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Immune cell infiltration and interaction with stellate cells in pancreatic ductal 

adenocarcinoma 

Abstract 

 

 Pancreatic ductal adenocarcinoma (PDAC) is a disease with very poor 

prognosis amongst all pancreatico-biliary cancers. PDAC is characterised by a 

pronounced desmoplastic stroma which upon depletion has been associated with 

immune cell mediated tumour clearance. In situ analyses of various immune cell 

markers in the stromal compartments may provide a lucid picture of immune cell 

migration to the tumour epithelia.  

 Automated, unbiased, high throughput imaging and analysis of specifically 

designed tissue microarrays, from surgically resected tissue samples of PDAC, 

advanced PDAC, and other pancreatico-biliary diseases; stained for distinct immune 

cell markers was carried out in the juxtatumoural stroma and the panstromal 

compartments. Prognostic significance was determined with X-Tile software. In vitro 

and in vivo assays were undertaken to outline the possible mechanisms.  

 Immune cell infiltration to PDAC was higher than infiltration to other 

pancreatico-biliary diseases with the exception of CD8+ T cells. While CD4+, CD68+ 

and myeloperoxidase+ cells could infiltrate the juxtatumoural stroma of PDAC; CD3+, 

CD8+, Foxp3+ and CD20+ cells could not in the early stage PDAC patients tissue 

analysed and also in an independent validation cohort of advanced stage PDAC 

patients. Survival analyses demonstrated pro-survival effects of having high CD8+ 

densities. CD8+ T cells could only infiltrate the juxtatumoural compartment of KPC 

mice after stromal collapse resulting from targeting stellate cells with All-trans 

Retinoic Acid. 
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 In vitro migration assays demonstrated increased CD8+ T cell migration 

towards activated pancreatic stellate cells compared to quiescent pancreatic stellate 

cells and appeared to be dependent on CXCL12.  

 T cells are hindered from migrating to the juxtatumoural compartment by 

activated pancreatic stellate cells as a result of an increase in CXCL12 secretion. 

Rendering activated pancreatic stellate cells quiescent results in a reduction of 

CXCL12 secretion which may allow CD8+ T cells to migrate to the tumours and 

perform cytotoxic functions. 
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1.0 Introduction 

Pancreatic cancer 

a. Pancreatic ductal adenocarcinoma 

Pancreatic ductal adenocarcinoma (PDAC) even with its low incidence is a 

leading cause of mortality in the world and the fourth cause of death in the Western 

world. Less than 4% of patients diagnosed with the disease survive longer than 5 

years, even though there are advances in imaging protocols and improved surgical 

outcomes (Mazur and Siveke 2011). The high mortality of PDAC may be because 

patients often present with metastatic disease at diagnosis (Mazur and Siveke 2011). 

Also pancreatic cancer is notoriously resistant to systemic chemotherapy (Maitra and 

Hruban 2008). A recent study showed that in a transgenic mouse model of PDAC 

the chemotherapy is not delivered to the tumour as a result of vascular deficiency 

(Olive, Jacobetz et al. 2009) which correlates with the dense stromal matrix that 

makes up the bulk of PDAC tumours (Neesse, Michl et al. 2011).  

PDAC is believed to undergo a stepwise process wherein genetic alterations 

are accumulated from inception of disease to malignant disease with corresponding 

histopathological and morphological changes. This stepwise process model 

originates with a genetic alteration resulting in activating oncogenic K-ras gene and 

telomerase shortening among others and is followed by silencing somatic mutations 

in tumour suppressor genes p16, DPC4 and p53 (Hruban 2000) (Figure 1.1A). The 

origins of PDAC may be hereditary in about 10% of patients, and often involves 

genes such as BRCA2, STK11, P16 and PRSS1 (Neesse, Michl et al. 2011) (Hruban 

2005). A validated risk factor believed to cause pancreatic cancer is cigarette 

smoking (Bosetti, Lucenteforte et al. 2012). Others including diet rich in meats and 
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fats, obesity, low serum folate levels, chronic pancreatitis and diabetes mellitus; 

these have not been validated definitely (Maitra and Hruban 2008).  
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Figure 1.1 Genetic alterations accompanying progressive stages in a putative 

model of pancreatic ductal adenocarcinoma progression  Modified (Maitra and 

Hruban 2008). 

Representation of genetic changes during PDAC progression from normal to the 

PanIN stages and to invasive disease 
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1.1 b. Stromal microenvironment in PDAC 

The stroma in PDAC (Figure 1.2) is conspicuous histologically and is 

composed of extracellular matrix (ECM), activated fibroblasts, myofibroblasts, 

inflammatory cells, hypertrophic nerve fibres and blood and lymphatic vessels 

resulting a distorted pancreatic tissue architecture which is distinct from the normal 

(Figure 1.2) (Neesse, Michl et al. 2011). Production of stroma is induced by the 

activation of cancer driven pathways such as: hepatocyte growth factor (HGF/Met), 

fibroblast growth factor (FGF), transforming growth factor beta (TGFβ), epidermal 

growth factor (EGF) and insulin-like growth factor 1 (IGF-1) (Ide T 2006; Mahadevan 

D 2007), and their autocrine and paracrine signalling leading to production of ECM 

components such as proteases, proteoglycans, collagen and fibronectin amongst 

others (Neesse, Michl et al. 2011). 
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Figure 1.2 Hematoxylin and Eosin of pancreatic ductal adenocarcinoma 

(PDAC) 

 

A representative picture of PDAC, ―A‖ shows the glandular pattern and duct-like 

structure of an infiltrating neoplasm; ―B‖ shows the intense desmoplastic stroma that 

is a characteristic feature of this disease; and ―C‖ shows an infiltration to tissue of 

inflammatory cells. 

Scale bar: 100µm 
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Figure 1.3 Normal pancreas 

A representative picture of a normal pancreas, ―green arrows‖ point to the acinar 

cells which with the help of ducT-cells (―red arrows‖) make up the exocrine pancreas 

responsible for secretion of digestive enzymes. Islets of Langerhans (―yellow 

arrows‖) make up the endocrine pancreas that regulates metabolism and 

homeostasis of glucose by secreting various hormones such as insulin, glucagon 

and somatostatin, into the blood stream (Hezel, Kimmelman et al. 2006). Scale bar 

50µm. 
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1.1 c. Characteristics of PDAC 

PDAC can be distinguished by the following characteristics (Sharma and Green 

2004): 

1. Nuclear size variation of greater than 4:1 in a single duct 

2. Incomplete lumina 

3. Luminal necrosis 

4. Invasion into surrounding vasculature 

5. Perineural invasion 

6. A haphazard growth pattern 

Precursor lesions 

 There are three possible precursor lesions leading to PDAC; pancreatic 

intraepithelial neoplasia (PanIN), mucinous cystic neoplasm (MCN) and intraductal 

papillary mucinous neoplasm (IPMN). All of these precursor lesions undergo similar 

genetic alterations from early carcinogenesis to invasive disease beginning with 

telomere shortening (Ottenhof, de Wilde et al. 2011). 

 Telomeres are made up of simple tandem DNA repeats that are found at the 

ends of human chromosomes (Jiang, Ju et al. 2007). They do not encode any gene 

products and shorten with each round of cell division ensuring cells do not proliferate 

indiscriminately, and by so doing, may act as tumour suppressor (Jiang, Ju et al. 

2007). ―Pathologically‖ short telomerase form ―dicentric and ring‖ chromosomes that 

result in ―anaphase bridges‖ during mitosis; when these bridges break, DNA repair 
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processes occur which may inadvertently lead to chromosomal rearrangements 

(Ottenhof, de Wilde et al. 2011). Telomerase, the gene responsible for telomere 

shortening, has reduced expression in the earliest stages of PDAC carcinogenesis 

and is re-expressed in invasive disease (Ottenhof, de Wilde et al. 2011). 

 PDAC precursors are discussed below: 

1.2 a. Pancreatic intraepithelial neoplasia (PanIN) 

PanINs are ―non-invasive microscopic epithelial neoplasms, located in the 

smaller pancreatic ducts, characterised by cytologic and architectural atypia‖ 

(Hruban, Maitra et al. 2007). PanINs are classified into 3 main stages, PanINs 1 – 3 

(Figure 1.4- 1.6), and represent progressive states of pancreatic carcinogenesis 

characterised by varying nuclear and architectural atypia with increasing rates of 

genetic aberrations (Maitra, Fukushima et al. 2005). Genetic aberrations are similar 

to PDAC and begin with telomere shortening and activation of the K-ras oncogene in 

early PanIN and progresses with loss-of-function mutations in tumour suppressor 

genes CDNK2A, p53, SMAD4 and BRCA1, as well as alterations in Ki-67 (Maitra, 

Fukushima et al. 2005). 

PanIN lesions are common and they increase with age and are found in all 

regions of pancreas (Tanaka, Chari et al. 2006): however, their value as a 

therapeutic target has not been established as the rate and frequency with which 

they progress to PDAC is unknown (Hruban, Maitra et al. 2007). While PanINs can 

mimic PDAC, they can be distinguished by their histology characteristics (Table 1) 

(Maitra, Fukushima et al. 2005). 
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Figure 1.4 Representation of a PANcreatic Intra-epithelial Neoplasia 1 (PanIN1) 

A representation of a PanIN1 lesion characterized by tall columnar cells with nucleus 

basally located. Nuclei are small and may be oval or round in shape. 

Scale bar: 10µm 
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Figure 1.5 Representation of a pancreatic epithelial neoplasia 2 (PanIN2) 

A representation of a PanIN2 lesion which is architecturally papillary; cytological 

changes such as loss of polarity by nucleus, enlarged nuclei, nuclear crowding, 

hyperchromatism and pseudo-stratification are present.  

Scale bar 10µm. 
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Figure 1.6 Representation of a pancreatic epithelial neoplasia 3 (PanIN3) 

A representative picture of a PanIN3 lesion; characterized by its papillary 

architecture, luminal necrosis, loss of nuclear polarity, and prominent nuclear 

irregularities.  

Scale bar 10µm. 
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1.2 b. Mucinous cystic neoplasms (MCN) 

MCNs (Figure 1.7) are mucin producing, cyst forming epithelial neoplasms 

with a characteristic ovarian type stroma. This ovarian type stroma differentiates 

MCNs from IPMNs and is essential in the definition of MCN. 90% of MCNs occur in 

females with an average age of 50 years (range 14-95 years) (Maitra, Fukushima et 

al. 2005; Hruban, Maitra et al. 2007). Patients mostly present with symptoms such as 

abdominal pain, anorexia or a sense of fullness while other patients are 

asymptomatic (Maitra, Fukushima et al. 2005). MCNs form large multilocular cystic 

masses in the tail of the pancreas (Albores-Saavedra, Angeles-Angeles et al. 1987). 

The average size of an MCN is about 10cm and the external surface is usually 

smooth. Cut sections show a number of well-defined cysts which may be separated 

by fibrous septa. Some of the cysts contain thick mucin while others contain watery 

hemorrhagic material (Maitra, Fukushima et al. 2005). Diagnosis is arrived at by a 

combination of different diagnostic imaging modalities; computed tomography, 

magnetic resonance and endoscopic ultrasonography, that help to differentiate 

MCNs from the other neoplastic cysts such as intraductal papillary mucinous 

neoplasm, serous cystadenomas and solid and pseudopapillary tumours; and 

pseudocysts of the pancreas (Sahani, Kadavigere et al. 2005; Khalid and Brugge 

2007). Because pseudocysts are benign and resection may be considered 

unjustifiable, initial patient evaluation of pancreatic cysts should exclude pseudocysts 

(Martin, Hammond et al. 1998; Sahani, Kadavigere et al. 2005). Pseudocysts have 

the following radiographic characteristics that differentiate them from cystic 

neoplasms: a lack of septae, cyst wall calcifications, loculation, communication 

between the pancreatic duct and cyst and hypovascularity (Holzheimer and Mannick 

2001; Holzheimer, Mannick et al. 2001) 
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Activating mutation for the oncogene K-ras is observed early in MCN 

development. SMAD4 and p53 mutations have also been observed in later stages of 

the disease (Bartsch D, Bastian D 1998; Flejou JF, Boulange B 1996). 
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Figure 1.7 Mucinous cystic neoplasm (MCN) 

A representative picture of MCN stained with haematoxylin and eosin, 

characteristically showing mucin secretion and ovarian type of stroma. 

Scale bar 10µm. 
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1.2 c. Intraductal papillary mucinous neoplasm 

 IPMNs (Figure 1.8) are large, non-invasive and mucin producing neoplasia of 

the epithelia that form finger-like papillae that arise from the main duct or branch 

ducts. A characteristic and diagnostic feature of main-duct IPMNs is the oozing of 

mucin from a patulous ampulla of Vater observed during endoscopy (Maitra, 

Fukushima et al. 2005; Hruban, Maitra et al. 2007). Unlike MCN, IPMN lacks an 

ovarian type stroma, occurs more frequently in men than women (60: 40 ratio) and 

the cystic ducts of an IPMN typically involve the larger pancreatic ducts (Fukushima, 

Mukai et al. 1997; Maitra, Fukushima et al. 2005; Hruban, Maitra et al. 2007). The 

symptoms of IPMN include abdominal pain, weight loss, nausea and vomiting, 

steatorrhea, diabetes mellitus, back pain, jaundice and pancreatitis (Maitra, 

Fukushima et al. 2005; Hruban, Maitra et al. 2007). IPMNs mostly arise in the head 

of the pancreas, they may also arise in the body, tail or diffusely across the entire 

length of the pancreas (Maitra, Fukushima et al. 2005). 

 Non-invasive IPMNs may be divided into 2 main groups: main-duct type and 

branch-duct type. The main duct type involves the main pancreatic duct and has 

higher probability of dysplasia and is associated with invasive carcinoma more often 

than the branch-duct type. Non-invasive IPMNs are histologically graded by their 

degree of architectural and cytological atypia into IPMNs with mild dysplasia (IPMN 

adenoma), IPMNs with moderate dysplasia and IPMNs with severe dysplasia 

(carcinoma in situ) (Hruban, Maitra et al. 2007). 

 Similar to PDAC, IPMNs have an initiating oncogenic K-ras mutation with 

increases in frequency correlating with increasing dysplasia (Hruban, Maitra et al. 

2007) and tumour suppressor gene mutations such as p53 and CDNK2A occur at 



33 
 

later stages. But unlike PDAC, LKB1/ STK11, the Peutz-Jeghers gene, is inactivated 

in about 30% of IPMN patients (Sato N, Rosty C, 2001). 
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Figure 1.8 Intraductal papillary neoplasm (IPMN) 

A representative picture of IPMN stained with haematoxylin and eosin, 

characteristically showing mucin production (red arrow) and papillae.  

Scale bar 50µm. 
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 PanIN IPMN (Non 

invasive) 

MCN 

Often clinically detected No Yes Yes 

Often grossly visible No Yes Yes 

Often grossly visible mucin No` Yes Yes 

Well formed papillae No Yes Minimal 

Muc2 expression No  Sometimes Yes (gobleT-

cells only) 

Associated with invasive colloid carcinoma No  Yes No (rarely) 

Ovarian type stroma No No  Yes 

Communication with ducts Yes Yes No 

 

 

Table 1.1 Features distinguishing PanINs from IPMNs and MCN. Adapted (Levi, 

Klimstra et al. 2004; Hruban, Maitra et al. 2007; Baker, Seeley et al. 2012) 
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 Pancreatico-bilary diseases mimicking PDAC 

1.3 a. Chronic pancreatitis 

 Pancreatitis is the most common benign disease of the pancreas and may be 

acute or chronic, based on morphologic, clinical and histologic observations. Chronic 

pancreatitis (CP; Figure 1.9) is a persistent inflammation of the pancreas 

characterised by the loss of exocrine and endocrine parenchyma, irregular fibrosis, 

immune cell infiltration and ductal abnormalities (De Backer et al. 2002). Chronic 

pancreatitis typically manifests as abdominal pain and with increased symptoms of 

exocrine and endocrine insufficiency (such as mal-absorption and diabetes mellitus) 

as the disease progression occurs (De Backer et al. 2002). Several types of chronic 

pancreatitis exist and may mimic PDAC such as autoimmune, alcoholic, tropical and 

hereditary pancreatitis (Kloppel G, 2007) most common being the alcohol-induced. 

CP often exhibit duct like glands that are very similar to benign pancreatic ducts; 

produce an abundant fibrotic stroma of varying cellularity; and infiltrates pancreatic 

tissue without destroying it completely or replacing it. These features make it difficult 

to differentiate CP from PDAC (Klöppel and Adsay 2009). 

1.3 b. PDAC and chronic pancreatitis 

 CP may be differentiated from PDAC by the following histopathology criteria: 

1. Lobular pattern: When observed at low magnification, the remaining 

structures of CP; acinar, islets and small ducts retain their normal lobular 

arrangement. The formation of tubular complexes (ductal transformation) by 

the acinar may occasionally result in packed clusters that are evenly shaped, 

sized and spaced, and segregated from surrounding fibrous tissue. This is in 

contrast to PDAC, as well-differentiated PDAC form duct-like structures with 
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atypical shape that are distorted and haphazardly distributed (Klöppel and 

Adsay 2009). 

2. Ductal contours and contents: Benign ducts have smooth, ripple-like contours 

with an open and round lumen. Benign ducts also retain their epithelium and 

their ducts rather than containing debris contain plugs and ―concretions of 

secretions‖ which become calculi when calcified. Contrarily, ducts of PDAC 

are angular and ―ruptured‖ (i.e. parts of the duct lacks epithelia and is lined by 

mesenchymal tissue). This leads to mucin leaking into the surrounding tissue 

attracting macrophages. PDAC ducts may also contain debris (Klöppel and 

Adsay 2009). 

3. Stromal reaction and infiltration: A characteristic feature of PDAC is the 

concentration of a hyper-cellular stroma surrounding large neoplastic ducts. 

PDAC cells also erratically infiltrate the relatively acellular stroma either 

individually or in small cell clusters (Klöppel and Adsay 2009). 

4. Extrapancreatic infiltration of tissue: A unique characteristic feature of PDAC 

is their ability to infiltrate nerve tissue, termed perineural invasion and is 

detected in almost all resected PDAC tissue. Perineural invasion occurs in the 

intra-pancreatic nerve fibres and nerve trunks in the retroperitoneal area 

behind the head of the pancreas, and around the common bile duct. PDAC 

cells invading the nerves show glandular differentiation. By contrast, benign 

ducts are rarely found around nerves and almost never show invasion to the 

perineurium. PDAC cells are also seen to infiltrate vascular tissues (usually 

involving veins); a feature used in diagnosis. Another feature is the location of 

solitary PDAC ducts as an island within fatty tissue with the ducts either 
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touching the fatty tissue or surrounded by inflammatory cells (Klöppel and 

Adsay 2009).  

 

1.3 c. Cytological differentiation of chronic pancreatitis from PDAC 

CP may be differentiated from PDAC by the following cytological criteria 

(Klöppel and Adsay 2009): 

 

Chronic pancreatitis 

a. Ducts of CP are composed of differentiated, equally sized epithelial cells. 

b. Nuclei are round and located at the base of cell 

c. Nuclei show no signs of nucleoli or at most small distinct nucleolus 

d. There are no mitoses 

 Pancreatic ductal adenocarcinoma 

a. Nuclear size variation among cells within an individual gland is 4:1 

b. Larger nuclei, approximately 3 times lymphocyte 

c. Nuclei with marked hyperchromatism and distinct and occasional multiple 

nucleoli 

d. Presence of mitotic figures 

e. Distinct loss of nuclear polarity 
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Figure 1.9 Chronic pancreatitis 

A representative picture of chronic pancreatitis stained with haematoxylin and eosin; 

showing loss of exocrine and endocrine parenchyma, irregular fibrosis and ductal 

abnormalities. Ducts are smooth with ripple like contours and open and round 

contours, nuclei are also round and at the base of cell with no signs of nucleolus or 

mitosis (―red arrow‖). Normal acinar cells (―yellow arrow‖) retain their lobular pattern, 

stroma (―green arrow‖) is not hypercellular and ducts do not infiltrate the stroma.  

Scale bar 50µm. 
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1.3 d. Ampullary carcinoma 

 The pancreatic duct and bile duct merge at the ampulla of Vater forming a 

channel that drains these ducts into the duodenum. The ampulla of Vater is thus 

exposed to three different juices and is prone to tumours similar to those of the small 

intestine (Albores-Saavedra J, Menck 2000).(Fischer and Zhou 2004) 

 Ampullary carcinomas (Figure 1.10) are often symptomatic earlier due to 

biliary obstruction leading to persistent icterus. The jaundice may be waxing and 

waning type due to sloughing of ampullary tumour. This allows for 80% to 90% of 

tumours to be treated by surgery. The 5- year survival rate after tumour resection is 

21% to 61% with a mean of 40% (Fischer and Zhou 2004). 

    

1.3 e. PDAC and ampullary carcinoma 

 Like PDAC and other pancreatico-biliary diseases discussed earlier, 

ampullary carcinoma has an activating K-ras point mutation and genetic alterations 

for the tumour suppressor genes CDKN2A, p53 and SMAD4 have also been 

observed (Fischer and Zhou 2004). The frequency of K-ras mutations which is about 

24% to 47% in ampullary carcinoma is considerably less than K-ras frequency of 

around 80% in PDAC (Howe, Klimstra et al. 1998). 
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Figure 1.10 Ampullary carcinoma 

A representative picture of Ampullary carcinoma stained with haematoxylin and 

eosin. ―Red arrows‖ point at the immune/desmoplastic stroma, ―green arrows‖ point 

at the tumour cells and ―yellow arrows‖ point at the muscle layer of the bowel.  

Scale bar 50µm. 
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1.3 f. Cholangiocarcinoma 

 Cholangiocarcinoma (Figure 1.11) arises from the epithelia of the biliary tract 

(Nakeeb A, Pitt HA 1996). The disease is found more in men (approximately 60%) 

usually in their 70‘s (West J, Wood H 1971- 2001), and most of whom were heavy 

smokers or diabetic (Endo I, Gonen M 2008). Cholangiocarcinoma has been 

associated to the following diseases: primary sclerosing cholangitis, hepatitis C, 

biliary infection (chronic or recurrent), hepatolithiasis, Caroli‘s disease and cirrhosis 

of the liver (Skipworth, Olde Damink et al. 2011).  

 Cholangiocarcinoma may be grouped as intrahepatic and extrahepatic (de 

Groen, Gores et al. 1999). Intrahepatic cholangiocarcinoma occur when the tumour 

is within the liver whereas extrahepatic cholangiocarcinoma may be distal (when the 

tumour occurs at the distal bile ducts) or hilar (when tumours occur at the bifurcation 

of hepatic ducts) (de Groen, Gores et al. 1999; Eckmann, Patel et al. 2011). Surgical 

resection remains the only ―curative treatment‖ (Khan, Davidson et al. 2002) which is 

feasible in a minority of patients. As a result prognosis of biliary tumours is poor with 

21.4% surviving up to 1 year, and 3.8% surviving up to 5 years after diagnosis 

(Coupland, Kocher et al.). 

 Patients with extrahepatic cholangiocarcinoma present with painless jaundice 

and approximately 10% present with signs of sepsis and cholangitis (Skipworth). 

Disease progression is gradual because of the gradual infiltration and spread of 

disease along the biliary tract that results in delayed cholestasis, hepatic failure and 

cholangitis (Skipworth). Majority of cholangiocarcinoma patients present late with 

biliary obstruction and sepsis, and death mostly results from recurrent biliary 

obstruction and sepsis rather than malignancy (Skipworth, Olde Damink et al. 2011). 
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1.3 g. PDAC and cholangiocarcinoma  

 The molecular characteristics of cholangiocarcinoma are similar to those of 

PDAC as both tumours carry mutations in K-ras, Tp53, SMAD-4 and p16 (Reeves 

and DeMatteo 2000; Khan, Davidson et al. 2002). The extensive desmoplastic 

reaction present in (extra-hepatic) cholangiocarcinoma (de Groen, Gores et al. 1999) 

is also similar to that seen in PDAC.  
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Figure 1.11 Cholangiocarcinoma 

 

A representative picture of cholangiocarcinoma stained with haematoxylin and eosin. 

―Red arrow‖ points at tumour and ―green arrow‖ at stroma.  

Scale bar 50µm.  
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Immune cells 

1.4 a. Introduction 

 Risk of neoplasia is promoted by continued cell proliferation, the presence of 

growth factors, activated stroma, DNA damage causing agents and inflammatory 

cells amongst other micro-environmental factors (Coussens and Werb 2002).  

 Cancers have been known to express foreign antigens as a result of genomic 

instability and aberrant gene expression. These can be recognized by immune cells 

(Van den Eynde and van der Bruggen 1997; Clark, Hingorani et al. 2007). In vitro 

and in vivo studies have shown that immune cells are activated in response to 

cancers (Garside 1998). Tumour infiltrating lymphocytes have been associated with 

increased survival in patients with melanomas, colorectal carcinomas, ovarian 

cancers and breast cancers (Clemente, Mihm et al. 1996; Marrogi, Munshi et al. 

1997; Naito, Saito et al. 1998; Zhang, Conejo-Garcia et al. 2003; Galon, Costes et al. 

2006; Tosolini, Kirilovsky et al. 2011). 

 

1.4 b. Inflammation 

 Inflammation is an integral early process in immune cell response to 

physiological processes such as wound healing and pathological processes such as 

infection. Inflammation often results from tissue injury where a network of chemical 

signals such as cytokines and chemokines initiate and sustain a host response 

designed to repair affected  tissue (Coussens and Werb 2002). With the help of 

specific chemokines and cytokines (Balkwill & Mantovani, 2001), leukocytes are 

activated and they migrate from blood vessels to affected tissue.  
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The activation and migration of leukocytes occur in four steps (Coussens and Werb 

2002): 

1. Activation of the adhesion molecule family of selectins (L-, P- and E- 

selectins) that facilitate leukocyte rolling along the endothelium. 

2. ―Switching-on‖ of cytokine and chemokine signals that activate and upregulate 

integrins on leukocytes. 

3. Tight adhesion of leukocytes, immobilizing them on the surface of the 

vascular endothelium via α4 β1 and α4 β7 integrins that bind to endothelial the 

vascular cell adhesion molecules (VCAM-1) and mucosal addressin cell 

adhesion molecule (MadCAM-1) respectively. 

4. Transmigration of leukocytes through the endothelium to sites of inflammation 

by the help of proteases such as the Matrix Metalloproteinases (MMPs). 

These steps will be described in more detail. 
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Figure 1.12 Microenvironment in pancreatic cancer 

The microenvironment in pancreatic cancer is made up blood/lymphatic  vessels 

where there may be transported and transplanted to other organs. There is an influx 

of immune cells that include neutrophils, macrophages and lymphocytes and a rich 

mixture of chemokines and cytokines that regulate these processes. A high 

proportion of the microenvironment is made up of myofibroblasts whose origin is 

believed to be stellate cells. 
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1.4 c. Immune cells: mechanism of action  

 Immune cells within the cancer tissue are morphologically organized in such a 

manner as to assist the complex cellular interactions needed for development, 

activation, migration, function and regulation of the various leukocytes (Campbell, 

Kim et al. 2003). This organisation is made possible by tissue and microenvironment 

specific lymphocyte homing due to the expression of surface adhesion molecules 

and chemo-attractant receptors such as CXCR5, VLA4 and P- and E- selectin 

ligands (Campbell and Koch 2011).  

 

1.4 d. Lymphocyte homing 

 Inactivated lymphocytes continually re-circulate the body by crossing high 

endothelial venules into the lymph nodes where they remain from a few hours to a 

number of days (Smith 2003). In the absence of antigen specific recognition they exit 

into the circulation through lymph vessels and the thoracic duct (Smith 2003; von 

Andrian and Mempel 2003). Monocytes and neutrophils meanwhile circulate in the 

blood until when attracted by stimulant in target tissue (von Andrian and Mempel 

2003). They then release cytokines and chemokines that attract lymphocytes to 

target tissues (Smith 2003). 

 Lymphocytes carry out precise effector functions that ensure host response to 

infection and inflammation as well as mediate homeostasis. T-cells, in vivo, show a 

migratory phenotype of an average speed of approximately 11µm/ minute with peak 

velocities exceeding 25 µm/ minute (Miller 2003) and they are approximately 100 

times faster than fibroblasts and endothelial cells (Smith 2003). 
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 The process of immune response wherein leukocytes migrate from the blood 

(in vessels) to target tissues is termed extravasation. The process involves a series 

of steps in sequence from tethering and rolling of leukocytes on the walls of blood 

vessels, to firm adhesion and protrusion through the endothelial barrier (diapedesis). 

 

1.4 e. Migration 

 The migration of leukocytes is a complex process involving various integrins, 

motor proteins (such as myosins and kinesins), selectins, cytokines and chemokines. 

The adhesion of ligands of integrins (such as VCAM1 and ICAM1), chemokines and 

selectins with their respective receptors is a major driving force for migration. 

Activated endothelial cells express such proteins on their surface and these proteins 

control the different stages of leukocyte extravasation (Vicente-Manzanares and 

Sánchez-Madrid 2004). 

 Tethering, the initial attachment of leukocytes to the endothelial vessel wall, is 

mediated by the attachment of selectins to their ligands. Leukocytes express L- 

selectin which interacts with sialylated ligands expressed on the endothelium to 

mediate rolling (McEver 2002). P-selectin glycoprotein ligand 1 (PSGL1) expressed 

on the actin cytoskeleton of leukocytes also mediates rolling by interaction with P-

selectin and E-selectin expressed by the endothelium (McEver and Cummings 

1997). 

 Firm adhesion (leukocyte arrest) follows thereafter with the Intracellular 

adhesion molecule 1 (ICAM1) and Vascular cell adhesion molecule 1 (VCAM1) 

mediating this process. VCAM1 on endothelial vessel wall interacts with α 4β 1 (very 

late antigen 4, VLA4) while ICAM1 interacts with β2 integrins particularly leukocyte 
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function-associated antigen, LFA1 expressed on the membrane of the leukocyte 

(Barreiro 2002).  

 LFA-1 (CD11a/ CD18; αLβ2), in addition to mediating adhesion, also promotes 

migration of leukocyte (Smith 2003). Andrew Smith and colleagues after exposing T-

cells with active LFA-1 to immobilised ligand ICAM-1 observed that the T-cells 

polarised and begun to migrate approximately 2 minutes following contact with 

ICAM-1 suggesting induction of migration is a potent signalling function of LFA-1 

(Smith 2003). 
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Figure 1.13 Representation of leukocyte chemotaxis 

Leukocytes recirculate the body in blood vessels and in response to stimulants from 

tissue ―tether‖ to selectins on endothelial vessel walls where they perform ―rolling 

adhesion‖ from which ―tight binding‖, usually involving ICAM-1/ VCAM-1 and their 

receptor on leukocytes, occur. Still in response to chemokine secretion from tissue, 

leukocytes protrude the endothelial barrier (diapedesis) on to target tissue where 

they migrate on tissue to target.  
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1.4 f. Chemokines 

 Chemokines were originally defined, based on their function, as soluble 

factors regulating specific migration of leukocytes during inflammation. This definition 

has now been modified to include all cell types including neoplastic cells (Rossi D & 

Zlotnik A 2000). In addition to recruiting leukocytes, chemokines also effects stromal 

and neoplastic cells (Coussens and Werb 2002). Tumour cells regulate their 

chemokine expression to help recruit inflammatory cells and help with their [tumour] 

growth and progression(Coussens and Werb 2002). For example, in Melanoma the 

chemokines GROα/ CXCL1, GROβ/ CXCL2, GROγ/ CXCL3 and IL-8/ CXCL8 have 

been demonstrated to control proliferation of neoplastic cells via an autocrine 

mechanism. Blocking GROα stops proliferation of melanoma in vitro while the 

overexpression of GROα, GROβ and GROγ in tumour derived cell lines enhances 

tumourigenicity and colony forming activity in nude mice (Richmond A & Thomas H, 

1986; Norgauer J, Metzner B 1996; Balentien E, Mufson BE et al 1991; Owen JD et 

al 1997). Chemokines may also regulate angiogenesis where they have both pro-

angiogenic and angiostatic effects and the balance of which may regulate the 

physiology of neoplastic cell. An example is the chemokine CXCL12/ SDF-1α that 

induces VEGF-A expression (Coussens and Werb 2002). 
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Ligand Names Receptors 
Immune cell 
recruitment 

 
  

    
  

 
   

CXCL1 
 

Gro-a, growth related oncogene-a  
 

CXCR1, CXCR2   MC, MO 

CXCL2  
 

Gro-ß, growth related oncogene-ß  
 

CXCR2 
 

  MC, MO 

CXCL3 
 

Gro-g, growth related oncogene-g  
 

CXCR2 
 

  MC, MO 

CXCL4 
 

PF-4, platelet derived factor 4  
 

CXCR3 
 

  T 

CXCL5  
 

ENA-7A, epithelial cell derived  
 

CXCR2 
 

  MC, MO 

  
 

neutrophil activating factor 78  
 

  
 

   

CXCL6  
 

 GCP-2, granulocyte chemoattractant  CXCR1 
 

  MO, MC 

  
 

protein 2 
   

  
 

   

CXCL7 
 

NAP-2, neutrophil activating protein 2  CXCR2 
 

  MC, MO 

CXCL8  
 

IL-8, interleukin 8  
   

CXCR1, CXCR2   MC, MO 

CXCL9  
 

MIG, monokine induced by interferon  CXCR3 
 

  T 

CXCL10  
 

IP-10, g interferon inducible protein 10  CXCR3 
 

  T 

CXCL11  
 

I-TAC, interferon inducible T-cell  
 

CXCR3 
 

  T 

    a-chemoattractant  
  

  
 

   

CXCL12  
 

SDF-1, stromal-derived factor-1 
 

CXCR4 
 

  T, B, MO 

CXCL13  
 

BCA-1, B-cell activating chemokine 1  CXCR5 
 

  B 

CXCL14  
 

BRAK, breast and kidney chemokine  ? 
 

   

CXCL16  
 

Leukotactin-1  
   

CXCR6 
 

  NK 

      
    

  
 

   

 
  

    
  

 
   

      
    

  
 

   

CCL1 
 

I-309  
    

CCR8 
 

  T, NK 

CCL2  
 

MCP-1, monocyte chemoattractant  
 

CCR2, CCR11   T, MC, MO 

    protein 1  
   

  
 

   

CCL3  
 

MIP-1a, macrophage inflammatory  
 

CCR1, CCR3, CCR5 
EO, MO, BO, 
T, NK 

    protein 1a  
   

  
 

   

CCL4  
 

MIP-1ß, macrophage inflammatory  
 

CCR1, CCR5   MC 

    protein 1ß  
   

  
 

   

CCL5  
 

RANTES, regulated on activation, 
 

CCR1, CCR3, CCR5 
EO, MC, MO, 
BO 

     normally T-cell expressed and secreted    
 

   

CCL7  
 

MCP-3, monocyte chemoattractant  
 

CCR1, CCR2, CCR3,  
EO, MC, MO, 
BO 

    protein 3  
   

CCR11 
 

  MO 

CCL8  
 

MCP-2, monocyte chemoattractant  
 

CCR1, CCR2, CCR3,  MC, MO, BO 

    protein 2        CCR5, CCR11    

Table 1.2 Chemokines and their receptors (Iida and Grotendorst 1990; Ono, 

Nakamura et al. 2003; Bendall 2005; BENDALL 2005; Oo and Adams 2010) 
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Ligand Names Receptors  

CCL11  
 

Eotaxin  
    

CCR3 
 

  EO, MC, BO 

CCL12    MCP-5, monocyte chemoattractant  
 

CCR2, CCR11   MC, MO 

    protein 5  
   

  
 

   

CCL13  
 

MCP-4, monocyte chemoattractant  
 

CCR2, CCR3, CCR5,  
EO, MC, 
MO, BO 

    protein 4  
   

CCR11 
 

   

CCL14  
 

HCC-1, haemofiltrate CC chemokine or  CCR1, CCR5   MC 

    MIP-1d, macrophage inflammatory  
 

  
 

   

    protein 1d  
   

  
 

   

CCL15    HCC-2, haemofiltrate CC chemokine-2 CCR1, CCR3   MC, BO 

     or Lkn-1, leukotactin 1  
  

  
 

   

CCL16  
 

HCC-4, haemofiltrate CC chemokine-4  CCR1, CCR2, CCR8 MC, NK 

    or LEC, liver expressed chemokine  
 

  
 

   

CCL17  
 

TARC, thymus and activation regulated  CCR4, CCR8   
T, MC, MO, 
NK 

    chemokine  
   

  
 

   

CCL18    PARC, pulmonary and activation  
 

? 
 

   

    regulated chemokine  
  

  
 

   

CCL19    MIP-3ß, macrophage inflammatory  
 

CCR7, CCR10, CCR11 T, DC, B 

    protein 3b or ELC, Epstein–Barr virus    
 

   

    induced receptor ligand chemokines    
 

   

CCL20    MIP-3a, macrophage inflammatory  
 

CCR6, CCR10   B, T 

    protein 3a or LARC, liver and activation    
 

   

    regulated chemokine  
  

  
 

   

CCL21    SLC, secondary lymphoid tissue  
 

CCR11 
 

  MO 

    chemokine  
   

  
 

   

CCL22  
 

MDC, macrophage derived chemokine  CCR4 
 

  
T, MC, MO, 
DC 

CCL23    MPIF-1, myeloid progenitor inhibitory  CCR1 
 

  MC 

    factor 1  
    

  
 

   

CCL24  
 

Eotaxin-2 or MPIF-2, myeloid progenitor CCR3 
 

  EO, MC, BO 

     inhibitory factor 2  
  

  
 

   

CCL25  
 

TECK, thymus expressed chemokine  CCR9, CCR11   DC, MO 

CCL26  
 

Eotaxin-3  
   

CCR3 
 

  EO, MC, BO 

CCL27  
 

CTACK or ESkine  
  

CCR10 
 

  T 

CCL28  
 

Mec  
    

CCR3, CCR10   MC, BO, T 

      
    

  
 

   

 
  

    
  

 
   

XCL1  
 

Lymphotactin-a  
   

XCR1 
 

  NK 

XCL2  
 

SCM1b or Lymphotactin-ß  
 

XCR2 
 

  T 

      
    

  
 

   

 
  

    
  

 
   

CX3CL1  
 

Fractakine/neurotactin      CX3CR1   NK, MO 
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Table 1.2 (continued) Chemokines and their receptors (Iida and Grotendorst 

1990; Ono, Nakamura et al. 2003; Bendall 2005; Oo and Adams 2010) 
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 Macrophages 

 Macrophages have been found to promote solid tumour progression and 

metastasis. They are recruited by the tumour and ―educated‖ by the tumour 

microenvironment to adopt a trophic role that encourages tumour cell migration, 

extracellular matrix breakdown and angiogenesis (Pollard 2004).  

 

1.5 a. Role of Macrophages in Development 

 Macrophages are haematopoietic cells of the immune system that have repair 

functions. They are among the firsT-cells that migrate to crisis sites where they 

perform several functions. Some of the known functions of macrophages include: 

production of chemical messengers (cytokines and chemokines) that recruit other 

immune cells to sites of infection; production of growth factors, angiogenic factors 

and proteases that promote tissue repair; cytotoxic killing of pathogens by the 

production of reactive oxygen and nitrogen radicals; and the presentation of antigens 

to T-cells (Pollard 2004). Studies of mice with null mutations for colony stimulating 

factor 1 (csf-1), a growth factor for macrophages and other mononuclear phagocytic 

cells, show developmental defects including: osteopetrosis, impaired branching 

morphogenesis of the mammary gland and aberrant pancreatic morphogenesis 

(Cohen, Chisholm et al. 1996; Gouon-Evans, Rothenberg et al. 2000; Pollard 2004). 

These suggest that macrophages may play an important role in tissue 

morphogenesis during development and their natural developmental role may be 

employed by tumours to promote their own development (Gouon-Evans, Lin et al. 

2002). 
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 The complex tumour microenvironment of most solid tumours consists of 

Tumour Associated Macrophages (TAM), a class of macrophages that are thought to 

alter clinical outcome. Clinical data for breast, ovarian, prostate and cervical cancers 

have shown a strong correlation between the abundance of TAM and poor prognosis 

(Bingle, Brown et al. 2002) 

 

1.5 b. TAMs and angiogenesis 

 Monocytes, the precursors of macrophages, migrate into crisis sites where 

they differentiate into macrophages with subsequent secretion of angiogenic 

molecules. Macrophages have been shown to be positively correlated with 

angiogenesis, with highly vascular tumours displaying abundant numbers of 

macrophages. The view that macrophages induce proliferation, migration and 

differentiation of endothelial cells was supported by the clustering of macrophages in 

high vascular regions, otherwise termed as ―hotspots‖ by Leek et al (Leek, Lewis et 

al. 1996). 

 Macrophages produce Tumour Necrosis Factor-α (TNF-α) (Miles, Happerfield 

et al. 1994), CSF-1 receptor signalling in macrophages activates urokinase-type 

plasminogen activator (uPA), a protein that influences angiogenesis (Hildenbrand, 

Dilger et al. 1995). TAMs also release IL-2 which upregulates hypoxia inducible 

factor 1 alpha (HIF- 1α) through cyclooxygenase 2 (COX 2) resulting in an increase 

in the transcription of vascular endothelial growth factor (VEGF) (Jung, Isaacs et al. 

2003), all of which are important for angiogenesis. 
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1.5 c. TAMs and tumour progression 

 Studies in mice with PyMT- induced tumours (Mammary tumours induced by 

the mammary-epithelial-restricted expression of the polyoma middle-T oncoprotein ) 

(Lin, Nguyen et al. 2001) showed the presence of leukocytic infiltrates that coincided 

with areas of basement membrane breakdown and tumour cell egress at the time of 

malignant transition of which approximately 50% are TAMs, creating a portal through 

which tumour cells enter the surrounding stroma by the secretion of proteases by the 

TAMs on (Lin, Gouon-Evans et al. 2002).  

 TAMs also produce growth factors such as Fibroblast Growth Factor (FGF), 

Transforming Growth Factor –β (TGF-β), Hepatocyte Growth Factor (HGF), Platelet 

Derived Growth Factor (PDGF) and Epidermal Growth Factor Receptor (EGFR). 

These molecules influence the growth and migratory capability of tumour cells (Leek 

and Harris 2002). 

 

1.5 d. Differentiation of Macrophage markers 

 Macrophages express a set of markers that mostly differ between humans 

and mice. Macrophage markers in humans include: CD68, CD163, CD16, CD312, 

and CD115. Macrophage markers in mice include: F4/80, CD11b, CSF-1R/ CD115 

and an absence of Gr1(Qian and Pollard 2010). 

 

1.5 e. Macrophage phenotypes 

 Macrophages have the capability to manifest distinct phenotypes in response 

to different microenvironment signals (Mantovani, Sica et al. 2004). Classical M1 
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macrophage phenotype is activated in response to microbial products and Interferon- 

γ and are characterised by high IL-12 and IL-23 production. M1 macrophages are 

mostly effector immune cells and produce large amounts of proinflammatory 

cytokines. Conversely M2 macrophage phenotype is activated by IL4, IL13, IL10 and 

glucocorticoids. TAMs are thought to have phenotypes and functions similar to M2 

macrophages (Mantovani, Porta et al. 2006). 

 

 1.5 f. Characteristics of M1 macrophages (Mantovani, Sica et al. 2004; Mantovani, 

Porta et al. 2006) 

1. High production of nitric oxide (NO)  

2. High production of reactive oxygen intermediates (ROI) 

3.  High capacity to present antigen.  

 

1.5 g. Characteristics of M2 macrophages (Mantovani, Sica et al. 2004; Mantovani, 

Porta et al. 2006) 

1. Induction of adaptive Th2 immunity 

2. Promotion of angiogenesis 

3. Tissue repair and remodelling 
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 Natural killer (NK) cells  

1.6 a. Introduction 

 NK-cells are lymphocytes of the innate immune system with cytotoxic and 

cytokine effector functions that target pathogens and tumours (Trinchieri 1989; Vivier, 

Tomasello et al. 2008). They are widespread and can be found in lymphoid and non-

lymphoid tissues and make up 2%- 18% of total lymphocyte fraction in human 

peripheral blood (Grégoire, Chasson et al. 2007). Human NK turnover is around 2 

weeks (Zhang, Wallace et al. 2007). NK-cells have a detection system that involves 

activating and inhibitory cell surface receptors which when engaged with may lead to 

cytotoxic effector functions or the discrimination of self antigens produced by healthy 

‗self‘ cells (Vivier, Tomasello et al. 2008). 

 

1.6 b. Functions of NK-cells 

 Receptors for the activation of NK-cells recognise the presence of ligands in 

distressed cells such as ―stress- induced self ligands‖, the UL16 binding protein 

encoded by the gene ULBP and the major histocompatibility complex (MHC) class I 

chain related molecule (MIC) both recognised by NKG2D (Lanier 2005) and ligands 

from pathogens such as the Toll- like Receptor ligands (TLR) (Sivori, Falco et al. 

2004). The exposure of NK-cells to ligands of TLRs in vitro leads to the production of 

interferon (IFN)- γ and enhances cytotoxicity (Vivier, Tomasello et al. 2008). NK-cells 

also express low affinity Fc receptor CD16 enabling them detect antibody coated 

targeT-cells and to exert antibody dependenT-cell cytotoxicity (ADCC)  (Vivier, 

Tomasello et al. 2008).  
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 NK-cells use inhibitory receptors to measure the absence of constitutively 

expressed self molecules on susceptible targeT-cells by binding MHC class I-specific 

ligands (Yokoyama and Plougastel 2003). They lose inhibition when they encounter 

MHC class I-deficienT-cells (Yokoyama and Plougastel 2003). MHC class I inhibitory 

receptors of  include the killer cell immunoglobulin- like receptors (KIR) in humans 

and the lectin- like Ly49 dimers in mouse, as well as the lectin- like CD94- NKG2A 

heterodimers present in both humans and mice (Yokoyama and Plougastel 2003). 

 

1.6 c. Regulation of NK cell 

 Natural killer cell function- cytotoxicity, regulation- is influenced by the 

cytokine profile of the tumour microenvironment and on the interaction of NK-cells 

with other immune cells, such as T-cells, macrophages and dendritic cells (Long E. 

O. 2007). IL-2 promotes proliferation, cytotoxicity and cytokine secretion of NK-cells 

(Trincheri 2004). Cytokines that activate NK cell effector functions include IL-12, IL-

15, IL-18 and type 1 IFN (Walzer T, Dalod M 2005). NK-cells may be regulated by 

TGF-β and Tregs through a TGF-β dependent mechanism in both human and mice 

(Laouar YSutterwala F.S. 2005; Smyth M.J et al 2006). In mice, CD8+ T-cells may 

work together with NK-cells as they infiltrate tumour; the mechanism is not yet 

understood (Shanker A 2007). 
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1.6 d. NK cell phenotypes 

1.6 d. i. Mice 

 In mice NK-cells differentiate from CD11bdullCD27+ NK-cells to CD11b+CD27+ 

NK-cells (double positives) to CD11b+CD27dull NK-cells. The latter two phenotypes 

show comparable characteristics in cytotoxicity and IFN- γ production in vitro with 

CD11b+CD27dull NK-cells exhibiting senescence (Hayakawa and Smyth 2006). 

1.6 d. ii. Humans 

 In humans NK-cells can be divided into CD56dim and CD56bright which differ in 

their homing properties. CD56dim CD16+ constitutes around 90% of peripheral and 

spleen NK-cells and expresses perforin. They are cytotoxic and produce IFN-γ upon 

interaction with tumour cells in vitro (Anfossi, André et al. 2006). Most NK-cells in the 

lymph nodes and tonsils are CD56bright CD16- and lack perforin (Ferlazzo and Münz 

2004). These cells produce cytokines such as IFN-y in response to stimulation with 

IL12, IL15 and IL18 (Cooper, Fehniger et al. 2001). 

 

 B-cells 

1.7 a. Introduction 

 B-cells are components of the adaptive immune system and protect from a 

diverse range of infections. Activation of B-cell is mediated via recognition of antigen 

by B-cell receptor (BCR) resulting in the proliferation and differentiation of these cells 

(Harwood and Batista 2010). BCRs take up antigens into the processing pathway. 

Antigen processing and presentation in B-cells is mediated by membrane Ig and was 
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first demonstrated using normal B-cells to present rabbit anti-mouse Ig to rabbit Ig-

primed T-cells (Chesnut and Grey 1981).  

Activated B-cells differentiate into the following: 

 

1.7 b. Antibody secreting plasma cells 

 Plasma cells are the sole secretors of antibodies (Shapiro-Shelef and Calame 

2005). Marginal zone B-cells in response to antigen develop into plasma cells 

(Lopes-Carvalho and Kearney 2004). Plasma cells can be distinguished from mature 

B-cells as the plasma cells exhibit a small, dense and eccentric nucleus and 

voluminous cytoplasm containing significant amounts of rough endoplasmic 

reticulum and enlarged Golgi apparatus (Minges Wols 2006). Plasma cells are often 

resident in tissue of choosing and are not found in circulation. Antibody secreting 

cells in circulation en-route to tissue are plasmoblasts (Minges Wols 2006). 

 

1.7 c. Memory B-cells 

 Memory B-cells are larger than naive B-cells and they express the co-

stimulatory molecules CD80 and CD86, and CD11b (Alugupalli, Leong et al. 2004; 

Tarlinton 2006). In mice memory B-cells are characterised by their expression of 

CD38 and B220, their ability to bind small amounts of the lectin peanut agglutinin 

and the presence of somatically mutated variable (V) gene segments (Tarlinton 

2006). While human memory B-cells are largely similar to those of mice, they also 

express CD27 (Tangye, Liu et al. 1998). 
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 Memory B-cells are quiescent antigen experienced lymphocytes. They can be 

generated in response to T-cell dependent antigens (proteins) and T-cell 

independent antigens (carbohydrates) (Tarlinton 2006).  Based on their expression 

profiles, memory B-cells have been divided into: 

The conventional B200+ memory B-cells which express memory B-cell markers- 

B220, CD19 and CD79b (McHeyzer-Williams, Cool et al. 2000). 

Memory B-cells with down regulated expression of several B-cell lineage markers 

including B220, CD19 and CD79b) and upregulated expression of CD11b (B220- 

memory B-cells). These cells are enriched in the bone marrow and differentiate into 

plasma cells upon re-exposure to antigen (McHeyzer-Williams, Cool et al. 2000). 

 Another subset of B220- memory B-cells with the capability to differentiate into 

plasma cells with needing re-exposure to antigen has also been identified. These 

cells differentially express CD44 and CD138 (syndecan) and can be divided on the 

basis of expression into short-lived bone-marrow plasma cells and long-lived bone 

marrow plasma cells respectively (O'Connor, Cascalho et al. 2002). 

 

 T-cells 

 In order for T-cells to respond to pathogen, they require physical contact with 

antigens of such pathogens. T-cell receptors (TCR) recognises protein and lipid 

antigens bound to major histocompatibility complex (MHC) or CD1 respectively on 

cell surfaces (Germain RN, Stefanova I 1999; Porcelli SA, Modlin RL 1999).. 

Because there are an almost unlimited number of ways that an antigen octapeptide 

may form, the immune system has adapted T-cells to attack these, by varying TCRs 
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so that each T-cells is unique and specific to an antigen (Mackay 1999). Naive T-

cells are T-cells that have not come in contact with antigen. In an adult, there are 

approximately between 25 to 100 million naive T-cells (Arstila TP, Casrouge A et al 

1999). Naive T-cells encounter antigens carried by dendritic cells in secondary 

lymphoid organs (Banchereau J and Steinman RM 1998). These T-cells ―home‖ to 

secondary lymphoid tissues and upon encountering and binding to the antigen 

presenting cell, are activated, and thus proliferate approximately a thousand times to 

form identical clones with similarly identical antigen specificity. Activated T-cells 

eventually acquire effector functions and ―home‖ to inflamed sites where they interact 

with other cells of the immune system and antigen bearing parenchymal cells 

(Mackay 1999).  

1.8 a. T-cell death 

Several death pathways ensure there is balance in T-cell numbers: 

Apoptosis: This is a programmed cell death that involves the participation of a cell 

in its own death. In cells, it is characterised by chromosomal condensation, 

fragmentation of the nucleus, fusion of cell membrane with the endoplasmic 

reticulum and cell fragmentation into ―apoptotic bodies‖ which are consumed by 

surrounding cells (Kerr JF et al 1972). The activation of caspase is a vital 

biochemical process in apoptosis. Caspase cleaves essential cellular proteins such 

as Lamin, and activate dormant enzymes such as DNA fragmentation factor 40kDa 

((DFF40), also called caspase activated DNase (CAD)) that degrade cellular 

contents (Shi Y, 2002). Programmed cell death in activated T-cells may be divided 

based on function into 2 major groups: 
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1. Activation induced cell death (AICD): thymocytes die after activation through 

their CD3 molecules (Lu and Finn 2007). In vitro, death of thymocytes and 

activated T-cells after stimulation of their T-cell receptors is mediated by 

tumour necrosis factor receptor (TNF-R) family members such as Fas, death 

receptors (DR3, DR4, DR5, DR6) and TNF-R1 (Lenardo M, Chan et al 1999). 

Stimulation of TCR on thymocytes or activated T-cells promotes expression of 

FAS/ APO-1 and its ligand. This results in ―autocrine or paracrine activation of 

apoptosis‖ (Lu and Finn 2007). 

2. Activated T-cell autonomous death (ACAD): also called cytokine withdrawal 

cell death or spontaneous involves the mitochondrial pathway which is 

regulated by BCL-2 family. T-cell death results after cytokine and growth 

factor secretion has ceased (Hilderman DA and Zhu 2002). Mice deficient in 

the BCL2 gene were seen to develop abnormalities such as atrophy of the 

spleen and thymus and a rapid apoptosis of lymphocytes (Veis DJ, Sorenson 

CM et al 1993). 

Autophagy: this is an alternative to programmed cell death. Autophagy is a vital 

―catabolic metabolism that recycles building blocks for basal macromolecular 

synthesis when cells are under nutrient starvation conditions, degrades damaged 

organelles and eliminates pathogens that invade cells‖ (Lu and Finn 2007). It 

involves the isolation of cell organelles or a portion of cytosol in autophagosomes 

(double membrane vesicles). Autophagosomes coalesce with lysosomes to form 

autophagolysosomes leading to degradation (Levine B, Deretic V, 2007, Ohsumi Y, 

2001). 

Tumour mediated T-cell death: Fas (APO-1) has been found to be expressed in 

various types of cancers and may contribute to evasion of immune cells by tumour 
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(Lu and Finn 2007). Cancers with FasL expression include head and neck cancers, 

melanoma, colon and ovarian cancers (Whiteside TL, 2002). The FasL has been 

seen to be active in some of the above cancers. Expression of FasL was observed in 

areas of severe lymphocyte infiltration, with apoptotic lymphocytes also observed in 

such areas (Whiteside TL, 2002). 

 Fas (Apo-1) are a family member of the Tumour Necrosis Factor (TNF-1). 

Activation of Fas recruits Fas- Associated protein with Death Domain (FADD) to the 

cytoplasmic membrane. FADD then recruits pro- caspase 8 forming Death- Inducing 

Signalling Complex (DISC) as part of the process during apoptosis (Krammer PH, 

2000). 

 The expression of FasL on tumours and their resistance to Fas-mediated 

apoptosis may provide proof for the hypothesis that tumours use FasL to pre-

emptively attack lymphocytes (O‘Connell J, Bennett MW, et al 1999).  

1.8 b. CD8+ T-cells 

 CD8+ T-cells recognise pathogen derived peptides bound to major histo-

compatibility complex I (MHC) class I molecules on infected cells (Wong and Pamer 

2003). Peptides generated by protein degradation mediated by peptides are 

transported to the endoplasmic reticulum where they bind to newly synthesized MHC 

class I and are transported to the cell surface (Pamer and Cresswell 1998). 

 Naive CD8+ T-cells are activated in secondary lymphoid organs such as the 

spleen in response to an infection. Dendritic cell population are preferred by CD8+ T-

cells to activate their differentiation. When antigen presentation occurs, naive CD8+ 

T-cells may undergo approximately 19 cell divisions in the immediate week after 

priming and these divisions may represent approximately a 500,000 fold expansion 
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(Zhang and Bevan 2011). After antigen presentation, the activated T-cells upregulate 

CXCR3, an inflammatory cytokine receptor that allows their entry to peripheral 

tissues (Groom and Luster 2011). 

 When CD8+ T-cells are activated they undergo striking metabolic changes 

such as an increase in iron, glucose and amino acid uptake. They also switch from 

oxidative phosphorylation to aerobic glycolysis in preparation for the requirements for 

building blocks of cells such as proteins, nucleic acid and lipids (Michalek and 

Rathmel, 2010). 

 In some cases, such as for non-inflammatory antigens and certain viral 

infections e.g. herpes simplex virus, CD4+ T-cells aids in the activation of CD8+ T-

cells. In other cases as immune response to influenza, CD8+ T-cells are activated 

independently of CD4+ T-cells (Bevan 2004). In addition to their cytotoxic functions, 

CD8+ T-cells may serve a regulatory role by ―preventing excessive tissue injury‖ by 

the secretion of the immunosuppressive cytokine IL-10 once thought to be a T helper 

2 (Th2) cytokine (Palmer et al 2010; Saraiva and O‘Garra 2010). 

 After immune clearance, most effector cells disappear from the blood stream, 

however a heterogeneous population of memory cells remain which are capable of 

immune response to re-presentation of antigen (Jameson and Masopust 2009). 

These memory CD8+ T-cells may be divided into 2 major groups based on their 

function and the expression of receptors that aid homing. These groups are: 

1. Effector memory T-cells (TEM) – these cells lack lymph node homing receptors 

but express receptors that aid migration to peripheral tissues. 

2. Central memory T-cells (TCM) – these cells express the lymph node homing 

molecules CD62L and CCR7. 
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 Memory T-cells are different from naive T-cells by their continued presence at 

increasing frequencies, their distribution to a larger anatomy and the speed with 

which they can gain effector functions when they are reactivated (Kaech et al 2002). 

While CD8+ memory T-cells have a profound role in immune protection from 

systemic infections, they are limited in their ability to tackle localized infections 

(Bachmann et al 1997, 2005; Jiang et al 2012; Mackay et al 2012). This is because 

they lose their ability to migrate to peripheral tissues as a result of their loss of 

expression of homing molecules for entry into peripheral sites, a reduction of the TEM 

population and the conversion of TEM towards a CD62L+ TCM phenotype (Gebhardt 

and Mackay 2012, Tripp et al 1995, Wherry et al 2003, Masopust et al 2010). 

 

1.8 c. CD8+ effector molecules 

 CD8 + T-cells mediate their effector functions via the excretion of effector 

molecules listed below (Harty, Tvinnereim et al. 2000). 

1. Direct cytolysis mediated by perforin release 

2. Secretion of cytokines such as tumour necrosis factor alpha (TNF-α) and 

interferon gamma (IFN-γ) 

3. Secretion of chemokines that attract other inflammatory cells to sites of 

infection 
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 CD4+ T-cells 

 CD4+ T helper (TH) cells are mediators of the immune system where they 

serve to coordinate the cellular components of the immune system and their 

response to pathogen (Dong 2008). They modulate immune protection by their ability 

to assist B-cells in making antibodies, recruit neutrophils, basophils and eosinophils 

to infected and inflamed sites and stimulate macrophages to develop microbicidal 

activity (Zhu and Paul 2008). Naive CD4+ T helper cells differentiate into at least 4 

subsets (TH1, TH2, TH17 and iTregs (inducible Tregs)) in secondary lymphoid organs 

when stimulated by cytokines produced during early immune response (Mosmann 

and Coffman 1989; Zhu and Paul 2008). 

The subsets of T helper cells are discussed below: 

 

1.9 a. TH 1 CD4+ cells 

 TH1 CD4+ cells mediate immune response against intracellular pathogens 

(Mosmann and Coffman 1989) and are responsible for the induction of some 

autoimmune  diseases (Zhu and Paul 2008). They can be characterised by their 

ability to secrete IFN-γ, lymphotoxin (LTα) and IL-2 (Mosmann and Coffman 1989). 

IFN-γ production enables these cells regulate antigen presentation and cellular 

immunity. Also the IFN- γ produced by TH 1 cells inhibits the development of TH 2 

cells (Fitch, McKisic et al. 1993) and serves as a positive feedback amplifier. IL-2 is 

essential for CD4 T-cell memory as CD8+ T-cell stimulated by IL-2 leads to the 

formation of CD8 memory T-cell (Williams MA, Tyznik AJ, 2006). TH1 CD4+ cells also 

express T-bet (T-box transcription factor). T-bet plays a crucial role in TH1 cell 

development where it induces ―both transcriptional competence of the locus 
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encoding IFN-γ and selective responsiveness to the growth factor IL-12‖ (Murphy 

and Reiner 2002). 

 

1.9 b. TH 2 CD4+ cells 

 TH 2 cells mediate immune response against extracellular parasites 

(Mosmann and Coffman 1989) and are involved in the induction of allergic diseases 

such as asthma (Zhu and Paul 2008). They produce cytokines such as IL-4, IL-5, IL-

9, IL-10, IL-13 and IL-25. (Zhu and Paul 2008). IL-4 serves as a positive feedback 

amplifier. These cytokines may activate mast cells  and eosinophils and a rise in IgE. 

Thus they have been implicated in allergic inflammation and atopy (Sergio 1994; 

Dong 2008). They also produce B-cell growth and differentiating factors (Mosmann 

and Coffman 1989) which may explain their role in humoural immunity and allergy. 

The production of IL-4 and IL-10 by TH 2 cells inhibit the development and activation 

of TH 1 cells (Sher and Coffman 1992; Moore, O'Garra et al. 1993; Anne 1998) hence 

TH 2 cells are often described as anti-inflammatory. 

 

1.9 c. TH 17 CD4+ cells 

 TH17 CD4+ cells mediate immune response against extracellular bacteria and 

fungi (Weaver CT, Harrington et al 2006) and they take part in the induction of 

organ-specific autoimmune diseases (Zhu and Paul 2008). They produce IL-17a, IL-

17F, IL-21 and IL-22 (Dong 2006). IL-17a and IL-17f is associated with host defence 

against infections and autoimmune disease by recruiting macrophages and 

Neutrophils to sites of infection (Dong 2008; Zhu and Paul 2008). IL-21 serves as a 

positive feedback amplifier. T helper cells that express IL-17 do not express IFN-γ 
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and IL-4 (Infante-Duarte, Horton et al. 2000; Dong 2008). The differentiation of TH 17 

cells is mediated by transforming growth factor β (TGF β), IL-6, IL-21 and IL-23 

(Dong 2008; Zhu and Paul 2008). 

 

 

 



73 
 

 

Figure 1.14 Original schematic of CD4+ T-cell differentiation 

 

Original schematic of naive CD4+ T-cell (helper T-cell) differentiation into T helper 1 

and T helper 2 cells in response to cytokine.  
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Figure 1.15 CD4+ T-cell differentiation 

 

CD4+ T-cell differentiation into its subsets: T helper 1 (TH1), T helper 2 (TH2), T 

helper 17 (TH17) and T regulatory cells (iTregs), in response to cytokine stimuli, and 

their functions. 
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 T regulatory Cells (Tregs) 

 Tregs mediate immune homeostasis and prevent inflammatory diseases 

(Sakaguchi, Yamaguchi et al. 2008). They also regulate immunity to infections of 

viral and bacterial origin and protect from immunity directed towards tumour cells 

and transplanted tissue (Belkaid 2007). Deficiency in Tregs have been known to be a 

major causative factor in numerous autoimmune diseases (Campbell and Koch 

2011) such as rheumatoid arthritis (Ehrenstein 2004),  systemic lupus erythromatosis 

(Horwitz 2008) and multiple sclerosis (Viglietta 2004).  

 Tregs can be found in both lymphoid and non-lymphoid tissues even in the 

absence of inflammation (Sather, Treuting et al. 2007). They are also found in 

abundance within tumours where they seem to prevent tumour clearance (Nishikawa 

and Sakaguchi 2010).  

 

1.10 a. Characterisation of Tregs 

 The characterisations of Tregs, all of which contribute to immunosuppression 

are seen below (Sakaguchi 2005): 

1. Naturally occurring CD4+CD25high Treg cells 

2.  Induced Treg cells e.g. Tr1 and TH3 cells 

3. Treg cells developing in the periphery by the conversion of CD4+CD25- to 

CD4+CD25high. 
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1.10 b. Markers of Tregs 

 CD25 (Interleukin 2 receptor α chain (IL-2Rα)) is a good marker of Tregs in 

experimental mice as the animals are bred in disease-free conditions. Humans differ 

in that they are constantly exposed to antigens which results in a significant fraction 

of recently activated CD25+ effector T-cells (Beyer 2006). The transcription factor 

fork head box p3 (Foxp3) is a more specific marker and is uniquely expressed in 

Treg cells in mouse (Hori 2003). CD4+ CD25+ Tregs make up approximately 10% of 

the CD4+ T-cells (Nishikawa and Sakaguchi 2010). Tregs are produced in the thymus 

as a functionally mature and distinct sub-population of T-cells but may be induced 

from naive T-cells (CD4+ CD25-) by antigen stimulation in the presence of high 

dosage of TGFβ (Nishikawa and Sakaguchi 2010). 

 

1.10 c. Recruitment 

 For Treg cells to function properly in the modulating of both innate and 

adaptive immune responses to foreign antigens, the Tregs often have to come into 

physical proximity with their targets by migrating to their target tissues and 

microenvironment (Campbell and Koch 2011). 

 Tregs express a variety of such adhesion molecules and chemo-attractant 

receptors that modulate their migratory distribution to specific tissues and 

consequent functions (Suffia*, Reckling* et al. 2005). Genetic studies have 

highlighted the importance of several homing receptors for the appropriate 

distribution and function of Tregs to tissues. Many possible scenarios exist for the 

recruitment of Tregs to sites of inflammation. An example is the expression of the αE 

integrin chain (CD103) and Chemokine receptor CC-chemokine receptor 4 (CCR4), 
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and the ability to generate carbohydrate ligands for P-selectin and E-selectin by the 

action of α-(1, 3)-fucosyltransferase VII enzyme which are all important for the 

migration and retention of Tregs within the skin. Deletion of any of these molecules 

on Tregs results in the development of skin-specific autoimmunity and defective 

pathogen clearance during cutaneous infection (Suffia*, Reckling* et al. 2005; 

Sather, Treuting et al. 2007; Dudda, Perdue et al. 2008; Freyschmidt, Mathias et al. 

2010; Campbell and Koch 2011). Treg recruitment is substantially increased during 

inflammation. The contribution of individual homing receptors to T-cell migration 

induced by inflammation vary considerably depending on tissue involved and type of 

inflammation (Campbell and Koch 2011).  

 

1.10 d. Suppressive function of Tregs (immunoregulation) 

 T-cell Receptor (TCR) recognition is important in influencing phenotype, 

function and localisation of T-cells in vivo. Antigen specific activation of T-cells 

isolated from TCR null (TCR-) transgenic mice alters the expression of several 

homing receptors that determines their redistribution to non lymphatic tissues (Lee, 

Kang et al. 2007; Sather, Treuting et al. 2007; Campbell and Koch 2011). Because 

Tregs are broadly autoreactive (Picca, Larkin et al. 2006), a number of varying 

mechanisms are used by these cells to regulate immune responses. One is the 

expression of interleukin-10 (IL- 10) which is a cytokine deployed by Tregs that 

inhibits T helper cell responses during cancer, autoimmunity and infection (Asseman, 

Mauze et al. 1999). Deletion of IL 10 gene selectively in Treg cells in mice resulted in 

the development of spontaneous colitis and exaggerated immune responses in 

organs such as lungs and skin (Rubtsov, Rasmussen et al. 2008). 
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 Another mechanism of immunoregulation by Tregs employs the expression of 

cytotoxic T lymphocyte antigen 4 (CTLA4). This is as a result of CTLA4 having the 

capacity to reduce immuno-stimulatory activity of Dendritic cells in the lymphoid 

tissues by downregulating their expression of co-stimulatory ligands CD80 and CD86 

(Wing, Onishi et al. 2008; Campbell and Koch 2011). CTLA4 also ligates CD80 and 

CD86 to produce indoleamine 2,3- dioxygenase (IDO) (Onodera, Jang et al. 2009) 

which is an immunosuppressive enzyme.  

 Tregs also function in the down-regulation of immune responses in lymphoid 

tissues which allow for migration of T-cell from lymph node to tissue site of infection. 

This was exemplified by the depletion of Tregs in mice following mucosal herpes 

simplex virus infection (Lund, Hsing et al. 2008). A pronounced increase in T-cell 

activity was observed in the draining lymph nodes without a corresponding increase 

of T-cells, Natural Killers and Dendritic cells at the sites of infection (Lund, Hsing et 

al. 2008). 

 In addition to these varied responses employed by Tregs in the modulating of 

immune cells, Treg cells also produce immunosuppressive cytokines such as 

Transforming growth factor β (TGF- β), IL- 35 and adenosine or cyclic AMP that are 

metabolic inhibitors of effector T-cells (Campbell and Koch 2011). 

 

 1.11 Immune cell infiltration in PDAC 

 Recent significant findings of immune cell infiltration in PDAC are described 

below (Table 1.3). I will discuss these results again in context of my experiments. 
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Species Methods Results Authors 

Human/ 
Mice 

  FACS, histology, spheroid  
adhesion assays, 
transmigration assays 
assay, NOD/SCID mouse 
mode 

 An increase in CD3+ cell 
infiltration was observed as 
measured by histology. T 
regulatory cells (Tregs) infiltrated 
pancreatic cancer more than 
adjacent non malignant pancreatic 
tissue and more than CD4+ T-
cells. 

 (Nummer, 
Suri-Payer 
et al. 2007) 

  

             

      

   

       

Mice     FACS, histology, cellular 
proliferation assay, 
quantitative PCR, KPC 
mouse model 

Infiltration of CD3+, CD4+, C8+ 

cells were observed starting at 
pre-invasive disease. An increase 
of the immunosuppressive cells: 
MDSCs, Tregs, TAMs were also 
observed. 

 (Clark, 
Hingorani 
et al. 2007) 

  
     

  

    
                                                           Mice     Immunohistochemistry, 

Immunofluorescence, 
FACS, Tg mouse model of 
LL2 Lewis lung carcinoma 
and subcutaneous mouse 
model of PDAC identifying 
stromal cells expressing 
Fibroblast activating protein 
-α (FAP) labelled with 
Diptheria toxin receptor 
(DTR) 

Targeting DTR with Diptheria 
toxin ablated FAP expressing 
stromal cells. This caused a "rapid 
hypoxic necrosis" of both cancers 
and stromal cells which occurred 
in an interferon-γ and tumour 
necrosis factor- α dependent 
manner. However, this was not 
the case in Rag2- deficient mice. 

 (Kraman, 
Bambrough 
et al. 2010) 

  
     

  

    
    

                                                                                        Human/ 
Mice 

  Human clinical trials, 
combining gemcitabine 
therapy with CD40 antibody 
(CD40 activates antigen 
presenting cells), KPC 
mouse models, ultrasound 
imaging, FACS, cytokine 
analysis, 
Immunohistochemistry 

Regression of tumour was 
observed in some patients and 
similar results were observed in 
KPC mice. Macrophages were 
activated by CD40 antibody 
leading to tumour infiltration, 
stromal depletion, and tumour 
clearance mediated by activated 
macrophages. 

 (Beatty, 
Chiorean et 
al. 2011) 

  
     

  

    
                                

 
 
 

                                                                        

Table 1.3 Recent findings about immune cell infiltration in PDAC 
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Species Methods Results Reference 

Mice     KPC mouse model, FACS, 
T-cell suppression assay, 
arginase production, nitric 
oxide production, 
immunohistochemistry, 
immunofluorescence, 
cytokine analysis, shRNA 

MDSCs derived from spleen or 
pancreas of diseased KPC mice 
suppressed the proliferation of 
CD8+  T-cells. Inhibition of 
inducible nitric oxide synthase and 
arginase abolished the ability of 
MDSCs to suppress T-cell 
proliferation. The development of 
MDSC is driven by granulocyte 
macrophage colony stimulating 
factor (GM-CSF) and abolishing 
GM-CSF inhibits the recruitment of 
MDSCs to tumours. 

 (Bayne, 
Beatty et 
al. 2012) 

  
     

  

    
                                                                                                                         Human/ 
Mice 

  KPC mouse model, 
immunohistochemistry, 
immunofluorescence, flow 
cytometry, immunoblot 
analysis, quantitative RT-
PCR, CD8+  depletion 

An upregulation of GM-CSF in 
mouse ductal epithelia cells was 
observed and was found to be 
dependent on oncogenic Kras. 
GM-CSF was responsible for 
MDSC recruitment. In the absence 
of GM-CSF however, CD8+  
cytotoxicity was responsible for 
tumour clearance. 

 (Pylayeva-
Gupta, Lee 
et al. 2012) 

  

           

                                                                                                                     

Table 1.3 (continued), Recent findings about immune cell infiltration in PDAC 
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 1.12 Summary  

 

 Immune cells have been implicated in cancers as having both 

immunosuppressive and tumour clearing roles. The interactions between infiltrating 

immune cells and the tumour microenvironment is not fully understood particularly in 

pancreatic cancers where there is a microenvironment rich with stromal elements 

that include stellate cells, fibroblasts and structural matrix components such as 

fibronectin and collagen. These stromal elements express chemo-attractive 

cytokines, adhesion molecules and receptors that interact with the infiltrating immune 

cells in a number of permutations. While many groups have focused on the capability 

of immuno-suppressive cells to inhibit cytotoxic immune cell mediated tumour 

clearance in PDAC, various groups however, have shown that the depletion of the 

pancreatic stroma have often culminated in tumour clearance again mediated by 

cytotoxic cells of the immune system, highlighting the potential immuno-suppressive 

role of stromal cells. Most of these studies have utilized genetically engineered 

mouse models with few investigating human tissue. I therefore sought to 

characterise immune cell infiltration in situ with a panel of immune cell markers that 

included CD3+ (T-cells), CD4+ (helper T-cells), CD8+ (cytotoxic T-cells), FoxP3+ (T 

regulatory cells) CD20+ (B-cells), CD56+ (Natural Killer cells) and CD68+ 

(macrophages) using sophisticated and rigorous imaging system in a robust patient 

tissue microarray cohort consisting of PDAC and other pancreatico-biliary diseases. 

Because pancreatico-biliary diseases have varying overall patient survival outcomes, 

I hypothesised that the immune cell infiltration pattern of each disease could be 

associated to the overall patient survival outcome of that disease. 

  



82 
 

1.13  Aims and objectives 

 

 To observe and quantify tissue immune cell infiltrate in PDAC and other 

pancreatico-biliary diseases 

 To measure the immune cell densities in the distinct stromal sub-

compartments of individual pancreatico-biliary diseases in an unbiased 

manner 

 To identify immune cell markers of prognostic significance 

 To observe the effects of altering PDAC-associated pancreatic stellate cells 

on immune cell infiltrate in vivo 

 To investigate the mechanisms underlying immune cell infiltration in PDAC in 

vitro 
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2.0 Materials and Methods 

2.1 Tissue microarray (TMA) construction 

Tissue microarrays were constructed from the pancreatic tissues collected 

after establishing diagnosis following surgical resection of pancreas (either head or 

body or tail) in patients with the pancreatico-biliary diseases: ampullary carcinoma 

(AC), cholangiocarcinoma (CC), chronic pancreatitis (CP), mucinous cystic 

neoplasm (MCN) and duodenal carcinoma patients, and from biopsies for advanced 

stage (metastatic or locally advanced) pancreatic ductal adenocarcinoma (PDAC) 

patients. All samples were collected at Barts and The London NHS Trust (City and 

East London LREC 07/0705/87). 157 patients were sampled in total and 2 sets of 

tissue microarrays were constructed. The first set had been constructed beforehand 

and used for previous work (Froeling, Mirza et al. 2009; Froeling, Feig et al. 2011). 

The number of patients with each disease on the 2 sets of TMA‘s can be seen on 

table 2. 1.  

TMA construction involved the following steps: 

1. Review of cases: A representative slide of each patients donor block was 

cut and stained with hematoxylin and eosin (H&E). Multiple regions of 

tumour, stroma and normal pancreas were identified and circled with 

marker pens on H&E stained slides of the donor tissue blocks on the 

Axiophot microscope (Carl Zeiss MicroImaging LLC, New York, USA). The 

regions were colour coded; Red represented stromal regions, blue 

represented ‗normal‘ pancreas and black represented tumour regions 

(Figure 2.1 A and B).  
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2. Design of TMA map: A map for each TMA slide was designed on Excel 

(Microsoft, Seattle, USA) to serve as a guide during TMA construction and 

as a reference during TMA analysis. The maps consisted of the donor 

block ID, the exact location of cases and their duplicates and the location 

of controls (Appendix 1). 

3. TMA creation: Three cores each of tumour and stroma were sampled from 

most donor blocks. Also three cores of adjacent normal tissues were 

sampled from patients with neuroendocrine tumour, duodenal cancer and 

cholangiocarcinoma. Furthermore, one core of a normal human spleen 

was inserted in a recipient block using the TMA map as a guide. The size 

of individual cores was 1mm and the TMA construction was performed 

with the Tissue Arrayer Minicore® 3 (Alphelys, Plaisir, France) (Figure 

2.2). Upon completion, recipient blocks were kept at 37°C overnight to 

ensure bonding of the cores with paraffin wax of the recipient block 

(Parsons and Grabsch 2009) and sent to pathology for sectioning to 

multiple (100) slides. 

 Examination with a light microscope of H&E stained tissue microarrays after 

construction showed the numbers of tumour, stroma and normal cores varied 

slightly from the original design. I observed in a few cases; a complete loss of cores, 

folding of the tissue core and very low numbers of tumours in a tumour case, or the 

presence of tumours in a stromal case. These variations can be attributed to 

technical reasons (such as during sectioning) and the three-dimensional nature of 

the donor tissue, as a TMA core is a section of the whole tissue. It has been reported 

that in gastric cancer TMAs, approximately 10% of cases cannot be analyzed due to 

these variations (Parsons and Grabsch 2009). However each patient had an 
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abundance of tumour cores for confident analysis. The average of a patients tumour 

cores made up the final score for the patient. All stages of TMA construction was 

supervised by Mr. Hemant Kocher. 

 

Pancreatico-biliary disease Number of patients 

Batch A Batch B Total 

Ampullary carcinoma 0 9 9 

Cholangiocarcinoma 9 12 21 

Chronic pancreatitis 0 4 4 

Mucinous cystic neoplasm 0 6 6 

Duodenal carcinoma 0 5 5 

Normal  0 14 14 

PDAC (resected) 63 0 63 

PDAC (biopsy) 0 35 35 

Total 72 80 157 

 

Table 2.1 Pancreatico-biliary diseases: patient numbers on respective TMAs 
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Figure 2.1 Marking slides for TMA construction 

Regions of stroma (red) and normal pancreas (blue) were identified with the aid of 

bright field microscopy of H&E stained sections for resected pancreas for use in TMA 

construction. 
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Figure 2.2 Marking slides for TMA construction 

Regions of stroma (red) and tumour (black) were identified with the aid of bright field 

microscopy of H&E stained sections for resected pancreas for use in TMA 

construction. 
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Figure 2.3 Minicore Arrayer 

The Minicore arrayer (Alphelys, Plaisir, France) was used in the construction of 

specific tissue microarrays. The arrayer is connected to a computer which serves as 

an interface and a controller. 
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Figure 2.4 Donor and recipient blocks 

A donor block of spleen tissue (A) that served as an internal control and a donor 

block of pancreas tissue (B). Tissue cores from A and B were inserted into recipient 

blocks which were then cut into 4µm thick sections. Sections were mounted on 

A 

B 

C 
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positively charged Thermo Shandon slides (Fisher Scientific UK Ltd, Loughborough, 

UK) and stored in sealed slide boxes at room temperature. 
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Figure 2.5 TMA recipient block and slide 

A representative recipient TMA block and H&E stained TMA slide of the block 
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Figure 2.6 TMA blocks 

Each set of recipient blocks represent a batch of TMAs.100 4µm sections were cut 

from each recipient block. (A) Mostly pancreatico-biliary diseases excluding PDAC. 

(B) Combination of PDAC and pancreatico-biliary diseases. (C) Mostly PDAC. 

A 

C 

B 
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2.2 Immunohistochemistry 

2.2 a. Human tissue microarrays 

Immunohistochemistry is used to detect the location of antigenic epitopes 

(and therefore the respective proteins) in whole tissue sections, a feature which 

makes it a necessary tool in cancer research (Buchwalow and Böcker 2010). Since 

antibodies target specific antigens, specific proteins on tissue sections can be 

probed and visualized by chromogenic detection with the aid of a microscope. 

Chromogenic detection occurs where an enzyme that is conjugated to an antibody 

cleaves a substrate to produce a coloured precipitate (Buchwalow and Böcker 2010). 

Substrates such as 3,3-diaminobenzidine (DAB; produces brown precipitate) 

and 3-amino-9-ethyl carbazole (AEC; produces red precipitate) produce their colours 

when they react with peroxidase enzyme in tissue, while the alkaline phosphate (AP; 

produces red, black, blue, etc., precipitates) produce their colours either by reduction 

of tetrazolium salts or by production of coloured diazo compounds (Buchwalow and 

Böcker 2010). AEC is soluble in alcohol and clearing agents but not DAB and AP; 

however, DAB and AP can be ―dehydrated, cleared and mounted permanently‖. 

These substrates can be used either in a single staining procedure or in multiple 

staining procedures of the same tissue section (Buchwalow and Böcker 2010). 

Immunohistochemistry involves a series of steps: 

1. Fixing and embedding of the tissue: The tissue was fixed in 10% neutral 

buffered formalin (Cellstor, CellPath Ltd. Newtown, UK) for 24 hours. 

Afterwards, they were embedded in paraffin and cut in a microtome to 5 

microns, and affixed on to positively charged Thermo Shandon slides 

(Fisher Scientific UK Ltd, Loughborough, UK). The slides were left to dry 
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by leaving them at 60°C overnight and thereafter stored in a sealed slide 

box until further use. 

2. Rehydration of tissue sections: Before staining, the slide was de-

paraffinised and rehydrated as presence of formalin and paraffin and 

incomplete rehydration may lead to poor staining (Buchwalow and Böcker 

2010). A number of incubation steps in xylene (Fisher Scientific UK Ltd, 

Loughborough, UK) and industrial methylated spirits (IMS) or ethanol 

(VWR International Ltd, Lutterworth, UK) were employed in the de-

paraffinisation and rehydration of slides: slides were incubated in xylene in 

two steps for 5 minutes each, a single step of incubation of slides in 100% 

IMS for 5 minutes before a peroxidase blocking step of 10 minutes 

(discussed below). Afterwards, slides were incubated for 2 minutes each in 

100% IMS, 80% IMS, 70% IMS and 50% IMS and a single incubation step 

of 1 minute in distilled water. 

3. Peroxidase blocking: some tissue may contain endogenous peroxidase 

and using Horse Radish Peroxidase (HRP) conjugated antibodies may 

result in high non-specific background staining of tissue as a result of the 

reaction between the HRP conjugated antibodies and the endogenous 

peroxidase. To avoid this non-specific background staining I blocked 

endogenous peroxidase activity by incubating slides in 3% hydrogen 

peroxidase (H2O2) (Fisher Scientific UK Ltd, Loughborough, UK) in 

methanol (Fisher Scientific UK Ltd, Loughborough, UK) for 10 minutes. 

4. Antigen retrieval: During fixation, methylene bridges are formed leading to 

cross-linking of proteins and masking of antigen sites (Metz, Kersten et al. 
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2004). Antigen retrieval is used to unmask antigens allowing for them to be 

detected by antibodies. I used heat induced epitope retrieval (HIER) with 

citrate buffer, pH 6.0 (Antigen unmasking solution, H3300, (Vector 

Laboratories, Burlingame, US)) method and enzymatic antigen retrieval 

with pepsin enzyme (Dako UK Ltd., Cambridgeshire, UK) (Shi, Shi et al. 

2011).  

Citrate buffer was added to a pressure cooker and let to boil on a hot plate 

with lid still open. Once boiling, slides were transferred into the pressure 

cooker and lid was closed and locked and left for 10 minutes.  

Protease from Streptomyces griseus, type XIV (Sigma-Aldrich, Dorset, 

UK) at 0.5mg/ml of sterile PBS. Tissues on slides were outlined with a 

Dako pen (Dako UK Ltd., Cambridgeshire, UK) to retain liquid on tissue 

sections, and the slides were placed in a hybridiser (Dako UK Ltd., 

Cambridgeshire, UK) and pepsin solution added onto tissue sections. The 

temperature of the hybridizer was set to 37°C and slides were incubated 

for 10 minutes.  

5. Staining: I stained tissues with the immune cell markers for the primary 

antibodies: CD3+ (total T-cell population), CD4+ (helper T-cells), CD8+ 

(cytotoxic T-cells), FoxP3+ (regulatory T-cells), CD68+ (macrophages), 

CD20+ (B lymphocytes), CD56+ (natural killer cells) and CD15+ and 

myeloperoxidase+ (Neutrophils) (primary antibodies, antibody clones, 

manufacturers and dilutions I used are found on Table 2.2). I used spleen, 

tonsil and appendix as positive controls. All antibody incubations were 

carried out in a humidified chamber to avoid drying out of the tissue.  
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 The Super Sensitive™ Polymer- HRP Detection System (Biogenex, 

Fremont, California) was used for the antibody labelling and detection. 

This system ―uses a non-biotin polymeric technology wherein the 

secondary antibody conjugated to Poly-HRP reagent is bound to the 

primary antibody and is then visualized by the chromogen‖ (Biogenex 

2013) The kit comes with a Super Enhancer™ reagent, a SS label, and 

3,3‘-diaminobenzidine (DAB) substrate (Biogenex, Fremont, California). I 

incubated the tissue sections with specific primary antibodies, after which 

the sections were incubated with the Super Enhancer™ reagent. The 

sections were then incubated with the SS label. The SS label is a ―Poly-

HRP reagent which is conjugated to anti-mouse and anti-rabbit secondary 

antibody‖ and subsequent incubation with DAB substrate makes the entire 

complex visible. The limitation of using this system is that it can primarily 

be used in human tissue and only to target antibodies raised in mouse and 

rabbit. However, because of the Super Enhancer™ component minuscule 

antibody signals from dilutions such as 1:1250 can be detected. This 

capability grossly reduces background non-specific staining. Antibodies 

were diluted in antibody diluents (Zytomed Systems, Berlin, Germany) or 

bovine serum albumin (BSA). The slides were incubated in the primary 

antibody for 40 minutes followed by incubation in the Super Enhancer™ 

solution for 20 minutes, then incubation is the secondary antibody (SS 

Label) and then 10 minutes in the DAB solution. Each incubation step was 

separated by washing slides three times in Tri Buffered Saline Tween-20 

(TBST, Dako Wash Buffer, Dako UK Ltd., Cambridgeshire, UK). Slides 

were counterstained for two minutes with Mayer‘s hematoxylin (Dako UK 
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Ltd., Cambridgeshire, UK) before dehydrating and mounting with DPX (a 

mixture of distryene, a plasticizer and xylene) mountant (Sigma-Aldrich, 

Dorset, UK). 

 

Primary antibody Species 

raised in 

Supplier Concentration 

of antibody 

(mcg/ml) 

Dilution - 

IHC 

Dilution 

mcg/ml 

CD3 (clone SP7) Rabbit Labvision (CD-

3-SP7) 

1 1:500 0.002 

CD4 (clone 4B12) Mouse Novacostra 

(NCL-CD4-368) 

1 1:500 0.002 

CD8 (clone 

C8/144B) 

Mouse Dako (M7103) 1 1:400 0.0025 

CD20 (clone L26) Mouse Dako (M0755) 1 1:2000 0.0005 

CD56 (clone ERIC-

1) 

Mouse Serotec 

(MCA591) 

1000 1:1200 0.833 

CD68 (clone KP1) Mouse Dako (M0814) 1 1:8000 0.000125 

FoxP3 (clone 

263A/E7) 

Mouse Abcam 

(Ab20034) 

1000 1:100 10 

Myeloperoxidase Rabbit Dako (A0398) 1 1:8000 0.000125 

FN  Rabbit Abcam (ab299) 1 1:100 0.01 

F4/80 Rat eBioscience 

(14-4801) 

500 1:200 2.5 

CK7 (clone OV-TL 

12/30) 

Mouse Dako 

(M701801-2) 

1 1:200 0.005 

CD8 (clone 

C8/144B) 

Mouse Dako 

(M710301-2) 

1 1:50 0.02 

CD8  Rat Pierce 

antibodies 

(MA1-70041) 

1 1:500 0.002 

αSMA (clone 1A4) Mouse Dako 

(M085101-2) 

1 1:100 0.01 

CD11b (clone 

M1/70)  

Rat eBioscience 

(14-0112) 

500 1:100 5 
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FN (clone FN-3E2) Mouse Sigma-Aldrich 

(F6140) 

1 1:500 0.002 

CD3  Rabbit Abcam 

(ab5690) 

200 1:20 10 

CD8  Rabbit Abcam 

(ab4055) 

200 1:100 2 

Alexa Fluor® 488 Goat Invitrogen (A-

11001) 

2000 1:2000 1 

Alexa Fluor® 555 Rabbit Invitrogen (A-

21431) 

2000 1:100 20 

Table 2.2 Details of antibodies used in immunohistochemistry (IHC) and 

immunofluorescence (IF) 

 

2.2 b. Human whole tissue sections 

 Human whole tissue sections (4 patients) were stained using Bond-max™ 

Automated Immunostainer with Bond Polymer Refine Detection (all Leica 

Microsystems). The immune cell markers stained for were: T-cells (CD3), helper T-

cells (CD4), cytotoxic T-cells (CD8), Neutrophils (CD15), B lymphocytes (CD20) and 

mast cells (MCT). Antibodies details for immunohistochemistry on human whole 

tissue sections and experimental conditions are seen below (Table 2.3). (Staining 

was performed by Dr. Moonim). 

Antibody (clone) Supplier Pre-treatment Supplier Dilution 

CD3 (SP7) Neomarkers ER1 30 minutes 1:150 

CD4 (4 B12) Novocastra ER2 30 minutes 1:80 

CD8 (C8/144B) Dako ER1 30 minutes 1:80 

CD15 (MMA) Becton Dickinson ER1 30 minutes 1:50 
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CD20cy (L26) Dako ER1 30 minutes 1:1000 

MCT (AA1) Dako ENZ1 10 minutes 1:800 

 

Table 2.3 Human whole tissue section IHC experimental conditions 

ER1: Epitope Retrieval Solution 1 pH 6.0.  

ER2: Epitope Retrieval Solution 2 pH 8.8.  

ENZ1: Enzyme 1 Epitope Retrieval Solution. 

 

 

2.2 c. Mouse Immunohistochemistry 

 Mouse whole tissue sections were probed for the immune cell markers F4/80 

(macrophages), CD3 (T-cells) and CD8+ (cytotoxic T-cells). Whilst the rest of the 

steps remained the same, to prevent non-specific binding of primary antibody, I 

performed a blocking step using normal serum from the same species that the 

biotinylated secondary antibody was raised in. I used the Vectastain® Elite ABC kit 

(Vector Laboratories, Burlingame, US). The ABC (Avidin Biotin Complex) system is 

used to amplify and detect the binding of primary antibody to its target antigen. This 

system utilizes the high affinity of avidin, a 68,000 molecular weight glycoprotein 

found in chicken egg white, for biotin (Hsu, Raine et al. 1981). The affinity of avidin to 

biotin is over one million times higher than the binding of an antibody to its antigen 

and is irreversible (Vectorlabs 2011). Avidin has 4 binding sites for biotin (Hsu, Raine 

et al. 1981) and because antibodies can be conjugated with biotin molecules, 

macromolecular complexes consisting of avidin, biotin and antibodies can be formed. 

This is exploited in the ABC system where a primary antibody is incubated with the 
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tissue section, afterwards, a biotinylated secondary antibody that is specific to the 

species in which primary antibody was raised is incubated with the tissue section. 

The ABC kit contains avidin DH and biotinylated horse-radish peroxidase which in a 

separate reaction is mixed together in a ratio that leaves some avidin unbound, 

forming a complex that the biotinylated secondary antibody binds to, resulting in 

more enzymes attached to the target protein than would be possible with an enzyme 

conjugated primary or secondary antibody. The peroxidase substrate 3,3‘-

diaminobenzidine produces a brown reaction on the site of the target proteins when 

incubated with the tissue sections. 

 

2.3 Imaging and Image analysis with Ariol®  

2.3 a. Introduction 

Ariol ® (Leica Microsystems, Milton Keynes, UK) is a high throughput 

automated scanning microscope and image analysis system with applications in the 

clinical, genomic, research and pharmaceutical industries (Gokhale, Rosen et al. 

2007; Minot, Kipp et al. 2009). The Ariol system is able to capture, store and analyse 

terabytes of imaging data and is approved by the FDA for in vitro diagnostic use of 

HER-2/ neu, nuclear Immunohistochemistry, specifically Oestrogen Receptor and 

Progesterone Receptor, pathVysion®- for counting probe signals in interphase nuclei 

in tissue sections, and detection of micro-metastasis in bone marrow (Microsystems 

2011).  

The Ariol system consists of a computer connected to a server to handle the 

large amounts of imaging data generated and is equipped with a barcode scanner, a 

microscope (the Proscan 11) with an automated mechanical stage embedded, and a 
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lighting system (Olympus BX- UCB) (Figures 2.7-2.10). The Ariol system can be 

programmed to capture whole tissue sections and tissue microarrays.  

The use of the Ariol system is documented in primary colorectal 

adenocarcinoma (Ong, Kim et al. 2010), breast cancer (Turashvili, Leung et al. 2009; 

Bolton, Garcia-Closas et al. 2010; Zabaglo, Salter et al. 2010) and follicular 

lymphoma (Clear, Lee et al. 2010) research where it has been used to measure 

infiltrating T-cell subsets, oestrogen receptors α and β, progesterone receptors, 

aromatase, HER2 and sprouting blood vessels in immunohistochemical slides. 

Research assays that can be performed on the Ariol ® can be seen on Table 2.4. 
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Aesight; Aesight_2 cytoplasmic Immunohistochemistry 

Angiosight micro vessel density 

Cellsight detection of circulating tumour cells 

Gensight generic image capture such as Haematoxylin and Eosin 

(H&E) 

ImmunoFluorescent imaging of cells with a counterstain and fluorescent 

SpectraChromes 

Kisight nuclear IHC (Ki67, p53, p63) 

Lymphsight detection of tumour cells in lymph node tissue 

Membrane Her2/neu analysis in research only 

Multistain Gensight assay for slides with multiple stains (up to 4) 

 

Ploidysight measuring of DNA content of tumour cells using Blue 

Feulgen stain 

TissueFISH counting probe signals in interphase nuclei in tissue sections 

SPOT counting probe signals in interphase nuclei from cell 

suspensions 

SPOT TissueFISH detection of FISH spots in tissues 

TMAsight Tissue Microarrays and TMAsight sub assays 
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(TMAcytoplasm, TMAmembrane, and TMAnuclear. 

 

Table 2.4 Ariol embedded research assays (Ariol® “Help me” Manual) 
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Figure 2.7 Ariol scanner 

The Ariol scanner and analytical software (Leica Microsystems, Milton Keynes, UK) were 

used to scan immunohistochemically stained slides and to quantitatively score (count) 

positively and negatively stained cells. 
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Figure 2.8 Ariol barcode scanner 

Each slide to be scanned is affixed with a unique barcode that registers information 

(such as slide template, assays etc.) pertaining to that slide. The Ariol barcode 

scanner is used to read these barcodes thus ensuring thoroughness and facilitating 

the high throughput capabilities of the Ariol scanner. 

 

 

 

 



106 
 

 

 

Figure 2.9 Ariol Slide Stage 

The slide stage of the Ariol scanner is capable of holding and scanning 8 slides 

during a single session. The slide stage combined with the barcode scanner (Figure 

2.7) enable for different arrays (Table 2.4) to be programmed for each slide. 
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Figure 2.10 Light source for the Ariol 

The Ariol scanner is able to perform immunohistochemistry, immunofluorescence 

and fluorescent in situ hybridization among others with the help of the light source. 
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2.3 b. Methods of immuno-scoring 

Traditionally, biomarker quantification has relied exclusively on visual scoring 

performed by a pathologist or trained reviewer. This method is semi-quantitative and 

may be limited by inter-observer agreement (Kirkegaard, Edwards et al. 2006). In 

addition, the visual analysis of tissue samples is time consuming and prone to 

human errors. These create a need for a method of absolute quantification that is 

consistent, replicable, time saving, and have high throughput capabilities. 

2.3 c. Automated methods of immunoscoring 

Automated imaging analysis systems may offer solutions to the limitations 

listed above. The microscope component of the Ariol® is equipped with an 

automated mechanical stage capable of holding 8 slides and can be programmed to 

scan all 8 slides sequentially (the Ariol SL-50, another model formerly from Applied 

Imaging, Genetix Ltd (now Leica Microsystems), can scan 50 slides at a time). The 

barcode scanner hardware installed on the system ensures that every slide is unique 

allowing for the programming of different assays per slide. These make it possible to 

carryout high throughput analysis. The embedded software is equipped with 

applications that make it easy to parse scanned images into regions allowing for 

calculations within regions. This is useful for tumour microenvironment analysis. It is 

also equipped with user controlled thresholds for scoring based on size, colour, 

intensity, pattern and shape with which a trained user can teach the Ariol to 

discriminate a false positive from a truly positive stain. The high magnification of 

pixels also make it possible to differentiate shades of colours and cells juxtaposed to 

each other so that cells may be counted individually giving sufficient stringency to 

produce highly accurate, reproducible results. The output is quantitative with values 
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for useful parameters such as: counts (positive and negative), analysed area (μm2), 

area of positive and negative straining (μm2), mean intensity of colours, etc. Various 

imaging systems can be seen on Table 2.5. 
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Name Manufacturer References 

Scanscope digital scanner, 

imagescope viewer, spectrum 

operating system 

Aperio Technologies, Inc. (Prasad and Prabhu 

2011); (Fasanella, 

Leonardi et al. 2011); 

(Słodkowska, Markiewicz 

et al. 2011) 

ACIS III® Dako Ltd. (Minot, Kipp et al. 2009); 

(Hanley, Siddiqui et al. 

2009); (Bekkers, Bulten et 

al. 2003) 

BLISS™ Virtual slide scanning 

system 

Olympus Ltd. (Rojo MG et al 2009) 

Mirax HistoQuant 3DHistech Ltd. (Varga, Ficsor et al. 2009); 

(Hadi, Mouchaers et al. 

2011); (Nielsen, Lindebjerg 

et al. 2010) 

Pathiam™ Bioimagene (Ventana 

Medical Systems, Inc.) 

(Rojo MG et al 2009) 

 

Table 2.5 Other types of Image analysis systems (Rojo, Bueno et al. 2010) 
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2.3 d. Advantages and validity of automated method 

  Automated imaging analysis systems need validation if they are to be 

preferred for routine immunocytochemistry analysis. The advantages above may 

proffer this, but would depend to a larger extent on the similarities between this 

method and a pathologists scoring. A number of assessments have been carried out 

to this effect. Ong and colleagues in seeking to measure the concordance, 

prognostic significance and time saving properties between visual scoring by 

pathologists and computer assisted pathological scoring stained for multiple markers 

(cytokeratin (CK) 7, CK20, cyclooxygenase-2, Ki67, p27 and p53) that exhibit either 

cytoplasmic or nuclear staining in 486 patients with primary colorectal carcinoma and 

scanned them with the Ariol SL-50. They observed that both human and computer 

assisted pathological scores correlated strongly, with all Kappa values  greater than 

0.8 (Cohen‘s Kappa is statistical measure of inter-rater agreement with a theoretical 

maximum of 1 and greater than 0.8 as very good), and that both methods showed 

the same biomarkers had significant association with survival. However the 

computer assisted method was found to be more time efficient for scoring larger 

number of slides. The limitation with this study however was the use of a single 

machine which led the authors to report that they could not comment on inter-

machine variability (Ong, Kim et al. 2010). 

In another study looking at three automated imaging analysis systems, the 

Ariol®, TMAx (Beecher Instruments) and TMALab II (Aperio), and their concordance 

among themselves as well as with visual pathological scoring in 440 breast cancer 

patients, the authors stained for oestrogen receptors α and β, progesterone 

receptors, aromatase, and human epidermal growth factor receptor 2 all chosen to 

reflect various staining patterns- nuclear, membranous and cytoplasmic. The 
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agreement between visual scoring and automated scoring of positive/ negative was 

excellent for ER- α and PR.  Lower levels of agreement for ER- β, aromatase and 

HER2 were observed but more importantly, the scoring from all machines was 

similar. The authors concluded that automated image analysis systems can produce 

results in concordance with pathologists‘ scores, especially for markers with nuclear 

staining patterns and can provide standardised quantitative measurements of 

immunohistochemical staining (Bolton, Garcia-Closas et al. 2010). It is of note 

however that the authors measured the automated system‘s ability to call positive or 

negative staining and by doing so handed over discretionary powers to the 

automated systems. 

 

2.3 e. Limitations of Ariol®  

 The Ariol software with all its capabilities is limited by its lack of user 

friendliness, archaic design and inflexibility. A likely comparison would be using a 

Windows 98 operating system when you could use a Windows 8 or a Mac OS X 

Mountain Lion. Such limitations consume time and effort. While it is possible to 

select a region and quantify the cells there, it is impossible to quantify the excluded 

region simultaneously and subsequently resulting in the user performing arithmetic 

calculations to get the cell counts of the excluded regions by performing separate 

time consuming analysis and deducting the selected region from the whole region.  

The system is also expensive. It cost approximately $300,000 in 2005. Most 

users would have to spend hours on the system to gain expertise and to perform the 

many analyses that must be executed to overcome its inflexibilities, and because 
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researchers pay a service charge to use the system in most institutes, it is an 

expensive research tool. 

For accurate results to be achieved, thresholds on what to quantify must be 

set. This is also consumes time, however, failure to set accurate thresholds on the 

software would result in inaccurate results. 

 

2.3 f. Reasons for choosing Ariol®  

In terms of the above assessments I would confer that the Ariol system is a 

robust imaging analyses system with limitations that can be overcome. It has been 

shown to very closely agree with pathological scoring (Bolton, Garcia-Closas et al. 

2010). The training function overcomes many of the limitations this system may have 

towards more complex cytoplasmic and membranous staining patterns. After such 

training the quantitative output is accurate and precise. It is a very useful tool when 

the machines accuracy and high throughput capabilities work in concert with the 

discretionary powers of the trained reviewer. 

 

2.3 g. Application 

 I used the Ariol® to perform quantitative analysis of immune cell markers for 

whole tissue sections and TMAs. I trained the software to distinguish and quantify 

positive and negative cells by their colour, shape, size and staining intensity (Figures 

2.12 A-E). For immune infiltrate analysis, the tissue sections were classified into the 

juxta-tumoural compartment and the panstromal compartment. The juxta-tumoural 

compartment was defined as the region of stroma immediately juxtaposed to the 
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tumour (approximately 100µm) and the panstromal compartment was defined as the 

entire stromal region excluding the juxta-tumoural compartment. Immune cell 

infiltration close to the tumour was defined as having a significantly higher density of 

immune cells in the juxtatumoural compartment than the panstromal compartment, 

or having non-significant (equal) densities between the two compartments. To 

quantify immune cell densities within the juxta-tumoural compartment, I selected the 

region by drawing around it with the aid of a marker tool on the Ariol. Afterwards, the 

amount of positive cells in that region was quantified and divided by the amount of 

negative cells in the same region or by the analysed area. The resulting ratio is the 

density of the juxta-tumoural compartment. The same calculation was performed for 

whole TMA cores. The density of the juxta-tumoural compartment was then 

subtracted from the density of the whole core to give the panstromal density. The 

median of analysed tumour cores for each patient was calculated and the distribution 

of juxta-tumoural density relative to panstromal density for the patients was 

compared using Mann Whitney U test (Prism software (Graphpad)). The calculation 

is illustrated below (Figure 2.11). 

 An alternative method of quantification that required positive cells to be 

divided by the analysed area in µm2 rather than number of negative cells was 

performed for one marker (CD68, a macrophage marker) as a control for choice of 

method of quantification. 

2.3 h. Other imaging systems used 

Axiophot microscope (Carl Zeiss MicroImaging LLC, New York, US) was used 

in routine immunohistochemistry image capture, for the semi quantitative image 

analysis of whole tissue sections and for marking H&E slides during TMA 

construction.  
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Whole TMA (core) density (WTD) = Number of positive cells in whole TMA 
(core) 

                                                  Number of negative cells in whole TMA (core) 

 

Juxta-tumoural density (JD) = Number of positive cells in juxta-tumoural 
compartment 

                                                  Number of negative cells in juxta-tumoural 
compartment   

 

Panstromal density (PD) = Whole TMA (core) density – Juxta-tumoural density 

 

Figure 2.11 Illustration of Tissue microarray densities calculation 
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Figure 2.12 CD68 training using Ariol® 

An example of training for quantification on the Ariol® using the marker for 

macrophages (CD68, brown) and hematoxylin (negative cells, blue) on a PDAC TMA 

core. The Ariol®  can be taught to detect and quantify cells based on their colour, 

shape, staining intensity, and pattern of staining. 

A. TMA core of PDAC stained for CD68: The Ariol® has the ability to quantify up 

to four markers on any given slide. The rectangular box to the left is the 

training interface and the square box on the core is the selected training 

region. 

B. Magnification of image: Training on the Ariol® is performed at the pixel level 

thus image has to be magnified. Magnification enables the viewing of 

individual cells. 

E 
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C. Training on colour: The TMA core has two stains, brown for CD68 

(macrophages) and blue for hematoxylin (negative cells). The Ariol® was 

trained to detect brown staining (red) and blue (green). Care was taken to 

prevent overlapping of hue thresholds. 

D. Training on shape: The Ariol® is able to detect the shape of individual cells 

(hematoxylin stained cells shown) using parameters such as width, spot 

width, roundness, compactness and axis ratio. 

E. Quantification of cells: Using the algorithims created from training on colour 

and shape, the Ariol® is able to identify and quantify, quantitatively, individual 

cells (identification of hematoxylin stained cells shown). 
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2.4 X-Tile analysis 

The X-tile software v.3.6.1 (Yale University) was used to analyse the role of 

the individual immune cell infiltrates on patient prognosis and survival.  

The minimum p value method is traditionally used to assess the survival 

function of a population. This method is performed by dividing the cohort into high 

versus low expressers based on a single cut point and varying the cut point until a 

significant p value is reached, usually the lowest p value. A Kaplan-Meier graph of 

the survival function is then plotted for the minimum p value. This traditional method 

poses the risk of a high false positive rate of approximately 40 percent compared to 

the nominal 5 percent because of multiple testing, and has very small p values which 

are not often replicable (Altman, Lausen et al. 1994) . 

Therefore correction is required for multiple testing. The x-tile software 

performs a number of statistical simulations such as the cross validation tests and 

Monte Carlo simulation of minimum p value to correct for multiple testing. The cross 

validation involves the random splitting of the dataset into two halves, finding the 

optimal cut point of one half of dataset and dividing the second half of dataset by the 

cut point of the first dataset. It then does the same for the second half of dataset and 

performs a survival analysis of the entire dataset based on these optimal cut points. 

Because the initial split is random, no two cross validations would give the same 

results. The software corrects for the random splits by performing the cross 

validation analysis 100 to 1000 times depending on the users settings and averages 

the results. It also plots a graphical heat map of the p values of the dataset which 

shows the quality of a marker for prognosis (Figure 2.13). 
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Monte Carlo simulation (or Monte Carlo method) is a mathematical technique 

that uses random numbers and probability statistics to perform risk analysis and has 

a range of applications, including in biology, atomic physics, economic and 

transportation. This technique makes it possible to examine very complex systems 

than would otherwise not be possible. The Monte Carlo simulation performs analysis 

―by building models of possible results by substituting a range of values- a probability 

distribution- for any factor that has inherent uncertainty‖ (Corporation 2013). It then 

calculates results multiple times, each time using a set of random values from the 

probability distribution that are different from the last time and the resulting outcome 

from that sample is recorded. Monte Carlo simulation performs this hundreds to 

thousands of times, the result of which is a probability distribution of possible 

outcomes.  
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Figure 2.12 X-Tile heat maps 

Heat maps produced by the X-Tile software. The triangle represents a population 

where 2 cuts are applied so that there is a middle population (3 populations) and the 

rectangle represents a population with a single cut applied (2 populations). Each 

pixel represents a data point where a cut has been applied. (A) Red denotes that the 

marker being investigated has a negative correlation with survival i.e. a high density 

of the marker results in poor prognosis. The spot with white border is the minimum p 

value in a 3 population cohort. (B) Green denotes that the marker being investigated 

has a positive correlation with survival i.e. a high density of the marker results in 

good prognosis. The black spot is the minimum p value in a 2 patient cohort. 
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2.5 Treatment of pancreatic stellate cells with all-trans retinoic acid (ATRA) 

2.5 a. Pancreatic stellate cells 

Pancreatic stellate cells (PSCs) are the main cells producing desmoplastic 

reactions in pancreatic ductal adenocarcinoma (Hwang, Moore et al. 2008; 

Vonlaufen, Joshi et al. 2008). PSCs are normally quiescent, a phenotype 

characterised by their ability to ―store retinyl palmitate, retinol esterification, 

expression of the cytofilaments desmin and vimentin‖ (Bachem, Schünemann et al. 

2005). However, PSCs may be activated by growth factors such as platelet-derived 

growth factor (PDGF), fibroblast growth factor (FGF) and transforming growth factor 

beta (TGFβ), cytokines and oxidant stress which results in a myofibroblast 

phenotype with subsequent transcriptional changes (Bachem, Schünemann et al. 

2005; Froeling, Feig et al. 2011). Patients with PDAC have a relative deficiency of fat 

soluble vitamins such as vitamin A, due to the absence of biliary and pancreatic 

secretions (Froeling, Feig et al. 2011). Pancreatic stellate cell line (PS1) and primary 

pancreatic stellate cell line can be activated in vitro by growing on plastic and 

exposure to ethanol and can be rendered quiescent in vivo and in vitro by treatment 

with all-trans retinoic acid (ATRA) (Froeling, Feig et al. 2011). 

2.5 b. All-trans retinoic acid (ATRA) 

All-trans retinoic acid (ATRA) is a metabolic product of retinol and the active 

form of vitamin A. Retinoids have important roles in biological processes including 

development of embryonic structures, development of the central nervous system, 

maintenance of epithelial surfaces, immune competence and reproduction (Blomhoff 

and Blomhoff 2006; Clemens, Flower et al. 2013). Retinoic acids mediate their 

actions by nuclear retinoid receptor proteins, the retinoid acid receptors (RARs) and 

retinoid ―X‖ receptors (RXRs). Retinoic acids role in biological processes involve the 
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binding to and activating of the RAR, which regulate the expression of several genes 

(Maden 2007). 

2.5 c. In vitro treatment of pancreatic stellate cells 

Because PSC are cultured on plastic in vitro, they retain an activated 

phenotype. To render the pancreatic stellate cells quiescent, ATRA (Sigma-Aldrich, 

Dorset, UK) was diluted from a stock solution of 10 mM in 100% ethanol to give 1mM 

ATRA. PS1s (pancreatic stellate cell line) were then treated in tissue culture every 

day for 7 days with 1mM ATRA in RPMI containing 10% foetal bovine serum (FBS) 

at a dilution of 1:1000 and under subdued light conditions. To control for quiescence, 

PS1 cells of the same lineage and passage were treated simultaneously with 100% 

ethanol (vehicle) only in RPMI containing 10% FBS at the same dilutions as ATRA 

treatment. These cells became our activated pancreatic stellate cell phenotype. After 

the 7 day treatment, media was aspirated off the cells and the cells were washed 

with fresh media 3 times. The conditioned media was collected after 24 hours. 

Conditioned media from cancer cells lines AsPc 1 and Capan 1 was also collected. 

2.5 d. Storage conditions of ATRA 

Upon purchase of ATRA (molecular weight 300.44), it was diluted in 100% 

ethanol to give a stock solution of 10 mM. The stock solution was covered in kitchen 

foil and stored at -80°C. A working solution of 1mM was normally made as described 

above and was stored in -20°C. All experiments were performed in subdued light. 
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2.6 In vitro migration assays 

 

2.6 a. Hypothesis 

 I hypothesised that cytokine changes that occur when pancreatic stellate cells 

are turned quiescent may result in the differential (if any) migration of immune cells 

to the different pancreatic stellate cell phenotypes. To test this hypothesis, I 

modelled a simple migration assay of T-cells to the conditioned media of pancreatic 

stellate cell phenotypes using 6.5mm Transwell® with 5.0µm Pore Polycarbonate 

Membrane sterile Insert (Corning Life Science BV, Amsterdam, The Netherlands). 

Transwell® permeable supports are devices used to study anchorage-dependent 

and anchorage-independent cells and are available in a range of diameters, 

membrane types and pore sizes. They are used in in vitro studies that include 

transport and permeability, cell polarity, drug transport, chemotaxis, invasion, co-

culture, endocytosis, tissue remodelling, in vitro fertilization and microbial 

pathogenesis (Incorporated 2010).  

 

2.6 b. Parameters 

 In designing the migration experiments, certain factors such as membrane 

types, pore sizes, pore density, duration of incubation, starting number of cells and 

method of quantification had to be determined. These factors will be discussed 

below in relation to the Transwell® product (Corning Life Science BV, Amsterdam, 

The Netherlands). 
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2.6 b. i. Diameters 

 The Transwell® comes in diameters of 6.5mm, 12mm, 24mm and 75mm. 

2.6 b. ii. Type of membrane 

 There are three membrane types; polycarbonate, polyester (PET) and 

collagen-coated polytetrafluoroethylene (PTFE).  

 The polycarbonate membrane is thin and translucent, and has 6 pore sizes: 

0.1 µm, 0.4 µm, 3.0 µm, 5.0 µm, 8.0 µm and 12.0 µm. They are treated for optimal 

attachment of cells.  

 Polyester membranes are microscopically transparent and they provide better 

cell visibility under phase contrast microscopy which allows for the assessment of 

viability and monolayer formation. It has four pore sizes: 0.4 µm, 1.0 µm, 3.0 µm and 

8.0 µm. 

 Collagen-coated PTFE membranes are transparent when wet. They promote 

cell attachment, spreading and visualization during culture. They are coated with 

types I and III collagen derived from bovine placenta and they have 2 pore sizes: 0.4 

µm and 3.0 µm. 

2.6 b. iii. Pore sizes 

 Pore sizes are a very important consideration as choosing the wrong pore 

size may inhibit migration of cells as a result of the pore being too small for a cell 

type, or they may induce the falling through of cells, making it impossible to quantify 

chemotaxis towards a gradient. Cell migration occurs in pore sizes of 3.0 µm or 

higher and because activated T-cells are approximately 10.0 µm in diameter 

(Nexcelom 2013), 3.0 µm and 5.0 µm pore sizes are recommended. I performed 
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optimization experiments with Transwells® of both pore sizes and chose 5.0 µm 

pore sized Transwells®.  

2.6 b. iv. Pore density 

 Only the polycarbonate and polyester have defined pore densities. The 

polyester membranes have lesser pore densities than the polycarbonate 

membranes. The pore density of the 5.0 µm polycarbonate Transwell® is 4 x 105 

pores/ cm2 whereas the pore density of the 5.0 µm polyester Transwell® is not 

nominally defined. 

2.6b. v. Starting number, Duration and Quantification 

 I started with 1 x 105 T-cells. I performed optimization experiments in which I 

let cells migrate for 5 and 8 hours and I chose final 8 hour duration. Cells were 

counted on the Casy® cell counter (Roche Diagnostics Ltd, Burgess Hill, UK). 

2.6 c. Method 

 As T-cell migration to pancreatic stellate cell and cancer conditioned media 

had not been documented in literature, we optimised the experiment by performing 

pilot assays with 3 µm and 5 µm transwells; 5 and 8 hour incubation times; condition 

media collected with or without FBS in different growth media, RPMI and DMEM + 

E4 (50:50). We observed the best distinctions using sterile 6.5mm Transwells® with 

5.0µm pore polycarbonate insert (Corning Life Science BV, Amsterdam, The 

Netherlands); 8 hour incubation time, condition media of cells grown in 10% FBS and 

RPMI 1640. RPMI with 10% FBS and 0% FBS were used as positive and negative 

controls respectively. 

The experiments were performed by aliquoting 500 µl aliquot of conditioned 

media in the lower compartment. This served as chemo-attractant. 1 x 105 CD3+, 
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CD4+ and CD8+ T-cells, separately, were resuspended in 200 µl of RPMI 1640 

without FBS were placed in the upper compartment of the Transwell® insert and 

incubated for 8 hours. Immune cells used were from healthy donor patients (isolation 

of immune cells is discussed below). The media in the lower compartment was 

collected and cells were counted with the Casy® cell counter (Roche Diagnostics 

Ltd, Burgess Hill, UK).           

 

2.7 Isolation of immune cells from blood 

2.7 a. Introduction 

 Blood from PDAC patients were collected at Barts Health NHS Trust (City and 

East London LREC 07/0705/87). Healthy donor lymphocytes were obtained from 

Buffy coats prepared by the National Blood Service, NHS Blood and transplant 

(Brentwood, United Kingdom) as approved by the North London Research Ethics 

Committee. 

  Mononuclear cells (consisting of lymphocytes and monocytes) were isolated 

from blood using the density gradient media Lymphoprep™ (Axis-Shield Plc, 

Dundee, Scotland). Separation of mononuclear cells was possible because they 

have lower density than red blood cells and polymorphonuclear cells (granulocytes). 

Mononuclear cells have a density below 1.077g/ml and therefore can be isolated by 

centrifugation on an isosmotic medium with density of 1.077g/ml. The red blood cells 

and polymorphonuclear cells are deposited at the bottom, and the mononuclear cells 

are kept at the medium interface (i.e. the Lymphoprep™ media separates 

mononuclear cells from non mononuclear cells). Serum is deposited on top of 

mononuclear layer. The mononuclear layer is called Buffy coat. 
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 Specific immune cells such as CD3, CD4 and CD8+  were isolated by positive 

selection. The principle involves labelling the immune cell of interest with 

magnetically labelled MicroBeads (Miltenyi Biotec, Surrey, UK) specific to that 

immune cell of interest. The cell suspension is then passed through a column in a 

magnetic field and positively labelled cells are retained in the column, and the non 

labelled cells are deposited in a collection tube. This non labelled fraction can still be 

labelled for other immune cells. I used the autoMACS® Pro separator (Miltenyi 

Biotec, Surrey, UK) (Figure 2.13) to isolate individual immune cells. The autoMACS® 

Pro may be used to separate cells either using positive or negative selection. 

 

2.7 b. Method 

 Immune cell isolation was carried out in sterile condition in a laminar flow 

hood. Blood was diluted with PBS in a 1:1 ratio and afterwards added to 

Lymphoprep™ media in a 2:1 ratio (with Lymphoprep™ media being the lesser 

fraction). Utmost care was taken in the addition of blood to Lymphoprep™ media so 

as not to contaminate the layer: media was added to tube first and then tilting the 

tube at a 45 degrees angle, blood was slowly added. The mixture was then 

centrifuged at a speed of 1500rpm and at 22°C for 25 minutes.  

 After centrifugation, care was taken to ensure that layers were not mixed and 

with the use of a plastic pipette, serum layer was carefully aspirated off and stored at 

-80°C. Also with a plastic pipette, the mononuclear layer was carefully aspirated off, 

transferred to a new tube and filled up with MACS buffer (prepared by diluting MACS 

BSA Stock Solution 1:20 with autoMACS® Rinsing Solution (all Miltenyi Biotec, 

Surrey, UK)) and re-centrifuged at a speed of 1500rpm at 4°C for 5 minutes. 
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 PBMCs were labelled with MicroBeads and left to incubate at 2-8°C for 15 

minutes and separation was performed with the ―POSSEL‖ program on the 

autoMACS® Pro. ―POSSEL‖ is used in the isolation of cells with normal antigen 

expression and with frequencies higher than 5%, and is the program of choice when 

purity is the highest priority. The protocol in the MicroBead kit was followed. 

 

Figure 2.14 autoMACS® Pro separator (Miltenyi Biotec, Surrey, UK) 
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2.8 Adhesion assays 

 I modelled adhesion experiment to observe and measure if CD3+ and CD8+ T-

cells have differential affinity, in vitro, for activated and quiescent pancreatic stellate 

cells. The rationale behind this experiment was that T-cells do not adhere to glass 

(Kirby, Wheeler et al. 2003) and thus if T-cells remained after incubation and a 

rigorous wash process, then they might have formed adhesion complexes with 

receptors or ligands on the PS1 cells. Quantifying the number of adhered T-cells to 

activated PS1 cells versus the adhesion of T-cells to quiescent PS1 cells might then 

show if there was differential adhesion.  

 I plated PS1 cells on 10mm glass cover slips that had been carefully inserted 

into 6 well plates The PS1 cells were treated with either ATRA or ethanol for 7 days 

as described previously. At the end of treatment, on the 8th day, media was aspirated 

off and replaced with either 5 x 104 CD3+ or CD8+ in RPMI 1640 media with 10% FBS 

and incubated in 37°C for 1, 2 and 8 hours. Afterwards, media was removed from 

wells and cover slips were washed three times with PBS. The cover slips were 

harvested and fixed in Cellstor Neutral Buffered Formalin (Cellpath Ltd. Newton, UK) 

for 20 minutes. Cellstor buffer was removed and the cover slips were washed 3 

times with PBS and stored at 4°C in PBS containing 0.1% sodium azide.  

 The glass cover slips were stained by immunofluorescence and the number of 

adhered T-cells relative to PS1 cells was counted on the Axioplan microscope (Carl 

Zeiss MicroImaging LLC, New York, US) based on cell morphologies and staining 

patterns. The counts were performed at x63 magnification because of the size of the 

T-cells, and were performed by dividing the number of adhered T-cells by number of 
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pancreatic stellate cells per high-power field to give ratios of T-cells adherent per 

stellate cell. 

2.9 Immunofluorescence 

 Immunofluorescence was employed in the quantification of adhesion assays 

(above) and in the labelling of certain proteins on tissues. Immunofluorescence 

follows most of the same principles that govern immunohistochemistry (discussed 

previously) but differs primarily in its method of detection. In immunofluorescence 

antibodies are chemically conjugated to fluorescent dyes such the Alexa fluor dyes, 

fluorescein isothiocyanate (FITC) and tetramethyl rhodamine isothicyanate (TRITC). 

An automated imaging instrument capable of detecting fluorescent signals, such as 

the Zeiss Laser Scanning Microscope LSM 510 (Carl Zeiss Ltd. Cambridge, UK) can 

be used to quantify fluorescence. 

 Antibodies may bind directly or indirectly to the protein of interest. Direct 

immunofluorescence occurs when the fluorescent dye is conjugated to the primary 

antibody, whereas indirect immunofluorescence occurs when the fluorescent dye is 

conjugated to a secondary antibody. In most cases, mine included, indirect 

immunofluorescence is used. The advantages of indirect over direct 

immunofluorescence include: indirect method is not as expensive, signal is often 

amplified as more than a single secondary antibody may bind to the primary antibody 

whereas in the latter conjugation is on the single primary antibody and there is 

greater sensitivity in the indirect fluorescence method. 

 Immunofluorescence may be used to evaluate cell suspensions, cultured cells 

and tissues and they can be used on fresh and fixed samples, the former of which is 

not possible in immunohistochemistry.  
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 Details of antibodies used are on Table 2.2. 

 

2.10 Gene expression microarray analysis 

 Pancreatic stellate cells were plated on plastic and Matrigel and treated with 

1µm and 10 µm of all trans retinoic acid (ATRA) for 7 days, after which triplicates 

were extracted using TRIzol (Invitrogen). 250ng of RNA was labelled using Illumina 

TotalPrep RNA amplification kit (Ambion, manufacturer‘s instructions were followed) 

and hybridized to Illumina Human-6 v2 Expression BeadChips (46,713 probes). 

Statistical analyses were performed using Bioconductor (Bioconductor 2013) 

packages with R statistical environment (R-Project 2013). The above was carried out 

by Froeling et al (Froeling, Feig et al. 2011).  

 I selected genes involved in migration and adhesion by comparing selecting 

upregulated and downregulated genes and comparing these to information on the 

genetics database, GeneCards (Genecards 2013). A summary table of selected 

genes and their functions can be seen below in table 2.6. 
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Genes ILMN_ID Description Function P1vsC.x  M1vsC.x P10vsC.x P1vsM1.x 

IL8 

 

ILMN_1666
733 

Interleukin 8 T-cell, Neutrophil, Basophil 
but not Monocyte 
chemotactic factor 

 

1.2611 

 

 
 
2.3026 

 
 
-2.228 

 

 
 
-1.042 

 

MYL7 

 
ILMN_168185
7 

 
 

Myosin light 
chain 7, 

regulatory 
Motor proteins, regulatory 

 
1.2971 

 

 
0 

 
0 

 
0 

MYL4 

 
ILMN_168425
5 

 

Myosin light 
chain 4, 

protein coding 
Motor proteins 

 
0 

 
0 

 
-1.184 

 

 
0 

CXCL12
/ SDF1 

 
 

ILMN_1803

825 

Stromal cell 
derived factor 

Migratory for lymphocytes 
and monocytes, negative 
regulator of adherence on 
monocytes through lyn 
kinase 

 
 
0 

 
 
0 

 
 

-1.485 

 

 
 
0 

IL6 

 
 

ILMN_1699

651 

Interleukin 6 B-cell stimulating factor 

 
 
0 

 
 
0 

 

-1.393 

 

 
 
0 

CCL2 

 
ILMN_1720

048 

Chemokine 
Ligand 2 

Chemoattractant for 
monocytes 

 
1.0182 

 

 
1.1034 

 

 
0 

 
0 

ITGA4 

 
ILMN_1747

052 

Integrin alpha 
4 

Receptors of Fibronectin 
and VCAM1 

 

 

1.125 

 

1.0862 

 

0 

 

0 

VCAM1 

 
ILMN_1766

955 

Vascular cell 
adhesion 

molecule 1 

Adhesion molecule, binds 
VLA4 on lymphocytes 

 
0 
 

 
0 

 
-1.12 

 

 
0 

SOCS1 

 
ILMN_1774

733 

Suppressor of 
cytokine 

signalling 1 

Negative regulation of 
cytokines 

 
0 

 
0 

 
-1.286 

 

 
0 

IL1B 

 
ILMN_1775

501 
Interleukin 1 

beta 

stimulates thymocyte 
proliferation and B-cell 
maturation, involved in 
inflammatory immune 
response 

 
 

1.788 

 

 
 

2.3256 

 

 
 
0 

 
 
0 

FN1 

 
ILMN_1778

237 
Fibronectin 1 

Binds cell surfaces, 
involved in adhesion, 
migration and wound 
healing 

 
0 

 
0 

 
-1.362 

] 
0 

CXCL6 

 
ILMN_1779

234 

Chemokine (C 
x C motif) 
ligand 6 

Neutrophil chemotactic 
protein 

 
0 

 
0 

 
-1.072 

 
0 

TNFAIP
6 

 
ILMN_1785

732 

Tumour 
necrosis factor 
alpha- induced 

protein 6 

Contains hyaluronan 
binding domain, involved in 
cell migration and 
extracellular matrix stability 

 
 
0 

 
 
0 

 
-2.039 

 
 
0 
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IL11 

 
ILMN_1788

107 Interleukin 11 

Stimulates T-cell 
dependent development of 
immunoglobulin producing 
B-cells 

 
0 

 
0 

 

-1.294 

 

 
0 

ICAM1 

 

ILMN_1812

226 

Intercellular 
adhesion 

molecule 1 

Ligands for Lfa1 proteins, 
involved in cell adhesion 
and migration 

 

1.0787 

 

1.0601 

 

0 

 

0 

 

Table 2.6 Putative genes involved T-cell chemotaxis 

Table showing mRNA gene expressions of pancreatic stellate cell line (PS1) when 

treated with ATRA versus controls (vehicle treated cells). 

ILMN_ID: Illumina identifier 

P1vsC.x: Fold change in gene expression when PS1 is treated with 1mM ATRA on 

plastic vs. control. 

M1vsC.x: Fold change in gene expression when PS1 is treated with 1mM ATRA on 

Matrigel vs. control. 

P10vsC.x: Fold change in gene expression when PS1 is treated with 10mM ATRA 

on plastic vs. control. 

P1vsM1.x: Fold change in gene expression when PS1 is treated with 1mM ATRA on 

plastic vs. PS1 treated with 1mM ATRA on Matrigel. 

Function of genes were obtained from the genetic database, GeneCards (Genecards 

2013). 
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2.11 Enzyme linked immunosorbent assay (ELISA)  

 Quantikine® ELISA kits (R & D Systems, Abingdon, UK) were used to 

measure the concentrations of candidate chemokines and cytokines secreted by the 

activated and quiescent pancreatic stellate cell phenotypes. Stellate cell conditioned 

media was used and collected as previously described. The proteins measured 

included Interleukin 1 beta (IL-1β/ IL-1F2), Interleukin 8 (IL-8/ CXCL8), Stromal cell 

derived factor 1 alpha (SDF-1α/ CXCL12), Intracellular adhesion molecule 1 (sICAM-

1/ CD54) and Monocyte chemotactic protein 1 (MCP-1/ CCL2). The protocols 

provided with the kit were strictly followed. 

 The Quantikine® ELISA (R & D Systems, Abingdon, UK) measures proteins 

in cell culture supernates, serum, urine and plasma. It can be used to determine 

―relative mass values of proteins of interest‖ and utilizes a quantitative sandwich 

ELISA approach. Monoclonal antibodies specific for the protein of interest are pre-

coated onto a microplate. Antibodies in samples when added bind to immobilised 

antibodies on microplate. The final output is colourimetric. 

Optical densities of colours were read with Dynex microplate reader and 

protein concentrations were calculated with Dynex Revelation 4.04 software (Dynex 

Technologies, Virginia). A primary test filter of 450 wavelengths and a secondary test 

filter of 560 wavelengths were used. 
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2.12 RNA interference (RNAi) 

 RNAi is a technique used to perform post-transcriptional gene silencing in 

cells. During RNA interference, the RNase II enzymes Dicer and Drosha process 

double stranded RNA (dsRNA) or micro RNA (miRNA) into 19~21 base pairs small 

interfering RNA (siRNA) (Hamasaki, Suzuki et al. 2012). siRNA is then loaded to the 

protein complex RNA-induced silencing complex (RISC). During assembly, RISC 

unwinds the two siRNA strands retaining one strand which is used to recognise and 

bind to the target mRNA. The RNase H enzyme, Argonaute (Slicer), degrades the 

target mRNA leading to gene silencing. 

 Because stromal cell derived factor 1 alpha (SDF-1 α / CXCL12) is 

chemotactic to T-cells (Kryczek et al 2007) and based on the expression results 

obtained from the ELISAs, I used siRNA to silence CXCL12 in PS1 cells. 

 I used CXCL12 GeneSolution siRNA (Qiagen, West Sussex, UK) to silence 

CXCL12 gene expression in PS1 cells and Allstars Negative Control siRNA (Qiagen, 

West Sussex, UK) as a control. Opti-MEM® reduced serum media (Life 

Technologies Ltd. Paisley, UK) was used to dilute the siRNA and transfection of the 

siRNA was performed with INTERFERin™ (Polyplus-transfection SA, France). The 

protocol provided with the INTERFERin™ was adhered to for transfection.  

 To optimize the siRNA experiments, concentrations of 1nm, 10nm and 50nm 

were employed. I incubated the cells with the transfection mix at 37°C for 96 hours 

after which I took the media off. RPMI with 10% FBS was put on the cells and 

incubated at 37°C for 24 hours and then collected. ELISA was used to measure the 

amount of protein in supernatant. All conditioned media were stored at 4°C for a 

maximum of 3 months. 
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2.13 Mouse experiments 

 Most genetically engineered mouse models use recombinases (e.g. 

bacteriophage-P1-derived Cre recombinases) to excise DNA sequences that are 

flanked by specific short repeats (called loxP sites) and are based on a Cre/loxP 

model (Mazur and Siveke 2011). In this model, mutant KrasLSL-G12D knock in allele 

and silenced by the insertion of a LoxP-flanked STOP element is activated by 

excision of the STOP element driven by the Cre-recombinase (Mazur and Siveke 

2011). Pdx1-Cre transgenic knock in strains are used to target pancreatic progenitor 

cells and are activated during early pancreatic development. Because PDX1 is 

expressed in the stomach, duodenum and epidermis, extra-pancreatic tumours may 

arise in such mouse models and because Pdx1-Cre is activated in early 

embryogenesis, the mouse model does not reproduce the intermittent acquisition of 

mutations as is the case in humans. However, this mouse model most closely relates 

to the human PDAC condition as it exhibits the hallmark signs of PDAC such as 

PanINs that progress to invasive and metastatic disease (Mazur and Siveke 2011). 

 Genetically engineered mouse model KPC (LSL-KrasG12D/+; LSL-

Trp53R172H/+; Pdx-1-Cre mice) were treated with ATRA dissolved in sesame oil. 

Dosage of 10mg/kg was administered daily for 5 days. 6 mice were treated with 

ATRA only while 4 mice were treated with vehicle only. One ATRA treated mice was 

given 3 doses as it was enrolled at advanced stage PDAC. The whole pancreas, 

spleen and salivary gland were harvested and mounted on a single slide. The 

salivary gland and spleen serve as controls (Froeling, Feig et al. 2011). 

 KPC mice were then stained for the immune markers: CD3+, CD8+ and F4/80. 
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2.14 Flow cytometry 

 Flow cytometry is used to analyse the expression of cell surface markers and 

intracellular molecules and in characterising and defining cell types in heterogeneous 

cell population by measuring the fluorescent intensity produced by fluorescent 

labelled antibodies. The procedure consists of the following (Rahman 2006; Abcam 

2013):  

1. Fluidics: The fluidics system of a flow cytometer consists of a core through 

which the cell suspension is run through, and is enclosed by a sheath 

containing a faster flowing fluid called sheath fluid. This fluid creates an effect 

called hydrodynamic focusing which results in particles being passed through 

the laser light individually. 

2. Forward and side scatter measurements: There are a number of detectors on 

a flow cytometer. One is found in the front of the light beam (forward) and 

several others are on the side of the beam (side scatter), and as cells pass 

through the beam they will scatter light which is detected by these forward 

and side scatter detectors. The forward scatter is dependent on cell size and 

the side scatter is dependent on the density of the cells (i.e. organelles, 

granules). Populations can be distinguished based on their forward scatter 

and side scatter characteristics. 

3. Measurement of fluorescence: When excited by a laser, fluorochromes 

labelled to target proteins will emit light that corresponds to their excitation 

wavelengths. This fluorescence can be detected individually and analysed. 

The flow cytometer has a set of filters and mirrors that categorize forward and 

side scatter and fluorescence dependent on their wavelength. Each sensor, 
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called photomultiplying tubes (PMT), detects fluorescence only at a specified 

wavelength. 

4. Staining: I used the direct staining method in which the primary antibody is 

directly conjugated to a fluorochrome. The advantages of this method are that 

there is only one incubation step and it eliminates the possibility of non-

specific binding from secondary antibody. 

 Fluorescent activated cell sorting (FACS) buffer was always used 

freshly made and consisted of PBS with 2% foetal calf serum (FCS) and 

because it was always freshly made it was of no use adding azide. The 

procedure was performed on ice and antibodies were incubated for 30 

minutes at 4°C in the dark. Analyses were also carried out the same day as it 

was not useful to fix the cells with paraformaldehyde. A list of the antibodies, 

their conjugates and other details are in table 2.7 below. 
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Primary antibody 

(clone) 

Species raised 

in 

Supplier (order 

number) 

Conjugate Gene 

CD3 (UCHT1) Mouse Biolegend 

(300419) 

PE/Cy7 CD3 

CD4 (RPA-T4) Mouse eBiosciences (47-

0049) 

APC-eFlour® 780 CD4 

CD8a (RPA-T8) Mouse eBiosciences (45-

0088) 

PerCP-Cy5.5 CD8 

CD184 (12G5) Mouse BD Pharmingen™ 

(560936) 

APC CXCR4 

CD45RA (H100) Mouse BD Pharmingen™ 

(561882) 

FITC PTPRC 

CD197 (3D12) Rat eBioscience (12-

1979) 

PE CCR7 

 

 Table 2.7 Flow cytometry antibodies and conjugates 
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3.0 Results 

3.1 Introduction  

 PDAC have a pronounced desmoplastic reaction (Neesse, Michl et al. 2011). 

Activation of quiescent pancreatic stellate cells (PSC), the chief event in this 

process, is reversible as shown by Froeling et al (Froeling, Feig et al. 2011). 

Investigations with the aid of in situ hybridization by Iacobuzio-Donahue and 

colleagues have delineated invasive tumours into five distinct compartments based 

on differential gene expression as well as morphology: neoplastic epithelium, 

endothelium, inflammatory, panstromal and juxtatumoural stroma. (Iacobuzio-

Donahue, Argani et al. 2002). The juxtatumoural stroma and panstromal regions of 

PDAC were delineated based on their differential expressions of the genes; Matrix 

metalloproteinase 11 (MMP11), Apolipoprotein C-1 (Apo C1) and Apolipoprotein D 

(Apo D), which are preferentially expressed in the juxtatumoural region, and Matrix 

metalloproteinase 2 (MMP2) which is preferentially expressed in the panstromal 

region (Iacobuzio-Donahue, Ryu et al. 2002; Ricci, Kern et al. 2005). This delineation 

was arrived at with the aid of serial analysis of gene expression (SAGE) libraries and 

in situ hybridization (Ryu, Jones et al. 2001; Iacobuzio-Donahue, Ryu et al. 2002; 

Ricci, Kern et al. 2005) and these differences in gene expression of the stroma may 

suggest differential interactions of stromal regions with immune cell infiltrate. The 

juxtatumoural stroma is defined as the region of stroma immediately adjacent to the 

tumour epithelial cells and the panstroma as the total stromal region excluding the 

juxtatumoural stroma (Ricci, Kern et al. 2005).  

 In this chapter I quantified the density of an array of immune cells in infiltrating 

cancers, particularly PDAC and other pancreatico-biliary diseases. In addition to 

quantifying the total tissue immune cell infiltrate of the various cancers, I also sought 
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to measure immune cell migration towards the tumour cells. In order to achieve this 

we defined the juxtatumoural stroma and panstromal compartments as described 

earlier in methods and measured density in the individual compartments.   

 There is a paucity of blood vessels within the immediate vicinity 

(juxtatumoural stromal compartment) of pancreatic tumours and an increase in blood 

vessel density further away (panstromal compartment) from the tumour and affixed 

within the stromal matrix in both human and KPC mice tissues (Olive, Jacobetz et al. 

2009). In response to chemokine secretions resulting from inflammation, immune 

cells extavasate blood vessels where they are in circulation unto tissue and with the 

help of adhesion molecules such as VCAM-1 and ICAM-1 migrate to the site of 

inflammation as they require direct contact to perform their functions (von Andrian 

and Mackay 2000; Campbell, Kim et al. 2003; von Andrian and Mempel 2003). 

Because the majority of blood vessels in PDAC are found in the panstromal 

compartment, immune cells need to actively migrate across the stroma to the 

tumour, this, we called immune cell infiltration to the tumour. 

 I hypothesised that a defect in immune cell infiltration will occur when the 

immune cell density in the panstromal compartment is significantly more than the 

density in the juxtatumoural compartment. The corollary will then be that a no defect 

in immune cell infiltration will occur when the immune cell density in the 

juxtatumoural compartment is significantly higher than the density in the panstromal 

compartment or when there is no significant difference between these two stromal 

compartments. I also describe the effect of these immune cells on overall patient 

survival. 
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 The juxtatumoural stroma and panstromal compartments have also been 

used in the delineation of breast cancer stromal reaction. The juxtatumoural stromal 

cells were found to express the gene Osteonectin differentially from the panstromal 

cells (Iacobuzio-Donahue, Argani et al. 2002) suggesting differences between 

tumour types or organs. 

 

3.2 Immune cell staining of whole tissue sections 

 Whole sections of 4 PDAC patients were stained by immunohistochemistry for 

the T-cell markers (Figure 3.1); T-cells (CD3+), helper T-cells (CD4+), cytotoxic T-

cells (CD8+) and other immune cells (Figure 3.2);  (CD20+) and Neutrophils (CD15+) 

and quantified quantitatively with Ariol as described previously. As the sample size 

was small we did not achieve significant results however we observed sequestration 

of CD3+, CD4+, CD8+ and CD20+ in the panstromal compartments and sequestration 

of CD15+ in the juxtatumoural compartment. These observations formed our 

hypothesis of immune cell migration in PDAC, where some immune cells (such as 

the Neutrophils) are able to extravasate the blood vessels to the tissue and are able 

to perform chemotactic migration to the tumour, whereas other immune cells (such 

as the T-cells) are able to extravasate the tissue but seem sequestered by the 

stroma. 
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Figure 3.1 T-cell infiltration in whole tissue sections 

(A) CD3+, CD4+ and CD8+ staining compared with a negative control in tissue 

sections of the same PDAC patient. T-cells are sequestrated in the panstromal 

compartment indicating a lack of infiltration of these immune cells. Consecutive 

sections have been used for ease of comparison. 

(B, C) Box and whiskers diagram showing the median and inter-quartile range of the  

subsets; helper T-cells (CD4+) and cytotoxic T-cells (CD8+) in the juxtatumoural 

stromal and panstromal compartments. There is no defect in infiltration of CD4+ T-
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cells; this is not the case for CD8+ T-cells which are sequestered in the panstromal 

compartment. 

Number of patients: 4; Scale bars: 200µm 
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Figure 3.2: Other immune cell infiltration in whole tissue sections 

(A) Neutrophil (CD15+) and B-cell (CD20+) staining compared with a negative control 

in tissue sections of the same PDAC patient. CD15+ cells are sequestrated in the 

juxtatumoural compartment indicating an infiltration of neoplasia by this immune cell 

type. CD20+ cells cluster in the panstromal compartment but are not seen infiltrating 

the neoplasia.  

 

(B, C) Horizontal box and whiskers diagram showing the median and inter-quartile 

range of CD15+ and CD20+ cells in the juxtatumoural stromal and panstromal 

compartments.  

Number of patients: 4; Scale bars: 200µm 
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3.3 a. Validation of method of quantification of whole tissue sections on tissue 

microarrays (TMA)  

 In order to increase the power of our quantification of immune cell infiltration 

on human tissues I chose to use TMAs. The benefits of TMAs include: high 

throughput capability, uniform staining of all TMA cores within a slide and less 

variation between slides as the quantity of slides are reduced when using TMAs 

compared to slides of whole sectioned tissue, and also using TMAs would introduce 

a separate method of quantifying immune cell infiltration.  

 To ascertain whether tissue microarrays (TMAs) could be used in the 

quantification of immune cell densities, I stained a TMA for CD8+ T-cells and selected 

4 random PDAC patients‘ samples from the TMA. I quantified the density of CD8+ T-

cells in the juxtatumoural and panstromal regions and compared this to the same 

four patients‘ tissues stained for individually in whole tissue sections (Whole tissue 

sections were stained by immunohistochemistry and performed by Dr. Moonim). I 

observed a similar distribution of densities using both methods (Figure 3.3). I chose 

TMA to analyse immune cell densities because of its high throughput capability. 
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Figure 3.3: Comparison of immune cells density done in tissue microarray and 

whole tissue sections 

Horizontal box and whiskers diagram representing immune cell densities on TMAs 

(A) and whole tissue sections (B) using the method described in chapter 2 

(section…). Each graph is representative of four patients. In TMAs the median of all 

cancer cores for each patient was calculated and used to represent the patient. Both 

methods showed the same trend.  

Boxes represent median with interquartile ranges (25th and 75th) with whiskers 

representing the range. 
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3.3 b. Comparison of two methods to calculate immune cell density: as a proportion 

of all cells and numbers per unit area 

 Furthermore, in order to satisfy the validity of approach, I quantified immune 

cell density by two methods. The first method involved quantifying both the number 

of positively and negatively stained cells and dividing the number of positively 

stained cells by the number of negatively stained cells. The second method involved 

counting only the number of positively stained cells and dividing these by the 

analysed area. For accuracy with the second method, I excluded ductal spaces 

(equation and result are shown in Figure 3.4). I chose the former method so as to 

take into account the variations in size of ductal spaces of neoplasms, especially as 

some immune cells such as neutrophils were found within the ductal lumens. 
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Density= Number of positive cells   Density= Number of positive cells 

     Number of negative cells       Analysed area 

 

Figure 3.4: Comparison of immune cells density performed by two different 

methods 

Immune cells were stained and analyzed as described earlier. The analysis of 

immune cell density was carried out by two distinct methods. In (A) the stromal 

compartments were analyzed by dividing the number of positively stained nuclei with 

the number of negatively stained nuclei to give a proportion of cellular population. In 

(B) the positively stained nuclei number was divided by the analysed area to give an 

estimate of immune cell density. Both methods demonstrated statistically significant 

result. 

Each data point represents a single patient (median scores of all TMA cores (n=6)). 

Lines represent median with interquartile ranges (25th and 75th). 

Mann Whitney U test; p-values are two-tailed. 
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3.4 Immune cell infiltration in pancreatico-biliary diseases 

I performed an unbiased, automated survey of immune cell infiltrate (T-cells, 

CD3+; helper T-cells, CD4+; cytotoxic T-cells, CD8+; regulatory T-cells, FoxP3+; B-

cells, CD20+; and macrophages, CD68+) on pancreatico-biliary cancers such as 

PDAC, ampullary carcinoma (AC) and cholangiocarcinoma (CC) and on  the 

borderline malignant condition: mucinous cystic neoplasm (MCN); chronic 

inflammation: chronic pancreatitis (CP); and normal donors which served as controls 

(Figures 3.6 and 3.7). A normal spleen core was embedded in each TMA slide to 

serve as a positive control for immunohistochemical staining (Figure 3.5) 

CD3+, CD4+ and FoxP3+ cell densities were higher in all the malignant 

tumours (PDAC, CC, AC) with adverse prognosis (Coupland, Kocher et al. 2012) 

(Figure 3.7). Conversely, the density of CD8+ T-cells infiltrate for PDAC was 

comparable to chronic pancreatitis and was lesser as compared to AC and CC. This 

defect in infiltration of cytotoxic T-cells has been observed in experimental animal 

studies for PDAC (Clark, Hingorani et al. 2007; Bayne, Beatty et al. 2012; Pylayeva-

Gupta, Lee et al. 2012). In contrast, the infiltrate of other immune cells in PDAC was 

similar to the other malignant Pancreatico-biliary tumours. For the first time ever, we 

have looked at the defect in immune cell infiltration in a large cohort of PDAC 

patients compared with other pancreatico-biliary diseases.  
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Figure 3.5 Immune cell positive controls with normal spleen 

Each TMA core had a core consisting of normal spleen that served both as a positive 

and internal control during each immunohistochemistry staining. From the top: (A) T-

cells, CD3+; (B) helper T-cells, CD4+; (C) cytotoxic T-cells, CD8+; (D) regulatory T-

cells, FoxP3+; (E) B-cells, CD20+; (F) macrophages, CD68+. 

Scale 50µm. Magnification 10x. 
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Figure 3.6: Immune cell distribution in patients with normal histology, PDAC 

and cholangiocarcinoma. 

The panel shows representative H&E, CD3+ and CD8+ immunohistochemistry 

images of normal (A, D, G), PDAC (B, E, H) and cholangiocarcinoma (C, F, I) TMA 

cores. The arrow heads point at tumours and arrows at positively stained immune 

cells. Fewer CD3+ and CD8+ T-cells can be observed in normal cores. In PDAC, 

CD3+ and CD8+ T-cells are seen to aggregate in the panstroma, away from the 

juxtatumoural stroma. CD3+ and CD8+ are seen to be dispersed all over 

cholangiocarcinoma tissues. All T-cells are sequestered in the panstromal 

compartment where they appear to be in close association with stellate cells.  

Scale bars: 100µm; Magnification 10x. 



155 
 

 

 

 



156 
 

 

Figure 3.7 Immune cell infiltrate in human pancreatico-biliary diseases 

Immune cells (T-cells, CD3+(A), helper T-cells, CD4+(B), cytotoxic T-cells, CD8+(C), , 

CD20+(D), regulatory T-cells, FoxP3+(E), and macrophages, CD68+(F)) infiltrates 

were measured in pancreatico-biliary diseases (chronic pancreatitis (CP), mucinous 

cystic neoplasms (MCN), ampullary carcinoma (AC), pancreatic ductal 

adenocarcinoma (PDAC), cholangiocarcinoma (CC)) and normal tissues (N) using 

Ariol software.  

Box (median with interquartile ranges (25th and 75th)) and whisker (5th and 95th 

percentiles) plots (outliers are represented by individual dots) demonstrate that all 

diseases demonstrate varied density and profile of immune infiltrate suggesting 

disease-specific responses of the immune system. Cholangiocarcinoma patients 

have the densest immune infiltrate and this may be related to biliary tract infection 

and/or intervention close to the tumour prior to resection.  Inflammatory conditions 

(CP) and borderline neoplasms (MCN) have less immune infiltrate than all cancers.  

Kruskal-Wallis p value< 0.0001 for all immune cells. Dunn‘s post test was used to 

compare columns. *** p< 0.001; ** p= 0.001 to 0.01; * p= 0.01 to 0.05; 

Number (range) of patients for the whole chart: Normal (11-14), chronic pancreatitis 

(4), mucinous cystic neoplasms (6), ampullary carcinoma (9), pancreatic ductal 

adenocarcinoma (93-98), and cholangiocarcinoma (21).  
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3.5 Differential immune cell infiltrate in stromal sub-compartments of PDAC 

Of the T-cell subsets, we observed sequestration in the panstromal 

compartment of regulatory T-cells (Foxp3+, (Figure 3.11)) and cytotoxic T-cells 

(CD8+, (Figure 3.10)), whereas helper T-cells (CD4+, (Figure 3.9)) infiltrated the 

juxtatumoural compartment confirming our observations of CD8+ and CD4+ infiltration 

in whole tissue sections. Other immune cells that were equally sequestrated by the 

panstromal compartment included B-cells (CD20+, (Figure 3.12)) and natural killer 

cells (CD56+, (Figure 3.13)). By contrast macrophages (CD68+, (Figure 3.14)) and 

neutrophils (myeloperoxidase+ (Figure 3.15)) infiltrated the juxtatumoural 

compartment and were often seen in pancreatic ductal spaces. The observation of 

CD68+ macrophages infiltrating the juxtatumoural compartment has previously been 

reported (Ricci, Kern et al. 2005) and neutrophil infiltration of the juxtatumoural 

compartment in TMAs also supported our observation of Neutrophil infiltration in 

whole tissue sections with CD15+ staining.  

 

The differential immune cell infiltration observed in PDAC could plausibly be 

attributed to a defect in the circulation of immune cells in the blood or a defect in their 

tissue migration. Hence to investigate the role that immune cell circulation might 

have in the differential immune cell infiltrate to the tumour of PDAC patients we 

calculated for associations between macrophages (CD68+), T-cells (CD3+), 

neutrophils (myeloperoxidase+) and circulating monocytes, lymphocytes and 

neutrophils respectively. We found there were no correlations between circulating 

immune cells and the densities of same immune cells in the whole tissue, 

juxtatumoural stroma or panstromal compartments (Figures 3.18- 3.20); hence 
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eliminating a defect in immune cell circulation as a potential reason for the 

differential immune infiltrate. 

 

In a separate TMA analysis of immune cell infiltration in advanced PDAC 

patients (Figure 3.16 and 3.17), T-cells (CD3+), cytotoxic T-cells (CD8+), helper T-

cells (CD4+) and B-cells (CD20+) were sequestered in the panstromal compartment 

and did not infiltrate the juxtatumoural compartment, whereas, T regulatory cells 

(FoxP3+), and Macrophages (CD68+) had equal densities in both the juxtatumoural 

and panstromal compartments and as such infiltrated the juxtatumoural 

compartment. This indicates that immune infiltrate defects of cytotoxic T-cells and B-

cells are a feature of PDAC regardless of disease progression as they are both 

present in early and advanced stage PDAC. While macrophage density between 

stromal compartments lost significance, the density was almost doubled. 
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Figure 3.8:  Stromal compartment specific CD3+ cell infiltration in human PDAC 

Direct comparison of stromal compartments (‗juxtatumoural‘ defined as within 100μm 

of tumour and the rest of the tumour stroma as ‗panstromal‘) demonstrate a defect in 

CD3+ (T-cell) infiltration as evidenced by the significantly higher density in the 

panstromal compartment compared to juxtatumoural compartment. 

Each data point represents a single patient (median scores of all TMA cores (n=6)). 

Lines represent median with inter-quartile ranges (25th and 75th). 

 

Mann Whitney U test; p-values are two-tailed. Scale bars 100µm. 

Number of patients: 53. 
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Figure 3.9:  Stromal compartment specific CD4+ T-cell infiltration in human 

PDAC 

Direct comparison of stromal compartments (‗juxtatumoural‘ defined as within 100μm 

of tumour and the rest of the tumour stroma as ‗panstromal‘) demonstrate no defect 

in CD4+ (helper T-cell) infiltration as evidenced by the equal densities in the 

panstromal and juxtatumoural compartments. 

Each data point represents a single patient (median scores of all TMA cores (n=6)). 

Lines represent median with inter-quartile ranges (25th and 75th). 

Mann Whitney U test; p-values are two-tailed. Scale bars 100µm. 

Number of patients: 52 
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Figure 3.10:  Stromal compartment specific CD8+ T-cell infiltration in human 

PDAC 

Direct comparison of stromal compartments (‗juxtatumoural‘ defined as within 100μm 

of tumour and the rest of the tumour stroma as ‗panstromal‘) demonstrate a defect in 

CD8+ (cytotoxic T-cell) infiltration as evidenced by the significantly higher density in 

the panstromal compartment compared to juxtatumoural compartment. 

Each data point represents a single patient (median scores of all TMA cores (n=6)). 

Lines represent median with inter-quartile ranges (25th and 75th). 

Mann Whitney U test; p-values are two-tailed. Scale bars 100µm. 

Number of patients: 52. 
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Figure 3.11:  Stromal compartment specific FoxP3+ cell infiltration in human 

PDAC 

Direct comparison of stromal compartments (‗juxtatumoural‘ defined as within 100μm 

of tumour and the rest of the tumour stroma as ‗panstromal‘) demonstrate a defect in 

FoxP3+ (T regulatory cell) infiltration as evidenced by the significantly higher density 

in the panstromal compartment compared to juxtatumoural compartment. 

Each data point represents a single patient (median scores of all TMA cores (n=6)). 

Lines represent median with inter-quartile ranges (25th and 75th). 

Mann Whitney U test; p-values are two-tailed. Scale bars 100µm. 

Number of patients: 59. 
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Figure 3.12 Stromal compartment specific CD20+ cell infiltration in human 

PDAC 

Direct comparison of stromal compartments (‗juxtatumoural‘ defined as within 100μm 

of tumour and the rest of the tumour stroma as ‗panstromal‘) demonstrate a defect in 

CD20+ (B-cell) infiltration as evidenced by the significantly higher density in the 

panstromal compartment compared to juxtatumoural compartment. 

Each data point represents a single patient (median scores of all TMA cores (n=6)). 

Lines represent median with inter-quartile ranges (25th and 75th). 

Mann Whitney U test; p-values are two-tailed. Scale bars 100µm. 

Number of patients: 51. 
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Figure 3.13 Stromal compartment specific CD56+ cell infiltration in human 

PDAC 

Direct comparison of stromal compartments (‗juxtatumoural‘ defined as within 100μm 

of tumour and the rest of the tumour stroma as ‗panstromal‘) demonstrate a defect in 

CD56+ (Natural killer cell) infiltration as evidenced by the significantly higher density 

in the panstromal compartment compared to juxtatumoural compartment. 

Each data point represents a single patient (median scores of all TMA cores (n=6)). 

Lines represent median with inter-quartile ranges (25th and 75th). 

Mann Whitney U test; p-values are two-tailed. Scale bars 100µm. 

Number of patients: 55. 
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Figure 3.14 Stromal compartment specific CD68+ cell infiltration in human 

PDAC 

Direct comparison of stromal compartments (‗juxtatumoural‘ defined as within 100μm 

of tumour and the rest of the tumour stroma as ‗panstromal‘) demonstrate an 

infiltration of CD68+ (Macrophages), evidenced by the significantly higher density in 

the juxtatumoural compartment compared to panstromal compartment. 

Each data point represents a single patient (median scores of all TMA cores (n=6)). 

Lines represent median with inter-quartile ranges (25th and 75th). 

Mann Whitney U test; p-values are two-tailed. Scale bars 100µm. 

Number of patients: 52. 
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Figure 3.15 Stromal compartment specific Myeloperoxidase+ cell infiltration in 

human PDAC 

Direct comparison of stromal compartments (‗juxtatumoural‘ defined as within 100μm 

of tumour and the rest of the tumour stroma as ‗panstromal‘) demonstrate no defect 

in myeloperoxidase+ (Neutrophils) infiltration as evidenced by the equal densities in 

the panstromal and juxtatumoural compartments. 

Each data point represents a single patient (median scores of all TMA cores (n=6)). 

Lines represent median with inter-quartile ranges (25th and 75th). 

Mann Whitney U test; p-values are two-tailed. Scale bars 100µm. 

Number of patients: 54. 

 



167 
 

 

Figure 3.16: Stromal compartment specific T-cell infiltration in an independent 

cohort of advanced PDAC patients 

Immune cells were stained and analyzed. This cohort was formed predominantly of 

patients with metastatic disease (TMA B); therefore, these tissues were obtained 

from biopsy specimens. 

There was a defect in infiltration of T-cells (CD3+ (A)), helper T-cells (CD4+ (B)) and 

cytotoxic T-cells (CD8+, (C)) but not in infiltration of T regulatory cells (FoxP3+ (D)) 

suggesting that FoxP3+ cells can access the tumour cells. CD8+ findings are 

consistent with the primary cohort of patients suggesting that the exclusion of this 

immune cell from the immediate tumour microenvironment is consistent throughout 

the disease progression. 

Mann Whitney U test; p-values are two-tailed.Number of patients analyzed for each 

marker: CD3+ (n= 19), CD4+, (n= 22), CD8+ (n=19) and FoxP3+, (n= 18). 
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Figure 3.17: Stromal compartment specific immune cell infiltration in an 

independent cohort of advanced PDAC patients 

Immune cells were stained and analyzed. This cohort was formed predominantly by 

patients with metastatic disease (TMA B); therefore, these tissues were obtained 

from biopsy specimens. 

There is a defect in infiltration of B-cells (CD20+, (A)) which is consistent with the 

primary cohort of patients suggesting that the exclusion of this immune cell from the 

immediate tumour microenvironment is consistent throughout the disease 

progression (similar to cytotoxic T-cells (CD8+)). In contrast, macrophages (CD68+ 

(B)) were not significant suggesting that they access tumour cells. 

Mann Whitney U test; p-values are two-tailed. 

Number of patients analyzed for each marker: CD20+ (n= 19) and CD68+ (n= 22) 
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Figure 3.18: Correlation of circulating Monocytes with CD68+ infiltrate in 

patients with PDAC (Figure provided by Dr. J Watt). 

Correlation plots were constructed for circulating Monocytes and the CD68+ immune 

cell infiltrate in whole tumour-stroma (A) and in distinct stromal compartments: 

juxtatumoural compartment (B) and panstromal compartment (C) in the PDAC 

patients. There was no correlation between these counts. Each data point represents 

one unique patient and the correlation line was plotted as shown with the values 

representing Pearson‘s Correlation Coefficient ‗r‘ and the respective p-value.  
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Figure 3.19: Correlation of circulating lymphocytes with CD3+ infiltrate in 

patients with PDAC (Figure provided by Dr. J Watt). 

Correlation plots were constructed for circulating lymphocytes and the CD3+ immune 

cell infiltrate in whole tumour-stroma (A) and in distinct stromal compartments: 

juxtatumoural compartment (B) and panstromal compartment (C) in the PDAC 

patients. There was no correlation between these counts. Each data point represents 
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one unique patient and the correlation line was plotted as shown with the values 

representing Pearson‘s Correlation Coefficient ‗r‘ and the respective p-value.  
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Figure 3.20: Correlation of circulating neutrophils with Myeloperoxidase+ 

immune cell infiltrate in patients with PDAC (Figure provided by Dr. J Watt). 

Correlation plots were constructed for circulating neutrophils and the 

Myeloperoxidase+ immune cell infiltrate in whole tumour-stroma (A) and in distinct 

stromal compartments: juxtatumoural compartment (B) and panstromal compartment 

(C) in the PDAC patients. There was no correlation between these counts. Each data 

point represents one unique patient and the correlation line was plotted as shown 
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with the values representing Pearson‘s Correlation Coefficient ‗r‘ and the respective 

p-value.  
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3.6 Differential immune cell infiltrate in stromal sub-compartments of other 

pancreatico-biliary cancers 

 Contrary to our observations of differential immune infiltrate in stromal sub-

compartments in PDAC, we observed non-differential immune cell infiltrate (T-cells 

(CD3+), helper T-cell (CD4+), cytotoxic T-cell (CD8+), T regulatory cell (FoxP3+), B-

cells (CD20+) and macrophages (CD68+)) in the stromal sub-compartments of 

ampullary carcinoma (Figures 3.21-3.26), cholangiocarcinoma (Figures 3.27-3.32), 

mucinous cystic neoplasm (Figures 3.33-3.38) and duodenal carcinoma (Figures 

3.39-3.44).  

 This supports our earlier conclusion that differential immune cell infiltrate in 

stromal sub-compartments is specific to PDAC.  
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Figure 3.21 Stromal compartment specific CD3+ cell infiltration in human 

ampullary carcinoma 

Direct comparison of stromal compartments (‗juxtatumoural‘ defined as within 100μm 

of tumour and the rest of the tumour stroma as ‗panstromal‘) demonstrate no defect 

in CD3+ (T-cell) infiltration as evidenced by the equal densities in the panstromal and 

juxtatumoural compartments. 

Each data point represents a single patient (median scores of all TMA cores (n=6)). 

Lines represent median with inter-quartile ranges (25th and 75th). 

Mann Whitney U test; p-values are two-tailed. Scale bars 100µm. 

Number of patients: 7. 
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Figure 3.22 Stromal compartment specific CD4+ cell infiltration in human 

ampullary carcinoma 

Direct comparison of stromal compartments (‗juxtatumoural‘ defined as within 100μm 

of tumour and the rest of the tumour stroma as ‗panstromal‘) demonstrate no defect 

in CD4+ (helper T-cell) infiltration as evidenced by the equal densities in the 

panstromal and juxtatumoural compartments. 

Each data point represents a single patient (median scores of all TMA cores (n=6)). 

Lines represent median with inter-quartile ranges (25th and 75th). 

Mann Whitney U test; p-values are two-tailed. Scale bars 100µm.  

Number of patients: 7. 
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Figure 3.23 Stromal compartment specific CD8+ cell infiltration in human 

ampullary carcinoma 

Direct comparison of stromal compartments (‗juxtatumoural‘ defined as within 100μm 

of tumour and the rest of the tumour stroma as ‗panstromal‘) demonstrate a defect in 

CD8+ (cytotoxic T-cell) infiltration as evidenced by the significant density in the 

panstromal compartment compared to the juxtatumoural compartments. 

Each data point represents a single patient (median scores of all TMA cores (n=6)). 

Lines represent median with inter-quartile ranges (25th and 75th). 

Mann Whitney U test; p-values are two-tailed. Scale bars 100µm.  

Number of patients: 6.  
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Figure 3.24 Stromal compartment specific FoxP3+ cell infiltration in human 

ampullary carcinoma 

Direct comparison of stromal compartments (‗juxtatumoural‘ defined as within 100μm 

of tumour and the rest of the tumour stroma as ‗panstromal‘) demonstrate no defect 

in FoxP3+ (T regulatory cell) infiltration as evidenced by the equal densities in the 

panstromal and juxtatumoural compartments. 

Each data point represents a single patient (median scores of all TMA cores (n=6)). 

Lines represent median with inter-quartile ranges (25th and 75th). 

Mann Whitney U test; p-values are two-tailed. Scale bars 100µm.  

Number of patients: 8. 
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Figure 3.25 Stromal compartment specific CD20+ cell infiltration in human 

ampullary carcinoma 

Direct comparison of stromal compartments (‗juxtatumoural‘ defined as within 100μm 

of tumour and the rest of the tumour stroma as ‗panstromal‘) demonstrate no defect 

in CD20+ (B-cell) infiltration as evidenced by the equal densities in the panstromal 

and juxtatumoural compartments. 

Each data point represents a single patient (median scores of all TMA cores (n=6)). 

Lines represent median with inter-quartile ranges (25th and 75th). 

Mann Whitney U test; p-values are two-tailed. Scale bars 100µm.  

Number of patients: 6. 
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Figure 3.26 Stromal compartment specific CD68+ cell infiltration in human 

ampullary carcinoma 

Direct comparison of stromal compartments (‗juxtatumoural‘ defined as within 100μm 

of tumour and the rest of the tumour stroma as ‗panstromal‘) demonstrate no defect 

in CD68+ (Macrophages) infiltration as evidenced by the equal densities in the 

panstromal and juxtatumoural compartments. 

Each data point represents a single patient (median scores of all TMA cores (n=6)). 

Lines represent median with inter-quartile ranges (25th and 75th). 

Mann Whitney U test; p-values are two-tailed. Scale bars 100µm.  

Number of patients: 9. 
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Figure 3.27 Stromal compartment specific CD3+ cell infiltration in human 

cholangiocarcinoma 

Direct comparison of stromal compartments (‗juxtatumoural‘ defined as within 100μm 

of tumour and the rest of the tumour stroma as ‗panstromal‘) demonstrate no defect 

in CD3+ (T-cell) infiltration as evidenced by the equal densities in the panstromal and 

juxtatumoural compartments. 

Each data point represents a single patient (median scores of all TMA cores (n=6)). 

Lines represent median with inter-quartile ranges (25th and 75th). 

Mann Whitney U test; p-values are two-tailed. Scale bars 100µm.  

Number of patients: 19. 
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Figure 3.28 Stromal compartment specific CD4+ cell infiltration in human 

cholangiocarcinoma 

Direct comparison of stromal compartments (‗juxtatumoural‘ defined as within 100μm 

of tumour and the rest of the tumour stroma as ‗panstromal‘) demonstrate no defect 

in CD4+ (helper T-cell) infiltration as evidenced by the equal densities in the 

panstromal and juxtatumoural compartments. 

Each data point represents a single patient (median scores of all TMA cores (n=6)). 

Lines represent median with inter-quartile ranges (25th and 75th). 

Mann Whitney U test; p-values are two-tailed. Scale bars 100µm.  

Number of patients: 19. 
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Figure 3.29 Stromal compartment specific CD8+ cell infiltration in human 

cholangiocarcinoma 

Direct comparison of stromal compartments (‗juxtatumoural‘ defined as within 100μm 

of tumour and the rest of the tumour stroma as ‗panstromal‘) demonstrate no defect 

in CD8+ (cytotoxic T-cell) infiltration as evidenced by the equal densities in the 

panstromal and juxtatumoural compartments. 

Each data point represents a single patient (median scores of all TMA cores (n=6)). 

Lines represent median with inter-quartile ranges (25th and 75th). 

Mann Whitney U test; p-values are two-tailed. Scale bars 100µm.  

Number of patients: 20. 
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Figure 3.30 Stromal compartment specific FoxP3+ cell infiltration in human 

cholangiocarcinoma 

Direct comparison of stromal compartments (‗juxtatumoural‘ defined as within 100μm 

of tumour and the rest of the tumour stroma as ‗panstromal‘) demonstrate no defect 

in FoxP3+ (Regulatory T-cell) infiltration as evidenced by the equal densities in the 

panstromal and juxtatumoural compartments. 

Each data point represents a single patient (median scores of all TMA cores (n=6)). 

Lines represent median with inter-quartile ranges (25th and 75th). 

Mann Whitney U test; p-values are two-tailed. Scale bars 100µm.  

Number of patients: 21. 
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Figure 3.31 Stromal compartment specific CD20+ cell infiltration in human 

cholangiocarcinoma 

Direct comparison of stromal compartments (‗juxtatumoural‘ defined as within 100μm 

of tumour and the rest of the tumour stroma as ‗panstromal‘) demonstrate no defect 

in CD20+ (B-cell) infiltration as evidenced by the equal densities in the panstromal 

and juxtatumoural compartments. 

Each data point represents a single patient (median scores of all TMA cores (n=6)). 

Lines represent median with inter-quartile ranges (25th and 75th). 

Mann Whitney U test; p-values are two-tailed. Scale bars 100µm.  

Number of patients: 20. 
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Figure 3.32 Stromal compartment specific CD68+ cell infiltration in human 

cholangiocarcinoma 

Direct comparison of stromal compartments (‗juxtatumoural‘ defined as within 100μm 

of tumour and the rest of the tumour stroma as ‗panstromal‘) demonstrate no defect 

in CD68+ (Macrophages) infiltration as evidenced by the equal densities in the 

panstromal and juxtatumoural compartments. 

Each data point represents a single patient (median scores of all TMA cores (n=6)). 

Lines represent median with inter-quartile ranges (25th and 75th). 

Mann Whitney U test; p-values are two-tailed. Scale bars 100µm.  

Number of patients: 21. 
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Figure 3.33 Stromal compartment specific CD3+ cell infiltration in human 

mucinous cystic neoplasm 

Direct comparison of stromal compartments (‗juxtatumoural‘ defined as within 100μm 

of tumour and the rest of the tumour stroma as ‗panstromal‘) demonstrate no defect 

in CD3+ (T-cell) infiltration as evidenced by the equal densities in the panstromal and 

juxtatumoural compartments. 

Each data point represents a single patient (median scores of all TMA cores (n=6)). 

Lines represent median with inter-quartile ranges (25th and 75th). 

Mann Whitney U test; p-values are two-tailed. Scale bars 100µm.  

Number of patients: 6. 
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Figure 3.34 Stromal compartment specific CD4+ cell infiltration in human 

mucinous cystic neoplasm 

Direct comparison of stromal compartments (‗juxtatumoural‘ defined as within 100μm 

of tumour and the rest of the tumour stroma as ‗panstromal‘) demonstrate no defect 

in CD4+ (T-cell) infiltration as evidenced by the equal densities in the panstromal and 

juxtatumoural compartments. 

Each data point represents a single patient (median scores of all TMA cores (n=6)). 

Lines represent median with inter-quartile ranges (25th and 75th). 

Mann Whitney U test; p-values are two-tailed. Scale bars 100µm.  

Number of patients: 6. 
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Figure 3.35 Stromal compartment specific CD8+ cell infiltration in human 

mucinous cystic neoplasm 

Direct comparison of stromal compartments (‗juxtatumoural‘ defined as within 100μm 

of tumour and the rest of the tumour stroma as ‗panstromal‘) demonstrate no defect 

in CD8+ (cytotoxic T-cell) infiltration as evidenced by the equal densities in the 

panstromal and juxtatumoural compartments. 

Each data point represents a single patient (median scores of all TMA cores (n=6)). 

Lines represent median with inter-quartile ranges (25th and 75th). 

Mann Whitney U test; p-values are two-tailed. Scale bars 100µm. Magnification 20x. 

Number of patients: 5. 
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Figure 3.36 Stromal compartment specific FoxP3+ cell infiltration in human 

mucinous cystic neoplasm 

Direct comparison of stromal compartments (‗juxtatumoural‘ defined as within 100μm 

of tumour and the rest of the tumour stroma as ‗panstromal‘) demonstrate no defect 

in FoxP3+ (T regulatory cell) infiltration as evidenced by the equal densities in the 

panstromal and juxtatumoural compartments. 

Each data point represents a single patient (median scores of all TMA cores (n=6)). 

Lines represent median with inter-quartile ranges (25th and 75th). 

Mann Whitney U test; p-values are two-tailed. Scale bars 100µm. Magnification 20x. 

Number of patients: 3. 
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Figure 3.37 Stromal compartment specific CD20+ cell infiltration in human 

mucinous cystic neoplasm 

Direct comparison of stromal compartments (‗juxtatumoural‘ defined as within 100μm 

of tumour and the rest of the tumour stroma as ‗panstromal‘) demonstrate no defect 

in CD20+ (B-cell) infiltration as evidenced by the equal densities in the panstromal 

and juxtatumoural compartments. 

Each data point represents a single patient (median scores of all TMA cores (n=6)). 

Lines represent median with inter-quartile ranges (25th and 75th). 

Mann Whitney U test; p-values are two-tailed. Scale bars 100µm.  

Number of patients: 6. 
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Figure 3.38 Stromal compartment specific CD68+ cell infiltration in human 

mucinous cystic neoplasm 

Direct comparison of stromal compartments (‗juxtatumoural‘ defined as within 100μm 

of tumour and the rest of the tumour stroma as ‗panstromal‘) demonstrate no defect 

in CD68+ (Macrophages) infiltration as evidenced by the equal densities in the 

panstromal and juxtatumoural compartments. 

Each data point represents a single patient (median scores of all TMA cores (n=6)). 

Lines represent median with inter-quartile ranges (25th and 75th). 

Mann Whitney U test; p-values are two-tailed. Scale bars 100µm. 

Number of patients: 4. 
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Figure 3.39 Stromal compartment specific CD3+ cell infiltration in human 

duodenal carcinoma 

Direct comparison of stromal compartments (‗juxtatumoural‘ defined as within 100μm 

of tumour and the rest of the tumour stroma as ‗panstromal‘) demonstrate no defect 

in CD3+ (T-cell) infiltration as evidenced by the equal densities in the panstromal and 

juxtatumoural compartments. 

Each data point represents a single patient (median scores of all TMA cores (n=6)). 

Lines represent median with inter-quartile ranges (25th and 75th). 

Mann Whitney U test; p-values are two-tailed. Scale bars 100µm. 

Number of patients: 4. 
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Figure 3.40 Stromal compartment specific CD4+ cell infiltration in human 

duodenal carcinoma 

Direct comparison of stromal compartments (‗juxtatumoural‘ defined as within 100μm 

of tumour and the rest of the tumour stroma as ‗panstromal‘) demonstrate no defect 

in CD4+ (helper T-cell) infiltration as evidenced by the equal densities in the 

panstromal and juxtatumoural compartments. 

Each data point represents a single patient (median scores of all TMA cores (n=6)). 

Lines represent median with inter-quartile ranges (25th and 75th). 

Mann Whitney U test; p-values are two-tailed. Scale bars 100µm.  

Number of patients: 5. 
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Figure 3.41 Stromal compartment specific CD8+ cell infiltration in human 

duodenal carcinoma 

Direct comparison of stromal compartments (‗juxtatumoural‘ defined as within 100μm 

of tumour and the rest of the tumour stroma as ‗panstromal‘) demonstrate no defect 

in CD8+ (cytotoxic T-cell) infiltration as evidenced by the equal densities in the 

panstromal and juxtatumoural compartments. 

Each data point represents a single patient (median scores of all TMA cores (n=6)). 

Lines represent median with inter-quartile ranges (25th and 75th). 

Mann Whitney U test; p-values are two-tailed. Scale bars 100µm.  

Number of patients: 5. 
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Figure 3.42 Stromal compartment specific FoxP3+ cell infiltration in human 

duodenal carcinoma 

Direct comparison of stromal compartments (‗juxtatumoural‘ defined as within 100μm 

of tumour and the rest of the tumour stroma as ‗panstromal‘) demonstrate no defect 

in FoxP3+ (T regulatory cell) infiltration as evidenced by the equal densities in the 

panstromal and juxtatumoural compartments. 

Each data point represents a single patient (median scores of all TMA cores (n=6)). 

Lines represent median with inter-quartile ranges (25th and 75th). 

Mann Whitney U test; p-values are two-tailed. Scale bars 100µm.  

Number of patients: 4. 
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Figure 3.43 Stromal compartment specific CD20+ cell infiltration in human 

duodenal carcinoma 

Direct comparison of stromal compartments (‗juxtatumoural‘ defined as within 100μm 

of tumour and the rest of the tumour stroma as ‗panstromal‘) demonstrate no defect 

in CD20+ (B-cell) infiltration as evidenced by the equal densities in the panstromal 

and juxtatumoural compartments. 

Each data point represents a single patient (median scores of all TMA cores (n=6)). 

Lines represent median with inter-quartile ranges (25th and 75th). 

Mann Whitney U test; p-values are two-tailed. Scale bars 100µm.  

Number of patients: 4. 
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Figure 3.44 Stromal compartment specific CD68+ cell infiltration in human 

duodenal carcinoma 

Direct comparison of stromal compartments (‗juxtatumoural‘ defined as within 100μm 

of tumour and the rest of the tumour stroma as ‗panstromal‘) demonstrate no defect 

in CD68+ (Macrophages) infiltration as evidenced by the equal densities in the 

panstromal and juxtatumoural compartments. 

Each data point represents a single patient (median scores of all TMA cores (n=6)). 

Lines represent median with inter-quartile ranges (25th and 75th). 

Mann Whitney U test; p-values are two-tailed. Scale bars 100µm. Magnification 20x. 

Number of patients: 4. 
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3.7 Fibronectin is significantly upregulated in PDAC stroma 

 Fibronectin is an extracellular matrix (ECM) protein of approximately 440 kDa 

and mediates many important roles including cell adhesion, migration, wound 

healing, differentiation and growth (Pankov and Yamada 2002; Valenick, Hsia et al. 

2005). A very large number of integrins bind to Fibronectin including α4 β1 (Very late 

antigen-4 (VLA-4)) and α4 β7 (Lymphocyte Peyer patch adhesion molecule (LPAM)) 

both of which are expressed on lymphocytes (Johansson, Svineng et al. 1997). α4 β1 

integrins are expressed by leukocytes and mediate cell-cell and cell-matrix adhesion 

through their ligands vascular cell adhesion molecule (VCAM-1) and Fibronectin 

where they bind to the III14-V region of Fibronectin. α4 β7 also bind to III14-V region of 

Fibronectin, VCAM-1 and mucosal addressin cell adhesion molecule (MAdCAM-1) 

(Johansson, Svineng et al. 1997). 

 Using immunohistochemistry, I stained adjacent normal and cancer tissue 

from PDAC patients with Fibronectin. Quantification was performed by scoring 

individual slides on intensity and degree of staining and adding these two scores. 

This was performed six times for each slide and a median value of all six scores was 

calculated. The scoring range was 0 to 4; with zero being no staining and 4 being 

very positively stained. We observed an upregulation of Fibronectin in the stroma of 

cancer tissue, while Fibronectin in adjacent normal tissues of the same patients were 

mostly negative (p<0.0001; Figure 3.45, A, B and E). We also observed a denser 

staining of Fibronectin in the panstromal compartment of those patients (Figure 3.45, 

C) and the presence of immune cell infiltrates, a classical characteristic of most 

cancers (Clemente, Mihm et al. 1996; Naito, Saito et al. 1998; Zhang, Conejo-Garcia 

et al. 2003), within those densely stained areas of the panstromal compartment 

(Figure 3.45, D). 
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Figure 3.45 Fibronectin is upregulated in panstromal region of PDAC 

Tissues from PDAC patients were stained for Fibronectin and analysed semi-

quantitatively by colour intensity and area of positive staining under a light 

microscope.  

(A) Adjacent normal tissues were mostly negative for Fibronectin with only a few 

regions staining lightly for Fibronectin (20x magnification). (B) Stromal regions of 

PDAC were positive for Fibronectin (20x magnification). This was not the case with 

the tumour epithelia. (C) Panstromal compartment of PDAC tissue had a denser 

staining of Fibronectin (5x magnification). (D) Immune cell infiltrates were observed 

within Fibronectin positive regions (20x magnification). (E) Quantification of 

Fibronectin in normal and cancer tissues, p < 0.0001, unpaired T test, p value is 2 

tailed. 

Number of patients: 7; Scale bars 50µm. 
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3.8 Correlation of differential immune cell infiltrate with patient survival 

 To test if the presence of immune cells in the pancreas, and their infiltration to 

close to the neoplasitic cells had an effect on the overall patient survival I performed 

Kaplan Meier survival analyses of the immune cells in whole tissues and the specific 

stromal compartments; Juxtatumoural stromal and panstroma. This was done with 

the X-TILE software (Camp, Dolled-Filhart et al. 2004). The X-Tile method is a 

versatile and perceptive tool for selecting cut-points based on traditional statistical 

tests and the plots provide a single comprehensive evaluation of all the possible 

ways a population can be divided either into low, medium and high marker 

expression (density in our case) or low versus high marker densities (Camp, Dolled-

Filhart et al. 2004). The software represents the data in a right triangular heat map 

where each pixel represents a different cut-off point and a Χ2 value is calculated for 

every possible division of the population shown on the heat map so that every pixel 

represents a Χ2 value of an individual cut-point. This is done in a colour coded 

manner and the intensity of the colour of each cut-off point represents the strength of 

association of that cut-point with dark or black colours signifying low associations 

and bright colours signifying high associations. There two types of associations; 

direct associations (e.g., where having a high density of the marker may result in 

higher survival in patients or low marker density may result in poorer survival) are 

coloured green and inverse associations (e.g., where having a high marker density 

may result in poorer patient survival) are coloured red. The vertical axis of the right 

triangular heat map represents all possible patients with high immune marker density 

in the cohort with the size of the population increasing from top to bottom. The 

horizontal axis of the heat map represents all possible patients with low marker 

density in the cohort and size of the ―low‖ population increases from left to right. Data 
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along the hypotenuse (which is the same data represented on the rectangle below 

the right triangular heat map) represents results from a single cut-point which divides 

patient data into two patient subsets: patients with high marker densities and patients 

with low marker densities. Data points away from the hypotenuse represent results 

from two cut-points that ―define an additional ‗middle‘ population‖ in addition to the 

earlier two subsets with the size of the middle population increasing with greater 

distance from the hypotenuse (Camp, Dolled-Filhart et al. 2004). A middle population 

may be considered in survival analysis with gene expression markers where a 

heterozygote population with a different phenotype from the homozygote dominant 

and homozygote recessive may exist. In our case only two subsets (high versus low) 

based on a single cut-point were relevant in assessing patient overall survival. The 

cursor can be moved manually over any cut-point to display survival curves however, 

an optimal division of the data can be selected by selecting the highest Χ2 value. 

―Statistical significance is assessed by using the cut-point derived from a training set 

to parse a separate validation set using a standard log-rank test with p values 

obtained from a look up table‖ (Camp, Dolled-Filhart et al. 2004). The X-TILE creates 

individual training and validation cohorts (I set training and validation size ratio to 

1:1) by making separate lists of censored and uncensored observations (censored: 

dead = 1; uncensored: alive = 0; lost to follow = 2) which are ordered by their follow 

up time. Patients are alternately assigned either to the training or validation cohorts 

by selecting every other patient as the software reads down the list. The base 

survival curve is normalized for both sets and this ensures that the same training and 

validation sets are created each time an analysis with the same marker is performed 

preventing the possibility of obtaining a different p value each time. The training and 

validation method provides a rigorous and statistical relevant manner of assessing p 
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value and overcomes the limitations of multiple cut-point analysis (Camp, Dolled-

Filhart et al. 2004). Additional statistical significance using the X-TILE may be 

achieved by using Monte Carlo simulations (such as cross validation) and Miller-

Siegmund p value correction (Altman, Lausen et al. 1994) . 

 

 Dichotomization into the juxtatumoural stromal and panstromal compartments 

indicated the effect on survival specific immune cells had relative to their position on 

the tissue (for instance, an proximity of a particular immune cell population to the 

tumour cells may have an effect on patient survival but not when the immune cells 

are sequestered in the panstromal compartment and vice versa, or the relative 

position of an immune cell infiltrate within the stroma may not influence patient 

survival).  

 

 We observed that high densities of CD8+ (cytotoxic T-cells) in patients 

resulted in longer patient survival (p =0.0302; Miller-Siegmund p= 0.3555; cut off 

<0.07≥; Figure 3.45 A i). This is in line with work published by Tosolini and 

colleagues that found higher densities of CD8+ Th1 cells in tumours correlated with 

increased disease free survival in colorectal cancer (Tosolini, Kirilovsky et al. 2011). 

Also high densities of CD8+ T-cells in juxtatumoural stromal compartments resulted 

in patients having longer overall survival (p =0.0455; Miller-Siegmund p= 0.4639; cut 

off <0.05≥; Figure 3.45 A ii) but this was not the case in the panstromal survival 

analysis (p =0.0614; Miller-Siegmund p= 0.553; cut off <0.09≥; Figure 3.45 A iii). As 

more of the effect was observed when cytotoxic cells infiltrated the tumour, this could 

possibly indicate that CD8+ T-cells are able to perform their cytotoxic function when 
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they infiltrate the tumour. Also X-Tile heat maps point to the potential multiple 

associations of CD8+ cell densities with patient overall survival represented by the 

multiple bright green pixels (Figure 3.45 C ii). CD8+ marker may be further 

investigated as a positive prognostic factor.  

 

  Patients with high densities of FoxP3+ (T regulatory cells) have poorer survival 

(p =0.0016; Miller-Siegmund p= 0.0371; cut off <0.06≥; Figure 3.46 A i). This is also 

the case in the juxtatumoural stromal compartment (p =0.0019; Miller-Siegmund p= 

0.0444; cut off <0.03≥; Figure 3.46 A ii). Also high densities of FoxP3+ cells in the 

panstromal compartments show a reduced overall patient survival but loses 

significance as the Miller-Siegmund p value is not significant (p =0.0253; Miller-

Siegmund p= 0.316; cut off <0.05≥; Figure 3.46 A iii). Of all the immune cell markers 

assessed, Foxp3+ (T regulatory cells) was the only marker to have an additional level 

of significance as the Miller-Siegmund p value was significant in both tissue and 

juxtatumoural survival analysis. Foxp3+ may be investigated further as a prognostic 

marker.  

 

 Survival analyses of other immune cells; (T-cells (CD3+), helper T-cells 

(CD4+), B-cells (CD20+), Natural killer cells (CD56+), Macrophages (CD68+) and ratio 

of helper T-cells to cytotoxic T-cells (CD4+/ CD8+) were also carried out and 

discussed below. The summary of the results of the survival analyses for all immune 

cells are in table 3.1. 
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 Overall patients with low densities of CD3+ T-cells showed a trend towards 

surviving longer than patients with high densities (p =0.0151; Miller-Siegmund p= 

0.2195; cut off <0.12≥; Table 3.1). Having higher or lower densities of CD3+ T-cells in 

the juxtatumoural stroma did not have an effect on patient survival (p =0.10609; 

Miller-Siegmund p= 1; cut off <0.14≥; Table 3.1) however patients with a low density 

of CD3+ T-cells in the panstromal compartments survived longer than patients with 

high CD3+ T-cell ensities (p =0.018; Miller-Siegmund p= 0.2482; cut off <0.20≥; 

Table 3.1). CD3+ T-cells densities are not a prognostic marker for PDAC. 

 Further introspection into CD3+ subsets; CD4+, CD8+ and FoxP3+ showed that 

patients with low densities of CD4+ cells also demonstrated a trend towards surviving 

longer than patients having higher densities (p =0.0069; Miller-Siegmund p= 0.1217; 

cut off <0.19≥; Table 3.1). Survival analysis of CD4+ in the juxtatumoural stromal 

compartment alone was not significant (p =0.0652; Miller-Siegmund p= 0.575; cut off 

<0.19≥; Table 3.1) whereas survival analysis of CD4+ in panstromal compartment 

was significant (p =0.019; Miller-Siegmund p= 0.2586; cut off <0.16≥; Table 3.1) with 

low infiltrates surviving longer than high infiltrates. This indicates that CD4+ T-cells 

(or a subset of them) may have an immunosuppressive function and may perform 

this function in the panstromal compartment (i.e. CD4+ cells do not need to infiltrate 

the tumour to perform an immunosuppressive function). Observations for CD8+ T-

cells have been described earlier and contradicted survival outcomes of CD3+ and 

CD4+ T-cells. Observations for FoxP3+ cells, also previously discussed above, were 

similar to survival outcomes of CD3+ cells and CD4+ T-cells and in contrast to CD8+ 

T-cells.  

 CD20+ B-cells survival analysis in patients was not significant (p =0.652; 

Miller-Siegmund p= 0.575; cut off <0.00≥; Table 3.1). However, survival analyses of 
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B-cells in the juxtatumoural stromal compartment showed a trend towards 

significance (p =0.0544; Miller-Siegmund p= 0.5174; cut off <0.01≥; Table 3.1) and 

was significant in the panstromal compartments (p =0.0128; Miller-Siegmund p= 

0.1939; cut off <0.05≥; Table 3.1) with patients having low densities of CD20+ 

surviving longer indicating a negative effect of CD20+ B-cells in the panstroma but 

that does not necessarily increase as cells migrate. As with CD8+ T-cells, patients 

with high densities of CD56+ cells (p =0.0114; Miller-Siegmund p= 0.1782; cut off 

<0.02≥; Table 3.1) and high densities in the juxtatumoural stromal compartment (p 

=0.0359; Miller-Siegmund p= 0.3992; cut off <0.03≥; Table 3.1) demonstrated longer 

survival but this was not the case in the panstromal compartment p =0.2059; Miller-

Siegmund p= 1; cut off <0.03≥; Table 3.1). This too may indicate the need for natural 

killer cells to infiltrate the tumour in other to perform anti-tumour function. Patients 

with low densities of CD68+ demonstrated a tendency to longer survival than those 

with high densities (p =0.0269; Miller-Siegmund p= 0.3288; cut off <0.03≥; Table 

3.1). Survival analyses of CD68+ was not significant in the juxtatumoural stromal (p 

=0.138; Miller-Siegmund p= 1; cut off <0.12≥; Table 3.1) and panstromal 

compartments (p =0.1138; Miller-Siegmund p= 1; cut off <0.02≥; Table 3.1). 

 To see if the ratio of helper / cytotoxic T-cells has an impact on patient overall 

survival, I performed survival analysis of the CD4+/CD8+ ratio in PDAC patients. 

Patients with a low CD4+/CD8+ T-cells ratio had longer overall survival (p =0.0455; 

Miller-Siegmund p= 0.4639; cut off <2.00≥; Table 3.1). Survival analyses of 

CD4+/CD8+ T-cells ratio in the juxtatumoural stroma and panstroma compartments 

were not significant (Table 3.1). 
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Figure 3.46 CD8+ survival analyses 

 

Density of CD8+ T-cells in the whole tissue, the juxtatumoural stroma and the 

panstroma compartments of PDAC patients was correlated with their survival data 

using X-tile software (Yale). X-tile plots of the data are displayed in C i-iii. The right 

triangular plot shows the Χ
2 log-rank values created when the cohort is divided into 3 

populations based on two cut-points. The X axis represents all potential cut-points of 

a low subset from low to high (left to right) and the Y axis represents all potential cut-

points of a high subset from high to low (top to bottom). The arrow represents the 

direction by which the subsets increase in size. The rectangular plot (below the right 

triangular plot (and the hypotenuse)) shows the Χ
2 log-rank values created when the 

cohort is divided into 2 populations by the application of a single cut-point. The bright 

green colour indicates a direct association; in this case, having high densities of 

CD8+ promotes longer patient survival. The cut-point, highlighted by the black/ white 

circle on the rectangular plot, is shown on a histogram (B i-iii) and Kaplan-Meier plots 

(A i-iii). P values were defined by using cut-points derived from a training set and 

applying them to a validation set. Miller-Siegmund p values were calculated to 

provide an additional level of significance to account for multiple comparisons.  

 

 

(A) High densities of the CD8+ marker demonstrated a tendency to longer 

survival in patients (i). The presence of high densities of the CD8+ marker in 

the juxtatumoural stromal compartments also demonstrated a tendency to 

longer survival in patients (ii); this was not the case in the panstromal 

compartment (iii). (B) Histogram shows distribution of patients in whole tissue, 

juxtatumoural and panstromal survival analyses at the optimal cut-point. Blue 
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represents patients with low densities and grey represents patients with high 

densities. (C) Heat map shows the multiple potential associations of the CD8+ 

marker in patient survival where each pixel is the Χ
2 log-rank value with the 

bright green colour signifying a high association. 
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Figure 3.47 FoxP3+ survival analyses 

 

Density of FoxP3+ T-cells in the whole tissue, the juxtatumoural stroma and the 

panstroma compartments of PDAC patients was correlated with their survival data 

using X-tile software (Yale). X-tile plots of the data are displayed in C i-iii. The right 

triangular plot shows the Χ
2 log-rank values created when the cohort is divided into 3 

populations based on two cut-points. The X axis represents all potential cut-points of 

a low subset from low to high (left to right) and the Y axis represents all potential cut-

points of a high subset from high to low (top to bottom). The arrow represents the 

direction by which the subsets increase in size. The rectangular plot (below the right 

triangular plot (and the hypotenuse)) shows the Χ
2 log-rank values created when the 

cohort is divided into 2 populations by the application of a single cut-point. The bright 

green colour indicates a direct association and the bright red colour indicates an 

inverse association; in this case, having low densities of FoxP3+ promotes longer 

patient survival. The cut-point, highlighted by the black/ white circle on the 

rectangular plot, is shown on a histogram (B i-iii) and Kaplan-Meier plots (A i-iii). P 

values were defined by using cut-points derived from a training set and applying 

them to a validation set. Miller-Siegmund p values were calculated to provide an 

additional level of significance to account for multiple comparisons.  

 

(A) Low densities of the FoxP3+ marker demonstrated a tendency to longer 

survival in patients. Miller-Siegmund p value correction was also significant (i). 

The presence of low densities of the FoxP3+ marker in the juxtatumoural 

stromal compartments also demonstrated a tendency to longer survival in 

patients with Miller-Siegmund p value also being significant (ii). Low densities 

of the FoxP3+ marker in the panstromal compartment also resulted in longer 

patient survival however the additional level of significance was lost (iii). (B) 
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Histogram shows distribution of patients in whole tissue, juxtatumoural and 

panstromal survival analyses at the optimal cut-point. Blue represents patients 

with low densities and grey represents patients with high densities. (C) Heat 

map shows the potential associations of the FoxP3+ marker in patient survival 

where each pixel is the Χ
2 log-rank value. The cut-point falls on a red pixel 

which signifies an inverse association with patient survival. 
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MARKER 

WHOLE TISSUE 

INFILTRATE 

JUXTATUMOURAL TISSUE 

INFILTRATE 

PANSTROMAL TISSUE 

INFILTRATE 

 

 

CUT OFF P-VALUE 

Miller-

Siegmund  

p-value 

CUT 

OFF P-VALUE 

Miller-

Siegmund  

p-value CUT OFF P-VALUE 

Miller-

Siegmu

nd  

p-value 

Inf

ere

nce 

CD3 <0.12≥ 0.0151 0.2195 <0.14≥ 0.1069 1 <0.20≥ 0.018 0.2482 ↓ 

CD4 <0.19≥ 0.0069 0.1217 <0.19≥ 0.0652 0.575 <0.16≥ 0.019 0.2586 ↓ 

CD8 <0.07≥ 0.0302 0.3555 <0.05≥ 0.0455 0.4639 <0.09≥ 0.0614 0.5553 ↑ 

FoxP3 <0.06≥ 0.0016 0.0371 <0.03≥ 0.0019 0.0444 <0.05≥ 0.0253 0.316 ↓ 

CD20 <0.00≥ 0.0652 0.575 <0.01≥ 0.0544 0.5174 <0.05≥ 0.0128 0.1939 ↓ 

CD56 <0.02≥ 0.0114 0.1782 <0.03≥ 0.0359 0.3992 <0.03≥ 0.2059 1 ↑ 

CD68 <0.03≥ 0.0269 0.3288 <0.12≥ 0.138 1 <0.02≥ 0.1138 1 ↓ 

CD4/CD8 <2.00≥ 0.0455 0.4639 <3.30≥ 0.0783 0.6362 <4.60≥ 0.1797 1 ↓ 

 

 

Having a high density of immune cell marker promotes longer patient overall survival 

Having a high density of immune cell marker promotes poorer patient overall survival 

 

Table 3.1: Survival analyses of immune cell markers in PDAC 
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Results II 

4.1 Introduction 

 In the previous chapter I demonstrated differential immune cell infiltrate 

specific for human PDAC tissue by probing for the immune cell markers (CD3+, 

CD4+, CD8+, FoxP3+, CD20+, CD56+, CD68+ and Myeloperoxidase+). We observed 

that while some immune cells such as Macrophages and Neutrophils had no defect 

in tumour infiltration (i.e., they could migrate on tissue into the juxtatumoural 

compartment and to the tumour cells), others such as cytotoxic T-cells and B-cells 

had a defect in reaching the tumour. Cytotoxic T-cell infiltration also suggested 

prognostic ability. We observed that these immune cells with infiltration defects were 

sequestered in the panstromal compartment which consists of activated stellate cells 

(a chief event in PDAC) (Figure 4. 1). Fortunately pancreatic stellate cell activation 

can be reversed in vitro and in vivo by treatment with all-trans retinoic acid (ATRA) 

(Froeling, Feig et al. 2011).  

 In this chapter I investigate with in vivo and in vitro experiments to understand 

the mechanisms hindering immune cell infiltration, particularly for cytotoxic T-cell 

infiltration. 

 

 

 

 

 

 



216 
 

 

Figure 4.1: CD8+ T-cells are located in regions of tissue highly positive for the 

activated stellate cell marker, α-SMA 

The figure above is a representation of pancreatic stellate cell tissues (TMAs) 

stained by immunohistochemistry for CD8 (brown) and α-SMA (purple). Regions of 

stroma positive for α-SMA were also densely populated with CD8+ T-cells and in 

most cases CD8+ T-cells can be seen juxtaposed to α-SMA positive cells.  

Figures A-C represent the same TMA core at various magnifications (5x- 20x, 

respectively) where figures B and C are magnifications of the rectangle D. In the 

same manner, figures E-G represent the same TMA core at various magnifications 

(5x- 20x, respectively). Figures F and G are magnifications of the rectangle H. 

All scale bars: 100µm 
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4.2 Stromal collapse reverses the juxtatumoural exclusion of cytotoxic T-cells 

in KPC mice but not CD4+ T-cells, F4/80+ macrophages, CD11b+ MDSCs and 

CD45R+ B-cells 

 

 KPC mice, a mouse model of PDAC (Clark, Hingorani et al. 2007) were 

treated with ATRA to transform activated stellate cells in the pancreas to a quiescent 

phenotype (treatment of KPC mice were performed at the Tuveson Laboratory and 

were performed by Drs. Feig and Froeling (Froeling, Feig et al. 2011)). I stained 

formalin fixed, paraffin embedded pancreas tissue slides for the cytotoxic T-cell 

marker, CD8+ by immunohistochemistry. 

  

 I also observed similar sequestration of CD8+ T-cells (Figure 4.2 A, B) and 

CD45R+ B-cells (Figure 4.3 A, B) in the panstromal compartment of the most well 

characterized genetically engineered mouse model of human PDAC: KPC mice. Also 

similar to my observations in human PDAC, F4/80+ macrophages (Figure 4.4 A, B) 

and CD4+ T-cells (Figure 4.5 A, B) infiltrated in juxtatumoural compartment of KPC 

mice. CD11b+ MDSCs were not sequestered in any of the stromal compartments 

(Figure 4.6 A, B). Froeling et al, had previously demonstrated that treating such mice 

with ATRA de-differentiates activated pancreatic stellate cells to a quiescent 

phenotype, thus mediating stromal collapse (Froeling, Feig et al. 2011). When we 

treated these mice with ATRA, CD8+ T-cell infiltrate was enhanced allowing for CD8+ 

T-cells to infiltrate the juxtatumoural compartment (Figure 4.2 A, C). Because the 

blood vessel density in KPC mice and human PDAC is significantly decreased in the 

immediate tumoural vicinity (Olive, Jacobetz et al. 2009), immune cells have to 

traverse the stromal compartments to access the tumour. These observations 
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suggest the possibility that the activated stellate cells compete with cancer cells for 

the T-cells infiltrating the PDAC tissues. It is therefore feasible that by adhering to 

CD8+ T-cells, pancreatic stellate cells prevent the T-cells from accessing the tumour, 

in both human and mouse PDAC. Conversely, CD45R+ B-cells (Figure 4.3 A, C), 

F4/80+ macrophages (Figure 4.4 A, C), CD4+ T-cells (Figure 4.5 A, C) and CD11b+ 

MDSCs (Figure 4.6 A, C) infiltration patterns were not changed in KPC mice after 

treatment with ATRA.   

 In addition to the immune cells which I measured in ATRA and vehicle treated 

KPC mice, I measured the effect ATRA treatment had on Fibronectin expression in 

the stroma of KPC mice (Figure 4.7). The PDAC stroma of vehicle mice was strongly 

positive for Fibronectin (Figure 4.7 A, B), however, when these mice were treated 

with ATRA Fibronectin expression decreased significantly (Figure 4.7 A, C). 
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Figure 4.2: Stromal collapse reverses the juxtatumoural exclusion of CD8+ T-

cells in KPC mice 

Density of CD8+ T-cells in the juxtatumoural compartment of tumour bearing KPC 

mice (n=4) was less than the density in the panstromal compartment. However, there 

was no difference between stromal compartments when stellate cells of mice (n=6) 

were restored to quiescence by treatment with ATRA (A). Immunohistochemistry 

pictures representing mice that were treated with vehicle (control mice) (B) or treated 

with ATRA (C).  
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Data is represented by box (median with interquartile ranges (25th and 75th)) and 

whisker (5th and 95th percentiles) plots. Outliers are represented by individual dots. 

Scale bar: 100µm 

Mann-Whitney U-test, all p-values are two-tailed.  

** p= 0.001 to 0.01; n.s.= not significant 
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Figure 4.3: CD45R+ B-cell infiltration in KPC mice remains unchanged after 

treatment with ATRA  

CD45R+ B-cell density in the panstromal compartment was significantly more than 

the density in the juxtatumoural compartment in vehicle treated mice (n= 4). After 

treating mice with ATRA, as previously described, there was no change in CD45R+ 

B-cell infiltration (A). Immunohistochemistry pictures representing mice that were 

treated with vehicle (control mice) (B) or treated with ATRA (C).  
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Data is represented by box (median with interquartile ranges (25th and 75th)) and 

whisker (5th and 95th percentiles) plots. 

Scale bar: 100µm 

Mann-Whitney U-test, all p-values are two-tailed.  

** p= 0.001 to 0.01; n.s.= not significant 
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Figure 4.4: F4/80+ macrophage infiltration in KPC mice remains unchanged 

after treatment with ATRA  

Density of F4/80+ macrophage in the panstromal compartment was similar to the 

density in the juxtatumoural compartment in vehicle treated mice (n= 4). This 

remained unchanged after KPC mice were treated with ATRA (A). 

Immunohistochemistry pictures representing mice that were treated with vehicle 

(control mice) (B) or treated with ATRA (C).  

Data is represented by box (median with interquartile ranges (25th and 75th)) and 

whisker (5th and 95th percentiles) plots. 

Scale bar: 100µm 
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Mann-Whitney U-test, all p-values are two-tailed.  

n.s.= not significant 
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Figure 4.5: CD4+ T-cell infiltration in KPC mice remains unchanged after 

treatment with ATRA  

Density of CD4+ T-cells in the panstromal compartment was similar to the density in 

the juxtatumoural compartment in vehicle treated mice (n= 4). This remained 

unchanged after KPC mice were treated with ATRA (A). Immunohistochemistry 

pictures representing mice that were treated with vehicle (control mice) (B) or treated 

with ATRA (C).  

Data is represented by box (median with interquartile ranges (25th and 75th)) and 

whisker (5th and 95th percentiles) plots. 

Scale bar: 100µm 
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Mann-Whitney U-test, all p-values are two-tailed.  

n.s.= not significant 
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Figure 4.6: CD11b+ MDSC infiltration in KPC mice remains unchanged after 

treatment with ATRA  

Density of CD4+ T-cells in the panstromal compartment was similar to the density in 

the juxtatumoural compartment in vehicle treated mice (n= 4). This remained 

unchanged after KPC mice were treated with ATRA (A). Immunohistochemistry 

pictures representing mice that were treated with vehicle (control mice) (B) or treated 

with ATRA (C).  

Data is represented by box (median with interquartile ranges (25th and 75th)) and 

whisker (5th and 95th percentiles) plots. 

Scale bar: 100µm 
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Mann-Whitney U-test, all p-values are two-tailed.  

n.s.= not significant 
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Figure 4.7: Expression of Fibronectin in the PDAC stroma of KPC mice is 

reduced after treatment with ATRA  

PDAC stroma of KPC mice treated with vehicle (control mice) strongly expressed 

Fibronectin (A, B). However, when KPC mice were treated with ATRA Fibronectin 

expression decreased significantly (A, C). 

Data is represented by box (median with interquartile ranges (25th and 75th)) and 

whisker (5th and 95th percentiles) plots. 
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Scale bar: 100µm 

Mann-Whitney U-test, all p-values are two-tailed.  

*** p< 0.001 
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4.3 Optimization of Transwell® migration assay 

 To test our hypothesis that activated pancreatic stellate cells in PDAC may 

secrete chemokines which preferentially attract T-cells to them and thus prevent T-

cell recruitment by the tumours, I modelled a migration assay using Transwells™ 

(Bleul, Fuhlbrigge et al. 1996; Ticchioni, Charvet et al. 2002; Meiron, Zohar et al. 

2008; Borge, Nannini et al. 2010) as described in methods. As there were many 

variables to consider I performed optimization experiments. 

 

4.3 a. Effects of serum on T-cell migration 

 CD3+ T-cells were co-cultured in Transwell™ inserts with conditioned media of 

the cancer cell lines Capan 1 and AsPc 1 that had either been cultured in media 

containing 10% fetal bovine serum (FBS) or in media without FBS for 8 hours. RPMI 

with 10% FBS served as a positive control. This was because the cancer cell lines 

had been cultured in RPMI media with 10% FBS. CD3+ T-cells migrated 

preferentially to the conditioned media of the cancer cell lines cultured with serum 

over control (Figure 4.8 B) but this was not the case for conditioned media of the 

cancer cell lines cultured in serum free media (Figure 4.8 A). 

 

4.3 b. Effects of growth media on T-cell migration 

 T-cells are routinely cultured in RPMI media with serum, and pancreatic 

stellate cell line, PS1, is often cultured in DMEM/F12 media with serum but may also 

be cultured in RPMI media. To measure the effect of growth media on T-cell 

migration, I suspended CD3+ cells in RPMI media without serum and co-cultured 

them in a Transwell™ insert with RPMI media, with and without serum, and with 
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DMEM media, with and without serum, for 8 hours. CD3+ cells migrated preferentially 

to RPMI media with serum compared to RPMI media without serum (Figure 4.9). 

This differential migration was not as obvious in DMEM media with or without serum 

(Figure 4.9) indicating perhaps that CD3+ cells are attracted to the DMEM media. 

 In addition, I suspended CD3+ cells in DMEM without serum and co-cultured 

these in a transwell insert with DMEM with or without serum. Migration of CD3+ cells 

was preferential to media containing serum over media without serum (Figure 4.9) 

 Also PS1 cell lines were cultured in RPMI or DMEM (both with serum) and 

their conditioned media was co-cultured with CD3+ suspended in RPMI without 

serum. CD3+ cells migrated preferentially to PS1 cells cultured in RPMI media 

(Figure 4.9). 

 Because of our doubts over the viability of T-cells suspended in DMEM media 

and the cross media migration when T-cells are suspended in one media and co-

cultured with a different media, we opted to culture pancreatic stellate cells in RPMI 

media with serum. 

 

4.3 c. Effects of pore size on T-cell migration 

 To check the effect that pore size of the transwell insert had on T-cell 

migration, I performed migration experiments with CD3+ T-cell inserted into 5µm and 

3µm pore sized transwells inserts. These were co-cultured with conditioned media 

from the cancer cell lines Capan 1 and AsPc 1, and the conditioned media from 

activated and quiescent pancreatic stellate cell line that resulted from treating PS1 

cells with ATRA and ethanol respectively (previously discussed).  
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 After 5 hours co-culture of CD3+ T-cells in 5µm pore size transwell inserts with 

conditioned media, CD3+ T-cells significantly migrated to activated pancreatic 

stellate cells over quiescent pancreatic stellate cells only (Figure 4.10 A). 

 After 8 hours co-culture of CD3+ T-cells in 5µm pore size transwell inserts with 

conditioned media, CD3+ T-cells significantly migrated to activated pancreatic 

stellate cells over quiescent pancreatic stellate cells and control (Figure 4.10 B). 

 After 8 hours co-culture of CD3+ T-cells in 3µm pore size transwell inserts with 

conditioned media, CD3+ T-cells significantly migrated to activated pancreatic 

stellate over control only (Figure 4.10 C). 

 I chose 5µm as the pore size of inserts as this gave the most significant 

results.  

 

4.3 d. Effects of duration on T-cell migration 

 To study the effect duration of co-culture had on T-cell migration to activated 

and quiescent pancreatic stellate cells, I performed migration experiments with CD3+ 

T-cells as described above and co-cultured for 1, 4 and 8 hours.  

 After 1 hour, migration to activated and quiescent PSC were similar to each 

other and to RPMI with 0% FBS (Figure 4.11 A, D). After 4 hours, migration of CD3+ 

T-cells to activated PSC was significant over RPMI with 0% FBS and quiescent PSC 

(Figure 4.11 B, E). Migration of CD3+ T-cell to activated PSC was also significant 

over RPMI with 0% FBS but not over quiescent PSC (Figure 4.11 C, F). 
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 I adjusted CD3+ T-cell migration data (shown; Figure 4.12) and all subsequent 

data for background by subtracting migration of T-cells to RPMI 0% (without FBS) 

from each value and normalised to RPMI with 10% FBS. 
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   Figure 4.8: Effects of serum on migration 

To assess the effect of serum in T-cell migration, migration assays to conditioned 

media collected with and without serum were performed. No significance was 

observed when T-cells migrated to conditioned media without serum (A), however, 

migration to cancer cell conditioned media were significantly more than control when 

serum was included (B). 

SF: serum free; FS: full serum. Unpaired T test; p values are two tailed.
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   Figure 4.9: T-cell migration to growth media 

CD3+ cells migration to growth media (with 10% FBS or without FBS) was counted 

using the Casy counter. CD3+ cells were suspended either in 0% RPMI or 0% 

DMEM and put in inserts. CD3+ migration was significant between full serum media 

and without serum media when CD3+ cells were suspended in the same growth 

media as the investigated condition (media in bottom well) but not when CD3+ cells 

were suspended in a different media from media in the bottom well (highlighted in 

red). The difference in migration to RPMI with and without FBS when CD3+ cells 

were suspended in 0% RPMI was significant. T-cells grow in RPMI media replete 

with FBS, hence we cultured PS1 cells in RPMI with 10% FBS. 

Unpaired T test, p values are two tailed. * p= 0.01 to 0.05; ns= not significant 
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 Figure 4.10: Effects of pore size and duration on T-cell migration  

CD3+ migration experiments to determine transwell pore size and incubation time. 

CD3+ was suspended in RPMI without serum and migrated to supernatant from 

pancreatic cancer cells (AsPc1 and Capan1), activated pancreatic stellate cells and 

quiescent pancreatic stellate cells. (A) 5 hour migration assays with 5µm pore sized 

transwells were performed. Migration of CD3+ cells to activated pancreatic stellate 

cells was not significant over control, but significant over quiescent pancreatic 

stellate cells. Migration to AsPc1 was also significantly more than quiescent 

pancreatic stellate cell. (B) Migration assays were performed with 5µm pore size 

transwells and incubated for 8 hours. CD3+ migrated to activated pancreatic stellate 

cells significantly more than quiescent pancreatic stellate cells and control. (C) 

Migration assays were carried out in 3µm pore size transwells and incubated for 8 

hours. CD3+ migration to activated pancreatic stellate cells compared to control was 

significant. 

Unpaired T test; p values are two tailed. 
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Figure 4.11: CD3+ time point migration assays 

Migration assay of CD3+ T-cells from healthy donors towards the conditioned media 

of activated and quiescent pancreatic stellate cells, and RPMI without FBS.  

Migration of CD3+ T-cells to RPMI without FBS was considered as background 

migration. 

There were no differences between conditions when migration was terminated after 

one hour, however, observable, significant differences were observed at four and 

eight hour durations with differences between conditions at 4 hours being the most 

observable. 
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Mean and SEM are plotted. CD3+ T-cell migration was calculated as ―absolute 

migrated cells numbers‖ (A, B and C) and as ―proportion of migrated cells‖ to the 

total amount of cells at the beginning of the assay (D, E and F). 
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Figure 4.12: Normalisation of migration data 

Migration assay of CD3+ T-cells to RPMI without FBS (RPMI 0%), RPMI 10% (10% 

FBS) activated PSC and quiescent PSC was performed and data was plotted 

―Absolute migrated cells‖ (A). Migration values of RPMI 0% (which served as 

background migration) were subtracted from each value and plotted (B). Values 

were then normalised to RPMI 10% (serum directed migration) which then served as 

control. 
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4.4 Cytotoxic T-cells migrate preferentially towards activated pancreatic 

stellate cells  

 Pancreatic stellate cells may have an activated or quiescent phenotype that 

are accompanied by physiological and genetic changes (Froeling, Feig et al. 2011). 

We thus hypothesised that T-cells may migrate to the conditioned media of these 

phenotypes differentially. We found that CD3+ (T-cells) migrated preferentially to the 

activated phenotype over quiescent while migration to quiescent was of a similar 

level as basal media (RPMI with 10% FBS) (Figure 4.13). T-cells also migrated to 

cancer cell (AsPc 1 and Capan 1) conditioned media more than RPMI with 10% FBS 

and conditioned media of quiescent pancreatic stellate cells (Figure 4.13). 

The differential migration of helper T-cells (CD4+) was not as dependent on 

conditioned media from cancer cells or stellate cells (no difference between 0% and 

10% FBS media, Figure 4.14). Migration of CD8+ T-cells to basal conditions (RPMI 

with FBS) was significantly less than cancer cells (Capan1) as well as activated 

pancreatic stellate cells (Figure 4.15). Also, migration of CD8+ T-cells towards 

activated pancreatic stellate cell conditioned media was significantly more than 

quiescent pancreatic stellate cell or cancer cell conditioned media. 
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Figure 4.13 In vitro T-cell (CD3+) migration assays 

Transwell migration assay of immune cells from healthy donors (n=4) towards 

conditioned media (CM) from activated and quiescent pancreatic stellate cells and 

cancer cells (Capan1 and AsPc1). 0% RPMI (no serum) was considered as 

‗background‘ migration of T-cells, whilst 10% RPMI (10% FBS) was considered as 

basal serum-directed migration of T-cells. These two conditions served as internal 

controls. Values were normalised to RMPI 10% (Y axis). 

We demonstrated a significant reduction of migration of CD3+ T-cells to quiescent 

pancreatic stellate cell CM in comparison to activated pancreatic stellate cell CM. 

While CD3+ cell migration to cancer CM was significant over basal medium, it was 

less than migration to activated pancreatic stellate cell CM. 

Bar chart represents mean ± SEM. *** p< 0.001; ** p= 0.001 to 0.01; * p= 0.01 to 

0.05, Comparisons were conducted with ANOVA with comparisons between 

columns using Bonferroni's Multiple Comparison Test. 
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Figure 4.14 In vitro helper T-cell (CD4+) migration assays 

Transwell migration assay of immune cells from healthy donors (n=4) towards 

conditioned media (CM) from activated and quiescent pancreatic stellate cells and 

cancer cells (Capan1 and AsPc1). 0% RPMI (no serum) was considered as 

‗background‘ migration of T-cells, whilst 10% RPMI (10% FBS) was considered as 

basal serum-directed migration of T-cells. These two conditions served as internal 

controls. Values were normalised to RMPI 10% (Y axis). 

We demonstrated a significant reduction of migration of CD4+ T-cells to quiescent 

pancreatic stellate cell CM in comparison to activated pancreatic stellate cell CM. 

The relative migration of CD4+ cells was minimal with little difference over the 

background level (RPMI 0%). Migration of helper T-cells towards activated 

pancreatic stellate cell CM was more than migration towards cancer cell CM.  

Bar chart represents mean ± SEM. *** p< 0.001; ** p= 0.001 to 0.01; * p= 0.01 to 

0.05, Comparisons were conducted with ANOVA with comparisons between 

columns using Bonferroni's Multiple Comparison Test. 
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Figure 4.15 In vitro cytotoxic T-cell (CD8+) migration assays 

Transwell migration assay of immune cells from healthy donors (n=4) towards 

conditioned media (CM) from activated and quiescent pancreatic stellate cells and 

cancer cells (Capan1 and AsPc1). 0% RPMI (no serum) was considered as 

‗background‘ migration of T-cells, whilst 10% RPMI (10% FBS) was considered as 

basal serum-directed migration of T-cells. These two conditions served as internal 

controls. Values were normalised to RMPI 10% (Y axis). 

The most dramatic, and perhaps clinically relevant, fold change in migration of T-

cells with different conditioned media was seen with CD8+ T-cells. We demonstrated 

a significant reduction of migration of CD8+ T-cells to quiescent pancreatic stellate 

cell CM in comparison to activated pancreatic stellate cell CM. Migration of cytotoxic 

T-cells towards activated pancreatic stellate cell CM was more than migration 

towards cancer cell CM.  
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Bar chart represents mean ± SEM. *** p< 0.001; ** p= 0.001 to 0.01; * p= 0.01 to 

0.05, Comparisons were conducted with ANOVA with comparisons between 

columns using Bonferroni's Multiple Comparison Test. 
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4.5 CD3+ T-cells adhere to pancreatic stellate cells 

 

 Our observations of sequestration in the panstromal compartment and 

differential migration between activated and quiescent pancreatic stellate cells 

informed our hypothesis that activated and quiescent stellate cells may have 

different adhesion properties that may variably interact with T-cells during infiltration. 

Thus we performed adhesion assays. The premise for this adhesion assay is that T-

cells are routinely cultured in suspension and do not adhere to glass and after a 

rigorous wash step (performed three times), only T-cells adhered to pancreatic 

stellate cells will remain. The cover slip can then be fixed and adherent T-cells can 

be counted. 

 To determine the optimal time for co-culturing CD3+ cells with pancreatic 

stellate cells, CD3+ cells were counted after co-culturing for 1, 2 and 8 hours. 6 

power fields per slide were sampled at random at a magnification of x63 and the 

ratio was obtained by dividing the number of adhered CD3+ cells by the number of 

pancreatic stellate cells in each power field. The median of ratios per power field was 

calculated resulting in one data point per cover slip. There was no significant 

difference in adhesion among the time points (Figure 4.16 B). We therefore chose 

duration of 1 hour (Figure 4.16 A) and performed and quantified the assay on 6 

cover slips at a sample rate of 6 high power fields per cover slip (Figure 4.17). 

These in vitro observations, along with the previous in vivo observations 

suggest that activated pancreatic stellate cells, present abundantly in panstromal 

compartment, might attract and adhere to T-cells before they can access tumour.  

 



248 
 

 

 

Figure 4.16 Optimisation of T-cell adhesion assay 

The above graphs represent optimisation experiments of T-cell adhesion to 

quiescent and activated pancreatic stellate cells. The method has been described 

previously. Ratios were obtained by dividing the number of adhered CD3+ T-cells by 

the number of pancreatic stellate cell per power field. (A) The graph is a 
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representation of adhesion of CD3+ T-cells to quiescent and activated pancreatic 

stellate cells after 1 hour on one cover slip only. Each data point represents a power 

field. 7 power fields were sampled at random at a magnification of x63. Adhesion to 

activated pancreatic stellate cells was significantly more than quiescent phenotype (p 

=0.0002; Unpaired T test, 2 tailed). (B) Time point experiments of CD3+ T-cell 

adhesion to pancreatic stellate cell. CD3+ T-cells and pancreatic stellate cell 

phenotypes were co-cultured for 1, 2 and 8 hours.  6 power fields per cover slip were 

sampled at random, at a magnification of x63 and median calculated to give one 

data point. 3 independent cover slips for each pancreatic stellate cell phenotype and 

time point were counted.  
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Figure 4.17 T-cell adhesion assay 

The above figure represents T-cell adhesion to quiescent and activated pancreatic 

stellate cells. Ratios were obtained by dividing the number of adhered CD3+ T-cells 

by the number of pancreatic stellate cell per power field (Y axis) to normalise for 

pancreatic stellate cell numbers. Cover slips were stained by immunofluorescence. 

Blue represents DAPI; Red represents F-actin; Green represents CD3+ cells (T-

cells). CD3+ cells were identified based on their staining pattern and their cell 
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morphology (white arrows). 6 power fields per cover slip were sampled and median 

was calculated for all 6 power fields. A total of 6 cover slips were sampled. 

(A) Adhesion of T-cells to activated pancreatic stellate cells were significantly more 

than the quiescent pancreatic stellate cells (Paired t-test; p-value is two-tailed).  

(B) T-cells do not adhere to quiescent pancreatic stellate cells (C) T-cells adhere to 

activated pancreatic stellate cells (white arrows). 
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4.6 Pancreatic stellate cells secrete more CXCL12 upon activation 

I re-analysed previously performed gene expression arrays (by Fieke 

Froeling). This has been discussed in materials and methods. We demonstrated that 

as a result of activation, secretion of a number of cytokines, chemokines and 

adhesion molecules is altered in pancreatic stellate cells (Froeling, Feig et al. 2011) 

(Figure 4.18).  

I investigated putative migration inducing genes in conditioned media of 

activated and quiescent pancreatic stellate cells by enzyme linked immuno-assay. 

Quiescent pancreatic stellate cell secreted more Interleukin 8 (IL8) and soluble 

intracellular cell adhesion molecule 1 (sICAM 1/ CD54) compared to activated 

pancreatic stellate cells. Secretion of Monocyte chemotactic protein 1 (MCP1/ CCL2) 

was not altered when phenotypes of pancreatic stellate cells were changed. In 

contrast, activated pancreatic stellate cells secreted significantly higher stromal cell 

derived factor 1 alpha (SDF1α/ CXCL12) than quiescent pancreatic stellate cells 

(Figure 4.19). 
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B Cell adhesion pathway (Gene ontology: 0007155 
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C Cell adhesion pathway (Gene ontology: 0007155 
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Cytokine-cytokine receptor interaction (KEGG pathway) D 

E Cytokine-cytokine receptor interaction (KEGG pathway) 
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Figure 4.18 Gene expression changes upon activation of pancreatic stellate 

cells 

Gene expression microarrays of quiescent pancreatic stellate cells compared to 

controls (activated pancreatic stellate cells).  (A) Positive Y axis is ―up-regulated in 

quiescent pancreatic stellate cells compared to activated pancreatic stellate cells‖; 

negative Y axis is ―down-regulated in quiescent pancreatic stellate cells compared to 

activated pancreatic stellate cells‖. Gene functions were established from the genetic 

database, www.genecards.com and grouped as shown.  

(B-E) Gene expression microarrays (as in A) were re-analysed for differentially 

expressed genes involved in cell adhesion (Gene Ontology GO:0007155) gene set 

enrichment test (p= 0.007). This was performed performed using DAVID (Benjamini- 

Hochberg test). Hierarchy clustering of all samples from activated pancreatic stellate 

cells (which served as control (black)) and quiescent pancreatic stellate cells when 

plated on Matrigel and treated with 1 μM ATRA (blue), when plated on Plastic and 

treated with 1μM ATRA (burlywood) and when plated on plastic and treated with 10 

μM ATRA (dark brown), was performed based on the expression profiles of these 

differentially expressed probes using the Euclidean metric. Changes in gene 

expression from time-course experiments and changes in cytokine-cytokine receptor 

interaction pathway were also analysed.  

 

 

 

 

 

http://www.genecards.com/
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Figure 4.19 Changes in secreted protein concentration upon activation of 

pancreatic stellate cells 

Concentrations of the above proteins in conditioned media collected from quiescent 

pancreatic stellate cells and activated pancreatic stellate cells using ELISA.  

Surprisingly at protein level, there was no difference in the secretion between 

quiescent pancreatic stellate cell and activated pancreatic stellate cell for sICAM1/ 

CD54 (A) and MCP1/ CCL2 (B). However, confirming the gene expression data, 

activated pancreatic stellate cells secreted less IL8 than quiescent pancreatic stellate 

cell (C). The reverse was true for SDF-1α/ CXCL12 (D). 

Bar chart represents mean ± SEM. Paired t-test; p values are two-tailed. 
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4.7 T-cell migration to activated pancreatic stellate cells is mediated by 

CXCL12 

 Following our observation that secretion of CXCL12 is reduced in quiescent 

pancreatic stellate cells compared to activated pancreatic stellate cells, and from the 

knowledge that CXCL12 is chemo-attractive to T-cells (Bleul, Fuhlbrigge et al. 1996; 

Ticchioni, Charvet et al. 2002; Meiron, Zohar et al. 2008; Borge, Nannini et al. 2010), 

I sought to knock down the gene CXCL12 in activated pancreatic stellate cells with 

siRNA constructs (method previously described). 

 To determine a suitable concentration of siRNA constructs, I used 2 siRNA 

constructs at 5nm, 10nm and 20nm concentrations each. After siRNA transfection, I 

measured the concentration of CXCL12 in the conditioned media of these cells with 

ELISA using CXCL12 in the conditioned media of untreated PS1 cells, scrambled 

RNAi transfected PS1 and activated and quiescent pancreatic stellate cells as 

controls. CXCL12 secretion was significantly reduced after RNAi at all 

concentrations. We chose to perform further experiments with siRNA constructs at 

5nm to minimise off-target effects. Because two independent RNAi constructs 

achieved gene silencing, we believe that CXCL12 siRNA was specific (Figure 4.20). 

 

To investigate the role of CXCL12 in pancreatic stellate cell migration, I 

knocked down CXCL12 by siRNA in activated pancreatic stellate cell line (PS1) 

(Figure 4.21 A) and primary stellate cells (PSC) (Figure 4.21 B), and measured 

CXCL12 secretion in conditioned media to confirm that RNAi transfection worked. 

Gene silencing was achieved in both cell types. Furthermore, I performed migration 

experiments with CD8+ T-cells in both PS1 cell lines and PSCs (Figure 4.22 A and B, 
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respectively). There was a reduction in migration of CD8+ T-cells to the conditioned 

media of activated pancreatic stellate cells down to a level similar to quiescent 

pancreatic stellate cells. 
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Figure 4.20 Optimization of RNAi transfection 

CXCL12 was knocked down in pancreatic stellate cells with two siRNA constructs at 

5nm, 10nm and 20nm. Protein concentration in the conditioned media after gene 

silencing was measured by ELISA and compared to pancreatic stellate cells without 

CXCL12 knock down (No CXCL12) and scrambled. Gene silencing was observed in 

all concentrations. 

Bar chart represents mean ± SEM. *** p< 0.001; ** p= 0.001 to 0.01; * p= 0.01 to 

0.05, Comparisons were conducted with ANOVA with comparisons between 

columns using Bonferroni's Multiple Comparison Test. 
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Figure 4.21 Gene silencing of CXCL12 in pancreatic stellate cell line and 

primary pancreatic stellate cells. 

CXCL12 was knocked down in pancreatic stellate cell line (PS1: A) and primary 

pancreatic stellate cells (B) with two distinct targeting siRNAs and appropriate 

controls. CXCL12 secretion was measured in conditioned media by ELISA. 

Pancreatic stellate cells treated with siRNA for CXCL12 demonstrated significant 

reduction of CXCL12 secretion (A, B) which was equivalent to quiescent PSC levels. 

*** p< 0.001; ** p= 0.001 to 0.01; * p= 0.01 to 0.05. Comparisons were conducted 

with ANOVA with comparisons between columns using Bonferroni's Multiple 

Comparison Test. 
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Figure 4.22 Migration of T-cell is dependent on CXCL12 

Migration of CD8+ T-cells to the conditioned media from CXCL12 knockdown 

pancreatic stellate cell line (PS1; A) and primary pancreatic stellate cell (PSC; B) 

demonstrated significant reduction, which was equivalent to quiescent pancreatic 

stellate cell levels. CD8+ T-cells also migrated to recombinant CXCL12 (RhCXCL12) 

significantly over quiescent pancreatic stellate cell conditioned media. 

*** p< 0.001; ** p= 0.001 to 0.01; * p= 0.01 to 0.05. Comparisons were conducted 

with ANOVA with comparisons between columns using Bonferroni's Multiple 

Comparison Test. 
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4.8 Natural killer cells, but not B-cells, also migrate preferentially to activated 

pancreatic stellate cells 

 In addition to investigating the migration of T-cells to both pancreatic stellate 

cell media, I investigated the migration of CD19+ (B-cells) and CD56+ (Natural killer 

cells) isolated from donor samples to the different stellate cell conditioned media. 

This was undertaken following our earlier observations that B-cells and Natural killer 

cells, along with cytotoxic T-cells did not infiltrate the juxtatumoural compartment of 

PDAC. 

  

 Natural killer cells significantly migrated to activated pancreatic stellate cells 

over quiescent pancreatic stellate cells and RPMI with serum (Figure 4.23).  

  

 In contrast to T-cells and Natural killer cells, migration of B-cells to 

conditioned media from activated and quiescent pancreatic stellate cells was not 

significantly different from migration to basal media (RPMI with serum) (Figure 4.24). 

We also observed that there was no difference in migration between activated and 

quiescent pancreatic stellate cell conditioned media. These observations may 

suggest that another mechanism exists to prevent B-cell migration to the tumour. 
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Figure 4.23 In vitro Natural killer cell (CD56+) migration assays 

Transwell migration assay of Natural killer cells from healthy donors towards 

conditioned media (CM) from activated and quiescent pancreatic stellate cells. 

Migration to 10% RPMI (RPMI with 10% FBS) was considered as basal serum-

directed migration of Natural killer cells. Values were counted with Casy counter 

(Roche Diagnostics) and were normalised to the basal serum directed migration (Y 

axis). 

CD56+ cells migrated significantly to conditioned media from activated pancreatic 

stellate cells more than quiescent and basal media.  

*** p< 0.001; ** p= 0.001 to 0.01; * p= 0.01 to 0.05. Comparisons were conducted 

with ANOVA with comparisons between columns using Bonferroni's Multiple 

Comparison Test.  
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Figure 4.24 In vitro B-cell (CD19+) migration assays 

Transwell migration assay of B-cells from healthy donors towards conditioned media 

of activated and quiescent pancreatic stellate cells. Migration to 10% RPMI (RPMI 

with 10% FBS) was considered as basal serum-directed migration of Natural killer 

cells. Values were counted with Casy counter (Roche Diagnostics) and were 

normalised to the basal serum directed migration (Y axis). 

B-cell migration to activated and quiescent pancreatic stellate cells was not 

significant over basal serum-directed migration (RPMI 10%).  

Comparisons were conducted with ANOVA with comparisons between columns 

using Bonferroni's Multiple Comparison Test. 
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4.9 Effector T-cells in patient peripheral polymorphonuclear cells (PBMC) are 

not increased and are of a similar level with Donor PBMC  

 It is an established fact that naïve T-cells decrease in number as a result of 

age associated thymic involution, while memory cells increase as a result of 

pathogen encounter (Koch, Larbi et al. 2008). As I carried out migration assays with 

donor PBMCs, I sought to investigate the proportion of T-cell subsets in patient 

PBMCs and to compare with the donor sample as similarity between both samples 

will give clinical significance to our migration and adhesion experiments. I performed 

flow cytometry analysis on PBMCs from two PDAC patients and divided viable CD4+ 

and CD8+ T-cells into their subsets based on previously established gating criteria 

(Koch, Larbi et al. 2008; Riches, Davies et al. 2012). I compared this with data with 

flow cytometry data of donors. 

 T-cells may be divided on the basis of their expressions of the common 

leukocyte antigen isoform, CD45RA, and the chemokine receptor CCR7, into 4 

subsets: naïve (CD45RA+ CCR7+), central memory (CM; CD45RA- CCR7+), effector 

memory (EM; CD45RA- CCR7-) and terminally differentiated effector memory 

(TEMRA; CD45RA+ CCR7-) cells (Sallusto, Lenig et al. 1999). CCR7 expression 

mediates homing to secondary lymphoid organs and lack immediate effector 

functions while CCR7- memory cells have low proliferative capabilities, display 

immediate effector functions and express receptors for migration to inflamed tissues 

(Sallusto, Lenig et al. 1999; D'Asaro, Dieli et al. 2006). TEMRA cells are the most 

differentiated of the memory cells. They express high levels of the cytotoxic 

molecules perforin and Fas ligand, and they are susceptible to apoptosis (D'Asaro, 

Dieli et al. 2006). 
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 I observed similarities in the distribution of the CD4+ and CD8+ T-cell subsets 

among donor PBMC and PBMC of PDAC patients (Figures 4.25 and 4.26, 

respectively). However this was not the case in a PDAC patient with bacterial 

infection who had an increased TEMRA subset which suggests a shift from a naive 

phenotype to an effector phenotype (Figures 4.25 and 4.26). 

 However, to test that the T-cells of PDAC patient were not functionally 

impaired, I performed migration assays with patient CD4+ and CD8+ T-cells to 

activated and quiescent pancreatic stellate cell conditioned media and to the 

recombinant form of CXCL12 antibody. Similar to donor T-cells, patient CD4+ and 

CD8+ T-cells preferentially migrated to conditioned media of activated pancreatic 

stellate cell over quiescent pancreatic stellate cells. Migration of both CD4+ and 

CD8+ T-cells to recombinant CXCL12 was also significantly higher than the migration 

to basal media control (RPMI 10%) and quiescent pancreatic stellate cell conditioned 

media giving further proof to the role of CXCL12 in T-cell migration in pancreatic 

ductal adenocarcinoma (Figures 4.27 and 4.28). I then measured CXCR4 (receptor 

for CXCL12) expression on CD4+ and CD8+ T-cells on both donor and patient 

PBMCs. Interestingly, CXCR4 was significantly upregulated in PDAC patient PBMCs 

than in donor PBMCs (Figure 4.29). 
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Figure 4.25: Comparison of CD4+ T-cell subsets between donor and patient 

PBMC 

Flow cytometry analysis of CD4+ T-cell subsets on donor PBMCs (n=25) and PDAC 

patient PBMC (n=8) (representative picture shown; (A)). Viable lymphocytes were 

gated and selected for CD4+ T-cell (not shown). CD4+ T-cells were subdivided into 

the four T-cell subsets using CD45RA and CCR7 markers. Distribution of the 

subsets were similar, particularly of note were TEMRA cells which were few. This 

was not the case in a patient who presented with bacterial infection and had 

increased levels of TEMRA. Expression of effector subsets (CCR7-) was compared 

between the two groups without any significant differences (B).  

Mann Whitney U test; p values are 2 tailed 

n.s. = not significant  
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Figure 4.26 Comparison of CD8+ T-cell subsets between donor and patient 

PBMC 

Flow cytometry analysis of CD8+ T-cell subsets on donor PBMCs (n=25) and PDAC 

patient PBMC (n=8) (representative picture shown (A)). Viable lymphocytes were 

gated and selected for CD8+ T-cell (not shown). CD8+ T-cells were subdivided into 

the four T-cell subsets using CD45RA and CCR7. Distribution of the subsets was 

similar between PDAC patients and normal donors. However, this was not the case 

in a PDAC patient who presented with bacterial infection with an observable increase 

in TEMRA subsets. Expression of effector subsets (CCR7-) was compared between 

the two groups without any significant differences (B).  

Mann Whitney U test; p values are 2 tailed 

n.s. = not significant  
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Figure 4.27 Patient CD4+ T-cell migration to pancreatic stellate cell Phenotypes 

Transwell migration assay of CD4+ T-cells from PDAC patients (n=2) towards 

conditioned media (CM) from activated and quiescent pancreatic stellate cells and 

recombinant CXCL12 (100ng) in 10% RPMI (10% FBS). 10% RPMI was considered 

as basal serum-directed migration of T-cells and served as an internal control. 

Values were normalised to RMPI 10% (Y axis). 

We demonstrated a significant reduction of migration of patient CD4+ T-cells to 

quiescent pancreatic stellate cell CM in comparison to activated pancreatic stellate 

cell CM. Patient CD4+ T-cells also migrated to RhCXCL12 over control (RPMI 10%) 

and quiescent pancreatic stellate cell. 

Bar chart represents mean ± SEM. ** p= 0.001 to 0.01; * p= 0.01 to 0.05, 

Comparisons were conducted with ANOVA with comparisons between columns 

using Bonferroni's Multiple Comparison Test. 
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Figure 4.28 Patient C8+ T-cell migration to pancreatic stellate cell phenotypes 

Transwell migration assay of CD8+ T-cells from PDAC patients (n=2) towards 

conditioned media (CM) from activated and quiescent pancreatic stellate cells and 

recombinant CXCL12 (100ng) in 10% RPMI (10% FBS). 10% RPMI was considered 

as basal serum-directed migration of T-cells and served as an internal control. 

Values were normalised to RMPI 10% (Y axis). 

We demonstrated a significant reduction of migration of patient CD8+ T-cells to 

quiescent pancreatic stellate cell CM in comparison to activated pancreatic stellate 

cell CM. Patient CD8+ T-cells also migrated to RhCXCL12 over control (RPMI 10%) 

and quiescent pancreatic stellate cell. Migration to RhCXCL12 was not significant 

from that of activated stellate cell CM. 
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Bar chart represents mean ± SEM. ** p= 0.001 to 0.01; * p= 0.01 to 0.05, 

Comparisons were conducted with ANOVA with comparisons between columns 

using Bonferroni's Multiple Comparison Test. 
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Figure 4.29 CXCR4 is upregulated in PDAC patient CD4+ and CD8+ T-cells 

Flow cytometry analysis of CXCR4 expression on CD4+ (A) and CD8+ (B) T-cells of 

PDAC patients (n=5) and normal donors (n=7). CXCR4 was upregulated in the T-

cells of PDAC patients. 

Mann Whitney U test; p values are 2 tailed 

***p<0.001; ** p= 0.001 to 0.01 
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5.0 Discussion 

 

  Using immunohistochemistry, sophisticated imaging systems and 

analyses on both whole tissue sections and tissue microarrays, I demonstrate for the 

first time, a comparison of immune cell infiltration in human PDAC and other 

pancreatico-biliary disease tissues. I found immune cells‘ infiltrate increased in 

PDAC tissues over normal tissues; this has been observed previously in genetic 

mouse models of PDAC (Clark, Hingorani et al. 2007). This fact confirms an 

immunological reaction in PDAC. In addition, I observed immune cell infiltration that 

increased from normal to inflammatory disease (chronic pancreatitis) to borderline 

malignant disease (mucinous cystic neoplasm) and to malignant carcinomas 

(ampullary carcinoma, pancreatic ductal adenocarcinoma and cholangiocarcinoma). 

Interestingly, patient overall survival of the above diseases has been shown to 

worsen in the same order as immune cell infiltration increased (Coupland, Kocher et 

al. 2012). This may suggest that either the immune cells are detrimental to patient 

prognosis, or that the immune response is equivalent to the severity of the 

pancreatico-biliary disease. Either of these explanations may have clinical 

significance; in the case of the former as potential therapeutic targets and in the case 

of the latter as diagnostic and prognostic markers.  

 

 Much is not known about the immune response in chronic pancreatitis (CP). 

Macrophages were observed in stage I of alcoholic chronic pancreatitis in 

association with myofibroblasts and both were found to surround areas of necrosis 

(Detlefsen, Sipos et al. 2006). These macrophages were also positive for latency 

associated protein (LAP) and TGFβ-RII particularly in early stage more than late 
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stage. LAP, macrophages and PDGFβ reduced in the late stages of alcoholic 

pancreatitis with a corresponding decrease in the number of myofibroblast activity 

and a waning of the fibrogenic process. Thus, the study authors hypothesize that 

myofibroblasts and macrophages initiate the fibrogenic process (Detlefsen, Sipos et 

al. 2006). In a separate study involving aetiologically different chronic pancreatitis; 

alcoholic CP (n=10), idiopathic CP (n=12) and tropical CP (n=21),  the immune cell 

markers CD45+, CD4+, CD8+ and CD68+ were significantly increased in all CP 

compared to control (organ donors; n= 10) but did not differ amongst the aetiological 

types (Shrikhande, Martignoni et al. 2003). The authors, thus, concluded that 

different aetiological types of CP have similar histological features and immune cell 

reaction and that regardless of aetiology the disease reaches a certain stage from 

which it seemingly progresses to ―a single distinctive entity‖ (Shrikhande, Martignoni 

et al. 2003). In an immune cell study performed on intraheptic cholangiocarcinoma 

(ICC), surgically resected ICC tissues (n=31) and corresponding cancer adjacent 

tissues were labelled by immunohistochemistry for the markers B7-H1, PD-1, CD8 

and CD4. Expression of B7-H1 and PD-1 was upregulated in ICC compared to the 

adjacent tissues. B7-H1 expression on tumour correlated with TNM staging and 

tumour differentiation while inversely correlating with CD8+ infiltration (Ye, Zhou et al. 

2009) 

 

 As there is not much literature published on immune cell response in 

mucinous cystic neoplasm, cholangiocarcinoma and ampullary carcinoma, I can 

speculate based on the data I show that CD3+, CD4+, CD8+, FoxP3+ and CD20+ cell 

density in the pancreas of MCN patients was of a level similar to normal pancreas 

and pancreas of CP patients except for CD68+ macrophages which was significantly 
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more than CP. Increased tissue infiltrate of CD4+, CD8+, CD68+ and CD20+ but not 

FoxP3+ were observed in the pancreas of AC patients. CD4+, CD68+, FoxP3+ and 

CD20+ in the pancreas of CC patients was of a level similar to PDAC patients with 

CD8+ being the exception with CC having significantly more CD8+ tissue infiltrate. 

The explanations of these findings are unclear requiring further functional assays. 

 

 Pancreatic cancer is hypovascular in contrast to most other tumours 

especially ampullary cancers and cholangiocarcinoma (Olive, Jacobetz et al. 2009). 

Furthermore the distribution of vasculature in pancreatic cancer is distinct, as it is 

seen mostly further away from the tumour ((Olive, Jacobetz et al. 2009) and 

DiMaggio, Kocher; unpublished observations). Furthermore, in pancreatic cancer, 

two distinct stromal compartments have been identified based on the differential 

gene expression (Iacobuzio-Donahue, Ryu et al. 2002; Ricci, Kern et al. 2005) 

Therefore, I next interrogated the pancreatico-biliary diseases to observe migration 

of immune cells from the panstromal region, rich with blood vessels for pancreatic 

cancer, to the juxtatumoural stromal region, deficient in blood vessels for pancreatic 

cancer(Ricci, Kern et al. 2005; Olive, Jacobetz et al. 2009). We observed distinct 

differential immune cell infiltration that was unique to PDAC. The hallmarks of this 

unique infiltration pattern were that cytotoxic immune cells such as cytotoxic T-cells 

(CD8+) and natural killer cells (CD56+) and B-cells (CD20+)) were sequestrated by 

the panstromal compartment whereas macrophages (CD68+) and neutrophils 

(myeloperoxidase+) infiltrated the juxtatumoural compartment. The stromal 

environment of PDAC consists of activated fibroblasts, myofibroblasts, extracellular 

matrix such as collagen and fibronectin, blood vessels and inflammatory cells 

(Neesse, Michl et al. 2010). Furthermore stromal cell subsets that express ICAM-1, 
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VCAM-1and MAdCAM-1 have also been identified (Roozendaal and Mebius 2011). 

These coupled with chemokines secreted by stromal cells, which my data shows, 

make for stellate cell-immune cell interactions that are not yet fully understood and 

perhaps results in the formation of tertiary lymphoid aggregates in the pancreas as a 

result of persistent immune response (Carragher, Rangel-Moreno et al. 2008). 

 

 Patients with CD8+ T-cells infiltrating the juxtatumoural compartment have a 

longer overall survival indicating a role of CD8+ in tumour immunoclearance. 

Supporting our data are findings in colorectal carcinoma which showed, using In situ 

analysis, that patients with high density of CD8+ had longer overall survival (Galon, 

Costes et al. 2006; Tosolini, Kirilovsky et al. 2011). Also recently, two studies in a 

mouse model of PDAC suggest the requirement of CD8+ cells for immuno-editing in 

PDAC (Bayne, Beatty et al. 2012; Pylayeva-Gupta, Lee et al. 2012). Together, these 

authors presented a mechanism whereby Granulocyte Macrophage Colony 

Stimulating Factor (GM-CSF) production is induced by K-ras within the neoplastic 

cells. GM-CSF then recruits myeloid progenitor cells which differentiate into Myeloid 

Derived Suppressor Cells (MDSC). The MDSC‘s secrete arginase and inducible 

nitric oxide synthase which inhibit CD8+ T-cells from immunoclearance of tumours 

(Bayne, Beatty et al. 2012; Pylayeva-Gupta, Lee et al. 2012). 

 

 Natural killer cells were also seen to increase patient overall survival when 

they infiltrated the tumour and along with PDAC did not influence patient survival in 

the panstromal compartment indicating that the proximity of these CD8+ T-cells and 

natural killer cells are perhaps necessary for tumour clearance. Interestingly, a 
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subset of CD8+ T-cells with a differentiated effector or memory phenotype has been 

found to express the natural killer associated receptor CD56 (Sallusto, Lenig et al. 

1999; Tarazona, DelaRosa et al. 2001; Tarazona, DelaRosa et al. 2002). These 

CD8+ T-cells with CD56 expression are mature cytolytic effector T-cells (Pittet, 

Speiser et al. 2000). These findings may highlight the use of CD56 as a marker of 

immune cytotoxicity in PDAC. 

 

 Although T regulatory cells (FoxP3+) did not infiltrate the tumour in relatively 

early PDAC cases (tissue collected at resection), they were seen to reduce patient 

overall survival in patients with high densities of FoxP3+ in both the juxtatumoural 

and panstromal compartments. Treg cells, thus, may have a direct inhibitory effect to 

other cells of the immune system. The combination of stellate cells and Treg cells in 

the PDAC tumour microenvironment therefore may serve as an entrapping barrier 

through which other immune cells cannot pass through. FoxP3+ infiltrate should be 

investigated further as a prognostic marker of poor outcome in PDAC patients. 

 

 The stromal microenvironment of PDAC is certainly rich with immune cells, as 

many others and I have shown, some of which are thought to be immunosuppressive 

such as Tregs and MDSCs (Campbell and Koch 2011; Mace, Ameen et al. 2013). 

Mace et al, studied the effects activated pancreatic stellate cells have on the 

differentiation of the immunosuppressive MDSCs. ―MDSCs are a heterogeneous 

population of immature myeloid cells‖ that when activated, inhibit T-cell and NK cell 

tumour specific response by the production of oxidative stress and the depletion of 

nutrients required by lymphocytes (Mace, Ameen et al. 2013). Using Luminex 
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cytokine kits they observed elevated IL-4, macrophage colony-stimulating factor (M-

CSF) and vascular epidermal growth factor (VEGF), all of which regulate MDSCs, as 

well as monocyte chemotactic protein 1 (MCP-1) and SDF-1 chemokines which are 

known to be chemotactic to MDSCs  (Lechner, Liebertz et al. 2010; Mundy-Bosse, 

Young et al. 2011; Mace, Ameen et al. 2013). They then cultured PBMCs from 

normal human donors with PSC conditioned media or with IL-6 and GM-CSF which 

served as positive control. After 7 days, they observed that PBMCs cultured with 

PSC conditioned media has differentiated into the MDSC markers CD11b+ CD33+ 

and a subpopulation of CD11b+ CD33+ CD15+ polymorphonuclear cells. PBMCs 

cultured with human fetal primary pancreatic fibroblast (HPF; which served as 

control) were not differentiated (Mace, Ameen et al. 2013). To ascertain that the 

CD11b+ CD33+ cells were in fact suppressive, CD33+ was isolated via magnetic bead 

sorting and cultured with ―donor matched and autologous CFSE-labelled‖ CD4+ and 

CD8+ T-cells and stimulated with CD3/CD28 beads for 3 days. T-cell proliferation as 

measured by CFSE dilution, was significantly decreased (Mace, Ameen et al. 2013) 

suggesting an interaction between PSC, T-cells and MDSCs.  

  

 MDSCs can directly suppress T helper and cytotoxic T-cell function (Nagaraj 

and Gabrilovich 2010; Greten, Manns et al. 2011; Pylayeva-Gupta, Lee et al. 2012). 

In mice MDSCs are defined as CD11b+ Gr1+ cells, however the absence of the Gr1 

analogue in humans has necessitated that a permutation of markers be used in the 

definition of this immune cell types and in their isolation (Nagaraj and Gabrilovich 

2010). Human MDSCs are characterised as CD11b+, CD33+, HLA-DR neg/low and they 

can be divided into granulocytic CD14- and monocytic CD14+ MDSCs (Greten, 

Manns et al. 2011). Other markers that are used in the classification of these 
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immune cells are CD15, CD16, CD66b and CD124 (Nagaraj and Gabrilovich 2010). 

MDSCs inhibit T-cell function via a variety of mechanisms; one of which is in the 

depletion of cysteine and cystine. Cysteine is required for T-cell activation and 

function, however, MDSCs have been found to deplete the tumour microenvironment 

of cystine while not secreting cysteine back into the tumour microenvironment 

(Nagaraj and Gabrilovich 2010; Srivastava, Sinha et al. 2010). Other ways MDSCs 

inhibit T-cell function are by the production of inducible nitric oxide synthase (iNOS) 

and arginase as a result of its ability to metabolise L-arginase; its production or 

reactive oxygen species (ROS); and its ability to secrete TGFβ; all of which are 

immunosuppressive against T-cells (Filipazzi, Valenti et al. 2007; Rodríguez and 

Ochoa 2008; Corzo, Cotter et al. 2009; Nagaraj and Gabrilovich 2010). MDSCs have 

also been seen to suppress cytotoxic NK cells. NK cells act as a first defence against 

infection and also regulate adaptive immunity (Greten, Manns et al. 2011). In vitro 

these NK cell functions were impaired by MDSC from patients with hepatocellular 

carcinoma, however when MDSCs were depleted from PBMCs, NK cell mediated 

lysis improved (Hoechst, Voigtlaender et al. 2009). Surprisingly, Hoechst and 

colleagues found that in this case immunosuppression was a result of cell-cell 

contact and did not involve iNOS, Arginase 1 or ROS (Hoechst, Voigtlaender et al. 

2009). Targeting human MDSCs with ATRA systemically resulted in maturation of 

these cells, halting their immunosuppressive function. Treatment with the receptor 

tyrosine kinase inhibitor Sunitinib also reverses ―MDSC-mediated tumour-induced 

immunosuppression‖ (Kusmartsev, Su et al. 2008; Ko, Zea et al. 2009; Greten, 

Manns et al. 2011). 
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 In another study, Tjomsland et al observed significantly increased levels of the 

cytokines IL-6, TGFβ, COX-2, IDO, CCL20 and CCL2 in human PDAC (n=30) 

tissues compared to normal pancreas tissue (from individuals diseased from 

hypothermia (n=7)) and benign disease (n=3). CCL2 and COX-2 were expressed 

specifically by the fibrotic stroma; all of the above were observed by 

immunohistochemical studies (Tjomsland, Niklasson et al. 2011). They also 

observed an corresponding significant increase of the immune cells CD8+ T-cells, 

CD163+ macrophages and CD83+ dendritic cells in PDAC patients over controls, 

where CD8+ T-cells were found to be localised in the fibrotic stroma surrounding the 

―tumour nests‖ (Tjomsland, Niklasson et al. 2011). These results are similar to my 

observations. This led to their conclusion that the desmoplastic stroma encourages 

the ―accumulation and modulation‖ of infiltrated immune cells in PDAC as a result of 

the cytokines produced in the tumour microenvironment (Tjomsland, Niklasson et al. 

2011). To determine that ischemia was not responsible for the immune cell infiltration 

they observed, tissue from patients that had undergone Whipple resection on cystic 

tumours (where tumour is adjacent to normal histology pancreas) were compared 

with the normal pancreas of individuals deceased as a result of hypothermia and 

they found that there was no difference in immune cell infiltration (Tjomsland, 

Niklasson et al. 2011). Also to investigate the role of jaundice as the cause for 

increased immune cell infiltrate, blood bilirubin levels were compared with immune 

cell marker levels however this resulted in no correlation. TGFβ produced by PDAC 

may expand Tregs (Campbell and Koch 2011; Tjomsland, Niklasson et al. 2011) 

which may contribute to the immunosuppressive nature of the tumour 

microenvironment. A school of thought is that the seeming inability of immune cell 

mediated tumour clearance in PDAC may lie in the transcriptional differences 
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between cancer and normal PBMCs (Baine, Chakraborty et al. 2011). In a study 

involving 26 PDAC patients and 33 matched healthy donors analysed by whole 

genome cDNA microarrays, 383 genes were significantly different and 65 genes had 

at least a 1.5 fold change in expression between PDAC and normal PBMCs (Baine, 

Chakraborty et al. 2011). Of the 65 genes Baine and colleagues identified: 18 genes 

had the ―potential to directly decrease T-cell proliferation, T-cell receptor signalling 

and cytotoxic T lymphocyte (CTL) cytotoxicity‖, 4 genes could directly decrease the 

activation and signalling of B-cells, 3 genes could decrease the cytotoxicity of NK 

cells and 2 genes could decrease the response of macrophages (Baine, Chakraborty 

et al. 2011). The gene ARG1, which is associated with MDSC increase (Talmadge 

2007) was also upregulated more than 2 fold in PDAC PBMCs (Baine, Chakraborty 

et al. 2011). While the differential gene expression was validated using qRT-PCR, 

the lack of mechanistic experimental proof suggests a weakness that could question 

the conclusions of the above work. 

 

 Among the constituents of immune infiltrates in the PDAC microenvironment 

are mast cells and macrophages (Esposito, Menicagli et al. 2004). The presence of 

mast cell in the PDAC microenvironment has been found to be directly correlated 

with the presence of lymph node metastases (Esposito, Menicagli et al. 2004). Mast 

cells and macrophages in the pancreas also express VEGF-A, VEGF-C and bFGF, 

thus making them integral contributors of angiogenesis in PDAC(Esposito, Menicagli 

et al. 2004). I did not study mast cells in PDAC microenvironment. Tumour 

associated macrophages (TAMs) may polarise from an M1 phenotype that 

expresses high levels of pro-inflammatory cytokines, produces reactive oxygen and 

nitrogen intermediates and promotes TH1 response to a tumour promoting M2 
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phenotype capable of suppressing other immune cells as a result of their expression 

of the genes: Arginase 1, IL-10 and TGFβ (Mantovani, Porta et al. 2006; Biswas and 

Mantovani 2010; Sica and Mantovani 2012). TAMs may suppress CD8+ T-cells via 

the B7 family of co-signalling molecules: B7-H1 and B7-H4 (Kryczek, Zou et al. 

2006; Kuang, Zhao et al. 2009). In a recent human PDAC study involving 483 

patients, Sanford et al performed survival analysis to investigate if the prevalence of 

preoperative blood monocytes correlated with patient survival following tumour 

resection. They also compared the prevalence of monocytes in the blood and bone 

marrow of patients and controls and compared CCL2 expression between PDAC 

patients and normal donors (Sanford, Belt et al. 2013). They observed an 

association between decreased monocytes in the peripheral blood and better 

survival in PDAC patients. PDAC patients with high TAM/ CD8 ratio had poor 

prognosis, this was also the case when patients had high CCL2 and low CD8+ T-

cells. In a murine model of PDAC with pronounced desmoplastic stroma, KCKO, 

they observed that by inhibiting CCR7, CD8+ T-cells increased while Tregs decreased 

(Sanford, Belt et al. 2013). Monocytes express CCR7 (Gordon and Taylor 2005). 

  

 The role of pancreatic stromal cells in immune cell suppression has recently 

been elucidated. Kraman and colleagues labelled stromal cells expressing fibroblast 

activating protein alpha (FAP-α) with Diphtheria toxin receptor (DTR) in a transgenic 

mouse model of LL2 Lewis lung carcinoma and targeted them with Diphtheria toxin. 

They observed a ―rapid hypoxic necrosis‖ of stroma and tumour upon ablation of 

FAP-α expressing stromal cells by Diphtheria toxin that was mediated by interferon-γ 

and tumour necrosis factor-α (Kraman, Bambrough et al. 2010). They also depleted 

FAP-α expressing stromal cells in a subcutaneous mouse model of PDAC and 
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observed immunological control of growth; this however was not the case in the B 

and T-cell incompetent mouse model, the Rag2- deficient mice (Shinkai, Rathbun et 

al. 1992; Kraman, Bambrough et al. 2010).  

 

In a separate study involving incurable PDAC patients and a genetically 

engineered mouse model of PDAC, Beatty and colleagues combined gemcitabine 

therapy with an agonist CD40 antibody. They observed a regression of tumours in 

some patients with similar results in the genetically engineered mouse models. They 

found however that CD40 activated macrophages infiltrated the tumours and 

facilitated the depletion of the stroma and performed tumour clearance (Beatty, 

Chiorean et al. 2011). While our patient data suggest the possibility that the CD8+ T-

cells rather than macrophages are involved in tumour immunoclearance, our data 

also points to the role of the stroma in immunosuppresion. These observations point 

to a putative role of the stroma in the suppression of immune cells infiltrate in PDAC.  

 

PDAC stellate cells may be heterogeneous with markers such as CD10+ and 

FAP-α identifying sub-population (Ikenaga, Ohuchida et al. 2010; Kraman, 

Bambrough et al. 2010). Therapy that involves targeting stellate cell markers may be 

beneficial and of clinical relevance. All-trans Retinoic acid (ATRA) is a fat soluble, 

vitamin A metabolite that regulates hundreds of genes by binding to nuclear 

transcription factors such as the retinoic acid receptors (RAR) and the retinoid X 

receptors (RXR) (Blomhoff and Blomhoff 2006; Kluwe, Wongsiriroj et al. 2011). 

Vitamin A is involved in an array of functions that include vision, apoptosis, 

differentiation and development of the central nervous system (Spinella, Kerley et al. 
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2003; Jimenez-Lara, Clarke et al. 2004; Vergara, Arsenijevic et al. 2005; Blomhoff 

and Blomhoff 2006), and as early as 1925 deficiency or excess vitamin A was shown 

to dramatically impact epithelial cell differentiation (Wolbach and Howe 1925). 

Vitamin A cannot be synthesized by any animal species and has to either be 

consumed as carotenoids and then physiologically converted to retinoids or as 

retinoids previously converted in tissue from food (Blomhoff and Blomhoff 2006) from 

whence they are stored in stellate cells as retinyl esters packaged within lipid 

droplets (Blomhoff and Blomhoff 2006). Inability to restore vitamin A stores in the 

pancreas as a result of a loss of fat soluble vitamins leads to a cycle of pancreatic 

stellate cell activation (Froeling, Feig et al. 2011). However, the restoration of 

quiescence in pancreatic stellate cells was made possible by treatment with ATRA 

resulting in significant increase and decrease in proliferation and apoptosis 

respectively of adjacent tumour cells and a reduction in tumour infiltration (Froeling, 

Feig et al. 2011). Also treatment with ATRA of 3D co-cultured pancreatic stellate cell 

and cancer cell line reduced ―total, membranous and nuclear β-catenin‖ in cancers 

affecting Wnt- β-catenin signalling which has been implicated in gastro-intestinal 

cancers. In addition, when cancer cells were treated with conditioned media of 

activated pancreatic stellate cells, an increase in β-catenin activity was observed 

(Froeling, Feig et al. 2011). 

 

 By rendering stromal cells of the pancreas quiescent with ATRA treatment, I 

was able to abrogate immune cell sequestration in KPC mice. These mice were 

given an oral dose of ATRA dissolved in sesame oil and the control group were 

given sesame oil only for a period of five days, (the method has been described 

earlier (Froeling, Feig et al. 2011)). In the ATRA treated group I observed a stromal 
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collapse; an increase in the density of CD8+ T-cells and no defect in CD8+ T-cell 

infiltration of the juxtatumoural compartment. This was not the case for the control 

group which exhibited similar CD8+ T-cell infiltration as humans. This gives further 

evidence to the role of pancreatic stellate cells as immunosuppressors and 

combined with earlier findings by other research groups (Kraman, Bambrough et al. 

2010; Beatty, Chiorean et al. 2011) suggests the targeting of pancreatic stroma as a 

new therapeutic approach to the treatment of pancreatic ductal adenocarcinoma. 

There was no change however in CD19+ B-cell, CD4+ T-cell, CD11b+ MDSC and 

F4/80+ macrophages in KPC mice after treatment with ATRA. My observation of 

immune cell densities in stromal compartments of control KPC mice was in line with 

my observation in human PDAC tissue. Also interestingly, KPC control mice were 

positive for fibronectin, much like in human PDAC tissues, however after ATRA 

treatment there was a significant decrease in positivity. 

 

 To further investigate the role of stellate cell activation on immune cell 

migration and adhesion, I treated a pancreatic stellate cell line, PS1, with ATRA and 

vehicle (method has been described previously). The conditioned media from 

quiescent (treated with ATRA) and activated (treated with vehicle only) stellate cells 

were harvested at the end of treatment and I performed migration assays to these 

media. The rationale was that secreted factors such as cytokines and chemokines 

may vary significantly between these two pancreatic stellate cell states and might 

affect migration of T-cells which may account for the differential migration of T-cells 

we observed in our human tissue analyses. Because this experiment had not 

previously been performed I had to optimise for various conditions such as pore size, 

duration, cell culture media, etc. (these have all been discussed previously). My data 
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suggests a role of activated pancreatic stellate cells in inhibiting CD8+ T-cell 

migration to the pancreatic cancer cells. I observed that activated pancreatic stellate 

cells in vitro elicited preferential migration of CD8+ T-cells to themselves over 

pancreatic cancer cells. When activated pancreatic stellate cells were rendered 

quiescent, migration towards pancreatic stellate cells was significantly reduced. This 

preferential migration to activated pancreatic stellate cell over quiescent pancreatic 

stellate cell was also observed for CD56+ Natural Killer cells but not for CD20+ B-

cells. As these assays were performed with donor PBMCs and immortalized stellate 

cell lines, I validated my findings by isolating PBMCs and primary pancreatic stellate 

cells from PDAC patients. These are used to perform transwell migration 

experiments with similar results. 

 

 Similarly, T-cells adhered preferentially to activated pancreatic stellate cells 

over quiescent pancreatic stellate cells in an adhesion assay which I developed. My 

adhesion results indicate an interaction between T-cells and activated pancreatic 

stellate cells that are increased over interactions between T-cells and quiescent 

pancreatic stellate cells. Leukocytes interact with cell surface molecules as they 

migrate to points of inflammation (Vicente-Manzanares and Sánchez-Madrid 2004). 

This process in Neutrophils involves the activation of the adhesion molecules, 

selectins, on the vascular endothelium and upregulation of integrins in leukocytes 

that promote rolling along the endothelium. Tighter adhesion of Neutrophils occurs 

through VCAM1 binding to α4β1 and α4β7 on the neutrophils with transmigration 

hypothetically facilitated by matrix metalloproteinases (von Andrian and Mackay 

2000; Coussens and Werb 2002). The juxtatumoural stromal compartment and 

panstroma compartment differ from each other in their expression of MMP2 and 
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MMP11 (Iacobuzio-Donahue, Ryu et al. 2002). We also show that VCAM1 is 

upregulated in activated pancreatic stellate cells and Fibronectin which has been 

shown to interact with integrins on white blood cells (Johansson, Svineng et al. 

1997), is upregulated particularly in the panstromal compartment. The exact nature 

of leukocyte interaction with pancreatic stellate cells has not been fully investigated 

but may suggest that T-cell inhibition, in addition to being cytokine mediated may 

also result from physical interactions between the immune cells and activated 

pancreatic stellate cells.  

 

 It has been established that treatment of human pancreatic stellate cell lines 

results in gene expression and protein changes (Froeling, Feig et al. 2011). With the 

aid of a sophisticated web-based bioinformatics tools, candidate genes from gene 

expression microarray data were identified (Froeling, Feig et al. 2011) that might 

have an effect on migration and adhesion of immune cells as the immune cells 

undergo extravasation and subsequently migration to the tumour. The genes 

involved in immune cell migration were validated by ELISA. While the majority where 

either upregulated in quiescent pancreatic stellate cells or were not different between 

stellate cell states, CXCL12 was downregulated in quiescent pancreatic stellate cells 

and secreted in larger amounts in activated pancreatic stellate cells. Our data is 

supported by the finding that activated stroma fibroblasts in breast cancer also 

produce CXCL12. (Orimo, Gupta et al. 2005). CXCL12 disruption brought on lethality 

(Nagasawa, Hirota et al. 1996). Some functions for which CXCL12 has been 

involved include, induction of endothelial expression of VEGF-A (Coussens and 

Werb 2002) which may explain the deficiency of blood vessels in the juxtatumoural 

region (Olive, Jacobetz et al. 2009); regulation of the expression of sonic hedgehog 
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for which CXCL12 /CXCR4 (ligand and receptor respectively) signalling has recently 

been implicated in (Singh, Arora et al. 2012); CXCL12 also induces actin 

polymerization in leukocytes which is necessary for chemotaxis. CXCL12 acts on 

lymphocytes and monocytes but not neutrophils and was suggested to have a role in 

immune surveillance (Bleul, Fuhlbrigge et al. 1996). 

 

 Using two different siRNA constructs for CXCL12, I silenced CXCL12 

expression in activated pancreatic stellate cells. This was confirmed by ELISA 

performed with conditioned media of cells. I then performed migration assays as 

done previously. I observed a reduction of CD8+ T-cells to the conditioned media of 

the CXCL12 silenced activated pancreatic stellate cell that was similar to the level of 

quiescent pancreatic stellate cell. By using two different siRNA constructs I 

confirmed specificity of gene silencing. On primary pancreatic stellate cells, I 

confirmed preferential migration of CD8+ T-cells to the activated pancreatic stellate 

cell over its quiescent state. When CXCL12 was silenced in activated pancreatic 

stellate cells of primary cells, a reduction of CD8+ T-cell migration to activated 

stellate cells was observed. Therapy that includes the reduction of CXCL12 in 

stroma of PDAC patients or that induces a transformation to a quiescent stroma may 

reduce the affinity of cytotoxic T-cells to the activated pancreatic stroma thereby 

allowing T-cells to reach tumours. 

 

 As donor PBMCs are not normally antigen experienced we hypothesised that 

to gain clinical significance with our migration assays, distribution of T-cell subsets in 

donors should be similar to those of patient. CD4+ and CD8+ T-cells each may be 
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distributed into the following subsets: naïve (N), central memory (CM), effector 

memory (EM) and terminally differentiated effector memory (TEMRA) (Sallusto, 

Lenig et al. 1999); with the later two characterised by their lack of CCR7 and their 

abilities to perform cytotoxic functions with the molecules perforin and fas ligand 

(Sallusto, Lenig et al. 1999; D'Asaro, Dieli et al. 2006). While recruitment, isolation 

and use of patient PBMCs in migration experiments were met with considerable 

difficulties I was able to show that in PDAC patients the distribution of effector and 

naïve subsets of both CD4+ and CD8+ T-cells was similar to those of donors. In an 

isolated patient who had a bacterial infection, I found that the distribution of T-cell 

subsets differed from donors and PDAC patient T-cells with a majority of cells 

present being TEMRAs and very few naïve and central memory cells (data not 

shown). The observation of increased TEMRAs in infected patients has also been 

observed by others (Riches, Davies et al. 2012). 

 

 The role of CD40 in CD8+ T-cell stimulation is relatively unclear. CD40 is a 

50kDa member of the tumour necrosis receptor (TNF R) family and its expression is 

found on all antigen presenting cell types; these include B-cells, dendritic cells, and 

macrophages, and on stromal cells such as fibroblasts and keratinocytes. While the 

expression of CD40 on B-cells is adequate, lower expression levels on macrophages 

etc., can be upregulated using cytokines such as IFN-γ and GM-CSF (Mackey, Barth 

et al. 1998). The CD40 Ligand, CD154, is a 39kDa member of the TNF family with 

expression predominantly on CD4+ T-cells and only a weak expression on CD8+ T-

cells (Roy, Waldschmidt et al. 1993; Sad, Krishnan et al. 1997; Mackey, Barth et al. 

1998). CD154 expression on T-cells is essential for priming, expansion and 

maturation into effector cells (Mackey, Barth et al. 1998). 2 groups observed 
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impaired helper cytokine production and cytotoxic T-cell activity in CD154-deficient 

and anti-CD154 treated mice (Yang and Wilson 1996; Scaria, St George et al. 1997). 

The role of CD40 on CD8+ T-cells may be an indirect one that relies on CD8+ T-cells 

dependence on CD4+ T-cells such as the reliance on CD4+ T-cells to produce TH1 

cytokines which are required for CD8+ priming (Mackey, Barth et al. 1998). 

 

 Like PDAC, breast cancers have an active stroma consisting of vascular cell, 

myofibroblasts and innate and adaptive immune cells (DeNardo and Coussens 

2007). An increase in leukocytic infiltrates in breast cancer corresponds with 

tumourigenesis and in rapidly proliferating tumours of the breast, the presence of T-

cells is a positive prognostic factor (DeNardo and Coussens 2007). Chin et al, 

observed that high CD4+ helper T-cells at sites of tumour in breast cancer correlates 

positively with tumour progression (Chin, Janseens et al. 1991), much like I observed 

in PDAC tissues. CD4+ helper T-cells can be classified into subsets of TH1, TH2, 

TH17 and Tregs which taken together have anti-tumour and tumour promoting effects 

(Zhu and Paul 2008). In their work, CD4+ helper T-cell subsets were not identified. 

This too remains a criticism of my work. FoxP3 increase have been found to 

correspond with disease stage in breast cancer, from normal to ductal carcinoma in 

situ (DCIS) and to invasive carcinoma with the presence of high FoxP3 densities 

predicting reduced overall patient survival and reduced relapse free survival (Bates, 

Fox et al. 2006). In a study involving 28 chemotherapy and radiotherapy naive breast 

cancer patients and 14 age and sex matched donors, CCR6+ Tregs, a newly 

characterised subset of Tregs (Kleinewietfeld, Puentes et al. 2005), was found to be 

increased in patients along with tumour progression. A reverse correlation was 

observed between CCR6+ Tregs and IFN-γ+ CD8+ T-cells and between CCR6+ Tregs 
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and patient survival  (Xu, Xu et al. 2010). This again is similar to my findings in 

PDAC where PDAC patients with high FoxP3 densities have decreased overall 

survival. While breast cancers are similar to PDACs, they differ in their multiple 

molecular classifications such as HER2 etc. The capability to diagnose breast 

cancers early via physical and molecular screening methods leading to early 

detection and the ability to perform mastectomies may further explain the better 

outcome experienced by breast cancer patients compared to PDAC patients. 

 

 Also, like PDAC and breast cancers, colorectal cancer (CRC) is an 

adenocarcinoma, and like the pancreas, the colon is involved in digestion. CRC 

share the same driver genes as PDAC: KRAS, TP53 and SMAD4 (Markowitz and 

Bertagnolli 2009). Stroma is present in CRCs, however, in a study by Ueno et al, of a 

population consisting of 862 CRC patients, they observed that 53% had mature 

fibrotic cancer stroma, 33% had intermediate stroma and 15% had immature stroma. 

Characterisation of stromal types was based on histology observed after H&E 

staining. They also observed by immunohistochemistry that myofibroblasts were 

distributed ―extensively‖ in the immature fibrotic stroma compared with mature and 

intermediate fibrotic stroma and those stromal T-cells became ―sparser‖ as 

maturation decreased. Patients with immature stroma had a 5 year survival of 27% 

which was significantly lower than patients with mature (80%) and intermediate 

(55%) stroma (Ueno, Jones et al. 2004). Similar to my finding in PDACs, CD8+ T-

cells infiltrating around CRC tumour stroma contribute to better prognosis 

(Ropponen, Eskelinen et al. 1997; Galon, Costes et al. 2006). Again, similar to the 

data I show, Galon et al showed that the type, density and location of immune cells 

in CRC had a prognostic benefit, and in the case of CRC, superior to the TNM 
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classification (Galon, Costes et al. 2006). The density of peritumoural tumour 

associated macrophages (TAMs) in CRC were shown to prevent tumourigenesis 

(Öberg, Samii et al. 2002; Khorana, Ryan et al. 2003), whereas the density of 

intratumoural TAMs were shown to correlate with ―depth of invasion, lymph node 

metastasis and staging of CRC‖ (Pancione, Forte et al. 2009; Kang, Chen et al. 

2010; Deschoolmeester, Baay et al. 2011) suggesting a polarization towards the M1 

and M2 macrophage phenotypes respectively. Survival effect of Tregs on CRC 

remains relatively unknown, however, Tregs have been associated with poor 

outcomes in breast, ovarian, hepato-cellular carcinomas and gastric carcinoma 

(Deschoolmeester, Baay et al. 2011). This is the same for PDAC. 

 

 Tregs have also been found to be increased in hepato-cellular carcinoma 

(HCC) compared to the non-tumourous liver, where a high Treg infiltrate led to lower 

patient survival and was an independent prognostic factor. CD8+ T-cells were also 

found to decrease during hepato-cellular carcinogenesis (Kobayashi, Hiraoka et al. 

2007). Along with CRC and PDAC, higher frequencies of CD8+ T-cells demonstrated 

improved patient survival in 117 ovarian cancer patients. As well, a high 

CD8+/FoxP3+ ratio demonstrated improved patient survival (Sato, Olson et al. 2005). 

 

 The tumour microenvironment of Non-small cell lung cancer (NSCLC) is made 

up of fibroblasts, mesenchymal stem cells and immune cell infiltrate (El-Nikhely, 

Larzabal et al. 2012). In a study involving the retrospective analysis of 128 NSCLC 

patients, the large cell or squamous cell carcinoma had more CD8+ T-cell infiltrate 

than adenocarcinoma, however, CD8+ T-cells had no effect on patient survival (Mori, 
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Ohtani et al. 2000). This finding was corroborated in another study involving 178 

NSCLC patients in which patients having higher CD8+ T-cells within cancer cell nests 

had shorter survival compared with patients having lower CD8+ T-cell numbers 

(Wakabayashi, Yamazaki et al. 2003). Interestingly, NSCLC patients with higher 

CD4+ T-cells in the stroma, but not within cancer cell nests, had longer overall 

survival (Wakabayashi, Yamazaki et al. 2003). These observations in NSCLC are 

different from what I have shown in PDAC and what others have shown in breast, 

ovarian, colorectal and hepatocellular cancers (all discussed above). 

 

 My work, although robust and insightful might have benefited more from 

further classification of immune cell markers such as the helper T-cell subsets (TH1, 

TH2, etc) and the M1 and M2 macrophage phenotypes; and immune cell markers for 

MDSCs and Dendritic cells (DC) in human tissues. The markers for some of these 

immune cells have not yet been fully developed for pathological use. Survival 

analysis of the advanced disease cohorts might also have proved useful. In addition, 

it might have proved useful to study immune cell-stellate cell interaction. I might have 

done this by employing immunohistochemistry and immunofluorescence in studying 

cell adhesion markers between these cell types both in human tissue and in vitro. It 

might also have been of consequence to identify if the use of ATRA (in vitro and in 

vivo) alters adhesion properties of these cells. These have not yet been looked into 

and may hold yet important therapeutic clinical significance. 

 

 In summary, I found that total tissue infiltrate of the immune cells (CD3+, 

CD4+, CD8+, FoxP3+, CD20+ and CD68+) increased in accordance with severity from 

normal to malignancy of the Pancreatico-biliary diseases with infiltration of CD8+ T-
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cells to PDAC tissue being significantly less than other malignant diseases. I also 

observed that CD8+ T-cells were sequestrated in the panstroma compartment along 

with CD20+ (B-cells) in both resected and advanced PDAC cases. This was not the 

case for CD68+ (macrophages) and myeloperoxidase+ (neutrophils). These 

differences in immune cell infiltration of stromal compartments were not present in 

other Pancreatico-biliary diseases with the exception of the CD8+ marker in 

ampullary carcinoma. Survival analysis showed that while many of the markers 

studied (particularly FoxP3+ (T regulatory cells)) had an anti-survival effect, patients 

with increased CD8+ (cytotoxic T-cells) and CD56+ (Natural killer cells) in the 

pancreas tissue or infiltrating the juxtatumoural compartment had better overall 

survival.  

 

 CD3+ T-cells, CD4+ T-cells, CD8+ T-cells and CD56+ NK cells significantly 

migrated to conditioned media from aPSC over qPSC. This was not the case for 

CD19+ B-cells. CD3+ T-cells adhered to activated pancreatic stellate cells over their 

quiescent phenotype. I confirmed by ELISA that CXCL12 was secreted by aPSC 

significantly more than qPSC; CXCL12 silencing in activated aPSC resulted in a 

significant reduction in CD8+ T-cell migration to a level similar to basal media control. 

As these in vitro assays were performed on immortalised pancreatic stellate cell 

lines, I confirmed with identical results on primary pancreatic stellate cells. Also using 

flow cytometry I showed that donor T-cell effector and memory subsets do not differ 

from those of PDAC patients and patient T-cells migrated preferentially to activated 

pancreatic stellate cells over the quiescent phenotype. CXCR4, receptor for 

CXCL12, was also upregulated in CD4+ and CD8+ T-cells from PBMC of PDAC 

patients. 
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6.0 Conclusion 

 

 The mode by which pancreatic stellate cells may hinder immune cell, 

specifically T-cell, immunoclearance is not fully understood however a possible 

mechanism may involve modulation of the immunosuppressant myeloid derived 

suppressor cells (MDSC) (Mace, Ameen et al. 2013). Hepatic stellate cells which 

share the same modes of activation and quiescence, retinoid storage and markers 

for activation and quiescence (Friedman 2008) pancreatic stellate cells also express 

CD40 (Schwabe, Schnabl et al. 2001; Merika, Syrigos et al. 2012). CD40 is a 

member of the Tumour necrosis factor receptor (TNFR) super family (van Kooten 

and Banchereau 2000; Schwabe, Schnabl et al. 2001) and CD40+ stellate cells may 

serves as a bridge to immune cells that express CD40L (Friedman 2008). This too 

has previously been discussed. 

 

 The nucleoside analogue Gemcitabine has been used as the standard in first 

line chemotherapy for metastatic pancreatic ductal adenocarcinoma since 1997 

(Michl and Gress 2013) with ―modest survival benefits‖ of a median 5.65 months. 

Prior to this 5-FU (5- fluorouracil) was used with a median increased survival of 4.41 

months (Michl and Gress 2013). Other cytotoxic agents that are being used include: 

oxaliplatin, cisplatin, irinotecan, exatecan and capecitabine. Although these agents 

have been used in combination with gemcitabine there have been no significant 

increased overall survival (Stathis and Moore 2010).  
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 Recently, a combination chemotherapy excluding gemcitabine but including 

oxaliplatin, irinotecan, fluorouracil and leucovorin, FOLFIRINOX, was demonstrated 

to increase overall survival in patients with metastatic disease and good performance 

status to a median of 11.1 months versus a median of 6.8 months for gemcitabine 

only treated controls (Conroy, Desseigne et al. 2011). This highlighted the possibility 

of non-gemcitabine based treatment. However, novel chemotherapeutic approaches 

involving gemcitabine in combination with agents targeting other components of 

carcinomas such as immune cells, stromal cells and blood vessels, and agents that 

help to deliver the chemotherapy past the surrounding stroma to the cancer cells are 

being researched into. Few studies have shown that ablation of stroma leads to 

pancreatic tumour regression (Kraman, Bambrough et al. 2010; Beatty, Chiorean et 

al. 2011). Also recently, the United States Food and Drug administration (FDA) 

approved the Nanoparticle albumin-bound (nab)-paclitaxel in the treatment of 

metastatic breast cancer and showed promise in phase I/ II PDAC trials (Von Hoff, 

Ramanathan et al. 2011). Only recently, with phase III trials in which (nab)-paclitaxel 

was combined with gemcitabine in advanced pancreatic cancer patients now 

complete,  ―statistically significant and clinically meaningful‖ results were observed 

(Von Hoff 2013). They observes an increase in median overall survival of patients 

with combination therapy which was 8.5 months compared to a median survival of 

6.5 months for patients treated with gemcitabine alone. At 12 months survival for 

combination therapy treated PDAC patients was 35% compared to 22% for 

gemcitabine alone treated patients and survival at 2 years increase 2 fold from 4% in 

gemcitabine alone to 9% in combination therapy treated patients (Von Hoff 2013).  

The hypothesis of this treatment is that secreted protein acidic and rich in cysteine 

(SPARC) is overexpressed in PDAC tumour samples and is albumin-binding thus 
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sequestering nab-paclitaxel intratumourally (Von Hoff, Ramanathan et al. 2011; 

Michl and Gress 2013). A gemcitabine based treatment regimen that targets the 

pancreatic cancer stroma may hold promise. In our model, we suggest reversing the 

activated phenotype of pancreatic stellate cells to quiescence by treatment with 

ATRA. Froeling et al previously showed that when KPC mice is treated with ATRA a 

stromal collapse occurs (Froeling, Feig et al. 2011) and our data shows that in 

addition to stromal collapse, CD8+ T-cells are increased in the pancreas and infiltrate 

the tumours. 

 

 Immune based cancer therapies may also hold many promises. Cancers co-

opt checkpoint pathways such as Cytotoxic T-lymphocyte-associated antigen 4 

(CTLA4) that regulate and limit immune response, specifically against T-cells. 

CTLA4 can be blocked by specific antibodies such as ipilimumab which leads to a 

sustained immune response upon binding of the antibody to CTLA4. Ipilimumab has 

been approved in melanoma after successful clinical trials and is now undergoing 

clinical trials in PDAC (Michl and Gress 2013). In considering an anti-tumour immune 

based therapy immune cell subtypes and functional analyses are needed (Zheng, 

Xue et al. 2013). This may prove extremely difficult in PDAC as the tumour 

microenvironment is rich with immune cell subtypes that interact with the surrounding 

stroma and each other. I have defined some immune cell subtypes in PDAC and 

their [functional] position in the PDAC architecture. I have also given a global picture 

of how these immune cells affect patient survival thus giving the possibility of 

defining these subtypes into anti-tumour and tumour supporting immune cells. 

Detailed functional analyses of each immune cell, including their agonist and 

antagonist have to be defined. 
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  Further work might include studying more robustly the interaction [or 

cross talk] between pancreatic stellate cells and immune cells and why some 

immune cells are hindered at the surrounding panstroma while others migrate past 

the panstroma to the juxtatumoural stroma and further to the tumour. This further 

study should include staining for various potential markers of adhesion such as the 

weak adhesion molecules P- and L- selectin, and the firmer adhesion molecules 

involved in leukocyte migration arrest; ICAM-1 and VCAM-1. Other potential 

molecules may include Fibronectin and the matrix metalloproteinases (MMPs). It 

may also be interesting to study the presence (or absence) of immune cell synapses 

with pancreatic stellate cells; will this include F-actin or α-SMA and might there be 

polarization of actin? (Ramsay, Johnson et al. 2008). 

  

 Few markers have been proposed for pancreatic stellate cells such as CD10 

and Fibroblast activating protein (FAP) (Ikenaga, Ohuchida et al. 2010; Kraman, 

Bambrough et al. 2010). A possibility might exist of pancreatic stellate cells being of 

various subtypes and a study to identify these subtypes might prove essential. 

Perhaps the different subtypes might correlate with the juxtatumoural stroma and 

panstroma and might play a role in immune cell migration and adhesion. Identifying 

markers for pancreatic stellate cells subtypes might aid in target specificity. It may 

also be of interest to investigate immune cell interaction with stellate cells of other 

desmoplastic cancers such as breast and colorectal cancers (Hewitt, Powe et al. 

1993; Walker 2001) and if any differences may account for the differences in patient 

overall survival. 
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8.0 Appendix 

 

Appendix 1: Patient diagnosis and TMA construction 

Pathology 
number DIAGNOSIS Tumour Stroma Normal 

AA TMA 
NUMBER 

A1 biopsy y y 
 

3 

A1 biopsy y 
 

y-LN 3 

A1 biopsy Y Y 
 

3 

B1 biopsy Y Y 
 

3 

a1 biopsy Y Y Y-NAD 3 

A1 biopsy Y Y Y-NAD 3 

d1 biopsy Y Y 
 

3 

b1 biopsy Y Y 
 

3 

A1 biopsy Y Y 
 

3 

b1 biopsy Y Y Y-NAD 3 

A1 biopsy Y Y Y-NAD 3 

b1 biopsy Y Y 
 

3 

b1 biopsy Y Y 
 

3 

a1 biopsy Y Y 
 

2 

c1 biopsy Y Y Y-NAD 3 

a1 biopsy Y Y 
 

3 

b1 biopsy Y Y 
 

3 

b5, b10 PDAC Y Y Y-NAD 2 

D7 PDAC Y Y 
 

2 

d6 PDAC Y Y Y-NAD 2 

b6 PDAC Y Y Y-NAD 2 

c8 PDAC Y Y Y-NAD 2 

d2 PDAC Y Y 
 

2 

c8 PDAC Y Y Y-NAD 2 

e9 PDAC Y Y Y-NAD 2 

b7 PDAC 
missing 
slide 

  
?2 

 
Mucinous cystic neoplasm Y Y 

 
1,2,3 

 
Mucinous cystic neoplasm Y Y 

 
1,2,3 

 
ampullary carcinoma Y Y Y-NAD 1,2,3 

a6, a9 Neuroendocrine tumour Y 
  

1,2,3 

c28 Neuroendocrine tumour Y 
 

Y-NAD 1,2,3 

b2 Neuroendocrine tumour Y 
  

1,2,3 

b16 Cholangiocarcinoma Y Y Y-NAD 2 

b6 Cholangiocarcinoma Y Y Y-NAD 2 

a6 Cholangiocarcinoma Y Y Y-NAD 2 

a7 Cholangiocarcinoma Y Y Y-NAD 2 

c14 Cholangiocarcinoma Y Y 
 

2 

a5 Cholangiocarcinoma Y Y 
 

2 

c9 Cholangiocarcinoma Y Y Y-NAD 2 
     

AA TMA 
NUMBER 
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a15, a2 Gistoblastoma Y 
 

Y-
NORMAL 1, 2N, 3N 

c Gistoblastoma Y 
  

1 

a1 Unknown 
    1a Unknown 
    

 
Unknown 

    1A biopsy Y Y 
 

3 

2A biopsy Y Y 
 

3 

L PDAC Y Y Y-NAD 2 

1A biopsy Y 
  

3 

1A biopsy Y 
  

3 

1B biopsy Y 
  

3 

A2 Mucinous cystic neoplasm Y 
 

Y-NAD 1,2,3 

B7 PDAC Y Y 
 

3 

A9 Normal 
  

Y-
NORMAL 2,3 

B8 PDAC Y Y Y-NAD 2 

B1 biopsy Y Y 
 

3 

C10 PDAC Y Y Y-NAD 2 

a4 Insulinoma Y 
 

Y: 
NORMAL 

2N, 3N, 
1, 2, 3 

a2 Insulinoma Y 
  

1 

a3 Insulinoma  Y 
 

Y: 
NORMAL 

2N, 3N, 
1, 2, 3 

a2 insulinoma Y Y 
 

1 

a4 insulinoma Y 
 

Y: 
NORMAL 

2N, 3N, 
1, 2, 3 

a5 NE Ca(insulinoma) Y 
 

Y, NAD 1 

a3 Insulinoma Y 
 

Y: 
NORMAL 

2N, 3N, 
1, 2, 3 

a4 ampullary carcinoma Y Y 
 

1,2,3 

d8 

duodenal carcinoma 

Y Y 
 

1,2,3 

a7 ampullary carcinoma Y Y 
 

1,2,3 

b4 Cholangiocarcinoma Y Y 
Y, NAD, 
LN 2LN, 3LN 

a6 
chronic pancreatitis secondary to 
pancreas divisum 

Y, NO TUMOUR 
CP ONLY Y,NAD 2, 3 

a8 Cholangiocarcinoma Y Y Y, NAD 1,2,3 

a7 

duodenal carcinoma 

Y Y 
 

1,2,3 

a4 

duodenal carcinoma 

Y Y 
 

1,2,3 

b15 

duodenal carcinoma 

Y Y Y,NAD 1,2,3 

c6 ampullary carcinoma Y 
 

Y, NAD 1,2,3 

a9 

ampullary carcinoma 

Y Y Y, NAD 1,2,3 

c6 

duodenal carcinoma 

Y Y 
 

1,2,3 

a8 Chronic pancreatitis 
Y, NO TUMOUR 
CP ONLY Y, NAD 2, 3 



320 
 

b9 Cholangiocarcinoma Y Y Y, NAD 1,2,3 

a2 insulinoma Y 
  

1 

a5 insulinoma Y 
 

Y-NAD, 
PANIN 1 

b10 Chronic Pancreatitis 
Y, NO TUMOUR 
CP ONLY Y-NAD 2, 3 

e17 duodenal carcinoma Y Y Y-NAD 1,2,3 

a8 ampullary carcinoma Y Y Y-NAD 1,2,3 

a6 Chronic pancreatitis and pseudocyst 
Y, NO TUMOUR 
CP ONLY Y-NAD 2, 3 

b11 Cholangiocarcinoma  Y Y Y-NAD 1,2,3 

b2 Ampullary adenoma Y 
  

1,2,3, 
 

      
3 

 
Key 
 

LN=LYMPH NODE 
  NAD=NORMAL ADJACENT TO 

DISEASE 

N=NORMAL 
   

 

     
3 

      
3 

      
3 

      
3 

      
3 

      
3 

      
3 

      
3 

      
3 

      
3 

      
3 

      
3 

      
2 

      
3 

      
3 

      
3 

      
2 

      
2 

      
2 

      
2 

      
2 

      
2 

      
2 

      
2 

      
?2 

      
1,2,3 

      
1,2,3 

      
1,2,3 

      
1,2,3 

      
1,2,3 
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Appendix 2: Other Pancreas slide 1 TMA design 

Tissue type Diagnosis 
Array 
position 

Spleen Normal A1 

Tumour Insulinoma A2 

Tumour Insulinoma A3 

Tumour Insulinoma A4 

Tumour Insulinoma A5 

Tumour Insulinoma A6 

Tumour Insulinoma A7 

Stroma Insulinoma A8 

Stroma Insulinoma A9 

Stroma Insulinoma A10 

Tumour Insulinoma A11 

Tumour Insulinoma A12 

Tumour Insulinoma A13 

Normal Insulinoma A14 

Normal Insulinoma A15 

Normal Insulinoma B1 

Tumour 
Ampullary 
carcinoma B2 

Tumour 
Ampullary 
carcinoma B3 

Tumour 
Ampullary 
carcinoma B4 

Stroma 
Ampullary 
carcinoma B5 

Stroma 
Ampullary 
carcinoma B6 

Stroma 
Ampullary 
carcinoma B7 

Tumour duodenal carcinoma B8 

Tumour duodenal carcinoma B9 

Tumour duodenal carcinoma B10 

Stroma duodenal carcinoma B11 

Stroma duodenal carcinoma B12 

Stroma duodenal carcinoma B13 

Tumour 
Ampullary 
carcinoma B14 

Tumour 
Ampullary 
carcinoma B15 

Tumour 
Ampullary 
carcinoma C1 

Stroma 
Ampullary 
carcinoma C2 

Stroma 
Ampullary 
carcinoma C3 
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Stroma 
Ampullary 
carcinoma C4 

Tumour Cholangiocarcinoma C5 

Tumour Cholangiocarcinoma C6 

Tumour Cholangiocarcinoma C7 

Stroma Cholangiocarcinoma C8 

Stroma Cholangiocarcinoma C9 

Stroma Cholangiocarcinoma C10 

Normal Cholangiocarcinoma C11 

Normal Cholangiocarcinoma C12 

Normal Cholangiocarcinoma C13 

Tumour duodenal carcinoma C14 

Tumour duodenal carcinoma C15 

Tumour duodenal carcinoma D1 

Stroma duodenal carcinoma D2 

Stroma duodenal carcinoma D3 

Stroma duodenal carcinoma D4 

Tumour duodenal carcinoma D5 

Tumour duodenal carcinoma D6 

Tumour duodenal carcinoma D7 

Stroma duodenal carcinoma D8 

Stroma duodenal carcinoma D9 

Stroma duodenal carcinoma D10 

Tumour duodenal carcinoma D11 

Tumour duodenal carcinoma D12 

Tumour duodenal carcinoma D13 

Stroma duodenal carcinoma D14 

Stroma duodenal carcinoma D15 

Stroma duodenal carcinoma E1 

Normal duodenal carcinoma E2 

Normal duodenal carcinoma E3 

Normal duodenal carcinoma E4 

Tumour 
Ampullary 
carcinoma E5 

Tumour 
Ampullary 
carcinoma E6 

Tumour 
Ampullary 
carcinoma E7 

Normal 
Ampullary 
carcinoma E8 

Normal 
Ampullary 
carcinoma E9 

Normal 
Ampullary 
carcinoma E10 

Tumour 
Ampullary 
carcinoma E11 

Tumour Ampullary E12 
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carcinoma 

Tumour 
Ampullary 
carcinoma E13 

Stroma 
Ampullary 
carcinoma E14 

Stroma 
Ampullary 
carcinoma E15 

Stroma 
Ampullary 
carcinoma F1 

Normal 
Ampullary 
carcinoma F2 

Normal 
Ampullary 
carcinoma F3 

Normal 
Ampullary 
carcinoma F4 

Tumour duodenal carcinoma F5 

Tumour duodenal carcinoma F6 

Tumour duodenal carcinoma F7 

Stroma duodenal carcinoma F8 

Stroma duodenal carcinoma F9 

Stroma duodenal carcinoma F10 

Tumour Cholangiocarcinoma F11 

Tumour Cholangiocarcinoma F12 

Tumour Cholangiocarcinoma F13 

Stroma Cholangiocarcinoma F14 

Stroma Cholangiocarcinoma F15 

Stroma Cholangiocarcinoma G1 

Normal Cholangiocarcinoma G2 

Normal Cholangiocarcinoma G3 

Normal Cholangiocarcinoma G4 

Tumour Insulinoma G5 

Tumour Insulinoma G6 

Tumour Insulinoma G7 

Tumour Insulinoma G8 

Tumour Insulinoma G9 

Tumour Insulinoma G10 

Normal Insulinoma G11 

Normal Insulinoma G12 

Normal Insulinoma G13 

Tumour duodenal carcinoma G14 

Tumour duodenal carcinoma G15 

Tumour duodenal carcinoma H1 

Stroma duodenal carcinoma H2 

Stroma duodenal carcinoma H3 

Stroma duodenal carcinoma H4 

Normal duodenal carcinoma H5 

Normal duodenal carcinoma H6 
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Normal duodenal carcinoma H7 

Tumour 
Ampullary 
carcinoma H8 

Tumour 
Ampullary 
carcinoma H9 

Tumour 
Ampullary 
carcinoma H10 

Stroma 
Ampullary 
carcinoma H11 

Stroma 
Ampullary 
carcinoma H12 

Stroma 
Ampullary 
carcinoma H13 

Normal 
Ampullary 
carcinoma H14 

Normal 
Ampullary 
carcinoma H15 

Normal 
Ampullary 
carcinoma I1 
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Appendix 3: Other pancreas slide 2 TMA design 

Tissue type Diagnosis 
Array 
position 

Spleen Normal A1 

Tumour Cholangiocarcinoma A2 

Tumour Cholangiocarcinoma A3 

Tumour Cholangiocarcinoma A4 

Stroma Cholangiocarcinoma A5 

Stroma Cholangiocarcinoma A6 

Stroma Cholangiocarcinoma A7 

Normal Cholangiocarcinoma A8 

Normal Cholangiocarcinoma A9 

Normal Cholangiocarcinoma A10 

Tumour Ampullary adenoma A11 

Tumour Ampullary adenoma A12 

Tumour Ampullary adenoma A13 

Tumour 
Mucinous cystic 
neoplasm A14 

Tumour 
Mucinous cystic 
neoplasm A15 

Tumour 
Mucinous cystic 
neoplasm B1 

Stroma 
Mucinous cystic 
neoplasm B2 

Stroma 
Mucinous cystic 
neoplasm B3 

Stroma 
Mucinous cystic 
neoplasm B4 

Tumour 
Mucinous cystic 
neoplasm B5 

Tumour 
Mucinous cystic 
neoplasm B6 

Tumour 
Mucinous cystic 
neoplasm B7 

Stroma 
Mucinous cystic 
neoplasm B8 

Stroma 
Mucinous cystic 
neoplasm B9 

Stroma 
Mucinous cystic 
neoplasm B10 

Tumour 
Ampullary 
carcinoma B11 

Tumour 
Ampullary 
carcinoma B12 

Tumour 
Ampullary 
carcinoma B13 

Stroma 
Ampullary 
carcinoma B14 
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Stroma 
Ampullary 
carcinoma B15 

Stroma 
Ampullary 
carcinoma C1 

Normal 
Ampullary 
carcinoma C2 

Normal 
Ampullary 
carcinoma C3 

Normal 
Ampullary 
carcinoma C4 

Tumour 
Neuroendocrine 
tumour C5 

Tumour 
Neuroendocrine 
tumour C6 

Tumour 
Neuroendocrine 
tumour C7 

Tumour 
Neuroendocrine 
tumour C8 

Tumour 
Neuroendocrine 
tumour C9 

Tumour 
Neuroendocrine 
tumour C10 

Normal 
Neuroendocrine 
tumour C11 

Normal 
Neuroendocrine 
tumour C12 

Normal 
Neuroendocrine 
tumour C13 

Tumour 
Neuroendocrine 
tumour C14 

Tumour 
Neuroendocrine 
tumour C15 

Tumour 
Neuroendocrine 
tumour D1 

Tumour Gistoblastoma D2 

Tumour Gistoblastoma D3 

Tumour Gistoblastoma D4 

Normal Gistoblastoma D5 

Normal Gistoblastoma D6 

Normal Gistoblastoma D7 

Tumour Gistoblastoma D8 

Tumour Gistoblastoma D9 

Tumour Gistoblastoma D10 

Tumour 
Mucinous cystic 
neoplasm D11 

Tumour 
Mucinous cystic 
neoplasm D12 

Tumour 
Mucinous cystic 
neoplasm D13 
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Stroma 
Mucinous cystic 
neoplasm D14 

Stroma 
Mucinous cystic 
neoplasm D15 

Stroma 
Mucinous cystic 
neoplasm E1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 4: Pancreas 2 TMA slide 1 design 
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Tissue type Diagnosis 
Array 
position 

Spleen Normal A1 

Tumour Biopsy A2 

Tumour Biopsy A3 

Tumour Biopsy A4 

Stroma Biopsy A5 

Stroma Biopsy A6 

Stroma Biopsy A7 

Tumour PDAC A8 

Tumour PDAC A9 

Tumour PDAC A10 

Stroma PDAC A11 

Stroma PDAC A12 

Stroma PDAC A13 

Normal PDAC A14 

Normal PDAC A15 

Normal PDAC B1 

Tumour PDAC B2 

Tumour PDAC B3 

Tumour PDAC B4 

Stroma PDAC B5 

Stroma PDAC B6 

Stroma PDAC B7 

Tumour PDAC B8 

Tumour PDAC B9 

Tumour PDAC B10 

Stroma PDAC B11 

Stroma PDAC B12 

Stroma PDAC B13 

Normal PDAC B14 

Normal PDAC B15 

Normal PDAC C1 

Tumour PDAC C2 

Tumour PDAC C3 

Tumour PDAC C4 

Stroma PDAC C5 

Stroma PDAC C6 

Stroma PDAC C7 

Normal PDAC C8 

Normal PDAC C9 

Normal PDAC C10 

Tumour PDAC C11 

Tumour PDAC C12 
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Tumour PDAC C13 

Stroma PDAC C14 

Stroma PDAC C15 

Stroma PDAC D1 

Normal PDAC D2 

Normal PDAC D3 

Normal PDAC D4 

Tumour PDAC D5 

Tumour PDAC D6 

Tumour PDAC D7 

Stroma PDAC D8 

Stroma PDAC D9 

Stroma PDAC D10 

Tumour PDAC D11 

Tumour PDAC D12 

Tumour PDAC D13 

Stroma PDAC D14 

Stroma PDAC D15 

Stroma PDAC E1 

Normal PDAC E2 

Normal PDAC E3 

Normal PDAC E4 

Tumour PDAC E5 

Tumour PDAC E6 

Tumour PDAC E7 

Stroma PDAC E8 

Stroma PDAC E9 

Stroma PDAC E10 

Normal PDAC E11 

Normal PDAC E12 

Normal PDAC E13 

Tumour 
Mucinous cystic 
neoplasm E14 

Tumour 
Mucinous cystic 
neoplasm E15 

Tumour 
Mucinous cystic 
neoplasm F1 

Stroma 
Mucinous cystic 
neoplasm F2 

Stroma 
Mucinous cystic 
neoplasm F3 

Stroma 
Mucinous cystic 
neoplasm F4 

Tumour 
Mucinous cystic 
neoplasm F5 

Tumour Mucinous cystic F6 
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neoplasm 

Tumour 
Mucinous cystic 
neoplasm F7 

Stroma 
Mucinous cystic 
neoplasm F8 

Stroma 
Mucinous cystic 
neoplasm F9 

Stroma 
Mucinous cystic 
neoplasm F10 

Tumour Ampullary carcinoma F11 

Tumour Ampullary carcinoma F12 

Tumour Ampullary carcinoma F13 

Stroma Ampullary carcinoma F14 

Stroma Ampullary carcinoma F15 

Stroma Ampullary carcinoma G1 

Normal Ampullary carcinoma G2 

Normal Ampullary carcinoma G3 

Normal Ampullary carcinoma G4 

Tumour Neuroendocrine tumour G5 

Tumour Neuroendocrine tumour G6 

Tumour Neuroendocrine tumour G7 

Tumour Neuroendocrine tumour G8 

Tumour Neuroendocrine tumour G9 

Tumour Neuroendocrine tumour G10 

Normal Neuroendocrine tumour G11 

Normal Neuroendocrine tumour G12 

Normal Neuroendocrine tumour G13 

Tumour Neuroendocrine tumour G14 

Tumour Neuroendocrine tumour G15 

Tumour Neuroendocrine tumour H1 

Tumour Cholangiocarcinoma H2 

Tumour Cholangiocarcinoma H3 

Tumour Cholangiocarcinoma H4 

Stroma Cholangiocarcinoma H5 

Stroma Cholangiocarcinoma H6 

Stroma Cholangiocarcinoma H7 

Normal Cholangiocarcinoma H8 

Normal Cholangiocarcinoma H9 

Normal Cholangiocarcinoma H10 

Tumour Cholangiocarcinoma H11 

Tumour Cholangiocarcinoma H12 

Tumour Cholangiocarcinoma H13 

Stroma Cholangiocarcinoma H14 

Stroma Cholangiocarcinoma H15 

Stroma Cholangiocarcinoma I1 
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Normal Cholangiocarcinoma I2 

Normal Cholangiocarcinoma I3 

Normal Cholangiocarcinoma I4 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 5: Pancreas 2 TMA slide 2 design 

Tissue 
type Diagnosis 

Array 
position 
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Spleen Normal A1 

Tumour Cholangiocarcinoma A2 

Tumour Cholangiocarcinoma A3 

Tumour Cholangiocarcinoma A4 

Stroma Cholangiocarcinoma A5 

Stroma Cholangiocarcinoma A6 

Stroma Cholangiocarcinoma A7 

Normal Cholangiocarcinoma A8 

Normal Cholangiocarcinoma A9 

Normal Cholangiocarcinoma A10 

Tumour Cholangiocarcinoma A11 

Tumour Cholangiocarcinoma A12 

Tumour Cholangiocarcinoma A13 

Stroma Cholangiocarcinoma A14 

Stroma Cholangiocarcinoma A15 

Stroma Cholangiocarcinoma B1 

Normal Cholangiocarcinoma B2 

Normal Cholangiocarcinoma B3 

Normal Cholangiocarcinoma B4 

Tumour Cholangiocarcinoma B5 

Tumour Cholangiocarcinoma B6 

Tumour Cholangiocarcinoma B7 

Stroma Cholangiocarcinoma B8 

Stroma Cholangiocarcinoma B9 

Stroma Cholangiocarcinoma B10 

Tumour Cholangiocarcinoma B11 

Tumour Cholangiocarcinoma B12 

Tumour Cholangiocarcinoma B13 

Stroma Cholangiocarcinoma B14 

Stroma Cholangiocarcinoma B15 

Stroma Cholangiocarcinoma C1 

Tumour Cholangiocarcinoma C2 

Tumour Cholangiocarcinoma C3 

Tumour Cholangiocarcinoma C4 

Stroma Cholangiocarcinoma C5 

Stroma Cholangiocarcinoma C6 

Stroma Cholangiocarcinoma C7 

Normal Cholangiocarcinoma C8 

Normal Cholangiocarcinoma C9 

Normal Cholangiocarcinoma C10 

Tumour Gistoblastoma C11 

Tumour Gistoblastoma C12 

Tumour Gistoblastoma C13 

Normal Gistoblastoma C14 
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Normal Gistoblastoma C15 

Normal Gistoblastoma D1 

Tumour PDAC D2 

Tumour PDAC D3 

Tumour PDAC D4 

Stroma PDAC D5 

Stroma PDAC D6 

Stroma PDAC D7 

Normal PDAC D8 

Normal PDAC D9 

Normal PDAC D10 

Tumour 
Mucinous cystic 
neoplasm D11 

Tumour 
Mucinous cystic 
neoplasm D12 

Tumour 
Mucinous cystic 
neoplasm D13 

Normal 
Mucinous cystic 
neoplasm D14 

Normal 
Mucinous cystic 
neoplasm D15 

Normal 
Mucinous cystic 
neoplasm E1 

Normal Normal E2 

Normal Normal E3 

Normal Normal E4 

Tumour PDAC E5 

Tumour PDAC E6 

Tumour PDAC E7 

Stroma PDAC E8 

Stroma PDAC E9 

Stroma PDAC E10 

Normal PDAC E11 

Normal PDAC E12 

Normal PDAC E13 

Tumour PDAC E14 

Tumour PDAC E15 

Tumour PDAC F1 

Stroma PDAC F2 

Stroma PDAC F3 

Stroma PDAC F4 

Normal PDAC F5 

Normal PDAC F6 

Normal PDAC F7 

Tumour Insulinoma F8 
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Tumour Insulinoma F9 

Tumour Insulinoma F10 

Normal Insulinoma F11 

Normal Insulinoma F12 

Normal Insulinoma F13 

Tumour Insulinoma F14 

Tumour Insulinoma F15 

Tumour Insulinoma G1 

Normal Insulinoma G2 

Normal Insulinoma G3 

Normal Insulinoma G4 

Tumour Insulinoma G5 

Tumour Insulinoma G6 

Tumour Insulinoma G7 

Normal Insulinoma G8 

Normal Insulinoma G9 

Normal Insulinoma G10 

Tumour Insulinoma G11 

Tumour Insulinoma G12 

Tumour Insulinoma G13 

Normal Insulinoma G14 

Normal Insulinoma G15 

Normal Insulinoma H1 

Tumour Ampullary carcinoma H2 

Tumour Ampullary carcinoma H3 

Tumour Ampullary carcinoma H4 

Stroma Ampullary carcinoma H5 

Stroma Ampullary carcinoma H6 

Stroma Ampullary carcinoma H7 

Tumour Duodenal carcinoma H8 

Tumour Duodenal carcinoma H9 

Tumour Duodenal carcinoma H10 

Stroma Duodenal carcinoma H11 

Stroma Duodenal carcinoma H12 

Stroma Duodenal carcinoma H13 

Tumour Ampullary carcinoma H14 

Tumour Ampullary carcinoma H15 

Tumour Ampullary carcinoma I1 

Stroma Ampullary carcinoma I2 

Stroma Ampullary carcinoma I3 

Stroma Ampullary carcinoma I4 
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Appendix 6: Pancreas 2 TMA slide 3 design 

Tissue 
types Diagnosis 

Array 
position 

Spleen  Normal A1 
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Tumour Cholangiocarcinoma A2 

Tumour Cholangiocarcinoma A3 

Tumour Cholangiocarcinoma A4 

Stroma Cholangiocarcinoma A5 

Stroma Cholangiocarcinoma A6 

Stroma Cholangiocarcinoma A7 

Normal Cholangiocarcinoma A8 

Normal Cholangiocarcinoma A9 

Normal Cholangiocarcinoma A10 

Tumour Chronic pancreatitis A11 

Tumour Chronic pancreatitis A12 

Tumour Chronic pancreatitis A13 

Normal Chronic pancreatitis A14 

Normal Chronic pancreatitis A15 

Normal Chronic pancreatitis B1 

Tumour Cholangiocarcinoma B2 

Tumour Cholangiocarcinoma B3 

Tumour Cholangiocarcinoma B4 

Stroma Cholangiocarcinoma B5 

Stroma Cholangiocarcinoma B6 

Stroma Cholangiocarcinoma B7 

Normal Cholangiocarcinoma B8 

Normal Cholangiocarcinoma B9 

Normal Cholangiocarcinoma B10 

Tumour 
Duodenal 
carcinoma B11 

Tumour 
Duodenal 
carcinoma B12 

Tumour 
Duodenal 
carcinoma B13 

Stroma 
Duodenal 
carcinoma B14 

Stroma 
Duodenal 
carcinoma B15 

Stroma 
Duodenal 
carcinoma C1 

Tumour 
Duodenal 
carcinoma C2 

Tumour 
Duodenal 
carcinoma C3 

Tumour 
Duodenal 
carcinoma C4 

Stroma 
Duodenal 
carcinoma C5 

Stroma 
Duodenal 
carcinoma C6 

Stroma Duodenal C7 
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carcinoma 

Tumour 
Duodenal 
carcinoma C8 

Tumour 
Duodenal 
carcinoma C9 

Tumour 
Duodenal 
carcinoma C10 

Stroma 
Duodenal 
carcinoma C11 

Stroma 
Duodenal 
carcinoma C12 

Stroma 
Duodenal 
carcinoma C13 

Normal 
Duodenal 
carcinoma C14 

Normal 
Duodenal 
carcinoma C15 

Normal 
Duodenal 
carcinoma D1 

Tumour 
Ampullary 
carcinoma D2 

Tumour 
Ampullary 
carcinoma D3 

Tumour 
Ampullary 
carcinoma D4 

Normal 
Ampullary 
carcinoma D5 

Normal 
Ampullary 
carcinoma D6 

Normal 
Ampullary 
carcinoma D7 

Tumour 
Ampullary 
carcinoma D8 

Tumour 
Ampullary 
carcinoma D9 

Tumour 
Ampullary 
carcinoma D10 

Stroma 
Ampullary 
carcinoma D11 

Stroma 
Ampullary 
carcinoma D12 

Stroma 
Ampullary 
carcinoma D13 

Normal 
Ampullary 
carcinoma D14 

Normal 
Ampullary 
carcinoma D15 

Normal 
Ampullary 
carcinoma E1 

Tumour Duodenal E2 



338 
 

carcinoma 

Tumour 
Duodenal 
carcinoma E3 

Tumour 
Duodenal 
carcinoma E4 

Stroma 
Duodenal 
carcinoma E5 

Stroma 
Duodenal 
carcinoma E6 

Stroma 
Duodenal 
carcinoma E7 

Tumour Chronic pancreatitis E8 

Tumour Chronic pancreatitis E9 

Tumour Chronic pancreatitis E10 

Normal Chronic pancreatitis E11 

Normal Chronic pancreatitis E12 

Normal Chronic pancreatitis E13 

Tumour Cholangiocarcinoma E14 

Tumour Cholangiocarcinoma E15 

Tumour Cholangiocarcinoma F1 

Stroma Cholangiocarcinoma F2 

Stroma Cholangiocarcinoma F3 

Stroma Cholangiocarcinoma F4 

Normal Cholangiocarcinoma F5 

Normal Cholangiocarcinoma F6 

Normal Cholangiocarcinoma F7 

Tumour Chronic pancreatitis F8 

Tumour Chronic pancreatitis F9 

Tumour Chronic pancreatitis F10 

Normal Chronic pancreatitis F11 

Normal Chronic pancreatitis F12 

Normal Chronic pancreatitis F13 

Tumour 
Duodenal 
carcinoma F14 

Tumour 
Duodenal 
carcinoma F15 

Tumour 
Duodenal 
carcinoma G1 

Stroma 
Duodenal 
carcinoma G2 

Stroma 
Duodenal 
carcinoma G3 

Stroma 
Duodenal 
carcinoma G4 

Normal 
Duodenal 
carcinoma G5 

Normal Duodenal G6 
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carcinoma 

Normal 
Duodenal 
carcinoma G7 

Tumour 
Ampullary 
carcinoma G8 

Tumour 
Ampullary 
carcinoma G9 

Tumour 
Ampullary 
carcinoma G10 

Stroma 
Ampullary 
carcinoma G11 

Stroma 
Ampullary 
carcinoma G12 

Stroma 
Ampullary 
carcinoma G13 

Normal 
Ampullary 
carcinoma G14 

Normal 
Ampullary 
carcinoma G15 

Normal 
Ampullary 
carcinoma H1 

Tumour Chronic pancreatitis H2 

Tumour Chronic pancreatitis H3 

Tumour Chronic pancreatitis H4 

Normal Chronic pancreatitis H5 

Normal Chronic pancreatitis H6 

Normal Chronic pancreatitis H7 

Tumour Cholangiocarcinoma H8 

Tumour Cholangiocarcinoma H9 

Tumour Cholangiocarcinoma H10 

Stroma Cholangiocarcinoma H11 

Stroma Cholangiocarcinoma H12 

Stroma Cholangiocarcinoma H13 

Normal Cholangiocarcinoma H14 

Normal Cholangiocarcinoma H15 

Normal Cholangiocarcinoma I1 

Tumour 
Ampullary 
carcinoma I2 

Tumour 
Ampullary 
carcinoma I3 

Tumour 
Ampullary 
carcinoma I4 

 

Appendix 7: Pancreas 3 TMA slide 1 design 

Tissue type Diagnosis 
Array 
position 
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Spleen Normal A1 

Tumour Biopsy A2 

Tumour Biopsy A3 

Tumour Biopsy A4 

Stroma Biopsy A5 

Stroma Biopsy A6 

Stroma Biopsy A7 

Tumour Biopsy A8 

Tumour Biopsy A9 

Tumour Biopsy A10 

Normal Biopsy A11 

Normal Biopsy A12 

Normal Biopsy A13 

Tumour Biopsy A14 

Tumour Biopsy A15 

Tumour Biopsy B1 

Stroma Biopsy B2 

Stroma Biopsy B3 

Stroma Biopsy B4 

Tumour Biopsy B5 

Tumour Biopsy B6 

Tumour Biopsy B7 

Stroma Biopsy B8 

Stroma Biopsy B9 

Stroma Biopsy B10 

Tumour Biopsy B11 

Tumour Biopsy B12 

Tumour Biopsy B13 

Stroma Biopsy B14 

Stroma Biopsy B15 

Stroma Biopsy C1 

Normal Biopsy C2 

Normal Biopsy C3 

Normal Biopsy C4 

Tumour Biopsy C5 

Tumour Biopsy C6 

Tumour Biopsy C7 

Stroma Biopsy C8 

Stroma Biopsy C9 

Stroma Biopsy C10 

Normal Biopsy C11 

Normal Biopsy C12 

Normal Biopsy C13 

Tumour Biopsy C14 
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Tumour Biopsy C15 

Tumour Biopsy D1 

Stroma Biopsy D2 

Stroma Biopsy D3 

Stroma Biopsy D4 

Tumour Biopsy D5 

Tumour Biopsy D6 

Tumour Biopsy D7 

Stroma Biopsy D8 

Stroma Biopsy D9 

Stroma Biopsy D10 

Tumour Biopsy D11 

Tumour Biopsy D12 

Tumour Biopsy D13 

Stroma Biopsy D14 

Stroma Biopsy D15 

Stroma Biopsy E1 

Tumour Biopsy E2 

Tumour Biopsy E3 

Tumour Biopsy E4 

Stroma Biopsy E5 

Stroma Biopsy E6 

Stroma Biopsy E7 

Normal Biopsy E8 

Normal Biopsy E9 

Normal Biopsy E10 

Tumour Biopsy E11 

Tumour Biopsy E12 

Tumour Biopsy E13 

Stroma Biopsy E14 

Stroma Biopsy E15 

Stroma Biopsy F1 

Normal Biopsy F2 

Normal Biopsy F3 

Normal Biopsy F4 

Tumour Biopsy F5 

Tumour Biopsy F6 

Tumour Biopsy F7 

Stroma Biopsy F8 

Stroma Biopsy F9 

Stroma Biopsy F10 

Tumour Biopsy F11 

Tumour Biopsy F12 

Tumour Biopsy F13 
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Stroma Biopsy F14 

Stroma Biopsy F15 

Stroma Biopsy G1 

Tumour Biopsy G2 

Tumour Biopsy G3 

Tumour Biopsy G4 

Stroma Biopsy G5 

Stroma Biopsy G6 

Stroma Biopsy G7 

Normal Biopsy G8 

Normal Biopsy G9 

Normal Biopsy G10 

Tumour Biopsy G11 

Tumour Biopsy G12 

Tumour Biopsy G13 

Stroma Biopsy G14 

Stroma Biopsy G15 

Stroma Biopsy H1 

Tumour Biopsy H2 

Tumour Biopsy H3 

Tumour Biopsy H4 

Stroma Biopsy H5 

Stroma Biopsy H6 

Stroma Biopsy H7 

Tumour MCN H8 

Tumour 
Mucinous cystic 
neoplasm H9 

Tumour 
Mucinous cystic 
neoplasm H10 

Stroma 
Mucinous cystic 
neoplasm H11 

Stroma 
Mucinous cystic 
neoplasm H12 

Stroma 
Mucinous cystic 
neoplasm H13 

Tumour 
Mucinous cystic 
neoplasm H14 

Tumour 
Mucinous cystic 
neoplasm H15 

Tumour 
Mucinous cystic 
neoplasm I1 

Stroma 
Mucinous cystic 
neoplasm I2 

Stroma 
Mucinous cystic 
neoplasm I3 

Stroma 
Mucinous cystic 
neoplasm I4 
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Appendix 8: Pancreas 3 TMA slide 2 design 

Tissue type Diagnosis 
Array 
position 

Spleen Normal A1 
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Tumour Ampullary carcinoma A2 

Tumour Ampullary carcinoma A3 

Tumour Ampullary carcinoma A4 

Stroma Ampullary carcinoma A5 

Stroma Ampullary carcinoma A6 

Stroma Ampullary carcinoma A7 

Normal Ampullary carcinoma A8 

Normal Ampullary carcinoma A9 

Normal Ampullary carcinoma A10 

Tumour Neuroendocrine tumour A11 

Tumour Neuroendocrine tumour A12 

Tumour Neuroendocrine tumour A13 

Tumour Neuroendocrine tumour A14 

Tumour Neuroendocrine tumour A15 

Tumour Neuroendocrine tumour B1 

Normal Neuroendocrine tumour B2 

Normal Neuroendocrine tumour B3 

Normal Neuroendocrine tumour B4 

Tumour Neuroendocrine tumour B5 

Tumour Neuroendocrine tumour B6 

Tumour Neuroendocrine tumour B7 

Tumour Gistoblastoma B8 

Tumour Gistoblastoma B9 

Tumour Gistoblastoma B10 

Normal Gistoblastoma B11 

Normal Gistoblastoma B12 

Normal Gistoblastoma B13 

Tumour Biopsy B14 

Tumour Biopsy B15 

Tumour Biopsy C1 

Stroma Biopsy C2 

Stroma Biopsy C3 

Stroma Biopsy C4 

Tumour Biopsy C5 

Tumour Biopsy C6 

Tumour Biopsy C7 

Stroma Biopsy C8 

Stroma Biopsy C9 

Stroma Biopsy C10 

Tumour Biopsy C11 

Tumour Biopsy C12 

Tumour Biopsy C13 

Tumour Biopsy C14 

Tumour Biopsy C15 
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Tumour Biopsy D1 

Tumour Biopsy D2 

Tumour Biopsy D3 

Tumour Biopsy D4 

Tumour 
Mucinous cystic 
neoplasm D5 

Tumour 
Mucinous cystic 
neoplasm D6 

Tumour 
Mucinous cystic 
neoplasm D7 

Normal 
Mucinous cystic 
neoplasm D8 

Normal 
Mucinous cystic 
neoplasm D9 

Normal 
Mucinous cystic 
neoplasm D10 

Tumour PDAC D11 

Tumour PDAC D12 

Tumour PDAC D13 

Stroma PDAC D14 

Stroma PDAC D15 

Stroma PDAC E1 

Normal Normal E2 

Normal Normal E3 

Normal Normal E4 

Tumour Biopsy E5 

Tumour Biopsy E6 

Tumour Biopsy E7 

Stroma Biopsy E8 

Stroma Biopsy E9 

Stroma Biopsy E10 

Tumour Insulinoma E11 

Tumour Insulinoma E12 

Tumour Insulinoma E13 

Normal Insulinoma E14 

Normal Insulinoma E15 

Normal Insulinoma F1 

Tumour Insulinoma F2 

Tumour Insulinoma F3 

Tumour Insulinoma F4 

Normal Insulinoma F5 

Normal Insulinoma F6 

Normal Insulinoma F7 

Tumour Insulinoma F8 

Tumour Insulinoma F9 
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Tumour Insulinoma F10 

Normal Insulinoma F11 

Normal Insulinoma F12 

Normal Insulinoma F13 

Tumour Insulinoma F14 

Tumour Insulinoma F15 

Tumour Insulinoma G1 

Normal Insulinoma G2 

Normal Insulinoma G3 

Normal Insulinoma G4 

Tumour Ampullary carcinoma G5 

Tumour Ampullary carcinoma G6 

Tumour Ampullary carcinoma G7 

Stroma Ampullary carcinoma G8 

Stroma Ampullary carcinoma G9 

Stroma Ampullary carcinoma G10 

Tumour Duodenal carcinoma G11 

Tumour Duodenal carcinoma G12 

Tumour Duodenal carcinoma G13 

Stroma Duodenal carcinoma G14 

Stroma Duodenal carcinoma G15 

Stroma Duodenal carcinoma H1 

Tumour Ampullary carcinoma H2 

Tumour Ampullary carcinoma H3 

Tumour Ampullary carcinoma H4 

Stroma Ampullary carcinoma H5 

Stroma Ampullary carcinoma H6 

Stroma Ampullary carcinoma H7 

Tumour Cholangiocarcinoma H8 

Tumour Cholangiocarcinoma H9 

Tumour Cholangiocarcinoma H10 

Stroma Cholangiocarcinoma H11 

Stroma Cholangiocarcinoma H12 

Stroma Cholangiocarcinoma H13 

Normal Cholangiocarcinoma H14 

Normal Cholangiocarcinoma H15 

Normal Cholangiocarcinoma I1 
 

Appendix 9: Pancreas 3 TMA slide 3 design 

Tissue type Diagnosis 
Array 
position 

Spleen Normal A1 

Tumour Chronic A2 
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pancreatitis 

Tumour 
Chronic 
pancreatitis A3 

Tumour 
Chronic 
pancreatitis A4 

Normal 
Chronic 
pancreatitis A5 

Normal 
Chronic 
pancreatitis A6 

Normal 
Chronic 
pancreatitis A7 

Tumour 
cholangio 
carcinoma A8 

Tumour 
cholangio 
carcinoma A9 

Tumour 
cholangio 
carcinoma A10 

Stroma 
cholangio 
carcinoma A11 

Stroma 
cholangio 
carcinoma A12 

Stroma 
cholangio 
carcinoma A13 

Normal 
cholangio 
carcinoma A14 

Normal 
cholangio 
carcinoma A15 

Normal 
cholangio 
carcinoma B1 

Tumour 
duodenal 
carcinoma B2 

Tumour 
duodenal 
carcinoma B3 

Tumour 
duodenal 
carcinoma B4 

Stroma 
duodenal 
carcinoma B5 

Stroma 
duodenal 
carcinoma B6 

Stroma 
duodenal 
carcinoma B7 

Tumour 
duodenal 
carcinoma B8 

Tumour 
duodenal 
carcinoma B9 

Tumour 
duodenal 
carcinoma B10 

Stroma 
duodenal 
carcinoma B11 

Stroma duodenal B12 



348 
 

carcinoma 

Stroma 
duodenal 
carcinoma B13 

Tumour 
duodenal 
carcinoma B14 

Tumour 
duodenal 
carcinoma B15 

Tumour 
duodenal 
carcinoma C1 

Stroma 
duodenal 
carcinoma C2 

Stroma 
duodenal 
carcinoma C3 

Stroma 
duodenal 
carcinoma C4 

Normal 
duodenal 
carcinoma C5 

Normal 
duodenal 
carcinoma C6 

Normal 
duodenal 
carcinoma C7 

Tumour 
ampullary 
carcinoma C8 

Tumour 
ampullary 
carcinoma C9 

Tumour 
ampullary 
carcinoma C10 

Normal 
ampullary 
carcinoma C11 

Normal 
ampullary 
carcinoma C12 

Normal 
ampullary 
carcinoma C13 

Tumour 
ampullary 
carcinoma C14 

Tumour 
ampullary 
carcinoma C15 

Tumour 
ampullary 
carcinoma D1 

Stroma 
ampullary 
carcinoma D2 

Stroma 
ampullary 
carcinoma D3 

Stroma 
ampullary 
carcinoma D4 

Normal 
ampullary 
carcinoma D5 

Normal 
ampullary 
carcinoma D6 

Normal ampullary D7 
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carcinoma 

Tumour 
duodenal 
carcinoma D8 

Tumour 
duodenal 
carcinoma D9 

Tumour 
duodenal 
carcinoma D10 

Stroma 
duodenal 
carcinoma D11 

Stroma 
duodenal 
carcinoma D12 

Stroma 
duodenal 
carcinoma D13 

Tumour 
Chronic 
pancreatitis D14 

Tumour 
Chronic 
pancreatitis D15 

Tumour 
Chronic 
pancreatitis E1 

Normal 
Chronic 
pancreatitis E2 

Normal 
Chronic 
pancreatitis E3 

Normal 
Chronic 
pancreatitis E4 

Tumour 
cholangio 
carcinoma E5 

Tumour 
cholangio 
carcinoma E6 

Tumour 
cholangio 
carcinoma E7 

Stroma 
cholangio 
carcinoma E8 

Stroma 
cholangio 
carcinoma E9 

Stroma 
cholangio 
carcinoma E10 

Normal 
cholangio 
carcinoma E11 

Normal 
cholangio 
carcinoma E12 

Normal 
cholangio 
carcinoma E13 

Tumour 
Chronic 
pancreatitis E14 

Tumour 
Chronic 
pancreatitis E15 

Tumour 
Chronic 
pancreatitis F1 

Normal Chronic F2 
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pancreatitis 

Normal 
Chronic 
pancreatitis F3 

Normal 
Chronic 
pancreatitis F4 

Tumour 
duodenal 
carcinoma F5 

Tumour 
duodenal 
carcinoma F6 

Tumour 
duodenal 
carcinoma F7 

Stroma 
duodenal 
carcinoma F8 

Stroma 
duodenal 
carcinoma F9 

Stroma 
duodenal 
carcinoma F10 

Normal 
duodenal 
carcinoma F11 

Normal 
duodenal 
carcinoma F12 

Normal 
duodenal 
carcinoma F13 

Tumour 
ampullary 
carcinoma F14 

Tumour 
ampullary 
carcinoma F15 

Tumour 
ampullary 
carcinoma G1 

Stroma 
ampullary 
carcinoma G2 

Stroma 
ampullary 
carcinoma G3 

Stroma 
ampullary 
carcinoma G4 

Normal 
ampullary 
carcinoma G5 

Normal 
ampullary 
carcinoma G6 

Normal 
ampullary 
carcinoma G7 

Tumour 
Chronic 
pancreatitis G8 

Tumour 
Chronic 
pancreatitis G9 

Tumour 
Chronic 
pancreatitis G10 

Normal 
Chronic 
pancreatitis G11 

Normal Chronic G12 
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pancreatitis 

Normal 
Chronic 
pancreatitis G13 

Tumour 
cholangio 
carcinoma G14 

Tumour 
cholangio 
carcinoma G15 

Tumour 
cholangio 
carcinoma H1 

Stroma 
cholangio 
carcinoma H2 

Stroma 
cholangio 
carcinoma H3 

Stroma 
cholangio 
carcinoma H4 

Normal 
cholangio 
carcinoma H5 

Normal 
cholangio 
carcinoma H6 

Normal 
cholangio 
carcinoma H7 

Tumour 
Ampullary 
adenoma H8 

Tumour 
Ampullary 
adenoma H9 

Tumour 
Ampullary 
adenoma H10 

 

 

 

 

 


