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Abstract— Many software systems operate across different 
geographically distributed hardware platforms, operating 
systems and programming languages. Publish/subscribe 
based Message Oriented Middleware (MOM) provides loose 
coupling and an efficient, asynchronous and scalable way of 
communication. However, as the complexity of such systems 
increase, manual verification of reconfiguration policies 
becomes unrealistic. The task calls for automated means of 
proof-checking configuration information in order to 
improve the reliability of large-scale MOM systems. This 
paper proposes a new model checking approach with 
temporal logic specifications to design and verify a system 
configuration. Model checking is a powerful technique, 
however the creation of appropriate finite state models for 
the systems being checked are complex and difficult to use 
in practice by non-formalists. The research presented in this 
paper finds suitable abstractions that reduce the system to a 
finite state model. The tools we developed for the generation 
of such models can be easily used by non-formalists. The 
systems models created using our techniques manages state 
explosion thanks to the choices of our abstractions. An 
example of the use of our tools and techniques is presented 
for a 50 node MOM, where the reachability of all topics and 
the presence of loops are proof-checked. 

Index Terms—message oriented middleware, model 
checking, large scale system, publish/subscribe 

I. INTRODUCTION 

A synchronous system is characterized by tight 
coupling, which requires both the caller and the callee to 
be available at the same time. This type of system raises 
considerable challenges when trying to implement certain 
applications or manage the interaction between clients 
and servers in terms of fault tolerance and availability. 
Asynchronous systems relax this tight coupling constraint 
and are well suited to messaging applications. An 
asynchronous system employs queues to store messages, 
and can guarantee that messages are retained even after 
failures arise. The advantages over synchronous solutions 
are that: application recipients do not need to be “online” 
at the time a message is sent; and queues facilitate 
communication across heterogeneous networks and 
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systems while still being able to make some assumptions 
about the behavior of the message handling. Message 
Oriented Middleware (MOM) is a loosely coupled 
asynchronous framework focused on sending and 
receiving messages over distributed heterogeneous 
platforms [1]. 

Existing MOMs fall into one of two categories: 
enterprise messaging systems and real-time messaging 
systems. With the intention of addressing traditional 
business needs, enterprise messaging systems provide 
message delivery assurance and transactional guarantees. 
They usually implement the Java Message Service (JMS) 
standard [2] and can transport messages over a wide area 
across multiple domains. However, they do not 
proactively manage messaging performance. As such, 
applications cannot predict or depend on when messages 
will arrive at the destination. Real-time messaging 
systems, on the other hand, offer QoS assurance by 
allocating resources and scheduling messages based on 
application-specific QoS objectives. They often conform 
to the Data Distribution Service (DDS) standard [3]. 

Message Oriented Middleware adopts a message 
centric approach and usually employs both message 
queuing and publish/subscribe communication schemes. 
Figure 1 shows an example of a MOM system based on a 
publish/subscribe structure. Brokers are inter-connected 
through an overlay network where application 
components attach to a local broker [1] and they do not 
interact directly. Instead, their communications are 
mediated by an additional logical layer, called a 
dispatcher. In a topic based publish/subscribe MOM 
system, each message is classified as belonging to one of 
a fixed set of topics. A publisher labels each message it 
produces with a particular topic. Similarly, the subscriber 
has the ability to express their interest in a topic a pattern 
of topics to a broker, and these are collected by the 
dispatcher in a suitable data structure. When a component 
publishes a message, the dispatcher matches this against 
existing subscriptions, and delivers the message to all 
those application components that issued matching 
subscriptions. This process is usually referred to as 
message filtering. There can be an arbitrary number of 
topics in the system. Each endpoint can publish and 
subscribe to one or many topics, while each broker can 



perform publish/subscribe matching, transport messages 
to local endpoints or neighboring brokers, and optionally 
perform message mediation. 
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Figure 1: Example Publish-Subscribe System Model 

 
Using this style of interaction, the sender does not 

know the identity of the receivers: it is the dispatcher 
inside the broker that identifies them dynamically. As a 
consequence, new components can join a federation, 
become immediately active, and cooperate with others 
without requiring any reconfiguration of the architecture. 
Due to this flexible structure, MOMs can deliver a 
service that allows content providers and consumers to 
concentrate on the production and consumption of 
transmitted information. The key advantage of a MOM 
architecture is that it reduces the number of point-to-point 
connections that need to be managed by the applications 
in a complex business-critical IT system. 

Recent studies show that configuration of the network 
access control is one of the most complex and error prone 
network management tasks [12]. For this reason, network 
misconfiguration has become the main source of network 
unreachablility and vulnerability problems. To achieve 
resilience, an efficient way to configure and reconfigure 
the system is necessary. The main goal of configuring 
and reconfiguring systems is to make sure that the system 
continues to operate normally. However, if the protocols 
which perform the configuration and reconfiguration 
have flaws themselves, the configuration and 
reconfiguration will be prone to errors. It is therefore 
important to devise a means of verifying if the 
configuration is correct. Publish/subscribe systems are 
often complex and hard to test. In particular, given the 
inherent non-determinism in the order of event receipts, 
delays in event delivery, and variability in the timing of 
event announcements, the number of possible system 
executions consequently become combinatorially large. It 
is relatively easy to configure an individual device such 
as a broker or a firewall, but it is extremely complex to 
attempt a consistent configuration of a large network with 
many connections between devices. So this paper focuses 
on building a MOM system model and verifying the 
reachability and configuration rules of a modeled system. 

The organization of the remaining of this paper is as 
follows. In section II we present an overview of model 
checking techniques and a brief introduction of basic 
concepts of temporal logic. Section III considers the 
relevant related work. In Section IV we present how a 
MOM model is created, the abstractions made for the 
verification of the reachability of topics and loop 
detection, and the design choices for path detection. 
Section V describes the procedure of building a MOM 
model in NuSMV. Section VI shows an example of the 
verification and detection of failures in paths and brokers 
in 50 node MOM. Section VII concludes with a brief 
discussion of the addition of new constraints to be 
verified in our MOM model. 

II. AN OVERVIEW OF MODEL CHECKING AND 
TEMPORAL LOGIC 

Model checking is an automatic technique for 
verifying a finite-state system, such as sequential circuit 
designs and communication protocols. Formulas are 
written in temporal logic, and a reactive system can be 
modeled as a state transition graph. An efficient search 
procedure is used to determine whether or not the state 
transition graph satisfies the formulas [4]. 

There are several advantages in using a model 
checking technique. The most important one is that the 
procedure of verifying is highly automated. Typically, the 
user provides a high-level abstraction of the model and 
the formulas that are to be checked against. The model 
checker will either terminate with the answer ‘true’, 
indicating that the model satisfies the formula, or it will 
give a counter example execution that shows why and 
where the formula failed. This is typically achieved via 
extensive simulations and searched every possible state. 
The counter example helps to detect potential problems in 
the system or the violation of the protocol. 

However, previous model checkers were only able to 
check small systems and protocols [5, 6, 7]. They were 
not capable of operating on large systems because of the 
state explosion problem [8]. With the help of an Ordered 
Binary Decision Diagram (OBDD) the capability of a 
model checker can be increased dramatically [9]. OBDD 
can effectively reduce useless states. So the number of 
nodes in an OBDD no longer directly depends on the 
actual number of states or the extent of the translation 
relations. With this accomplishment, a number of major 
companies including Intel, Motorola, Fujitsu and AT&T 
have started using symbolic model checkers to verify 
actual circuits and protocols [4]. 

The combination of a model checking algorithm 
together with a representation of the translation relation 
(using OBDD), is called Symbolic Model Checking. 

NuSMV is a symbolic model checker developed by 
ITC-IRST and UniTN with the collaboration of CMU and 
UniGE [10]. NuSMV provides a language for describing 
models a user wishes to verify and it directly checks the 
validity of Linear-time Temporal Logic (LTL) or 
Computation Tree Logic (CTL) specifications on those 
models. Statements are expressed in temporal logic that 
are used for reasoning about things that change over time. 



A reactive system can be modeled as a state transition 
graph [11]. It provides as output either the word ‘true’, 
when the rules/specifications hold, or a trace showing 
why one of the rules or specifications does not hold true 
[12].  

Typically, in CTL temporal connectives are a pair of 
symbols. The first part is composed of A or E. A means 
‘along all paths’ and E means ‘along at least one path’. 
The second part of the pair is composed of X, F, G, or U, 
meaning ‘next state’, ‘some future state’, ‘all future 
states’ and ‘until’, respectively. For example, AF p means 
for all paths p will finally be true and EF p means there is 
at least one path in which p will finally be true. By using 
temporal logic, conditions that change over time can be 
represented, for example, ‘I will be hungry eventually’ 
[13]. 

III. RELATED WORK 

Quite a few attempts have been applied to develop 
formal foundations for specifying and testing 
publish/subscribe systems [14, 15, 16, 17, 18], and this 
area remains a fertile one for formal verification. While 
these papers provide a formal method for testing 
publish/subscribe systems, at present they require an 
expert in formal specification and theorem proving to use 
them effectively. Our research bases on those researches, 
but aims to have more accessible and specific features of 
a publish/subscribe system to be checked by NuSMV 
model checkers. Unfortunately, existing notations and 
methods are difficult to use in practice by non-formalists, 
and require considerable proof machinery to carry out. 

In [19], the authors propose a model checking for 
publish/subscribe architectures that provides a set of 
pluggable modules that allow the modeler to choose one 
possible design of a publish/subscribe system out of a set 
of choices. The authors believed that a typical system 
could be divided into the following elements: the 
components which encapsulate data and functionality; the 
event types that indicate the events that can be announced; 
the shared variables and bindings between events; event 
delivery policy and the concurrency model. Thus, in [19], 
the research built those elements into different reusable 
entities to constitute a model of publish/subscribe system.   

 However, available models in [19] are far from 
capable of verifying the different characteristics of 
existing publish/subscribe systems. For instance, the 
message dispatching mechanism is only characterized in 
terms of delivery policy (which is asynchronous, 
synchronous, immediate or delayed), and application 
entities cannot change their subscriptions at run-time. 
Those are extended in [20] by adding more expressive 
events, dynamic delivery policies and dynamic event 
method bindings. Then the paper [21] applied these 
features to represent a transformational framework that 
starts from producing Extensible Markup Language 
(XML) data for model checking as well as executable 
artifacts for testing. But the paper [21] only deals with the 
specification of different delivery policies depending on 
the overall state of the model, and still does not capture 
real-time constraints. Researchers in [21] tailored SPIN, 

one of the model checking tools, into a new one named 
‘Bogor’ and added Bogor into a Java development 
environment. However, as with SPIN, Bogor does not 
support CTL and time constraints. So the work proposed 
in this paper uses NuSMV rather than Bogor to support 
CTL in the MOM verification process. 

Rather than building a generalized model [19, 20, 21] 
for publish/subscribe systems that leave many of details 
out, this paper focuses on verifying configuration and 
reconfiguration for a PS overlay network using a NuSMV 
code generator to simplify processes of building and 
checking the model.  

E. Al-Shaer et al. [12] presented a novel approach for 
modeling the global end-to-end behavior of an access 
control configuration for an entire network. The model 
represents a network as a finite state machine where the 
header and location information of the message which 
belonging to a topic determine the state. Furthermore, the 
message header information determines the whole 
transitions for a message. For a message, the  broker 
which publics the message is the source, the broker which 
subscribes to this message is the destination. Inside the 
message header there is information giving the message 
source IP address, the destination address, and its current 
location. The rules for each device are also modeled.  

32-bits are used for the source IP address, the 
destination IP address, and the device currently 
processing the packet, with 16-bit source port number and 
destination port numbers in the basic network model of 
[12]. In order to illustrate this approach, an example 
containing only 2 bits for the source IP, destination IP, 
and location IP, and 1 bit for the source port and 
destination port is given. The formulas use 1 1 1, ,s d l for the 
higher order bit in the source IP address, the destination 
IP address, and the location of interested IP address 
respectively. 0 0 0, ,s d l are used for the lower order bits. 

' ' ' '
0 0 1 1, , , ...s d s d represent the values of the bits in the next 

state with the same interpretation as the unprimed 
versions above. 

Assume a broker with IP address 3 sends all messages 
in different topics destined for IP addresses 1 and 0 to IP 
address 0 (next hop), while all other topics are sent to IP 
address 2 as a default gateway. 

The policy described above can be formulated as:  
' ' ' '

1 1 0 1 1 0( ) ( )d l l d l l∧ ∧ ∨ ∧ ∧                    (1) 
This formula (1) shows two possible situations at a 

broker. The first one is ' '
1 1 0d l l∧ ∧ . The destination 

restriction 1d means 0d  could be 0 or 1 but 1d  could just 
be 0. Hence the destination would be 01 or 00. 
Then ' '

1 0l l∧ means that for any topic which destination is 
01 or 00, the next location will be 00. The other situation, 

' '
1 1 0d l l∧ ∧  indicates that when the destination is 10 or 

11, the next location will be 11. In our case a broker acts 
as a router and a  policy  is associate with each topic. 

For a simple model with several components (e.g. 
routers, sensors or other end nodes), using less than 5 
Boolean variables to represent the IP addresses is 



feasible. However, in the real word, the IP addresses 
should be represented by 32 Boolean variables. If one 
designs a model using the IPv4 address structure, it will 
need up to 232 different states, which may lead to a state 
explosion. In [12], the authors’ propose a basic model 
that has five key identity variables; two of them (ports 
and port ids) are 16 bits long and the rest (IPsource, 
IPdestination and location) that are all 32 bits. In this 
model, there are thus 2128 possible states. In order to get 
rid of the state explosion problem, this paper proposes 
another way to build model. Since the publish/subscribe 
system is an overlay network, the number of brokers is 
much less than the number of routers in its under layer 
network. In our model we do not use 32-bit IP addresses. 
We use the natural numbers of IDs to handle the number 
of brokers. However, we potentially need policies for 
each topic and so the set of policies can be large. 

Although model checking is a powerful technique, 
creation of appropriate finite state models for the systems 
being checked is still one of the stumbling blocks to using 
it. An important challenge of this research is how to build 
feasible models of publish/subscribe based MOM overlay 
networks to reduce the system to a finite state model, 
without eliminating the class of errors that the we wants 
to check..  

IV. MODELING A REALISTIC LARGE SCALE MOM 
SYSTEM 

The authors’ previous work [22], describes a model for 
a publish/subscribe based MOM. A simplified model 
with only six brokers was used to perform the model 
checking. Firstly, the authors provided an illustrated 
example with six brokers where each of them has a 
unique 4-byte IP address. Each broker has a number of 
publishers and subscribers linked to it. In order to 
simplify the evaluation of this six-broker model, only one 
broker failure is considered at a time. The work in [22] 
requires a user to manually input a routing table for the 
overlay network and the 4-bit IP address structure was 
implemented. In this paper, a MOM system with 50 
brokers is based on the system developed at the IBM T.J. 
Watson Research Center [23]. 

Each broker has a set of topics (that it is either 
publishing or subscribing to). With this number of 
brokers, manually generating the corresponding routing 
table is complex and error prone. Even if the rerouting is 
computed using a load balancing mechanism, additional 
constraints can require manual correction. Therefore, we 
developed a tool that represents the network of brokers in 
a MOM system and records the topics that each broker 
publishes or subscribes to.  In the tool, the link 
information refers to the links between a broker to its 
neighboring brokers. The link information and the 
selection of a specific routing algorithm (e.g. Djikstra’s 
Algorithm) are used to automatically generate the routing 
table of the MOM overlay. We also implemented a 
NuSMV code generator that automatically generates a 
full NuSMV MOM model with all the necessary 
specifications for the topic reachability verification.  

 
Figure 2: A Realistic Commercial-used MOM Overlay 

Network 

Following parts introduce the whole processes of 
building and verifying a MOM system model in NuSMV. 

A. Broker Information Collection 

The first step of building this verification system is to 
collect the broker information and then setup the overlay 
network in NuSMV model checker. Thus the user needs 
to provide the total number of brokers in the overlay 
network (this will only need to be input once at the 
beginning) and the information for each broker. The 
information for each broker includes the ID of the broker 
that is used to identify the broker in the overlay network; 
the IDs of the neighboring brokers that have direct 
connections to this broker; and the published and 
subscribed topics  that this broker dispatches. This 
information is used to further automatically generate a 
routing table that contains the shortest path between any 
two brokers in the network, and the subscribed and 
published topic distribution information. This information 
is stored into a hash map. Table I illustrates the 
information that is stored in the hash map structure for 
the first 3 brokers of Figure 2: 

TABLE I.  STRUCTURE OF THE STORED MOM CONFIGURATION 

brokerID neighbouring 
Brokers 

publishedTopics subscribedTopics 

1 11,16 weather, films music 
2 11,18 sports weather, stock 
3 11,16 music sports 

1) Routing Table Generation 

Here we define a path as a set containing all brokers 
that a message passes through from its source to 
destination during delivery. All possible paths for the 
overlay network is generated by using Djikstra’s shortest 
path algorithm [26] based upon the link information, 
which refers to the broker and its direct connected 
brokers (neighboring brokers). The shortest paths for 
each source and destination are stored in a two 
dimensional array ( n n× ), where n is the number of 
brokers in the network. This information can be 
represented as a matrix P  where the rows correspond to 
the source broker IDs, the columns correspond to the 
destination broker IDs and the values are the 
corresponding sets containing the correspondent shortest 
paths: 



1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

...

...
... ... ... ...

...

n

n

n n n n

p p p
p p p

P

p p p

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

After generating the matrix P , the routing table for the 
overlay network is generated. The routing table can be 
represented as a matrix R where each row corresponds to 
a broker (Broker ID) of a topic and each column 
represents a destination broker (Broker ID). The value 
stored in the matrix shows the next hop according to its 
current location and destination.  

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

...

...
... ... ... ...

...

n

n

n n n n

r r r
r r r

R

r r r

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

For example, for a particular topic the first 3 brokers of 
Figure 2, we could have the routing information shown in 
Table II:   

TABLE II.  EXAMPLE OF ROUTING TABLE 

Loc. Dest. Loc. 

1 
3,7,11,19,20,21,22,23,24,25, 

26,2728,29,30,31,32,33,34,35, 
36,37,38,39,40,41,42,42,44 

11 

1 2,4,5,6,8,9,10,12,13,14,15,16, 
17,18,20,31,45,46,47,48,49,50 16 

2 
7,8,9,11,12,19,21,22,23,24,25,26,27, 
28,29,30,32,33,34,35,36,37,38,39, 
40,41,42,43,44,45,46,47,48,49,50 

11 

2 1,3,10,14,16,31, 16 
2 4,5,6,13,15,17,18,20, 18 

3 
3,7,11,19,20,21,22,23,24,25, 

26,2728,29,30,31,32,33,34,35, 
36,37,38,39,40,41,42,42,44 

11 

3 2,4,5,6,8,9,10,12,13,14,15,16, 
17,18,20,31,45,46,47,48,49,50 16 

In this table, the first column shows the current 
location of a message. The second column shows the 
identification of the destination broker. The last column 
provides the next hop of that message.  

B. Generating the CTL Specifications in NuSMV for 
Every Stored Topic  

We will build a NuSMV model of the delivering 
process for each topic. After having collected the 
necessary information for NuSMV to create  the finite 
state machine  for the MOM overlay network, the CTL 
specifications for  checking the reachability of each topic 
needs to be generated for the input in the NuSMV model. 
What is verified here through  CTL specifications is that 
each message from a certain publisher will reach all the 
required subscribers. The necessary information for 
building the model for each topic is the source broker ID, 
the destination broker ID and the broker ID of the current 
location. The NuSMV requires the following three state 
variables:   

src is the source broker ID; 
dest  is the destination broker ID;  
loc is the current location broker ID. 
For example, if Broker 1 is the source of a topic and 

one of this topic’s destination broker is Broker 13 The 

reachability verification can be represented in a CTL 
specification  as: 
 ( 1 13 1) ( 1 13 13))src dest loc AF src dest loc= ∧ = ∧ = → = ∧ = ∧ = (2) 

 The CTL specification (2) indicates that finally there 
will be a state where the current location of a topic 
coincides with its destination identification. This means 
that eventually the message will arrive at its destination.  

Our implemented NuSMV model checker can test all 
the sources and destinations of a topic. If there are a large 
number of topics, the checker will take a long time to test 
all the sources and destinations entries. We require that 
for a pair of source-destination brokers, there is a path 
connecting them based on the routing protocol. However, 
this path could be part of another path or include other 
paths of other topics.  We call a path of a topic that 
completely contains the paths of other topics as “super-
path” and the contained paths are “sub-paths”. For 
example, in Figure 2, a message that must go through a 
path from Broker 1 to Broker 13, it must go through 
Broker 16 and Broker 17. This path alone has 12 different 
sub-paths including itself (e.g. the number of possible 
combinations of all possible source and destination pairs). 
The path of a topic could be a sub-path of another already 
successfully checked path, consequently this sub-path 
need not be tested again. 

With the increasing number of brokers, manually 
listing all possible paths (as presented in [22] for the six-
broker model) is no longer feasible. An algorithm that 
can automatically generate all possible paths and find all 
sub-paths for a tested path is required for larger MOM 
systems. We integrated the detection of sub-paths and 
already processed paths in an algorithm that writes the 
CTL specification for each topic, significantly decreasing 
the overall testing time. In the algorithm,  a  matrix F is 
created to  store  the states indicating if a CTL 
specification has been already written for a specific path 
(source-destination pair) or not. In this matrix, if for a 
specific source–destination path a CTL specification has 
been written then the corresponding value is set to “true”, 
otherwise the value is “false”.  Rows in matrix F indicate 
the source of a path, columns indicates the destinations of 
the path, and the corresponding boolean value indicates 
whether a verification check for that path has been 
written or not.   

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

...

...
... ... ... ...

...

n

n

n n n n

f f f
f f f

F

f f f

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

The following pseudo-code describes the algorithm 
used for generating the NuSMV CTL specifications for 
every topic managed by the MOM: 

 

1. Initialize matrix F all to FALSE 
2. N:=total number of brokers 
// For each broker, extract each subscribed topic 
3. For ID ←  1 to N  
// Extract the subscribed topics of broker ID 
4.      For t ← 1to Length Of (ID.subscribedTopics) 
5.          TOPIC ← ID.subscribedTopic(t) 



 
Table III displays a comparison between using and not 

using the sub-path detection algorithm for the fifty-broker 
model. 

TABLE III.  SUB-PATH DETECTION PERFORMANCE COMPARISON  

Number 
of 

topics 
 
 

Average number of 
paths to be tested 

Average time to generate 
NuSMV code (ms) over 50 

experiments on each 
different number of topics 

Sub-path 
detection 

No sub-
path 

detection 

Sub-path 
detection 

No sub-
path 

detection 
10 30 50 2 7 
50 120 250 3 27 

100 200 500 7 67 
500 468 2500 15 183 
1000 550 5000 18 318 
5000 570 25000 21 7942 

10000 588 50000 37 58627 

In order to assess the performance of our sub-path 
detection algorithm, we automatically generate different 
numbers of topics and assign each topic to 5 subscribers. 
From Table III, we can see that by using the sub-path 
detection the number of paths to be verified by NuSMV 
and the total time of generation are significantly reduced. 

C. Loop Detection 
Our implemented NuSMV model checker also 

provides a way of detecting the existence of loops in the 
routing table. The aim of loop detection is to find out 
whether a message goes back to a broker that it has 
already passed through. Formula (3) shows an example 
rule for detecting a loop path at Broker 1: 
 1 ( ( ! 1))src E X A F src= ∧ =   (3) 

Formula (3) will be true if a message does not pass 
through Broker 1 again after passing through it once. 
However, it is possible that a broker is the source broker 
as well as the destination broker at the same time (it has a 
subscriber of a specific topic, but at the same time, this 
broker also has a publisher to the same topic). Formula 
(3) will be evaluated to false as the source and destination 
broker is the same for that topic. There are two ways to 
overcome this problem. The first is to extract all the 
topics whose sources and destinations are in the same 
broker. The second way would be to use Timed CTL to 
impose a restriction in Formula (3) where it would only 
evaluate to false if and only if the message again passes 
through the same broker after it has traversed one or more 
hops (this is being added in our work).  

V. THE MOM MODEL IN NUSMV 

As mentioned in section II, the key task for 
constructing a NuSMV model is to find a suitable finite 
state model to replace the original system. We model the 
entire MOM overlay network as a finite state machine, 
while each state is defined by a different broker ID. The 
state transition  of the overlay network is determined by 
the topics and the routing protocol in the overlay 
network. The routing protocol in this model is the 
shortest path. A topic starts from its source broker and 
follows its shorted path route until it reaches its 
destination broker.  

Each of the three state variables for framing the 
NuSMV model ( src , dest and loc ) has  the set of broker 
IDs (e.g. 1,2,…,49,50) as domain. So there are 51.25 10×  
possible states combinations for our model. All the 
variables are given initial value and rules for their next 
states transition. The initial values of  loc is the initial 
value of src  as a topic’s initial current location is its 
source broker.  

In the CTL specification the initial values for src  and 
dest keep the same throughout. The  rules for the next 
state transition of loc  follow the matrix R (depending on 
the current value of loc  and the value of dest ) and are 
similar to formula (2) above.  

For example, following  Figure 2, if Broker 1 has a 
topic about ‘weather’ and Broker 13 subscribes to this 

6.           IDdest ← ID 
// Going through all the brokers to extract the publishers 
of TOPIC 
7.           For IDSourcebroker ← 1 to N 
// Search and extract the publishers of TOPIC 
8.                For n ← 1 to LengthOf 

(IDbroker.publishedTopics) 
9.                     if 

TOPIC=IDbroker.publishedTopics(n) 
10.                          then IDsource ← IDbroker 
// Check matrix F to see if CTL formulas have already 
been written for this path and its sub-paths                    
11.                           if f IDsource, IDdest  != ‘true’ 
12.                           then 
13.                                Write the corresponding CTL 

formula 
// Search matrix P and extract the routing path of 

,IDsource IDdestp     

14.                                For i ← 1 to pl ← LengthOf 

( ,IDsource IDdestp ) 

15.                                     For j ← i+1 to pl  
// Go through all the possible hops between IDsource 
and IDdest 
16.                                        Bsource ← , ,IDsource IDdest ip  

17.                                        Bdest   ←   , ,IDsource IDdest jp  
18.                                         f Bsource, Bdest  ←  “true” 
19.                                         f Bdest, Bsource  ←  “true” 
20.                                     End for j 
21.                                End for i  
22.                            else if goes to step 7 
// The path and all sub-paths between IDsource and 
IDdest for TOPIC have been flagged as “true” 
23.                      End for n 
24.                End for IDbroker 
// All publishers of TOPIC have been searched and 
written into CTL formulas 
25.           End for t 
// All the subscribed topics of Broker ID were processed 
26.      End for ID 
// All the subscribed topics of all brokers were processed 
// consequently, all CTL formulas for all sources and 
destinations of all topics have been processed 



topic, then the, the state transition diagram is showing as 
the following figure: 

 
 Figure 3: The state transition diagram segment (one source 

and one topic) 
The first transition for this topic is from 

state 1, 13, 1src dest loc= = = , and results in the next 
states 1, 13, 16src dest loc= = = , and so on. 

VI. VERIFYING FAILURES IN A LARGE SCALE MOM 
SYSTEM 

The two main types of failure within a MOM system 
are path failure or degradation beyond acceptable limits 
and broker failure. There are many reasons (e.g. path or 
buffer overload, power outages). that can lead to a failure. 
Quite a few researchers have devoted time to load 
balancing and provide measures to prevent failures. 
However, failures may still happen and a robust system 
needs to respond quickly to such incidents. In this 
research, since the user needs to manually input brokers’ 
information, incorrect configuration may happen. It is 
possible that the user may forget a link or accidently 
isolate a broker. This paper proposes a way to verify 
failures on paths and on brokers. 

 
Figure 4: Failure of Direct Path between Broker 13 and 17  

In previous sections, an integrated model for verifying 
the reachability for all topics has been presented. The 
model checker will terminate with either ‘true’ or ‘false’ 
to show the availability of a path or otherwise. All 
unavailable paths  will be noted down and then their one-
hop sub-paths will be tested again to locate the failed 
link(s). In Figure 4, let’s assume that the direct path from 
Broker 13 to 17 has failed (we name this failed path as 
P1). Since P1 failed, all paths that involve P1 will 
terminate with ‘false’. For example, the path from Broker 
12 to 18, which including P1, will terminate with ‘false’. 
Then,  its one-hop sub-paths which are the direct path 

from Broker 12 to 14, the direct path from Broker 14 to 
13, the direct path from Broker 13 to Broker 17 and the 
direct path from Broker 17 to 18 will be retested. In this 
scenario, only the direct path from Broker 13 to 17 will 
terminate with ‘false’ and then we can locate the failure 
path. 

 
Figure 5: Failure of Broker 17 

If a broker fails, all the direct paths traversing the 
failed broker will be unreachable. By the same measure, 
as shown in Figure 5, the direct path from Broker 13 to 
17, the direct path from Broker 16 to 17 and the direct 
path from Broker 18 to 17 will test unreachable. There is 
then a high probability that Broker 17 has failed. 

After locating the failure paths and brokers, the user 
can revise the topology and compensate for the failures. 

VII. CONCLUSION AND FUTURE WORK 

Message oriented middleware has been widely used in 
cyber-physical systems, such as some wireless sensor 
networks [24] and Internet-enabled enterprise systems 
[25]. However, the primary disadvantage of many MOM 
systems is that they require an extra component in the 
architecture, the message transfer agent (i.e. the message 
broker). As with any system, adding another component 
can lead to a reduction in performance and reliability, and 
can also make the system as a whole more difficult and 
expensive to maintain. The goal to this research is to find 
a suitable means to retain the performance and reliability 
for a MOM system after a failure. 

This work provides a code generator to automatically 
generate a MOM overlay checker when the links and 
topics of each broker are provided. Then the reachability 
of all topics are tested and the loops within the topology 
are detected. Also configuration could be manual (most 
would be automatic, but manual override may be done by 
the user) then our work is essential. Moreover, if some 
paths or brokers fail (could be the result of a 
misconfiguration), our checker quickly locates the failure 
and informs the user. A new configuration can be 
performed by the user based on the feedback provided by 
the model checker. The code generator that this research 
implements allows any user to build a model checker for 
a MOM based publish/subscribe system, even if the user 
has little knowledge of programming languages or of 
NuSMV. 



As the number of brokers increases, manually 
generating a routing table for a large-scale MOM system 
becomes extremely complex. As mentioned before, this 
work designed a tool to assist users to build a model. By 
using the tool, users can simply input link information of 
the brokers, which is much easier to provide than a 
complete routing table, and the tool automatically 
generates a model from this link information. In this 
research, the routing table is generated based on the 
shortest path algorithm although it is possible to verify 
the contents of the table no matter how it is created (i.e. 
including static entries). In future work, we will provide 
more requisites for verifying a realistic MOM system. 
One of them is the ability to verify the reachabilty of 
topics when no predefined routing table is available. 
Moreover, since many MOM systems are expected to 
provide an efficient and high quality messaging service, 
another important requisite is to check if the rules for 
guaranteeing that end-to-end latency constraints are met 
by every broker. These new features are being added in 
our research work. 
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