity and individual cell apoptosis (in the 

form of nuclear pyknosis or karyorrhexis as opposed to generalised geographic 

necrosis). Mitoses are seen in about 25% of the cases (Burger, Grahmann et al. 

1987) in keeping with the notion that MB are predominantly proliferative tumours. 

Occasional features include nuclear gigantism, multinucleate giant cells and atypical 

mitosis. A minority of cases have pseudopalisading necrosis, vascular proliferation or 

neovascularisation, calcification and massive haemorrhage. MB with classic 

histology has an intermediate prognostic risk, i.e., the outcomes are shown to be 

better than that of anaplastic/large cell variants, but worse than that of 

desmoplastic/MBEN variants [Fig 1.4 E] (Rutkowski, von Hoff et al. 2010).   

Desmoplastic MB constitutes about 7% of MB, and are typically characterised by 

the presence of nodular architecture with desmoplasia (increased reticulin/collagen) 

within the inter-nodular areas (Fig 1.4 B). The cells outside the nodules (within the 

desmoplasia) often show increased pleomorphism while the cells within the nodules 

are less pleomorphic and usually have a neuronal (neurocytic) phenotype with 
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positivity for neuronal markers such as synaptophysin and NeuN (McManamy, Pears 

et al. 2007). Desmoplasia may also occur in other types of MB as reaction to 

leptomeningeal invasion, and hence should be interpreted with caution (Gilbertson 

and Ellison 2008). The molecular and cytogenetic abnormalities in 

nodular/desmoplastic MBs are distinct compared to other subtypes (McManamy, 

Pears et al. 2007), and have a significantly better outcome compared to other 

subtypes. In adults, desmoplastic MB is the commonest variant observed, compared 

to children (Abacioglu, Uzel et al. 2002).    

Medulloblastoma with extensive nodularity (MBEN) represent about 3% of MB, 

and as the name suggests, they are extremely nodular giving a ‘grape-like’ 

appearance on imaging. The uniformly round intranodal cells are arranged in a 

streaming fine fibrillary background and due to their resemblance to neurocytes of 

central neurocytoma, this subtype have been previously termed as cerebellar 

neuroblastoma (Pearl and Takei 1981). These tumour subtype predominantly occur 

in children less than 3 years of age, and have a favourable outcome (Giangaspero, 

Perilongo et al. 1999).  

Anaplastic MB represent upto 15% of all MB and are characterised by large cells, 

and more striking nuclear pleomorphism, mitoses (with a high Ki-67 labelling index) 

and nuclear molding as compared to the classic type. They also have increased 

atypical mitoses, apoptotic bodies and show a distinctive cell wrapping phenomenon 

[Fig 1.4 C, wrapping of one cell around another] (Ellison, Love et al. 2004).  

Large cell MB accounts for about 3-4% of all MB, and histologically resembles the 

anaplastic type. They are composed of large cells with prominent nucleoli and more 

abundant cytoplasm (Fig 1.4 D) and they contain large areas of necrosis and display 

a high mitotic count. They are thought to resemble rhabdoid/atypical teratoid (AT/RT) 
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tumours of cerebellar origin, although they differ from these tumours in their 

immunophenotype and cytogenetic features (Giangaspero, Rigobello et al. 1992).  

Anaplastic and large cell variants are thought to form a continuum, and they have 

been grouped together for prognostic purposes and referred to as large-

cell/anaplastic (LCA) MB. LCA is biologically very aggressive and have the worst 

prognosis compared to other subtypes [Fig 1.4 E] (Giangaspero, Rigobello et al. 

1992; Ellison 2002; McManamy, Lamont et al. 2003).    

Rare forms of MB, such as medullomyoblastoma and melanotic MB are recognised. 

Medullomyoblastoma show rhabdomyoblast (immature skeletal muscle cell) 

differentiation, which may show formation of crude skeletal muscle fibrils or scattered 

large globular cells with desmin immunoreactivity (Smith and Davidson 1984). 

Melanotic MB, which otherwise has the histological appearance of classic MB, 

contains melanin pigment in a proportion of the cells, occasionally forming 

epithelioid, tubular or papillary pattern (Dolman 1988).  The biological behavior of 

these rare variants have been thought to be similar to classic MB, however the rarity 

of these cases has limited a thorough assessment (Ellison 2002).  

The common features that any  of the subtypes may display are i) invasion of the 

tumour cells into the cortex, deep white matter or the deep cerebellar nuclei, ii) 

extension into the subarachaoid space (4th ventricle), iii) leptomeningeal tumour 

deposits iv) supratentorial dissemination and v) metastasis outside of neural axis. 

Although the morphological differentiation of MB can be diverse, it mainly tends 

to occur along the neuroepithelial lines with the neuronal differentiation being the 

commonest. In keeping with this, immunoreactivity for synaptophysin is a 

characteristic feature of medulloblastoma and it is the most prominent in the nodules 
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and in the centre of neuroblastic rosettes. Other neuronal lineage markers such as 

nestin and vimentin show variable expression. Glial differentiation is rare, and when 

present, may form small groups of cells with astrocytic phenotypes, with GFAP (glial 

fibrillary acidic protein) immunoreactivity. Other than synaptophysin and GFAP, other 

markers such as S100 (marker of neural crest derivatives including glial cells), MIB-1 

(a proliferation marker, similar to Ki-67), Bcl-2 (B-cell lymphoma 2) and TP53 

(tumour protein 53) have also been associated with a minority of MB, the clinical 

significance of which is yet to be established (McLendon, Friedman et al. 1999). 

Ependymal differentiation is extremely rare, and if present raises possibility of other 

tumour diagnosis. In about 5% of the cases, mature ganglion cells are present 

(Burger, Grahmann et al. 1987).  
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Fig. 1.4 Histological variants of medulloblastoma and their predicted prognosis  
 
(A) Classic type, showing densely arranged small round to oval cells with hyperchromatic nuclei and 
indistinct cytoplasm. Also seen is nuclear molding. Classic type is the commonest histological MB 
variant.  (B) Desmoplastic type, with nodular tumour architecture. (C) Anaplastic type, showing large 
cells with more striking nuclear pleomorphism and nuclear molding, Arrow pointing to an example of 
cell wrapping phenomenon. (D) Large cell type comprising large cells with prominent nucleoli and 
more abundant cytoplasm. (E) Kaplan-Meier plot showing overall survival for different subtypes. 
Classic histology (yellow line) is associated with intermediate prognosis as compared to 
desmoplastic/nodular type (blue interrupted line, best prognosis) and large cell anaplastic type (red 
dots, worst prognosis). This picture is reproduced with permission from Rutkowski et al. JCO 2010. 
JCO copyright clearance licence no. 3254311484547 
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1.2.4 Genetic abnormalities in the pathogenesis of MB: 

 

Chromosomal aberrations: 

Common cytogenetic abnormalities in MB include isochromosome 17q (i17q), 

deletions of 17p and aberrations of chromosome 1. The most common specific 

abnormality, associated with more than 50% of the cases, is i17q (Bigner, Mark et al. 

1988) which mainly has a dicentric (with two centromeres) structure, similar to i17q 

occurring in leukemia. Although i17q is the most common mechanism for loss of 17p 

in MB, in minority of cases, partial or complete loss of 17p can occur by interstitial 

deletion, unbalanced translocation or monosomy 17 (Biegel, Burk et al. 1992). The 

types of aberrations of chromosome 1 found in MB are variable, and include 

unbalanced translocations, deletions and duplications (Griffin, Hawkins et al. 1988). 

Using comparative genomic hybridisation (CGH), further genomic imbalances in MB 

such as loss of chromosome 10q, loss of chromosome 11, and gain of chromosome 

7 (Reardon, Michalkiewicz et al. 1997) were identified. Isolated examples of 

deletions of 6q, 9q, 10q and 16q and gain of 4p, 5p, 7q, 8q and 9p have also been 

reported (Avet-Loiseau, Venuat et al. 1999; Giangaspero, Binger et al. 2000).  

These alterations are not distributed equally among the histologic variants. Presence 

of i17q in tumours has been associated with a poor clinical outcome, suggesting that 

this cytogenetic alteration may contribute to the development of aggressive variants 

of medulloblastoma. In contrast, monosomy 6 has recently been shown to occur 

exclusively in tumour with favourable prognosis, mainly in classic medulloblastomas. 

(Thompson, Fuller et al. 2006). Recently, gain of 6q and 17q were shown to be 

associated with poor prognosis, raising the possibility that they could be used as 
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independent markers of disease progression and survival (Pfister, Remke et al. 

2009). 

Gene amplification 

MYC (c-Myc) amplification (detected by fluorescent in-situ hybridisation/FISH) is the 

most common gene amplification found in MB containing double minutes (fragments 

of extrachromosomal DNA), followed by MYCN (N-myc) amplification which is found 

less often, together occurring in 6-8% of all MB (Badiali, Pession et al. 1991; 

Tomlinson, Jenkins et al. 1994). In particular the large cell histological variant which 

is associated with poor prognosis, carries a high incidence of MYC amplification 

(Brown, Kepner et al. 2000), which renders the tumour resistant to chemotherapy, 

resulting in fatal outcomes (Scheurlen, Schwabe et al. 1998).  Further studies have 

confirmed the association of MYC and MYCN amplification with aggressive MB types 

(Aldosari, Bigner et al. 2002). Pfister et al. have shown that MYC/MYCN 

amplification is associated with poor outcome in MB (hazard ratio for death = 2.75, 

reference being 1.00), suggesting their possible use as independent prognostic 

markers (Pfister, Remke et al. 2009).  

Mutations of tumour suppressor genes: 

Mutations of TP53 (P53, located on 17p13) have been identified in a subset of 5-

10% of MB (Adesina, Nalbantoglu et al. 1994; Batra, McLendon et al. 1995). Some 

studies have reported high association of TP53 mutation with large cell/anaplastic 

type of MB carrying a poor prognosis, hence suggesting that alterations within the 

TP53-ARF tumour suppressor pathway contribute to the development of aggressive 

types of MB (Frank, Hernan et al. 2004). Marino et al. have shown that somatic 

inactivation of Rb (retinoblastoma) gene in the EGL precursor cells of the developing 
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cerebellum in the p53-null mouse, induced high incidence of medulloblastoma 

formation of large cell anaplastic type (Marino, Vooijs et al. 2000),  through 

acquisition of additional genetic mutations affecting N-Myc and Ptch2 (Shakhova, 

Leung et al. 2006).  

PTEN (phosphatase and tensin homolog, located on chromosome 10q) mutations 

although found to be common in high grade gliomas, are rare in MB (Rasheed, 

Stenzel et al. 1997). However, a recent study has shown PTEN homozygous 

deletion to be present in 33% of MB (Inda, Mercapide et al. 2004). Also, Castellino et 

al. have demonstrated that heterozygosity for Pten promotes tumorigenesis in a 

mouse model of medulloblastoma and that PTEN expression is a marker of 

favourable prognosis (Castellino, Barwick et al. 2010).  

DMBT1 [deleted in malignant brain tumour 1, a member of scavenger receptor 

cysteine-rich (SRCR) superfamily, located on chromosome 10q] deletion, first cloned 

in a MB cell line, was identified and implicated in pathogenesis of small subset of MB 

(Mollenhauer, Wiemann et al. 1997).  

Familial syndromes and their genetic pathway mutations: 

Of particular importance, loss/mutations of tumour suppressor genes associated with 

two familial syndromes (Huang, Mahler-Araujo et al. 2000; Zurawel, Allen et al. 

2000) have been shown to predispose to MB – 1) Gorlin’s syndrome, and 2) Turcot 

syndrome. These syndromes are caused by the deregulation of the SHH and WNT 

signalling pathway and they will be discussed in parallel, as this should be useful to 

understand the novel molecular classification of MB which will be discussed later.  
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Gorlin’s syndrome [or naevoid basal cell carcinoma syndrome (NBCCS)] is a rare 

autosomal dominant condition with skeletal abnormalities, facial dysmorphism, large 

body size, ectopic calcifications, multiple basal cell carcinoma (Lo Muzio 2008).  

Medulloblastoma arising in Gorlin’s syndrome are known to have desmoplastic 

histology (Ellison 2002). As mentioned previously (section 1.1.2.3.2), Gorlin’s 

syndrome is characterised by germ line mutations of the PTCH (Patched) gene. As 

MB are thought to originate from GNPs of the EGL in developing cerebellum, 

deletion of PTCH in these cells result in malignant transformation leading to 

medulloblastoma. PTCH1 mutations have also been identified in about 9% of 

sporadic medulloblastoma (Thompson, Fuller et al. 2006). The function of Ptch1 as 

tumour suppressor was proved when 15% of mice with heterozygous deletion for 

Ptch1 developed medulloblastoma (Goodrich, Milenkovic et al. 1997). Mutations or 

deletions of Suppressor of Fused (SUFU) locus, a downstream molecule in the SHH 

signalling (Fig 1.6), have also been associated with sporadic MB (Taylor, Liu et al. 

2002), indicating that SUFU also acts as a tumour suppressor gene. Mutations of 

SMO (Smoothened) have also been reported in a significant proportion of MB 

(Zurawel, Allen et al. 2000).   

Turcot’s syndrome (Turcot, Despres et al. 1959) is a rare heritable disorder, 

associated with colonic cancer and malignant neuroepithelial brain tumours such as 

gliomas, and medulloblastoma. The syndrome is characterised by mutations of the 

APC (Adenomatous Polyposis Coli, located on chromosome 5q) gene (Huang, 

Mahler-Araujo et al. 2000). Since its first description, this syndrome has been refined 

to also include brain tumour polyposis (BTP) syndrome type 2, with APC mutation, 

which mainly develop medulloblastoma as their brain tumour component (Paraf, 

Jothy et al. 1997). APC is a component of the wingless (WNT) pathway (Ille and 
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Sommer 2005), which regulates various developmental processes including the 

proliferation and the fate of neural progenitor cells (WNT pathway has been 

described in section 1.1.2.3.2, Fig 1.2 A). Mutations in a range of WNT pathway 

members have been identified in sporadic medulloblastoma. They include CTNNB1 

(β-catenin 1, 8%), APC (3%) and AXIN [2%] (Zurawel, Chiappa et al. 1998; Huang, 

Mahler-Araujo et al. 2000; Yokota, Nishizawa et al. 2002). Compared to SHH 

pathway mutations, WNT pathway mutations are less frequent. In an analysis of 

childhood MB (from children entered in the International Society of Pediatric 

Oncology/United Kingdom Children’s Cancer Study Group) PNET3 trial, those cases 

with positivity for nuclear CTNNB1 showed better survival [5 year event free survival 

(EFS) of 89%], compared to CTNNB1 nuclear negative cases [5year EFS of 60%] 

(Ellison, Onilude et al. 2005). Another study from St Jude MB trial showed similar 

results, but importantly this study also demonstrated that CTNNB1 nucleopositive 

tumours and those tumour with Gli and SFRP1 positivity (indicative of SHH pathway 

activation) are mutually exclusive, and have significantly different survival rates 

favouring CTNNB1 nucleopositive tumours (Gajjar, Chintagumpala et al. 2006). 

Although SHH and WNT mutations appear mutually exclusive, these are only found 

in 30-40% of the MB (Thompson, Fuller et al. 2006).   

In keeping with the notion that mutations in signalling pathways regulating cerebellar 

development lead to medulloblastoma, there is evidence that also mutations leading 

to activation of the NOTCH pathway  are involved in MB tumorigenesis (Gilbertson 

and Ellison 2008). Notch signalling, discussed before (in section 1.1.2.3.2, Fig 1.2 

B), is known to play a multifaceted role in the differentiation, morphogenesis and 

functioning of the vertebrate nervous system (Louvi and Artavanis-Tsakonas 2006)A 

study has shown that activation of NOTCH2 in embryonal brain tumour cell lines 
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accelerated their proliferation and in vivo growth; this study also observed NOTCH2 

to be expressed at high levels in some MBs  and to be occasionally amplified at DNA 

level (Fan, Mikolaenko et al. 2004). Other syndromes where MB may develop 

include i) Li Fraumeni syndrome, with germ-line TP53 mutation (Tabori, Baskin et al. 

2010), and ii) Ruenstein-Taybi syndrome, with germ-line CREBBP (CREB binding 

protein) deletion, which is the first syndrome identified for non-WNT/non-SHH MB. 

(Bourdeaut, Miquel et al. 2013).  

Mutations in RAS signalling pathway are known to be associated with certain 

syndromes such as Noonan syndrome with multiple lentigines [or Leopard 

syndrome, with skin, facial and cardiac defects] (Sarkozy, Digilio et al. 2008). 

Recently Rankin et al., have reported an adult patient with clinical and molecular 

features of Leopard syndrome with PTPN11 mutation to have had MB as a child, 

indicating that MB may be an association with RAS associated mutations (Rankin, 

Short et al. 2013).  

Alternative splicing: 

Alternative splicing is a controlled mechanism for generating protein diversity, and 

refers to a primary transcript being spliced in more than one pattern to generate 

multiple, distinct mRNAs (Koscielny, Le Texier et al. 2009). Previous studies have 

reported alternative splicing of individual genes in human MB (Ferretti, Di Marcotullio 

et al. 2006; Li, Shu et al. 2007). A more recent, genome wide analysis of alternative 

splicing in paediatric MB and normal cerebellum by Menghi et al., have identified 

eleven validated splicing events associated with MB (Menghi, Jacques et al. 2011). 

Three of the eleven genes (DAAM1, EHBP1 and TRRAP) were shown to have 

characteristics for Sonic Hedgehog-driven MBs. Furthermore, they demonstrate that 
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some of the tumour associated splicing patterns were observed in the GNP cell 

cultures, suggesting  that abnormal alternative splicing during cerebellar 

development may lead to failure of neuronal differentiation and MB development 

(Menghi, Jacques et al. 2011). The main genes  known to participate in 

medulloblastoma pathogenesis, are summarised in Table 1.3 (de Bont, Packer et al. 

2008).  

Table 1.3 Differentially expressed genes in medulloblastoma*  

Genes Change type Approximate % 
of tumour 
association 
(where known) 

 
 

Genes Change type Approximate % 
of tumour 
association 
(where known) 

SHH signalling  IGF signalling continued 

PTCH1 Mutation 4 – 13   IGF-1R Phosphorylation 80 

PTCH2 Overexpression   IRS-1 Overexpression  

SUFU Mutation 0 – 9   IGF-2 Overexpression  

Smo Mutation 0 – 10  AKT/PKB Phosphorylation  

Gli Overexpression 30  Erk-1 Phosphorylation  

BMI1** Overexpression 67  Erk-2 Phosphorylation  

RENKCTD 11 Deletion 39  IGFBP-2 Overexpression  

Wnt signalling  CXCR4 Overexpression 51 

Axin 1 Mutation 1 – 6  PDGFRB Overexpression  

Deletion 12 – 41  OTX2 Overexpression >70 

Axin 2 Mutation 3  Amplification 33 

APC Mutation 1 – 4  ATOH1 Expression  

β-catenin Mutation 1 – 63  P75 Expression  

Survivin  Overexpression  5 – 50   Overexpression  

SOX4 Overexpression    TrkA Overexpression 67 

SOX11 Overexpression   TrkC Overexpression 29 - 73 

Cyclin D1 Overexpression   Heparanase Expression 62 - 88 

Cyclin D2 Overexpression   NEUROG1 Expression 55 

Lef1 Overexpression   Calbindin Expression 41 

Notch signalling  P53 Mutation 0 - 11 

HES1 Overexpression  <46  PAX5 Overexpression 70 

HES5 Overexpression <71  MDM2 Overexpression 0 - 20 

JAG1 Overexpression   CDK6 Overexpression 30 

Notch1 Overexpression 75  HIC1 Hypermethylation 70 

Notch2 Overexpression 12 – 15  EEF1D Overexpression  

Notch3 Overexpression   RPL30 Overexpression  

FOXG1 Overexpression >90  RPS20 Overexpression  

Musashi Overexpression   STMN1 Overexpression  

ErbB signalling  hTERT Overexpression 42 

ErbB4 Overexpression 66  SGNE1/7B2 Hypermethylation 70 

ErbB2 Overexpression 70 - 86  RASSF1A Hypermethylation 80 - 90 

CIC Overexpression   CASP8 Hypermethylation 90 

NRG-1β Overexpression 87  ZIC2 Hypermethylation  

c-Myc Amplification 5 – 10  P14-ARF Hypermethylation 4 - 50 

Overexpression 42 

Mnt Underexpression 43  P16INK4A Hypermethylation 2 - 14 

JPO2 Overexpression   TIMP3 Hypermethylation 0 - 11 

N-Myc Ampification 5  CDH1 Hypermethylation 8 

IGF signalling   P18INK4C Hypermethylation 20 

MCJ Hypermethylation 33  S100A6 Hypermethylation 12 

RB1 Hypermethylation 18  S100A10 Hypermethylation 12 

DKK1 Histone acetylation   S100A4 Hypomethylation 17 

* Ref. De Bont et al. Neuro Oncol 2008. ** In this study we are primarily interested in the role of BMI1.  
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1.2.5 Current treatment strategies:    

 

Following patients’ clinical, radiological and pathological evaluation, a 

multidisciplinary team makes the treatment recommendation. The treatment options 

are based on patient stratification into average, intermediate and high risk groups, 

which takes into account several factors including age of the patient, associated co-

morbidities, stage of the tumour/extent of resection, histological tumour type and 

associated genetic markers (Packer, Cogen et al. 1999). The criteria for patient risk 

stratification may further evolve owing to advances in understanding  the tumour 

biology (Packer, Rood et al. 2003). Generally, the main modalities of treatment are 

surgical excision, radiotherapy and chemotherapy; mostly a combination of all the 

three. Rarely (especially in recurrent cases) stem cell/bone marrow transplantation 

may be recommended. In advanced or terminal cancer, palliative care/support may 

be the only appropriate management option.  

Surgery 

Surgery is considered as the gold-standard treatment, which remove/reduce tumour 

bulk and provides tumour material for histologic confirmation of tumour type. It is 

crucial to maximally resect the primary MB tumour, and therefore aggressive surgical 

approaches are undertaken to always excise the tumour as much as possible 

(Albright, Wisoff et al. 1996). In most cases of MB in children, the tumour is located 

at the midline in the posterior fossa, and can be accessed via sub-occipital 

craniotomy, in a prone (face down) position (Cogen and Donahue 1999). It may 

necessitate partial resection of the cerebellar vermis to access the tumour, but the 

floor of IV ventricle needs to be protected. Neuronavigation using stereotactic 

guidance and operating microscope to carefully identify crucial neural structures are 
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used. Associated hydrocephalus is treated by ventriculostomy [shunt catheter] (Lee, 

Wisoff et al. 1994), which may have to be left in place permanently in a proportion of 

the patients; the likelihood of which is increased in infants and those children with 

leptomeningeal dissemination. Common postoperative complications include diplopia 

(sixth-nerve palsies), ataxia (due to vermis dissection) incoordination (if cerebellar 

peduncles are resected), and rarely (5-15%) mutism-associated pseudobulbar signs 

(Pollack, Polinko et al. 1995). Most of these findings tend to resolve over a few 

weeks post operatively (Packer, Cogen et al. 1999). Post operatively MRI scan is 

done routinely, to ensure that ‘total’ or ‘near total’ resection has been achieved. If 

not, a second operation to remove the residual tumour is undertaken in non-

metastatic disease (MacDonald, Rood et al. 2003).  

Radiation treatment 

Adjuvant radiation therapy is usually given 4-6 weeks after surgery, and remains the 

single most effective means of postoperative treatment for children with MB (Packer, 

Cogen et al. 1999; Taylor, Bailey et al. 2004). Prophylactic craniospinal radiotherapy 

(csRT, covering entire craniospinal axis) is administered routinely to the newly 

diagnosed patients, independent of radiological or cytological (CSF) evidence of 

spinal metastasis, as this is shown to maximise survival (Bouffet, Bernard et al. 

1992). In children less than 3 years of age, conventionally, 3600 cGy and 5400-5960 

cGy is given to entire neuraxis and the posterior fossa (total dose) respectively 

(Landberg, Lindgren et al. 1980; Hershatter, Halperin et al. 1986)(Hershatter et al., 

1982; Landberg et al., 1980). It is of note that use of next generation radiotherapy 

such as proton therapy and intensity modulated radiotherapy (IMRT) are emerging 

(St Clair, Adams et al. 2004). 
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Chemotherapy 

Untoward neurocognitive and endocrine effects resulting from irradiation of the 

developing neuraxis in children poses a great obstacle for this treatment, prompting 

clinical trials using adjuvant chemotherapy. These clinical trials showed variable 

benefits (Bailey, Gnekow et al. 1995; Deutsch, Thomas et al. 1996; Kuhl, Muller et 

al. 1998), including preserved intellectual or neurocognitive ability (Ris, Packer et al. 

2001) compared to those of conventional radiotherapy alone. Chemotherapy, is a 

standard component of the treatment in older children (> 3 years of age), and is 

usually given during and after radiation therapy (for about 12 months following 

radiotherapy).In younger children (< 3 years of age), chemotherapy is used to delay 

or sometimes to avoid the need for radiotherapy in localised MB. As the treatment 

regime differs depending on the age of the patient and their risk group, this will be 

discussed under different headings (NCI 2013).  

Children aged 3 years or younger: The main principle in this age group is to 

achieve adequate cure with chemotherapy alone, removing the need of adjuvant 

radiotherapy. Several studies have observed that desmoplastic and MBEN histology, 

which is common in younger children, have favourable outcome even with 

chemotherapy alone (Geyer, Sposto et al. 2005; von Bueren, von Hoff et al. 2011), 

while other histologic subtypes fare less well (Grill, Sainte-Rose et al. 2005), 

necessitating adjuvant radiotherapy. Newer regime using higher dose chemotherapy 

(marrow ablative) followed by autologous bone marrow/stem cell rescue, has been 

shown to ablate the need of radiotherapy in a subgroup of patients younger than 3 

years of age (Chi, Gardner et al. 2004; Dhall, Grodman et al. 2008).  
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Children older than 3 years, with average-risk MB: Prospective randomised and 

single-arm trials have demonstrated that adjuvant chemotherapy during and after 

radiotherapy improve overall survival in children with average-risk MB. (Bailey, 

Gnekow et al. 1995; Kortmann, Kuhl et al. 2000; Carrie, Grill et al. 2009).  A 

prospective multi-centre trial shows a favourable outcome (5-year overall survival of 

85%) when risk-adapted radiotherarpy, followed by a short (4-month) dose-intensive 

chemotherapy supported by stem cell rescue was used (Gajjar, Chintagumpala et al. 

2006). This study also showed a poor survival associated with large cell/anaplastic 

type of MB, compared to other histological subtypes.  

Children older than 3 years with high-risk MB: The drugs that are used for 

average-risk patients have been used extensively in high-risk (Jakacki, Burger et al. 

2012). Post radiation, short, dose-intensive chemotherapy supported by stem cell 

rescue study mentioned above, also showed favourable outcome in high-risk MB ([5-

year overall survival and 5-year progression free survival of ~70%] (Gajjar, 

Chintagumpala et al. 2006). Innovative drug delivery system and decreased 

neurotoxicity of chemoradiotherapy are major directives for future clinical trials.  

Adults: Because of the rarity of MB in adults, prospective comparative 

chemotherapy trials are limited. Adolescents and young adults tolerate 

chemotherapy relatively poorly (Tabori, Sung et al. 2005). Several studies have 

shown no benefit of addition of chemotherapy to radiotherapy (Carrie, Lasset et al. 

1994; Prados, Warnick et al. 1995; Chan, Tarbell et al. 2000), but the studies have 

been small and underpowered, suggesting that further comparative studies are 

needed. 
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Shortfalls of current therapy: Despite recent advances and multimodality in 

treatment MB is still associated with high morbidity and mortality. Approximately 40% 

of childhood tumours are treatment refractory, leading to recurrence, and about 30% 

of the patients die because of the tumour. Those who survive the treatment often 

have a significantly impaired quality of life (Jones, Jager et al. 2012). Novel therapies 

targeting specific molecular pathway and improved classification are necessary to 

improve patient stratification and response to less toxic therapies. Therefore 

understanding different molecular and genetic pathway giving rise to this 

heterogeneous tumour is crucial. 

   

1.2.6 Recent advances in molecular classification of medulloblastoma 

(molecular subgroups) 

 

As discussed previously (section1.2.5), clinical prognostication and stratification in 

patients with MB include clinical factors, histological type and expression of certain 

molecular markers. However, it is increasingly clear that MB is not a single disease 

entity.  Based on their gene expression profiles, DNA copy number aberrations, and 

analysis of transcriptional profiles, several research studies (Pomeroy, Tamayo et al. 

2002; Thompson, Fuller et al. 2006; Kool, Koster et al. 2008; Fattet, Haberler et al. 

2009; Northcott, Nakahara et al. 2009; Al-Halabi, Nantel et al. 2011; Cho, Tsherniak 

et al. 2011; Northcott, Korshunov et al. 2011) have provided evidence to suggest that 

MB can be classified into multiple molecular subgroups. Furthermore, it has been 

suggested that the tumours belonging to each subgroup differ in their demographics 

and clinical outcomes. A consensus conference, which took place in 2010 in Boston, 

USA, came to a consensus that the overall evidence supported the distinction of MB 

into four main non overlapping molecular subgroups, namely, WNT, SHH, Group 3 
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and Group 4 (Taylor, Northcott et al. 2012). Two groups, characterized by activation 

of WNT and SHH pathways respectively, are better characterized molecularly, while 

the molecular signatures underlining Groups 3 and 4 are less well defined. There 

was evidence that further subtypes existed within each of these groups (decided to 

be named with Greek letters - α, β, γ etc.). The participants of the consensus agreed 

that molecular classification will continue to evolve in the future, as larger cohorts are 

analysed in greater depth (Northcott, Korshunov et al. 2011). .      

 

1.2.6.1 WNT subgroup  

 

WNT subgroup has a very good long term prognosis compared to other subgroups 

(Clifford, Lusher et al. 2006; Ellison, Dalton et al. 2011). Due to their good prognosis, 

the possibility to undertake a clinical trial to de-escalate therapy (to avoid morbidities 

associated with treatment) is being discussed for this group of patients. The gender 

ratio for this subgroup is equal in males and females, and they can occur in all ages, 

but are uncommon in infants. Genetic abnormalities that define tumours in this 

subgroup (Hamilton, Liu et al. 1995; Zurawel, Chiappa et al. 1998) are: i) germline 

mutations of WNT pathway inhibitor APC (that predisposes to Turcot’s syndrome), 

and ii) somatic mutations of CTNNB1 encoding β-catenin (Fig 1.5). The tumours in 

this group showed monosomy 6 (92.6% of cases as opposed to 7.4% in SHH 

subgroup) as the predominant cytogenetic abnormality, and one of the genetic 

abnormality associated with monosomy 6 is serum/glucocorticoid regulated kinase 1 

[SGK1] (Ellison, Dalton et al. 2011). However occasional reports of cases with WNT 

transcriptional signature without monosomy 6 (Northcott, Korshunov et al. 2011), and 

those with mutations in both CTNNB1 and PTCH together (Parsons, Li et al. 2011), 

complicate the definition of this subgroup. Immunohistochemical marker DKK1 
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(dickkopf WNT signalling pathway inhibitor 1) has been found to be strongly 

associated to this subgroup of tumours (Northcott, Korshunov et al. 2011; Remke, 

Hielscher et al. 2011).  The majority of the tumours in this group have classic 

histology; and although tumours with large cell/anaplastic histology have been 

reported, this does not seem to affect the prognosis negatively (Ellison, Kocak et al. 

2011). A mouse model of Wnt group has been established, which suggest that the 

tumours from this subgroup arise from lower rhombic lip of the cerebellum (Gibson, 

Tong et al. 2010).       

1.2.6.2 SHH subgroup 

 

The SHH subgroup MB have an intermediate prognosis, similar to Group 4 patients, 

worse  than WNT (good) and better than Group 3 (poor). There is no difference in 

gender ratio, and they show a dichotomous age distribution, being common in infants 

(0-3 years) and in adults (> 16 years), but less common in children (3-16 years) [Fig 

1.5]. Genetic abnormalities that define this subgroup of tumours (Bale, Falk et al. 

1998; Brugieres, Pierron et al. 2010; Northcott, Hielscher et al. 2011; Northcott, 

Korshunov et al. 2011) are i) germline mutations in Shh receptor PTCH 

(predisposing to Gorlin syndrome), ii) germline mutations in SHH inhibitor SUFU 

(particularly in infantile MB), iii) somatic mutations of SHH pathway members such 

as PTCH, SMO and SUFU, and, amplifications of GLI1 and GLI2, and iv) deletion of 

chromosome 9q (where PTCH gene is located). Although this MB subgroup can be 

identified on the basis of transcriptional profiling (Taylor, Liu et al. 2002; Northcott, 

Fernandez et al. 2009),  other approaches (Al-Halabi, Nantel et al. 2011; Ellison, 

Dalton et al. 2011; Northcott, Korshunov et al. 2011) to identify this subgroup by 

immunohistochemical staining for SFRP1(secreted frizzled-related protein 1) or 
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GAB1 (GRB2-associated binding protein 2) have been described. The most common 

histology type associated with SHH is nodular/desmoplastic MB, although this is 

considered not be an effective marker as up to 50% of MB in SHH subgroup are not 

of the nodular/desmoplastic type. The majority of the mouse models for MB 

established so far belong to Shh subgroup of tumours and they have been shown to 

originate from Math1-positive granule cell progenitors (Hatten and Roussel 2011).  

 

1.2.6.3 Group 3 

 

Group 3 MB is characterized by the worst prognosis as compared to all other 

subgroups (Taylor, Northcott et al. 2012). They are more common in males than in 

females, and are found in children and infants, but almost never in adults (Fig 1.5). 

Although no specific molecular pathway characterises this subgroup, their main 

genetic abnormalities include i) MYC amplification/overexpression (Cho, Tsherniak 

et al. 2011; Hatten and Roussel 2011), ii) amplification/overexpression of OTX2  (de 

Haas, Oussoren et al. 2006; Adamson, Shi et al. 2010), iii) overexpression of several 

genes that are associated with retinal development [although the role of these genes 

in Group 3 MB pathogenesis is yet to be completely understood] (Kool, Koster et al. 

2008) and iv) gain of chromosome 1q, loss of chromosome 5q and chromosome 10q 

(more likely to have these compared to Group 4).  

There is a high association of Group 3 MB with c-MYC (or MYC) overexpression; 

and MYC amplification appears to be almost always limited to Group 3 (Northcott, 

Korshunov et al. 2011). In fact, Group 3 patients are being subdivided into different 

subgroups based on MYC amplification status namely, 3α (harbor) and 3β (do not 

harbor), where the latter show similar prognosis as Group 4 patients (Cho, Tsherniak 
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et al. 2011). The gold standard for diagnosis of Group 3 tumours is by means of 

transcriptional profiling , but  immunohistochemistry for the marker NPR3 (natriuretic 

peptide receptor 3) has been suggested as a reliable Group 3 marker (Northcott, 

Korshunov et al. 2011). Group 3 MB mostly show classic and large cell/anaplastic 

type histology, and are frequently metastatic (Northcott, Korshunov et al. 2011). 

There is a need to focus on further understanding of underlying pathogenesis, 

establish practical biomarkers, and develop accurate mouse models for MB of this 

subgroup in particular, as they bear the worst prognosis. Recently however, Pei et al. 

have described a novel model of Myc expressing and mutant p53 bearing cerebellar 

stem cell orthotopic xenograft as a representative model of Group 3 (Pei, Moore et 

al. 2012).     

1.2.6.4 Group 4 

 

Group 4 MB are characterised by an intermediated prognosis as discussed above. 

They are prototypical MBs, arising in young boys (i.e. Common in children with male 

preponderance) and displaying a classic histology, and with isochromosome 17q 

(Fig 1.5). However this subgroup has a diverse molecular pathogenesis, and 

currently tumours belonging to this subgroup are identified through transcriptional 

profiling (Cho, Tsherniak et al. 2011; Taylor, Northcott et al. 2012). Isochromosome 

17q is also seen in Group 3 tumours, but its association with Group 4 tumours is 

much stronger  [26% vs 66%] (Northcott, Korshunov et al. 2011). Isolated deletion of 

17p is seen Group 3 and Group 4, but not in SHH or WNT subgroups. The other 

notable genetic alteration in Group 4 tumours is loss of X chromosome in females. 

Multiple studies have identified over-representation of genes involved in neuronal 

differentiation and development in Group 4 MB (Kool, Koster et al. 2008; Cho, 
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Tsherniak et al. 2011; Northcott, Korshunov et al. 2011), although their clinical 

relevance is not yet clear.  The Polycomb group gene BMI1 (the gene that we are 

interested in our study, which will be discussed in details in the next section below) is 

also more prominently overexpression in Group 4 MB (or Northcott Group D) MBs 

(Behesti, Bhagat et al. 2013; Manoranjan, Wang et al. 2013). .   

KCNA1 (potassium voltage-gated channel, shaker-related subfamily, member 1) has 

been suggested as the immunohistochemical marker for Group 4 MB, but requires 

further validation (Northcott, Korshunov et al. 2011). In addition FSTL5 (follistatin-like 

5) has been suggested as an effective marker indicative of poor prognosis for non-

WNT/non-SHH group of MBs (Remke, Hielscher et al. 2011) . The 

immunohistochemical markers currently suggested for  the identification of the 

various subgroups (Taylor, Northcott et al. 2012) are listed in Table 1.4. However, at 

the consensus conference it was felt that until definitive immunohistochemical 

markers are established, histopathological classification (discussed in section 1.2.3) 

continues to play an important role in the diagnosis and risk stratification of 

medulloblastoma. Currently no mouse model for Group 4 MB has been reported. 

Although Group 4 tumours make >30% of all MBs, the molecular pathogenesis of 

this tumour subtype is the least understood, highlighting the need of further studies 

to clarify the pathogenesis of this subgroup.  

1.2.6.5 Adult MB 

 

SHH tumours make up to two-thirds of cases in adults, while Group 3 tumours are 

exceptionally rare (Remke, Hielscher et al. 2011). SHH MBs are extensively studied, 

and small molecules (GDC-0449) targeting smoothened (SMO) have been shown to 

be temporarily highly effective against SHH MBs (Rudin, Hann et al. 2009; Yauch, 
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Dijkgraaf et al. 2009). As the cerebellar development in adults is complete, targeting 

the molecular pathways involved in the normal cerebellum development may cause 

less toxicity in adults, making them an attractive cohort for molecular-targeted 

therapies. However there are still doubts about the degree of molecular and clinical 

similarities between adult and paediatric MBs. Some studies suggest a distinct 

molecular profiles and clinical behavior between the two tumour groups (Tabori, 

Sung et al. 2005; Tabori, Sung et al. 2006; Korshunov, Remke et al. 2010) . The 

transcriptomic differences between adult and paediatric patients defined under same 

subgroups have yet to be studied in detail.  

      

 

Fig. 1.5 Comparison of different molecular subgroup of MB 
 
Comparison of demographics, clinical features, genetics and expression profiles of the four major MB 
subgroups defined by the consensus conference. The affiliations of previously published papers on 
MB molecular subgrouping (prior to consensus) is mentioned on top. The terminology used to classify 
the subgroups by respective publication is mentioned (Eg. Consensus Group 4 was referred to as 
Group D by Northcott et al, 2010). This picture is reproduced from an open access article from 
Springerlink.com, with licence permitting any non-commercial use. Ref: Taylor M.D et al. Acta 
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Neuropathol 2011. Copyright - © The Author(s) 2011, including Michael D Taylor and Stefan M 
Pfister. 

 

Table 1.4 List of immunohistochemical markers being defined for different MB subgroup 

association* 

Subgroup Immunohistochemical marker 
suggested (pending further 
validation). 
 

WNT CTNNB1 (nuclear), DKK1 
 

SHH SFRP1, GLI1, GAB1 
 

WNT/SHH FILA, YAP1 
 

Group 3  NPR3 
 

Group 4  KCNA1 
 

Group 3/Group 4  FSTL5 

* Ref. Taylor et al. Acta Neuropathol, 2011. 

1.3 BMI1 gene 
 

The BMI1 (B lymphoma Moloney murine leukaemia virus Insertion region 1) gene 

was first isolated as an oncogene that cooperates with c-myc in the generation of 

mouse lymphomas through repression of tumour suppressor Cdkn2a or ink4a/Arf 

(Haupt, Alexander et al. 1991; van Lohuizen, Verbeek et al. 1991). Subsequently 

Bmi1 was identified as a transcriptional repressor belonging to the Polycomb group 

of genes in the vertebrates (van Lohuizen, Frasch et al. 1991; Alkema, van der Lugt 

et al. 1995; Jacobs, Kieboom et al. 1999; Jacobs, Scheijen et al. 1999). The gene 

(located on chromosome 10p in humans and 2 A3 in mice) encodes for a highly 

conserved nuclear protein with 326 amino acid sequence (mass of 37 kD) that 

contains a zinc-finger motif, and is closely related to other zinc-finger proteins such 

as Mel-18 (Tagawa, Sakamoto et al. 1990).  BMI1 (protein) is a component of the 

Polycomb group (PcG) multi-protein complex and is also known as Polycomb group 

RING finger protein 4 (PCGF4).  
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1.3.1 Polycomb group (PcG) proteins 

 

The PcG proteins are chromatin-modifying complexes that are essential for 

embryonic development. They were originally identified in the fruitfly  Drosophila 

melanogaster, as a repressor of Hox (homeobox) genes (Ringrose and Paro 2004), 

which define the position of structures and appendages along the anterior-posterior 

axis of the adult body. The name ‘Polycomb’ was introduced as mutation in these 

genes led to additional sex combs in the developing Drosophila embryo (Sparmann 

and van Lohuizen 2006). This function of PcG proteins is essentially conserved in 

vertebrates (including humans), with mutations leading to skeletal malformations 

(Akasaka, Kanno et al. 1996). At molecular level, PcG proteins are classified into two 

groups, termed Polycomb repressive complexes (PRCs) – 1) PRC 2 initiation 

complex (E.g. EED, EZH1), and 2) PRC1 maintenance complex, which contain core 

components such as Polycomb (PC), Polyhometoic (PH), really interesting new gene 

(RING) and Posterior sex combs (PSC). The best characterised members of the 

PRC1 complex in humans are BMI1 and RING1 (containing RING finger protein 

domain), CBX2 (containing chromodomain), and EDR1 (containing Zinc finger SPM 

domain). PRC2 is responsible for trimethylation of lysine 27 and lysine 9 of histone 

H3 (H3K27 and H3K9me3 respectively) and deletion of PRC2 member genes in mice 

has shown to result in early embryonic lethality, highlighting their importance in 

development (Schumacher, Faust et al. 1996; O'Carroll, Erhardt et al. 2001). PRC1 

acts via chromatin remodelling and modification of histones, and is able to recognise 

H3K27me3 mark through the chromodomain of PC. In addition, PRC1 possesses 

ubiquitin E3 ligase activity that targets H2AK119 (monoubiquitinates nucleosomal 

histone H2A at lysine 119), which is associated with gene repression (Wang, Wang 

et al. 2004). However the PRC core components are thought to assemble into 
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various distinct sub-units depending on the cellular functional context (Otte and 

Kwaks 2003). Although the role of PRCs in epigenetic gene silencing is well 

recognised,  the precise molecular mechanisms of PRC-mediated repression are still 

poorly understood (Sparmann and van Lohuizen 2006).  

1.3.1.1 Role of PcG in cancer 

 

The first association of PcG with cancer came from functional characterisation of 

BMI1 (discussed below), which is one of PcG protein most strongly associated with 

neoplastic development (Sparmann and van Lohuizen 2006). Other PcG members 

associated with cancer are SUZ12 (overexpression) in colon and breast cancer 

(Kirmizis, Bartley et al. 2003), and EZH2 (overexpression) in lymphoma, prostate 

and breast cancer (van Kemenade, Raaphorst et al. 2001; Varambally, 

Dhanasekaran et al. 2002; Kleer, Cao et al. 2003). Interestingly, an 

extranuclear/cytosolic role of EZH2, influencing cell adhesion and migration, thereby 

contributing to the metastatic capacity of the tumour cells has been described (Su, 

Dobenecker et al. 2005). Bracken et al. have shown [by chromatin 

immunoprecipitation (ChIP) and genome-wide screenings to identify PcG target 

genes in human fibroblast cells] that the PRC complex could contribute to cancer 

development by specifically silencing tumor-suppressor genes by DNA methylation 

(Bracken, Dietrich et al. 2006). In relation to this, they have also found an inverse 

correlation between the expression levels of the PcGs, EZH2, SUZ12, and BM11, 

and the target genes MT1G, HOXA5, and RARB in breast cancer.    

Stem cells are defined as cells that have the ability to extensively self-renew and to 

differentiate into progenitors. In addition to transcriptional repression of tumour 

suppressor genes, there is evidence that PcGs might influence tumour development 
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through modulation of stem cells (Valk-Lingbeek, Bruggeman et al. 2004). This is 

strengthened by the results demonstrating that PcGs maintain stem cell state (or 

stemness) by repression of alternative lineages genes necessary for differentiation 

(Boyer, Plath et al. 2006; Lee, Jenner et al. 2006). Moreover, there are results 

highlighting that stem cell fate is in part governed by the PcG genes, one of the first 

indications coming from Bmi1-deficient mice, which show loss of hematopoietic cells 

and cerebellar neurons (van der Lugt, Domen et al. 1994). An RNA expression 

signature associated with ‘stemness’, based on BMI1-driven transcriptional changes 

was predicted to have poor treatment outcome in patients with different types of 

cancer (Glinsky, Berezovska et al. 2005). 

1.3.2 Bmi1 in cerebellar development 

 

Bmi1 is essential for maintenance and self-renewal of haematopoietic and neural 

stem cells (Richie, Schumacher et al. 2002; Molofsky, Pardal et al. 2003). In fact, 

targeted deletion of Bmi1 in a mouse model (null mutant) causes severe neurological 

and haematopoietic defects (van der Lugt, Domen et al. 1994). Origin and fate of 

cerebellar granule cell precursors (GNPs) during the development of the cerebellum 

have been discussed before (section 1.1.2.3.2). Leung et al. have shown that Bmi1 

is expressed in the EGL precursors during embryonic (E16.5 in mouse and 26 

gestational week in human) and early postnatal (P8 in mouse, 2 months in human) 

development of the cerebellum (Leung, Lingbeek et al. 2004). In addition, they 

demonstrated that postnatal mice with targeted Bmi1 deletion (Bmi1-/-) showed 

reduced brain mass and developed cerebellar signs/symptoms (ataxia, balance 

disorders and behavioural changes) due to phenotypic changes in cerebellum. The 

cerebellar phenotypes included reduced cellularity in the granular and molecular 
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layers, reduced Math-1 positive EGL precursors and wider expression of postmitotic 

marker p27 at P1. There was also reduction in BrDU incorporation (indicating 

reduced proliferation), and an increase in apoptosis in the EGL at P8. They also 

noted reduction in cell density and size of the internal granular layer (IGL) at P15 

(Leung, Lingbeek et al. 2004). Bmi1 is expressed in the EGL as well as in the 

ventricular zone neuroepithelium from E16.5 onwards, but it has been shown to be 

involved mainly in postnatal GNP proliferation.  

There is a peak of proliferation of GNPs in the EGL during early post-natal 

development, induced by Shh secreted by Purkinje neurons (Dahmane and Ruiz i 

Altaba 1999; Wechsler-Reya and Scott 1999). The GNPs later differentiate and 

migrate inwards past the molecular layer (ML) to reach their final destination, IGL 

(Wang and Zoghbi 2001). Studies have demonstrated that addition of Shh in vitro 

induced proliferation in cerebellar granule cells [CGCs] (Dahmane and Ruiz i Altaba 

1999; Wechsler-Reya and Scott 1999). Leung et al. have further shown that Bmi1 is 

upregulated in response to Shh treatment in CGCs in a similar fashion as Gli1, Sufu 

and cyclin D2, indicative of Shh pathway activation (Leung, Lingbeek et al. 2004).  

1.3.2.1 Bmi1 is a downstream target of Shh pathway 

 

The results described above suggest that Bmi1 is a downstream target of Shh 

pathway. The pathway has been briefly discussed in section 1.1.2.3.2 and is 

diagrammatically represented in Fig 1.6. Further evidence supporting this is 

discussed here.  

Bruggeman et al. have later confirmed that the process of GNP proliferation in the 

EGL is linked to Bmi1 as a downstream target of the Shh pathway (Bruggeman, 

Valk-Lingbeek et al. 2005). They show that Ink4a and to a lesser extent Arf 
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expression is increased in Bmi1-/- GNPs and cerebella. The Ink4a/Arf locus is 

located on chromosome 9, comprising two genes with overlapping reading frames, 

encoding tumour suppressors p16INK4a (inhibitor of cyclin dependent kinase 4) and 

p19ARF (alternate reading frame, p14ARF in humans), both of which play an 

important role in regulating cell, growth, survival and senescence (reviewed in 

Sharpless and DePinho 1999). They demonstrated that stimulation of GNPs with 

Shh led to Bmi1 protein expression, and a concomitant down-regulation of both 

Ink4a and Arf mRNA expression. This was consistent with the notion of Bmi1 

mediates regulation of Ink4a/Arf by Shh. Jacobs et al. have demonstrated that 

removal of Ink4a/Arf partly rescued the cerebellar (and lymphoid) defects seen in 

Bmi1-/- mice (Jacobs, Kieboom et al. 1999), indicating that ink4a/Arf is a critical in 

vivo target for Bmi1. This also connects transcriptional repression role of Bmi1 (a 

PcG protein) with cell-cycle control and senescence.  

Kenney et al. have shown that N-Myc is a direct downstream target of the canonical 

Shh pathway regulating GNP proliferation (Kenney, Cole et al. 2003).  They 

demonstrate that Shh stimulation directly induces N-myc in GNPs and that N-myc is 

expressed in proliferating GNPs. They also observed that when N-myc is 

upregulated in GNPs, Cyclin D1 protein expression was maintained (which was 

abolished by Shh inhibitor cyclopamine treatment), despite treatment with the Shh 

inhibitor cyclopamine. Other studies have also shown that proliferation of GNPs in 

vitro can be induced by Shh and that it induced N-myc and cyclin D1 [and cyclin D2] 

(Ciemerych, Kenney et al. 2002; Knoepfler, Cheng et al. 2002). In keeping with the 

above results, Bruggeman et al. show that Bmi1-/- GNPs are only partially 

responsive to Shh (Bruggeman, Valk-Lingbeek et al. 2005), and propose a model in 
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which Shh controls proliferation in these cells via an alternate, i.e. N-Myc/Cyclin D2 

mediated route.  

Valk-Lingbeek et al reviewed the potential link between Shh signalling and Bmi1 

suggesting a novel regulatory pathway of external morphogen interacting with cell-

intrinsic epigenetic pathway controlling cell fate programs (Valk-Lingbeek, 

Bruggeman et al. 2004). In this model, Bmi1, induced by Gli1, negatively regulates 

the Ink4a/Arf locus. This locus encodes the cell cycle regulators/tumor suppressors 

p16Ink4a and p19Arf (p14ARF in humans).  p16Ink4a impacts  on Rb 

(retinoblastoma) regulation  via inhibition of  cyclin D/cyclin dependent kinase 

complexes. The pRb (hypophosphorylated Rb) sequesters E2F transcription factors 

and repress their target genes - leading to a cellular context dependent cell cycle 

arrest, senescence or apoptosis (reviewed in (Sharpless and DePinho 1999)).  

p19Arf binds MDM2 and inhibits p53 transcription factor degradation which results in 

activation of its target genes - leading to cell cycle arrest and apoptosis (reviewed in 

(Lowe and Sherr 2003)).  
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Fig. 1.6 Diagrammatic representation of Shh pathway in cerebellar granule cell  progenitor 
development. 
 

Bmi1 as a downstream effector of Shh signalling is highlighted here, thus indicating that Bmi1 is 

required for proliferation and/or self-renewal of cerebellar progenitor cells, in association with N-myc. 

Abbreviations: Shh, Sonic Hedgehog; Ptch, Patched; Smoh, Smoothened.  

 

1.3.3 The role of Bmi1 in medulloblastoma pathogenesis  

 

In agreement with Bmi1 being associated with GNP proliferation during cerebellar 

development as discussed above, there is ample evidence that Bmi1 is implicated in 

pathogenesis of medulloblastoma. Leung et al., demonstrated higher BMI1 

expression in three human MB cell lines and twelve primary human medulloblastoma 
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samples, when compared to normal cerebellum (Leung, Lingbeek et al. 2004). 

Furthermore, in their study, BMI1 overexpression correlated well with overexpression 

of PTCH and SUFU, suggesting that there is SHH pathway activation in BMI1-

overexpressing MB. As they also observed BMI1 overexpression in the fraction 

overexpressing N-MYC, they suggest that BMI1 is not a target for N-MYC. In another 

study, Northcott et al. observed greater than two fold BMI1 expression in more than 

80% of the MBs as compared to normal foetal cerebellum (Northcott, Nakahara et al. 

2009).  

Michael et al., have demonstrated 100% MB formation between P14 and P26 in a 

transgenic mouse model, SmoA1, expressing an oncogenic Hedgehog effector, 

(Michael, Westerman et al. 2008). However, they did not detect MB in any of the 

SmoA1 crossed to Bmi1-/- mice, but only small ectopic cell collections in the regions, 

suggesting that the tumours were initiated but did not undergo expansion. They also 

detected alterations in proliferation and apoptosis in the ectopic cells of 

SmoA1;Bmi1-/-, which were associated with reduced Cyclin D1 and elevated 

expression of p19Arf. These results suggest that Bmi1 is required for progression 

and maintenance of MB and implicate Bmi1 as a key factor in SHH pathway driven 

tumour pathogenesis (Michael, Westerman et al. 2008) 

Wiederschain et al., have demonstrated in a human MB cell line that shRNA-

mediated BMI1 (and Mel-18) knock down resulted in their inhibition of proliferation, 

loss of clonogenic survival and anchorage-independent growth in vitro 

(Wiederschain, Chen et al. 2007). They also show that BMI1 knock down led to 

suppression of tumour formation in vivo. Furthermore, gene expression analysis 

identified a number of cancer-relevant pathways that may be controlled by BMI1 
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(and Mel-18). Altogether, this study highlights the importance of BMI1 (and Mel-18) 

in cancer cell growth (Wiederschain, Chen et al. 2007).  

Recently, Wang et al. have demonstrated the functional relevance of BMI1 as 

downstream target of SHH pathway in human medulloblastoma context (Wang, 

Venugopal et al. 2012). They show that BMI1 expression positively correlated with 

SHH ligand concentrations when stem cell-enriched populations from 

medulloblastoma cell lines and primary medulloblastoma samples were treated with 

SHH ligand and SHH antagonist, cyclopamine. By Chromatic Immunoprecipitation 

(ChiP) assay they show that SHH pathway affector GLI1 preferentially binds to the 

BMI1 promoter, and that BMI1 transcript levels increased or decreased when GLI1 

was overexpressed or downregulated respectively. Furthermore, by knockdown 

experiments of BMI1 in vitro and in vivo, they demonstrated that Shh signalling not 

only drives BMI1 expression, but a feedback mechanism exists wherein downstream 

effectors of BMI1 may, in turn activate SHH pathway genes. These data implicate 

SHH and BMI1 as mutually indispensable pathways in medulloblastoma 

maintenance, and correlates well with the previous evidence of Bmi1 as a 

downstream effector of Shh pathway seen in the context of GNP proliferation.     

Manoranjan et al., have shown that BMI1 is essential for self-renewal and 

tumorigenicity of MB stem cells. In addition to demonstrating that BMI1 knock down 

reduced in vitro self-renewal capacity, they show that overexpression of BMI1 (and 

FOXG1) in CD15+ MB stem cells, generated much larger and more infiltrative 

tumours in vivo, compared to controls xenografts (Manoranjan, Wang et al. 2013).  

1.3.3.1 The role of Bmi1 in Group 4 medulloblastoma    
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Bmi1 is expressed at high levels in human and mouse proliferating GNPs, and at low 

levels in postmitotic granule cells and in adult cerebellum. As Bmi1 is viewed as a 

downstream effector of Shh pathway in relation to GNP proliferation and MB 

pathogenesis (as discussed above), it can be hypothesised that BMI1 expression 

would be enriched in MB tumours driven by SHH pathway mutation (i.e. SHH 

subgroup). However contrary to this expectation, emerging evidence show that 

although BMI1 overexpression is found across all subgroups, it is most highly 

expressed in Group 3 and Group 4 (i.e. Non-SHH/WNT subgroup) tumours.    

Wang et al., having analysed the MB dataset derived from exon array profiling 

(Northcott, Korshunov et al. 2011), show that BMI1 is overexpressed across all MB 

subgroups (compared to normal foetal and adult cerebellum) , but their levels were 

highest in the aggressive subtypes – Group 3 and Group 4 MB (Wang, Venugopal et 

al. 2012). Similarly, Manoranjan et al., having probed four of the existing 

transcriptional databases [Boston (Cho, Tsherniak et al. 2011), Amsterdam (Kool, 

Koster et al. 2008), Toronto (Northcott, Korshunov et al. 2011), and Memphis 

(Thompson, Fuller et al. 2006)), of MB for differential stem cell gene expression 

patterns in the subgroups identified BMI1 (and FOXG1) as being preferentially 

expressed in non-Shh/Wnt MBs.  

Behesti et al. analysed BMI1and TP53 expression in a data set derived from 103 

primary human MBs and 14 normal cerebella. They observed BMI1 overexpression 

in 54% of tumours, relative to median foetal cerebellar levels of expression, which 

occurred across all subgroups of MB. However, BMI1 was found to be most highly 

expressed in Group 4 (with >3-fold compared to median of foetal cerebellar 

expression), followed by Group 3 (>1.93-fold), SHH (>1.92-fold) and WNT (>1.60-

fold) subgroups (Behesti, Bhagat et al. 2013). They also observed a statistically 
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significant enrichment of Group 4 MB across tumours expressing higher levels of 

BMI1 and low levels of TP53. These results are interesting as it was seen that MB 

formation could not be initiated by Bmi1 overexpression alone in mice, and raises the 

possibility that this combination of mutations plays a role in the pathogenesis of 

Group 4 human MBs.  

1.3.4 The role of Bmi1 in systemic carcinogenesis  

 

Bmi1 is ubiquitously expressed in almost all tissues, but it is higher in the brain, 

spinal cord, kidney, gonads, lungs and placenta. Many studies have shown that 

Bmi1 is frequently upregulated in various types of human cancers, including lung 

cancer, ovarian cancer, acute myeloid leukemia, nasopharyngeal carcinoma, breast 

cancer, neuroblastoma and gliomas (reviewed in (Jiang, Li et al. 2009)). As with MB, 

BMI1 is generally associated with aggressive human cancers. Its association is 

known for its principal role in regulating cancer cell proliferation and senescence via 

suppression of p16Ink4a/p19Arf tumour inhibitor pathways (Jacobs, Kieboom et al. 

1999; Jacobs, Scheijen et al. 1999; Meng, Luo et al. 2010). However, studies 

investigating the role of Bmi1 in cancer cell migration and invasive properties have 

also emerged. Bmi1 is shown to induce epithelial-mesenchymal transition (EMT) in 

human nasopharyngeal carcinoma (Song, Li et al. 2009). Suppression of 

endogenous Bmi1 has been shown to reduce cell motility and invasive properties in 

breast cancer cells (Guo, Feng et al. 2011) and in gliomas cells (Jiang, Wu et al. 

2012). Due to its role in cancer stem cell maintenance and self-renewal (Park, Qian 

et al. 2003), Bmi1 has attracted attention as a potential target for cancer therapy.  

BMI1 has been associated with other mechanisms essential to promote EMT and 

tumour initiating capabilities such as Twist1 (Yang, Hsu et al. 2010) and PTEN 
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(Song, Li et al. 2009). BMI1 is known to be transcriptionally regulated by a number of 

factors including SALL4, c-Myc, E2F-1, HDAC, Mel-18 and FoxM1 (reviewed in 

(Cao, Bombard et al. 2011)).  
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1.4 Bone Morphogenetic Proteins and their role in medulloblastoma 

pathogenesis  
 

Bone Morphogenetic Proteins (BMPs) are multi-functional growth factors that belong 

to and form the largest group of the Transforming Growth Factor Beta (TGF-β) 

superfamily. TGF-β family of polypeptides are known to control cellular functions that 

underwrite embryonal development and tissue homeostasis, which act by modifying 

the expression of their target genes (reviewed in (Massague and Chen 2000)). BMP 

and TGF-β signaling pathways seem to act synergistically on various biological 

processes (Miyazono, Maeda et al. 2005). The activity of BMPs was first identified in 

1960s while studying the process of bone induction (Urist 1965), but it was not until 

they were purified and sequenced in 1980s that they were recognised as proteins 

responsible for bone induction [and hence the nomenclature] (Wozney, Rosen et al. 

1988; Luyten, Cunningham et al. 1989).  

1.4.1 BMP signalling pathway 

 

Around twenty different members of BMP family have been characterised in humans 

so far (reviewed in (Chen, Zhao et al. 2004)). Due to their association with 

medulloblastoma (discussed below), BMPs that are important and relevant to this 

project are BMP-2 (gene encoding this, BMP2 is located on chromosome 20p), 

BMP-4 (chromosome 14q) and to some extent BMP-7 (chromosome 20q). The BMP 

signal is mediated through serine/threonine kinase receptors, which are Types I and 

II, with further subtypes. Three Type I receptors have been shown to bind to BMP 

ligands – i) BMPR (BMP receptor) IA, also known as ALK-3, ii) BMPR-IB or ALK-6, 

and iii) ActR-IA (type IA activin receptor) or ALK-2 (ten Dijke, Yamashita et al. 1994). 

Three Type II receptors have also been identified which bind to BMPs, namely i) 
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BMPR-II, ii) ActR-II, and iii) ActR-IIB (Rosenzweig, Imamura et al. 1995). While 

BMPR-IA, IB and II are specific to BMP ligands, the rest of the receptors bind to 

Activins too. Both Type I and II receptors are essential for signal transduction, and 

these receptors are expressed differentially in various tissues. Following ligand 

binding, they form a heterotetrameric, transphosphorylated (activated) receptor-

complex comprising pairs of Types I and II receptors [Fig 1.7] (Moustakas, Pardali et 

al. 2002).  

The signalling cascade is mediated through SMAD (homologue of mothers against 

decapentaplegic, MAD) proteins. Briefly, SMAD family members are intracellular 

proteins involved with TGF-β signal transduction, and comprise of Receptor –

regulated SMADs (R-SMADs, SMAD2/3 and SMAD1/5/8), common partner SMADs 

(co-SMADs, SMAD4) and inhibitory SMADs [I-SMADs, SMAD6/7]  (reviewed in 

(Miyazono, ten Dijke et al. 2000)). R-SMADs are anchored to the cell membrane. 

Upon BMP receptor complex activation, R-SMADs are phosphorylated (pSMADs) 

and form oligomeric complexes with co-SMADs (SMAD4).  

The BMP receptors phosphorylate SMAD1, 5 and 8 (to form pSMAD1,5,8) in a 

ligand-dependent manner, and this is thought to be a reliable indicator of BMP 

pathway activation (Hoodless, Haerry et al. 1996; Chen, Bhushan et al. 1997; 

Nishimura, Kato et al. 1998; Grimmer and Weiss 2008). The pSMAD and SMAD4 

oligomeric complexes then translocate into the nucleus, where they regulate the 

transcription of their target genes by direct binding to DNA, interaction with various 

DNA-binding proteins, and recruitment of transcriptional co-activators or repressors. 

The BMP signalling pathway is represented in Fig 1.7.  
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Fig. 1.7 BMP - SMAD signalling pathway. 
 

Upon BMP ligand stimulation, the BMP receptors (BMPR Types I and II) are activated by 

phosphorylation. In turn, these receptors phosphorylate intracellular receptor-regulated SMAD 

proteins (pSMADs). The pSMADs form a complex with SMAD4 (co-SMAD) and the complex 

translocates into the nucleus to act as transcriptional regulators on target genes. Noggin and 

Dorsomorphin are some of the BMP pathway inhibitors. This is a simplified structure of the pathway 

and highlights only BMP-2/4 mediated signalling via SMAD1,5,8.    

 

The target genes of BMP pathway are numerous and  variable (reviewed in 

(Miyazono, Maeda et al. 2005)). Among the target genes, Id (inhibitor of 

differentiation or inhibitor of DNA binding, Id1-4) are known to be one of the most 

important targets of BMP (Ogata, Wozney et al. 1993).  Peng et al. have revealed by 

expression profiling analysis, that the most significantly upregulated (target) genes 
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upon BMP-2 (and BMP-6 or BMP-9) stimulation are Id1, Id2, and Id3 (Peng, Kang et 

al. 2004). Other target genes induced by BMP-2/BMP-4 include TEIG-1 (TGF-B-

early inducible gene 1), Msx1, GATA2 and Snail (Miyazono, Maeda et al. 2005). 

Since the I-SMADs, induced by the TGF-beta superfamily proteins, inhibit the BMP 

receptor mediated signalling, they are thought to have an auto-inhibitory signalling 

role.  The functions of SMADs can also be regulated by other signalling pathways, 

such as the MAP kinase pathway. SMADs interact with and modulate the functions 

of various transcription factors which are downstream targets of other signalling 

pathways.  

1.4.2 Functional relevance of the BMPs/BMP pathway 

 

BMPs play an important role in embryonic development as well as in regulation of 

post-natal cellular functions. Their best characterized roles include regulation of 

lineage commitment, differentiation, proliferation, patterning or morphogenesis, 

cellular maintenance/survival and apoptosis (Hogan 1996). With regards to bone 

development, they are known to be involved in intramembranous and endochondral 

bone formation, as well as cartilage formation (Reddi 1981; Wozney and Rosen 

1998). BMPs are known to have broad roles in regulating the biology of stem cells 

and in maintaining embryonic stem cells (Varga and Wrana 2005). With regards to 

the role of BMPs in cancer, there are contradictory reports in different cancers. 

Thawani et al., have published a literature review after evaluating MEDLINE, 

EMBASE and Cochrane databases, and conclude that there is no definitive 

association between BMPs and the promotion of tumorigenesis or metastasis 

(Thawani, Wang et al. 2010). Few  examples of the contradictory reports  on the role 

of  BMPs in cancers include: BMP-2 and/or BMP-4 were shown to promote 
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tumorigenesis and metastasis in breast carcinoma (Raida, Clement et al. 2005), lung 

carcinoma (Langenfeld, Calvano et al. 2003), prostate cancer (Ye, Lewis-Russell et 

al. 2007), ovarian cancer (Shepherd, Theriault et al. 2008), osteosarcoma (Arihiro 

and Inai 2001) and medulloblastoma (Iantosca, McPherson et al. 1999) but they 

were also shown to have the opposite effects on same cancers, in different studies 

[using different models of study] (Soda, Raymond et al. 1998; Zhao, Ayrault et al. 

2008). Similarly the roles of other BMPs such as BMP-6, BMP-7 and BMP receptors 

(BMPR Types I/II) are also shown to have contradictory roles in different cancers 

(reviewed in (Thawani, Wang et al. 2010).   

From the above evidence, we feel that the role of different BMPs in each cancer 

should be considered and interpreted individually.   

 

1.4.3 BMPs in cerebellar development  

 

During cerebellar development the BMPs, in particular, BMP-2 and BMP-4 inhibit 

SHH-induced GNP proliferation, resulting in GNP differentiation, whereas BMP7 has 

the opposite effect (reviewed in (Behesti and Marino 2009)).  

It is shown that  BMPs induced Math1 expression and that BMP-treated GNPs 

formed mature granule neurons upon transplantation into early postnatal cerebellum 

(Alder, Lee et al. 1999). The above evidence highlights the role of BMPs in fate 

specification of GNPs. Expression of BMP-4 and Smad1 have been demonstrated in 

the EGL of rat cerebellum at early postnatal stages, and BMP-4 was shown to 

promote neuronal and astroglial differentiation of cerebellar cell cultures, suggesting 

that BMP-4 (via SMAD1 signalling) participate in regulating postnatal cerebellar 

differentiation (Angley, Kumar et al. 2003). Rios et al. have shown using mouse and 

chick embryos, that BMP-4 (in EGL), to a lesser extent BMP-2 (in IGL) and BMP-7 
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(in Purkinje cells, which also produces Shh) are expressed in the developing 

cerebellar cortex (Rios, Alvarez-Rodriguez et al. 2004) . Furthermore they 

demonstrate that BMP-2 and BMP-4, significantly antogonised Shh-induced GNP 

proliferation in vitro and ex vivo, with a slightly opposite effect with BMP-7, and that 

BMP-2 mediated GNP differentiation via Smad5 signalling. Later in a separate study 

they also showed that BMP-2 antagonizes Shh-dependent proliferation by 

expressing TIEG-1 which directly represses N-myc transcription (Alvarez-Rodriguez, 

Barzi et al. 2007). Zhao et al. have shown that BMPs antagonize Shh-dependent 

proliferation and induce differentiation of GNPs (Zhao, Ayrault et al. 2008). 

Furthermore they demonstrate that BMP treatment led to downregulation of 

Atoh1/Math1 protein, and that this occurred in a post transcriptional manner.  

 
Recently, our group have demonstrated that Bmi1 controls cellular interactions 

between granule and glial progenitors during cerebellar development through 

repression of the BMP pathway (Zhang, Santuccione et al. 2011). 

 

1.4.4 BMPs are potential targets for medulloblastoma treatment   

 

In keeping with the above discussion regarding the role of BMPs in inhibiting GNP 

proliferation and induction of differentiation, there is emerging evidence to suggest 

that BMPs, in particular BMP-2 and BMP-4, inhibit medulloblastoma growth 

(reviewed in (Roussel and Hatten 2011)).  

Math1/Atoh1 has been demonstrated to be essential for MB development (Flora, 

Klisch et al. 2009), and has been shown to collaborate with Gli1 to transform normal 

GNPs into tumor initiating cells (Ayrault, Zhao et al. 2010). Gene profiling of mouse 

and human MBs with a constitutively activated SHH pathway revealed that most 
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genes within the BMP signalling pathway are downregulated in tumours compared to 

proliferating GNPs and neurons, whereas Math1/Atoh1 levels were high (Zhao, 

Ayrault et al. 2008). Moreover, in addition to showing that BMPs inhibit (Shh-

dependent) proliferation and induction of differentiation of GNPs and GNP-like MB 

cells, they show that BMP-2 and BMP-4 suppress primary murine MB cell growth in 

vivo (Zhao, Ayrault et al. 2008).  GNP-like tumour cells from the murine MBs were 

infected with retroviral vectors co-expressing human BMP4 and tumour allografts 

were generated using athymic mice. They observed a smaller tumour size among 

BMP4 co-expressing tumours compared to controls. Importantly, they also observed 

that the tumour allografts failed to grow when the cells were pre-treated in vitro with 

BMP-4 (for 3 days), whereas allografts of untreated cells grew quickly. In this study 

they also go on to demonstrate that BMP-4 and cyclopamine (Shh inhibitor) 

treatment in combination, achieved tumour inhibition at lower concentrations as 

compared to treatment with either method alone, suggestive of potential therapeutic 

role of BMP agonists.  

 

Hallahan et al., have demonstrated that retinoids [all-trans retinoic acid (ATRA), 

RAR-α agonist (AGN195183) or RAR-β/γ agonist (tazarotene)] induced a significant 

apoptosis in seven of nine (77%) primary human medulloblastoma cells  compared 

to vehicle only treatment. The two with no significant apoptosis were of large cell 

type and showed neuronal differentiation in response to retinoids (Hallahan, 

Pritchard et al. 2003). Gene expression array of human MB cell lines treated with 

retinoids revealed that BMP-2 was one of the small set of genes (related to 

apoptosis) that were induced in retinoid-sensitive cells only. BMP-2 is known to be a 

mediator of retinoid-induced apoptosis in several developmental paradigms 
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(Rodriguez-Leon, Merino et al. 1999) and it is known to induce apoptosis in myeloma 

cells (Kawamura, Kizaki et al. 2000). Retinoid treatment (ATRA) increased BMP-2 

expression in primary MB cells, and furthermore, addition of BMP-2 resulted in 

significant apoptosis of primary MB cells and cell lines in a time and dose dependent 

manner. The above observations support the notion that BMP-2 mediates retinoid-

induced apoptosis in medulloblastoma (Hallahan, Pritchard et al. 2003). In this study 

they also show that BMP antagonist noggin blocked both retinoid and BMP-2 

induced apoptosis and that BMP-2 induced p38 mitogen-activated protein kinase 

(MAPK), which may be necessary for BMP-2 and retinoid-induced apoptosis in MB. 

This was the first study to show that BMP-2, as a secreted protein mediates 

apoptosis in medulloblastoma cells that express or do not express BMP-2  

 

Similar to the above study, Spiller et al., used human MB cell lines and genetically 

engineered mouse models to show that 13-cis Retinoic acid in combination with 

suberoylanilide hydroxamic acid (SAHA, a histone deacetylase inhibitor), induced 

BMP-2 mediated MB apoptosis (Spiller, Ditzler et al. 2008). They observed a 3-fold 

increase in BMP-2 transcription when Retinoic acid (RA) was added to the MB cell 

(D283) culture and 7-fold with both agents. Although the induction of p38 MAP 

kinase partially blocked the apoptotic activity of RA alone, there was no inhibition of 

RA + SAHA activity, indicating a separate mechanism for SAHA mediated apoptosis. 

Furthermore, the tumour cell graft in athymic mice showed a slower growth when 

orally treated by RA + SAHA, compared to single drug controls. In addition, tumours 

arising in the background of ND2:SmoA1 mice treated with RA + SAHA + cisplatin 

showed a 4-fold increase in apoptosis over controls. Retinoic acid acts by 

transcriptionally activating BMP-2 and SAHA facilitates transcriptional activity 
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through chromatin accessibility. Both drugs cross the blood brain barrier, have been 

given safely to children, and achieve brain concentrations that are at or near 

therapeutic levels (Miller 1998; Spiller, Ravanpay et al. 2006). 

 

In the context of a different aggressive brain tumour, but related to BMPs, Piccirillo et 

al., show that BMPs, amongst which BMP4 had the strongest effect, trigger a 

significant reduction in the stem-like, tumour-initiating precursors of human 

glioblastomas [GBMs] (Piccirillo, Reynolds et al. 2006). Even transient in vitro 

exposure to BMP-4 rendered the GBM cells incapable of generating in vivo tumours. 

Importantly, in vivo delivery of BMP-4 effectively blocked the tumour growth in 

intracerebral grafted mice. They demonstrate that BMPs acted through SMAD 

signalling cascade and in vitro they led to reduced proliferation, increased 

differentiation and reduced clonogenic ability.  

 

The above evidence is suggestive that BMPs (or BMP analogues/ 

agonists/activators) could represent therapeutic targets in the development of novel 

drugs for the treatment of aggressive brain tumours including medulloblastoma.  In a 

recent study, Vrijens et al., have reported identification of small molecule activators 

of BMP signaling (Vrijens, Lin et al. 2013). Using a BMP-responsive clone C33A-

2D2, they have screened a bioactive library containing approximately 5,600 small 

molecules. They have identified four small molecules of the flavonoids family, two of 

which (isoliquiritigenin and 4’hydroxychalcone) induced phosphorylation of SMAD1/5 

and Id1/Id2 expression in a dose-dependent manner. Although the suitability of these 

molecules for treatment is yet to be established, they support the notion that 
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BMPs/BMP pathway could be targets for the treatment of MB in the foreseeable 

future.    
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1.5 Hypothesis and aims of the study 

 

1.5.1 Hypothesis 

 

In this project, we want to test the hypothesis that:  

Repression of the BMP signalling pathway through BMI1 is an essential event in 

human medulloblastoma pathogenesis, potentially through deregulation of cell 

adhesion and of cell-cell or cell-extracellular matrix interactions, and that BMI1 

expression could be a potential bio-marker for the identification of MB which could 

profit from treatment with BMP analogues.  

 

1.5.2 Aims 

 

This aims of this study are: 

i) To analyse the impact on the BMP pathway of BMI1 downregulation in MB cell 

lines and in primary human MB cells of Group 4,  

ii) To study any functional changes in particular those related to cell adhesion or cell 

migration properties in vitro and in an ex vivo organotypic cerebellar co-culture 

model 

iii) To study the effects of BMI1 downregulation in primary human MB cells on BMP 

pathway in vivo in a xenograft model 

iv) To use primary human MB tumour samples to assess any correlative expression 

of BMI1 and BMP pathway activation   
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CHAPTER 2 General Materials and Methods    

   

2.1 Production of lentivirus vector for shRNA delivery  
 

Stable BMI1 gene silencing (knock down) in MB cells was achieved by short hairpin 

RNA (shRNA) technology (Brummelkamp, Bernards et al. 2002; Yu, DeRuiter et al. 

2002) using a lentivirus-based delivery system (Rubinson, Dillon et al. 2003) . The 

glycerol stock of human GIPZ lentiviral shRNAmir BMI1 constructs (Open 

Biosystems) containing a CMV-driven GFP reporter and seven clones of target 

sequences of human Hs BMI1 (NM_005180) was used. The glycerol stocks of 

pGIPZ scrambled, HIV1 and VSVG, also containing GFP reporter, were a gift from 

Dr Paolo Salomoni’s group in UCL. The latter vectors were used to package BMI1 

shRNA construct.  

2.1.1 Purification of Plasmids:  

 

First, plasmids were purified from the above mentioned glycerol stocks using 

QIAfilter maxikit (Qiagen) to yield low-copy plasmids.   

Luria broth (LB) (Invitrogen) which contains peptone 140, yeast extract and sodium 

chloride, was diluted in sterile H2O to prepare 200 ml of LB solution in each of 4 

glass flasks. The flasks were autoclaved and after cooling, ampicillin (Sigma) 100 

μg/ml was added to each of the flasks to allow selection of ampicillin resistant 

bacterial growth. A small amount of each bacterial glycerol stock was scraped with a 

20 μl pipette and added into separate LB containing flasks and labelled. The 

openings of the flasks were sealed with paraffin film and were incubated at 370C 

overnight on a rocker set at 220 rpm, ensuring vigorous shaking until the broth 

turned turbid due to bacterial proliferation. The broth containing the respective 
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bacterial culture were transferred to labelled large centrifuge tubes and centrifuged 

at 6000 rpm for 15 min at 40C. After removal of the excess broth medium by careful 

suction, the pellets were either temporarily stored (for up to 2 weeks) at -200C or 

used immediately for plasmid purification.        

The bacterial pellets of the respective vectors were resuspended in each tube with 

10 ml Buffer PI (after adding RNase A to Buffer P1) at room temperature. The tube 

containing the pellet is vortexed and pipetted thoroughly and ensured that no clumps 

remained. 10 ml of Buffer P2 was added to each tube, mixed by vigorously inverting 

the tubes 4-6 times and incubated at room temperature for 5 min. The resulting cell 

suspension after adding Buffer P2 turned blue homogeneously. The tubes were not 

vortexed at this stage to avoid DNA damage. 10 ml of pre chilled lysate Buffer P3 

was added and mixed immediately by vigorous inverting 4-6 times until the blue 

colour disappeared. The resulting lysate was poured into QIAfilter cartridge (with 

capped outlet nozzle) and incubated at room temperature for 10 min. A precipitate 

(containing proteins, genomic DNA, and detergent) formed as a layer on top of the 

solution. Qiagen-tip 500 was equilibrated with 10 ml of Buffer QBT and the column 

was allowed to empty by gravity flow. The cap from the QIAfilter cartridge was 

removed from the outlet nozzle and the plunger was gently inserted into the cartridge 

to filter the cell lysate into the previously equilibrated Qiagen-tip. Approximately 25 

ml of cell lysate was recovered. The cleared lysate was allowed to enter the resin by 

gravity flow. The Qiagen-tip was washed with 30 ml Buffer QC twice (using gravity 

flow). The DNA was eluted with 15 ml Buffer QF, and the elute was collected in 50 

ml falcon tube. The elute was either stored temporarily at 40C overnight or used 

immediately to precipitate the plasmid DNA. 10.5 ml of isopropanol was added to the 

elute and mixed to precipitate the plasmid DNA. The tube was centrifuged at 15000 
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rmp for 30 min at 40C. The supernatant was carefully removed. The DNA pellet was 

washed with 5 ml of 70% ethanol (to remove precipitated salt and to replace 

isopropanol) and centrifuged at 15000 rpm for 10 min at 40C. The supernatant was 

carefully removed without disturbing the pellet. The site of the pellet was marked on 

the outside of the tube and the pellet was air dried for 5-10 min. The pellet was then 

dissolved with 200 μl of filtered sterile water and temporarily stored in labelled 

eppendorfs at -800C. The process of purification of plasmid DNA is summarised in 

Fig 2.1 A. 

2.1.2 Determination of yield:  

 

The concentration of the plasmid DNA was determined both qualitatively and 

quantitatively by agarose gel analysis and by spectrometry respectively.  

Agarose gel 0.8% was prepared by heat dissolving 0.48 g of Agarose gel powder 

(Starlab) with 60 ml of 1 X TAE buffer (Qiagen) and adding 4.8 μl of ethidium 

bromide. The gel solution was poured into the electrophoresis chamber and allowed 

to set for 10 – 15 min. The 4 DNA samples (10 μl each) were mixed with 3 – 4 μl of 

dye and loaded into the wells along with 1Kb ladder (10 μl). The electrophoresis was 

performed at 80 – 100 V for 30 min. The gel was photographed in the UV chamber to 

detect the bands – pGIPZ, BMI1 and HIV vectors at ~ 8000 bp and VSVG at ~ 6000 

bp (Fig 2.1 B). 

The yield of DNA was quantitated using NanoDrop spectrometry (Thermo scientific) 

by selecting Nucleic Acid DNA-50 measurement after normalising with distilled water 

(blank). The measurements are shown in Fig 2.1 B.     

2.1.3 Packaging:  
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The purified plasmids were then packaged (Chang, Marran et al. 2013) using 

HEK293T cells (discussed in section 2.2.4) to produce lentiviral particles. The 

procedure is categorised as Class II biohazard level and was therefore carried out in 

Genetic Modification Organisms (GMO) suite after appropriate risk assessment 

under GMO regulations 2000 (Project Ref. no 774/0801/07). On day 1, HEK293T 

cells were plated at a density of 5 – 6 x 106 cells in 20 ml of IMDM medium (Gibco) 

enriched with glutamate, 10 % FBS and 1% penicillin/streptomycin (sigma) in 15 cm 

culture dish. Two culture dishes for each virus were prepared. The cells were 

incubated for 12 – 24 hr at 370C with 5% CO2.  On day 2, the transfection mix was 

prepared in a falcon tube with quantities mentioned in Table 2.1.  

Table 2.1 Preparation of transfection mix for lentiviral packaging. 

Contents Quantity for one 15 cm dish 
 

Transfer vector pGIPZ (with or without shRNA) 28 μg 

pCMV-G (VSV-G) 8.4 μg 

pCMV-HIV1 18.1 μg 

2.5M CaCl2 140 μl 

Filtered H2O To make up to 1 ml 

2X HBS 
(NaCl, HEPES, Na2HPO4, pH 7.12) 

1 ml  
(added drop wise while vortexing 
the rest of the mix) 

 

The transfection mix (2 ml) was immediately added to the cell culture dish gently 

along the side wall of the dish. The dish was gently shaken several times in all 

directions to ensure thorough mix. The cell culture medium was replaced with 25 ml 

fresh medium 8 – 16 hr after transfection. On day 3, the transfected cells were 

checked under UV microscope and showed HEK293T cells positive for GFP 

fluorescence (Fig 2.1 C). On day 4 (48 hr post transfection), the supernatant from the 

cell culture dish (2 dishes per each virus) was collected in 50 ml falcon tube and 

centrifuged at 3000 rpm for 5 min to remove cells and cell debris. The resulting 

supernatant was filtered through a 0.45 μm PVDF filter to further eliminate cellular 
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debris. The filtered supernatant was transferred to a sterile falcon tube and the viral 

particles were precipitated by adding cold 5X polyethylene glycol (PEG) solution. 

The PEG solution was prepared by mixing polyethylene glycol (Sigma), NaCl, Tris 

1M, pH 7.5 and H2O. The tubes were stored overnight at 40C.   

On day 5, the supernatant and PEG mixture was centrifuged at 1500 g for 30 min at 

40C to obtain the viral pellet. The supernatant was aspirated and the tube was 

centrifuged again at 1500 G for 5 min to remove any traces of residual PEG solution. 

The supernatant was carefully removed by aspiration. The lentiviral pellet was 

diluted with 1000 μl (1:50 dilution compared to original volume which was 50 ml) of 

cold sterile PBS and resuspended to dissolve the pellet. The lentiviral suspensions 

were aliquoted in labelled cryovials and stored at -800C until further use. 

2.1.4 Titration:  

 

0.5 x 105 HEK293T cells were plated in each well of a 12 well plate with 1 ml IMEM 

medium and incubated for 24 hr at 370C, 5 % CO2. Six wells were prepared per viral 

stock to be titrated (including one well as negative control) ensuring that the cells 

were uniformly distributed within the well. It was estimated that the cell number is 

doubled after 24 h in culture. Five serial dilutions of each viral stock were prepared 

as follows – dilution 1 (1:10): 110 μl of virus to 990 μl of medium, dilution 2: (1:100) 

100 μl from dilution 1 to 900 μl of medium, dilution 3 (1:1000): 100 μl from dilution 2 

to 900 μl of medium, dilution 4 (1:10,000): 100 μl from dilution 3 to 900, dilution 5 

(1:100,000): 100 μl from dilution 4 to 900 μl of medium. The medium in the five cell 

culture wells were replaced with 1 ml of corresponding serial dilution and labelled. 1 

ml of media without virus was added to the sixth well (negative control). The infected 

cells were incubated for 12 – 24 hr at 370C, 5 % CO2. The media was replaced with 
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fresh media after 12 – 24 hr. After 96 hr post infection, the cells were collected in 

FACS tubes for flow cytometry to analyse the percentage of lentivirus infected cells 

which would be GFP positive. Following the flow cytometry analysis, the titre of viral 

stock in calculated as transducing units/ml (TU/ml) as per the formula:  

[(% GFP positive cells) x (number of cells infected)] / [(volume of virus in ml) x 

(dilution)] 

The final titre of the lentivirus prepared ranged 2.5 – 11 x 108 TU/ml. 

 

Fig. 2.1 Lentivirus production and packaging.  
 
(A) Schematic of plasmid purification using QIAfilter maxikit. (B) The yield of plasmids determined 

qualitatively by agarose gel analysis (left panel) which shows plasmid bands at 6-8 Kbp, and 

quantitatively (right panel) showing the concentration of each plasmid. (C) Packaging of lentiviral 

particles using HEK293T cells which show marked GFP positivity 24 hr after treating them with the 

transfection mix. Scale bars in C = 100 μm  
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2.2 Cell culture    
 

2.2.1 General methodology 

 

2.2.1.1 Thawing:   

 

The frozen aliquots of cells stored in liquid nitrogen were transported on dry ice and 

incubated in the 370C water bath. The vials were gently shaken during the incubation 

until the cells were completely thawed. The thawed cells were immediately 

transferred to 15 ml falcon tubes containing 10 ml pre-warmed media and 

centrifuged at 1000 rpm for 5 min. The resulting supernatant was carefully discarded 

and the cells were resuspended in 1-2 ml of appropriate media and pipetted to 

dissociate the cell pellets. While the cell lines were pipetted using standard 1 ml 

pipette tip, the primary cells were pipetted using 200 μl fine tip pipettes to achieve 

adequate dissociation.  The dissociated cells were transferred to a 10 cm tissue 

culture dish (cell lines) or a 6 well plate (primary cells) containing appropriate media 

for culture. The cell culture plates were incubated at 370C, and were replaced with 

fresh media after 12 - 24 h.  

2.2.1.2 Sub culture:  

 

The cells were sub cultured (split or passaged) when > 90% confluence was reached 

– which was 3-4 days for the cell lines and 5-7 days for the primary cells. The non-

adherent or loosely adherent (primary cells, D-458) cells were gently scraped off the 

culture dish using a cell scraper. The adherent (DAOY and HEK293T) cells were first 

washed with PBS and detached using pre-warmed 1% trypsin EDTA solution 

(Sigma) followed by neutralization of trypsin by serum containing medium. The cells 

were collected in a 15 ml falcon tube, centrifuged and resuspended as above. The 
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cells were sub cultured at a ratio of 1:3 to 1:8 dilutions. The cell culture plates were 

incubated at 370C, and were replaced with fresh media after 12 - 24 h. The primary 

cells were maintained in in vitro culture for a limited number of passages, up to 4-5 

weeks.      

2.2.1.3 Cell count:  

 

The cell count was performed using Neubauer haemocytometer. A glass coverslip 

was placed over the haemocytometer chamber and 10 μl of dissociated cell 

suspension was introduced under the coverslip. Using an inverted bright field 

microscope (X20 mag.) the number of cells in the peripheral 4 squares of the 

chamber was counted. The average cell count from the total count was calculated 

which gives the cell count per ml. The average count was multiplied by the original 

volume of the media (number of ml) to obtain the final cell count. Non-viable cells 

were excluded from the counting by the Trypan blue method (Strober 2001), where 

the cells were treated with 0.4% trypan blue solution at 1:5 dilutions for 5 min, and 

only the viable clear (unstained) cells were counted using haemocytometer as 

above.     

2.2.1.4 Screening for Mycoplasma contaminants:  

 

The cell were checked for any Mycoplasma contamination using Mycoalert™ 

detection kit (Lonza) which is a biochemical test to detect the Mycoplasma enzymatic 

activity in the cell culture supernatants. The reagent and buffer were reconstituted 

with 600 μl of buffer and incubated for 15 min at RT according to manufacturer’s 

instructions. The supernatant from the cell culture media were collected and spun at 

1500 rpm for 5 min. 100 μl of clear supernatant were placed in Brand 96 well plates 

and 100 μl of reagent was added to each well, incubating for 5 min at RT. The 
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luminescence (referred to as A) was measured using microplate reader. 100 μl of 

substrate was added to each sample and incubated for 10 min at RT. The 

luminescence (referred to as B) was detected. The ratio B/A was calculated. If the 

ratio was > 1 then the test was considered to be positive and the cells were 

discarded. If the ratio was < 1 it was considered negative for contamination and the 

cells were cultured for further studies.   

2.2.1.5 Cryopreservation:  

 

The cells were harvested from culture, counted, and centrifuged as described  

above. 1 – 5 x 106 cells were diluted in 1 ml freezing medium containing 10% DMSO 

and 20% FBS in DMEM medium. The cells were then transferred in to labelled 

Nunc® cryovials (Thermo Scientific) and the vials were gradually cooled by placing 

them in Mr Frosty freezing container (Thermo Scientific) which was filled with 

isopentane along the lining of the container and kept -800C freezer for 24 hr. The 

frozen cells were transported on dry ice and stored in liquid nitrogen.   

2.2.2 Medulloblastoma cell lines   

 

Established human MB cell lines UW228-2, D-425, D-458, D-341 and DAOY were 

obtained from American Type Culture Collection (ATCC). DAOY and D-458 were 

used for functional studies in this project. The DAOY cell line was originally 

established by P.F Jacobsen from Royal Perth Hospital in 1985 (Jacobsen, Jenkyn 

et al. 1985). It was derived from desmoplastic medulloblastoma originating in 

cerebellum from a 4 year old boy. Although the original tumour exhibited neuronal 

and glial differentiation, the cell line did not retain either of them. They are polygonal 

cells which grow as adherent monolayer cultures in vitro (Fig 2.2 A).  D-458 is known 

to have predominantly neuronal phenotype (He, Wikstrand et al. 1991) and grow in 
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suspension mainly as multicellular aggregates with some cells also adhering to the 

bottom of the dish (Fig 2.2 B). All MB cell lines were cultured and maintained in 

Improved MEM media (Gibco) containing L-lysine and Glutamate, supplemented 

with 10% FBS (Gibco), 1 % penicillin/streptomycin (Sigma). Prior to passaging, 

DAOY cells were detached using 1% trypsin EDTA (Gibco) and D-458 were gently 

scraped off the culture dish. 

2.2.2.1 Small interfering RNA (siRNA) transfection:  

 

Transient BMI1 gene silencing (knock down) was achieved by siRNA technology 

(McManus and Sharp 2002; Schutze 2004) in which transfection was carried out 

using cationic and neutral lipid based transfection method. FlexiTube siRNA 

(Qiagen) specific for BMI1, containing a mix of Hs BMI1 1, Hs BMI1 2 and Hs BMI1 3 

(also known as Polycomb Ring Finger 4, PCGF4) was used. All Stars Negative 

siRNA (Qiagen), referred to as scrambled (Scr) was used as control. The 

transfection mix in combination with HiPerFect Transfection Reagent (Qiagen) was 

prepared as detailed in Table 2.2. DAOY or D-458 (0.5 – 1 x 105 cells in 420 μl of 

media) were plated in each well of a 24 well plate. After 12 – 24 h incubation, and 

when 70-80% confluence was achieved, the cells were treated with siRNA 

transfection mix (~83 μl/well) at a final concentration of 30 nM and gently mixed.  

The transfected cells were incubated for 48 hr prior to functional studies for 

maximum knock down efficiency, as assessed by Western blot and qRT-PCR 

analysis.  
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Table 2.2 BMI1 siRNA transfection mix preparation*. 

Reagent  Scrambled (per well) Bmi1 SiRNA (per well) 
 

 
Medium 

 
80 μl 

 
80 μl 

 
Hi Perfect Transfection reagent 

 
3 μl 

 
3 μl 

 
Negative 

 
0.72 μl 

 
- 

SiRNA kit (Quiagen) 
1. Hs BMI1 1 
2. Hs BMI1 2 
3. Hs BMI1 3 

 
 
- 

 
0.24 μl 
0.24 μl 
0.24 μl 
(Total of 0.72 μl) 

Total volume 83.72 μl 83.72 μl 
 

*To obtain a final concentration of 30 nM. 

 
   

2.2.3 Primary human medulloblastoma cells  

 

Primary human MB cells  ICb-1299, were obtained from Dr Xiao-Nan Li, Baylor 

College of Medicine, Texas Children’s Cancer Centre, USA. These cells were 

isolated from primary MB tumours arising in cerebellum in a 2.8 year old girl who 

underwent surgery at the Texas Children’s Hospital. The tissue was obtained in 

regulation with local institutional review board policy and appropriate consent. The 

original tumour was diagnosed as an anaplastic MB, stage M3. The tumour cells 

were maintained as intracerebellar xenografts in mice after orthotopic transplantation 

of fresh tumour (Shu, Wong et al. 2008). Genetic profiling of the original tumour and 

of the primary cells has classified them as Group 4 (Northcott Group D) MB (Zhao, 

Liu et al. 2012). For expansion and knock down studies, these cells were cultured in 

Dulbecco’s Modified Eagle Medium (D-MEM) with high glucose (Gibco) 

supplemented with 10% FBS (Gibco) and 1% Penicillin/Streptomycin (Sigma). The 

cells grew in suspension mainly as multicellular aggregates (tumour spheres) with 

some cells also adhering to the bottom of the dish (Fig 2.2 C). 
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Fig. 2.2 Cells in culture. 
 
(A) DAOY cells which grow as an adherent monolayer. Relatively larger size and polygonal shape of 
the cells is evident. (B) D-458 growing in suspension mainly as multicellular aggregates but also 
showing some adherence to the floor of the dish (C) short term cultures of ICb-1299 which grew in 

suspension mainly as tumour spheres. Scale bars in A,B and C = 200 μm. 

 

2.2.3.1 Infection with lentivirus shRNA and stable selection  

 

Stable BMI1 silencing was achieved by shRNA technique using lentiviral vectors. 

Both DAOY and ICb-1299 were infected with shRNA BMI1 lentivirus, and a separate 

cohort of cells were infected with shRNA scrambled (Scr) lentivirus to be used as 

controls. Multiplicity of infection (MOI) is defined as the number of virions that are 

required to infect each cell.  

The formula to calculate MOI = [μl of viruses used X titration in TU/μl]/no. of cells 

transduced.  

Having calculated the titres of each virus group (after packaging, described in 

section 2.1.4), we decided to carry out infection at high MOI (based on Poisson 

distribution) in order to achieve adequate infection. First, the cells were harvested 

from cultures, mechanically dissociated and plated at a density of 1 x 106 cells on a 

10 cm culture dish. Having calculated the titres of each virus group, the cells were 

infected at MOI of 12.5 for DAOY and MOI of 25 for ICb-1299, and incubated at 370C 

for 24 hr. The media was then replaced with fresh media and the cells were 
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incubated for a total of 72 hr from the time of infection. The cells were then checked 

for GFP expression under UV microscope. There were > 90% cells showing GFP 

positivity. The cells were harvested 72 hr post infection and the GFP positive 

(infected) cells were selected for stable culture.  

Initially, stable selection by Puromycin was attempted. 1 x 105 cells in 1 ml media 

were plated in each well of 24 well plate and Puromycin (Sigma) was added to the 

wells at increasing concentrations – 1 μg/ml, 2 μg/ml, 3 μg/ml, 4 μg/ml and 5 μg/ml. 

The cells in all the wells including that of the lowest concentration failed to survive 

possibly due to drug toxicity. Therefore this method for stable selection was 

discontinued. 

The lentivirus treated cells were selected for stable cultures by fluorescent activated 

cell sorting (FACS) by flow cytometry. The procedure was carried out with the help of 

Dr Gary Warnes, manager of the flow cytometry core facility, Blizard Institute, Barts 

and the London school of Medicine and Dentistry.  The procedure was carried out as 

per the COSSH biohazard risk assessment protocol. The lentiviral infected cells 

were harvested from their cultures (in sterile PBS at density of 5 x 106 cells/ml sterile 

PBS) and collected in FACS tubes through a filter to remove any debris. The cells 

were passed through the flow cytometer machine BD FACS Canto II analyser aided 

by FACS Diva™ v6.1.3 software (BD Biosciences) set for 488 nm excitation and 509 

nm emission FITC fluorochrome gate (Fig 2.3). The GFP positive cells were 

collected, washed with PBS and incubated at 370C in complete medium. The cells 

were incubated for at least 96 hr prior to expansion or use for further studies.  

The efficacy of knock down was assessed by western blot and qRT-PCR analysis at 

multiple time points after passaging. 
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BMI1 knock down studies on DAOY and D-458 MB cell lines to investigate BMP 

pathway activation by immunofluorescence and to demonstrate cell aggregate 

formation were performed using siRNA method. All other knock down experiments 

were conducted following lentiviral mediated shRNA method.  

 

Fig. 2.3 Selection of stable shRNA transfected cells by FACS.  
 
The FITC gate (P3) was set to select only lentivirus shRNA infected  cells which expressed GFP. 
Approximately 25% of the cells were selected from (A) DAOY population, and approximately 10% of 
the cells were selected from (B) ICb-1299 population. In each, left panel is for shRNA Scr and right 
panel is for BMI1 shRNA. The selected cells were allowed to recover for at least 96 hr prior to 
expansion or use for further studies.       

 

2.2.4 HEK293T cells  
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HEK293T (human embryonic kidney) cell lines used for packaging of lentiviral 

vectors were obtained from Denise Sheer’s group in our institute (Jones, 

Ogunkolade et al. 2011). HEK293T cells were chosen for packaging because 

compared to HEK293 cells, HEK293T cells constitutively express SV40 large T 

antigen, are neomycin resistant and have better transfectability (Pear, Nolan et al. 

1993).  

These cells were cultured using IMDM media enriched with 10% FBS, and 1% 

penicillin/streptomycin and passaged when they reached confluence of  >90%. Prior 

to passaging, they were detached using 1% Trypsin EDTA.  
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2.3 Activation and inhibition of BMP pathway 
 

To assess if the functional effects of BMI1 silencing were BMP signalling dependent, 

we concomitantly used BMP pathway inhibitor (for DAOY and D-458) or recombinant 

BMPs (for DAOY) in in vitro studies.    

2.3.1 Recombinant BMP-4 

 

Use of recombinant BMP-2 and/or BMP-4 for BMP pathway activation is well 

established (Iantosca, McPherson et al. 1999; Hallahan, Pritchard et al. 2003; 

Piccirillo, Reynolds et al. 2006; Zhao, Ayrault et al. 2008). Use of BMP ligands is 

justified in DAOY cells as they are shown to express BMP receptors - BMPRI 

isoforms and BMPRII - which activate phosphorylation of SMAD1,5,8 proteins 

(Iantosca, McPherson et al. 1999; Fiaschetti, Castelletti et al. 2011). To induce BMP 

signaling pathway in our study, we used recombinant human BMP-4 (R&D systems) 

on DAOY. The lyophilized form was reconstituted with 4 mM HCl and 0.1% BSA as 

recommended by the manufacturer. Aliquots of 10 μg/ml were prepared and stored 

at -200C. 1 x 105 cells (with or without prior treatment with shRNA lentivirus) were 

plated in 2 ml medium in each well of a 6 well plate and treated with BMP-4 at a 

concentration of 100 ng/ml for 24 – 36 hr. The BMP signaling activation was 

assessed by the increased pSMAD1,5,8 expression by Western Blot analysis. The 

BMP-4 treated cells were used in Transwell migration and cell proliferation assays.    
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2.3.2 Noggin 

 

Noggin is a well characterised BMP signalling inhibitor (Zimmerman, De Jesus-

Escobar et al. 1996) and has been used previously in medulloblastoma studies as a 

BMP antagonist (Hallahan, Pritchard et al. 2003).   

To inhibit BMP signaling pathway in our study, we used recombinant Noggin/Fc 

Chimera (Sigma). The lyophilized form was reconstituted with sterile PBS containing 

0.1% BSA as recommended by the manufacturer. Aliquots of 50 μg/ml were 

prepared and stored at -200C. 1 x 105 cells (with or without prior treatment with 

siRNA or shRNA lentivirus ) were plated in 2 ml medium in each well of a 6 well and 

treated with Noggin at a concentration of 1μg/ml for at least 24 hr prior to functional 

analysis. The BMP signaling inhibition was assessed by reduction of pSMAD1,5,8 

expression by immunocytochemistry and Western blot. Noggin was used in all in 

vitro functional studies using DAOY or D-458 cells.    
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2.4 Western Blot 
 

Semi-quantitative assessment of BMI1 and pSMAD1,5,8 protein expression in MB 

cells and in mouse MB tumour tissue samples was performed using Western Blot. 

2.4.1 Sample preparation:  

 

MB cells: 105 – 106 cells were harvested from the culture, washed with sterile PBS to 

remove medium containing serum, and centrifuged to obtain cell pellets in eppendorf 

tubes. The pellets were either temporarily freeze-stored or used immediately for 

protein extraction. 

Tumour tissue: The frozen tumour tissue was thawed and weighed. About 80 - 100 

mg of tissue was collected for protein extraction and the rest was re-frozen and 

stored at -800C. The collected sample was homogenised using a tissue chopper 

prior to protein extraction.       

 

2.4.2 Protein extraction and protein measurement  

 

The samples were resuspended in Radioimmunoprecipitation assay (RIPA) buffer 

(Table 2.3) containing a freshly added solution of protease inhibitor (Complete Mini, 

Roche, 1 tablet added to 1ml of d. H2O to make 10X solution).  The amount of RIPA 

buffer + protease inhibitor (1%) solution was proportional to the size of the cell pellet 

– as a guide100 μl of RIPA buffer was used for a cell pellet containing 0.5 - 1 x 106 

cells and 200 μl for 80 – 100 mg of tissue homogenate.   
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Table 2.3 Preparation of RIPA buffer for Western blot. 

Contents Quantity 
 

Igepal CA-630 or NP40 1 ml 

2M Tris HCl (2M), pH 8.0  2.5 ml 

Sodium deoxycholate 0.5 g 

20% Sodium dodecyl sulphate (SDS) 500 μl 

0.5M Ethylene diamine tetraacetic acid (EDTA) 400 μl  

1M Sodium chloride (NaCl, 1M) 15 ml 

Distilled water Total up to 100 ml 

 

The sample suspension was sonicated for 4 - 5 brief spells using Soniprep 150 

ultrasonic disintegrator (MSE UK Ltd.) at amplitude of ~ 20 μ. The cell suspension 

was kept on ice for 20 – 60 min, and then spun at 13,000 rpm for 15 min at 40C to 

collect the supernatant containing total proteins.  

The protein concentration was measured using Pierce BCA protein assay kit 

(Thermoscientific). First, Parts A and B were mixed at 50:1 ration to obtain the 

working reagent. Five dilutions of albumin standards were prepared – 0.125 mg/ml, 

0.25 mg/ml, 0.5 mg/ml, 1 mg/ml and 2 mg/ml. Each albumin standard is then diluted 

with the working reagent at ratio of 1:20 in a 72 well plate and gently mixed. The 

same amount of test protein supernatant is added with working reagent in separate 

wells. Blank wells containing RIPA buffer with working reagents are also prepared. 

The 72 well plates is incubated at 370C for 15 min, and then cooled to room 

temperature, while the solution is protected from the light. The absorbance is 

measured @ 562 nm using NanoDrop photospectrometer (Thermo Scientific). The 

standard albumin curve is first obtained using the 5 prepared dilutions of albumin, 

followed by blank solution and then the test solutions. The readings are obtained in 

triplicates and the average reading is calculated.  
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2.4.3 Gel electrophoresis and ECL detection  

 

25 μg of each protein sample was taken in an eppendorfs, mixed with 2.5 μl loading 

buffer (final concentration of 25%) and diluted with RIPA buffer to make a final 

working volume of 12.5 μl.  The samples were boiled at 990C on eppendorf thermo 

mixer for 5 min. The boiled samples were quickly spun and kept on ice until 

electrophoresis.   

The running and stacking gel were prepared as in Table 2.4. After polymerisation of 

the gels, 10 μl working solution of protein samples were loaded on to the gel along 

with the 10 μl standard ladder (Bio-Rad), in an electrophoresis chamber filled with 1X 

running buffer. Electrophoresis was carried out at 80 V first (until the proteins passed 

through the stacking gel) and then at 100 V for 90 – 120 min.  

Table 2.4 Western blot gel preparation. 

Contents Running gel (10%) Stacking gel 
 

30% Acrylamide mix 3.3 ml 0.5 ml 

1.5M Tris HCl  2.5 ml (pH 8.8) 0.38 ml (pH 
6.8) 

10% SDS 0.1 ml 0.03 ml 

10% Ammonium persulfate 
(APS) 

0.1 ml 0.03 ml 

Tetramethylethylenediamine 
(TEMED) 

0.004 ml 0.003 ml 

Distilled water 4 ml 2.1 ml 

 

Following separation, the proteins were transferred on to Nitrocellulose membrane 

(Protran) by electrophoresis. The immunoblot sandwich for the transfer was in the 

order – Negative charge (black side) – sponge – Whatman paper -  gel with 

separated proteins – nitrocellulose membrane – Whatman paper – sponge – positive 

charge (red side). The sandwich was carefully inserted into electrophoresis chamber 

filled with pre-chilled 1X transfer buffer and an ice tray was placed in the chamber to 
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keep the temperature low. Transfer electrophoresis was carried out at 32 V in the 

cold room overnight. The contents of running and transfer buffer are listed in Table 

2.5.  

Table 2.5 Contents of electrophoresis buffers 

Running buffer (10X) Transfer buffer (10X) 
 

248 mM Tris 300g 
1.918M glycine 1440 g 
1% SDS 100 g 
d.H2O add to total 10 L 

1.2M glycine 90 g 
156 mM Tris 18.9 g 
0.25% SDS 2.5 g 
d.H2O add to total 1 L 

  

Following overnight transfer, the nitrocellulose membrane was treated with Ponceau 

S solution (Sigma) to confirm protein transfer. The membrane was washed 

thoroughly with 1X TBST solution and treated with 5% non-fat milk solution for at 

least 1 hr at room temperature to block unspecific binding of antibodies to antigens.  

The membrane was incubated with appropriate primary antibody for the desired 

duration (see Table 2.6) and rinsed with 1X TBST 2 x 5 min on a rocker. The 

membrane was treated with the appropriate secondary antibody (Table 2.6) at a 

concentration of 1:3000 for 1 hr at RT, and then rinsed with 1X TBST for 3 x 5 min 

on a rocker. The HRP conjugated protein was detected by Enhanced 

Chemoluminiscence (ECL) substrate (supersignal west PICO, Thermo Scientific). 

The solutions 1 and 2 were mixed in equal ratios and added on to the membrane, 

followed by incubation at room temperature for 5 min. The ECL treated membrane is 

wrapped in cling film, fixed in lead cassette and exposed to a film. The exposure time 

varied between 1 – 10 min for different protein band detection. The film was 

processed using the developer in the dark room. The nitrocellulose was soaked in 

TBST and stored at 40C. For repeat immuboblotting, the membrane was treated with 

Piercenet stripping buffer (Thermo Scientific) for 5 – 15 min at RT and washed with 
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TBST. The immunoprobing procedure was repeated from blocking antigen step 

onwards.   

Table 2.6 Primary and secondary antibodies used in WB 

Primary antibody Company Incubation 
conditions  
 

Secondary antibody 
used 

Mouse monoclonal 
anti-Bmi1   

Millipore (05-
657) 

1:500, 
overnight at 
4

0
C. 

ECL peroxidase anti-
mouse  IgG from sheep 
(GE Healthcare, 
NA931VS) 

Mouse monoclonal 
anti-alpha-tubulin  

Sigma 
(T6199) 

1:5000, 2 hr 
at RT. 
 
 

Rabbit polyclonal anti-
pSMAD1,5,8  
 

Cell Signaling 
(9511) 

1:500, 
overnight at 
4

0
C. 

HRP anti-rabbit IgG 
(Santa Cruz 
Biotechnology, sc-
2030)  

Rabbit polyclonal anti-
SMAD1,5,8 

Santa Cruz 
Biotechnology 
(sc-6031-R) 

1:400, 6 hr at 
RT 

HRP anti-rabbit IgG 
(Santa Cruz 
Biotechnology, sc-
2030) 

   

 

2.5 Quantitative Real-Time PCR (qRT-PCR).  
 

The efficiency of siRNA/shRNA induced BMI1 gene silencing was determined in MB 

cell lines and primary MB cells by qRT-PCR TaqMan Assay. The expression levels 

of Bmi1 in MB tumours arising from transgenic mouse model Math1Cre;Smo 

(comparing to the expression level of wild type mouse cerebellum) was also tested 

with this method. To evaluate the downstream targets of BMP pathway in MB cells, 

ID (inhibitor of differentiation) gene expression, namely, ID1 and ID2 expression was 

analysed by qRT-PCR SYBR Green method.     

2.5.1 Sample preparation:  
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MB cells: 105 – 106 were harvested from the culture, washed with sterile PBS and 

centrifuged to obtain cell pellets in eppendorf tubes. The pellets were either 

temporarily freeze-stored or used immediately for RNA extraction.  

Tumour tissue – The frozen tumour tissue was thawed and weighed. About 80 - 100 

mg of tissue was collected for RNA extraction and the rest was re-frozen and stored 

at -800C. The collected sample was homogenised using a tissue chopper and 

transferred to RLT lysis buffer containing eppendorf tube and pipetted using a 21G 

needle to ensure thorough mixing.    

2.5.2 RNA extraction:  

 

Total RNA was extracted using RNeasy minikit (Qiagen). First, lysis buffer was 

prepared by adding 30 μl of β-mercaptoethanol to 2970 μl of guanidine-

isothiocyanate containing RLT Buffer. 80% ethanol and 70% ethanol solutions were 

prepared by diluting absolute alcohol in RNase free water. 350 μl of lysis buffer was 

added to the eppendorfs containing cells/tissue sample and vortexed to homogenise 

the sample. 350 μl of 70% ethanol was added and mixed by inverting the tube. The 

lysate was then transferred to gDNA eliminator mini elute spin column and 

centrifuged at 10,000 rpm for 15 sec at room temperature (RT). 75 μl of DNase 

solution (prepared by mixing DNase in Buffer RDD) was added to the lysate and 

incubated at RT for 15 min. The column was centrifuged at 10,000 rpm at RT for 15 

sec and the filtered liquid was discarded. 500 μl of RPE Buffer with ethanol was 

added and centrifuged at 10,000 rpm at RT for 15 sec. The above process 

eliminated genomic DNA. Then, 500 μl of 80% ethanol was added to provide 

appropriate binding conditions for RNA and was centrifuged at 10,000 rpm at RT for 

2 min and again at 13,000 rpm for 5 min. The filtered liquid was discarded at all 
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stages. RNA was then eluted with 30 µl of RNase free water by spinning at 13000 

rpm at RT for 1 min. The RNA yield was determined by NanoDrop 

photospectrometry.   

2.5.3 Reverse Transcription:   

 

cDNA synthesis was performed using Quantitect kit (Qiagen). The RNA samples, 1 

μg each were first treated with 2 μl of gDNA wipe out buffer and totalled to 14 μl of 

working volume. The mix was incubated at 420C for 2 min to remove any DNA 

contamination. The samples were then placed on ice. Reverse Transcriptase III (RT 

III) mix was prepared by adding 1 μl of Quantiscript RT, 4 μl Quantiscript Buffer and 

1 μl of RT primer mix. 6 μl of prepared RT III mix was added to each sample and 

gently shaken. The samples are then incubated at 420 C for 15 min and at 950 C for 

3 min – to synthesise respective cDNA. The cDNA samples were stored at -800C 

until further analysis.  

An alternative method to synthesise cDNA using SuperScript III Reverse 

Transcriptase kit (Invitrogen) was also used.  First, 1 μg of RNA was annealed with 2 

μl of random primers(Invitrogen) to give a final volume of 14 μl, for 5 min at 650C. 

The master mix was prepared by mixing 4 μl of first strand buffer 5X, 1ul of DTT 

0.1M, 1 μl of dNTP 10 mM, 0.5 ul of Reverse Transcriptase III and 3.5 ul of RNase 

free water. The master mix was then added to the annealed primers to give a total 

volume of 24 μl. Reverse transcription was carried out at 250C for 5 min, 500C for 1 

hr and 720C or 10 min cycle. The resulting cDNA was stored at -800C until further 

analysis. 
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2.5.4 Polymerase chain reaction (PCR):  

 

To evaluate ID1 and ID2 expression in MB cells, we performed qRT-PCR using ID 

primer sequences. Prior to qRT-PCR, we checked for primer functionality by 

performing PCR. The RNA was extracted from MB cells and cDNA was prepared as 

above. The primers (Table 2.7) were designed using PRIMER3 software – 

frodo.wi.mit.edu/primer3/. The primers were validated for specificity using NCBI 

primer-Blast - http://www.ncbi.nlm.nih.gov/tools/primer-blast/.  Forward and reverse 

primer templates were ordered and obtained from Sigma and reconstituted with Milli-

Q® water to achieve the recommended working dilution. The PCR was performed 

using the cDNA samples. The PCR mix was prepared as in Table 2.8 and PCR 

amplification was carried out at 650C for 40 cycles. Dimethyl sulfoxide (DMSO) was 

added to increase specificity.  RNA or genomic DNA was used as controls to exclude 

contamination. The samples were then loaded on 1.2% agarose gel for 

electrophoresis for 45 min at 200V. The gel was photographed for band analysis. 

Clean bands for ID1 were identified at ~ 193 bp and for ID2 at ~ 347 bp (Fig 2.4), 

confirming that the primers were suitable for qRT-PCR. 

Table 2.7 Primer sequences of ID genes 

Gene  RefSeq  Primer sequence  
 

ID1  NM_002165.3 Forward 5'-CCCCAGAACCGCAAGGTGAGC-3' 
Reverse 5'-CAGGAACGCATGCCGCCTCG-3' 
 

ID2  
 

NM_002166.4 Forward 5'- TCTCGCCTTCCCTCGCGGTC-3' 
Reverse 5'- CGTGTTGAGGGTGGTCAGCGG-3' 

 

 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/tools/primer-blast/
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Table 2.8. Preparation of PCR mix 

Contents Volume 
 

Buffer 10X 2.5 μl 

dNTP 2.5 μl 

Forward Primer (working solution) 2.5 μl (10 μM) 

Reverse Primer (working solution) 2.5 μl (10 μM) 

TaqMan Polymerase 0.35 μl 

cDNA (100 ng) or RNA (100 ng) 2 μl 

DMSO 0.1 μl 

Sterile dH2O Make up to 25 μl 

 

 

 

Fig. 2.4 PCR for ID1 and ID2 genes.  
 
DAOY and ICb-1299 cDNA were screened for (A) ID1, and (B) ID2 gene expression. Clean bands 

were noted on PCR indicating their suitability for qRT-PCR analysis.   

 

2.5.5 qRT-PCR and data analysis:  

 

2.5.5.1 TaqMan assay:  

 

To briefly describe, in TaqMan probe-based assay (Maeda, Fujimoto et al. 2003), 

reporter dye and a quencher are attached to the 5' and 3' ends of a TaqMan probe. 

When the probe is intact, the reporter dye emission is quenched. During the 

extension cycle, DNA polymerase cleaves the reporter dye from the probe and once 

separated from the quencher the reporter dye emits its characteristic fluorescence. 

TaqMan based system is known to have a high specificity as compared to SYBR 
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Green method (Applied Biosystems). Here TAMRA dye was used as the quencher 

dye, and the methodology is discussed below.  

Triplicates of cDNA templates (~ 25 ng each) were mixed with TaqMan gene 

expression master mix (Applied Biosystems), TaqMan gene expression assay and 

RNase free H2O (to a working volume of 25 μl) to prepare the qRT-PCR samples (as 

in Table 2.9) in MicroAMP optical 96 well plate (Applied Biosystems). The gene 

expression assays used are listed in Table 2.10.  

Table 2.9 qRT-PCR Master mix preparation for TaqMan Assay. 

Contents Volume per well 
 

Master Mix 2X 12.5 μl 

TaqMan Assay Mix 20X 
(Bmi1 or β-actin primer) 

1.25 μl 

cDNA  1 μl 

RNAase free H2O 10.25 μl 

 

Table 2.10. Details of TaqMan gene expression Assay.  

Gene Assay ID Reference sequence Exon 
boundary 

Amplicon 
length (bp) 
 

BMI1 
(human) 

Hs00180411_m1 NM_005180.8 3-4 105 

Bmi1 
(mouse) 

Mm00776122_gH NM_007552.4 6-7 150 

ACTB (human β-
actin)  
 

Hs99999903_m1 NM_001101.3 1-1 171 

Actb (mouse) 
β-actin 
 

Mm00607939_S1 NM_007393.3 6-6 115 

 

The samples along with negative controls were run on the SDS 7500 system 

(Applied Biosystems) set for the detection of the FAM reporter and the TAMRA 

quencher. The expression levels of the Bmi1 gene was determined by calculating the 

∆CT ratio between this gene and the house-keeping gene beta-actin. Mean 
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expression (fold change) with standard deviation relative to controls were calculated 

using Excel spread sheet.  

2.5.5.2 SYBR Green assay:  

 

In SYBR Green assay (Maeda, Fujimoto et al. 2003), the SYBR Green dye 

fluoresces when bound to double-stranded DNA. When the DNA is denatured, the 

SYBR Green dye is released and the fluorescence is drastically reduced. During 

extension, primers anneal and PCR product is generated and when polymerisation is 

complete, SYBR Green dye binds to the double-stranded product resulting in a net 

increase in fluorescence detected by PCR machine. The specificity of this method 

depends on the template quality and primer optimisation. The methodology used is 

described below.  

Triplicates of cDNA templates (~ 25 ng each) were mixed with SYBR Green master 

mix as stated in Table 2.11.  

 

Table 2.11 Preparation of Master mix for qRT-PCR by SYBRgreen method 

Contents Volume 
 

SYBR Green JumpStart Taq ReadyMix 5 μl 

Forward Primer (10 uM) 0.5 μl 

Reverse Primer (10 uM) 0.5 μl 

Reference dye 0.1 μl 

cDNA 1 μl 

RNAase free H2O Make up to 10 μl 

 

The samples along with negative controls were analysed in microAMP optical 96 well 

plate, run on a Rotor Gene machine (Corbett Research). The cycling profile was as 

follows: 950C for 10 min, 600C for 30 sec, 720C for 30 sec for 40 cycles. The 

expression levels of ID1 and ID2 genes were determined by calculating the ∆CT ratio 

between these genes and house-keeping gene GAPDH. Mean expression (fold 
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change) with standard deviation relative to controls were calculated using Excel 

spread sheet.  

 

2.6 Cell migration assays 
 

To assess the effects of BMI1 silencing on MB cell migration/motility and cell 

invasion in vitro, we used wound healing assay and Transwell® migration assay.  

2.6.1 Wound healing assay using time lapse videomicroscopy 

 

Wound healing assay allows studying cell migration and cell interactions. The 

experiment was performed as per published protocols from literature (Hu and 

Verkman 2006; Kurayoshi, Oue et al. 2006) and was modified and optimised 

according to our requirements. First, shRNA lentivirus treated cells were plated in a 

24 well plate (2 cm2 growth area per well) at a constant density  of 0.5 x 105 cells/well 

in 0.5 ml serum free media. The culture plates were not plated with ECM substrates 

to maintain uniform culture conditions. No growth factors were added to the medium 

to exclude any effect due to a potential proliferation difference. At this stage, Noggin 

was added to the cultures, if required and labelled. The cells were incubated at 370C 

for 24 hr ensuring they attain >90% confluence. Using a 20 µl pipette tip, three 

different linear wounds (scratches) were incised in each to remove ~80 µm wide strip 

of cells. The wounded monolayer was washed with medium to remove floating cells 

and cell debris. Fresh medium containing 10% FBS was added and the cells were 

incubated in dark time lapse chamber at 370 C, 5% CO2 flow. The time lapse stage 

was set to acquire images from three areas from each well, a total of 9 areas for 

each group. The images were acquired using phase contrast inverted microscope 

(Nikon), 10X magnification, every hour, for 12 hr. Three sets of wells were analysed 
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for each condition tested. The images were compiled and a movie was created using 

Metamorph software (Molecular Devices, Sunnyvale, California). The healed wound 

area or the area of migration was analysed and tabulated as mean ± SD. The 

relative area of migration was compared to controls. The experiments were 

conducted in triplicates.  

2.6.2 Time lapse videomicroscopy to assess cell motility (without wound) 

 

Time lapse videomicroscopy is also used to track and study individual cell 

characteristics (Simpson, Selfors et al. 2008). This experiment was performed to 

confirm that the area of migration that was assessed by wound healing assay was 

not confounded by cell proliferation. Individual cells were tracked and distance of 

motility was analysed in this experiment, to complement the wound healing assay. 

shRNA lentivirus treated DAOY cells (36 hr after transfection) were plated in 24 well 

plate at a density of 0.5 x 105 cell/well in 0.5 ml serum free medium for 12 hr at 370C. 

Fresh medium containing 10% FBS was replaced and the cells were incubated in 

dark time lapse chamber at 370 C, 5% CO2 flow. The time lapse stage was set to 

acquire images from five random areas in each well. The images were acquired 

using phase contrast inverted microscope (Nikon), 20X magnification, every 30 min, 

for 6 hr. Three sets of wells were analysed for each condition tested. The images 

were compiled and a movie was created using Metamorph software (Molecular 

Devices, Sunnyvale, California). Ten cells in each movie were tracked and the 

distance of migration was calculated and expressed as mean ± SD. The distances 

were compared with controls. The experiments were conducted in triplicates.  

 

2.6.3 Transwell migration assay 
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In contrast to cell motility assay, cell invasion assay requires cell to migrate through 

a basement membrane extract (BME) or extracellular matrix (ECM) barrier by 

enzymatic digestion of the barrier to reach the new location.  Transwell® inserts 

(Corning); 24mm diameter wells with polycarbonate membrane of pore size 8 μm 

and base area of 4.5 cm2 were used for this assay. Transwell migration assay is a 

well-established method to assess cancer cell invasion in vitro (Hu and Verkman 

2006; Moskovits, Kalinkovich et al. 2006). The procedure was performed according 

to manufacturer’s protocol and was modified or optimised according to our 

requirements. First, shRNA lentivirus treated cells were plated in a 6 well plate (10 

cm2 growth area per well) at a constant density of 4 x 105 cells/well in 2ml serum free 

media to starve the cells (to synchronise them prior to migration assay).  Noggin or 

BMP was added to the cultures at this stage, if required, and the cultures were 

labelled. The cells were incubated for 24 hr at 370C ensuring less than 80% 

confluence. The Transwell® inserts were simultaneously coated with 1 ml/well of 

ECM extract – either type I Collagen (First Link) 20 μl /ml,  laminin (Sigma) 20 μl /ml 

or BD Matrigel™ (BD Biosciences) 100 μg/ml - and incubated overnight at 370C. 

Excess ECM solution was then carefully removed by aspiration. The cells were 

harvested from their cultures, dissociated, resuspended in serum free medium and 

plated on top surface in Transwell insert wells at a constant number of 4 x 105 cells 

in 2 ml serum free medium per well.  Noggin or BMP was added in to the cultures at 

this stage, if required, and the cultures labelled. 2 ml complete media containing 10% 

FBS was added in the reservoir or base of each well which acted as a chemo 

attractant for cells to migrate. The cultures were incubated for 12 hr (overnight) at 

370C to allow invasion. Following 12 hr incubation, the medium was removed from 

the reservoir well by careful suction at the periphery, the wells were rinsed with PBS 
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and the cells were fixed with 4% PFA for 10 min. The wells were washed with 0.5% 

Triton to increase cell permeabilization, and stained with 1 ml Gill’s Haematoxylin on 

both top and bottom of the membrane. The non-migrated cells from the top surface 

of the insert membrane were gently scraped off using a wet cotton bud and washed 

with PBS, preserving only the migrated cells on the bottom surface of the membrane. 

Five random images from each insert membrane were acquired using light 

microscopy at 20X magnification. The number of cells migrated (stained nuclei) were 

counted using ImageJ software. The average number of cells per group was 

calculated, values were expressed as mean ± SD, comparing to controls. Three 

wells per each group of cells were prepared. The experiments were conducted in 

technical and biological triplicates.  

 

2.7 Proliferation assays 
 

The effect of BMI1 silencing on cell proliferation was assessed in DAOY cells by 

three independent methods – growth curve analysis, CyQuant NF assay and EdU 

assay.  

2.7.1 Growth curve analysis 

 

The proliferation of cells was assessed by time course experiment to produce a 

growth curve (Horiuchi, Huskey et al. 2012). The DAOY cells were plated at a 

constant density of 1x105 cells per well in a 6 well plate and incubated for 3 days 

until they reached confluence. They were then collected by trypsinisation, and the 

number of live cells were counted using Neubauer chamber. Multiplication factor (f) 

was generated where f = no. newly counted cells/no. of originally plated cells. 
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Estimated number of cells (e) was calculated during each passage where e = f x 

previous e. During each passage, 1x105 cells were plated, for a total of 7 passages, 

P1 to P7, corresponding to day 0, 3, 5, 7, 10, 12 and 14. Triplicates of each group of 

cells were prepared and counted. The experiment was done in three biological 

replicas. The estimated number of cell counts (e) for each passage was tabulated 

and the growth curve graph was generated using Excel spread sheet.   

2.7.2 CyQuant NF assay 

 

The CyQUANT® NF proliferation assay kit (Hong, Jiang et al. 2007) [Invitrogen] was 

used. This assay is based on the measurement of cellular DNA content by 

fluorescent dye binding capacity. The cells were plated in Costar® 96 well plate 

(Corning Inc.) at a constant density of 1 x 103 cells per well in 100 μl medium and 

were incubated at 370C overnight to achieve cell adherence. Initially, 11 ml of 1X 

Hank’s balanced salt solution (HBSS buffer) was prepared by diluting 2.2 ml of 5X 

HBSS buffer (Component C) with 8.8 ml of deionized water. 1X Dye Binding solution 

was prepared by mixing 1X Hank’s balanced salt solution (HBSS buffer) with Dye 

Reagent (Component A, containing digitonin and dimethylsulfoxide), as per 

manufacturers protocol. Following overnight incubation, the medium from the 

cultures were removed and replaced by 100 μl of 1X Dye Binding solution in each 

well. The plate was incubated at room temperature for 30 min in the dark to allow 

equilibration of the dye-DNA binding. After a stable fluorescence endpoint was 

reached, the fluorescence intensity (excitation set at 480 ±10 nm, and emission 

detection at 530 ± 10 nm) of each sample was measured by Synergy HT microplate 

reader (BioTek) supported by KC4™ v3.4 software (BioTek). Three independent 

experiments with three technical replicas each were performed.  
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2.7.3 EDU assay: 

 

The Click-iT® EdU Alexa Fluor® 594 Imaging kit (Life Technologies) was used for 

this assay. This assay is based on detecting newly synthesised DNA by EdU (5-

ethynyl-2´-deoxyuridine) that is incorporated into new DNA by quick click chemistry 

reaction. 0.5 x 105 cells (lentivirus treated) per well in 0.5 ml media were plated in 

each well of a 24 well plate over Polylysine (PLL) coated coverslips, and incubated 

overnight to obtain adherence.  250 μl 2X working solution of EdU (Component A) 

was replaced in to each well by removing 250 μl of the media and  added to each 

well to achieve  a 1X concentration (10 μM). The EdU was pulsed for 3 hr at 370C. 

The cells were fixed with 4% PFA for 15 min at RT and washed with 3% BSA in PBS 

for 5 min x 2. The cells were permeabilised using 500 μl 0.1% triton in PBS for 20 

min at RT. Alexa Fluor® azide working solution was prepared by diluting it 

(component B) with 70 μl DMSO (component C). 1X Click-iT reaction buffer was 

prepared by diluting 10X solution (component D) with water. 1X Click-iT reaction 

buffer additive was prepared by freshly diluting 10X solution (component F) with 

deionised water. Click-iT cocktail was prepared by mixing 430 μl of reaction buffer, 

20 μl CuSO4 (component E), 2 μl Alexa Flour® azide working solution and 50 μl 

reaction buffer additive to make a final volume of ~ 500 μl per coverslip. The cocktail 

was added into each well and incubated for 30 min in dark at RT. The coverslips 

were then placed on the glass slide for imaging and analysis. The fluorophore used 

in this experiment was Alexa Flour® 594 which was detected at excitation 590 nm 

and emission 615 nm.     
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2.8 Apoptosis assay 
 

The effect of BMI1 silencing on apoptosis was assessed in DAOY cells by Annexin V 

assay and by Cleaved Caspase-3 assay.   

2.8.1 Annexin V and flow cytometry  

 

Annexin V is a Ca2+ dependent phospholipid binding protein that has a high affinity 

for phospholipid phosphatidylserine (PS). PS is translocated from the inner to outer 

leaflet of the plasma membrane in early apoptotic cells. Annexin V conjugated with 

fluorochrome could be used to detect early apoptotic cells without compromising its 

affinity for PS (Vermes, Haanen et al. 1995). PE Annexin V Apoptosis Detection Kit I 

(BD Pharmingen™, BD Biosciences) was used with Alexa Fluor 647 Annexin V 

conjugate (Invitrogen) as per manufacturer’s protocol.  Initially, 1X binding buffer was 

prepared by diluting 1 part of 10X Annexin V binding buffer with 9 parts of distilled 

water. The cells were collected from cultures and washed with sterile cold PBS twice 

and resuspended using 1X binding buffer. 1x105 cells in 100 μl of 1X binding buffer 

per group were collected in FACS tube. 5 μl of Annexin V conjugate was added to 

each tube along with 10 μl of 1:1000 DAPI. The samples were gently mixed and 

incubated at room temperature in the dark for 15 min. 400 μl of 1X binding buffer 

was then added to each tube and the samples were kept on ice until flow cytometry. 

Three controls (DAPI only, Annexin V only, green fluorescent cells only) were 

prepared along with the test sample for each cohort to facilitate optimisation of flow 

cytometer detection probes. The cells were run through the flow cytometer machine 

(BD FACS Canto II analyser) set at 633 nm excitation and 660 nm emissions for 

Annexin V conjugate. The percentage of early apoptotic cells was determined using 



124 
 

FACS Diva™ v6.1.3 software (BD Biosciences). Average percentage of three 

independent experiments was used for analysis. 

2.8.2 Cleaved Caspase-3 assay: 

 

This assay is based on detection of cleaved caspase-3 which is responsible for 

photolytic cleavage of several key proteins and is a measure of apoptosis. Cleaved 

Caspase-3 rabbit monoclonal antibody (Cell Signaling) was used for this assay. 0.5 x 

105 cells (lentivirus treated) were plated with 0.5 ml media in each well of a 24 well 

plate over Polylysine (PLL) coated coverslips, and incubated overnight to obtain 

adherence. The cells were fixed with 4% PFA for 15 min at RT and blocked with 3% 

BSA in PBS for 30 at RT. The cells were permeabilised using 500 μl 0.1% triton in 

PBS for 20 min at RT. 250 μl per well of antibody was added at a concentration of 

1:200 diluted in PBS and incubated in the dark for 3 hr at RT. The coverslips were 

washed with PBS for 5 min x 2. Secondary antibody 1:500 Alexa Fluor® goat anti-

rabbit 647 (Invitrogen) diluted in PBS was added and incubated for 1 hr at RT. The 

coverslips were then placed on the glass slide, mounted with DAPI medium and 

used for imaging and analysis.     
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2.9 Animal procedures 
 

All animal procedures were carried out as per the Animals Scientific Procedures Act 

1986, under the Home Office approval licences – Project licence PPL 70/7275 and 

Personal licence PIL – 70/23444. The mice were housed at the Biological Services 

Unit (BSU) Whitechapel Campus, Queen Mary University of London.  The mice were 

temporarily transferred to the BSU Charter House Square Campus, Barts Cancer 

Institute for in vivo imaging. Nonobese diabetic –severe combined immunodeficiency 

(NOD-SCID) mice were used for intracranial injection to generate MB xenografts, 

and C57/BL6 mice were used to isolate cerebellum for organotypic cerebellar slice 

and MB tumour spheres co-culture assay. The animals were humanely killed as per 

Schedule 1 procedures.   

2.9.1 Anaesthesia:  

 

The mice were anesthetised using standard protocols (Wixon 1997; Arras, Autenried 

et al. 2001). For intracranial xenografts, the adult mice were anaesthetised by 

injectable anaesthetics Ketamine (Ketanest®, Chemdex) 50 – 120 mg/kg and 

Xylazine (Rompun®, Bayer) 5 – 10 mg/kg. The anaestheic mix was prepared by 

diluting 1 ml of Ketanest® and 0.5 ml of Rompun® in 5.7 ml distilled water making a 

total volume of 7.2 ml. Each mouse was weighed, and the anesthetics mixture was 

administered by intraperitoneal (IP) injection at the dose of 7.2 µl per gram of body. 

This provided an anaesthesia time of 15 – 30 min. For in vivo imaging the adult mice 

were anaesthetised using inhalational anaesthetic isoflurane. The gas was delivered 

using face mask at 4.5% for induction and 1-2% for maintenance, for anaesthesia 

time of 15 – 20 min. 
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The neonatal mouse pups were anaesthetised by hypothermia method. The pups 

were held in crushed ice for 2-4 min, with precautions taken to avoid freeze injuries 

to the skin. This provided an anaesthesia time of 10 – 15 min.   

Following the procedure, the mice were allowed to recover on a heated mat for 10 – 

30 min until they were alert and mobile before transferring them to their respective 

cages.   

2.9.2 Stereotaxic intracranial transplantation:  

 

Intracranial injections for xenograft tumour generation in mice were performed using 

SR6M Stereotaxic instrument (Narishige). The stereotactic frame was sterilized and 

a 25 μl Hamilton syringe/ 26G needle filled with the cell suspension was fixed to the 

frame. The anaesthetized mouse was then mounted on to the frame (Fig 2.5). First, 

the ear bar was fixed anchoring it to the ears of the mouse, and then the bar was 

fixed to the frame, supporting the snout (keeping the nostrils patent) and slightly 

tilting the head forward to expose the cerebellum landmarks. The area of procedure 

was sterilized and an incision was made to expose the skull. The lambda suture was 

identified and the needle was adjusted using the frame scales to necessary co-

ordinates. The co-ordinates used to inject MB cells for intracerebellar xenograft were 

1 – 2 mm posterior, 1 – 2 mm lateral from the lambda suture (Shu, Wong et al. 

2008). The needle was inserted at 100 – 150 angles to a depth of 2 - 3 mm and 2 – 5 

μl of cell suspension, containing 1 x 105 cells was slowly injected into the right 

hemisphere with gradual retraction of the needle. Prior to completely withdrawing the 

needle, a skin suture was placed to cover the scalp wound. After completion of 

injection the mouse was dismounted from the frame, and allowed to recover on a 
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heated mat. The position of the mouse was changed every 10 - 15 minutes during 

the recovery phase to ensure adequate circulation.  

 

Fig. 2.5 Use of stereotaxic frame. 
 
(A) Picture of Narishige Stereotaxic instrument used. (B) Fixation of the mouse to the ear barto keep 
the head stable during the procedure. (C) The mouse is mounted on the bars of the frame and the 
snout is supported. (D) Mid-line incision of scalp to expose the skull prior to injection. 

 

2.9.3 In vivo fluorescence imaging  

 

Following intracranial MB cell transplants, the mouse brains were imaged in vivo 

using Xenogen IVIS® Lumina II imaging system (Caliper Life Sciences). The 

procedure was carried out in collaboration with Dr Julie Foster from Prof. Steve 

Mather’s group at Barts Cancer Institute. The anaesthetised mice were labelled by 

tail tipping or tail marker and imaged in IVIS chamber for GFP fluorescence. As the 

transplanted MB cells were GFP labelled, we expected to detect GFP emission 

which would enable us to monitor the tumour growth. But due to inadequate 

penetration of fluorescence signalling through the skull bones, the acquired images 

did not show any GFP detection (Fig 2.6). As positive controls, vials of lentivirus 

infected cell pellets were used.  
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Fig. 2.6 Attempt to acquire in vivo fluorescence images using IVIS system.  
 
The overlay images show GFP radiance (yellow) in lentivirus infected control cells in vials ‘C’. 
However the xenografted mice show no GFP radiance in both (A) DAOY or (B) ICb-1299 transplants 
6-8 weeks after injection. This is thought to be due to non-penetrance of GFP emission through the 
skull. The capture (red) on the body of the animals is auto fluorescence from the coats of the animals. 
Eventually it was decided to analyse the xenografts by an alternative method - to harvest the 
xenografts and examine by fluorescent microscopy.     

 

Because no in vivo fluorescence could be detected due to non-penetrance, we 

decided to harvest the brain at the end of the experiment and study the invasive 

properties of the transplants by in vitro fluorescence imaging as described in chapter 

6.  

2.9.4 Organ harvest:  

 

2.9.4.1 Brain harvest for organotypic co-culture assay:  

 

The cerebellum was isolated from C57/BL6, P4 – P6 neonates. The pups were 

sacrificed by decapitation and the brain was collected on ice cold dissecting buffer. 

The cerebellum was isolated and the meninges were carefully peeled off the surface. 

Freshly isolated cerebellum was then sectioned using McIlwain tissue chopper (The 
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Mickle Lab. Engineering Co. Ltd.) to obtain cerebellar slices for ex vivo studies as 

described in chapter 5.  

2.9.4.2 Brain harvest following xenograft generation:  

 

Following MB tumour cell engraftment, the animals were sacrificed when they 

developed neurological symptoms or at the end of the experiment by exposure to 

raising concentrations of CO2 gas. The brain and spinal cord from each mouse were 

harvested immediately. The brain was fixed in 4% PFA in view of cryopreservation of 

tissue and examination of GFP positive (lentiviral infected) MB cells using 

fluorescent microscopy. The spinal cords were fixed in 10% formalin and embedded 

in paraffin in view of further morphological examination to study any tumour burden 

as described in chapter 6.   

The brain samples were incubated in 4% PFA for 2 hr at 40C for initial fixing. The 

forebrain was then separated from the cerebellum and brain stem pedicle. The latter 

was bisected coronally and fixed in 4% PFA at 40C for further 24 hr. The bisected 

samples were then transferred to 30% sucrose solution (30 g sucrose in 100 ml 0.1 

M phosphate buffer) for 24 – 48 hr at 40C (until the tissues sank) for cryoprotection 

and avoidance of crystal formation. After dehydration, each bisected sample was 

placed cut side down in  15 x 15 x 15 mm tissue moulds (Tissue-Tek), labelled and 

filled with Optimum Cutting Temperature (OCT) compound (VWR) until total 

immersion at room temperature . The moulds were kept in cooled isopentane (on dry 

ice) to gradually freeze the tissue. Once the OCT hardened the moulds were stored 

in – 800C until cryostat sectioning.  
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2.9.4.3 Spinal cord dissection for tumour burden analysis  

 

The spinal cords of the xenografted animals were harvested to assess the spread of 

the tumour. The mice were prepared by shaving their dorsum. A long incision was 

made along the mid-line extending from head to hip. The skin was retracted to 

adequately expose the vertebral column. The vertebral column was disarticulated 

just below the skull and at the hip level and the cross section of the spinal cord at the 

upper and lower end of the disarticulation sites were identified. Starting from the tail 

end of the vertebral column (because the spinal foramen is larger at this end), the 

vertebral bones were cut on either sides of the spinal cord using a small dissecting 

scissors. The blood was rinsed away with PBS in order to see the cord.  The bony 

vertebrae along the lateral aspect were cut on both sides from below upwards (ie. 

lumbar to cervical). Care was taken to avoid damaging the spinal cord which is 

identified as a white and glistening structure (with dural covering). Once the whole 

length was dissected, the bone was removed from the dorsal side to expose the 

spinal cord. The spinal cord was gently peeled with blunt forceps by disconnecting 

the nerve roots/chords and fixed in formalin for at least 48 hr. It was then sectioned 

in to 4-5 pieces along its longitudinal axis and embedded in paraffin blocks. The 

blocks were sectioned at 4-5 μm thickness and were stained with H&E for 

morphological analysis of tumour burden. The sections from all the samples were 

screened for presence of tumour deposits in the spinal cord, identified by 

morphological characteristics of medulloblastoma. The rate of tumour positivity in 

shRNA BMI1 silenced xenografts were compared with control xenografts.    

 

2.9.4.1 Cryostat sectioning: 
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The cerebellum and brain stem samples, fixed and frozen in OCT compound, were 

sectioned in their entirety using Leica CM1850 cryostat (Leica) to study the invasive 

properties of the xenografted tumour. The cryostat chamber was maintained at -

200C. Each half of the bisected sample was fixed on to the cryostat tissue holder 

using OCT compound and sectioned at 20 μm thickness. The sections from each 

sample were transferred to 12 SuperFrost® Plus glass slides (VWR) serially (ie. 1-12 

sections to slides 1-12 and 13 – 24 sections to slide 1 – 12 again etc.),  to ensures 

that each slide would be representative of the entire sample. The slides were 

labelled and left to dry overnight. The dried sections were stored at -800C until 

stereology and confocal microscopy analysis was performed as described in chapter 

6.  

     

2.10 Histology and immunohistochemistry 
 

2.10.1 Haematoxylin and eosin (H&E) staining 

 

The tissue morphology was examined histologically using conventional H&E staining 

on the tissue sections. The sections were dewaxed (if FFPE) or thawed (if 

cryopreserved) and were rehydrated with PBS for 5 min. The slides were then 

incubated in PBS + 0.1% Triton X for 10 min followed by immersion in haematoxylin 

for 2-3 min and washed with distilled water briefly and tap water for 5 min. They were 

then immersed in eosin for 2 min and briefly washed with distilled water followed by 

tap water for 5 min. The stained sections were dehydrated in 70% alcohol for 30sec, 

100% alcohol for 30sec and in Xylene for 30 sec in succession. The sections were 

mounted using DPX (mixture of distyrene, plasticizer, and xylene), covered with 

coverslips and left drying for 2-3 hr.   
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2.10.2 Immunohistochemistry by Avidin-biotinylated Complex (ABC) method:  

 

The Formalin fixed paraffin embedded (FFPE) tissue and cell block sections were 

stained by avidin-biotinylated complex (ABC) method of immunohistochemistry. The 

slides were dewaxed by incubating them in the oven at 600C for 20 min. The 

sections were then deparaffinated by treating them in xylene for 10 min x 2 followed 

by 100% ethanol for 5 min x 2 and 90% ethanol for 5 min x 2. They were then 

treated with H2O2 solution (1% hydrogen peroxidase, H2O2, in cold methanol) for 20 

min to block endogenous peroxidase and rehydrated in 70% ethanol for 5 min 

followed by rinsing in dH2O for 5 min x 2. Antigen retrieval was done by the heat 

method – the slides were immersed in 10 mM citrate buffer (2.1 g of citric acid 

monohydrate dissolved in 1 L dH2O), pH 6 and microwaved (Panasonic apparatus) 

for 1 min at high power and 15 min at medium power. The slides were allowed to 

cool and rinsed with PBS for 5 min x 3. The block to prevent unspecific binding of 

antibodies to antigens was carried out using appropriate serum (Table 2.13) diluted 

in 0.2% triton + 0.1% sodium azide solution at room temperature for 1 hr. After 

blocking, the sections were treated with the primary antibody diluted in 0.2% triton + 

0.1% sodium azide solution and incubated overnight at room temperature in a moist 

chamber. The primary antibodies used with the respective concentration are listed in 

Table 2.12. After primary antibody treatment, the sections were washed with PBS + 

0.1% tween 20 solution for 5 min x 3 and appropriate biotinylated secondary 

antibody (Table 2.13) was applied at room temperature for 1 hr. The sections were 

washed with PBS + 0.1% tween 20 solution for 5 min x 3 and incubated with 

avidin/biotinylated enzyme complex using Vecstatin ABC reagent (Vector labs) for 30 

min. They were washed again with PBS + 0.1% tween 20 solution for 5 min x 2 and 
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enzymatic detection was carried out with 3,3’- diaminobenzidine tetrahydrochloride 

(DAB solution,Sigma). Working solution of DAB was prepared by mixing 1 ml of DAB 

liquid chromogen with 9 ml of DAB liquid buffer as per manufacturer’s instructions. 

The duration of DAB incubation varied for different antibodies – the reaction was 

stopped when brown staining appeared – which was between 1 – 10 min. The slides 

were rinsed in dH2O to stop the reaction, and counterstained with haematoxylin for 

30 sec. The slides were washed with dH2O to remove the excess dye and 

dehydrated with 50% ethanol for 5 min, 70% ethanol for 5 min, 90% ethanol for 5 

min x 2, 100% ethanol for 10 min x 2 and xylene for 10 min x 2 successively. The 

sections were then mounted using DPX, covered with coverslips and allowed to dry 

for 2-3 hr at RT. For membrane antigen detection, PBS without Triton was used 

during the wash steps.   

Table 2.12 List of primary antibodies used for immunohistochemistry using ABC method.  

For antigen to be 
detected 

Primary antibody 
used 

Company Concentration Positive 
control  
 

Bmi1 (mouse) or  
BMI1 (human) 

Rabbit polyclonal anti-
Bmi1 

Abcam 
(ab38295) 

1:100  Gastric 
carcinoma 

pSMAD1,5,8 Rabbit polyclonal anti-
phosphoSmad1/5/8 

Millipore 
(AB3848) 

1:100 Breast 
carcinoma 

CD44 Rabbit polyclonal anti-
CD44 

Abcam 
(ab24504) 

20 μg/ml Glioblastoma 

Thrombospondin 
(THBS) 

Mouse monoclonal 
anti-thrombospondin 

Abcam (ab1823) 1:25 Glioblastoma 

MMP8  Goat polyclonal anti-
MMP8 

Santa Cruz (sc-
8848) 

1:50 Breast 
carcinoma 

MMP10 Rabbit polyclonal anti-
MMP10 

Abcam 
(ab59437) 

1:500 Breast 
carcinoma 

Synatophysin  Rabbit polyclonal to 
synaptophysin 

Abcam 
(ab14692) 

1:500 Brain  

GFAP Rabbit polyclonal anti-
glial fibrillary acidic 
protein 

DakoCytomation 
(Z0334) 

1:500 Brain  

KCNA1 (Kv1.1) Rabbit polyclonal anti-
Kv1.1 

Abcam 
(ab86211) 

1:1000 Brain   
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Table 2.13 Biotinylated secondary antibody and blocking serum used 

For primary antibody source 
 

Secondary antibody used Blocking agent 

Rabbit or Mouse Universal biotinylated anti-
mouse/anti-rabbit IgG (Vector) 
raised from horse. 

2.5% Normal horse serum 
(Vector)  
 
 

Goat  1:400 Anti-goat IgG (Vector) 
raised from rabbit 

5% Normal rabbit serum    

 

OCT embedded tissue: Freshly frozen tissue sections (xenografts fixed with 4% PFA 

and embedded in OCT) were initially treated with cold methanol for 10 min followed 

by either 5% Normal Goat Serum or 10% Normal Donkey Serum for 1 hr. They were 

then incubated with either goat polyclonal anti-BMI1 (Santa Cruz Biotechnology) 

1:100 or rabbit polyclonal anti-pSmad1/5/8 (Cell Signalling) 1:100 primary antibody 

overnight at room temperature. Appropriate secondary antibody was used: donkey 

anti-goat 568 (red, Invitrogen) 1:400 or goat anti-rabbit 546 (red, Invitrogen) 1:400 for 

2 hr at room temperature. The sections were counterstained with DAPI and 

examined using Confocal 710 microscope (Zeiss).  

2.10.3 Immunofluorescence  

 

2.10.3.1 Cell preparation:  

 

DAOY or D458 were plated at a concentration of 0.5 x 105 cells (with or without 

siRNA transfected) in 0.5 ml medium in each well of 24 well plate, containing Poly-

lysine (PLL) coated coverslips. The PLL coated coverslips allowed cells to adhere 

better and contributed to better fluorescent imaging because the coverslips could be 

transferred on to a glass slide. After 24 – 48 hr in culture, the cells were fixed using 

4% PFA for 15 min at RT. The antigen block was carried out using 5% Normal Goat 

Serum (NGS), and incubated with primary antibodies for 2 hr at RT (Table 2.14). 
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Appropriate fluorescent secondary antibodies were used at a concentration of 1:400 

for 2 hr at RT. The coverslips were counterstained with DAPI (blue, nuclear staining) 

and mounted on glass slides. Fluorescent imaging was carried out using a Leica 

DFC350 microscope (Leica) and the cell counts analysed as described in chapter 3.  

2.10.3.2 Cryosections:  

 

The tissue sections that were embedded in OCT compound were removed from - 

800C, thawed and washed in PBS for 5 min x 3 on a rocker. The sections were 

placed in cold methanol for 5-10 min at RT to enable penetration of antibodies into 

the sections and to optimal staining. The slides were placed in 0.1% Tween in PBS 

for 5 min at RT. The edges of the slides were dried and the section areas were 

marked with PAP pen to limit the antibody usage. The sections were incubated with 

blocking solution – either 5% normal goat serum (NGS) or 10% normal donkey 

serum (NDS) diluted in PBS + 0.2% Triton + 0.1% NaAzide, for 1hr at RT in a 

humidified chamber. The sections were then incubated with theprimary antibody pre-

diluted in PBS + 0.2% Triton + 0.1% NaAzide overnight at RT in a humidified 

chamber.  The primary antibody was removed and sections were washed in PBS for 

5 min x 2 and then with PBS/0.1%Tween for 5 min x 1. The sections were incubated 

with appropriate prediluted fluorescent secondary antibody in PBS + 0.2% Triton + 

0.1% NaAzide for 2 hr in a humidified chamber. The sections were washed in PBS 

for 5 min x 2 and in PBS/0.1%Tween for 5 min x 1. The sections were coverslipped 

and mounted with Vectashield Mounting Medium (Vector) contains DAPI nuclear 

stain. The slides were allowed to dry for 10-15 min and the coverslips were sealed 

with nail polish. The sections were stored in the dark at 40C until microscopic 
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examination. The sections were evaluated at the confocal microscopy and analysed 

as described in chapter 6.   

 

Table 2.14 List of primary antibodies used in immunofluorescence analysis.  

For antigen to 
be detected 

Primary antibody used Company Concentration Alexa Fluor® 
secondary 
antibody 
(Invitrogen) 

Cell preparation 

BMI1  
 

Mouse monoclonal anti-
Bmi1  

Millipore  (05-637) 1:500 Goat anti-
mouse 546 
(red) IgG, 
A11003 
 

Synaptophysin Mouse monoclonal anti-
synaptophysin 

DakoCytomation 
(M0776) 

1:50 

GFAP Rabbit polyclonal anti-
glial fibrillary acidic 
protein 

DakoCytomation 
(Z0334) 

1:1000 Goat anti-
rabbit 488 
(green) IgG, 
A11008 

Cryosections 

BMI1 Goat polyclonal anti-
Bmi1 

Santa Cruz 
Biotechnology (sc-
8906) 

1:200 Donkey anti-

goat IgG 568 

(red)  

A11057 

pSMAD1,5,8 Rabbit polyclonal anti-
phosphoSmad1/5/8 

Cell signalling  
(9511) 

1:100 Goat anti-

rabbit 546 

(red) IgG  

A11035 

CD44 Rabbit polyclonal anti-
CD44 

Abcam (ab24504) 1:100 (20 
μg/ml) 

Laminin β-1 
(LAMB1) 

Rabbit polyclonal anti-
Lamb1 

Abcam (ab65986) 1 μg/ml 

Thrombospondin 
(THBS) 

Mouse monoclonal anti-
Thsb 

Abcam (ab1823) 1:25 

 

2.11 Statistical analysis  
 

All in vitro and ex vivo experiments were performed at least in triplicates unless 

otherwise stated. Minimum of 6 in vivo xenograft models in each group were used for 

tumour volume and invasion analysis, and three xenograft tumours from each group 

were used for pSMAD1,5,8 expression analysis. The statistical significance of the 

quantitative data was calculated using student’s t test, and presented as mean ± SD. 

The statistical significance was set at P < 0.05.  Spearman non parametric tests and 

cross-tabulations were used for correlation analysis on TMA data using SPSS® 
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statistical package version 20 (IBM®). Kaplan-Meir survival estimation among 

xenograft mice were also done using SPSS, where statistical significance was 

calculated using Log-Rank analysis.    
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CHAPTER 3  BMI1 represses the BMP signalling pathway 

in MB cell lines and in primary MB cells of Group 4.  
 

3.1 Introduction 
 

BMI1 plays a role in the pathogenesis of several human cancers (Sparmann and van 

Lohuizen 2006) including brain tumours such as gliomas (Bruggeman, Hulsman et 

al. 2007) and MBs.  (Leung, Lingbeek et al. 2004). Recently, using genome-wide 

expression analysis, MB has been classified into four distinct molecular subgroups – 

SHH, WNT, Group 3 (Consensus Group 3 or Northcott Group C) and Group 4 

(Consensus Group 4 or Northcott Group D) (Northcott, Korshunov et al. 2011; 

Taylor, Northcott et al. 2012). Using a genetically engineered mouse model, our 

group have recently demonstrated that Bmi1 critically influences cell-cell interactions 

during cerebellar development, and more importantly it does so through specific 

inhibition of BMP signalling (Zhang, Santuccione et al. 2011). In this study, we 

hypothesise that BMI1 represses BMP pathway also in human medulloblastoma. 

BMP signalling is deregulated in MB cells (Zhao, Ayrault et al. 2008), hence the 

system seemed appropriate to study whether Bmi1 contributed to its deregulation.  

To test our hypothesis, we used well characterised MB cell lines with high BMI1 

expression and checked for BMP signalling status. BMI1 overexpression is known to 

be more significantly associated  with aggressive MB subtypes – most significantly 

with  Group 4 tumours  (Behesti, Bhagat et al. 2013).  Because of the known 

association of Group 4 MB with high BMI1 expression, we decided to validate the 

findings obtained in cell lines on primary human MB cells belonging to Group 4 (or 

Northcott Group D) specifically.    
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3.2 Experimental design and methodology  
 

3.2.1 BMI1 gene silencing by RNA interference (RNAi):  

 

Transient BMI1 gene silencing (knock down) in DAOY and D-458 was achieved by 

siRNA technology. FlexiTube siRNA (Qiagen) specific for BMI1, containing a mix of 

Hs BMI1 1, Hs BMI1 2 and Hs PCGF4 3 was used. All Stars Negative siRNA 

(Qiagen), referred to as scrambled (Scr) was used as control. The transfection mix 

was prepared and added to the cell cultures as described in Materials and Methods 

(M&M, chapter 2, section 2.2.2.1). To obtain maximum knock down efficiency, the 

transfected cells were incubated for 48 hr with the transfection mix prior to any 

functional study. The efficiency of BMI1 knock down was assessed by Western blot 

and immunofluorescence (explained in section 3.3, Fig 3.2). 

Stable BMI1 silencing in DAOY cell lines and in ICb-1299 primary cells was achieved 

by shRNA technique using GFP labelled lentiviral vectors. Production and packaging 

of lentivirus is described in M&M (chapter 2, section 2.1). The cells were infected 

with either shRNA BMI1 or shRNA scrambled (Scr) lentivirus at a Multiplicity of 

Infection (MOI, formula stated in chapter 2, section 2.2.3.1) of 12.5 for DAOY and 25 

for ICb-1299. After 72 hr incubation, they were sorted by FITC gated flow cytometry 

(FACS) for stable selection. The cells were incubated for at least 96 hr prior to 

expansion or use for further studies. The efficacy of knock down was assessed by 

Western blot and qRT-PCR analysis at multiple time points after passaging. 

Stable BMI1 knock down (in DAOY cell lines and in primary cells ICb-1299), using 

the above method was used for all of the knock down experiments, except for i) 

investigation of BMP pathway status (section 3.3, Fig 3.5 and Fig 3.6), and ii) 

investigation of cell adhesion phenotype (chapter 4, section 4.3.1, Fig 4.2), where 
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transient BMI1 knock down (in DAOY and D-458 cell lines), using siRNA method 

was used.   

3.2.2 BMP pathway inhibition:  

 

To inhibit BMP signalling in DAOY or D-458 cell cultures, recombinant Noggin 

(Sigma) was used at a concentration of 1μg/ml (which showed low cell toxicity and 

efficient BMP pathway inhibition, explained in section 3.3.2.1 (Fig 3.4). Noggin was 

used either alone or concomitantly with siRNA BMI1 knock down. The cultures were 

incubated for at least 24 hr prior to assessment of BMP signaling inhibition by 

reduction of pSMAD1,5,8 expression. Where the cultures had to be incubated for 

longer than 24 hr, they were supplemented with Noggin every 24 hr. 

3.2.3 Immunocytochemistry:  

 

The cells treated with siRNA/shRNA BMI1 for knock down studies were cultured on 

Poly-lysine (PLL) coated coverslips and were treated concomitantly with Noggin 

where appropriate to inhibit BMP signaling. Following incubation for 48 hr they were 

fixed using 4% Paraformaldehyde (PFA) and antigen blocked with 5% Normal Goat 

Serum. They were treated with BMI1 and pSMAD1,5,8 antibodies (details below) for 

2 hr at RT, followed by fluorescent secondary antibodies (details below) for 2 hr at 

RT. The coverslips were transferred to glass slides and mounted using DAPI 

medium. Five random fluorescent micrographs (20X magnification) were obtained 

using Leica Confocal microscope DFC350 set with Y3 (red), A4 (blue) and L5 

(green) filters. The number of cell nuclei staining for DAPI (blue, representing total 

number of cells present) and the number of cells positive only for pSMAD1,5,8 

(green) was counted using ImageJ software and expressed as percentage of cells 
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expressing pSMAD1,5,8. The results were tabulated under scrambled and BMI1 

siRNA group for both DAOY and D458.  

Primary antibodies used are:  

1) Mouse monoclonal anti-Bmi1, (Millipore, 05-637), 1:500 

2) Rabbit polyclonal anti-phosphoSmad1/5/8, (Cell signalling, 9511), 1:100 

Secondary antibodies used are (incubated at 1:400 for 2 hr at RT): 

1) Alexa Flour® goat anti-mouse 546 (red) IgG (Invitrogen, A11003), 1:400 

2) Alexa Fluor® goat anti-rabbit 488 (green) IgG (Invitrogen, A11008), 1:400 

 

3.2.4 Western blot:  

 

This method was used:  

i) To screen MB cell lines for BMI1 expression levels,  

ii) To confirm efficacy of BMI1 knock down in DAOY and ICb-1299, and  

iii) To study pSMAD1,5,8 and SMAD1,5,8 expression levels following BMI1 silencing 

in DAOY and ICb-1299.  

The results were normalised against expression of α-tubulin. The procedure was 

carried out as explained in M&M (chapter 2, section 2.4). Briefly, total protein 

extraction, gel separation and transfer to nitrocellulose membrane by electrophoresis 

were carried out. The membrane was blocked with 5% fat free milk solution and 

incubated with primary followed by secondary antibodies. The complex was exposed 

to ECL detection system and processed using film developer. The protein bands 
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were compared for semi-quantitative expression analysis. The antibodies used are 

as follows -   

Primary antibodies:   

1) Mouse monoclonal anti-Bmi1 (Millipore, 05-657), 1:500, ON at 40C. 

2) Mouse monoclonal anti-alpha-tubulin (Sigma, T6199), 1:5000, 2 hr at RT. 

3) Rabbit polyclonal anti-pSMAD1,5,8 (Cell Signalling, 9511), 1:500, ON at 40C. 

4) Rabbit polyclonal anti-SMAD1,5,8 (Santa Cruz Biotechnology, sc-6031-R), 

1:400. 6 hr at RT. 

Secondary antibodies:  

1) ECL peroxidase anti-mouse IgG from sheep (GE Healthcare, NA931VS), 

1:3000, 1 hr at RT. 

2) HRP anti-rabbit IgG (Santa Cruz Biotechnology, sc-2030), 1:3000, 1 hr at RT. 

 

3.2.5 qRT-PCR:  

 

The efficacy of BMI1 silencing following lentiviral shRNA treatment in DAOY and Icb-

1299 was tested using TaqMan Assay. Expression analysis of ID1 and ID2 

(Inhibitors of DNA binding 1 & 2 respectively) genes to check for activation of 

downstream targets of BMP-pSMAD1,5,8 signalling was done by SYBR Green 

assay. The details of qRT-PCR is explained in M&M (chapter 2, section 2.5.5).  

ID1 and ID2 primers were designed using PRIMER3 software and validated using 

NCBI primer-BLAST system. The forward and reverse primers were obtained from 

Sigma. RNA was extracted from the cells and cDNA was prepared by reverse 

transcription. qRT-PCR was carried out using the following primers -  
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TaqMan Assay (Applied Biosystems): 

1) BMI1 (human), Hs00180411_m1, NM_005180.8  

2) ACTB (human β-actin), Hs99999903_m1, NM_001101.3  

SYBR Green method: 

1) ID1 (transcript variant 1) NM_002165.3 

Forward 5’-CCCCAGAACCGCAAGGTGAGC-3’ 

Reverse 5’-CAGGAACGCATGCCGCCTCG-3’ 

2) ID2, NM_002166.4  

Forward 5’- TCTCGCCTTCCCTCGCGGTC-3’ 

Reverse 5’- CGTGTTGAGGGTGGTCAGCGG-3’ 

3) GAPDH, NM_002046.4 

Forward - GCACAGTCAAGGCCGAGAAT 

Reverse- GCCTTCTCCATGGTGGTGAA 

 

The expression levels of required genes were determined by calculating their ∆CT 

values and were normalised to that of house-keeping gene, GAPDH expression. 

Mean expression (fold change) with standard deviation relative to controls were 

calculated.    
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3.3 Results 

3.3.1 Efficient BMI1 knock down was achieved by RNAi methods in human 

medulloblastoma cell lines known to express high levels of BMI1 

  

To test our hypothesis that BMI1 overexpression suppressed BMP signalling 

pathway in human medulloblastoma, we set out to study the BMP pathway status in 

those MB cell lines which had high BMI1 expression. Five human MB cell lines - 

UW228-2, D-425, D-458, D-341 and DAOY (obtained from ATCC) were screened for 

BMI1 protein expression by Western Blot (test carried out by Xinyu Zhang, 

Department of Neurosciences, Blizard Institute, Barts and the London School of 

Medicine and Dentistry). BMI1 expression in these cell lines was observed (Fig 

3.1A), and the expression levels were comparable to that previously observed by 

Leung et al. Fig 3.1B) (Leung, Lingbeek et al. 2004), and in majority of the 12 

primary human tissue samples analysed (Fig 3.1C) (Leung, Lingbeek et al. 2004).  

 

Fig. 3.1 Western blot analysis of BMI1 expression in human MB cell lines and primary tumour 
samples. 
 
(A) BMI1 is expressed in the fiveMB cell lines screened – UW228-2, D-425, 4-458, D-341 and DAOY. 
The expression levels of the cell lines is estimated by means of Western blot  compared to previous 
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results (B), and twelve primary human primary MB tissue samples (C), from Leung et al. study (Leung 
et al. 2004, Nature). Similar BMI1 expression levels were observed with a slightly lower expression in 
D-341. DAOY and D-458, which had stable BMI1 expression levels were further used in our study, 

 

Having established that BMI1 was highly expressed in the above cell lines, we chose 

DAOY and D458 for further studies. We chose these cell lines because i) they are 

extensively characterised, and ii) stable BMI1 expression levels were detected. BMI1 

knock down was carried out using both transient lipofection-mediated siRNA delivery 

and stable lentiviral-mediated shRNA delivery.  To assess efficiency of knockdown 

immunocytochemistry for BMI1 antibody was performed. Five fields in each well 

were imaged and the experiments were conducted in triplicates. Although the 

number of cells expressing BMI1was not quantified, optical imaging suggested 

consistently reduced BMI1 expression (number and/or intensity) in both DAOY (Fig 

3.2A) and D-458 (Fig 3.2B) cultures upon BMI1 knock down.  

To confirm the above finding, a semi-quantitative assessment using the Western Blot 

method was performed. Total protein was extracted from siRNA treated cells 

cultures and immunoblot was performed against BMI1 antibody. There was a 

reduced BMI1 protein expression noted in BMI1 siRNA treated DAOY and D-458 

extracts as compared to siRNA Scr and untreated controls (Fig 3.2C), thus 

corroborating the immunocytochemistry results. It is noted that the BMI1 bands in Fig 

3.2C appear different for DAOY and D458. The possible reason for this could be 

partial degradation of BMI1 protein in the DAOY lysates used, giving a smear like 

appearance. Other possible influencing factors could be the exposure time, and 

quality of primary and/or secondary antibody used.  
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Fig. 3.2 Immunofluorescence and Western blot demonstrating an effective siRNA mediated 
BMI1 knock down in MB cell lines. 
 
Transient BMI1 knock down was carried out using lipofection-mediated siRNA delivery. 
Immunohistochemistry suggested an effective BMI1 knock down 48 hr of transfection  in both (A) 
DAOY and (B) D-458, where a reduction in number and intensity of BMI1 expression was observed in 
all five representative fields (n=3). Left panel showing DAPI channel with total number of cell nuclei; 
middle panel showing BMI1 positive cells; and right panel showing merged image. (C) Western blot 
analysis confirming a reduction in BMI1 protein expression in siRNA BMI1 treated DAOY (left) and D-
458 (right) cells, as compared to untreated and siRNA scrambled treated controls. Scale bar in both 
(A) and (B) = 50 μm.        
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The procedure for stable BMI1 knock down using lentivirus mediated shRNA 

constructs is detailed in section 3.2.1 and in M&M (chapter 2, section 2.2.3.1). 

Briefly, DAOY cells were infected with shRNA lentivirus at an MOI of 12.5, incubated 

for 72 hr and stable selection was achieved by FACS-mediated enrichment for GFP 

positive cells, which were expanded for further studies. The efficacy of knock down 

in the cultures was assessed by qRT-PCR analysis at three different time points after 

passaging. The average of relative fold change in shRNA BMI1 treated cells as 

compared to shRNA Scr treated cells was calculated. There was an average of five 

fold reductions in BMI1 mRNA levels in DAOY cells confirming an effective BMI1 

knock down (Fig 3.3 A).  Reduction in BMI1 protein levels was also demonstrated by 

Western Blot analysis (Fig 3.3 B) using protein extracts from cells collected 96 hr 

after FACS selection following shRNA lentiviral infection.   

This shows that lentivirus mediated shRNA-technique is suitable for BMI1 knock 

down in DAOY; and was used for further experiments. From here on shRNA Scr 

treated DAOY cells will be referred to as DAOYScr and shRNA BMI treated cells as 

DAOYBMI1kd. 
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Fig. 3.3 Successful reduction of BMI1 expression in DAOY cells upon lentivirus shRNA-
mediated knock down.  
 
(A) qRT-PCR showing an average (n=3) of five-fold relative reduction in BMI1 expression (normalised 
against β–actin expression) in shRNA BMI1 treated cells as compared to shRNA Scr treated cells. (B) 
Western blot confirming reduction in BMI1 protein expression 96 hr after FACS sorting of shRNA 
BMI1 Treated cells. Error bar represents SD (n=3). **, P<0.01.   

 

3.3.2 BMI1 silencing leads to aberrant activation of BMP signalling pathway in 

MB cell lines. 

 

3.3.2.1 Efficacy of Noggin as BMP pathway inhibitor was demonstrated in 

DAOY and D-458 

 

Having established efficient BMI1 knock down techniques, the next step was to 

identify a method to efficiently inhibit BMP pathway to enable us to study if any 

functional impact observed upon BMI1 silencing was mediated by a putative BMP 

pathway activation.  

Noggin is a 26 kd secreted protein that was first described as a neural inducer in 

Xenopus, required for normal dorsal development (Smith and Harland 1992). Noggin 

is an established inhibitor of BMP pathway (Zimmerman, De Jesus-Escobar et al. 

1996) which acts by competitively binding to BMP-2 and BMP-4 preventing ligand 

activation of BMP receptors and SMAD1,5,8 mediated signalling. Noggin has been 

previously used as a BMP inhibitor in medulloblastoma cells (Hallahan, Pritchard et 

al. 2003).  

DAOY and D-458 were plated in a density of 0.5 x 105 cells in 0.5 ml media/well in 

triplicates. Noggin was added to the cultures at 1μg/ml and incubated for 24 hr. The 

cells were then fixed and immunocytochemistry for pSMAD1,5,8 was performed to 

assess BMP pathway inhibition. Phosphorylation of SMAD1/5/8 proteins (pSMAD 

1/5/8) via activated BMP receptors (BMPR) is the main functional indicator of BMP 
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pathway activation (Grimmer and Weiss 2008), and its detection is commonly used 

to assess pathway status (see Fig 1.7 in chapter 1). The number of cells expressing 

pSMAD1,5,8 was assessed by fluorescence imaging and compared to that of 

untreated cells. Five fields in each coverslip were imaged at 20X magnification, and 

the experiments were conducted in triplicates. The average number of cells 

expressing pSMAD1,5,8 among Noggin treated cells were reduced compared to the 

untreated cultures – 57.88% (± 2.85) vs. 77.05% (± 3.25) in DAOY (p=0.0007) [Fig 

3.4 A and C] and 23.69% (± 7.19) vs. 36.06% (± 5.19) in D-458 (p=0.036) [Fig 3.4 B 

and D].  

Western blot was also performed using DAOY protein lysates, which showed that 

pSMAD1,5,8 expression was reduced in relation to total SMAD1,5,8 among Noggin 

treated cells as compared to the untreated control cells (Fig. 3.4 E).  

We concluded that Noggin behaved as a BMP signalling inhibitor in our cell lines, in 

keeping with existing literature (Hallahan, Pritchard et al. 2003). Noggin was 

therefore used in further experiments to study if functional changes induced upon 

BMI1 knock down were BMP pathway related.  
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Fig. 3.4 Noggin treatment reduces the pSMAD1,5,8 expression in MB cell lines.   
 
After 24 hr of Noggin treatment at 1 μg/ml, a reduction in the number of cells expressing pSMAD1,5,8 
as well as a reduction in the staining intensity was noted in both (A) DAOY and in (B) D-458 cells, 
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suggestive of inhibition of BMP pathway. Left panel showing DAPI channel with total number of cell 
nuclei; middle panel showing pSMAD1,5,8 positive cells; and right panel showing merged images. (C 
and D) Quantification of the percentage of pSMAD1,5,8 positive cells (per 20x field), from three 
independent experiments shows a significant reduction in the number of positive cells in Noggin 
treated DAOY (C) and D-458 (D) cells as compared to corresponding untreated counterparts.  (E) 
Western blot showing a reduction of pSMAD1,5,8 expression upon Noggin (Ng) treatment in DAOY 
cells, as compared to  total SMAD1,5,8 expression and Tubulin expression as a loading control. Scale 
bar in both (A) and (B) = 50 μm. Error bars in (C) and (D) represent SD (n=3). *, p<0.05; ***, P<0.001.   

 

3.3.2.2 Increased pSMAD1,5,8 expression upon BMI1 knock down in DAOY and 

D-458 cell linesis reversed by Noggin. 

 

Next, the effect of BMI11 knock down on BMP pathway in MB cell lines was 

assessed by checking pSMAD1,5,8 expression upon Bmi1 knock down in these cell 

lines.   

DAOY and D-458 were plated in a density of 0.5 x 105 cells in 0.5 ml media/well  in 3 

wells of 24 well plates. The cells were transfected with BMI1 siRNA using lipid based 

transfection agent and incubated for 48 hr. Negative siRNA (Scramble or Scr) 

treated cells were used as controls. The cells were then fixed and 

immunocytochemistry for pSMAD1,5,8 was performed . The number of cells 

expressing pSMAD1,5,8 was assessed in DAOYBMI1kd and D-458BMI1kd cultures  as 

compared to that of DAOYScr and D-458Scr. Five fields in each well were imaged and 

the experiments were conducted in triplicates. The average number of cells 

expressing pSMAD1,5,8 among  DAOYBMI1kd and D-458BMI1kd was increased when 

compared to those with DAOYScr and D-458Scr cultures respectively - 86.63% (+/- 

2.41) vs. 77.05% (+/- 3.25) in DAOY (p=0.017) [Fig 3.5 A and C] and 51.17% (+/- 

1.74) vs. 36.06% (+/- 5.19) in D-458 (p=0.004) [Fig 3.5 B and D].  

In parallel, DAOY cells were treated with lentivirus mediated BMI1 shRNA to achieve 

stable knock down (DAOYBMI1kd). As controls DAOY cells infected with empty vector 
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(Scrambled or Scr) lentivirus (DAOYScr) were used. After FACS sorting cells were 

collected and total protein was extracted. Western blot was performed to assess 

pSMAD1,5,8 expression in comparision to SMAD1,5,8 (α-tubulin used for loading 

control). In keeping with above findings, there was an increase in pSMAD1,5,8 

expression in DAOYBMI1kd as compared to DAOYScr control (Fig. 3.5 E).  

To assess if the above differential expression is indeed related to BMP pathway, we 

assessed the pSMAD 1,5,8 expression in cultures concomitantly treated with 

Noggin. Noggin treatment in DAOY and D-458 significantly reduced the pSMAD1,5,8 

expression in both DAOY and D-458 (Fig 3.4) thereby confirming its efficacy as a 

BMP signalling inhibitor in our experimental setting. Noggin was further added 

concomitantly to siRNA BMI1 treated cultures at 1μg/ml, incubated for 48 hr and 

immunofluorescence was performed as above. The average number of pSMAD1,5,8 

positive cells were reduced as compared to siBMI1 only treated cells – 78.47% (+/- 

1.69) vs. 86.63% (+/- 2.4) in DAOY (p=0.006) [Fig 3.5 A and C] and 39.67% (+/- 

1.35) vs. 51.17% (+/- 1.74) in D-458 (p=0.0004) [Fig 3.5 B and D]. These results 

support the notion that BMI1 mediated repression of pSMAD1,5,8 is BMP pathway 

related.  

To exclude any non-specific effect of the Noggin treatment on BMI1 expression, 

qRT-PCR was performed on DAOYScr or DAOYBMI1kd cells. BMI1 expression levels 

(normalised to β-actin) were unchanged upon Noggin treatment (Fig 3.5 F).      
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Fig. 3.5 Aberrant activation of BMP pathway upon BMI1 knock down in MB cell lines is 
reversed by Noggin treatment.  
 
(A and B) Immunohistochemistry showing an increase in the average number (and intensity) of cells 
expressing pSMAD1,5,8 between siRNA BMI1 treated (A) DAOY or  (B) D-458 cells, and  siRNA Scr 
treated controls. This finding is indicative of BMP pathway activation. Concomitant addition of Noggin 
to BMI1 knock down cultures shows a decrease in pSMAD1,5,8 expression, to levels similar to that 
seen in siRNA Scr treated cultures. Left panel showing DAPI channels with total number of cell nuclei; 
middle panel showing pSMAD1,5,8 positive cells; and right panel showing merged images. (C and D) 
Quantification of percentage of pSMAD1,5,8 positive cells (per 20x field) from three independent 
experiments shows a significant increase in siRNA BMI1 treated cells compared to corresponding 
siRNA Scr treated counterparts. There is a significant reduction in pSMAD1,5,8 levels when Noggin is 
concomitantly added to BMI1 knock down cells. (E) Western blot confirming an increase in 
pSMAD1,5,8 expression (in relation to total SMAD1,5,8 expression) in protein extracts of shRNA 
BMI1 treated cells compared to shRNA Scr treated control. Tubulin expression is used for loading 
controls. (F) qRT-PCR showing no difference in BMI1 expression levels when Noggin is added to 
either shRNA Scr or shRNA BMI1 treated cells, excluding any non-specific actions of Noggin on BMI1 
expression. Scale bar in both (A) and (B) = 50 μm. Error bars in (C), (D) and (F) represent SD, n=3. *, 

p<0.05; **, p<0.01; ***, p<0.001.  

 

3.3.3 Primary human medulloblastoma cells isolated from a Group 4 tumour 

show high BMI1 expression and BMI1 knock down confirms activation of BMP 

signalling.  

   

Having observed BMP signalling pathway repression by BMI1  in MB cell lines, we 

wanted to validate the findings on primary human MB cells. We obtained different 

lines of primary cells from our collaborator Dr Xiao-Nan Li, Baylor College of 

Medicine, Texas Children’s Cancer Centre, USA. These primary short term cultures 

have previously been shown to give rise to MB mimicking the tumour of origin in 

murine xenografts (Shu, Wong et al. 2008; Zhao, Liu et al. 2012) .  Our Group have 

recently reported that BMI1 is most highly expressed in Group 4  MB (Behesti, 

Bhagat et al. 2013).  Among the cultures established by our collaborator, ICb-1299 

was derived from a group 4 MB and was shown to stably retain this expression 

profile (Zhao, Liu et al. 2012). Therefore we used short term cultures of ICb-1299 

cells for our experiments. First we checked BMI1 expression in these cells.  Total 

protein was extracted and Western blot was performed to assess BMI1 expression. 

We observed BMI1 protein expression (normalised to α-tubulin) in ICb-1299 at even 

higher levels compared to that in DAOY (Fig 3.6 A).  
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Next, we set out to check BMP signalling status upon BMI1 silencing in the primary 

cells. Due to the nature of growth of these cells as tumour spheres siRNA mediated 

knock down would be unsuitable. Therefore lentivirus shRNA mediated stable knock 

down method was used. The cells were infected with shRNA BMI1, and GFP 

positive cells were enriched for by FACS. Following short term cultures, the cells 

were collected to extract total RNA and protein. shRNA scrambled (Scr) lentivirus 

treated cells were used as controls. qRT-PCR analysis normalised to β–actin 

showed an approximately 4-5 fold reduction in BMI1 expression (Fig 3.6 B). Western 

Blot analysis normalised to α-tubulin demonstrated a significantly reduced BMI1 

protein expression in shRNA BMI1 treated cells (Fig 3.6 C).  

These findings demonstrated an effective BMI1 knock down achieved by lentiviral 

mediated BMI1 shRNA delivery in these cells (ICb-1299BMI1kd) as compared to 

scrambled shRNA treated cells (ICb-1299Scr).  

Prior to functional studies using the primary cells, it was essential to check for BMP 

pathway status following BMI1 silencing. Western blot analysis using total protein 

extracts from these short term cultures was performed. Negligible pSMAD1,5,8 

protein expression was noted in ICb-1299Scr as compared to SMAD1,5,8 expression, 

whereas a significant increase in its expression was detected in ICb-1299BMIkd (Fig 

3.6 D). This is indicative of increased phosphorylation of SMAD1,5,8 proteins and 

BMP pathway activation and  it is keeping with a  scenario where BMI1 represses 

BMP pathway in human MB cells.  
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Fig. 3.6 BMP pathway activation upon BMI1 knock down in primary Group 4 MB cells.   
 
(A) Western blot showing BMI1 expression in ICb-1299 to be even higher than that seen in the DAOY 
cell line. (B and C) Efficient BMI1 knock down is established in primary cells ICb-1299 following 
lentivirus shRNA-mediated transfection, as demonstrated by qRT-PCR analysis (B), and by Western 
blot analysis (C). (D) Western blot analysis shows an increase in pSMAD1,5,8 expression in relation 
to total SMAD1,5,8 (Tubulin as loading control) following BMI1 knock down in ICb-1299 cells. This is 
similar to the observation made in DAOY and D-458 cell lines and implies activation of BMP pathway. 
(E) qRT-PCR showing an increase in ID2 (a downstream target of BMP-SMAD pathway) expression 
in BMI1 silenced cells as compared to controls. Error bars in (B) and (E) represent SD of three 

technical replicas. *, p<0.05; ***, p<0.001.   

 

Having observed increased pSMAD1,5,8 levels upon BMI1 knock down, we asked if 

this could be confirmed by activation of known  downstream targets of BMP 

signalling.  To this end, we chose to check for ID (Inhibitors of DNA binding) mRNA 

transcript levels by qRT-PCR.   

Briefly, Id proteins are dominant negative helix-loop-helix (dnHLH)  transcription 

factors that do not have DNA binding capacity, but that can heterodimerize with 

basic helix-loop-helix (bHLH) proteins and inhibit transcriptional activity of the latter 

(Sun, Copeland et al. 1991). Four distinct members (Id1 – Id4) have been identified 
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in mammals and they are involved in control of cell growth, differentiation and 

tumorigenesis [Reviewed in (Ruzinova and Benezra 2003)]. ID genes are well 

established downstream targets of BMP – SMAD signalling pathway (Katagiri, Imada 

et al. 2002; Korchynskyi and ten Dijke 2002; Lopez-Rovira, Chalaux et al. 2002).  

Exogenous BMPs are shown to increase ID1 and ID2 expression in a time 

dependent fashion in human bone marrow stromal cells (Locklin, Riggs et al. 2001). 

Moreover, BMP-2 and BMP-4 treatment is shown to increase ID1 and ID2 protein 

levels along with pSMAD1,5,8 protein levels in primary medulloblastoma cells in vitro 

(Zhao, Ayrault et al. 2008). We optimised conditions for ID1 and ID2 and performed 

qRT-PCR, normalising the expression to GAPDH. There was no significant increase 

in ID1, but we noted an increase in ID2 expression in ICb-1299BMI1kd as compared to 

ICb-1299Scr (Fig. 3.6 E).        
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3.4 Discussion 

 

BMI1 overexpression is strongly associated with aggressive MB subtypes with poor 

prognosis (Wang, Venugopal et al. 2012). BMI1 is essential for self-renewal of 

haematopoietic and neural stem cells [reviewed in (Valk-Lingbeek, Bruggeman et al. 

2004)] and its targeted deletion in a mouse model (null mutant) causes severe 

neurological and haematopoietic defects (van der Lugt, Domen et al. 1994). As 

targeted deletion of BMI1 is incompatible with life, it is conceivable that its targeted 

suppression as a therapeutic option could be associated with important side effects. 

BMP-2 is shown to induce apoptosis in a dose and time dependent fashion in 

primary human MB cells (Hallahan, Pritchard et al. 2003). Moreover, BMP-2 and 

BMP-4 are shown to suppress primary murine MB cell growth in vitro and in vivo 

(Zhao, Ayrault et al. 2008), and BMP-2 inducing agents such as retinoic acid have 

been shown to reduce human MB cell growth in vitro and in vivo (Spiller, Ditzler et al. 

2008). Therefore BMPs or BMP agonists could be developed as therapeutic options 

for MB treatment. We hypothesise that, if repression of the BMP signalling pathway 

by BMI1 is an essential event in human medulloblastoma pathogenesis, then BMI1 

expression could be a potential bio-marker for MB which may respond to BMP 

analogues.  

In this chapter we demonstrate that in human MB cell lines DAOY and D-458, which 

are known to express BMI1, pSMAD1,5,8 expression is negligible. But upon BMI1 

silencing, pSMAD1,5,8 expression is increased - indicative of a derepression of the 

BMP signalling pathway. Moreover, we observe that pSMAD1,5,8 expression is 

increased following BMI1 silencing also in primary human MB cells, thereby 

validating our findings of cell lines. We have used two independent methods - 
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immunohistochemistry (for DAOY and D-458) and Western Blot (for primary cells 

Icb-1299 and DAOY) to demonstrate repression of BMP pathway by BMI1 in MB 

cells. Similar results were observed when BMI1 silencing was carried out using 

either transient siRNA technique (for DAOY and D-458) or protracted shRNA method 

(in primary cells Icb-1299 and in DAOY again), allowing us to exclude technical 

artefacts even more robustly.  The experiments carried out in DAOY and D-458 after 

concomitant inhibition of BMP signalling by noggin provided further support to the 

notion that the effect seen upon BMI1 knock down in human MB cells was BMP 

mediated.   

One of the downstream targets of BMP-SMAD signalling, ID2 gene expression was 

found to be increased following BMI1 silencing, providing additional support to the 

notion that BMI1 overexpression suppresses BMP signalling.  Id proteins are 

implicated in several cancers (Lasorella, Uo et al. 2001) and a recent study has 

shown that although Id expression in normal cerebellum is absent or minimal there is 

a differential expression of Id proteins observed in human medulloblastoma tumour 

cells and in the endothelial cells of the tumour (Snyder, Dulin-Smith et al. 2013). 

Therefore the association between BMI1 and Id genes could be further explored in 

future studies.  

In summary, we demonstrate here that BMI1 constitutively represses BMP signaling 

in both MB cell lines and in primary group 4 MB cells. To understand the relevance 

of BMI1 silencing on BMP signalling, we set out to investigate the BMP-dependency 

of the functional changes seen upon BMI1 knock down in MB cells.  
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CHAPTER 4 Cell migration of medulloblastoma cell lines is 

regulated by BMI1 in a BMP dependent fashion in vitro.  
 

4.1 Introduction 

 

The role of Bmi1 in human cancers has been primarily associated to the regulation of 

cell proliferation and senescence via suppression of p16Ink4a/p19Arf cell cycle 

inhibition pathways. (Jacobs, Kieboom et al. 1999; Jacobs, Scheijen et al. 1999; 

Meng, Luo et al. 2010). Studies investigating its role in cancer cell migration and 

invasive properties have also emerged. Bmi1 is shown to induce epithelial-

mesenchymal transition (EMT) in human nasopharyngeal carcinoma (Song, Li et al. 

2009). Suppression of endogenous Bmi1 has been shown to reduce cell motility and 

invasive properties in breast cancer cells (Guo, Feng et al. 2011) and in gliomas 

cells (Jiang, Wu et al. 2012). This is suggestive that Bmi1 regulates other cell 

signalling pathways, more relevantly, those regulating extracellular matrix and cell 

adhesion properties. BMP pathway is known to regulate EMT and hence cancer cell 

motility and invasion (Reviewed in (Yang and Weinberg 2008)). Furthermore, TGF-

β/BMP pathways are known to cross talk with other signalling pathway related to 

EMT such as Notch, Wnt and Shh pathways thereby influencing cancer invasion and 

metastasis (Reviewed in (Bailey, Singh et al. 2007) and (Guo and Wang 2009)).  

Using a genetically engineered mouse model, our team have  demonstrated that 

cell-cell interactions between granule and glial progenitors are critically affected by 

Bmi1 during cerebellar development, through specific inhibition of BMP signalling 

(Zhang, Santuccione et al. 2011). As BMP signalling is known to regulate cell-cell 

and/or cell-extracellular matrix (ECM) interactions, thereby controlling cell motility 
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(reviewed in (Guo and Wang 2009)), our team have also analysed whether Bmi1 

could regulate the expression of cell-cell and cell-matrix interaction genes in granule 

cell progenitors (GCPs). GCPs were isolated from P7 cerebella of Bmi1-/- mice and 

control littermates, total RNA was extracted at DIV1 and real time PCR expression 

arrays were used to analyse the expression of 84 genes related to cell adhesion 

(RT2 ProfilerTM PCR Array Mouse Extracellular Matrix and Adhesion Molecules). The 

analysis was performed on three independent preparations, fold changes were 

calculated and significance was analysed by Student’s t-test. 18 cell-cell/matrix 

interaction genes were expressed at significantly higher level in Bmi1-/- GCPs 

(p<0.05) (Table 4.1), of which 12 showed more than 2-fold increase in their 

expression level (range 2.11-5.68). These genes included Thrombospondin1, 2 and 

Fibronectin, Fibulin, Collagens -type I, IV, V and VI, Laminin 1 as well as CD44 and 

MMP 2, 8, 10.  

Next, it was assessed whether BMP pathway inhibition would affect the expression 

of Bmi1-regulated cell adhesion and extracellular matrix genes. Cultures were 

prepared from P7 cerebella of Bmi1-/- and control littermates in triplicates and were 

treated with Noggin prior to expression analysis. Noggin (Ng) is a well characterised 

inhibitor of BMP signalling which acts by competitively binding to the BMP cell 

surface receptors (Zimmerman, De Jesus-Escobar et al. 1996). We identified 4 

Bmi1-regulated cell adhesion genes whose expression was significantly (p<0.05) 

downregulated upon Noggin treatment are listed in Table 4.1. These genes were 

Thrombospondin 2, CD44, MMP10 and Collagen 6a1.  
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Table 4.1. Cell adhesion and extracellular matrix genes whose expression is significant 

upregulated in Bmi1-/- mCGC and expression profile after Noggin treatment* 

Genes Accession KO/WT-
Fold 

P value Ng-
KO/WT
-Fold 

P value 

Thrombospondin 1, mRNA NM_011580  4.72 0.0005 5.92 0.189343 
Elastin microfibril interfacer 
1, mRNA 

NM_133918  2.54 0.0012 2.8 0.303034 

Matrix metallopeptidase 2, 
mRNA  

NM_008610  2.97 0.0014 9.47 0.185114 

Thrombospondin 2, mRNA  NM_011581  1.65 0.0047 -1.15 4.98E-05 
Collagen, type IV, alpha 1, 
mRNA  

NM_009931  1.9 0.0058 2.59 0.057293 

Laminin, alpha 1  NM_008480  3.67 0.0062 2.83 0.168255 
A disintegrin-like and 
metallopeptidase (reprolysin 
type) with thrombospondin 
type 1 motif, 8, mRNA  

NM_013906  1.74 0.0071 3.08 0.182631 

Matrix metallopeptidase 10, 
mRNA  

NM_019471  4.32 0.0091 -1.22 0.007599 

Collagen, type VI, alpha 1  NM_009933  1.69 0.0115 1.02 0.028593 
Collagen, type I, alpha 1, 
mRNA  

NM_007742  2.61 0.0124 5.56 0.128066 

Collagen, type V, alpha 1, 
mRNA  

NM_015734  3.19 0.0133 1.01 0.158273 

CD44 antigen  NM_009851  1.73 0.0160 -1.13 0.037609 
Selectin, lymphocyte, mRNA  NM_011346  -2.36 0.0190 -2.5 0.49582 
Matrix metallopeptidase 8, 
mRNA  

NM_008611  5.68 0.0201 3.47 0.227461 

Tissue inhibitor of 
metalloproteinase 2, mRNA  

NM_011594  2.69 0.0289 1.96 0.106224 

Fibronectin 1  NM_010233  3.18 0.0310 4.08 0.331714 
Secreted acidic cysteine rich 
glycoprotein, mRNA  

NM_009242  2.11 0.0452 1.67 0.220898 

Fibulin 1  NM_010180  3.91 0.0495 1.51 0.109213 
* Statistically significant genes are highlighted in bold. 

 

These data suggest that a subset of cell adhesion genes may be regulated by Bmi1 

through BMP pathway repression during cerebellar development, which forms the 

basis for our further experiments described in this chapter. 

Having established that BMI1 represses BMP signalling in human MB cells (chapter 

3), we set out to assess whether Bmi1 could control cell adhesion and cell motility 

properties through suppression of BMP signalling. To this end we studied cell 

adhesion and cell motility of MB cells upon BMI1 knock down. To assess whether 
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BMI1 could regulate these properties of MB cells via BMP pathway, cells were 

concomitantly treated with Noggin and the results were analysed comparatively.  
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4.2 Experimental design and methodology:  
 

4.2.1 Assessment of multicellular aggregate formation:  

 

The cells treated with siRNA/shRNA BMI1 for knock down studies were cultured on 

PLL coated coverslips in 24 well plates (3 wells per group) and concomitantly treated 

with Noggin where appropriate to inhibit BMP signaling. Following incubation for 48 

hr they were fixed and immunohistochemistry was performed for BMI1 and 

pSMAD1,5,8 antibodies as described in the previous chapter. The coverslips were 

transferred to glass slides and mounted using DAPI medium. Five random 

fluorescent micrographs (20X magnification) were obtained using Leica Confocal 

microscope DFC350 set with Y3 (red), A4 (blue) and L5 (green) filters. The DAPI 

pictures were used to quantify the multicellular clusters using ImageJ software. 

Number of clusters of 10 cells or more were counted in five random fields in each 

well (3 wells per group) and averaged. The results were tabulated under scrambled 

and BMI1 siRNA group for both DAOY and D458. The experiment was conducted in 

triplicates. Student’s t-test was used to calculate the significance of differences.   

4.2.2 Cell migration assays 

 

To assess the effects of BMI1 silencing on MB cell migration/motility and cell 

invasion in vitro, Transwell® migration and wound healing assays were used.   

4.2.2.1 Wound healing assay using time lapse videomicroscopy 

 

Wound healing assay allows studying cell migration and cell interactions. The 

experiment was performed following published protocols (Hu and Verkman 2006; 

Kurayoshi, Oue et al. 2006). The procedure is detailed in M&M (chapter 2, section 

2.6.1).  
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Wound healing assay could not be conducted using D-458 cells as they grew as 

partial tumour spheres in suspension and showed minimal adhesion. Therefore 

wound healing assay was carried out using DAOY cells only.   

4.2.2.2 Time lapse videomicroscopy to assess cell motility (without wound) 

 

Time lapse videomicroscopy is used to track and study individual cell characteristics 

(Simpson, Selfors et al. 2008). This experiment was performed to confirm that the 

area of migration that was assessed by wound healing assay was not confounded by 

cell proliferation. Individual cells were each tracked and distance of motility was 

analysed in this experiment, to compliment wound healing assay. The procedure is 

described in M&M (chapter 2, section 2.6.2).   

 

4.2.2.3 Transwell® migration assay 

 

In contrast to cell motility assay, cell invasion assay requires cell to migrate through 

a basement membrane extract (BME) or extracellular matrix (ECM) barrier by 

enzymatic digestion of the barrier to migrate to the new location. Transwell® inserts 

(Corning); 24mm diameter wells with polycarbonate membrane of pore size 8 μm 

and base area of 4.5 cm2 were used for this assay. Transwell® migration assay is a 

well-established method to assess cancer cell invasion in vitro (Hu and Verkman 

2006; Moskovits, Kalinkovich et al. 2006). The procedure was performed according 

to the manufacturer’s protocol. The details of the procedure are mentioned in M&M 

(chapter 2, section 2.6.3).  

 

4.2.3 Proliferation assays 
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The effect of BMI1 silencing on cell proliferation was assessed by two independent 

methods – growth curve analysis and CyQuant NF assay.  

 

4.2.3.1 Growth curve analysis 

 

The proliferation of cells was assessed by time course experiment to produce a 

growth curve (Horiuchi, Huskey et al. 2012). The DAOY cells were quantified over a 

total of 7 passages, P1 to P7, corresponding to day 0, 3, 5, 7, 10, 12 and 14. The 

procedure is described in details in M&M (chapter 2, section 2.7.1).   

 

4.2.3.2 CyQuant NF assay 

 

The CyQUANT® NF assay (Hong, Jiang et al. 2007) was also used to assess 

proliferation. This assay is based on the measurement of cellular DNA content by 

fluorescent dye binding capacity. The procedure is detailed in M&M (chapter 2, 

section 2.7.2).  

 

4.2.4 Annexin V Apoptosis assay 

 

The effect of BMI1 silencing on apoptosis was assessed in DAOY cells by means of 

the Annexin V assay. Annexin V is a Ca2+ dependent phospholipid binding protein 

that has a high affinity for phospholipid phosphatidylserine (PS). PS is translocated 

from the inner to outer leaflet of the plasma membrane in early apoptotic cells. 

Annexin V conjugated with fluorochrome can be used to detect early apoptotic cells 

without compromising its affinity for PS (Vermes, Haanen et al. 1995). PE Annexin V 

Apoptosis Detection Kit I (BD Pharmingen™, BD Biosciences) was used with Alexa 
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Fluor 647 Annexin V conjugate (Invitrogen) as per manufacturer’s protocol. The 

complete procedure is described in M&M (chapter 2, section 2.8.1).    

 

4.2.5 Immunohistochemistry:  

 

The Formalin fixed paraffin embedded (FFPE) D-458 cell block sections were 

stained by avidin-biotinylated complex (ABC) method of immunohistochemistry for 

CD44, Thrombospondin, MMP8 and MMP10. The procedure is described in details 

in chapter 2 (section 2.11). The list of primary and secondary antibodies and 

blocking agents used is presented in Table 4.2.  

Table 4.2  List of primary antibodies, secondary antibodies used for ABC IHC. 

Primary antibodies 
 

For antigen to be 
detected 
 

Primary antibody 
used 

Company Concentration Positive 
control  

CD44 Rabbit polyclonal anti-
CD44 

Abcam 
(ab24504) 

20 μg/ml Glioblastoma 

Thrombospondin 
(THBS) 

Mouse monoclonal 
anti-thrombospondin 

Abcam 
(ab1823) 

1:25 Glioblastoma 

MMP8  Goat polyclonal anti-
MMP8 

Santa Cruz 
(sc-8848) 

1:50 Breast 
carcinoma 

MMP10 Rabbit polyclonal anti-
MMP10 

Abcam 
(ab59437) 

1:500 Breast 
carcinoma 

Biotinylated secondary antibody and blocking serum used 
 

For primary 
antibody source 
 

Secondary antibody used Blocking agent 

Rabbit or Mouse Universal biotinylated anti-mouse/anti-
rabbit IgG (Vector) raised from horse. 

2.5% Normal horse serum (Vector)  
 
 

Goat  1:400 Anti-goat IgG (Vector) raised from 
rabbit 

5% Normal rabbit serum    

 

4.2.6 Exogenous BMP treatment:    

 

Use of recombinant BMP-2 and/or BMP-4 for BMP pathway activation is well 

established (Iantosca, McPherson et al. 1999; Hallahan, Pritchard et al. 2003; 
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Piccirillo, Reynolds et al. 2006; Zhao, Ayrault et al. 2008). Use of BMP ligands is 

justified in DAOY cells as they are shown to express BMP receptors - BMPRI 

isoforms and BMPRII - which triggers phosphorylation of SMAD1,5,8 proteins 

(Iantosca, McPherson et al. 1999; Fiaschetti, Castelletti et al. 2011). To induce BMP 

signaling pathway in our study, we used recombinant human BMP-4 (R&D systems) 

on DAOY which was used at a concentration of 100 ng/ml for 24 – 36 hr. Further 

details of the procedure are described in M&M (chapter 2, section 2.3.1). The BMP-4 

treated cells were used in Transwell® migration and cell proliferation assays.     
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4.3 Results 

4.3.1 Increased multicellular cluster formation is observed upon BMI1 knock 

down in MB cell lines 

 

Having previously established that BMI1 silencing led to aberrant BMP pathway 

activation; we asked whether the cell adhesion properties of MB cells may be 

affected. DAOY and D-458 were plated in a density of 0.5 x 105 cells in 0.5 ml 

media/well in 3 wells of 24 well plates. The cells were transfected with BMI1 siRNA 

using lipid based transfection agent and incubated for 48 hr. Negative siRNA (Scr) 

treated cells were used as controls. Noggin was added to the relevant wells at 1 

μg/ml concentration. After 48 hr the cells were fixed and immunocytochemistry for 

pSMAD1,5,8 and BMI1 antibodies was performed. The cells were counterstained 

with DAPI nuclear stain. The pSMAD1,5,8 expression in BMI1 knock down and 

control cultures were quantified as described in chapter 3. While analysing these 

cultures we incidentally noticed a greater tendency to form multicellular aggregates 

in BMI1 knock down cultures. To quantify this observation, the number of 

multicellular aggregates as defined by cohesive clusters of 10 or more cells per 20x 

field was quantified in the DAPI staining. Five fields in each well were imaged and 

the experiments were conducted in triplicates.  

The average number of cell aggregates per high power field (hpf, 20x) was found to 

be increased in DAOYBMI1kd and D-458BMI1kd as compared to DAOYScr and D-458Scr 

respectively – 1.93 (+/- 0.31) vs. 0.07 (+/- 0.12) in DAOY (p=0.004), and 3 (+/- 0.6) 

vs. 1.2 (+/- 0.2) in D-458 (p=0.003) [Fig  4.1 A and B].      

To assess whether cluster formation was dependent on aberrant BMP pathway re-

activation after BMI1 knock down, DAOY and D-458 cultures were concomitantly 
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treated with Noggin. Previously we have demonstrated the efficacy of Noggin as 

BMP pathway inhibitor. Here we were interested to know if changes in adhesion 

seen upon BMI1 knock down are BMP pathway related. When Noggin was applied 

to DAOYScr or D-458Scr, there were no discernible change in the cellular aggregates 

noted (Fig 4.1 A and B). However  Noggin treated DAOYBMI1kd and D-458BMI1kd 

showed a reduced number of aggregates/hpf as compared to cultures without 

Noggin – 0.73 (+/- 0.30) vs. 1.93 (+/- 0.31) in DAOY (p=0.004), and 1.07 (+/- 0.30) 

vs. 3 (+/- 0.6) in D-458 (p=0.003) [Fig 4.1 A and B].    

 

Fig. 4.1 Deregulation of cell adhesion properties in MB cell lines following BMI1 knock down.  
 
(A) DAPI images demonstrating an increase in cell cluster formation upon BMI1 knock down in both 

DAOY (upper panel) and D-458 (lower panel) cells, which interestingly does not occur upon 
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concomitant addition of Noggin to BMI1 knock down cultures. The arrowheads show the cell clusters 

that were counted in each field, representing aggregates of 10 cells or more. There was no difference 

in cell cluster formation between Scr and Noggin treated Scr groups   (B) Quantification of average 

number (from three independent experiments) of cell clusters per 20x hpf shows an increase in 

siRNA-mediated BMI1 knock down cultures as compared to Scr cultures in both DAOY (left) and D-

458 (right). Furthermore, concomitant addition of Noggin to BMI1 knock down cultures shows a 

significant decrease in the number of cell clusters per field in both cell lines. Scale bar in (A) = 50 μm. 

Error bars in (B) represent SD (n=3). **,p<0.01. 

 

From the above findings we can infer that BMI1 knock down affects the cell adhesion 

properties of MB cell lines. Epithelial-Mesenchymal transition (EMT) and 

Mesenchymal-Epithelial transition (MET) are known  to be dependent upon change 

in the microenvironment and in stimulatory signals(reviewed in (Hugo, Ackland et al. 

2007)). As concomitant BMP inhibition by Noggin significantly reduced cluster 

formation induced by BMI1 knock down, it is likely that this phenomenon is mediated 

by BMP pathway activation. These results prompted us to further assess its 

functional relevance in in vitro experiments to assess cell motility and invasiveness 

of MB cell lines.      

 

4.3.2 BMI1 knock down affects MB cell migration in a BMP dependent fashion 

 

A well characterised method that mimics in vivo cell migration is the Wound healing 

assay which is based on cell-cell interaction and directional migration of cells 

(Rodriguez, Wu et al. 2005). Only DAOY cells (and not D-458) were used for this 

assay as they suitably grew as an adhesive monolayer. Each group of shRNA 

lentivirus infected cells were plated in 3 wells of a 24 well plate at a constant density. 

At this stage, Noggin was added at 1 μg/ml to the appropriate cultures and labelled. 

Following further 24 hr incubation when >90% confluence was seen, ~80 µm wide 

wounds (linear scratches) were incised in each well. The cells were then incubated 
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in time lapse chamber and the stage was set to acquire images from three areas 

from each well. Three phase contrast images (10x maginification) per well were 

intermittently acquired over 12 hr and movies were created using Metamorph 

software. Using the same software, area of migration of cells in to the incited wound 

(healed area) was determined. Then, relative area of migration in percentage to the 

original wound area was calculated. The experiments were conducted in triplicates. 

The schematic of the wound healing experiment is shown in Fig 4.2 A.  

We observed a significant reduction in the average relative wound area in the 

DAOYBMI1kd cultures as compared to DAOYScr cultures – 29.08% (+/- 5.19) vs. 

43.11% (+/- 6.47), p=0.0025 (Fig 4.3 B and C).  

The above reduction in area of migration in DAOYBMI1kd was observed to be reverted 

by concomitant treatment of with Noggin. The average area for DAOYBMI1kd with 

Noggin as compared to DAOYBMI1kd without Noggin were 40.18% (+/- 8.42) and 

29.08% (+/- 5.19) respectively, p=0.048 (Fig 4.2 B and C). There was however no 

significant difference in wound closure noted upon DAOYScr additionally treated with 

Noggin as compared to DAOYScr only – 45.79% (+/- 12.59) vs. 43.11% (+/- 6.47), 

p=0.12 (Fig 4.2 B and C). 
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Fig. 4.2 Wound healing assay demonstrating that cell migration of MB cell line DAOY is 
regulated by BMI1 in a BMP pathway dependent fashion.    
 
(A) Schematic diagram of the wound healing assay: Approximately 80 μm wound is incited in a 
confluent monolayer of cells and the cell migration is recorded on time lapse videomicroscopy to 
calculate relative area of wound or gap closure using Metamorph software at the end of 12 hr. (B) Top 
- representative picture of wound gap at 0 hr, Bottom row – representative pictures of wound gap 
closure (wound healing) following cell migration after 12 hr incubation, for shRNA Scr, shRNA Scr + 
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Ng, shRNA BMI1 and shRNA BMI1 + Ng treated cells, from left to right. There is a significant 
decrease in area of gap closure seen in shRNA BMI1 treated cells compared to shRNA Scr treated 
cells. Upon concomitant Ng addition, an increase (reversal) in the area of migration is noted. The red 
dotted lines mark the original gap at the start of the experiment at 0 hr. (C) Quantitation of average 
percentage of area of migration from three independent experiments. Scale bar in (B) = 20 μm. Error 
bars in (C) represent SD (n=3). *, p<0.05, **, p<0.01. Abbreviation: Ng, Noggin. 

 

BMI1 knock down in DAOY cells not only causes changes in cell adhesion as 

observed previously, but also causes changes in cell migration properties. 

Interestingly these changes appear to be dependent on BMP signalling as reversal 

of phenotype was observed upon concomitant Noggin treatment.  

 

4.3.3 BMI1 knock down affects individual cell motility. 

  

As it was possible that the changes in wound healing observed could be due to the 

effects of BMI1 on cell proliferation, we performed individual cell motility assay using 

time lapse microscopy. Similar to wound healing assay shRNA lentivirus treated 

DAOY cells were plated in 3 wells for each group at constant densities and 

incubated in time lapse chamber with stage set to acquire images from five random 

areas in each well. Phase contrast (20x magnification) images were acquired 

intermittently for 6 hr and compiled using Metamorph software. Using the same 

software, ten cells in each field were tracked and the distance of migration of each 

cell to its origin was determined. The experiments were conducted in triplicates. The 

average distances were calculated for both groups and compared.  

There was a significant reduction in the average distance travelled by the cells over 

6 hr observed in DAOYBMI1kd cultures as compared to DAOYScr cultures – 8.43 μm 

(+/- 1.61) vs. 11.41 μm (+/- 1.69), p=0.005 (Fig 4.3).   

 



175 
 

 

 

 

Fig. 4.3 Time lapse experiment tracing individual cells shows decreased cell motility following 
BMI1 knock down in DAOY.  
 
(A) Representative pictures of time lapse tracing of DAOY cell migration comparing shRNA Scr 
treated (left) and shRNA BMI1 treated (right) cells. Blue lines are tracings of movement of ten random 
cells recorded over 6 hr, representing the distance moved from their origin (red dot). (B) 
Quantification of average distance of cell migration, from three independent experiments, showing a 
significant reduction in individual cell motility following BMI1 knock down. This makes it unlikely that 
the effects of BMI1 on cell proliferation confound the results of the wound healing assay. Scale bar in 
(A) = 20 μm. Error bars in (B) represent SD (n=3). **, p<0.01.  

 

This reduction in individual cell migration upon BMI1 knock down support the 

conclusion that the reduction in the wound healing area observed is due to the 

effects of BMI1 on cell migration properties independently of its effects on cell 

proliferation.   
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4.3.4 BMI1 knock down reduced in vitro cell invasion in a BMP mediated 

fashion   

 

Having identified changes in cell-cell adhesion (multicellular aggregates/cluster 

formation) and cell motility (wound healing/migration) upon BMI1 knock down, we set 

out to investigate whether these could impact on the invasive properties of MB cells 

in vitro. As the above phenotypic changes were linked to BMP pathway, we also set 

out to investigate any dependency on BMP deregulation of the potential impact of 

BMI1 knock down on the invasive characteristics of MB cells. For this we used 

Transwell® migration assay – a method which to an extent simulates in vivo invasion, 

as it requires cells to migrate through a substrate barrier. MB are known to primarily 

metastasise via leptomeningel route (Chang, Housepian et al. 1969). The principal 

ECM components of the leptomeninges include laminin and collagens (Wikstrand, 

Friedman et al. 1991; Montagnani, Castaldo et al. 2000); including type I collagen 

(Hubert, Grimal et al. 2009). Therefore to mimic the leptomeningeal environment we 

used Matrigel™ (rich in laminin) and type I collagen as substrates barriers.   

The D-458 cells proved to be unsuitable for Transwell® assay as they failed to 

adhere to the basement membrane extracts used. Therefore the experiments were 

performed using DAOY cells alone. Porous Transwell® inserts were lined with 

Matrigel or collagen substrates. Serum starved shRNA lentivirus or siRNA treated 

cells (with or without Noggin addition) were seeded at a constant density in the 

substrate coated insert wells (3 wells per group) and serum containing media was 

used in the bottom wells.  The cells were incubated for 12 hr to allow migration 

through the substrate barrier.  The cells were then fixed and stained with 

Haematoxylin. The non-migrated cells from the top surface of the insert membrane 
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were scraped and the migrated cells on the bottom surface of the membrane were 

imaged. Five random images from each insert were acquired using light microscopy 

at 20X magnification. The number of cells migrated were counted using ImageJ 

software and the average number of cells per group were compared to controls. The 

experiments were conducted in triplicates. The schematic of the wound healing 

experiment is outlined in Fig 4.4 A.  

We observed a significant reduction in the number of migrating cells in DAOYBMI1kd 

cultures, compared to DAOYScr through collagen type I substrate after 12 hr – 80.67 

(+/- 55.51) vs. 176.07 (+/- 42.38), p=0.005 (Fig. 4.4 B,C).   

Importantly, the number of migrating cells significantly increased upon Noggin 

treatment of DAOYBMI1kd cultures as compared to DAOYBMI1kd alone – 147.23 (+/- 

46.63) vs. 80.67 (+/- 55.51), p=0.004 (Fig. 4.4 B,C). This reversal demonstrates that 

decreased migration of DAOYBMI1kd cells was dependent on aberrant activation of 

BMP pathway. No statistically significant difference in cell migration was noted upon 

Noggin treatment of DAOYScr as compared to DAOYScr alone – 129.58 (+/- 72.56) vs. 

176.07 (+/- 42.38), p=0.081 (Fig. 4.4 B,C).  

There was no statistically significant difference in the number of migrated cells 

between the DAOYBMI1kd and DAOYScr on Matrigel substrate – 87.22 (+/- 6.63) vs. 

118.61 (+/- 15.93), p=0.061(Fig 4.4 D), although a trend toward decrease migration 

similar to what observed in the experiments using collagen substrates was observed. 

The laminin contained in Matrigel substrate is known to be isolated from Engelbreth-

Holm-Swarm (EHS) mouse sarcoma cells (Kleinman, McGarvey et al. 1982), and 

hence Matrigel may not serve as an ideal physiological substrate for studies using 

MB cells. Furthermore, Collagen type 1 is shown to be expressed in leptomeninges 
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(Liang, Diehn et al. 2008), hence it could represent a more appropriate substrate for 

MB cell invasion as compared to Matrigel.     

 

 

 

Fig. 4.4 Transwell
®
 assay reveals a reduced DAOY cell invasion upon BMI1 knock down in 

vitro.  
 
(A) Schematic diagram of the Transwell

®
 assay: Constant number of cells was seeded in the upper 

chamber of substrate coated Transwell
®
 inserts, and allowed to migrate for 12 hr, followed by fixation, 
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staining and counting. (B) Pictures of the bottom surface after scraping the cells from top surface, 
representing only the migrated (invaded) cells at end of 12 hr. From left to right - shRNA Scr, shRNA 
Scr + Ng, shRNA BMI1 and shRNA BMI1 + Ng treated cells. There is a significant decrease in the 
number of cell invasion/migration through collagen seen in shRNA BMI1 treated cells compared to 
shRNA Scr treated cells. Upon concomitant Ng addition, an increased   invasion is noted. (C) 
Quantitation of the average number of migrated cells through collagen substrate. (D) Quantitation of 
average number of migrated/invaded cells through Matrigel substrate. Scale bar in (B) = 20μm.  Error 
bars in (C and D) represent SD (n=3). **, p<0.01. Abbreviation: Ng, Noggin. 

 

These results raise the possibility that BMI1 overexpression increases invasiveness 

of MB cells. These observations prompted us to perform further validation 

experiments taking advantage of ex vivo and in vivo models. Importantly, the 

changes we observed here could be reverted upon BMP pathway inhibition hence 

supporting the notion that BMI1 may contribute to MB aggressiveness via repression 

of the BMP pathway.   

 

4.3.5 BMI1 knock down leads to deregulation of cell adhesion/ECM molecules 

 

From previous experiments conducted by our team (experiments conducted by Dr 

Xinyu Zhang, results in press), which were discussed in this chapter’s introduction 

(section 4.1), four cell adhesion/ECM genes whose expression was significant 

upregulated in Bmi1-/- mCGC and reversed after Noggin treatment were identified 

(Table 4.1).  

Here we analysed whether BMI1 silencing would impact on the expression of these 

genes in MB cells. Immunohistochemistry for CD44, Thrombospondin 1&2 (THBS 

1/2), MMP10 and additionally for MMP8 was carried out on DAOY and D458 

cytoblocks that were previously generated in the Marino lab from cells treated with 

either BMI1 siRNA or with scrambled siRNA (controls). There was no interpretable 

staining noted in DAOY cell blocks. However, we observed a diffuse and intensely 
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increased staining for CD44 antibody in D-458BMI1kd cell blocks as compared to D-

458Scr (Fig 4.5 A,E). Conversely, THBS staining was seen to be uniformly reduced 

among D-458BMI1kd cell blocks as compared to D-458Scr (Fig 4.5 B,F). However there 

was no change in either intensity or extent of staining observed with MMP8 (Fig 4.5 

C,G) and MMP10 (Fig 4.5 D,H) antibodies.  

 

 

Fig. 4.5 Deregulation of certain cell adhesion/ECM molecules upon BMI1 silencing in D-458 
cells.  
 
D-458 cells were treated with siRNA BMI1 or siRNA Scr, fixed and embedded in paraffin blocks. 
Immunohistochemistry on the sections using CD44, Thrombospondin, MMP8 and MMP10 antibodies 
was performed. An increased (intensity) CD44 expression (A and E), and a decreased 
Thrombospondin (intensity and number) expression (B and F) was noted upon BMI1 knock down as 
compared to Scr controls. There was no change in expression present for MMP8 (C and G) and 
MMP10 (D and H). Scale bar in all = 20 μm. 

 

The changes in the expression of ECM proteins could be in keeping with the in vitro 

observation of changes in cell adhesion and cell migration/invasion after BMI1 

downregulation in medulloblastoma cells. However, a note of caution is warranted 

because the staining intensity could not be reliably quantified as the immunostaining 

was performed with the chromogenic method and the results were somewhat 

variable among the different replicas. Also, the lack of a reliable staining in the 



181 
 

DAOY cytoblock prevented us from comparing the results with existing datasets 

(Wiederschain, Chen et al. 2007) to further validate the findings.   

 

4.3.6 Decreased proliferation of MB cells upon BMI1 knock down is not BMP 

pathway dependent   

 

Next, we set out to assess whether the changes in cluster formation and in cell 

migration/invasion upon BMI1 downregulation could be influenced by the Ink4a/Arf-

mediated cell cycle control exerted by Bmi1 in various physiological and cancer-

related contexts. Bmi1 downregulation was shown to cause reduced proliferation and 

early senescence in various cancer cells such as oral carcinoma cells (Kang, Kim et 

al. 2007) and gliomas cells (Godlewski, Nowicki et al. 2008). Wiederschain et al., 

have shown that shRNA mediated BMI1 knock down in DAOY cells causes reduced 

proliferation (Wiederschain, Chen et al. 2007). Here we performed proliferation and 

apoptosis assays in MB cells to check the dependency of these effects on BMP 

pathway deregulation.   

We used two independent methods to quantify proliferation in MB cells in response 

to BMI1 downregulation – growth curve analysis and CyQuant assay. 

To produce a time course growth curve shRNA transfected DAOY cells were plated 

at a constant density of 1x105 cells per well in a 6 well plate and after 3 days 

incubation the cells were re-counted. Multiplication factor (f) was generated where f = 

no. newly counted cells/no. of originally plated cells. Estimated number of cells (e) 

was defined at each passage as e = f x previous e. During each passage, 1x105 cells 

were plated, for a total of 7 passages, P1 to P7, corresponding to day 0, 3, 5, 7, 10, 

12 and 14. Triplicates of each group of cells were prepared and counted. The 
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experiment was done in three biological replicas. Relevant DAOY cultures were 

supplemented with Noggin 1 μg/ml every 24 hr.  

There was a significant reduction in proliferation of DAOYBMI1kd cultures compared to 

DAOYScr for all passages (Fig 4.7 A,B). However there was no difference in 

proliferation in Noggin treated DAOYBMI1kd compared to DAOYBMI1kd only cultures (Fig 

4.7 A,B). The average estimated number of cells (e) calculated during each passage 

for each group is tabulated in Table 4.3, and the respective p values are listed in 

Table 4.4.   

Table 4.3 Growth curve assay with estimated number of DAOY cells ‘e’ at the end of each 

passage.   

 
Passage 
(days)  

 

Estimated cell number e with (std. dev.) 

sh Scr 
 

sh BMI1 
 

sh BMI1 + Ng 
 

P1 (0) 100000 100000 100000 

P2 (3) 
240333 

(+/- 1247) 
174333 

(+/- 1700) 
175000 

(+/- 17795) 

P3 (5) 
386917 

(+/- 6188) 
209763 

(+/- 1206) 
218483 

(+/- 34300) 

P4 (7) 
797090 

(+/- 22719) 
356499 

(+/- 15077) 
374355 

(+/- 54713) 

P5 (10) 
199189 

(+/- 110689) 
774266 

(+/- 76427) 
871283 

(+/- 113634) 

P6 (12) 
4648035 

(+/- 329337) 
1573638 

(+/- 170055) 
2023768 

(+/- 443809) 

P7 (14) 
9417207 

(+/- 352784) 
2782843 

(+/- 336752) 
3947720 

(+/- 771796) 

 

Table 4.4 Statistical significance (p value) calculated in DAOY growth curve analysis for 

different passages.   

Groups 
compared 

 

p values generated by Student’s t-test 

P2 (3) 
 

P3 (5) 
 

P4 (7) 
 

P5 (10) 
 

P6 (12) 
 

P7 (14) 
 

sh Scr vs. sh 
BMI1 0.000001 0.000028 0.002644 0.033383 0.016736 0.023710 

sh BMI1 vs. sh 
BMI1 + Ng 0.480233 0.305787 0.397628 0.075917 0.092425 0.092037 
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CyQUANT® NF proliferation assay, which is based on measurement of cellular DNA 

content by fluorescent dye binding capacity, was also performed using shRNA 

transfected DAOY cells. Each group of cells were plated in 3 wells in 96 well plates 

at a constant density and after 24 hr overnight incubation fluorescent dye binding 

solution was added to each wells and allowed equilibration for 30 min as per 

manufacturer’s instructions. The fluorescence intensity (excitation set at 480 ±10 nm, 

and emission detection at 530 ± 10 nm) of each sample was measured. The 

experiments were conducted in triplicates and average readings were obtained.    

The average fluorescence units (indicative of DNA content and hence proliferation, 

measured at a single time point) was significantly reduced among DAOYBMI1kd as 

compared to DAOYScr – 280.55 (+/- 43.60) vs. 532.44 (+/- 51.60), p=0.003 (Fig 4.6 

C). Importantly there was no significant difference in proliferation between Noggin 

treated DAOYBMI1kd cultures and DAOYBMI1kd alone – 203.56 (+/- 51.30) vs. 280.55 

(+/- 43.60), p=0.09 (Fig 4.6 C).   

 Proliferation assay on ICb-1299 primary cells showed similar results to that 

observed in DAOY. The average fluorescence units was significantly reduced among 

ICb-1299BMI1kd as compared to ICb-1299Scr – 37.11 (+/- 2.08) vs. 56.56 (+/- 3.28), 

p=0.001 (Fig 4.6 D).  
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Fig. 4.6 BMI1 controls MB cell proliferation in a BMP pathway independent fashion.  
 
(A) Representative pictures of DAOY cells in culture at P1 (day 3); demonstrating a reduced in vitro 
growth/proliferation in sh BMI1 treated cells (middle, inset – fluorescent channel of the same field 
showing GFP positive cells), compared to sh Scr treated cells (left), which does not change 
significantly upon concomitant addition of Ng (right). (B) Growth curve plotted against cell passages 
over seven passages (14 days), showing a significant reduction in proliferation among BMI1 knock 
down cells, with no significant difference upon addition of Ng. (C) CyQuant

®
 NF assay confirming the 

results observed with the growth curve analysis in DAOY. (D) CyQuant
®
 NF assay on ICb-1299 

primary cells, showing a reduced proliferation in shRNA BMI1 treated cells as compared to shRNA 
Scr treated controls. The values on X-axis are fluorescence units corresponding to rate of proliferation 
(based on new DNA content). Scale bar in (A) = 50 μm. Error bars in (C and D) represent SD (n=3). *, 
p<0.05; **, p<0.01; ****, p<0.0001; *****, p<0.00001. Abbreviation: BF, bright field; Ng, Noggin; P, 
passage number with corresponding day in ().  
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The above results confirm the literature findings (Wiederschain, Chen et al. 2007) 

that BMI1 downregulation leads to reduced cell proliferation in both MB cell lines and 

primary cultures. However, concomitant treatment of DAOYBMI1kd with Noggin did not 

affect proliferation as demonstrated by two independent methods. This is compatible 

with a model whereby BMI1-mediated regulation of proliferation is independent of 

BMP pathway, thus is not involved in the migration/invasion phenotype.   

 

4.3.7 BMI1 knock down does not significantly affect apoptosis and remains 

uninfluenced by inhibition of the BMP pathway  

 

Next, we set out to study if BMI1 knock down has any effects on apoptosis in MB 

cells. For this we used Annexin V assay with Alexa Fluor 647 conjugate as per 

manufacturer’s protocol. 1x105 lentivirus sh RNA transfected DAOY cells (with or 

without Noggin treatment) were collected in 100 μl of 1X binding buffer per group in 

FACS tube. 5 μl of Annexin V conjugate was added to each tube along with 10 μl of 

1:1000 DAPI. The samples were gently mixed and incubated at room temperature in 

the dark for 15 min. 400 μl of 1X binding buffer was then added to each tube and the 

samples were run in a flow cytometer machine according to protocols  optimised for 

DAPI, GFP and Annexin V channel detection. The percentage of total GFP positive 

cells was detected first. Then the gates were set to detect early apoptosis (Annexin 

V positive, DAPI negative), dead cells (DAPI positive, Annexin V positive) and live 

cells (Annexin V negative, DAPI negative) from the GFP only positive population 

(representing lentivirus infected cells only). The percentage of early apoptotic cells 

was determined using FACS Diva™ v6.1.3 software. Average percentage of four 

independent experiments was used for analysis.  
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11-23% of cells were detected to be viable cells for analysis (Fig 4.7 A), among 

them, 59-61% of the cells were GFP positive (Fig 4.7 B). Among the GFP positive 

cells, the average percentages of Annexin V only positive cells indicative of early 

apoptosis for DAOYBMI1kd as compared to DAOYScr were 80.13% (+/- 11.15) vs. 

85.65% (+/- 8.02), p=0.257 (Fig 4.7 C, 3rd and 1st pic from left). This difference for 

Noggin treated DAOYScr as compared to DAOYScr only were 81.50% (+/- 6.35) vs. 

85.65% (+/- 8.02), p=0.254 (Fig 4.7 B, 2nd and 1st pics from left). The counts for 

concomitant Noggin treated DAOYBMI1kd as compared to DAOYBMI1kd only were 

78.58% (+/- 10.77) vs. 80.13% (+/- 11.15), p=0.434 (Fig 4.7 B, 4th and 3rd pics). To 

summarise, there was no significant changes in apoptosis seen upon BMI1 knock 

down whether or not the BMP pathway was concomitantly inhibited (Fig 4.7 D). 
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Fig. 4.7 BMI1 knock down does not affect apoptosis, and remain uninfluenced upon BMP 
pathway inhibition.  
 
(A) Fluorescent activated cell sorting (FACS) flow cytometry, selecting suitable fluorescent labelled 
cells (11-23%) from the total cells. (B) Among the selected cells, approximately 59-61% of the cells 
were GFP positive representing efficiently infected with GFP-lentivirus. This population is selected for 
Annexin V apoptosis assay. (C) FACS analysis indicating the fractions of dead (DAPI only positive), 
early apoptotic (Annexin V only positive) and alive (DAPI and Annexin V negative) cells. There is no 
significant difference in early apoptosis between shRNA BMI1 or shRNA Scr treated cells. 
Furthermore, there is no difference in early apoptosis between shRNA BMI + Ng or shRNA BMI1 only 
treated cells. (D) Average of percentage of early apoptosis cells (Annexin V positive fraction) from 
three independent experiments, showing no significant difference in different cell groups as above. 
Error bars in (D) represent SD (n≥3). Abbreviation: Ng, Noggin; SSC, side scatter; FSC, forward 
scatter; FITC, green fluorochrome (480 nm) in flow cytometry; GFP, green fluorescent protein; DAPI, 
4’,6’-Diamindino-2-Phenylindole, staining nuclei of dead cells.    
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4.3.8 Exogenous BMP-4 treatment of MB cell lines affects in vitro cell invasion 

in a BMI1-dependent fashion 

 

Next, we reasoned that if Bmi1 represses BMP pathway in MB cells, its expression 

could be an indicator of potential responsiveness of the cells to BMP treatment.   

Hence we set out to investigate whether changes in cell invasion could be exerted by 

treatment with exogenous BMP treatment and whether they were dependent on 

Bmi1 expression. .  

First, we wanted to confirm BMP pathway activation upon treatment of DAOY cells 

with exogenous BMP. 1 x 105 DAOY cells were plated in 2 ml medium in each well of 

a 6 well and treated with BMP-4 at 100 ng/ml concentration for 24 – 72 hr. Protein 

expression analysis for pSMAD1,5,8 and SMAD1,5,8 was performed by Western 

blot. This demonstrated BMP pathway activation 24h and 48h after BMP-4 treatment 

(Fig.4.8).      

 

 

Fig. 4.8 BMP-4 activates BMP pathway in DAOY cells.  
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Western blot analysis showing an increase in phosphorylated SMAD1,5,8 (pSMAD1,5,8) protein  in 
relation to SMAD1,5,8 expression in DAOY cells upon treatment with human recombinant BMP-4 100 
ng/ml, indicative of BMP pathway activation. The pSMAD1,5,8 levels are increased at 24 - 48 hr time 
points. Tubulin expression is used as loading control. Abbreviation: BMP, Bone Morphogenetic 
Protein.  

 

4.3.8.1 BMI1 expression is essential for BMP-4 mediated reduction of DAOY in 

vitro cell invasion 

 

There is conflicting evidence in the literature on the effects of BMPs on cancer cells. 

BMP-2 is shown to enhance in vitro migration and invasiveness in a time and dose 

dependent fashion in gastric carcinoma cells (Kang, Kim et al. 2010) and breast 

carcinoma cells (Katsuno, Hanyu et al. 2008). Contrarily, BMP-4 treatment has been 

shown to effectively inhibit tumour growth in in vivo glioblastoma tumour transplants 

(Piccirillo, Reynolds et al. 2006). Here we investigate the effects of exogenous BMP 

on cell invasion in DAOY cells. For this we used previously established Transwell® 

migration assay (discussed previously in this chapter, section 4.3.4 and Fig 4.4 A.).  

The timeline of BMP pathway activation observed in DAOY upon treatment with 

exogenous BMP4 was well within the requirements for the Transwell migration 

assay. Hence the assay was performed as previously described (section 4.2.2.3).  

There was a significant reduction in the average number of cell migration/20X field 

noted in DAOYScr treated with BMP-4 as compared to untreated DAOYScr cells – 75.8 

(+/- 14.78) vs. 142.85 (+/- 24.26), p=0.003 (Fig 4.9 A,B). As observed previously, 

reduction in migration was reproducible in DAOYBMI1kd as compared to DAOYScr 

cultures – 65 (+/- 8.85) vs. 142.85 (+/- 24.26), p=0.001 (Fig 4.9 A,B). Notably there 

was no additional reduction of cell migration seen in DAOYBMI1kd cultures treated with 

BMP-4 as compared to DAOYBMI1kd without BMP4 treatment – 61.84 (+/- 9.07) vs. 65 

(+/- 8.85), p=0.160 (Fig.4.9 A,B).  
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Fig. 4.9 BMP treatment reduces in vitro invasion in DAOY.  
 
(A) Pictures (20x magnification) of the bottom surface of the Transwell

®
 inserts coated with collagen 

substrate, after scraping the cells from top surface, representing only the migrated (invaded) cells at 
end of 12 hr. From left to right - shRNA Scr, shRNA Scr + BMP-4, shRNA BMI1 and shRNA BMI1 + 
BMP-4 treated cells. There is a significant decrease in number of cell invasion/migration through 
collagen seen in shRNA Scr + BMP-4 treated cells compared to shRNA Scr only treated cells. This 
decrease is comparable to and similar to that seen upon shRNA BMI1 treated cells. There is no 
further change in invasion with concomitant shRNA BMI1 + BMP-4 treatment. (B) Quantitation of 
average number of migrated/invaded cells (from four replicas) through collagen substrate. Scale bar 
in (A) = 20 μm. Error bars in (B) represent SD (n=4). **, p<0.01. Abbreviation: BMP, Bone 

Morphogenetic Protein.  

 

These results show that the effects of exogenous BMP-4 treatment on in vitro cell 

migration/invasion in MB cell lines are similar to those obtained upon BMI1 knock 

down and the lack of additional changes seen upon concomitant BMP-4 treatment in 

BMI1 silenced cells raise the possibility that BMI1 expression is essential for BMP 

mediated effect on the cells 
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4.4 Discussion  
  

The events leading to metastasis such as detachment of the cells, dissemination, 

attachment and growth at the secondary site occur as result of epithelial cells 

temporarily acquiring mesenchymal features (Meng and Wu 2012). Collectively 

these changes are termed as epithelial-mesenchymal transition (EMT, originally 

described in embryogenesis) which include changes in cell-cell/ cell-extracellular 

matrix adhesion, cell motility and cell cytoskeleton, which are orchestrated by 

complex molecular changes (Yilmaz and Christofori 2009). As discussed above, 

BMPs are implicated in induction of EMT and metastasis of several cancers (Bailey, 

Singh et al. 2007). They are known to have contradictory roles depending on the 

cancer tissue type and their effects must be interpreted individually. Here we 

observe changes in cell adhesion, cell motility and invasion phenotypes in MB cells 

in response to BMI1 silencing. Interestingly all of these changes were reversible 

upon concomitant inhibition of BMP signalling by Noggin, suggesting that the above 

cellular effects of BMI1 are mediated by BMP pathway. 

Differential expression of selected cell adhesion/ECM molecules observed among 

BMI1 silenced MB cells supports the notion that BMI1 regulates MB dissemination or 

metastasis. To briefly discuss the relevance of cell adhesion/ECM molecules that we 

studied – (1) Thrombospondins are adhesive glycoprotein that mediates cell-to-cell 

and cell-to-matrix interactions, and they bind to fibrinogen, fibronectin and collagens. 

Thrombospondin 1&2 (THBS 1/2) are overexpressed in medulloblastoma 

(MacDonald, Brown et al. 2001; Wiederschain, Chen et al. 2007). (2) CD44 is a cell-

surface glycoprotein receptor for hyaluronic acid and is known to be expressed in 

primitive neuroectodermal tumours (Parker and Pilkington 2005). (3) Matrix 
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metalloproteinase (MMP) are zinc dependent enzyme family involved in breakdown 

of extracellular matrix, mainly degrading type I, II and III collagens. They are known 

to be expressed in medulloblastoma albeit with variability in different subtypes 

(Vince, Herbold et al. 2001; Ozen, Krebs et al. 2004). All of these molecules are 

shown to be modulated by TGF-β/BMP – SMAD signalling pathway in EMT and 

metastasis of various malignancies (reviewed in (Ikushima and Miyazono 2010)). It is 

therefore possible that the differential expression of THSB and CD44 seen in BMI1 

silenced D-458 cells could be secondary to BMP pathway activation.  

Bmi1 has been shown to control cell proliferation and senescence in physiological 

conditions and in the cancer related context by regulating the ink4a/arf locus 

(Jacobs, Kieboom et al. 1999). Bmi1 is shown to be overexpressed in proliferating 

precursor cells during cerebellar development (Leung, Lingbeek et al. 2004). In our 

study we observed a decrease in proliferation of DAOY cells upon BMI1 knock down. 

This is in keeping with the published literature (Wiederschain, Chen et al. 2007; 

Wang, Venugopal et al. 2012). Interestingly we did not observe a difference when 

BMP pathway was concomitantly suppressed, supporting the view that the effects of 

proliferation is independent of BMP pathway.  

In our study we did not detect any significant changes in apoptosis (using Annexin V 

assay) in DAOY cell lines in response to BMI1 downregulation. This is in contrast to 

published literature (Wiederschain, Chen et al. 2007) where BMI1 knock down was 

shown to increase apoptosis (cells in subG1 phase, using Propidium idodide assay) 

in DAOY cells.  Although the reason of this discrepancy is at present unknown, it is 

possible that the effect on apoptosis could depend on level of BMI1 knock down 

achieved.  
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Although different BMPs are known to have contradictory roles in different cancers 

(reviewed in (Thawani, Wang et al. 2010)), in the  MB context, BMP-2 and BMP-4 

have been shown to prevent cerebellar granule cell precursor cell proliferation (Rios, 

Alvarez-Rodriguez et al. 2004). BMP-4 is reported to have inhibitory role in glioma 

tumour growth (Piccirillo, Reynolds et al. 2006; Liu, Tian et al. 2010). Furthermore, 

there is evidence to suggest that BMP-2 and BMP-4 inhibit tumour growth in vitro 

and in vivo (Hallahan, Pritchard et al. 2003; Zhao, Ayrault et al. 2008). Therefore 

BMPs are potential therapeutic targets for MB treatment. In fact, BMP-2 inducing 

agent 13-cis retinoic acid, either alone or in combination with other chemotherapeutic 

agents has been shown to effectively reduce in vivo MB tumour growth in a pre-

clinical study (Spiller, Ditzler et al. 2008). Vrijens et al., have described small 

molecule BMP activators which could potentially be developed as a medulloblastoma 

treatment (Vrijens, Lin et al. 2013).           

Here we observe reduced invasion upon BMP-4 treatment in DAOY cell lines, in a 

similar fashion as observed upon BMI1 downregulation. Interestingly, exogenous 

BMP-4 treatment did not exert an additional effect when applied after BMI1 knock 

down. These findings raise the possibility that expression of BMI1 could represent a 

biomarker for MB which could benefit from treatment with small molecules acting as 

BMP agonists. However further validation studies using primary human 

medulloblastoma tissue samples and pre-clinical studies using genetically 

engineered mouse models are necessary to confirm these preliminary data.  

Having established that BMI1 regulates cell adhesion, migration and invasion 

properties of MB cell lines in vitro via suppression of BMP signalling, we further 

studied their effects on primary cell growth and invasion using ex vivo and in vivo 

models.    
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CHAPTER 5 Ex vivo organotypic co-culture assay reveals 

effects of BMI1 on cell migration properties in MB cells.  
 

5.1 Introduction 
 

Our results so far have shown that i) BMI1 silencing causes aberrant activation of 

BMP signalling in primary human MB cells and in MB cell lines, and ii) BMI1 

regulates cell adhesion, migration and invasion properties of MB cell lines in vitro via 

suppression of BMP signalling in MB cell lines. Here, we set out to further 

characterise the effects of BMI1 knock down on growth and migration of primary 

human MB cells using an ex vivo model – the organotypic cerebellar slice (OCS) co-

culture. We decided to use this model because in vitro models such as the Transwell 

migration assay (or Boyden chamber assay) and the wound healing assay would not 

be suitable for the primary cells which grow as tumour spheres in culture.  In parallel, 

the experiments were conducted also on DAOY cells to compare the results of the 

ex vivo assay with those obtained in cell culture.  

The OCS assay was originally developed to study neuron-specific interactions and 

neuronal development of the cerebellum because it retains some aspects of the 

anatomical complexity of the developing cerebellum (Tanaka, Tomita et al. 1994). 

Organotypic brain slice cultures have been successfully used to study glioma cell 

invasion (de Bouard, Christov et al. 2002; Jung, Kim et al. 2002; Palfi, Swanson et 

al. 2004) and to quantify proliferation and angiogenesis of glioma cell lines (De 

Bouard, Guillamo et al. 2003; Guillamo, de Bouard et al. 2009). In brief, the brain 

explants are placed on a porous membrane to form an interface between medium 

and air, and co-cultured with fluorescence tagged tumour cell spheres for relevant 

assessments. The main advantage of this method is that the cytoarchitectural and 
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morphological characteristics of the tissue are maintained for a few days to a couple 

of weeks (Stoppini, Buchs et al. 1991). Moreover, this method recapitulates the 

cellular and extracellular matrix conditions in vivo, thus allowing us to assess their 

invasion and motility in an environment closely mimicking in vivo conditions.     

5.2 Experimental design and methodology:  
 

5.2.1 Organotypic cerebellar slice (OCS) preparation:   

 

The OCS was prepared in accordance to previously published literature (Guillamo, 

de Bouard et al. 2009; Farioli-Vecchioli, Cina et al. 2012). The brains were isolated 

from P4-P6 C57BL/6 pups after decapitation by carefully separating and peeling the 

skull, and then collected in ice cold dissection buffer. The dissection buffer was 

prepared by supplementing 200 ml of Hank’s Balanced Solution (HBSS) with 2 ml of 

45% glucose (Sigma) and 3 ml of Amphotericin B (Sigma). The cerebellum was 

dissected from the brain and the attached meninges were removed. The cerebellum 

was sectioned sagittally at 420 µm thickness using McIlwain tissue chopper (The 

Mickle Lab. Engineering Co. Ltd.). The chopped slices were then transferred on to a 

Teflon disk (Fischer), containing dissection buffer, and individual slices were gently 

separated. The slices were kept cold for 1 hour to prevent overt gliosis.  

Millicell-CM insert (Millipore), a porous membrane, was placed in each well of a 6-

well plate, and 1.3 ml of culture media was added to the bottom of each well. The 

plate was incubated at 370C for at least 1 hour. The culture media is prepared by 

supplementing 50 ml of MEM (Sigma) with 25 ml of HBSS, 25 ml of horse serum 

(GIBCO), 0.5 ml of 200 mM glutamine (GIBCO), 1 ml of 45% glucose and 1.5 ml of 

Amphotericin B.  Then, under stereomicroscopy (Zeiss, KL1500 LCD) 3 - 5 viable 

cerebellar slices were selected and plated on each Millicell-CM insert. The slices 
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were incubated at 370C for 24 hr before co-culturing with the tumour spheres and the 

co-culture was continued for 8 days. The culture media was replaced every 3 days.  

5.2.2 Generation of tumour cell spheres:  

 

In order to perform co-culture assay, it was necessary to culture MB cells as tumor 

spheres. For DAOY cells, the spheres were generated as per previously published 

protocol (Meng, Kallinteri et al. 2007). 0.5-1 x 106 DAOY cells which were previously 

labelled with GFP as described in M&M (chapter 2, section 2.2.3.1) and in chapter 3, 

were harvested from monolayer culture and cultured in a 25 cm2 screw-top culture 

flasks (Falcon) with 10 ml complete media. These flasks were maintained at 37oC on 

an orbital incubator (Stuart Scientific) at a constant rotation of 70 rev/min. Following 

24 hr incubation, tumour spheres were obtained (Fig. 5.1A).  

ICb-1299 cells were cultured at 370C in ultra-low attachment 6-well plate (Costar) to 

ensure tumour sphere of adequate size were obtained (Wang, Wang et al. 2008). 

The cells were cultured in Dulbecco’s MEM medium containing F12 (Invitrogen) 

supplemented with EGF 20 ng/ml (Peprotech), FGF 20 ng/ml (Peprotech), 1% B27 

(Invitrogen) and 1% penicillin-streptomycin (Sigma). After 3 days incubation, 

satisfactory tumour spheres were obtained (Fig 5.1 B), which were used to co-culture 

with organotypic cerebellar slice culture to assess cell migration.  

 .   
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Fig. 5.1 Generation of tumour spheres for the co-culture assay. 
 
(A) Tumour sphere from DAOY cells generated as a result of culturing them in a flask and incubating 
on an orbital rotator for 24 hr. (B) Tumour spheres from ICb-1299 cells generated as a result of 
culturing them in ultra-low attachment plates with culture media supplemented with growth factors. 
Generation of tumour spheres enabled co-culturing with the ex vivo OCS. Scale bars in A and B = 200 

μm.  

 

5.2.3 Organotypic cerebellar slice (OCS) and tumour cell sphere co-culture:  

 

The tumour spheres were then seeded on the cerebellar slice cultures under a 

dissecting microscope (Leica M165C) and incubated for 8 days. The co-cultures 

were then fixed with cold 4% PFA for 15-20 min and the membrane of the insert was 

carefully cut to include the co-culture slices, which were transferred on to glass 

slides with the co-culture side facing up. The co-cultures were stained with DAPI 

nuclear stain and mounted with a glass coverslip. The tumour cells could be 

identified by their GFP positivity induced by the lentiviral infection. The schematic of 

the method of the OCS co-culture is shown in Fig 5.2.  
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Fig. 5.2 Schematic of Organotypic Cerebellar Slice (OCS) – tumour sphere co-culture assay.  
 
The cerebellum harvested from C57/BL6 pups was sliced at 420 µm thickness, and the slices were 
cultured on semi-porous membrane placed in a plate containing culture media. GFP lentivirus infected 
MB tumour spheres from DAOY or ICb-1299 cells were seeded on the slices, co-cultured for 8 days 
and fixed. The area of migration and distance of migration after 8 days was analysed using confocal 
microscopy.    

 

 5.2.4 Imaging and analysis:   

 

Tumour cells could be identified because of their GFP positivity against the other 

DAPI positive cerebellar cells. The images were captured with Confocal 710 

microscope (Zeiss) at a magnification of 10X (for DAOY), 20X (for ICb1299) and 20X 

(for DAOY), 40X oil (for ICb1299) for area and distance assessment respectively. 

Lower magnification was suitable to capture the entire area of migration whereas 

more precise individual distance of migration could be assessed more accurately by 

using higher magnification images. The difference in magnification used for the 

measurements of DAOY and ICb1299 is because DAOY are considerably larger in 
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size as compared to ICb1299. Cell migration was assessed using three  parameters 

– i) percentage of invasion area (total area – tumour area/ total area x 100) and ii) 

maximum distance of migration (distance in μm from the periphery of the initial 

tumour sphere to the most distally migrated tumour cell), and iii) The depth of 

invasion in μm using Zen 2011 software (Zeiss). Three areas were assessed on 

each slice and a total of three slices were analysed for each experimental group. The 

experiments were conducted in technical and biological triplicates. The depth of 

invasion from the surface was measured by using Z-stack analysis (Froeling, Mirza 

et al. 2009).   

 

5.3 Results 

5.3.1 BMI1 silencing causes a reduction in the migration area of primary MB 

cells ICb-1299 and of the MB cell line DAOY.  

 

We prepared organotypic cerebellar slices of 420 µm nominal thickness from the 

cerebellum of C57BL/6 P4-6 pups and cultured them on porous membranes in a 

chamber containing medium for a minimum of 24 hours. Primary cells ICb-1299 

transfected with shRNA were maintained as tumour spheres as short term cultures. 

For better comparison, shRNA transfected DAOY were also cultured as tumour 

spheres for this specific experiment. Tumour spheres (at least 3-5 spheres/slice) 

were then transferred onto the surface of viable OCS slices and co-cultured for 8 

days.  

After 8 days of co-culture, we observed a reduced migration area in both DAOYBMI1kd 

and ICb1299BMI1kd as compared to DAOYScr and ICb-1299Scr respectively – 43.63% 

(± 6.06) vs 64.23% (± 7.83) in DAOY (p=0.021) [Fig 5.3 A,C,E] and 35.34% (± 2.64) 

vs 48.19% (± 3.74) in ICb1299 (p=0.008) [Fig 5.3 B,D,E].   
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Fig. 5.3 BMI1 silenced tumour spheres show reduced migration area in an ex vivo OCS co-
culture.   
 
(A) A reduction in the migration area is noted in DAOY

BMI1kd
 tumour sphere (right), compared to 

DAOY
Scr

 (left). The white dotted line is drawn to represent total the area of migration at the end of 8 
days, and the red dotted line represents the area of initial tumour sphere. (B) A reduction of migration 
area is noted also for ICb-1299

BMI1kd
, tumour spheres (right) as compared to ICb-1299

Scr 
(left). (C and 

D) Schematic representation of the area of migration for DAOY (C) and ICb-1299 (D). The inner white 
spheres, TS, represent the initially seeded tumour spheres, corresponding to the red dotted lines from 
(A and B). The outer circle represents the area of migration at the end of 8 days of co-culture; The 
blue area, AoM, is the representation of the area of migration, corresponding to white dotted lines in 
(A and B). AoM is calculated by subtracting TS from the total area. (E) Quantification of average area 
of migration (%) from three independent experiments for both DAOY and ICb-1299 co-cultures. Three 
areas were assessed on each slice and a total of three slices were analysed in each group. Error bars 
represent SD (n=3). *, p<0.05; **, p<0.01. Scale bar in (A) = 100 μm, and in (B) = 20 μm. 

Abbreviation: AoM, Area of Migration; TS, Tumour Sphere (initially seeded).    
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These results raised the possibility that cell migration was affected also in primary 

MB cells in an ex vivo co-culture assay. However, as we had established that BMI1 

knock down reduced the proliferative capacity of MB cells, it was essential to exclude 

that the reduction in migration area was not due to passive distribution secondary to 

the reduced proliferation caused by BMI1 knock down. To address this point, the 

maximum distance of migration of individual cells was also analysed.    

 

5.3.2 MB cells show a reduced distance of migration upon BMI1 knock down 

 

Three fluorescent high magnification images were acquired per slice from the 

periphery of the original tumour sphere where individual tumour cell were seen to 

migrate away. The distance between the farthest migrated cell and the edge of the 

original tumour sphere was measured in μm using Zen software. The experiment 

was conducted in triplicates. The average distance of migration was determined 

between BMI1 knock down and control groups.  

After 8 days of co-culture, we observed a significantly reduced average distance of 

migration in both DAOYBMI1kd and ICb1299BMI1kd as compared to DAOYScr and ICb-

1299Scr respectively – 157.40 μm (± 23.38) vs 250.03 μm (± 34.71) in DAOY 

(p=0.017) [Fig 5.4 A,C], and 80.50 μ (± 23.37) vs 115.28 μm (± 34.71) in ICb1299 

(p=0.041) [Fig 5.4 B, C].   
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Fig. 5.4 BMI1 silenced tumour spheres show reduced distance of migration in an ex vivo OCS 
co-culture.   
 
(A) A reduction in the maximum distance of migration is noted in shRNA BMI1 treated DAOY tumour 
sphere (right), compared to shRNA Scr treated sphere (left). The white dotted drawn represents the 
distance of the farthest cell to the edge of the initial tumour sphere (marked with red dotted line). (B) A 
reduction in the maximum distance of migration is noted also in ICb-1299, shRNA BMI1 treated 
tumour sphere (right) as compared to shRNA Scr treated sphere (left). (C) Quantification of average 
distance of migration (μm) from three independent experiments for both DAOY and ICb-1299. (D) 
Quantification of average depth of invasion (μm) using Z stack analysis from three independent 
experiments for both DAOY and ICb-1299. Three areas were assessed on each slice and a total of 
three slices were analysed in each group. Error bars represent SD (n=3). *, p<0.05. Scale bar in (A) = 
40 μm, and in (B) = 20 μm.  

 

In keeping with the results of the in vitro experiments, the ex vivo experiment show 

reduction in cell motility and migration of DAOY cells upon BMI1 knock down. 

Moreover, reduction in migration was observed also in short term cultures of the 

primary MB cells ICb1299 upon BMI1 knock down. This validates the notion that 

BMI1 plays a role in regulating the migratory properties of MB cells.  
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The depth of tumour cell invasion from the surface of the slice to the deepest 

invasive cell within the slice parenchyma was assessed from the areas adjacent to 

the original tumour sphere. This was done using Z stack series imaging by confocal 

microscopy and the distance (in μm) of depth of invasion was assessed using Zen 

software. There was a significantly reduced average depth of invasion observed in 

DAOYBMI1kd as compared to DAOYScr 22.48 μm (± 1.57) vs 28.52 μm (± 2.30), 

p=0.018 [Fig 5.4 D]. Although there was a trend towards decreased depth of invasion 

observed in ICb-1299BMI1kd as compared to ICb-1299Scr, the results were not 

statistically significant – 23.39 μm (± 7.02) vs 31.22 μm (± 8.03) p=0.178 [Fig 5.4 D]. 

 

5.4 Discussion  
 

In this part of the study we have taken advantage of organotypic cerebellar slices 

isolated from neonatal mice and co-cultured them with human MB tumour cell sphere 

as an ex vivo model to investigate MB tumour cell migration. With this model, we 

have 1) validated the in vitro findings in a model closer to physiological in vivo 

conditions, and 2) confirmed the in vitro findings of the DAOY cell lines using the 

primary MB cells ICb-1299.  

Studying the invasive and metastatic characteristics of the tumour cells would be 

provide more precise assessment of the tumour cell behaviour and would have 

better translational value. Meng et al., describe the suitability of cerebellar slice and 

MB cell tumour sphere co-culture model to study invasion (Meng, Kallinteri et al. 

2007). They demonstrate that the DAOY tumour aggregate first attached to the 

organotypic cerebellar slice and then invaded into the slice parenchyma replacing 

the normal tissue. By studying the invasion pattern by confocal and electron 
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microscopy, they also suggest that cerebellar slices are more conducive to study MB 

invasion as compared to cerebral slices. Here we observe a trend of reduced slice 

invasion in ICb-1299BMI1kd cell and a significantly reduced invasion of DAOYBMI1kd into 

the cerebellar slice parenchyma. This is in keeping with the reduced in vitro invasion 

observed in Transwell assay and is supportive of our notion that Bmi1 plays a role in 

modulating the invasive properties of the MB tumour cells.  

In order to examine whether BMI1-mediated repression of the BMP pathway remains 

intact in MB, in collaboration with Michael Taylor group from The Hospital for Sick 

Children, University of Toronto, we re-examined a publicly available transcriptome-

wide analysis of DAOY MB cell line (Wiederschain, Chen et al. 2007). We identified 

1483 genes differentially expressed between DAOYBMI1kd and control DAOY cells. A 

Gene Set Enrichment Analysis (GSEA) identified over-represented canonical 

pathways that included genes related to ECM-receptor interactions as well as the 

TGF-β pathway. Importantly among the deregulated cell adhesion molecules 

(ITGA3, LAMB3, LAMC1, COL7A1, Thrombospondin 1 and CD44), several genes 

either represented the human homologue of the genes identified in BMI1-/- granule 

cell progenitors (Chapter 4, Table 4.1) or belong to the same protein family.  

To further strengthen the connection between BMI1 and TGF-β-regulated cell 

adhesion molecules identified in murine cells and MB cell lines with human primary 

MB samples, we examined 282 non-WNT primary MBs, previously profiled using 

Affymetrix Human Gene 1.1ST arrays. Using unsupervised hierarchical clustering 

(HCL) we demonstrate that two Group 4 molecular variants existed - BMI1-high, 

TP53-low and BMI1-low, TP53-low, which largely cluster apart suggesting that a 

distinct transcriptome-wide gene signature associate with the expression of BMI1. To 

elucidate the specific pathways associated with these two sets of Group 4 tumours, a 
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transcriptome-wide supervised Significance Analysis of Microarrays (SAM) was 

performed. Interestingly, only 190 unique genes demonstrate statistically differential 

gene expression changes in BMI1 high subset as compared to BMI1 low subset of 

Group 4 MBs.  Overrepresented Gene Ontologies (GO) include: regulation of 

secretion, oxidoreductase activity and, extracellular matrix structural constituents. In 

the latter category, statistically significant downregulation of Laminin B1 (LAMB1, -

1.93) and upregulation of EFEMP2 (+1.71), FBN2 (+2.21), SMC3 (1.53), 

Thrombospondin 4 (THBS4, +2.12) were detected. The above bioinformatics 

analysis was performed with the help of Adrian Dubuc and Marc Remke from 

Michael Taylor group (unpublished data). These data suggest that BMI1 exerts its 

role in human MB pathogenesis at least in part through modulation of the expression 

of cell adhesion genes, potentially via BMP pathway repression.  

 

Invasion is a complex process by itself which in addition to  cell-cell and cell-ECM 

interaction, would also depend on other host tissue factors such as angiogenesis 

(Pilkington 1994). The rate of tumour cell proliferation may also influence the 

assessment of the depth of the tumour. Furthermore, certain factors such as 

necrosis of the core of the slices over time (Lossi, Alasia et al. 2009), limits accurate 

assessment of depth of migration and hence the true invasion. While OCS co-

cultured was a good model to validate our in vitro observations related to cell 

migration, we next set out to validate the growth and invasion of MB cells using an in 

vivo mouse model. 
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CHAPTER 6 Tumour volume and parenchymal invasion but 

not leptomeningeal spreading is controlled by BMI1 in an 

orthotopic MB xenograft model.  
 

6.1 Introduction 
 

Medulloblastoma are aggressive tumours with approximately one-third of cases 

presenting with metastatic disease at diagnosis and up to two-third of cases 

relapsing  to treatment presenting with leptomeningeal disease (Reviewed in (Packer 

1999)). Medulloblastoma is defined by its proclivity to disseminate via CSF route to 

brain and spinal cord (Mumert, Dubuc et al. 2012), and presence of metastasis at the 

time of diagnosis is considered a powerful independent prognostic factor (Zeltzer, 

Boyett et al. 1999). The mechanism for leptomeningeal spread vary to that of local 

tumour invasion (Laerum 1997), albeit, local invasion is also an important factor 

determining the treatment response and survival outcome (Riffaud, Saikali et al. 

2009; Sikkema, den Dunnen et al. 2012). Chang et al. classified MBs with presence 

of local invasion and brain stem invasion into a higher tumour stage – T3 from T1 or 

T2, reflective of poorer outcome (Chang, Housepian et al. 1969). It was therefore 

relevant to study the invasive characteristics of our MB cells using a suitable in vivo 

model. Genetically engineered mouse (GEM) model would be an ideal tool for this. 

But prior to embarking on sophisticated GEM model, which is relatively expensive 

and has longer latency, we chose to perform our validation experiments on an 

alternative suitable, in vivo xenograft (transplant from a different species) model. 

This model provides the advantage of being able to study the characteristics of cells 

from human origin as opposed to those from murine origin in GEM model. Orthotopic 

(normal or usual position) xenograft transplants in immune-deficient mouse is a well-

established model to study tumour invasion and metastasis in several cancers (Tan 
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and Chu 1985) including brain cancers (Giannini, Sarkaria et al. 2005).Furthermore, 

the use of GFP labelling to study tumour invasion and metastasis of  individual cell 

by fluorescent imaging monitoring is also well established (MacDonald, Tabrizi et al. 

1998; Zhang, Li et al. 2002).               

So far, our in vitro experiments have shown that BMI1 controls MB cell adhesion, cell 

migration and invasion in a BMP dependent manner. We have also observed effects 

of BMI1 on MB cell migration in an organotypic ex vivo experiment. Here we set out 

to determine the contribution of BMI1 to in vivo tumour growth and invasive 

characteristics. Short term cultures of lentiviral shRNA BMI1 infected primary MB 

cells ICb-1299, and their control counterpart were orthotopically transplanted in 

NOD-SCID mice. To be able to compare the results obtained in vivo with the 

experiments carried out in vitro, DAOY cells were also xenografted  Following 

transplantation, we first assessed if an effective BMI1 knock down was maintained in 

the xenograft tumours at the end of the termination of the experiment. Then we 

performed immunohistochemistry to assess whether BMP pathway activation 

observed in vitro upon BMI1 knock down would be occurring also in vivo. Four 

independent functional parameters were compared between BMI1 silenced 

xenografts and controls – i) tumour volume, ii) intraparenchymal invasion, iii) spread 

along the Virchow-Robin spaces, and iv) tumour burden within the spinal cord.   



208 
 

6.2 Experimental design and methodology 
 

6.2.1 Intra-cerebellar transplantation in NOD-SCID mice  

 

The animal procedures were carried out as per the Animals Scientific Procedures 

Act 1986 as described in M&M (Chapter 2, section 2.9). Briefly, the neonatal (P4 – 

P6) NOD-SCID mice were first anaesthetised and a constant quantity of 1x105 cells 

shRNA lentivirus transfected MB tumour cells in 3-5 μl sterile PBS were transplanted 

in to right cerebellar hemisphere. The cells were injected using a stereotaxic frame 

(coordinates: 1-2 mm lateral and 1-2 mm posterior to lambda suture, and 2-3 mm 

deep) with a 25 μl Hamilton syringe/26 gauge needle. A total of 19 mice were 

injected with ICb-1299 cells (10 scrambled, 9 BMI1 knock down) and 18 mice with 

DAOY cells (9 scrambled, 9 BMI1 knock down). The mice were culled if they 

developed neurological signs or at the end of the experiment which was 12 weeks 

after transplantation. The brain was harvested from these animals, the cerebellum 

and the brain stem were dissected from the rest of the forebrain and they were fixed 

in 4% PFA, followed by treatment with 30% sucrose and cryopreservation in OCT 

compound. The spinal cord was also isolated from these animals as described below 

in section 6.2.6.  

6.2.2 Cryostat tissue sectioning 

 

The OCT embedded cerebellum and brain stem samples were sectioned in their 

entirety at 20 μm thickness interval. The sections from each sample were transferred 

to twelve glass slides serially (ie. 1-12 sections to slides 1-12 and 13 – 24 sections to 

slide 1 – 12 again etc.) to  ensure that each slide would represent the entire sample. 
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The slides were labelled and left to dry overnight. The dried sections were stored at -

800C until stereology and confocal microscopy analysis was performed.  

6.2.3 Immunohistochemistry 

 

Immunohistochemistry was used to i) test the efficiency of BMI1 knock down and ii) 

to test pSMAD1,5,8 expression in MB tumour cells following xenograft 

transplantation. The procedure was performed as described in M&M (chapter  2, 

section 2.10.3). Briefly, the sections were first incubated with blocking solution (NDS 

or NGS) for 1 hr and treated with either BMI1 or pSMAD1,5,8 primary antibody  

overnight. Appropriate fluorescent secondary antibody (red, either 568 or 546 nm) 

was then added for 2 hr. The primary and secondary antibodies used along with their 

concentrations are listed in Table 6.1. The sections were mounted with DAPI 

containing mounting medium and coverslipped. The GFP positive tumour regions 

were identified under confocal microscope and five random high power images (63X 

oil for BMI1 and 100X oil for pSMAD1,5,8 assessment) were acquired per each 

case. The experiment was done in triplicates (three different cases were used for 

each group). The number of pSMAD1,5,8 positive (red) cells were counted and 

average counts were compared between shRNA BMI1 knock down and control 

groups in both DAOY and ICb-1299 xenografts. The statistical significance was 

calculated using student’s t test.  

Table 6.1 Details of primary antibodies used for immunofluorescence.  

For antigen to 
be detected 

Primary antibody used Company Concen
tration 

Alexa Fluor® 
secondary 
antibody 
(Invitrogen) 

BMI1 Goat polyclonal anti-
Bmi1 

Santa Cruz 
Biotechnology (sc-
8906) 

1:200 donkey anti-goat 
IgG 568 (red)  
A11057 

pSMAD1,5,8 Rabbit polyclonal anti-
phosphoSmad1/5/8 

Cell signalling  
(9511) 

1:100 Goat anti-rabbit 
546 (red) IgG  
A11035 
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6.2.4 Tumour volume estimation by stereomicroscopy using Cavalieri probe 

 

As each of the 12 slides prepared above are a true representation of the entire 

xenograft, one slides for each sample was chosen for this assessment. The slide 

was mounted using DAPI containing medium and covered with a glass coverslip. 

Every section on the slide was screened for tumour GFP positivity under 

fluorescence stereomicroscope (Nikon Eclipse 80i) using 10X (aperture 0.45) 

objective. The tumour volume was estimated by Cavalieri probe using Stereo 

Investigator 10 software (MicroBrightField, Inc.) in accordance with previously 

published literature (Villeneuve, Tremblay et al. 2005; Ghulam Muhammad, Candolfi 

et al. 2009). The GFP positive tumour regions recognised under stereomicroscope 

were marked using grid points, set at 20 μm grid spacing. The tumour regions were 

marked on multiple sections by driving the LEP motorised stage along X and Y axes. 

The grids overlapping the tumour areas were counted by the software and were 

converted into volume estimates after accounting for the non-consecutive section 

interval (which was constant at 12) and section thickness (which was constant at 20 

μm). The results generated were collated in excel spread sheet and averaged for all 

samples. The average tumour volume estimates were compared between shRNA 

BMI1 silenced xenografts with scrambled controls for both ICb-1299 and DAOY 

groups. The statistical significance was calculated by student’s t test.  

6.2.5 Depth of tumour invasion measurement by confocal microscopy 

 

One of the twelve slides prepared (section 6.2.2) which is representative of the entire 

xenograft was mounted using DAPI containing medium and covered with a glass 

coverslip. As for stereomicroscopy, all sections on the slide were screened for GFP 
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positive tumour. On each slide three tumour regions with intraparenchymal 

(cerebellum or brain stem) invasion or spread along Virchow Robin space were 

imaged at 20X magnification using Confocal microscope. The maximum depth of 

invasion - distance in μm from the pial surface to the farthest invading/spreading 

tumour cell was measured in each region using ImageJ 1.43u software (National 

Institutes of Health, USA). The distances were averaged for each case and 

compared between shRNA BMI1 silenced and scrambled groups for both ICb-1299 

and DAOY xenografts. The statistical significance was calculated by student’s t test.  

6.2.6 Spinal cord dissection and tumour burden analysis  

 

The spinal cords of the engrafted animals were harvested to assess tumour burden 

as an evidence of metastatic spread, as described in M&M (chapter 2, section 

2.9.4.3). The harvested cords were fixed in 10% formalin and longitudinally divided in 

to 5-7 segments approximately corresponding to their anatomic levels and 

embedded in paraffin blocks. The blocks were sectioned at 4-5 μm thickness and 

were stained with H&E for morphological analysis of tumour burden. The sections 

from all the samples were screened for presence of tumour deposits in the spinal 

cord, identified by histological characteristics of medulloblastoma. The rate of tumour 

positivity in shRNA BMI1 silenced xenografts were compared with controls.    

The schematic of in vivo xenograft generation and analysis is represented in Fig 6.1. 
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Fig. 6.1 Schematic of orthotopic xenograft generation and analysis. 
 
Lentivirus infected, GFP labelled, DAOY or ICb-1299 cells were injected into right cerebellar 
hemisphere of NOD-SCID pups. The cerebellum and brain stem were isolated 12 weeks later at the 
latest, fixed and cryopreserved. The entire cerebellum and brain stem were serially sectioned and 
screened for the presence of tumour by histology and immunohistochemistry. The volume estimates 
of xenografts were compared between shRNA BMI1 and shRNA Scr treated cells by 
stereomicroscopy using Cavalieri method. The depth of tumour cell invasion was analysed and 
compared using confocal microscopy. In addition, spinal cords of all primary tumour positive cases 
were collected, sectioned and screened for the presence of tumour deposits.      
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6.3 Results:  

6.3.1 Intracerebellar injection of MB cells yields tumour xenografts 

 

A constant number (1x105 in 3-5 μl) of shRNA transfected ICb-1299 or DAOY cells 

were injected in to right cerebellar hemisphere of each NOD-SCID mouse. A total of 

19 mice (9 males, 10 females) were injected with ICb-1299 cells (10 scrambled, 9 

BMI1 knock down) and 18 mice (7 males, 11 females) with DAOY cells (9 

scrambled, 9 BMI1 knock down) [Fig 6.2A]. Unless they developed symptoms, they 

were sacrificed at twelve weeks after transplantation.  

Among DAOY engrafted mice, two of nine mice (22.2%) with DAOYScr and one of ten 

mice (10%) with ICb-1299Scr developed neurological symptoms related to tumour 

growth at 8 weeks and 10 weeks respectively and hence had to be terminated at 

those time points. The rest of the DAOYScr / ICb-1299Scr and all of DAOYBMI1kd / ICb-

1299BMI1kd xenografted mice were asymptomatic and were terminated at 12 weeks 

(Fig 6.2 B). Kaplan-Meier survival plot comparing the BMI1 knock down xenografts 

with controls did not show statistically significant difference in the survival estimation 

(using Log Rank test) between the groups  Fig 6.2 C and D).  

All DAOY engrafted mice (18/18, 100%) developed a tumour and no significant 

difference in tumour take was found also between ICb-1299Scr (6 of 10, 60%) and 

ICb-1299BMI1kd (6 of 9, 66%) engrafted mice (Fig 6.2 E).  
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Fig. 6.2 Statistics of MB xenografts generated.  
 
(A) Tabulation of number and gender of mice injected with DAOY or ICb-1299 cells. (B) Graph 
representing number of mice that were symptomatic (terminated) before 12 weeks in each group. No 
mice with shRNA BMI1 transplants were symptomatic while a minor fraction of shRNA Scr 
transplanted mice developed symptoms prior to 12 weeks. (C and D) Kaplan-Meier curve comparing 
survival estimates of shRNA BMI1 transplants against shRNA Scr transplants in DAOY (C) and ICb-
1299 (D). There was no significant difference in survival estimates in either group on Log-Rank 
analysis. (E) Graph depicting fraction of tumour-take in DAOY and ICb-1299 transplants. All of DAOY 
transplanted mice developed tumour, while the tumour uptake among ICb-1299 transplants was 60-
66%.  
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Histological and immunohistochemical analysis was carried out to confirm the 

diagnosis. Histologically the DAOY xenografts consist of multifocal tumour growth in 

the cerebellum and the brain stem composed of poorly differentiated densely packed 

round to oval neoplastic cells with hyperchromatic nuclei surrounded by scanty 

cytoplasm. Occasional tumour cell rosettes and nodules were present, reminiscent of 

both classic and desmoplastic medulloblastoma morphology (Giangaspero, Binger et 

al. 2000) [Fig 6.3 A and B]. ICb-1299 xenografts also showed similar features to that 

of DAOY xenografts. However, the tumour cells showed more abundant cytoplasm, 

prominent nuclear moulding and there were areas of necrosis. The features were 

reminiscent of anaplastic medulloblastoma (Shu, Wong et al. 2008) [Fig 6.3 C and 

D]. Immunohistochemistry revealed ICb-1299 generated tumours to be diffusely 

positive  for synaptophysin (Fig 6.3 E), and negative for GFAP (Fig 6.3 F), in keeping 

with that seen in medulloblastoma (Giangaspero, Binger et al. 2000).  
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Fig. 6.3 Histology and immunohistochemisty of xenograft tumours confirming features of MB.  
 
(A) H&E section showing medulloblastoma ( black arrow),  upon  DAOY (shRNA Scr treated) cells 
xenograft.  In this case, the tumour is present in the brain stem, abutting cerebellum, and tumour 
infiltration to parenchyma is seen. (B) High power view of area corresponding to arrow head in (A), 
showing  poorly differentiated densely packed round to oval neoplastic cells with hyperchromatic 
nuclei surrounded by scanty cytoplasm. (C) H&E section showing medulloblastoma ( white arrow),  
upon ICb-1299 (shRNA Scr treated) primary cells xenograft . In this case, the tumour is present in the 
cerebellum and extends into the brain stem. (D) High power view of area corresponding to arrow head 
in (C), showing histological features resembling DAOY xenograft, but in addition the tumour cells 
showed more abundant cytoplasm and prominent nuclear moulding. Furthermore, 
immunohistochemistry reveals ICb-1299 xenograft to be Synaptophysin (membrane) positive (E), and 
GFAP negative (F), in keeping with the expression pattern that is seen in human medulloblastoma. 
The lower part of (F) shows GFAP positivity in reactive astrocytes of the  surrounding brain tissue. 
Scale bar in (A) and (C) = 50 μm, and in (B), (D), (E) and (F) = 20 μm.  
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Having confirmed the histological identity of the xenografts, we set out to investigate 

if protracted BMI1 knock down was maintained in the xenografted tumour cells.   

6.3.2 BMI1 knock down is confirmed in the xenografts.  

 

Prior to functional analysis of the xenografts, it was important to confirm stable BMI1 

knock down induced by lentiviral shRNA transfection of MB cells pre-injection in the 

xenografts 12 weeks after engraftment. Previous studies in which tumour xenografts 

were generated following shRNA lentivirus based BMI1 knock down in hepatocellular 

carcinoma cells (Chiba, Miyagi et al. 2008) and in medulloblastoma cells (Wang, 

Venugopal et al. 2012) have shown stable knock down 14 weeks and 8 weeks after 

engraftment respectively. Here we performed immunohistochemical analysis on 

three xenografts from each cell type to assess BMI1 expression. The cryosections 

were treated with anti-Bmi1 antibody and stained with fluorescent secondary 

antibody (Alexa Fluor 568, red), counterstained with DAPI nuclear stain and 

examined by confocal microscopy. Five regions from each tumour sample, three 

samples from each group, were examined.   

There was prominent reduction of BMI1 expression noted in xenograft tumours 

arising from DAOYBMI1kd and ICb-1299BMI1kd transplants as compared to those arising 

from the respective scrambled treated control cells (Fig 6.4). This confirmed an 

efficient protracted BMI1 knock down which was maintained 12 weeks after injection. 

.    
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Fig. 6.4 GFP positivity and efficient BMI1 knock down is maintained in the xenografts.   
 
(A and B) BMI1 immunohistochemistry on xenografts reveals an effective knock down in shRNA 
BMI1 treated cells (lower panel) as compared to shRNA Scr treated cells (upper panel) in both DAOY 
(A) and ICb-1299 (B). Five fields in each sample and three samples from each group were screened, 
in which similar difference in BMI1 expression was noted. Left – GFP (green) channel, middle – BMI1 
(red) channel, right – merge. A strong GFP signal is retained in the xenograft cells, which makes it 
suitable for further fluorescent microscopy tracing of the cells. Scale bar in (A) and (B) = 20 μm.  

 

6.3.3 An increased phosphorylation of SMAD 1,5,8 is seen  in BMI1 silenced 

xenografts 

 

Our in vitro results have shown that BMI1 silencing causes de-repression of BMP 

signalling in primary human MB cells ICb-1299 and in MB cell lines DAOY (chapter 

3, Figs 3.6 and Fig 3.5). Having established that an efficient protracted BMI1 knock 



219 
 

down was maintained in the medulloblastoma xenografts, we set out to determine 

the BMP pathway status in these tumours.  

We performed pSMAD1,5,8 immunohistochemical labelling on DAOYBMI1kd, DAOYScr, 

ICb-1299BMI1kd and ICb-1299Scr tumours, as previously described. Briefly, the 

cryosections were treated with anti-pSmad1,5,8 antibody and stained with 

fluorescent secondary antibody (Alexa Fluor 546, red), counterstained with DAPI 

nuclear stain and examined by confocal microscopy. Five regions from each tumour 

sample were imaged at high power (100X oil) and the percentage of pSMAD1,5,8 

positive (red) cells per field (pSMAD1,5,8 positive/total DAPI positive cells x 100) 

were counted. Average counts were compared between shRNA BMI1 knock down 

and control groups in both DAOY and ICb-1299 xenografts. The statistical 

significance was calculated using student’s t test 

The average number of xenograft tumour cells expressing pSMAD1,5,8 was 

increased in BMI1 silenced group as compared to scrambled group – 38.27% 

(±6.16) vs 16.02% (± 3.51) in DAOY (p=0.005) [Fig 6.5 A and C], and 32.77% (±6.0) 

vs 12.33% (±1.50) in ICb-1299 (p<0.01) [Fig. 6.5 B and C], in keeping with the notion 

that BMP pathway de-repression is induced by  BMI1 silencing also in vivo.      
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Fig. 6.5 pSMAD1,5,8 expression is increased in BMI1 silenced xenografts. 
(A and B) pSMAD1,5,8 immunohistochemistry on xenografts reveals an increased expression in 
shRNA BMI1 treated cells (lower panel) as compared to shRNA Scr treated cells (upper panel) in both 
DAOY (A) and ICb-1299 (B). Left – GFP (green) channel, middle – pSMAD1,5,8 (red) channel, right – 
merge. (C) Quantitation of the number of pSMAD1,5,8 positive cells per field shows a significant 
increase in the average percentage, in both DAOY and ICb-1299. Five fields in each sample and 
three samples from each group were analysed. Scale bar in (A) and (B) = 10 μm. Error bars in (C) 

represent SD (n=3). **, p<0.01.  
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6.3.4 BMI1 silenced xenografts show reduced tumour volume estimates. 

 

In line with other studies, we previously observed reduced proliferation in DAOYBMI1kd 

in comparison to DAOYScr (Chapter 4, Fig 4.7). We also noted a reduced area of 

migration in DAOYBMI1kd and ICb-1299BMI1kd cells in organotypic cerebellar slice co-

culture assay in comparison to their scrambled counterparts (Chapter 5, Fig 5.3). 

Here, we tested the effects of BMI1 knock down in these cells on the in vivo tumour 

growth by means of analysis of the tumour volume estimates of the xenografts. 

Briefly, representative sections of each xenograft were stained with DAPI and 

analysed using stereomicroscope (under fluorescence filter). The overlapping GFP 

positive tumour regions were grid-marked using Stereo Investigator software and the 

tumour volume was estimated using Cavalieri probe (Villeneuve, Tremblay et al. 

2005; Ghulam Muhammad, Candolfi et al. 2009) after accounting for non-

consecutive section interval and section thickness. The average tumour volume 

estimates (in mm3) were compared between shRNA BMI1 silenced xenografts with 

scrambled controls for both ICb-1299 and DAOY groups. The statistical significance 

was calculated by student’s t test.  

The average total tumour volume estimates for DAOYBMI1kd (n=9) and ICb-1299BMI1kd 

(n=6) were reduced as compared to that of DAOYScr (n=9) and ICb-1299Scr (n=6) 

xenografts respectively - 2.39 mm3 (± 1.63) vs 5.18 mm3 (± 2.57) for DAOY 

(p=0.009) [Fig. 6.6 C] and 3.35 mm3 (± 1.05) vs 9.24 mm3 (± 3.09) for ICb-1299 

(p=0.001) [Fig 6.6 A-C].  
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Fig. 6.6 Xenograft tumour volume estimates.  
 
(A and B) A 2-D representation of tumour volume estimates using Cavalieri probe by Stereo 
Investigator software. The overlapping tumour areas marked during Stereomicroscopic evaluation are 
represented in red (20 μ grid spacing used).The total tumour volume was estimated after accounting 
for the non-consecutive section interval (which was constant at 12) and section thickness (which was 
constant at 20 μm). The total tumour volume estimate in xenograft arising from shRNA BMI1 treated 
cells (B) was lower than that of shRNA Scr treated cells (A).  (C) The average tumour volume 
estimate from all the xenografts analysed show a reduction in BMI1 knock down tumours as 
compared to controls, in both DAOY and ICb-1299. Error bars in (C) represent SD (n≥6). **, p<0.01.  

 

 

Although we cannot exclude that an effect of BMI1 knock down on BMP mediated 

cell adhesion/migration/invasion could have contributed to the phenotype, the most 

likely scenario is that it is mainly attributable to the BMI1 mediated impact on 
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proliferation. To further decipher the role of BMI1 in MB tumour cell invasion in vivo, 

we investigated the parenchymal invasion of the xenografts.   

 

6.3.5 BMI1 silenced xenografts show reduced intraparenchymal tumour 

invasion 

 

The extent of local (cerebellar) and brain stem invasion is prognostically highly 

significant (Chang, Housepian et al. 1969; Riffaud, Saikali et al. 2009; Sikkema, den 

Dunnen et al. 2012). In our study, we have previously observed reduced in vitro 

invasion of DAOYBMI1kd cells in a BMP dependent fashion (Chapter 4, Fig 4.5). We 

have also observed reduced distance of migration in DAOYBMI1kd and ICb-1299BMI1kd 

in an ex vivo experiment (Chapter 5, Fig 5.4). Wang et al. have demonstrated 

reduced in vivo tumour infiltration upon BMI1 knock down in DAOY cells grown as 

tumour spheres (Wang, Venugopal et al. 2012). Here we analysed our xenografts for 

cerebellar and brain stem invasion, at single cell level, taking advantage of the GFP 

labelling induced by lentiviral infection. Briefly, representative sections were stained 

with DAPI and examined by confocal microscopy. Three regions with 

intraparencymal (cerebellum or brain stem) invasion were imaged at 20X 

magnification. The images were analysed with ImageJ software and the maximum 

depth of invasion, which was the distance in μm from the pial surface to the farthest 

invading tumour cell was assessed. The measurements were averaged for each 

case and compared between shRNA BMI1 silenced and scrambled groups for both 

ICb-1299 and DAOY xenografts. The statistical significance was calculated by 

student’s t test.  
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Interestingly, the average depth of invasion into the cerebellar parenchyma from the 

pial surface revealed a significant reduction for both DAOYBMI1kd and ICb-1299BMI1kd 

xenografts as compared to DAOYScr and ICb-1299Scr respectively - 141.35 µm (± 

51.51) vs 216.61 µm (± 61.24) for DAOY (p0.008) [Fig 6.7 B], and 159.74 μm (± 

34.96) vs 239.49 μm (± 25.75) for ICb-1299 (p=0.001) [Fig. 6.7 A and B].  

 

 

Fig. 6.7 Reduced cerebellar intraparenchymal infiltration in BMI1 silenced MB xenografts.  
 
The depth of invasion (marked with white dotted line) was measured as the distance in μm from the 
pial surface of the cerebellum (marked with red dotted line) to the deepest GFP positive cell within the 
cerebellar parenchyma. (A) The maximum depth of tumour cell infiltration in xenograft arising from 
shRNA BMI1 treated cells (right) was lower than that of shRNA Scr treated cells (left). (B) The 
average distance of tumour cell infiltration from all the xenografts analysed show a reduction in BMI1 
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knock down tumours as compared to controls, in both DAOY and ICb-1299. Three different regions 
from each sample group were analysed. Scale bar in (A) = 50 μm. Error bars in (B) represent SD 

(n≥6). **, p<0.01. 

 

Similar findings were also recorded when measuring the depth of tumour cell 

invasion into the brain stem – 401.78 μm (± 126.41) in DAOYBMI1kd vs 575.83 µm (± 

175.91) in DAOYScr (p=0.018) [Fig 6.8 B], and 332.78 μm (± 39.23) in ICb-1299BMI1kd 

vs 459.09 μm (± 62.06) in ICb-1299Scr (p=0.001) [Fig.6.8 A and B]. Additionally, there 

were more prominent necrotic areas noted in the brain stem as compared to the 

cerebellum in ICb-1299 xenografts, although this finding was not quantified. The 

infiltration of the tumour cells into the brain stem was deeper as compared to the 

cerebellum.    
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Fig. 6.8 Reduced brain stem intraparenchymal infiltration in BMI1 silenced MB xenografts.   
 
The depth of invasion (marked with white dotted line) was measured as the distance in μm from the 
pial surface of the brain stem (marked with red dotted line) to the deepest GFP positive cell within the 
brain stem parenchyma. (A) The maximum depth of tumour cell infiltration in xenograft arising from 
shRNA BMI1 treated cells (right) was lower than that of shRNA Scr treated cells (left). The white 
arrow indicates tumour mass superficial to the brain stem pial surface. (B) The average distance of 
tumour cell infiltration from all the xenografts analysed show a reduction in BMI1 knock down tumours 
as compared to controls, in both DAOY and ICb-1299. Three different regions from each sample 
group were analysed. Scale bar in (A) = 50 μm. Error bars in (B) represent SD (n≥6). *, p<0.05; **, 

p<0.01. 

 

In summary, reduced intraparenchymal invasion was observed in both DAOYBMI1kd 

and ICb-1299BMI1kd xenografts as compared to their control counterparts. These 

observations are in agreement with our in vitro results where reduced invasion was 

noted in a Transwell® assay in DAOYBMI1kd in comparison to DAOYScr.    

6.3.6 BMI1 silenced xenografts show no change in the spreading along the 

Virchow Robin spaces or in the tumour burden in the spinal cord. 

 

Primary CNS malignancies may also disseminate via certain minor routes such as 

subpial, perineuronal (satellitosis), intravascular and Virchow Robin spaces. Virchow 

Robin spaces are microscopic channels that follow along the arterioles which 

penetrate into the brain substance from the subarachnoid space (Patankar, Mitra et 

al. 2005). In addition to CSF and leptomeningel routes, medulloblastoma 

disseminate locally in the brain via Virchow Robin spaces (Roger E McLendon 

2006).  Therefore we chose to investigate spread along Virchow Robin space in our 

in vivo study. Similar to depth of invasion analysis described above, representative 

sections of each xenograft was stained with DAPI and examined by confocal 

microscopy. Three regions of tumour spread along the Virchow Robin spaces were 

imaged for each case. The maximum depth of spread in μm from the surface was 

measured in each region, averaged and compared between shRNA BMI1 silenced 
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and scrambled groups for both ICb-1299 and DAOY xenografts. The statistical 

significance was calculated by student’s t test.  

There was no statistically significant differences noted in the average distance of 

spreading along the Virchow Robin spaces between BMI1 knock down and 

scrambled groups of xenografts - 448.80 μm (± 98.03) in DAOYBMI1kd vs 553.95 µm 

(± 231.05) in DAOYScr (p=0.126) [Fig 6.9 B], and 482.33 μm (± 56.46) in ICb-

1299BMI1kd vs 481.04 μm (± 94.64) in ICb-1299Scr (p=0.489) [Fig.6.9 A and B].  

Fig. 6.9 There is no change in the spreading along Virchow-Robin space in BMI1 silenced MB 
xenografts.   

The spread/migration (marked with white dotted line) of MB cell along the Virchow-Robin (VR) spaces 
(which are the channels along the arterioles) was measured as the distance in μm from the pial 
surface of the cerebellum/brain stem (marked with red dotted line) to the deepest GFP positive cell 
along the VR space. (A) There is no notable difference in maximum depth of tumour cell 
spread/migration along the VR space in xenograft arising from shRNA BMI1 treated cells (lower), 
compared to that of shRNA Scr treated cells (top). (B) The average distance of tumour cell 
spread/migration from all the xenografts analysed show no difference in BMI1 knock down tumours as 
compared to controls, in either DAOY or ICb-1299. Three different regions from each sample group 
were analysed. Scale bar in (A) = 50 μm. Error bars in (B) represent SD (n≥6).   
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Dissemination of medulloblastoma to the spinal cord via CSF and leptomeningeal 

remains paramount in determining tumour prognosis (Zeltzer, Boyett et al. 1999; 

Mumert, Dubuc et al. 2012). Even the presence of microscopic local leptomeningeal 

tumour spread has been suggested to bear prognostic significance in 

medulloblastoma (Ayan, Kebudi et al. 1997). Therefore, we determined the tumour 

burden in the spinal cord in the MB engrafted animals. The spinal cords were fixed in 

formalin, sectioned into multiple segments and examined histologically for any 

presence of tumour deposits. The rate of tumour positivity in shRNA BMI1 silenced 

transplants were compared with control transplants.    

None of the twelve ICb-1299 xenografts had associated spinal deposits. However, 

microscopic MB tumour deposits (Fig 6.10 A), with features similar to those seen at 

the primary implantation site, were seen in approximately two third of DAOY 

transplanted cases. Importantly, there was no difference in the incidence or rate of 

tumour burden between DAOYScr (6 of 9, 66%) and DAOYBMI1kd (6 of 9, 66%) 

transplants (Fig 6.10 B).      

In conclusion, contrary to the intraparenchymal invasion results, BMI1 knock down 

did not seem to influence the spreading along the Virchow Robin spaces or the rate 

of spinal cord seeding in our xenograft model.      
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Fig. 6.10 Spinal cord tumour burden in DAOY xenografts.  
 
(A) H&E section of spinal cord from DAOY engrafted animals showing leptomeningeal tumour deposit 
(black arrow) with histological features similar to that of the primary implant. Left – low power, right – 
high power image. (B) Quantitation of incidence of tumour burden between sh Scr and sh BMI1 
treated DAOY transplants shows no difference. Abbreviation: L-M, leptomeningeal. Scale bar in (A) = 
20 μm. 

 

6.4 Discussion  
 

In this part of the study we demonstrate that xenografts originating from BMI1 knock 

down MB cells are smaller and show reduced intraparenchymal invasion as 

compared to their scrambled counterpart. Increased pSMAD1,5,8 expression was 
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found also within BMI1 silenced xenografts. These observations suggest that i) BMI1 

controls both tumour growth and parenchymal invasion in MB xenografts, although 

this may be achieved through different mechanisms and ii) confirms that BMI1 knock 

down in MB cells reactivates BMP signalling pathway also in vivo, consistent with our 

in vitro  results.  

Several genes and pathways are known which confer aggressiveness in 

medulloblastoma. Genetic profiling of metastatic medulloblastoma by Mumert et al. 

demonstrate that Shh-induced MBs tend to be localised, while ERAS, LHX1, and 

CCRK are metastasis-inducing which are overexpressed in aggressive subgroups of 

human MBs (Mumert, Dubuc et al. 2012). Expression profiling of metastatic and non-

metastatic primary human MB by MacDonald et al. show several dysregulated genes 

associated with PDGFRA and RAS/MAPK signaling pathway (MacDonald, Brown et 

al. 2001). Furthermore, MB with molecular profiling of group 3 (mainly MYC 

amplification associated) and group 4 (mainly isochromosome 17q associated) are 

known to be more aggressive (higher metastasis and poorer prognosis) compared to 

Shh or Wnt groups (Kool, Korshunov et al. 2012; Taylor, Northcott et al. 2012).  

In chapter 4, we discussed the differential expression of certain cell adhesion/ECM 

molecules that was observed in relation to BMI1 expression in developing granule 

neurones in mouse cerebella (Xinyu Zhang, unpublished data), and our current  

observation of  dysregulated expression of CD44 and THSB in BMI1 knock down MB 

cells. In chapter 5, we identified deregulated cell adhesion/ECM genes namely 

LAMB1, EFEMP2, FBN2, SMC3, and THBS4 in relation to BMI1 expression in 

primary MB (Adrian Dubuc, Mark Remke; unpublished data). Impairment of the 

Cadherin family of transmembrane glycoproteins, in particular downregulation of E-

cadherin, and switch from E-cadherin to N-cadherin, has a strong affiliation to EMT 
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and cancer invasiveness (Shiozaki, Oka et al. 1996). BMI1 overexpression has been 

shown to repress E-cadherin, and induce EMT (Yang, Hsu et al. 2010).  

Integrins are transmembrane glycoproteins, which are physiologically expressed. 

However certain cancers can be associated with high integrin expression, which 

could be a marker of aggressive phenotypes (Shirakihara, Kawasaki et al. 2013; 

Tome, Kimura et al. 2013). There is evidence that Bmi1 modulates integrin-mediated 

cell adhesion in murine neural stem cells in a novel Ink4a/Arf-independent manner 

(Bruggeman, Hulsman et al. 2009). TGF-β/BMP - SMAD pathways cross talk with 

other pathways which regulate cadherin and integrins and trigger EMT (reviewed in 

(Huber, Kraut et al. 2005; Thiery and Sleeman 2006)). Therefore it is plausible that 

changes in cell adhesion, cell motility and invasion phenotypes observed in response 

to BMI1 silencing of MB cells in our study can also be due to deregulation of 

cadherin or integrin family of proteins, probably mediated by BMP signalling. 

However this is speculative at this stage and would need validation. We plan to 

undertake a genome-wide analysis of Group 4 primary MB cells to understand the 

BMI1 associated molecular mechanisms more comprehensively (discussed in  

chapter 8).  

 

In Wang et al. study, mice implanted with DAOY spheres with BMI1 knock down 

showed better survival, with corresponding tumours showing reduced local tumour 

infiltration as compared to controls, but they did not observe difference in tumour 

volumes between the two groups (Wang, Venugopal et al. 2012). Although, there 

was no difference in survival projection or tumour take between BMI1 knock down 

and control groups in our study, the difference in parenchymal invasion that we 

observed correlates to Wang et al. study. In line with our results, there is evidence 
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that xenografts generated from BMI1 knock down cells resulted in reduced tumour 

volume in various cancer including breast cancer (Hoenerhoff, Chu et al. 2009), 

pancreatic cancer (Yin, Wei et al. 2011) and laryngeal cancer (Yao, Wang et al. 

2013). Interestingly we did not see increased spreading of MB cells along VR spaces 

in our xenograft model and tumours expressing high levels of BMI1 were not 

associated with higher incidence of spinal metastasis, therefore implying that the 

molecular mechanisms regulating intraparenchymal invasion and leptomeningeal 

spread may be different. In support of this, Wu et al. have shown that in both mouse 

and human medulloblastoma, metastatic tumour was genetically divergent from the 

matched primary tumour, suggesting that only certain cells from the primary tumour 

have the ability to metastasise (Wu, Northcott et al. 2012).  

In order to validate the phenotypes observed upon BMI1 knock down in our study, 

we set out to investigate if an inverse relationship between BMI1 expression and 

BMP pathway activation exists in the primary human MB tissue. To do this, we 

studied the expression pattern of BMI1 and pSMAD1,5,8 in primary human MB 

tissue micro array.    
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CHAPTER 7 Preliminary pSMAD expression analysis in 

primary MB tissue demonstrate weak correlations 

warranting further evaluation  

7.1 Introduction 

  

Medulloblastoma develops as a result of deregulated developmental mechanisms, 

and in the context of cerebellar development, BMI1 is thought to be a downstream 

target of SHH pathway (reviewed in (Marino 2005)). Shh and BMP pathways 

antagonise each other to regulate granule cell progenitor proliferation during 

cerebellar development (reviewed in (Rodini, Suzuki et al. 2010; Roussel and Hatten 

2011). Our group have recently demonstrated that during cerebellar development 

Bmi1 critically influences cell-cell interactions via specific inhibition of BMP signalling 

(Zhang, Santuccione et al. 2011). However, to our knowledge there is no previous 

literature linking BMI1 and BMP signalling to medulloblastoma pathogenesis. BMPs 

(BMP-2 and/or BMP-4) have been shown to prevent cerebellar granule cell precursor 

cell (putative cell of origin for MB) proliferation (Rios, Alvarez-Rodriguez et al. 2004) 

and shown to have inhibitory role in medulloblastoma growth (Hallahan, Pritchard et 

al. 2003; Zhao, Ayrault et al. 2008). Therefore BMPs may be potential therapeutic 

targets for MB treatment, and furthermore, BMI1 expression could be potential 

biomarker for those MB which may benefit from small molecule BMP agonist 

treatment. With this in view we attempted to validate the notion that BMI1 represses 

BMP pathway, i.e., an inverse relationship existed between BMI1 and BMP pathway 

status, using primary human MB tissue samples   

Tissue Micro Arrays (TMAs) are arrays of several different tissue samples 

represented as cylindrical cores on a single slide which enable rapid and 

simultaneous immunohistochemical analysis of multiple samples. They were first 
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described in 1987 (Wan, Fortuna et al. 1987) and popularised as high throughput 

method for molecular analysis in 1998 (Kononen, Bubendorf et al. 1998). We have 

taken advantage of two TMAs containing a total of 362 MB samples to conduct 

preliminary expression correlation analysis following immunohistochemistry for BMI1 

and pSMAD1,5,8 to test the feasibility of their use to validate our findings in MB cells.  

7.2 Experimental Design and methodology 
 

7.2.1 Primary human medulloblastoma TMA  

 

For validation on human primary MB tissue, we used two different TMA sets. The 

first TMA set (referred to as TMA I) comprised one slide containing 64 MB tumour 

cores which was prepared at Institute of Clinical Pathology, Department of 

Pathology, University of Zürich, Switzerland. The second set (referred to as TMA II) 

comprised two slides containing a total of 298 MB tumour cores which was prepared 

by our collaborator Dr Stefan Pfister from German Cancer Research Centre DKFZ, 

Heidelberg, Germany. Supplementary information available with TMAs included 

histological types for the former set and molecular subgroups for the latter set. 

Immunohistochemistry using pSMAD1,5,8 and/or BMI1 antibody was performed on 

the paraffin sections of the TMAs as described in M&M (chapter 2, section 2.10). The 

primary and secondary antibodies used along with the staining conditions are listed 

in Table 7.1. 
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Table 7.1 Antibodies and the conditions used for TMA immunohistochemistry by ABC method 

For antigen to be 
detected 
 

Primary antibody used Secondary 
antibody used 

Blocking agent 
used 

BMI1  Rabbit polyclonal anti-Bmi1 
(Abcam ab38295), 1:100, 
overnight incubation at RT. 
 

 
Universal 
biotinylated anti-
mouse/anti-rabbit 
IgG (Vector) raised 
from horse, 1 hr at 
RT. 

 
2.5% Normal 
horse serum 
(Vector), 1 hr RT 
 
 

pSMAD1,5,8 Rabbit polyclonal anti-

phosphoSmad1/5/8 (Millipore 

AB3848), 1:100, overnight 

incubation at RT. 

 

7.2.2 Assessment and analysis of expression 

 

The protein expression was assessed by myself and Prof. Marino with >90% 

concordance. The expression pattern was scored as 0 = negative, 1 = mildly 

positive, 2 = strongly positive for both markers (Fig 7.1). In addition, for BMI1 staining 

the positive scores were suffixed with ‘f’ of ‘d’ corresponding to focal or diffuse 

staining pattern respectively (Fig 7.1 B,C). There was no focal/diffuse criteria for 

pSMAD1,5,8 as the tumour either stained diffusely for this marker or not at all (Fig 

7.1 D,E,F). 

Non-parametric correlation analysis was carried out on the immunohistochemical 

assessment data using SPSS® statistical package version 20 (IBM®). Spearman 

correlation (Spearman rank correlation) coefficient (de Siqueira Santos, Takahashi et 

al. 2013) was computed to identify significant association between the two 

biomarkers or between the biomarker and the molecular subgroup. A coefficient 

value of 0.2 or more was considered as an indicator of strong correlation 

(McDonnell, Chari et al. 2008), and p<0.05 was considered as statistically significant. 

Coefficient value with a minus sign is indicative of an inverse or negative correlation, 

and that with at plus sign is indicative of a positive or direct correlation.   
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7.3 Results 

7.3.1 There is a weak inverse correlation between BMI1 and pSMAD1,5,8 

expression in MBs.  

 

First we examined the TMA I set, containing 64 MBs. TMA I was treated with both 

pSMAD1,5,8 and BMI1 antibodies. An expression score was assigned to each 

tumour contained within the TMAs as described above (section 7.2.2) [Fig 7.1].  .  

 

Fig. 7.1 Immunohistochemistry scoring of Tissue Micro Array. 
 
(A-C) Representative sections of primary human medulloblastoma tumour samples showing variable 

intensity of BMI1 (nuclear) staining, where score 0 = negative, 1 = mild and 2 = strong expression. 

BMI1 expression was in addition further classified as focal ‘f’ (B) or diffuse‘d’ (C) depending on the 

extent of staining observed.  (D-F) Representative sections of primary human medulloblastoma 

tumour samples showing variable intensity of pSMAD1,5,8 staining (predominantly nuclear). All 

pSMAD1,5,8 positive cases showed  diffuse staining pattern. Scale bar in all = 10μm.  
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Expression correlation analysis was performed using SPSS statistical package. The 

expression analysis data were cross tabulated and Spearman correlation co-efficient 

value was generated.  

Analysis of correlation between BMI1 and pSMAD1,5,8 expression  among tumours 

of TMA I subset showed a weak negative (indirect) correlation score of -0.038 with 

no statistical significance (p=0.764, n=64) [Fig 7.2].  

 

Fig. 7.2 Correlation analysis of BMI1 and pSMAD1,5,8 expression in TMA I. 
 
(A) There is a trend of negative expression correlation between BMI1 and pSMAD1,5,8 expression. 

But the correlation in this small cohort is weak and has no statistical significance. Bar graph on the left 

showing case distribution according to their expression scores, with breakdown of the cases in the 

table on the right.   

 

The trend of negative or indirect correlation observed in this small cohort analysed 

could be in keeping with our findings on the cell lines where we observe an inverse 

relationship between BMI1 expression and pSMAD1,5,8 expression in two MB cell 

lines and primary MB cells of Group 4. However it is necessary that the power of the 

study is strengthened by increasing the number of tumour cases. We plan to achieve 

this by analyzing BMI1 expression from TMA II subset, further adding 298 cases. We 
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will obtain BMI1 expression data for TMA II set from our collaborators and further 

validate them with immunohistochemistry.    

While we are in the process of obtaining BMI1 expression data on TMA II, we 

performed an interim correlation analysis on TMA II dataset, comparing pSMAD1,5,8 

expression with MB Groups. 

7.3.2 There is a significant correlation of pSMAD1,5,8 expression in certain 

subgroups of MB.  

 

Here TMA II set, with 298 MB tumours were used for immunohistochemical analysis 

using pSMAD1,5,8 only. The pSMAD1,5,8 expression (indicating an activated BMP 

signalling pathway) analysis between Group 4 and non-Group 4, had a  significant 

positive or direct correlation between Group 4 and non-Group 4 MBs (correlation 

coefficient  of + 0.169, p=0.037, n=152) [Fig 7.3 A]. This means that among the 152 

inclusion cases (tissue cores with measurable immunohistochemical staining) 

analysed, Group 4 MBs were likely to have higher expression of pSMAD1,5,8 as 

compared to non-Group 4 MBs. This relationship is contrary to observation from our 

current in vitro/in vivo study, where we see a low pSMAD1,5,8 expression in Group 4 

primary cells, which was increased upon BMI1 knock down. However correlation of 

these results with data on the expression of BMI1 is essential to draw any firm 

conclusion.    

There was a significant negative (indirect) pSMAD1,5,8 expression correlation 

among Group WNT as compared to non-Group WNT cases (correlation coefficient  -

0.185, p=0.023, n=152) [Fig 7.3 B]. This means that among the 152 inclusion cases 

analysed, WNT Group cases were likely to have lower or no pSMAD1,5,8 expression 

as compared to non-WNT Group cases. However, there was no significant 
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pSMAD1,5,8 expression correlation among Group SHH vs non-Group SHH and 

Group C vs non-Group C cases.  

 

Fig. 7.3 Correlation analysis of pSMAD1,5,8 expression and MB subgroups in TMA II. 
 
(A) pSMAD1,5,8 expression correlation between Group 4 vs non-Group 4 cases, showing a positive 

correlation. (B) pSMAD1,5,8 expression correlation between Group WNT vs non-Group WNT cases, 

showing a significant negative correlation. The bar graphs on the left show case distribution according 

to their expression scores or Group distribution. Group distribution is on X-axis, where, 1 = cases 

belonging to that Group, 0 = cases from other Groups. The tables on the right contain the breakdown 

of number of cases. For pSMAD1, 5,8, 0 = negative, 1 = mild positive, 2 = strong positive staining. 

p<0.05 was considered as statistically significant.  

 

7.3.2 There is a significant direct correlation of pSMAD2 expression in MB 

Group SHH.  

 

The SMAD2 and SMAD3 proteins are activated by a closely related, but different leg 

of the TGF-β pathway, induced by TGF-β1, and phosphorylation of SMAD2 and 
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SMAD3 are a reliable indicator of activation of TGF-β signalling pathway (Nakao, 

Imamura et al. 1997). SMAD2 and SMAD3 are phosphorylated via TGF-β (TβRI) and 

activin (ActRIB) receptors, whereas SMAD1, SMAD5 and SMAD8 are activated by 

BMP (ALK-1, ALK-2, BMP-RIA/ALK-3 and BMP-RIB/ALK-6) receptors in response to 

BMP ligands (Derynck and Zhang 2003). Nevertheless, both phosphorylated 

pSMAD2,3 and pSMAD1,5,8 have a common downstream target, SMAD4, where 

phosphorylated pSMAD4 translocate into the nucleus and regulates transcription 

(chapter 1, Fig 1.7). This convergence of pathways on SMAD4 caught our interest, 

and therefore we analysed the expression pattern of already known pSMAD2 in TMA 

II set. 

First, comparison of pSMAD2 staining scores with pSMAD1,5,8 scores was done, 

which showed a significant positive (direct) correlation (correlation coefficient  of 

+0.187, p=0.026, n=142) [Fig 7.4 A]. This means that activation of TGF-β pathway 

and closely related BMP pathway are directly related in the MB cases analysed 

across all the subgroups.  

The expression pattern of pSMAD2 was further analysed in different MB subgroups. 

There was a significant positive (direct) pSMAD2 expression correlation among 

Group SHH vs non-Group SHH cases (correlation value of +0.292, p<0.001, n = 

272) [Fig 7.4 B]. This means that the Group SHH MBs are more likely to have TGF-β 

pathway activation in comparison to non-SHH MBs. There was no significant 

pSMAD2 expression correlation among Group WNT vs non-Group WNT, Group C vs 

non-Group C or Group D vs non-Group D cases.  
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Fig. 7.4 Correlation analysis of pSMAD2 expression and MB subgroups in TMA II 
 
(A) Expression correlation between pSMAD1,5,8 vs pSMAD2, showing a significant positive 

correlation among the 142 cases included. (B) pSMAD2 expression correlation between Group SHH 

vs non-Group SHH cases, showing a significant positive correlation. The bar graphs on the left show 

case distribution according to their expression scores or Group distribution. Expression score 

distribution is on X-axis in (A). In (B), the X-axis has the Group distribution, where 1 = cases 

belonging to that Group, 0 = cases from other Groups. The tables on the right contain the breakdown 

of number of cases. For pSMAD2, 0 = negative, 1 = positive staining. For pSMAD1, 5,8, 0 = negative, 

1 = mild positive, 2 = strong positive staining. p<0.05 was considered as statistically significant.  
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7.4 Discussion  
 

Here we observed a trend of inverse correlation between BMI1 and pSMAD1,5,8 

expression in TMA I (n=64), but the correlation was not statistically significant. 

However we are keen to further analyse this expression pattern also in TMA II (n = 

298) thereby increasing the power of the study.  

BMI1 expression is reported to be expressed across all molecular subgroups of MB, 

but its expression is shown to be enriched in non-SHH/non-WNT groups, particularly 

in Group 4 MBs (Behesti, Bhagat et al. 2013). In this current study we detected an 

increased BMI1 in the primary cells of Group 4, with a low pSMAD1,5,8 expression. 

Upon BMI1 knock down these cells showed an increased pSMAD1,5,8 expression 

indicative of derepression of BMP pathway (chapter 3, section 3.3.3, Fig 3.6). These 

findings made us curious to study the pSMAD1,5,8 expression pattern in different 

subgroups (subgroups specification was already known) of primary human MBs.  We 

observed a positive (direct) pSMAD1,5,8  expression correlation in Group 4 as 

compared to non-Group 4 MBs. But we felt that the correlation value is too weak 

(correlation coefficient of +0.169, p=0.037) to confidently interpret these results. A 

strong correlation is indicated with correlation coefficient is  ≥0.2. Similar analysis 

with other subgroups showed no significant correlation for Group SHH vs non-Group 

SHH or Group 3 vs non-Group 3, but a negative correlation in Group WNT vs non-

Group WNT MBs (correlation coefficient -0.185, p=0.023). Again this correlation was 

rather weak. Therefore we felt that there is a need to analyse more primary cases to 

establish a better pSMAD1,5,8 expression correlation in different subgroups, in 

particular that of Group 4, which would be of relevance to our current study. To this 

end, we are currently optimising conditions to stain TMA I with KCNA1 antibody, 
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which has been suggested as a marker of Group 4 (Northcott, Korshunov et al. 

2011).  

Similar to BMPs, members of the TGF-β signalling pathway, including SMAD2/3 

have been shown regulate EMT differently in different physiological conditions and in 

different cancers (reviewed in (Zavadil and Bottinger 2005; Leivonen and Kahari 

2007)). This complex role of TGF-β signalling in cancer invasion and metastasis is 

exemplified by its dual role reported in pathogenesis of certain cancers such as 

breast carcinoma (Kang, Siegel et al. 2003; Deckers, van Dinther et al. 2006). Here 

we observed a weak but positive or direct correlation between pSMAD2 (TGF-β1 

induced) and pSMAD1,5,8 expression (BMP induced) [correlation coefficient of 

+0.187, p=0.026, n=142]. This is in keeping with a study where both pSMAD2 and 

pSMAD1,5,8 are shown to be expressed or repressed in the same direction in 

primary breast cancer tissue (Katsuno, Hanyu et al. 2008), but analysis of higher 

number of cases is indicated to confirm this. However, interestingly, a strong positive 

correlation (correlation coefficient of +0.292) with high statistical significance 

(p<0.001) was noted for pSMAD2 expression in Group SHH as compared to non-

Group SHH. Evidently larger number of inclusion cases (n=272) makes this 

association stronger. This reiterates the need to include further cases and to re-

analyse expression correlation between BMI1 and pSMAD1,5,8 in order to validate 

our current findings in  primary MB tumour samples. It would be certainly interesting 

to further investigate pSMAD2-Group SHH and pSMAD2-pSMAD1,5,8 connection 

we have observed. But prior to embarking on SMAD2/TGF-β pathway, we would like 

to focus on BMP pathway, which is more relevant to our current project 
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The future plan for TMA analysis is to obtain BMI1 expression data for TMA II which 

would enable us to add them to the data obtained with TMA I to increase the power 

of the study. Depending on the initial results, we will then extend the study to 

investigate the expression of other relevant cell adhesion/ECM markers such as 

CD44, THSB and MMP 10 which would help us validate the differential expression of 

these genes/molecules noted in murine GCPs of developing cerebella and in the 

human MB cell line, in relation to Bmi1 expression, as described in chapter 4.   
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CHAPTER 8 Discussion   
 

8.1 Summary of principal findings   
 

In this study we have demonstrated a novel connection between the Polycomb gene 

BMI1 and the BMP pathway in the pathogenesis of human MB. BMI1 represses BMP 

signalling pathway, as assessed by increased phosphorylation of SMAD1,5,8 

proteins, indicative of derepression of the BMP pathway, upon BMI1 knock down in 

MB cell lines and in primary MB cells of Group 4. We have shown that BMI1 controls 

MB cell adhesion, cell migration and invasion in a BMP dependent manner in vitro. 

The effects of BMI1 on MB cell migration and invasion was observed also in an ex 

vivo assay.  Using an in vivo xenograft model of primary Group 4 MB cells we have 

demonstrated that BMI1 controls parenchymal invasion. Furthermore, we observed 

that BMP-4 treatment reduced in vitro invasion in a MB cell line, in a similar fashion 

as seen upon BMI1 downregulation.  

Our preliminary findings on primary human MB tumours shows a trend toward an 

inverse  correlation between BMI1 expression and pSMAD1,5,8 in keeping with our 

findings on the cell lines and the primary MB cells, although further validation with 

more cases will be required to enhance statistical power and validate these results.   

In summary, the data so far raise the possibility that expression of BMI1 could 

represent a biomarker for MB which could benefit from treatment with small 

molecules acting as BMP agonists. 
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8.2 Discussion and outlook 

 

MB is the commonest intracranial paediatric malignancy and despite advances in 

treatment, it is still associated with high mortality and serious treatment related 

morbidities (Polkinghorn and Tarbell 2007). With the advent of integrated genomics 

platforms to classify MBs into molecular subgroups, our understanding of the 

pathogenesis and basic biology of these tumours has advanced in recent years 

(Kool, Koster et al. 2008; Cho, Tsherniak et al. 2011; Northcott, Korshunov et al. 

2011). Patient risk stratification is evolving to include a combination of clinico-

pathological and molecular factors that reflect the clinical relevance (Ellison 2010). 

However further understanding of the molecular pathogenesis involved in this 

heterogeneous disease is needed to be able to effectively risk-stratify the patients 

and to develop targeted individualised therapy, thereby avoiding undesirable side 

effects. In this study we explore the role of the Polycomb gene BMI1 in MB cell 

invasion and its connection to the BMP signalling pathway.    

The best characterised role of BMI1 in human cancers is related to the regulation of 

cell proliferation and senescence via suppression of p16Ink4a/p19Arf cell cycle 

inhibition pathways (Jacobs, Kieboom et al. 1999; Jacobs, Scheijen et al. 1999; 

Meng, Luo et al. 2010) which in turn regulates the activity of cyclin D, Cdk4/Cdk6 

and p53 (reviewed in (Kim and Sharpless 2006)). BMI1 is overexpressed in a 

significant proportion of human MB and its best characterised role is a pro-

proliferative one in the context of SHH driven tumorigenesis (Leung, Lingbeek et al. 

2004; Michael, Westerman et al. 2008). However, recently our team have reported 

that Bmi1 regulates cell adhesion and migration of cerebellar progenitors through 

repression of the BMP pathway (Zhang, Santuccione et al. 2011). In this study we 
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demonstrate that BMI1 represses BMP pathway in human MB cells, and in fact BMI1 

knock down caused an aberrant activation of BMP pathway. These findings are in 

keeping with the  study of Bracken and co-authors in which they show by gene 

expression profiling of human embryonic fibroblasts in combination with ChIP-on-

chip experiments, that BMPs are direct targets of BMI1 (Bracken, Dietrich et al. 

2006). Similarly, by combining ChIP-seq with in vivo RNAi screening, Gargiulo et al. 

have demonstrated a role for Bmi1 in adult neural progenitor and glioma cells via 

transcriptional repression of genes responsive to TGF-β/BMP signalling pathway, 

such as Atf3 (activating transcription factor 3), highlighting p16INK4a/p19ARF-

independent functions for BMI1 in development and cancer (Gargiulo, Cesaroni et al. 

2013).  

BMPs are members of the TGF-β family of proteins, and their role during cerebellar 

development and in MB pathogenesis is well characterized [reviewed in (Behesti and 

Marino 2009)]. BMPs are known to antagonize Shh-dependent proliferation and 

induce differentiation of GNPs (Zhao, Ayrault et al. 2008). BMP-mediated regulation 

of cell adhesion and of the cellular interactions with the extracellular matrix have 

been demonstrated also in soft tissues (Wang, Kim et al. 2012). Here, we show that 

BMI1 controls tumour volume and intraparenchymal invasion in an orthotopic 

xenograft model of MB, and that BMI1 silencing causes a reduced in vivo 

pSMAD1,5,8 expression indicative of BMP pathway activation. While the reduced 

tumour volume observed in BMI1-silenced cells is in keeping with previous reports 

where reduced tumour growth was seen in subcutaneous DAOY xenografts upon 

shRNA BMI1 knock down (Wiederschain, Chen et al. 2007), the effect on brain 

invasion is novel. Our data together with the results of the in vitro migration assays 

which show that cell adhesion and motility are controlled by BMI1 through BMP 
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pathway inhibition raise the possibility that this mechanism also underpins the in vivo 

phenotype. We observed reduced individual cell motility among DAOYBMI1kd, hence 

supporting the notion that BMI1 influences cell invasion phenotype (those observed 

in vitro and in vivo), independent to its effects on cell proliferation.  

Reanalysis of a previously published dataset of DAOYBMI1kd (Wiederschain, Chen et 

al. 2007), revealed deregulation of TGF-β pathway and differential expression of 

several cell adhesion molecules such as Integrins, Laminins, Collagens, 

Thrombospondin and CD44 (analysis done by Adrian Dubuc and Mark Remke from 

Michael Taylor group, unpublished data). Several of these genes either represented 

the human homologue of the genes identified in Bmi1-/- granule cell progenitors in a 

BMP dependent fashion (experiments performed by Xinyu Zhang, Marino Lab) or 

belong to the same protein family. Furthermore, differential expression of 

Thrombosponin1/2 and CD44 was seen in this study in BMI1 silenced MB cell lines 

D-458.  

Expression of BMI1 is enriched preferentially in Group 4 human MB and 

overexpression of Bmi1 in the granule cell lineage in the mouse induces MB, albeit, 

only in the context of p53 deletion (Behesti, Bhagat et al. 2013). A biostatistical 

analysis of human Group 4 MB overexpressing BMI1 while concomitantly expressing 

low levels of p53 revealed a set of differentially expressed genes, which affected 

extracellular matrix structural constituents (Adrian Dubuc and Mark Remke, 

unpublished data). Among these genes, again members of the Thrombospondin and 

Laminin families were detected. Thrombospondins are strongly expressed in 

postmitotic premigratory GNPs (O'Shea, Liu et al. 1990) where they bind to Integrins, 

which are involved in the control of GNPs proliferation in cooperation with SHH, as 

shown in mice lacking Integrin β1 (Blaess, Graus-Porta et al. 2004). Interestingly 
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type IV collagens induce expression of Thrombospondins and the role of these 

matrix proteins in regulation of differentiation of CNS progenitors has been 

demonstrated (Lu and Kipnis 2010). Members of both the Thrombospondin and 

(Zhou, Picard et al. 2010) and collagen families (Pomeroy, Tamayo et al. 2002) are 

deregulated in human MB with an aggressive phenotype. Together these data raise 

the possibility that invasion of MB cells is regulated by BMI1 through BMP-mediated 

control of cell adhesion. Interestingly we did not see increased spreading of MB cells 

along VR spaces in our xenograft model and tumours expressing high levels of BMI1 

were not associated with higher incidence of spinal deposits, therefore implying that 

the molecular mechanisms regulating intraparenchymal invasion and leptomeningeal 

spread may be different 

 

In keeping with the published literature (Wiederschain, Chen et al. 2007; Wang, 

Venugopal et al. 2012), we observed a decreased proliferation of DAOY cells in a 

BMP pathway-independent fashion in vitro, which  is likely to contribute to the 

reduced tumour volume observed in our xenografts of DAOYBMI1kd cells. Insulin like 

growth factor I receptor (IGF-IR) and members of TAM (Tyro3, Axl and Mer) receptor 

tyrosine kinases are shown to be overexpressed in primary human schwannomas 

and promote tumour cell proliferation, cell to matrix adhesion and tumour cell survival 

(Ammoun, Schmid et al. 2012; Ammoun, Provenzano et al. 2013). BMI1 is shown to 

mediate repression of IGF-IR transcription in prostate cancer (Goel, Chang et al. 

2012), and another PcG gene EZH2 is shown to control transcription of AXL receptor 

kinase in human glioblastoma (Ott, Litzenburger et al. 2012). Therefore it would be 

interesting to study the relationship between BMI1 and IGF-IR and the members of 

TAM receptor kinases in context of MB cell proliferation.    
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Contrary to a previous study (Wiederschain, Chen et al. 2007), we did not observe 

an impact of BMI1 silencing on apoptosis in DAOY MB cells. Although the reason of 

this discrepancy is at present unknown, it is possible that the effect on apoptosis 

could depend on the level of BMI1 knock down achieved. Watson and Eilers et al. 

have shown the role of certain proto-oncogenes such as c-Jun in regulation of 

apoptosis of developing neurons including that of cerebellar granule neurons 

(Watson, Eilers et al. 1998; Eilers, Whitfield et al. 1999). It would be of interest to 

study if there is any association of c-Jun with BMI1 in apoptotic mechanisms of 

human MB. 

Due to the essential role of BMI1 in maintenance of haematopoietic and neural stem 

cells (Valk-Lingbeek, Bruggeman et al. 2004), targeted inhibition of BMI1 could 

potentially cause serious side effects. For similar reasons small molecule drugs that 

reduce BMI1 protein levels may not be safe in cancer treatment (Cao, Bombard et al. 

2011). Glioblastoma tumour stem cells treated with BMPs, in particular BMP-4, 

showed a reduced tumorigenicity  due to reduced proliferation and induction of 

differentiation (Piccirillo, Reynolds et al. 2006). Proliferation arrest and induction of 

differentiation following BMP treatment (BMP-2/BMP-4) has been shown also in MBs 

(Zhao, Ayrault et al. 2008), raising the possibility that small molecules acting as BMP 

agonists could be implemented in the treatment of patients with MB. Importantly, we 

show that the impact of BMP treatment on the invasive and proliferative properties of 

MB cells is most effective when BMI1 is expressed at high levels; raising the 

possibility that BMI1 could be used as a biomarker to identify groups of patients who 

can benefit from a treatment with BMP agonists. 

MB, in particular those of SHH Group are thought to arise from GNPs and cerebellar 

neural stem cells (Goodrich, Milenkovic et al. 1997; Sutter, Shakhova et al. 2010). 
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The cell of origin of Group 4 MB is not well understood. Our data raise the possibility 

that these MB may also originate from GNPs but may have lost SHH dependency 

during their oncogenic transformation pathway. Alternatively, BMI1-mediated 

repression of BMP could be a molecular feature of MB overexpressing BMI1 

independently of the molecular group they belong to.  

Genetically engineered mouse (GEM) models are a valuable tool for deciphering the 

molecular and cellular mechanisms of human diseases including cancer, and they 

can be  useful preclinical models for testing targeted drug treatments (Wu, Northcott 

et al. 2011). GEM model with Shh pathway aberrations have been extensively 

developed (Lau, Schmidt et al. 2012) while models of  non-SHH tumours are rare. It 

would be important to validate the potential use of BMP agonists in GEM models of 

MBs overexpressing BMI1.  An example of such a GEM model with BMI1 

overexpression is NeuroD2:SmoA1 model, which expresses the constitutively active 

mutant of Smoothened, SmoA1 in cerebellar GNPs, and it is  known to yield MB at 

94% penetrance at an average age of 2 months (Hatton, Villavicencio et al. 2008). A 

further development of this model, the Math1-Cre:SmoM2, have been shown to 

develop MB an earlier age and at full penetrance with 100% tumour rate (Schuller, 

Heine et al. 2008). Importantly, the incidence of tumours arising from GNPs 

expressing oncogenic Smo is known to drop dramatically in Bmi1-/- background 

(Michael, Westerman et al. 2008). It would therefore be interesting to study BMP 

pathway activation in these mice to further validate our findings in a genetically 

engineered model. Furthermore, the response to BMP treatment could be studied in 

cells isolated from these tumours to test their effects in a pre-clinical model. 

However, recent evidences suggest that BMI1 expression is enriched in non-SHH 

(and non-WNT) human MBs, especially in Group 4 tumours, hence a SHH MB model 
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may not represent the best choice. As the molecular classification and sub-

classification of MBs is advancing rapidly, we feel that validation of our current 

findings in a subgroup specific manner would enhance the translational value of our 

study.    

Furthermore it would be interesting to carry out a genome wide screening to 

elucidate more comprehensively the molecular mechanisms underpinning the 

phenotype observed upon BMI1 downregulation in primary MB cells of Group 4.  

In the context of the current project, we have established conditions to stably knock 

down BMI1 with lentiviral mediated shRNA technique in primary MB cells, including 

those of Group 4. To assess direct and indirect effects on transcription of targets and 

to obtain an in-depth view of the transcriptome, including potentially novel 

transcripts, effects on splicing and very sensitive assessment of transcriptional 

levels, we plan to take advantage of the RNA-Seq techniques. Whole genome 

analysis of small RNA, including miRNA will also be carried out, as their crosstalk 

with PcG genes is well established in both normal and neoplastic cells (Cao, Mani et 

al. 2011). It would be interesting to focus in particular on genes and pathways that 

can extend our understanding of the phenotype observed such as for example, ECM 

interaction/cell adhesion/BMP pathway.  

Understanding the diverse molecular mechanisms underpinning the heterogeneity of 

MB is the essential first step toward the design of novel more tailored therapies for 

this disease. BMI1 plays an essential role in the pathogenesis of MB, particularly 

those of Group 4. A comprehensive analysis of the direct and indirect effects on 

transcription of target genes downstream of BMI1 is essential to better understand 

the molecular basis of this highly aggressive subgroup of MB. The results obtained 



253 
 

from this study have the potential not only to benefit the scientific community but also 

to significantly contribute to improve the diagnosis, disease stratification and 

treatment of patients with MB. 

 

 

 

 
 

  



254 
 

 

REFERENCES 
 

Abacioglu, U., O. Uzel, et al. (2002). "Medulloblastoma in adults: treatment results and prognostic 
factors." Int J Radiat Oncol Biol Phys 54(3): 855-860. 

Adamson, D. C., Q. Shi, et al. (2010). "OTX2 is critical for the maintenance and progression of Shh-
independent medulloblastomas." Cancer Res 70(1): 181-191. 

Adesina, A. M., J. Nalbantoglu, et al. (1994). "p53 gene mutation and mdm2 gene amplification are 
uncommon in medulloblastoma." Cancer Res 54(21): 5649-5651. 

Akasaka, T., M. Kanno, et al. (1996). "A role for mel-18, a Polycomb group-related vertebrate gene, 
during theanteroposterior specification of the axial skeleton." Development 122(5): 1513-
1522. 

Al-Halabi, H., A. Nantel, et al. (2011). "Preponderance of sonic hedgehog pathway activation 
characterizes adult medulloblastoma." Acta Neuropathol 121(2): 229-239. 

Albright, A. L., J. H. Wisoff, et al. (1996). "Effects of medulloblastoma resections on outcome in 
children: a report from the Children's Cancer Group." Neurosurgery 38(2): 265-271. 

Alder, J., K. J. Lee, et al. (1999). "Generation of cerebellar granule neurons in vivo by transplantation 
of BMP-treated neural progenitor cells." Nat Neurosci 2(6): 535-540. 

Aldosari, N., S. H. Bigner, et al. (2002). "MYCC and MYCN oncogene amplification in 
medulloblastoma. A fluorescence in situ hybridization study on paraffin sections from the 
Children's Oncology Group." Arch Pathol Lab Med 126(5): 540-544. 

Alkema, M. J., N. M. van der Lugt, et al. (1995). "Transformation of axial skeleton due to 
overexpression of bmi-1 in transgenic mice." Nature 374(6524): 724-727. 

Altman J, B. S. (1997). Development of the cerebellar system: in relation to its evolution, structure, 
and function., CRC press, Inc. 

Alvarez-Rodriguez, R., M. Barzi, et al. (2007). "Bone morphogenetic protein 2 opposes Shh-mediated 
proliferation in cerebellar granule cells through a TIEG-1-based regulation of Nmyc." J Biol 
Chem 282(51): 37170-37180. 

Ammoun, S., L. Provenzano, et al. (2013). "Axl/Gas6/NFkappaB signalling in schwannoma 
pathological proliferation, adhesion and survival." Oncogene. 

Ammoun, S., M. C. Schmid, et al. (2012). "The role of insulin-like growth factors signaling in merlin-
deficient human schwannomas." Glia 60(11): 1721-1733. 

Angley, C., M. Kumar, et al. (2003). "Signaling by bone morphogenetic proteins and Smad1 
modulates the postnatal differentiation of cerebellar cells." J Neurosci 23(1): 260-268. 

Arihiro, K. and K. Inai (2001). "Expression of CD31, Met/hepatocyte growth factor receptor and bone 
morphogenetic protein in bone metastasis of osteosarcoma." Pathol Int 51(2): 100-106. 

Arras, M., P. Autenried, et al. (2001). "Optimization of intraperitoneal injection anesthesia in mice: 
drugs, dosages, adverse effects, and anesthesia depth." Comp Med 51(5): 443-456. 

Avet-Loiseau, H., A. M. Venuat, et al. (1999). "Comparative genomic hybridization detects many 
recurrent imbalances in central nervous system primitive neuroectodermal tumours in 
children." Br J Cancer 79(11-12): 1843-1847. 

Ayan, I., R. Kebudi, et al. (1997). "Microscopic local leptomeningeal invasion at diagnosis of 
medulloblastoma." International Journal of Radiation Oncology Biology Physics 39(2): 461-
466. 

Ayrault, O., H. Zhao, et al. (2010). "Atoh1 inhibits neuronal differentiation and collaborates with Gli1 
to generate medulloblastoma-initiating cells." Cancer Res 70(13): 5618-5627. 



255 
 

Badiali, M., A. Pession, et al. (1991). "N-myc and c-myc oncogenes amplification in 
medulloblastomas. Evidence of particularly aggressive behavior of a tumor with c-myc 
amplification." Tumori 77(2): 118-121. 

Bailey, C. C., A. Gnekow, et al. (1995). "Prospective randomised trial of chemotherapy given before 
radiotherapy in childhood medulloblastoma. International Society of Paediatric Oncology 
(SIOP) and the (German) Society of Paediatric Oncology (GPO): SIOP II." Med Pediatr Oncol 
25(3): 166-178. 

Bailey, J. M., P. K. Singh, et al. (2007). "Cancer metastasis facilitated by developmental pathways: 
Sonic hedgehog, Notch, and bone morphogenic proteins." J Cell Biochem 102(4): 829-839. 

Bailey, P. and H. Cushing (1925). "Medulloblastoma Cerebelli: A common type of midcerebellar 
glioma of childhood." Arch Neurol Psychiatry(14): 192-224. 

Bale, S. J., R. T. Falk, et al. (1998). "Patching together the genetics of Gorlin syndrome." J Cutan Med 
Surg 3(1): 31-34. 

Batra, S. K., R. E. McLendon, et al. (1995). "Prognostic implications of chromosome 17p deletions in 
human medulloblastomas." J Neurooncol 24(1): 39-45. 

Behesti, H., H. Bhagat, et al. (2013). "Bmi1 overexpression in the cerebellar granule cell lineage of 
mice affects cell proliferation and survival without initiating medulloblastoma formation." 
Dis Model Mech 6(1): 49-63. 

Behesti, H. and S. Marino (2009). "Cerebellar granule cells: insights into proliferation, differentiation, 
and role in medulloblastoma pathogenesis." Int J Biochem Cell Biol 41(3): 435-445. 

Ben-Arie, N., H. J. Bellen, et al. (1997). "Math1 is essential for genesis of cerebellar granule neurons." 
Nature 390(6656): 169-172. 

Biegel, J. A., C. D. Burk, et al. (1992). "Evidence for a 17p tumor related locus distinct from p53 in 
pediatric primitive neuroectodermal tumors." Cancer Res 52(12): 3391-3395. 

Bigner, S. H., J. Mark, et al. (1988). "Structural chromosomal abnormalities in human 
medulloblastoma." Cancer Genet Cytogenet 30(1): 91-101. 

Blaess, S., D. Graus-Porta, et al. (2004). "Beta1-integrins are critical for cerebellar granule cell 
precursor proliferation." J Neurosci 24(13): 3402-3412. 

Bouffet, E., J. L. Bernard, et al. (1992). "M4 protocol for cerebellar medulloblastoma: supratentorial 
radiotherapy may not be avoided." Int J Radiat Oncol Biol Phys 24(1): 79-85. 

Bourdeaut, F., C. Miquel, et al. (2013). "Rubinstein-Taybi syndrome predisposing to non-WNT, non-
SHH, group 3 medulloblastoma." Pediatr Blood Cancer. 

Bourgouin, P. M., D. Tampieri, et al. (1992). "CT and MR imaging findings in adults with cerebellar 
medulloblastoma: comparison with findings in children." AJR Am J Roentgenol 159(3): 609-
612. 

Boyer, L. A., K. Plath, et al. (2006). "Polycomb complexes repress developmental regulators in murine 
embryonic stem cells." Nature 441(7091): 349-353. 

Bracken, A. P., N. Dietrich, et al. (2006). "Genome-wide mapping of Polycomb target genes unravels 
their roles in cell fate transitions." Genes Dev 20(9): 1123-1136. 

Brown, H. G., J. L. Kepner, et al. (2000). ""Large cell/anaplastic" medulloblastomas: a Pediatric 
Oncology Group Study." J Neuropathol Exp Neurol 59(10): 857-865. 

Brown, W. D., C. J. Tavare, et al. (1995). "The applicability of Collins' Law to childhood brain tumors 
and its usefulness as a predictor of survival." Neurosurgery 36(6): 1093-1096. 

Bruggeman, S. W., D. Hulsman, et al. (2007). "Bmi1 controls tumor development in an Ink4a/Arf-
independent manner in a mouse model for glioma." Cancer Cell 12(4): 328-341. 

Bruggeman, S. W., M. E. Valk-Lingbeek, et al. (2005). "Ink4a and Arf differentially affect cell 
proliferation and neural stem cell self-renewal in Bmi1-deficient mice." Genes Dev 19(12): 
1438-1443. 

Brugieres, L., G. Pierron, et al. (2010). "Incomplete penetrance of the predisposition to 
medulloblastoma associated with germ-line SUFU mutations." J Med Genet 47(2): 142-144. 



256 
 

Brummelkamp, T. R., R. Bernards, et al. (2002). "A system for stable expression of short interfering 
RNAs in mammalian cells." Science 296(5567): 550-553. 

Bunin, G. R., R. R. Kuijten, et al. (1993). "Relation between maternal diet and subsequent primitive 
neuroectodermal brain tumors in young children." N Engl J Med 329(8): 536-541. 

Burger, P. C., F. C. Grahmann, et al. (1987). "Differentiation in the medulloblastoma. A histological 
and immunohistochemical study." Acta Neuropathol 73(2): 115-123. 

Burger, P. C. and B. Scheithauer (1994). Tumours of the Central Nervuos System. Washington. 
Cao, L., J. Bombard, et al. (2011). "BMI1 as a novel target for drug discovery in cancer." J Cell 

Biochem 112(10): 2729-2741. 
Cao, Q., R. S. Mani, et al. (2011). "Coordinated regulation of polycomb group complexes through 

microRNAs in cancer." Cancer Cell 20(2): 187-199. 
Carrie, C., J. Grill, et al. (2009). "Online quality control, hyperfractionated radiotherapy alone and 

reduced boost volume for standard risk medulloblastoma: long-term results of MSFOP 98." J 
Clin Oncol 27(11): 1879-1883. 

Carrie, C., C. Lasset, et al. (1994). "Multivariate analysis of prognostic factors in adult patients with 
medulloblastoma. Retrospective study of 156 patients." Cancer 74(8): 2352-2360. 

Castellino, R. C., B. G. Barwick, et al. (2010). "Heterozygosity for Pten promotes tumorigenesis in a 
mouse model of medulloblastoma." PLoS One 5(5): e10849. 

CCRG. (2010, 2010). "National Registry of Childhood Tumours "   Retrieved 21 October, 2013, from 
http://www.ccrg.ox.ac.uk/. 

Chan, A. W., N. J. Tarbell, et al. (2000). "Adult medulloblastoma: prognostic factors and patterns of 
relapse." Neurosurgery 47(3): 623-631; discussion 631-622. 

Chang, C. H., E. M. Housepian, et al. (1969). "An operative staging system and a megavoltage 
radiotherapeutic technic for cerebellar medulloblastomas." Radiology 93(6): 1351-1359. 

Chang, K., K. Marran, et al. (2013). "Packaging shRNA Retroviruses." Cold Spring Harb Protoc 2013(8). 
Chen, D., M. Zhao, et al. (2004). "Bone morphogenetic proteins." Growth Factors 22(4): 233-241. 
Chen, Y., A. Bhushan, et al. (1997). "Smad8 mediates the signaling of the ALK-2 [corrected] receptor 

serine kinase." Proc Natl Acad Sci U S A 94(24): 12938-12943. 
Chi, S. N., S. L. Gardner, et al. (2004). "Feasibility and response to induction chemotherapy 

intensified with high-dose methotrexate for young children with newly diagnosed high-risk 
disseminated medulloblastoma." J Clin Oncol 22(24): 4881-4887. 

Chiba, T., S. Miyagi, et al. (2008). "The polycomb gene product BMI1 contributes to the maintenance 
of tumor-initiating side population cells in hepatocellular carcinoma." Cancer Research 
68(19): 7742-7749. 

Chizhikov, V. and K. J. Millen (2003). "Development and malformations of the cerebellum in mice." 
Mol Genet Metab 80(1-2): 54-65. 

Cho, Y. J., A. Tsherniak, et al. (2011). "Integrative genomic analysis of medulloblastoma identifies a 
molecular subgroup that drives poor clinical outcome." J Clin Oncol 29(11): 1424-1430. 

Ciemerych, M. A., A. M. Kenney, et al. (2002). "Development of mice expressing a single D-type 
cyclin." Genes Dev 16(24): 3277-3289. 

Clifford, S. C., M. E. Lusher, et al. (2006). "Wnt/Wingless pathway activation and chromosome 6 loss 
characterize a distinct molecular sub-group of medulloblastomas associated with a favorable 
prognosis." Cell Cycle 5(22): 2666-2670. 

Cogen, P. H. and J. D. Donahue (1999). Approaches to the posterior fossa in children. Cranial 
Microsurgery: Approaches and Techniques. L. N. Sekhar and E. de Oliveira. New York, 
Thieme: 399-404. 

Colt, J. S. and A. Blair (1998). "Parental occupational exposures and risk of childhood cancer." 
Environ Health Perspect 106 Suppl 3: 909-925. 

CRUK. (2008-2010). "Childhood cancer incidence statistics."   Retrieved 21 October 2013, from 
http://www.cancerresearchuk.org/cancer-
info/cancerstats/childhoodcancer/incidence/#source8. 

http://www.ccrg.ox.ac.uk/
http://www.cancerresearchuk.org/cancer-info/cancerstats/childhoodcancer/incidence/#source8
http://www.cancerresearchuk.org/cancer-info/cancerstats/childhoodcancer/incidence/#source8


257 
 

Dahmane, N. and A. Ruiz i Altaba (1999). "Sonic hedgehog regulates the growth and patterning of 
the cerebellum." Development 126(14): 3089-3100. 

Davis, F. G., S. Freels, et al. (1998). "Survival rates in patients with primary malignant brain tumors 
stratified by patient age and tumor histological type: an analysis based on Surveillance, 
Epidemiology, and End Results (SEER) data, 1973-1991." J Neurosurg 88(1): 1-10. 

de Bont, J. M., R. J. Packer, et al. (2008). "Biological background of pediatric medulloblastoma and 
ependymoma: a review from a translational research perspective." Neuro Oncol 10(6): 1040-
1060. 

de Bouard, S., C. Christov, et al. (2002). "Invasion of human glioma biopsy specimens in cultures of 
rodent brain slices: a quantitative analysis." J Neurosurg 97(1): 169-176. 

De Bouard, S., J. S. Guillamo, et al. (2003). "Antiangiogenic therapy against experimental 
glioblastoma using genetically engineered cells producing interferon-alpha, angiostatin, or 
endostatin." Human Gene Therapy 14(9): 883-895. 

de Haas, T., E. Oussoren, et al. (2006). "OTX1 and OTX2 expression correlates with the 
clinicopathologic classification of medulloblastomas." J Neuropathol Exp Neurol 65(2): 176-
186. 

de Siqueira Santos, S., D. Y. Takahashi, et al. (2013). "A comparative study of statistical methods used 
to identify dependencies between gene expression signals." Brief Bioinform. 

Deckers, M., M. van Dinther, et al. (2006). "The tumor suppressor Smad4 is required for 
transforming growth factor beta-induced epithelial to mesenchymal transition and bone 
metastasis of breast cancer cells." Cancer Res 66(4): 2202-2209. 

Derynck, R. and Y. E. Zhang (2003). "Smad-dependent and Smad-independent pathways in TGF-beta 
family signalling." Nature 425(6958): 577-584. 

Deutsch, M., P. R. Thomas, et al. (1996). "Results of a prospective randomized trial comparing 
standard dose neuraxis irradiation (3,600 cGy/20) with reduced neuraxis irradiation (2,340 
cGy/13) in patients with low-stage medulloblastoma. A Combined Children's Cancer Group-
Pediatric Oncology Group Study." Pediatr Neurosurg 24(4): 167-176; discussion 176-167. 

Dhall, G., H. Grodman, et al. (2008). "Outcome of children less than three years old at diagnosis with 
non-metastatic medulloblastoma treated with chemotherapy on the "Head Start" I and II 
protocols." Pediatr Blood Cancer 50(6): 1169-1175. 

Dolman, C. L. (1988). "Melanotic medulloblastoma. A case report with immunohistochemical and 
ultrastructural examination." Acta Neuropathol 76(5): 528-531. 

Dufour, C., A. Beaugrand, et al. (2012). "Metastatic Medulloblastoma in Childhood: Chang's 
Classification Revisited." Int J Surg Oncol 2012: 245385. 

Duncan, M. K., L. Bordas, et al. (1997). "Expression of the helix-loop-helix genes Id-1 and NSCL-1 
during cerebellar development." Dev Dyn 208(1): 107-114. 

Eberhart, C. G. (2012). "Three down and one to go: modeling medulloblastoma subgroups." Cancer 
Cell 21(2): 137-138. 

Ehebauer, M., P. Hayward, et al. (2006). "Notch signaling pathway." Sci STKE 2006(364): cm7. 
Eilers, A., J. Whitfield, et al. (1999). "c-Jun and Bax: regulators of programmed cell death in 

developing neurons." Biochem Soc Trans 27(6): 790-797. 
Ellison, D. (2002). "Classifying the medulloblastoma: insights from morphology and molecular 

genetics." Neuropathol Appl Neurobiol 28(4): 257-282. 
Ellison, D., S. Love, et al. (2004). Neuropathology, Elsevier. 
Ellison, D. W. (2010). "Childhood medulloblastoma: novel approaches to the classification of a 

heterogeneous disease." Acta Neuropathol 120(3): 305-316. 
Ellison, D. W., J. Dalton, et al. (2011). "Medulloblastoma: clinicopathological correlates of SHH, WNT, 

and non-SHH/WNT molecular subgroups." Acta Neuropathol 121(3): 381-396. 
Ellison, D. W., M. Kocak, et al. (2011). "Definition of disease-risk stratification groups in childhood 

medulloblastoma using combined clinical, pathologic, and molecular variables." J Clin Oncol 
29(11): 1400-1407. 



258 
 

Ellison, D. W., O. E. Onilude, et al. (2005). "beta-Catenin status predicts a favorable outcome in 
childhood medulloblastoma: the United Kingdom Children's Cancer Study Group Brain 
Tumour Committee." J Clin Oncol 23(31): 7951-7957. 

Fan, X., I. Mikolaenko, et al. (2004). "Notch1 and notch2 have opposite effects on embryonal brain 
tumor growth." Cancer Res 64(21): 7787-7793. 

Farioli-Vecchioli, S., I. Cina, et al. (2012). "Tis21 Knock-Out Enhances the Frequency of 
Medulloblastoma in Patched1 Heterozygous Mice by Inhibiting the Cxcl3-Dependent 
Migration of Cerebellar Neurons." Journal of Neuroscience 32(44): 15547-15564. 

Fattet, S., C. Haberler, et al. (2009). "Beta-catenin status in paediatric medulloblastomas: correlation 
of immunohistochemical expression with mutational status, genetic profiles, and clinical 
characteristics." J Pathol 218(1): 86-94. 

Ferretti, E., L. Di Marcotullio, et al. (2006). "Alternative splicing of the ErbB-4 cytoplasmic domain 
and its regulation by hedgehog signaling identify distinct medulloblastoma subsets." 
Oncogene 25(55): 7267-7273. 

Fiaschetti, G., D. Castelletti, et al. (2011). "Bone morphogenetic protein-7 is a MYC target with 
prosurvival functions in childhood medulloblastoma." Oncogene. 

Flora, A., T. J. Klisch, et al. (2009). "Deletion of Atoh1 disrupts Sonic Hedgehog signaling in the 
developing cerebellum and prevents medulloblastoma." Science 326(5958): 1424-1427. 

Frank, A. J., R. Hernan, et al. (2004). "The TP53-ARF tumor suppressor pathway is frequently 
disrupted in large/cell anaplastic medulloblastoma." Brain Res Mol Brain Res 121(1-2): 137-
140. 

Froeling, F. E., T. A. Mirza, et al. (2009). "Organotypic culture model of pancreatic cancer 
demonstrates that stromal cells modulate E-cadherin, beta-catenin, and Ezrin expression in 
tumor cells." Am J Pathol 175(2): 636-648. 

Gajjar, A., M. Chintagumpala, et al. (2006). "Risk-adapted craniospinal radiotherapy followed by 
high-dose chemotherapy and stem-cell rescue in children with newly diagnosed 
medulloblastoma (St Jude Medulloblastoma-96): long-term results from a prospective, 
multicentre trial." Lancet Oncol 7(10): 813-820. 

Garel, C., C. Fallet-Bianco, et al. (2011). "The fetal cerebellum: development and common 
malformations." J Child Neurol 26(12): 1483-1492. 

Gargiulo, G., M. Cesaroni, et al. (2013). "In vivo RNAi screen for BMI1 targets identifies TGF-
beta/BMP-ER stress pathways as key regulators of neural- and malignant glioma-stem cell 
homeostasis." Cancer Cell 23(5): 660-676. 

Geyer, J. R., R. Sposto, et al. (2005). "Multiagent chemotherapy and deferred radiotherapy in infants 
with malignant brain tumors: a report from the Children's Cancer Group." J Clin Oncol 
23(30): 7621-7631. 

Ghulam Muhammad, A. K., M. Candolfi, et al. (2009). "Antiglioma immunological memory in 
response to conditional cytotoxic/immune-stimulatory gene therapy: humoral and cellular 
immunity lead to tumor regression." Clin Cancer Res 15(19): 6113-6127. 

Giangaspero, F., S. H. Binger, et al. (2000). Medulloblastoma. Tumours of the Nervous System. C. W. 
Kleihues P. Lyon, France, IARC 129-137. 

Giangaspero, F., G. Perilongo, et al. (1999). "Medulloblastoma with extensive nodularity: a variant 
with favorable prognosis." J Neurosurg 91(6): 971-977. 

Giangaspero, F., L. Rigobello, et al. (1992). "Large-cell medulloblastomas. A distinct variant with 
highly aggressive behavior." Am J Surg Pathol 16(7): 687-693. 

Giannini, C., J. N. Sarkaria, et al. (2005). "Patient tumor EGFR and PDGFRA gene amplifications 
retained in an invasive intracranial xenograft model of glioblastoma multiforme." Neuro-
Oncology 7(2): 164-176. 

Gibson, P., Y. Tong, et al. (2010). "Subtypes of medulloblastoma have distinct developmental 
origins." Nature 468(7327): 1095-1099. 



259 
 

Gilbertson, R. J. and D. W. Ellison (2008). "The origins of medulloblastoma subtypes." Annu Rev 
Pathol 3: 341-365. 

Giordana, M. T., P. Schiffer, et al. (1999). "Epidemiology of adult medulloblastoma." Int J Cancer 
80(5): 689-692. 

Glinsky, G. V., O. Berezovska, et al. (2005). "Microarray analysis identifies a death-from-cancer 
signature predicting therapy failure in patients with multiple types of cancer." J Clin Invest 
115(6): 1503-1521. 

Godlewski, J., M. O. Nowicki, et al. (2008). "Targeting of the Bmi-1 Oncogene/Stem Cell Renewal 
Factor by MicroRNA-128 Inhibits Glioma Proliferation and Self-Renewal." Cancer Research 
68(22): 9125-9130. 

Goel, H. L., C. Chang, et al. (2012). "VEGF/neuropilin-2 regulation of Bmi-1 and consequent 
repression of IGF-IR define a novel mechanism of aggressive prostate cancer." Cancer Discov 
2(10): 906-921. 

Goldowitz, D. and K. Hamre (1998). "The cells and molecules that make a cerebellum." Trends 
Neurosci 21(9): 375-382. 

Goodrich, L. V., L. Milenkovic, et al. (1997). "Altered neural cell fates and medulloblastoma in mouse 
patched mutants." Science 277(5329): 1109-1113. 

Griffin, C. A., A. L. Hawkins, et al. (1988). "Chromosome abnormalities in pediatric brain tumors." 
Cancer Res 48(1): 175-180. 

Grill, J., C. Sainte-Rose, et al. (2005). "Treatment of medulloblastoma with postoperative 
chemotherapy alone: an SFOP prospective trial in young children." Lancet Oncol 6(8): 573-
580. 

Grimmer, M. R. and W. A. Weiss (2008). "BMPs oppose Math1 in cerebellar development and in 
medulloblastoma." Genes Dev 22(6): 693-699. 

Guillamo, J. S., S. de Bouard, et al. (2009). "Molecular mechanisms underlying effects of epidermal 
growth factor receptor inhibition on invasion, proliferation, and angiogenesis in 
experimental glioma." Clin Cancer Res 15(11): 3697-3704. 

Guo, B. H., Y. Feng, et al. (2011). "Bmi-1 promotes invasion and metastasis, and its elevated 
expression is correlated with an advanced stage of breast cancer." Mol Cancer 10(1): 10. 

Guo, X. and X. F. Wang (2009). "Signaling cross-talk between TGF-beta/BMP and other pathways." 
Cell Res 19(1): 71-88. 

Hall, A. C., F. R. Lucas, et al. (2000). "Axonal remodeling and synaptic differentiation in the 
cerebellum is regulated by WNT-7a signaling." Cell 100(5): 525-535. 

Hallahan, A. R., J. I. Pritchard, et al. (2003). "BMP-2 mediates retinoid-induced apoptosis in 
medulloblastoma cells through a paracrine effect." Nat Med 9(8): 1033-1038. 

Hallonet, M. E. and N. M. Le Douarin (1993). "Tracing neuroepithelial cells of the mesencephalic and 
metencephalic alar plates during cerebellar ontogeny in quail-chick chimaeras." Eur J 
Neurosci 5(9): 1145-1155. 

Hamilton, S. R., B. Liu, et al. (1995). "The molecular basis of Turcot's syndrome." N Engl J Med 
332(13): 839-847. 

Hatten, M. E. (1999). "Central nervous system neuronal migration." Annu Rev Neurosci 22: 511-539. 
Hatten, M. E. and N. Heintz (1995). "Mechanisms of neural patterning and specification in the 

developing cerebellum." Annu Rev Neurosci 18: 385-408. 
Hatten, M. E. and M. F. Roussel (2011). "Development and cancer of the cerebellum." Trends 

Neurosci 34(3): 134-142. 
Hatton, B. A., E. H. Villavicencio, et al. (2008). "The Smo/Smo model: hedgehog-induced 

medulloblastoma with 90% incidence and leptomeningeal spread." Cancer Res 68(6): 1768-
1776. 

Haupt, Y., W. S. Alexander, et al. (1991). "Novel zinc finger gene implicated as myc collaborator by 
retrovirally accelerated lymphomagenesis in E mu-myc transgenic mice." Cell 65(5): 753-763. 



260 
 

He, X. M., C. J. Wikstrand, et al. (1991). "Differentiation characteristics of newly established 
medulloblastoma cell lines (D384 Med, D425 Med, and D458 Med) and their transplantable 
xenografts." Lab Invest 64(6): 833-843. 

Herrup, K. and B. Kuemerle (1997). "The compartmentalization of the cerebellum." Annu Rev 
Neurosci 20: 61-90. 

Hershatter, B. W., E. C. Halperin, et al. (1986). "Medulloblastoma: the Duke University Medical 
Center experience." Int J Radiat Oncol Biol Phys 12(10): 1771-1777. 

Hoenerhoff, M. J., I. Chu, et al. (2009). "BMI1 cooperates with H-RAS to induce an aggressive breast 
cancer phenotype with brain metastases." Oncogene 28(34): 3022-3032. 

Hogan, B. L. (1996). "Bone morphogenetic proteins: multifunctional regulators of vertebrate 
development." Genes Dev 10(13): 1580-1594. 

Hong, X., F. Jiang, et al. (2007). "Decrease of endogenous vascular endothelial growth factor may not 
affect glioma cell proliferation and invasion." J Exp Ther Oncol 6(3): 219-229. 

Hoodless, P. A., T. Haerry, et al. (1996). "MADR1, a MAD-related protein that functions in BMP2 
signaling pathways." Cell 85(4): 489-500. 

Horiuchi, D., N. E. Huskey, et al. (2012). "Chemical-genetic analysis of cyclin dependent kinase 2 
function reveals an important role in cellular transformation by multiple oncogenic 
pathways." Proc Natl Acad Sci U S A 109(17): E1019-1027. 

Hsieh, P. C., C. T. Wu, et al. (2008). "The clinical experience of medulloblastoma treatment and the 
significance of time sequence for development of leptomeningeal metastasis." Childs Nerv 
Syst 24(12): 1463-1467. 

Hu, J. and A. S. Verkman (2006). "Increased migration and metastatic potential of tumor cells 
expressing aquaporin water channels." FASEB J 20(11): 1892-1894. 

Huang, H., B. M. Mahler-Araujo, et al. (2000). "APC mutations in sporadic medulloblastomas." Am J 
Pathol 156(2): 433-437. 

Huang, H., R. Reis, et al. (1999). "Identification in human brain tumors of DNA sequences specific for 
SV40 large T antigen." Brain Pathol 9(1): 33-42. 

Hubert, T., S. Grimal, et al. (2009). "Collagens in the developing and diseased nervous system." Cell 
Mol Life Sci 66(7): 1223-1238. 

Huelsken, J. and J. Behrens (2002). "The Wnt signalling pathway." J Cell Sci 115(Pt 21): 3977-3978. 
Hugo, H., M. L. Ackland, et al. (2007). "Epithelial--mesenchymal and mesenchymal--epithelial 

transitions in carcinoma progression." J Cell Physiol 213(2): 374-383. 
Iantosca, M. R., C. E. McPherson, et al. (1999). "Bone morphogenetic proteins-2 and -4 attenuate 

apoptosis in a cerebellar primitive neuroectodermal tumor cell line." J Neurosci Res 56(3): 
248-258. 

Ikushima, H. and K. Miyazono (2010). "TGFbeta signalling: a complex web in cancer progression." Nat 
Rev Cancer 10(6): 415-424. 

Ille, F. and L. Sommer (2005). "Wnt signaling: multiple functions in neural development." Cell Mol 
Life Sci 62(10): 1100-1108. 

Inda, M. M., J. Mercapide, et al. (2004). "PTEN and DMBT1 homozygous deletion and expression in 
medulloblastomas and supratentorial primitive neuroectodermal tumors." Oncol Rep 12(6): 
1341-1347. 

Jacobs, J. J., K. Kieboom, et al. (1999). "The oncogene and Polycomb-group gene bmi-1 regulates cell 
proliferation and senescence through the ink4a locus." Nature 397(6715): 164-168. 

Jacobs, J. J., B. Scheijen, et al. (1999). "Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting 
c-Myc-induced apoptosis via INK4a/ARF." Genes Dev 13(20): 2678-2690. 

Jacobsen, P. F., D. J. Jenkyn, et al. (1985). "Establishment of a human medulloblastoma cell line and 
its heterotransplantation into nude mice." J Neuropathol Exp Neurol 44(5): 472-485. 

Jakacki, R. I., P. C. Burger, et al. (2012). "Outcome of children with metastatic medulloblastoma 
treated with carboplatin during craniospinal radiotherapy: a Children's Oncology Group 
Phase I/II study." J Clin Oncol 30(21): 2648-2653. 



261 
 

Jallo, G. I. and M. A. (2012, March 2012). "Medulloblastoma Clinical Presentation."   Retrieved 22 
October, 2013, from http://emedicine.medscape.com/article/1181219-clinical. 

Jiang, L., J. Li, et al. (2009). "Bmi-1, stem cells and cancer." Acta Biochim Biophys Sin (Shanghai) 
41(7): 527-534. 

Jiang, L., J. Wu, et al. (2012). "Bmi-1 promotes the aggressiveness of glioma via activating the NF-
kappaB/MMP-9 signaling pathway." BMC Cancer 12: 406. 

Jones, D. T., N. Jager, et al. (2012). "Dissecting the genomic complexity underlying 
medulloblastoma." Nature 488(7409): 100-105. 

Jones, T. A., B. W. Ogunkolade, et al. (2011). "Widespread expression of BORIS/CTCFL in normal and 
cancer cells." PLoS One 6(7): e22399. 

Jung, S., H. W. Kim, et al. (2002). "Brain tumor invasion model system using organotypic brain-slice 
culture as an alternative to in vivo model." J Cancer Res Clin Oncol 128(9): 469-476. 

Kadin, M. E., L. J. Rubinstein, et al. (1970). "Neonatal cerebellar medulloblastoma originating from 
the fetal external granular layer." J Neuropathol Exp Neurol 29(4): 583-600. 

Kang, M. H., J. S. Kim, et al. (2010). "BMP2 accelerates the motility and invasiveness of gastric cancer 
cells via activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway." Exp Cell Res 
316(1): 24-37. 

Kang, M. K., R. H. Kim, et al. (2007). "Elevated Bmi-1 expression is associated with dysplastic cell 
transformation during oral carcinogenesis and is required for cancer cell replication and 
survival." Br J Cancer 96(1): 126-133. 

Kang, Y., P. M. Siegel, et al. (2003). "A multigenic program mediating breast cancer metastasis to 
bone." Cancer Cell 3(6): 537-549. 

Katagiri, T., M. Imada, et al. (2002). "Identification of a BMP-responsive element in Id1, the gene for 
inhibition of myogenesis." Genes Cells 7(9): 949-960. 

Katsuno, Y., A. Hanyu, et al. (2008). "Bone morphogenetic protein signaling enhances invasion and 
bone metastasis of breast cancer cells through Smad pathway." Oncogene 27(49): 6322-
6333. 

Kawamura, C., M. Kizaki, et al. (2000). "Bone morphogenetic protein-2 induces apoptosis in human 
myeloma cells with modulation of STAT3." Blood 96(6): 2005-2011. 

Kenney, A. M., M. D. Cole, et al. (2003). "Nmyc upregulation by sonic hedgehog signaling promotes 
proliferation in developing cerebellar granule neuron precursors." Development 130(1): 15-
28. 

Kho, A. T., Q. Zhao, et al. (2004). "Conserved mechanisms across development and tumorigenesis 
revealed by a mouse development perspective of human cancers." Genes Dev 18(6): 629-
640. 

Kim, W. Y. and N. E. Sharpless (2006). "The regulation of INK4/ARF in cancer and aging." Cell 127(2): 
265-275. 

Kirmizis, A., S. M. Bartley, et al. (2003). "Identification of the polycomb group protein SU(Z)12 as a 
potential molecular target for human cancer therapy." Mol Cancer Ther 2(1): 113-121. 

Kleer, C. G., Q. Cao, et al. (2003). "EZH2 is a marker of aggressive breast cancer and promotes 
neoplastic transformation of breast epithelial cells." Proc Natl Acad Sci U S A 100(20): 11606-
11611. 

Kleinman, H. K., M. L. McGarvey, et al. (1982). "Isolation and characterization of type IV procollagen, 
laminin, and heparan sulfate proteoglycan from the EHS sarcoma." Biochemistry 21(24): 
6188-6193. 

Knoepfler, P. S., P. F. Cheng, et al. (2002). "N-myc is essential during neurogenesis for the rapid 
expansion of progenitor cell populations and the inhibition of neuronal differentiation." 
Genes Dev 16(20): 2699-2712. 

Kononen, J., L. Bubendorf, et al. (1998). "Tissue microarrays for high-throughput molecular profiling 
of tumor specimens." Nat Med 4(7): 844-847. 

http://emedicine.medscape.com/article/1181219-clinical


262 
 

Kool, M., A. Korshunov, et al. (2012). "Molecular subgroups of medulloblastoma: an international 
meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, 
and Group 4 medulloblastomas." Acta Neuropathol 123(4): 473-484. 

Kool, M., J. Koster, et al. (2008). "Integrated genomics identifies five medulloblastoma subtypes with 
distinct genetic profiles, pathway signatures and clinicopathological features." PLoS One 
3(8): e3088. 

Korchynskyi, O. and P. ten Dijke (2002). "Identification and functional characterization of distinct 
critically important bone morphogenetic protein-specific response elements in the Id1 
promoter." J Biol Chem 277(7): 4883-4891. 

Korshunov, A., M. Remke, et al. (2010). "Adult and pediatric medulloblastomas are genetically 
distinct and require different algorithms for molecular risk stratification." J Clin Oncol 28(18): 
3054-3060. 

Kortmann, R. D., J. Kuhl, et al. (2000). "Postoperative neoadjuvant chemotherapy before 
radiotherapy as compared to immediate radiotherapy followed by maintenance 
chemotherapy in the treatment of medulloblastoma in childhood: results of the German 
prospective randomized trial HIT '91." Int J Radiat Oncol Biol Phys 46(2): 269-279. 

Koscielny, G., V. Le Texier, et al. (2009). "ASTD: The Alternative Splicing and Transcript Diversity 
database." Genomics 93(3): 213-220. 

Koziol, L. F., D. Budding, et al. (2013). "Consensus Paper: The Cerebellum's Role in Movement and 
Cognition." Cerebellum. 

Krynska, B., L. Del Valle, et al. (1999). "Detection of human neurotropic JC virus DNA sequence and 
expression of the viral oncogenic protein in pediatric medulloblastomas." Proc Natl Acad Sci 
U S A 96(20): 11519-11524. 

Kuhl, J., H. L. Muller, et al. (1998). "Preradiation chemotherapy of children and young adults with 
malignant brain tumors: results of the German pilot trial HIT'88/'89." Klinische Padiatrie 
210(4): 227-233. 

Kurayoshi, M., N. Oue, et al. (2006). "Expression of Wnt-5a is correlated with aggressiveness of 
gastric cancer by stimulating cell migration and invasion." Cancer Res 66(21): 10439-10448. 

Laerum, O. D. (1997). "Local spread of malignant neuroepithelial tumors." Acta Neurochirurgica 
139(6): 515-522. 

Landberg, T. G., M. L. Lindgren, et al. (1980). "Improvements in the radiotherapy of 
medulloblastoma, 1946-1975." Cancer 45(4): 670-678. 

Langenfeld, E. M., S. E. Calvano, et al. (2003). "The mature bone morphogenetic protein-2 is 
aberrantly expressed in non-small cell lung carcinomas and stimulates tumor growth of A549 
cells." Carcinogenesis 24(9): 1445-1454. 

Lasorella, A., T. Uo, et al. (2001). "Id proteins at the cross-road of development and cancer." 
Oncogene 20(58): 8326-8333. 

Lau, J., C. Schmidt, et al. (2012). "Matching mice to malignancy: molecular subgroups and models of 
medulloblastoma." Childs Nerv Syst 28(4): 521-532. 

Lee, A., J. D. Kessler, et al. (2005). "Isolation of neural stem cells from the postnatal cerebellum." Nat 
Neurosci 8(6): 723-729. 

Lee, M., J. H. Wisoff, et al. (1994). "Management of hydrocephalus in children with 
medulloblastoma: prognostic factors for shunting." Pediatr Neurosurg 20(4): 240-247. 

Lee, T. I., R. G. Jenner, et al. (2006). "Control of developmental regulators by Polycomb in human 
embryonic stem cells." Cell 125(2): 301-313. 

Leivonen, S. K. and V. M. Kahari (2007). "Transforming growth factor-beta signaling in cancer 
invasion and metastasis." Int J Cancer 121(10): 2119-2124. 

Lemire RJ, L. J., Leech RW, Alvord Economides, A. N., Ed. (1975). Normal and abnormal development 
of the human nervous system., Harper & Row. 

Leung, C., M. Lingbeek, et al. (2004). "Bmi1 is essential for cerebellar development and is 
overexpressed in human medulloblastomas." Nature 428(6980): 337-341. 



263 
 

Li, X. N., Q. Shu, et al. (2007). "Differential expression of survivin splice isoforms in 
medulloblastomas." Neuropathol Appl Neurobiol 33(1): 67-76. 

Liang, Y., M. Diehn, et al. (2008). "Type I collagen is overexpressed in medulloblastoma as a 
component of tumor microenvironment." J Neurooncol 86(2): 133-141. 

Liu, B., D. Tian, et al. (2010). "Effect of bone morphogenetic protein 4 in the human brain glioma cell 
line U251." Cell Biochem Biophys 58(2): 91-96. 

Lo Muzio, L. (2008). "Nevoid basal cell carcinoma syndrome (Gorlin syndrome)." Orphanet J Rare Dis 
3: 32. 

Locklin, R. M., B. L. Riggs, et al. (2001). "Assessment of gene regulation by bone morphogenetic 
protein 2 in human marrow stromal cells using gene array technology." J Bone Miner Res 
16(12): 2192-2204. 

Lopez-Rovira, T., E. Chalaux, et al. (2002). "Direct binding of Smad1 and Smad4 to two distinct motifs 
mediates bone morphogenetic protein-specific transcriptional activation of Id1 gene." J Biol 
Chem 277(5): 3176-3185. 

Lossi, L., S. Alasia, et al. (2009). "Cell death and proliferation in acute slices and organotypic cultures 
of mammalian CNS." Progress in Neurobiology 88(4): 221-245. 

Louis, D. N., H. Ohgaki, et al. (2007). "The 2007 WHO classification of tumours of the central nervous 
system." Acta Neuropathol 114(2): 97-109. 

Louvi, A. and S. Artavanis-Tsakonas (2006). "Notch signalling in vertebrate neural development." Nat 
Rev Neurosci 7(2): 93-102. 

Lowe, S. W. and C. J. Sherr (2003). "Tumor suppression by Ink4a-Arf: progress and puzzles." Curr 
Opin Genet Dev 13(1): 77-83. 

Lu, Z. and J. Kipnis (2010). "Thrombospondin 1--a key astrocyte-derived neurogenic factor." Faseb J. 
Luyten, F. P., N. S. Cunningham, et al. (1989). "Purification and partial amino acid sequence of 

osteogenin, a protein initiating bone differentiation." J Biol Chem 264(23): 13377-13380. 
MacDonald, T. J., K. M. Brown, et al. (2001). "Expression profiling of medulloblastoma: PDGFRA and 

the RAS/MAPK pathway as therapeutic targets for metastatic disease." Nat Genet 29(2): 
143-152. 

MacDonald, T. J., B. R. Rood, et al. (2003). "Advances in the diagnosis, molecular genetics, and 
treatment of pediatric embryonal CNS tumors." Oncologist 8(2): 174-186. 

MacDonald, T. J., P. Tabrizi, et al. (1998). "Detection of brain tumor invasion and micrometastasis in 
vivo by expression of enhanced green fluorescent protein." Neurosurgery 43(6): 1437-1442. 

Machold, R. P., D. J. Kittell, et al. (2007). "Antagonism between Notch and bone morphogenetic 
protein receptor signaling regulates neurogenesis in the cerebellar rhombic lip." Neural Dev 
2: 5. 

Maeda, H., C. Fujimoto, et al. (2003). "Quantitative real-time PCR using TaqMan and SYBR Green for 
Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, 
tetQ gene and total bacteria." FEMS Immunol Med Microbiol 39(1): 81-86. 

Manoranjan, B., X. Wang, et al. (2013). "FoxG1 interacts with Bmi1 to regulate self-renewal and 
tumorigenicity of medulloblastoma stem cells." Stem Cells 31(7): 1266-1277. 

Marino, S. (2005). "Medulloblastoma: developmental mechanisms out of control." Trends Mol Med 
11(1): 17-22. 

Marino, S., M. Vooijs, et al. (2000). "Induction of medulloblastomas in p53-null mutant mice by 
somatic inactivation of Rb in the external granular layer cells of the cerebellum." Genes Dev 
14(8): 994-1004. 

Massague, J. and Y. G. Chen (2000). "Controlling TGF-beta signaling." Genes Dev 14(6): 627-644. 
McDonnell, T. J., N. S. Chari, et al. (2008). "Biomarker expression patterns that correlate with high 

grade features in treatment naive, organ-confined prostate cancer." BMC Med Genomics 1: 
1. 

McKean-Cowdin, R., P. Razavi, et al. (2013). "Trends in childhood brain tumor incidence, 1973-2009." 
J Neurooncol. 



264 
 

McLendon, R. E., H. S. Friedman, et al. (1999). "Diagnostic markers in paediatric medulloblastoma: a 
Paediatric Oncology Group Study." Histopathology 34(2): 154-162. 

McManamy, C. S., J. M. Lamont, et al. (2003). "Morphophenotypic variation predicts clinical behavior 
in childhood non-desmoplastic medulloblastomas." J Neuropathol Exp Neurol 62(6): 627-
632. 

McManamy, C. S., J. Pears, et al. (2007). "Nodule formation and desmoplasia in medulloblastomas-
defining the nodular/desmoplastic variant and its biological behavior." Brain Pathol 17(2): 
151-164. 

McManus, M. T. and P. A. Sharp (2002). "Gene silencing in mammals by small interfering RNAs." Nat 
Rev Genet 3(10): 737-747. 

McNeil, D. E., T. R. Cote, et al. (2002). "Incidence and trends in pediatric malignancies 
medulloblastoma/primitive neuroectodermal tumor: a SEER update. Surveillance 
Epidemiology and End Results." Med Pediatr Oncol 39(3): 190-194. 

Meng, F. and G. Wu (2012). "The rejuvenated scenario of epithelial-mesenchymal transition (EMT) 
and cancer metastasis." Cancer Metastasis Rev 31(3-4): 455-467. 

Meng, S., M. Luo, et al. (2010). "Identification and characterization of Bmi-1-responding element 
within the human p16 promoter." J Biol Chem 285(43): 33219-33229. 

Meng, W., P. Kallinteri, et al. (2007). "Evaluation of poly (glycerol-adipate) nanoparticle uptake in an 
in vitro 3-D brain tumor co-culture model." Exp Biol Med (Maywood) 232(8): 1100-1108. 

Menghi, F., T. S. Jacques, et al. (2011). "Genome-wide analysis of alternative splicing in 
medulloblastoma identifies splicing patterns characteristic of normal cerebellar 
development." Cancer Res 71(6): 2045-2055. 

Metcalfe, C. and M. Bienz (2011). "Inhibition of GSK3 by Wnt signalling--two contrasting models." J 
Cell Sci 124(Pt 21): 3537-3544. 

Michael, L. E., B. A. Westerman, et al. (2008). "Bmi1 is required for Hedgehog pathway-driven 
medulloblastoma expansion." Neoplasia 10(12): 1343-1349, 1345p following 1349. 

Millen, K. J., W. Wurst, et al. (1994). "Abnormal embryonic cerebellar development and patterning of 
postnatal foliation in two mouse Engrailed-2 mutants." Development 120(3): 695-706. 

Miller, W. H., Jr. (1998). "The emerging role of retinoids and retinoic acid metabolism blocking 
agents in the treatment of cancer." Cancer 83(8): 1471-1482. 

Miyata, T., T. Maeda, et al. (1999). "NeuroD is required for differentiation of the granule cells in the 
cerebellum and hippocampus." Genes Dev 13(13): 1647-1652. 

Miyazawa, K., T. Himi, et al. (2000). "A role for p27/Kip1 in the control of cerebellar granule cell 
precursor proliferation." J Neurosci 20(15): 5756-5763. 

Miyazono, K., S. Maeda, et al. (2005). "BMP receptor signaling: transcriptional targets, regulation of 
signals, and signaling cross-talk." Cytokine Growth Factor Rev 16(3): 251-263. 

Miyazono, K., P. ten Dijke, et al. (2000). "TGF-beta signaling by Smad proteins." Adv Immunol 75: 
115-157. 

Mizugishi, K., J. Aruga, et al. (2001). "Molecular properties of Zic proteins as transcriptional 
regulators and their relationship to GLI proteins." J Biol Chem 276(3): 2180-2188. 

Mollenhauer, J., S. Wiemann, et al. (1997). "DMBT1, a new member of the SRCR superfamily, on 
chromosome 10q25.3-26.1 is deleted in malignant brain tumours." Nat Genet 17(1): 32-39. 

Molofsky, A. V., R. Pardal, et al. (2003). "Bmi-1 dependence distinguishes neural stem cell self-
renewal from progenitor proliferation." Nature 425(6961): 962-967. 

Montagnani, S., C. Castaldo, et al. (2000). "Extra cellular matrix features in human meninges." Ital J 
Anat Embryol 105(3): 167-177. 

Moskovits, N., A. Kalinkovich, et al. (2006). "p53 Attenuates cancer cell migration and invasion 
through repression of SDF-1/CXCL12 expression in stromal fibroblasts." Cancer Res 66(22): 
10671-10676. 

Moustakas, A., K. Pardali, et al. (2002). "Mechanisms of TGF-beta signaling in regulation of cell 
growth and differentiation." Immunol Lett 82(1-2): 85-91. 



265 
 

Mumert, M., A. Dubuc, et al. (2012). "Functional Genomics Identifies Drivers of Medulloblastoma 
Dissemination." Cancer Research 72(19): 4944-4953. 

Nakao, A., T. Imamura, et al. (1997). "TGF-beta receptor-mediated signalling through Smad2, Smad3 
and Smad4." EMBO J 16(17): 5353-5362. 

NCI. (2013, 01 August 2013). "Treatment of Newly Diagnosed Childhood Medulloblastoma." 
Childhood Central Nervous System Embryonal Tumors Treatment (PDQ®)  Retrieved 23 
October, 2013, from 
http://www.cancer.gov/cancertopics/pdq/treatment/childCNSembryonal/healthprofessiona
l/page5#Reference5.36. 

Nishimura, R., Y. Kato, et al. (1998). "Smad5 and DPC4 are key molecules in mediating BMP-2-
induced osteoblastic differentiation of the pluripotent mesenchymal precursor cell line 
C2C12." J Biol Chem 273(4): 1872-1879. 

Northcott, P. A., L. A. Fernandez, et al. (2009). "The miR-17/92 polycistron is up-regulated in sonic 
hedgehog-driven medulloblastomas and induced by N-myc in sonic hedgehog-treated 
cerebellar neural precursors." Cancer Res 69(8): 3249-3255. 

Northcott, P. A., T. Hielscher, et al. (2011). "Pediatric and adult sonic hedgehog medulloblastomas 
are clinically and molecularly distinct." Acta Neuropathol 122(2): 231-240. 

Northcott, P. A., A. Korshunov, et al. (2011). "Medulloblastoma comprises four distinct molecular 
variants." J Clin Oncol 29(11): 1408-1414. 

Northcott, P. A., Y. Nakahara, et al. (2009). "Multiple recurrent genetic events converge on control of 
histone lysine methylation in medulloblastoma." Nat Genet 41(4): 465-472. 

O'Carroll, D., S. Erhardt, et al. (2001). "The polycomb-group gene Ezh2 is required for early mouse 
development." Mol Cell Biol 21(13): 4330-4336. 

O'Shea, K. S., L. H. Liu, et al. (1990). "Role of the extracellular matrix protein thrombospondin in the 
early development of the mouse embryo." J Cell Biol 111(6 Pt 1): 2713-2723. 

Ogata, T., J. M. Wozney, et al. (1993). "Bone morphogenetic protein 2 transiently enhances 
expression of a gene, Id (inhibitor of differentiation), encoding a helix-loop-helix molecule in 
osteoblast-like cells." Proc Natl Acad Sci U S A 90(19): 9219-9222. 

Ott, M., U. M. Litzenburger, et al. (2012). "Promotion of glioblastoma cell motility by enhancer of 
zeste homolog 2 (EZH2) is mediated by AXL receptor kinase." PLoS One 7(10): e47663. 

Otte, A. P. and T. H. Kwaks (2003). "Gene repression by Polycomb group protein complexes: a 
distinct complex for every occasion?" Curr Opin Genet Dev 13(5): 448-454. 

Ozen, O., B. Krebs, et al. (2004). "Expression of matrix metalloproteinases and their inhibitors in 
medulloblastomas and their prognostic relevance." Clin Cancer Res 10(14): 4746-4753. 

Packer, R. J. (1999). "Brain tumors in children." Archives of Neurology 56(4): 421-425. 
Packer, R. J., P. Cogen, et al. (1999). "Medulloblastoma: clinical and biologic aspects." Neuro Oncol 

1(3): 232-250. 
Packer, R. J., B. R. Rood, et al. (2003). "Medulloblastoma: present concepts of stratification into risk 

groups." Pediatr Neurosurg 39(2): 60-67. 
Palfi, S., K. R. Swanson, et al. (2004). "Correlation of in vitro infiltration with glioma histological type 

in organotypic brain slices." British Journal of Cancer 91(4): 745-752. 
Paraf, F., S. Jothy, et al. (1997). "Brain tumor-polyposis syndrome: two genetic diseases?" J Clin 

Oncol 15(7): 2744-2758. 
Park, I. K., D. Qian, et al. (2003). "Bmi-1 is required for maintenance of adult self-renewing 

haematopoietic stem cells." Nature 423(6937): 302-305. 
Park, T. S., H. J. Hoffman, et al. (1983). "Medulloblastoma: clinical presentation and management. 

Experience at the hospital for sick children, toronto, 1950-1980." J Neurosurg 58(4): 543-
552. 

Parker, K. and G. J. Pilkington (2005). "Morphological, immunocytochemical and flow cytometric in 
vitro characterisation of a surface-adherent medulloblastoma." Anticancer Res 25(6B): 3855-
3863. 

http://www.cancer.gov/cancertopics/pdq/treatment/childCNSembryonal/healthprofessional/page5#Reference5.36
http://www.cancer.gov/cancertopics/pdq/treatment/childCNSembryonal/healthprofessional/page5#Reference5.36


266 
 

Parsons, D. W., M. Li, et al. (2011). "The genetic landscape of the childhood cancer 
medulloblastoma." Science 331(6016): 435-439. 

Patankar, T. F., D. Mitra, et al. (2005). "Dilatation of the Virchow-Robin space is a sensitive indicator 
of cerebral microvascular disease: Study in elderly patients with dementia." American 
Journal of Neuroradiology 26(6): 1512-1520. 

Pear, W. S., G. P. Nolan, et al. (1993). "Production of high-titer helper-free retroviruses by transient 
transfection." Proc Natl Acad Sci U S A 90(18): 8392-8396. 

Pearl, G. S. and Y. Takei (1981). "Cerebellar "neuroblastoma": nosology as it relates to 
medulloblastoma." Cancer 47(4): 772-779. 

Pei, Y., C. E. Moore, et al. (2012). "An animal model of MYC-driven medulloblastoma." Cancer Cell 
21(2): 155-167. 

Peng, Y., Q. Kang, et al. (2004). "Inhibitor of DNA binding/differentiation helix-loop-helix proteins 
mediate bone morphogenetic protein-induced osteoblast differentiation of mesenchymal 
stem cells." J Biol Chem 279(31): 32941-32949. 

Pfister, S., M. Remke, et al. (2009). "Outcome prediction in pediatric medulloblastoma based on DNA 
copy-number aberrations of chromosomes 6q and 17q and the MYC and MYCN loci." J Clin 
Oncol 27(10): 1627-1636. 

Piccirillo, S. G., B. A. Reynolds, et al. (2006). "Bone morphogenetic proteins inhibit the tumorigenic 
potential of human brain tumour-initiating cells." Nature 444(7120): 761-765. 

Pilkington, G. J. (1994). "Tumor-Cell Migration in the Central-Nervous-System." Brain Pathology 4(2): 
157-166. 

Polkinghorn, W. R. and N. J. Tarbell (2007). "Medulloblastoma: tumorigenesis, current clinical 
paradigm, and efforts to improve risk stratification." Nat Clin Pract Oncol 4(5): 295-304. 

Pollack, I. F., P. Polinko, et al. (1995). "Mutism and pseudobulbar symptoms after resection of 
posterior fossa tumors in children: incidence and pathophysiology." Neurosurgery 37(5): 
885-893. 

Pomeroy, S. L., P. Tamayo, et al. (2002). "Prediction of central nervous system embryonal tumour 
outcome based on gene expression." Nature 415(6870): 436-442. 

Prados, M. D., R. E. Warnick, et al. (1995). "Medulloblastoma in adults." Int J Radiat Oncol Biol Phys 
32(4): 1145-1152. 

Raetzman, L. T. and R. E. Siegel (1999). "Immature granule neurons from cerebella of different ages 
exhibit distinct developmental potentials." J Neurobiol 38(4): 559-570. 

Raida, M., J. H. Clement, et al. (2005). "Expression of bone morphogenetic protein 2 in breast cancer 
cells inhibits hypoxic cell death." Int J Oncol 26(6): 1465-1470. 

Ramaekers, V. T., G. Heimann, et al. (1997). "Genetic disorders and cerebellar structural 
abnormalities in childhood." Brain 120 ( Pt 10): 1739-1751. 

Rankin, J., J. Short, et al. (2013). "Medulloblastoma in a patient with the PTPN11 p.Thr468Met 
mutation." Am J Med Genet A 161A(8): 2027-2029. 

Rasheed, B. K., T. T. Stenzel, et al. (1997). "PTEN gene mutations are seen in high-grade but not in 
low-grade gliomas." Cancer Res 57(19): 4187-4190. 

Reardon, D. A., E. Michalkiewicz, et al. (1997). "Extensive genomic abnormalities in childhood 
medulloblastoma by comparative genomic hybridization." Cancer Res 57(18): 4042-4047. 

Reddi, A. H. (1981). "Cell biology and biochemistry of endochondral bone development." Coll Relat 
Res 1(2): 209-226. 

Reddy, A. T. and R. J. Packer (1999). "Medulloblastoma." Curr Opin Neurol 12(6): 681-685. 
Remke, M., T. Hielscher, et al. (2011). "FSTL5 is a marker of poor prognosis in non-WNT/non-SHH 

medulloblastoma." J Clin Oncol 29(29): 3852-3861. 
Remke, M., T. Hielscher, et al. (2011). "Adult medulloblastoma comprises three major molecular 

variants." J Clin Oncol 29(19): 2717-2723. 



267 
 

Richie, E. R., A. Schumacher, et al. (2002). "The Polycomb-group gene eed regulates thymocyte 
differentiation and suppresses the development of carcinogen-induced T-cell lymphomas." 
Oncogene 21(2): 299-306. 

Riffaud, L., S. Saikali, et al. (2009). "Survival and prognostic factors in a series of adults with 
medulloblastomas Clinical article." Journal of Neurosurgery 111(3): 478-487. 

Ringrose, L. and R. Paro (2004). "Epigenetic regulation of cellular memory by the Polycomb and 
Trithorax group proteins." Annu Rev Genet 38: 413-443. 

Rios, I., R. Alvarez-Rodriguez, et al. (2004). "Bmp2 antagonizes sonic hedgehog-mediated 
proliferation of cerebellar granule neurones through Smad5 signalling." Development 
131(13): 3159-3168. 

Ris, M. D., R. Packer, et al. (2001). "Intellectual outcome after reduced-dose radiation therapy plus 
adjuvant chemotherapy for medulloblastoma: a Children's Cancer Group study." J Clin Oncol 
19(15): 3470-3476. 

Rodini, C. O., D. E. Suzuki, et al. (2010). "Aberrant signaling pathways in medulloblastomas A stem 
cell connection." Arquivos De Neuro-Psiquiatria 68(6): 947-952. 

Rodriguez-Leon, J., R. Merino, et al. (1999). "Retinoic acid regulates programmed cell death through 
BMP signalling." Nat Cell Biol 1(2): 125-126. 

Rodriguez, L. G., X. Wu, et al. (2005). "Wound-healing assay." Methods Mol Biol 294: 23-29. 
Roger E McLendon, M. K. R., Darell D Bigner, Ed. (2006). Russel & Rubinstein's Pathology of Tumours 

of the Nervous System, CRC Press. 
Rorke, L. B. (1994). "Experimental production of primitive neuroectodermal tumors and its relevance 

to human neuro-oncology." Am J Pathol 144(3): 444-448. 
Rosenzweig, B. L., T. Imamura, et al. (1995). "Cloning and characterization of a human type II 

receptor for bone morphogenetic proteins." Proc Natl Acad Sci U S A 92(17): 7632-7636. 
Rossi, A., V. Caracciolo, et al. (2008). "Medulloblastoma: from molecular pathology to therapy." Clin 

Cancer Res 14(4): 971-976. 
Roussel, M. F. and M. E. Hatten (2011). "Cerebellum development and medulloblastoma." Curr Top 

Dev Biol 94: 235-282. 
Rubinson, D. A., C. P. Dillon, et al. (2003). "A lentivirus-based system to functionally silence genes in 

primary mammalian cells, stem cells and transgenic mice by RNA interference." Nat Genet 
33(3): 401-406. 

Rudin, C. M., C. L. Hann, et al. (2009). "Treatment of medulloblastoma with hedgehog pathway 
inhibitor GDC-0449." N Engl J Med 361(12): 1173-1178. 

Rutkowski, S., K. von Hoff, et al. (2010). "Survival and prognostic factors of early childhood 
medulloblastoma: an international meta-analysis." J Clin Oncol 28(33): 4961-4968. 

Ruzinova, M. B. and R. Benezra (2003). "Id proteins in development, cell cycle and cancer." Trends 
Cell Biol 13(8): 410-418. 

Salinas, P. C., C. Fletcher, et al. (1994). "Maintenance of Wnt-3 expression in Purkinje cells of the 
mouse cerebellum depends on interactions with granule cells." Development 120(5): 1277-
1286. 

Salinas, P. C. and Y. Zou (2008). "Wnt signaling in neural circuit assembly." Annu Rev Neurosci 31: 
339-358. 

Sarkozy, A., M. C. Digilio, et al. (2008). "Leopard syndrome." Orphanet J Rare Dis 3: 13. 
Sato, T., A. L. Joyner, et al. (2004). "How does Fgf signaling from the isthmic organizer induce 

midbrain and cerebellum development?" Dev Growth Differ 46(6): 487-494. 
Scheurlen, W. G., G. C. Schwabe, et al. (1998). "Molecular analysis of childhood primitive 

neuroectodermal tumors defines markers associated with poor outcome." J Clin Oncol 16(7): 
2478-2485. 

Schuller, U., V. M. Heine, et al. (2008). "Acquisition of granule neuron precursor identity is a critical 
determinant of progenitor cell competence to form Shh-induced medulloblastoma." Cancer 
Cell 14(2): 123-134. 



268 
 

Schuller, U. and D. H. Rowitch (2007). "Beta-catenin function is required for cerebellar 
morphogenesis." Brain Res 1140: 161-169. 

Schumacher, A., C. Faust, et al. (1996). "Positional cloning of a global regulator of anterior-posterior 
patterning in mice." Nature 384(6610): 648. 

Schutze, N. (2004). "siRNA technology." Mol Cell Endocrinol 213(2): 115-119. 
Shakhova, O., C. Leung, et al. (2006). "Lack of Rb and p53 delays cerebellar development and 

predisposes to large cell anaplastic medulloblastoma through amplification of N-Myc and 
Ptch2." Cancer Res 66(10): 5190-5200. 

Sharpless, N. E. and R. A. DePinho (1999). "The INK4A/ARF locus and its two gene products." Curr 
Opin Genet Dev 9(1): 22-30. 

Shepherd, T. G., B. L. Theriault, et al. (2008). "Autocrine BMP4 signalling regulates ID3 proto-
oncogene expression in human ovarian cancer cells." Gene 414(1-2): 95-105. 

Shu, Q., K. K. Wong, et al. (2008). "Direct orthotopic transplantation of fresh surgical specimen 
preserves CD133+ tumor cells in clinically relevant mouse models of medulloblastoma and 
glioma." Stem Cells 26(6): 1414-1424. 

Sikkema, A. H., W. F. A. den Dunnen, et al. (2012). "EphB2 activity plays a pivotal role in pediatric 
medulloblastoma cell adhesion and invasion." Neuro-Oncology 14(9): 1125-1135. 

Simpson, K. J., L. M. Selfors, et al. (2008). "Identification of genes that regulate epithelial cell 
migration using an siRNA screening approach." Nat Cell Biol 10(9): 1027-1038. 

Smith, T. W. and R. I. Davidson (1984). "Medullomyoblastoma. A histologic, immunohistochemical, 
and ultrastructural study." Cancer 54(2): 323-332. 

Smith, W. C. and R. M. Harland (1992). "Expression cloning of noggin, a new dorsalizing factor 
localized to the Spemann organizer in Xenopus embryos." Cell 70(5): 829-840. 

Smoll, N. R. (2012). "Relative survival of childhood and adult medulloblastomas and primitive 
neuroectodermal tumors (PNETs)." Cancer 118(5): 1313-1322. 

Snyder, A. D., A. N. Dulin-Smith, et al. (2013). "Expression pattern of id proteins in 
medulloblastoma." Pathol Oncol Res 19(3): 437-446. 

Soda, H., E. Raymond, et al. (1998). "Antiproliferative effects of recombinant human bone 
morphogenetic protein-2 on human tumor colony-forming units." Anticancer Drugs 9(4): 
327-331. 

Solecki, D. J., X. L. Liu, et al. (2001). "Activated Notch2 signaling inhibits differentiation of cerebellar 
granule neuron precursors by maintaining proliferation." Neuron 31(4): 557-568. 

Song, L. B., J. Li, et al. (2009). "The polycomb group protein Bmi-1 represses the tumor suppressor 
PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial 
cells." J Clin Invest 119(12): 3626-3636. 

Sparmann, A. and M. van Lohuizen (2006). "Polycomb silencers control cell fate, development and 
cancer." Nat Rev Cancer 6(11): 846-856. 

Spiller, S. E., S. H. Ditzler, et al. (2008). "Response of preclinical medulloblastoma models to 
combination therapy with 13-cis retinoic acid and suberoylanilide hydroxamic acid (SAHA)." J 
Neurooncol 87(2): 133-141. 

Spiller, S. E., A. C. Ravanpay, et al. (2006). "Suberoylanilide hydroxamic acid is effective in preclinical 
studies of medulloblastoma." J Neurooncol 79(3): 259-270. 

St Clair, W. H., J. A. Adams, et al. (2004). "Advantage of protons compared to conventional X-ray or 
IMRT in the treatment of a pediatric patient with medulloblastoma." Int J Radiat Oncol Biol 
Phys 58(3): 727-734. 

Stevens, M. C., A. H. Cameron, et al. (1991). "Descriptive epidemiology of primary central nervous 
system tumours in children: a population-based study." Clin Oncol (R Coll Radiol) 3(6): 323-
329. 

Stoeckli, E. T. (2010). "Neural circuit formation in the cerebellum is controlled by cell adhesion 
molecules of the Contactin family." Cell Adh Migr 4(4): 523-526. 



269 
 

Stoppini, L., P. A. Buchs, et al. (1991). "A Simple Method for Organotypic Cultures of Nervous-
Tissue." Journal of Neuroscience Methods 37(2): 173-182. 

Strober, W. (2001). Trypan Blue Exclusion Test of Cell Viability. Current Protocols in Immunology: 
A.3B.1 - A.3B.2. 

Su, I. H., M. W. Dobenecker, et al. (2005). "Polycomb group protein ezh2 controls actin 
polymerization and cell signaling." Cell 121(3): 425-436. 

Sun, X. H., N. G. Copeland, et al. (1991). "Id proteins Id1 and Id2 selectively inhibit DNA binding by 
one class of helix-loop-helix proteins." Mol Cell Biol 11(11): 5603-5611. 

Sutter, R., O. Shakhova, et al. (2010). "Cerebellar stem cells act as medulloblastoma-initiating cells in 
a mouse model and a neural stem cell signature characterizes a subset of human 
medulloblastomas." Oncogene 29(12): 1845-1856. 

Tabori, U., B. Baskin, et al. (2010). "Universal poor survival in children with medulloblastoma 
harboring somatic TP53 mutations." J Clin Oncol 28(8): 1345-1350. 

Tabori, U., L. Sung, et al. (2005). "Medulloblastoma in the second decade of life: a specific group with 
respect to toxicity and management: a Canadian Pediatric Brain Tumor Consortium Study." 
Cancer 103(9): 1874-1880. 

Tabori, U., L. Sung, et al. (2006). "Distinctive clinical course and pattern of relapse in adolescents 
with medulloblastoma." Int J Radiat Oncol Biol Phys 64(2): 402-407. 

Taelman, V. F., R. Dobrowolski, et al. (2010). "Wnt signaling requires sequestration of glycogen 
synthase kinase 3 inside multivesicular endosomes." Cell 143(7): 1136-1148. 

Tagawa, M., T. Sakamoto, et al. (1990). "Expression of novel DNA-binding protein with zinc finger 
structure in various tumor cells." J Biol Chem 265(32): 20021-20026. 

Tan, M. H. and T. M. Chu (1985). "Characterization of the Tumorigenic and Metastatic Properties of a 
Human Pancreatic Tumor-Cell Line (Aspc-1) Implanted Orthotopically into Nude-Mice." 
Tumour Biology 6(1): 89-98. 

Tanaka, M., A. Tomita, et al. (1994). "Observation of the highly organized development of granule 
cells in rat cerebellar organotypic cultures." Brain Res 641(2): 319-327. 

Taylor, M. D., L. Liu, et al. (2002). "Mutations in SUFU predispose to medulloblastoma." Nat Genet 
31(3): 306-310. 

Taylor, M. D., P. A. Northcott, et al. (2012). "Molecular subgroups of medulloblastoma: the current 
consensus." Acta Neuropathol 123(4): 465-472. 

Taylor, R. E., C. C. Bailey, et al. (2004). "Impact of radiotherapy parameters on outcome in the 
International Society of Paediatric Oncology/United Kingdom Children's Cancer Study Group 
PNET-3 study of preradiotherapy chemotherapy for M0-M1 medulloblastoma." Int J Radiat 
Oncol Biol Phys 58(4): 1184-1193. 

ten Dijke, P., H. Yamashita, et al. (1994). "Identification of type I receptors for osteogenic protein-1 
and bone morphogenetic protein-4." J Biol Chem 269(25): 16985-16988. 

ten Donkelaar, H. J., M. Lammens, et al. (2003). "Development and developmental disorders of the 
human cerebellum." J Neurol 250(9): 1025-1036. 

Thawani, J. P., A. C. Wang, et al. (2010). "Bone morphogenetic proteins and cancer: review of the 
literature." Neurosurgery 66(2): 233-246; discussion 246. 

Thompson, M. C., C. Fuller, et al. (2006). "Genomics identifies medulloblastoma subgroups that are 
enriched for specific genetic alterations." J Clin Oncol 24(12): 1924-1931. 

Timmann, D. and I. Daum (2007). "Cerebellar contributions to cognitive functions: a progress report 
after two decades of research." Cerebellum 6(3): 159-162. 

Tomlinson, F. H., R. B. Jenkins, et al. (1994). "Aggressive medulloblastoma with high-level N-myc 
amplification." Mayo Clin Proc 69(4): 359-365. 

Tortori-Donati, P., M. P. Fondelli, et al. (1996). "Medulloblastoma in children: CT and MRI findings." 
Neuroradiology 38(4): 352-359. 

Turcot, J., J. P. Despres, et al. (1959). "Malignant tumors of the central nervous system associated 
with familial polyposis of the colon: report of two cases." Dis Colon Rectum 2: 465-468. 



270 
 

Urist, M. R. (1965). "Bone: formation by autoinduction." Science 150(3698): 893-899. 
Valk-Lingbeek, M. E., S. W. Bruggeman, et al. (2004). "Stem cells and cancer; the polycomb 

connection." Cell 118(4): 409-418. 
van der Lugt, N. M., J. Domen, et al. (1994). "Posterior transformation, neurological abnormalities, 

and severe hematopoietic defects in mice with a targeted deletion of the bmi-1 proto-
oncogene." Genes Dev 8(7): 757-769. 

van Kemenade, F. J., F. M. Raaphorst, et al. (2001). "Coexpression of BMI-1 and EZH2 polycomb-
group proteins is associated with cycling cells and degree of malignancy in B-cell non-
Hodgkin lymphoma." Blood 97(12): 3896-3901. 

van Lohuizen, M., M. Frasch, et al. (1991). "Sequence similarity between the mammalian bmi-1 
proto-oncogene and the Drosophila regulatory genes Psc and Su(z)2." Nature 353(6342): 
353-355. 

van Lohuizen, M., S. Verbeek, et al. (1991). "Identification of cooperating oncogenes in E mu-myc 
transgenic mice by provirus tagging." Cell 65(5): 737-752. 

Varambally, S., S. M. Dhanasekaran, et al. (2002). "The polycomb group protein EZH2 is involved in 
progression of prostate cancer." Nature 419(6907): 624-629. 

Varga, A. C. and J. L. Wrana (2005). "The disparate role of BMP in stem cell biology." Oncogene 
24(37): 5713-5721. 

Verlooy, J., V. Mosseri, et al. (2006). "Treatment of high risk medulloblastomas in children above the 
age of 3 years: a SFOP study." Eur J Cancer 42(17): 3004-3014. 

Vermes, I., C. Haanen, et al. (1995). "A novel assay for apoptosis. Flow cytometric detection of 
phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V." 
J Immunol Methods 184(1): 39-51. 

Villeneuve, J., P. Tremblay, et al. (2005). "Tumor necrosis factor reduces brain tumor growth by 
enhancing macrophage recruitment and microcyst formation." Cancer Res 65(9): 3928-3936. 

Vince, G. H., C. Herbold, et al. (2001). "Medulloblastoma displays distinct regional matrix 
metalloprotease expression." J Neurooncol 53(2): 99-106. 

von Bueren, A. O., K. von Hoff, et al. (2011). "Treatment of young children with localized 
medulloblastoma by chemotherapy alone: results of the prospective, multicenter trial HIT 
2000 confirming the prognostic impact of histology." Neuro Oncol 13(6): 669-679. 

von Hoff, K., W. Hartmann, et al. (2010). "Large cell/anaplastic medulloblastoma: outcome according 
to myc status, histopathological, and clinical risk factors." Pediatr Blood Cancer 54(3): 369-
376. 

Vrijens, K., W. W. Lin, et al. (2013). "Identification of Small Molecule Activators of BMP Signaling." 
PLoS One 8(3). 

Wan, W. H., M. B. Fortuna, et al. (1987). "A rapid and efficient method for testing 
immunohistochemical reactivity of monoclonal antibodies against multiple tissue samples 
simultaneously." J Immunol Methods 103(1): 121-129. 

Wang, H., L. Wang, et al. (2004). "Role of histone H2A ubiquitination in Polycomb silencing." Nature 
431(7010): 873-878. 

Wang, J., X. J. Wang, et al. (2008). "Partial Biological Characterization of Cancer Stem-like Cell Line 
(WJ(2)) of Human Glioblastoma Multiforme." Cellular and Molecular Neurobiology 28(7): 
991-1003. 

Wang, V. Y. and H. Y. Zoghbi (2001). "Genetic regulation of cerebellar development." Nat Rev 
Neurosci 2(7): 484-491. 

Wang, X., C. Venugopal, et al. (2012). "Sonic hedgehog regulates Bmi1 in human medulloblastoma 
brain tumor-initiating cells." Oncogene 31(2): 187-199. 

Wang, Z., S. S. Kim, et al. (2012). "E-cadherin upregulates expression of matrix macromolecules 
aggrecan and collagen II in the intervertebral disc cells through activation of the intracellular 
BMP-Smad1/5 pathway." J Orthop Res 30(11): 1746-1752. 



271 
 

Watson, A., A. Eilers, et al. (1998). "Phosphorylation of c-Jun is necessary for apoptosis induced by 
survival signal withdrawal in cerebellar granule neurons." J Neurosci 18(2): 751-762. 

Wechsler-Reya, R. and M. P. Scott (2001). "The developmental biology of brain tumors." Annu Rev 
Neurosci 24: 385-428. 

Wechsler-Reya, R. J. and M. P. Scott (1999). "Control of neuronal precursor proliferation in the 
cerebellum by Sonic Hedgehog." Neuron 22(1): 103-114. 

Weggen, S., T. A. Bayer, et al. (2000). "Low frequency of SV40, JC and BK polyomavirus sequences in 
human medulloblastomas, meningiomas and ependymomas." Brain Pathol 10(1): 85-92. 

Wiederschain, D., L. Chen, et al. (2007). "Contribution of polycomb homologues Bmi-1 and Mel-18 to 
medulloblastoma pathogenesis." Mol Cell Biol 27(13): 4968-4979. 

Wikstrand, C. J., H. S. Friedman, et al. (1991). "Medulloblastoma cell-substrate interaction in vitro." 
Invasion Metastasis 11(6): 310-324. 

Wingate, R. J. (2001). "The rhombic lip and early cerebellar development." Curr Opin Neurobiol 
11(1): 82-88. 

Wixon, S. a. S., KL (1997). Anesthesia and Analgesia in Rodents. Anesthesia and Analgesia in 
Laboratory Animals. S. W. DJ Kohn, WJ White, GJ Benson, Academic Press. 

Wozney, J. M. and V. Rosen (1998). "Bone morphogenetic protein and bone morphogenetic protein 
gene family in bone formation and repair." Clin Orthop Relat Res(346): 26-37. 

Wozney, J. M., V. Rosen, et al. (1988). "Novel regulators of bone formation: molecular clones and 
activities." Science 242(4885): 1528-1534. 

Wu, X., P. A. Northcott, et al. (2011). "Mouse models of medulloblastoma." Chin J Cancer 30(7): 442-
449. 

Wu, X., P. A. Northcott, et al. (2012). "Clonal selection drives genetic divergence of metastatic 
medulloblastoma." Nature 482(7386): 529-533. 

Yang, J. and R. A. Weinberg (2008). "Epithelial-mesenchymal transition: at the crossroads of 
development and tumor metastasis." Dev Cell 14(6): 818-829. 

Yang, M. H., D. S. S. Hsu, et al. (2010). "Bmi1 is essential in Twist1-induced epithelial-mesenchymal 
transition." Nature Cell Biology 12(10): 982-992. 

Yao, X. B., X. X. Wang, et al. (2013). "Silencing Bmi-1 expression by RNA interference suppresses the 
growth of laryngeal carcinoma cells." Int J Mol Med 31(5): 1262-1272. 

Yauch, R. L., G. J. Dijkgraaf, et al. (2009). "Smoothened mutation confers resistance to a Hedgehog 
pathway inhibitor in medulloblastoma." Science 326(5952): 572-574. 

Ye, L., J. M. Lewis-Russell, et al. (2007). "Hepatocyte growth factor up-regulates the expression of the 
bone morphogenetic protein (BMP) receptors, BMPR-IB and BMPR-II, in human prostate 
cancer cells." Int J Oncol 30(2): 521-529. 

Yilmaz, M. and G. Christofori (2009). "EMT, the cytoskeleton, and cancer cell invasion." Cancer and 
Metastasis Reviews 28(1-2): 15-33. 

Yin, T., H. Wei, et al. (2011). "Bmi-1 promotes the chemoresistance, invasion and tumorigenesis of 
pancreatic cancer cells." Chemotherapy 57(6): 488-496. 

Yokota, N., S. Nishizawa, et al. (2002). "Role of Wnt pathway in medulloblastoma oncogenesis." Int J 
Cancer 101(2): 198-201. 

Yu, J. Y., S. L. DeRuiter, et al. (2002). "RNA interference by expression of short-interfering RNAs and 
hairpin RNAs in mammalian cells." Proc Natl Acad Sci U S A 99(9): 6047-6052. 

Zahm, S. H. and M. H. Ward (1998). "Pesticides and childhood cancer." Environ Health Perspect 106 
Suppl 3: 893-908. 

Zavadil, J. and E. P. Bottinger (2005). "TGF-beta and epithelial-to-mesenchymal transitions." 
Oncogene 24(37): 5764-5774. 

Zeltzer, P. M., J. M. Boyett, et al. (1999). "Metastasis stage, adjuvant treatment, and residual tumor 
are prognostic factors for medulloblastoma in children: conclusions from the Children's 
Cancer Group 921 randomized phase III study." J Clin Oncol 17(3): 832-845. 

Zhang, R. and L. Zhou (1999). "Medulloblastoma." Chin Med J (Engl) 112(4): 297-301. 



272 
 

Zhang, X., X. Li, et al. (2002). "Experiment and observation on invasion of brain glioma in vivo." 
Journal of Clinical Neuroscience 9(6): 668-671. 

Zhang, X., A. Santuccione, et al. (2011). "Differentiation of postnatal cerebellar glial progenitors is 
controlled by Bmi1 through BMP pathway inhibition." Glia 59(7): 1118-1131. 

Zhao, H., O. Ayrault, et al. (2008). "Post-transcriptional down-regulation of Atoh1/Math1 by bone 
morphogenic proteins suppresses medulloblastoma development." Genes Dev 22(6): 722-
727. 

Zhao, X., Z. Liu, et al. (2012). "Global gene expression profiling confirms the molecular fidelity of 
primary tumor-based orthotopic xenograft mouse models of medulloblastoma." Neuro 
Oncol 14(5): 574-583. 

Zhou, L., D. Picard, et al. (2010). "Silencing of thrombospondin-1 is critical for myc-induced 
metastatic phenotypes in medulloblastoma." Cancer Res 70(20): 8199-8210. 

Zimmerman, L. B., J. M. De Jesus-Escobar, et al. (1996). "The Spemann organizer signal noggin binds 
and inactivates bone morphogenetic protein 4." Cell 86(4): 599-606. 

Zurawel, R. H., C. Allen, et al. (2000). "Analysis of PTCH/SMO/SHH pathway genes in 
medulloblastoma." Genes Chromosomes Cancer 27(1): 44-51. 

Zurawel, R. H., C. Allen, et al. (2000). "Evidence that haploinsufficiency of Ptch leads to 
medulloblastoma in mice." Genes Chromosomes Cancer 28(1): 77-81. 

Zurawel, R. H., S. A. Chiappa, et al. (1998). "Sporadic medulloblastomas contain oncogenic beta-
catenin mutations." Cancer Res 58(5): 896-899. 

 

 


