
Improved reliability of large scale publish/subscribe based MOMs using

model checking
Jia, Y; Bodanese, E; Phillips, C; Bigham, J; Tao, R

•	© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale

or redistribution to servers or lists, or reuse of any copyrighted component of this work in

other works.

For additional information about this publication click this link.

http://qmro.qmul.ac.uk/xmlui/handle/123456789/10832

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/77038493?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://qmro.qmul.ac.uk/xmlui/handle/123456789/10832

Improved Reliability of Large Scale
Publish/Subscribe based MOMs using Model

Checking
Yue Jia, Eliane Bodanese, Chris Phillips, John Bigham, Ran Tao

Department of Electronic Engineer and Computer Science
Queen Mary, University of London

London, United Kingdom
Email: {yue.jia, eliane.bodanese, chris.phillips, john.bigham, ran.tao@eecs.qmul.ac.uk}

Abstract— Many software systems operate across different
geographically distributed hardware platforms, operating
systems and programming languages. Publish/subscribe
based Message Oriented Middleware (MOM) provides loose
coupling and an efficient, asynchronous and scalable way of
communication. However, as the complexity of such systems
increase, manual verification of reconfiguration policies
becomes unrealistic. The task calls for automated means of
proof-checking configuration information in order to
improve the reliability of large-scale MOM systems. This
paper proposes a new model checking approach with
temporal logic specifications to design and verify a system
configuration. Model checking is a powerful technique,
however the creation of appropriate finite state models for
the systems being checked are complex and difficult to use
in practice by non-formalists. The research presented in this
paper finds suitable abstractions that reduce the system to a
finite state model. The tools we developed for the generation
of such models can be easily used by non-formalists. The
systems models created using our techniques manages state
explosion thanks to the choices of our abstractions. An
example of the use of our tools and techniques is presented
for a 50 node MOM, where the reachability of all topics and
the presence of loops are proof-checked.

Index Terms—message oriented middleware, model
checking, large scale system, publish/subscribe

I. INTRODUCTION

A synchronous system is characterized by tight
coupling, which requires both the caller and the callee to
be available at the same time. This type of system raises
considerable challenges when trying to implement certain
applications or manage the interaction between clients
and servers in terms of fault tolerance and availability.
Asynchronous systems relax this tight coupling constraint
and are well suited to messaging applications. An
asynchronous system employs queues to store messages,
and can guarantee that messages are retained even after
failures arise. The advantages over synchronous solutions
are that: application recipients do not need to be “online”
at the time a message is sent; and queues facilitate
communication across heterogeneous networks and

978-1-4799-0913-1/14/$31.00 ©2014 IEEE

systems while still being able to make some assumptions
about the behavior of the message handling. Message
Oriented Middleware (MOM) is a loosely coupled
asynchronous framework focused on sending and
receiving messages over distributed heterogeneous
platforms [1].

Existing MOMs fall into one of two categories:
enterprise messaging systems and real-time messaging
systems. With the intention of addressing traditional
business needs, enterprise messaging systems provide
message delivery assurance and transactional guarantees.
They usually implement the Java Message Service (JMS)
standard [2] and can transport messages over a wide area
across multiple domains. However, they do not
proactively manage messaging performance. As such,
applications cannot predict or depend on when messages
will arrive at the destination. Real-time messaging
systems, on the other hand, offer QoS assurance by
allocating resources and scheduling messages based on
application-specific QoS objectives. They often conform
to the Data Distribution Service (DDS) standard [3].

Message Oriented Middleware adopts a message
centric approach and usually employs both message
queuing and publish/subscribe communication schemes.
Figure 1 shows an example of a MOM system based on a
publish/subscribe structure. Brokers are inter-connected
through an overlay network where application
components attach to a local broker [1] and they do not
interact directly. Instead, their communications are
mediated by an additional logical layer, called a
dispatcher. In a topic based publish/subscribe MOM
system, each message is classified as belonging to one of
a fixed set of topics. A publisher labels each message it
produces with a particular topic. Similarly, the subscriber
has the ability to express their interest in a topic a pattern
of topics to a broker, and these are collected by the
dispatcher in a suitable data structure. When a component
publishes a message, the dispatcher matches this against
existing subscriptions, and delivers the message to all
those application components that issued matching
subscriptions. This process is usually referred to as
message filtering. There can be an arbitrary number of
topics in the system. Each endpoint can publish and
subscribe to one or many topics, while each broker can

perform publish/subscribe matching, transport messages
to local endpoints or neighboring brokers, and optionally
perform message mediation.

Broker

Broker

Broker

Broker

Broker
Endpoint Node

Endpoint Node
Endpoint Node

Endpoint Node

Endpoint Node

Endpoint
Node

Endpoint Node

Figure 1: Example Publish-Subscribe System Model

Using this style of interaction, the sender does not

know the identity of the receivers: it is the dispatcher
inside the broker that identifies them dynamically. As a
consequence, new components can join a federation,
become immediately active, and cooperate with others
without requiring any reconfiguration of the architecture.
Due to this flexible structure, MOMs can deliver a
service that allows content providers and consumers to
concentrate on the production and consumption of
transmitted information. The key advantage of a MOM
architecture is that it reduces the number of point-to-point
connections that need to be managed by the applications
in a complex business-critical IT system.

Recent studies show that configuration of the network
access control is one of the most complex and error prone
network management tasks [12]. For this reason, network
misconfiguration has become the main source of network
unreachablility and vulnerability problems. To achieve
resilience, an efficient way to configure and reconfigure
the system is necessary. The main goal of configuring
and reconfiguring systems is to make sure that the system
continues to operate normally. However, if the protocols
which perform the configuration and reconfiguration
have flaws themselves, the configuration and
reconfiguration will be prone to errors. It is therefore
important to devise a means of verifying if the
configuration is correct. Publish/subscribe systems are
often complex and hard to test. In particular, given the
inherent non-determinism in the order of event receipts,
delays in event delivery, and variability in the timing of
event announcements, the number of possible system
executions consequently become combinatorially large. It
is relatively easy to configure an individual device such
as a broker or a firewall, but it is extremely complex to
attempt a consistent configuration of a large network with
many connections between devices. So this paper focuses
on building a MOM system model and verifying the
reachability and configuration rules of a modeled system.

The organization of the remaining of this paper is as
follows. In section II we present an overview of model
checking techniques and a brief introduction of basic
concepts of temporal logic. Section III considers the
relevant related work. In Section IV we present how a
MOM model is created, the abstractions made for the
verification of the reachability of topics and loop
detection, and the design choices for path detection.
Section V describes the procedure of building a MOM
model in NuSMV. Section VI shows an example of the
verification and detection of failures in paths and brokers
in 50 node MOM. Section VII concludes with a brief
discussion of the addition of new constraints to be
verified in our MOM model.

II. AN OVERVIEW OF MODEL CHECKING AND
TEMPORAL LOGIC

Model checking is an automatic technique for
verifying a finite-state system, such as sequential circuit
designs and communication protocols. Formulas are
written in temporal logic, and a reactive system can be
modeled as a state transition graph. An efficient search
procedure is used to determine whether or not the state
transition graph satisfies the formulas [4].

There are several advantages in using a model
checking technique. The most important one is that the
procedure of verifying is highly automated. Typically, the
user provides a high-level abstraction of the model and
the formulas that are to be checked against. The model
checker will either terminate with the answer ‘true’,
indicating that the model satisfies the formula, or it will
give a counter example execution that shows why and
where the formula failed. This is typically achieved via
extensive simulations and searched every possible state.
The counter example helps to detect potential problems in
the system or the violation of the protocol.

However, previous model checkers were only able to
check small systems and protocols [5, 6, 7]. They were
not capable of operating on large systems because of the
state explosion problem [8]. With the help of an Ordered
Binary Decision Diagram (OBDD) the capability of a
model checker can be increased dramatically [9]. OBDD
can effectively reduce useless states. So the number of
nodes in an OBDD no longer directly depends on the
actual number of states or the extent of the translation
relations. With this accomplishment, a number of major
companies including Intel, Motorola, Fujitsu and AT&T
have started using symbolic model checkers to verify
actual circuits and protocols [4].

The combination of a model checking algorithm
together with a representation of the translation relation
(using OBDD), is called Symbolic Model Checking.

NuSMV is a symbolic model checker developed by
ITC-IRST and UniTN with the collaboration of CMU and
UniGE [10]. NuSMV provides a language for describing
models a user wishes to verify and it directly checks the
validity of Linear-time Temporal Logic (LTL) or
Computation Tree Logic (CTL) specifications on those
models. Statements are expressed in temporal logic that
are used for reasoning about things that change over time.

A reactive system can be modeled as a state transition
graph [11]. It provides as output either the word ‘true’,
when the rules/specifications hold, or a trace showing
why one of the rules or specifications does not hold true
[12].

Typically, in CTL temporal connectives are a pair of
symbols. The first part is composed of A or E. A means
‘along all paths’ and E means ‘along at least one path’.
The second part of the pair is composed of X, F, G, or U,
meaning ‘next state’, ‘some future state’, ‘all future
states’ and ‘until’, respectively. For example, AF p means
for all paths p will finally be true and EF p means there is
at least one path in which p will finally be true. By using
temporal logic, conditions that change over time can be
represented, for example, ‘I will be hungry eventually’
[13].

III. RELATED WORK

Quite a few attempts have been applied to develop
formal foundations for specifying and testing
publish/subscribe systems [14, 15, 16, 17, 18], and this
area remains a fertile one for formal verification. While
these papers provide a formal method for testing
publish/subscribe systems, at present they require an
expert in formal specification and theorem proving to use
them effectively. Our research bases on those researches,
but aims to have more accessible and specific features of
a publish/subscribe system to be checked by NuSMV
model checkers. Unfortunately, existing notations and
methods are difficult to use in practice by non-formalists,
and require considerable proof machinery to carry out.

In [19], the authors propose a model checking for
publish/subscribe architectures that provides a set of
pluggable modules that allow the modeler to choose one
possible design of a publish/subscribe system out of a set
of choices. The authors believed that a typical system
could be divided into the following elements: the
components which encapsulate data and functionality; the
event types that indicate the events that can be announced;
the shared variables and bindings between events; event
delivery policy and the concurrency model. Thus, in [19],
the research built those elements into different reusable
entities to constitute a model of publish/subscribe system.

 However, available models in [19] are far from
capable of verifying the different characteristics of
existing publish/subscribe systems. For instance, the
message dispatching mechanism is only characterized in
terms of delivery policy (which is asynchronous,
synchronous, immediate or delayed), and application
entities cannot change their subscriptions at run-time.
Those are extended in [20] by adding more expressive
events, dynamic delivery policies and dynamic event
method bindings. Then the paper [21] applied these
features to represent a transformational framework that
starts from producing Extensible Markup Language
(XML) data for model checking as well as executable
artifacts for testing. But the paper [21] only deals with the
specification of different delivery policies depending on
the overall state of the model, and still does not capture
real-time constraints. Researchers in [21] tailored SPIN,

one of the model checking tools, into a new one named
‘Bogor’ and added Bogor into a Java development
environment. However, as with SPIN, Bogor does not
support CTL and time constraints. So the work proposed
in this paper uses NuSMV rather than Bogor to support
CTL in the MOM verification process.

Rather than building a generalized model [19, 20, 21]
for publish/subscribe systems that leave many of details
out, this paper focuses on verifying configuration and
reconfiguration for a PS overlay network using a NuSMV
code generator to simplify processes of building and
checking the model.

E. Al-Shaer et al. [12] presented a novel approach for
modeling the global end-to-end behavior of an access
control configuration for an entire network. The model
represents a network as a finite state machine where the
header and location information of the message which
belonging to a topic determine the state. Furthermore, the
message header information determines the whole
transitions for a message. For a message, the broker
which publics the message is the source, the broker which
subscribes to this message is the destination. Inside the
message header there is information giving the message
source IP address, the destination address, and its current
location. The rules for each device are also modeled.

32-bits are used for the source IP address, the
destination IP address, and the device currently
processing the packet, with 16-bit source port number and
destination port numbers in the basic network model of
[12]. In order to illustrate this approach, an example
containing only 2 bits for the source IP, destination IP,
and location IP, and 1 bit for the source port and
destination port is given. The formulas use 1 1 1, ,s d l for the
higher order bit in the source IP address, the destination
IP address, and the location of interested IP address
respectively. 0 0 0, ,s d l are used for the lower order bits.

' ' ' '
0 0 1 1, , , ...s d s d represent the values of the bits in the next

state with the same interpretation as the unprimed
versions above.

Assume a broker with IP address 3 sends all messages
in different topics destined for IP addresses 1 and 0 to IP
address 0 (next hop), while all other topics are sent to IP
address 2 as a default gateway.

The policy described above can be formulated as:
' ' ' '

1 1 0 1 1 0() ()d l l d l l∧ ∧ ∨ ∧ ∧ (1)
This formula (1) shows two possible situations at a

broker. The first one is ' '
1 1 0d l l∧ ∧ . The destination

restriction 1d means 0d could be 0 or 1 but 1d could just
be 0. Hence the destination would be 01 or 00.
Then ' '

1 0l l∧ means that for any topic which destination is
01 or 00, the next location will be 00. The other situation,

' '
1 1 0d l l∧ ∧ indicates that when the destination is 10 or

11, the next location will be 11. In our case a broker acts
as a router and a policy is associate with each topic.

For a simple model with several components (e.g.
routers, sensors or other end nodes), using less than 5
Boolean variables to represent the IP addresses is

feasible. However, in the real word, the IP addresses
should be represented by 32 Boolean variables. If one
designs a model using the IPv4 address structure, it will
need up to 232 different states, which may lead to a state
explosion. In [12], the authors’ propose a basic model
that has five key identity variables; two of them (ports
and port ids) are 16 bits long and the rest (IPsource,
IPdestination and location) that are all 32 bits. In this
model, there are thus 2128 possible states. In order to get
rid of the state explosion problem, this paper proposes
another way to build model. Since the publish/subscribe
system is an overlay network, the number of brokers is
much less than the number of routers in its under layer
network. In our model we do not use 32-bit IP addresses.
We use the natural numbers of IDs to handle the number
of brokers. However, we potentially need policies for
each topic and so the set of policies can be large.

Although model checking is a powerful technique,
creation of appropriate finite state models for the systems
being checked is still one of the stumbling blocks to using
it. An important challenge of this research is how to build
feasible models of publish/subscribe based MOM overlay
networks to reduce the system to a finite state model,
without eliminating the class of errors that the we wants
to check..

IV. MODELING A REALISTIC LARGE SCALE MOM
SYSTEM

The authors’ previous work [22], describes a model for
a publish/subscribe based MOM. A simplified model
with only six brokers was used to perform the model
checking. Firstly, the authors provided an illustrated
example with six brokers where each of them has a
unique 4-byte IP address. Each broker has a number of
publishers and subscribers linked to it. In order to
simplify the evaluation of this six-broker model, only one
broker failure is considered at a time. The work in [22]
requires a user to manually input a routing table for the
overlay network and the 4-bit IP address structure was
implemented. In this paper, a MOM system with 50
brokers is based on the system developed at the IBM T.J.
Watson Research Center [23].

Each broker has a set of topics (that it is either
publishing or subscribing to). With this number of
brokers, manually generating the corresponding routing
table is complex and error prone. Even if the rerouting is
computed using a load balancing mechanism, additional
constraints can require manual correction. Therefore, we
developed a tool that represents the network of brokers in
a MOM system and records the topics that each broker
publishes or subscribes to. In the tool, the link
information refers to the links between a broker to its
neighboring brokers. The link information and the
selection of a specific routing algorithm (e.g. Djikstra’s
Algorithm) are used to automatically generate the routing
table of the MOM overlay. We also implemented a
NuSMV code generator that automatically generates a
full NuSMV MOM model with all the necessary
specifications for the topic reachability verification.

Figure 2: A Realistic Commercial-used MOM Overlay

Network

Following parts introduce the whole processes of
building and verifying a MOM system model in NuSMV.

A. Broker Information Collection

The first step of building this verification system is to
collect the broker information and then setup the overlay
network in NuSMV model checker. Thus the user needs
to provide the total number of brokers in the overlay
network (this will only need to be input once at the
beginning) and the information for each broker. The
information for each broker includes the ID of the broker
that is used to identify the broker in the overlay network;
the IDs of the neighboring brokers that have direct
connections to this broker; and the published and
subscribed topics that this broker dispatches. This
information is used to further automatically generate a
routing table that contains the shortest path between any
two brokers in the network, and the subscribed and
published topic distribution information. This information
is stored into a hash map. Table I illustrates the
information that is stored in the hash map structure for
the first 3 brokers of Figure 2:

TABLE I. STRUCTURE OF THE STORED MOM CONFIGURATION

brokerID neighbouring
Brokers

publishedTopics subscribedTopics

1 11,16 weather, films music
2 11,18 sports weather, stock
3 11,16 music sports

1) Routing Table Generation

Here we define a path as a set containing all brokers
that a message passes through from its source to
destination during delivery. All possible paths for the
overlay network is generated by using Djikstra’s shortest
path algorithm [26] based upon the link information,
which refers to the broker and its direct connected
brokers (neighboring brokers). The shortest paths for
each source and destination are stored in a two
dimensional array (n n×), where n is the number of
brokers in the network. This information can be
represented as a matrix P where the rows correspond to
the source broker IDs, the columns correspond to the
destination broker IDs and the values are the
corresponding sets containing the correspondent shortest
paths:

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

...

...
...

...

n

n

n n n n

p p p
p p p

P

p p p

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

After generating the matrix P , the routing table for the
overlay network is generated. The routing table can be
represented as a matrix R where each row corresponds to
a broker (Broker ID) of a topic and each column
represents a destination broker (Broker ID). The value
stored in the matrix shows the next hop according to its
current location and destination.

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

...

...
...

...

n

n

n n n n

r r r
r r r

R

r r r

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

For example, for a particular topic the first 3 brokers of
Figure 2, we could have the routing information shown in
Table II:

TABLE II. EXAMPLE OF ROUTING TABLE

Loc. Dest. Loc.

1
3,7,11,19,20,21,22,23,24,25,

26,2728,29,30,31,32,33,34,35,
36,37,38,39,40,41,42,42,44

11

1 2,4,5,6,8,9,10,12,13,14,15,16,
17,18,20,31,45,46,47,48,49,50 16

2
7,8,9,11,12,19,21,22,23,24,25,26,27,
28,29,30,32,33,34,35,36,37,38,39,
40,41,42,43,44,45,46,47,48,49,50

11

2 1,3,10,14,16,31, 16
2 4,5,6,13,15,17,18,20, 18

3
3,7,11,19,20,21,22,23,24,25,

26,2728,29,30,31,32,33,34,35,
36,37,38,39,40,41,42,42,44

11

3 2,4,5,6,8,9,10,12,13,14,15,16,
17,18,20,31,45,46,47,48,49,50 16

In this table, the first column shows the current
location of a message. The second column shows the
identification of the destination broker. The last column
provides the next hop of that message.

B. Generating the CTL Specifications in NuSMV for
Every Stored Topic

We will build a NuSMV model of the delivering
process for each topic. After having collected the
necessary information for NuSMV to create the finite
state machine for the MOM overlay network, the CTL
specifications for checking the reachability of each topic
needs to be generated for the input in the NuSMV model.
What is verified here through CTL specifications is that
each message from a certain publisher will reach all the
required subscribers. The necessary information for
building the model for each topic is the source broker ID,
the destination broker ID and the broker ID of the current
location. The NuSMV requires the following three state
variables:

src is the source broker ID;
dest is the destination broker ID;
loc is the current location broker ID.
For example, if Broker 1 is the source of a topic and

one of this topic’s destination broker is Broker 13 The

reachability verification can be represented in a CTL
specification as:
 (1 13 1) (1 13 13))src dest loc AF src dest loc= ∧ = ∧ = → = ∧ = ∧ = (2)

 The CTL specification (2) indicates that finally there
will be a state where the current location of a topic
coincides with its destination identification. This means
that eventually the message will arrive at its destination.

Our implemented NuSMV model checker can test all
the sources and destinations of a topic. If there are a large
number of topics, the checker will take a long time to test
all the sources and destinations entries. We require that
for a pair of source-destination brokers, there is a path
connecting them based on the routing protocol. However,
this path could be part of another path or include other
paths of other topics. We call a path of a topic that
completely contains the paths of other topics as “super-
path” and the contained paths are “sub-paths”. For
example, in Figure 2, a message that must go through a
path from Broker 1 to Broker 13, it must go through
Broker 16 and Broker 17. This path alone has 12 different
sub-paths including itself (e.g. the number of possible
combinations of all possible source and destination pairs).
The path of a topic could be a sub-path of another already
successfully checked path, consequently this sub-path
need not be tested again.

With the increasing number of brokers, manually
listing all possible paths (as presented in [22] for the six-
broker model) is no longer feasible. An algorithm that
can automatically generate all possible paths and find all
sub-paths for a tested path is required for larger MOM
systems. We integrated the detection of sub-paths and
already processed paths in an algorithm that writes the
CTL specification for each topic, significantly decreasing
the overall testing time. In the algorithm, a matrix F is
created to store the states indicating if a CTL
specification has been already written for a specific path
(source-destination pair) or not. In this matrix, if for a
specific source–destination path a CTL specification has
been written then the corresponding value is set to “true”,
otherwise the value is “false”. Rows in matrix F indicate
the source of a path, columns indicates the destinations of
the path, and the corresponding boolean value indicates
whether a verification check for that path has been
written or not.

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

...

...
...

...

n

n

n n n n

f f f
f f f

F

f f f

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

The following pseudo-code describes the algorithm
used for generating the NuSMV CTL specifications for
every topic managed by the MOM:

1. Initialize matrix F all to FALSE
2. N:=total number of brokers
// For each broker, extract each subscribed topic
3. For ID ← 1 to N
// Extract the subscribed topics of broker ID
4. For t ← 1to Length Of (ID.subscribedTopics)
5. TOPIC ← ID.subscribedTopic(t)

Table III displays a comparison between using and not

using the sub-path detection algorithm for the fifty-broker
model.

TABLE III. SUB-PATH DETECTION PERFORMANCE COMPARISON

Number
of

topics

Average number of
paths to be tested

Average time to generate
NuSMV code (ms) over 50

experiments on each
different number of topics

Sub-path
detection

No sub-
path

detection

Sub-path
detection

No sub-
path

detection
10 30 50 2 7
50 120 250 3 27

100 200 500 7 67
500 468 2500 15 183
1000 550 5000 18 318
5000 570 25000 21 7942

10000 588 50000 37 58627

In order to assess the performance of our sub-path
detection algorithm, we automatically generate different
numbers of topics and assign each topic to 5 subscribers.
From Table III, we can see that by using the sub-path
detection the number of paths to be verified by NuSMV
and the total time of generation are significantly reduced.

C. Loop Detection
Our implemented NuSMV model checker also

provides a way of detecting the existence of loops in the
routing table. The aim of loop detection is to find out
whether a message goes back to a broker that it has
already passed through. Formula (3) shows an example
rule for detecting a loop path at Broker 1:
 1 ((! 1))src E X A F src= ∧ = (3)

Formula (3) will be true if a message does not pass
through Broker 1 again after passing through it once.
However, it is possible that a broker is the source broker
as well as the destination broker at the same time (it has a
subscriber of a specific topic, but at the same time, this
broker also has a publisher to the same topic). Formula
(3) will be evaluated to false as the source and destination
broker is the same for that topic. There are two ways to
overcome this problem. The first is to extract all the
topics whose sources and destinations are in the same
broker. The second way would be to use Timed CTL to
impose a restriction in Formula (3) where it would only
evaluate to false if and only if the message again passes
through the same broker after it has traversed one or more
hops (this is being added in our work).

V. THE MOM MODEL IN NUSMV

As mentioned in section II, the key task for
constructing a NuSMV model is to find a suitable finite
state model to replace the original system. We model the
entire MOM overlay network as a finite state machine,
while each state is defined by a different broker ID. The
state transition of the overlay network is determined by
the topics and the routing protocol in the overlay
network. The routing protocol in this model is the
shortest path. A topic starts from its source broker and
follows its shorted path route until it reaches its
destination broker.

Each of the three state variables for framing the
NuSMV model (src , dest and loc) has the set of broker
IDs (e.g. 1,2,…,49,50) as domain. So there are 51.25 10×
possible states combinations for our model. All the
variables are given initial value and rules for their next
states transition. The initial values of loc is the initial
value of src as a topic’s initial current location is its
source broker.

In the CTL specification the initial values for src and
dest keep the same throughout. The rules for the next
state transition of loc follow the matrix R (depending on
the current value of loc and the value of dest) and are
similar to formula (2) above.

For example, following Figure 2, if Broker 1 has a
topic about ‘weather’ and Broker 13 subscribes to this

6. IDdest ← ID
// Going through all the brokers to extract the publishers
of TOPIC
7. For IDSourcebroker ← 1 to N
// Search and extract the publishers of TOPIC
8. For n ← 1 to LengthOf

(IDbroker.publishedTopics)
9. if

TOPIC=IDbroker.publishedTopics(n)
10. then IDsource ← IDbroker
// Check matrix F to see if CTL formulas have already
been written for this path and its sub-paths
11. if f IDsource, IDdest != ‘true’
12. then
13. Write the corresponding CTL

formula
// Search matrix P and extract the routing path of

,IDsource IDdestp

14. For i ← 1 to pl ← LengthOf

(,IDsource IDdestp)

15. For j ← i+1 to pl
// Go through all the possible hops between IDsource
and IDdest
16. Bsource ← , ,IDsource IDdest ip

17. Bdest ← , ,IDsource IDdest jp
18. f Bsource, Bdest ← “true”
19. f Bdest, Bsource ← “true”
20. End for j
21. End for i
22. else if goes to step 7
// The path and all sub-paths between IDsource and
IDdest for TOPIC have been flagged as “true”
23. End for n
24. End for IDbroker
// All publishers of TOPIC have been searched and
written into CTL formulas
25. End for t
// All the subscribed topics of Broker ID were processed
26. End for ID
// All the subscribed topics of all brokers were processed
// consequently, all CTL formulas for all sources and
destinations of all topics have been processed

topic, then the, the state transition diagram is showing as
the following figure:

 Figure 3: The state transition diagram segment (one source

and one topic)
The first transition for this topic is from

state 1, 13, 1src dest loc= = = , and results in the next
states 1, 13, 16src dest loc= = = , and so on.

VI. VERIFYING FAILURES IN A LARGE SCALE MOM
SYSTEM

The two main types of failure within a MOM system
are path failure or degradation beyond acceptable limits
and broker failure. There are many reasons (e.g. path or
buffer overload, power outages). that can lead to a failure.
Quite a few researchers have devoted time to load
balancing and provide measures to prevent failures.
However, failures may still happen and a robust system
needs to respond quickly to such incidents. In this
research, since the user needs to manually input brokers’
information, incorrect configuration may happen. It is
possible that the user may forget a link or accidently
isolate a broker. This paper proposes a way to verify
failures on paths and on brokers.

Figure 4: Failure of Direct Path between Broker 13 and 17

In previous sections, an integrated model for verifying
the reachability for all topics has been presented. The
model checker will terminate with either ‘true’ or ‘false’
to show the availability of a path or otherwise. All
unavailable paths will be noted down and then their one-
hop sub-paths will be tested again to locate the failed
link(s). In Figure 4, let’s assume that the direct path from
Broker 13 to 17 has failed (we name this failed path as
P1). Since P1 failed, all paths that involve P1 will
terminate with ‘false’. For example, the path from Broker
12 to 18, which including P1, will terminate with ‘false’.
Then, its one-hop sub-paths which are the direct path

from Broker 12 to 14, the direct path from Broker 14 to
13, the direct path from Broker 13 to Broker 17 and the
direct path from Broker 17 to 18 will be retested. In this
scenario, only the direct path from Broker 13 to 17 will
terminate with ‘false’ and then we can locate the failure
path.

Figure 5: Failure of Broker 17

If a broker fails, all the direct paths traversing the
failed broker will be unreachable. By the same measure,
as shown in Figure 5, the direct path from Broker 13 to
17, the direct path from Broker 16 to 17 and the direct
path from Broker 18 to 17 will test unreachable. There is
then a high probability that Broker 17 has failed.

After locating the failure paths and brokers, the user
can revise the topology and compensate for the failures.

VII. CONCLUSION AND FUTURE WORK

Message oriented middleware has been widely used in
cyber-physical systems, such as some wireless sensor
networks [24] and Internet-enabled enterprise systems
[25]. However, the primary disadvantage of many MOM
systems is that they require an extra component in the
architecture, the message transfer agent (i.e. the message
broker). As with any system, adding another component
can lead to a reduction in performance and reliability, and
can also make the system as a whole more difficult and
expensive to maintain. The goal to this research is to find
a suitable means to retain the performance and reliability
for a MOM system after a failure.

This work provides a code generator to automatically
generate a MOM overlay checker when the links and
topics of each broker are provided. Then the reachability
of all topics are tested and the loops within the topology
are detected. Also configuration could be manual (most
would be automatic, but manual override may be done by
the user) then our work is essential. Moreover, if some
paths or brokers fail (could be the result of a
misconfiguration), our checker quickly locates the failure
and informs the user. A new configuration can be
performed by the user based on the feedback provided by
the model checker. The code generator that this research
implements allows any user to build a model checker for
a MOM based publish/subscribe system, even if the user
has little knowledge of programming languages or of
NuSMV.

As the number of brokers increases, manually
generating a routing table for a large-scale MOM system
becomes extremely complex. As mentioned before, this
work designed a tool to assist users to build a model. By
using the tool, users can simply input link information of
the brokers, which is much easier to provide than a
complete routing table, and the tool automatically
generates a model from this link information. In this
research, the routing table is generated based on the
shortest path algorithm although it is possible to verify
the contents of the table no matter how it is created (i.e.
including static entries). In future work, we will provide
more requisites for verifying a realistic MOM system.
One of them is the ability to verify the reachabilty of
topics when no predefined routing table is available.
Moreover, since many MOM systems are expected to
provide an efficient and high quality messaging service,
another important requisite is to check if the rules for
guaranteeing that end-to-end latency constraints are met
by every broker. These new features are being added in
our research work.

REFERENCES

[1] Xiao-FeiAn, Li-Ying Bian.’Design of Message-Oriented
Middleware of Distance Teaching Platform Based on
Distributed Message Control’ 2010 International
Conference on Computational Aspects of Social Neworks.

[2] Oracle Corporation, Java Message Service API Rev. 1.1,
2002. Available at http://java.sun.com/products/jms/.

[3] DDS: Data distribution service for real-time systems.
http://www.omg.org/technology/documents/formal/data_di
stribution.htm

[4] E.Clarke, O. Grumberg, and D. Long. Model Checking
1990.

[5] M. C. Browne, E. M. Clarke and D. Dill. Automatic circuit
verification using temporal logic: Two new examples. In
Formal Aspects of VLSI Design. Elsevier Science
Publishers (North Holland) 1986

[6] M. C. Browne, E. M. Clarke, D. Dill and B. Mishra.
Automatic circuit verification using temporal logic. IEEE
Transactions on Computers, C-35(12): 1035-1044. 1986

[7] M. C. Browne, E. M. Clarke and O. Grumberg.
Characterizing finite kripke structures in propositional
temporal logic. Theoretical Computer Science, July 1988

[8] Martin Kot. ‘The State Explosion Problem’ 2003[online]:
http://www.cs.vsb.cz/kot/down/Texts/StateSpace.pdf

[9] R. E. Bryant. Graph-based algorithms for Boolean function
manipulation. IEEE Transactions on Computers, C-35(8),
1986

[10] M. Pistore and M. Roveri’The NuSMV Model Checker’
2003[online]:
http://www.cse.iitd.ernet.in/~sak/courses/foav/nusvm-iitd-
2.pdf

[11] HabtamuAbie. ‘Adaptive Security and Trust Management
for Autonomic Message-Oriented
Middleware’MobileAdhoc and Sensor Systems, 2009.
MASS'09. 2009

[12] E. Al-Shaer, W. Marrero, A. El-Atawy, and K. ElBadawi.
‘Network Configuration in A Box: Towards End-to-End
Verification of Network Reachability and Security’ In
Proceedings of the 17th IEEE International Conference on
Network Protocols (ICNP), pages 123–132, 2009.

[13] Richard Alimi, Ye Wang, and Y. Richard Yang.’Shadow
configurationas a network management primitive’ In

SIGCOMM ’08: Proceedings ofthe ACM SIGCOMM
2008 conference on Data communication, pages111–122,
New York, NY, USA, 2008. ACM.

[14] G. Abowd, R. Allen, and D. Garlan. Using style to
understand descriptions of software architecture. In
Proceedings of SIGSOFT’93: Foundations of Software
Engineering, Software Engineering Notes 18(5). ACM
Press, December 1993.

[15] D. J. Barrett, L. A. Clarke, P. L. Tarr, and A. E. Wise. A
framework for event-based software integration. ACM
Transactions on Software Engineering and Methodology,
5(4):378–421, October 1996.

[16] J. Dingel, D. Garlan, S. Jha, and D. Notkin. Reasoning
about Implicit Invocation. In Proceedings of the Sixth
International Symposium on the Foundations of Software
Engineering (FSE-6), Lake Buena Vista, Florida,
November 1998. ACM.

[17] J. Dingel, D. Garlan, S. Jha, and D. Notkin. Towards a
formal treatment of implicit invocation. Formal Aspects of
Computing, 10:193–213, 1998.

[18] D. Garlan and D. Notkin. Formalizing design spaces:
Implicit invocation mechanisms. In VDM’91: Formal
Software Development Methods, pages 31–44,
Noordwijkerhout, The Netherlands, October 1991.
Springer-Verlag, LNCS 551.

[19] Garlan D, Khersonsky S, Kim J S. Model checking
publish-subscribe systems[M]//Model Checking Software.
Springer Berlin Heidelberg, 2003: 166-180.

[20] H. Zhang, J. S. Bradbury, J. R. Cordy, and J. Dingel.
Implementation and verification of implicit-invocation
systems using source transformation. In Proc. of the 5th
Int. Wkshp. on Source Code Analysis and Manipulation
(SCAM05), pages 87–96, 2005.

[21] Luciano Baresi, Carlo Ghezzi, and Luca Mottola, Piazza
Leonardo da Vinci, Milano.’On Accurate Automatic
Verification of Publish-Subscribe Architectures’2007

[22] Y. Jia, E. Bodanese, J. Bigham, ‘Checking the Robustness
of a Publish/Subscribe Based Message Oriented System’,
IV International Congress on Ultra Modern
Telecommunications and Control Systems, pp 291-296,
October 2012.

[23] Hao Yang, Minkyong Kim, KyriakosKarenos, Fan Ye, and
Hui Lei,’Message-Oriented Middleware with QoS
Awareness’IBM T. J. Watson Research Centre 2009.

[24] Souto E, Guimarães G, Vasconcelos G, et al. A message-
oriented middleware for sensor networks[C]//Proceedings
of the 2nd workshop on Middleware for pervasive and ad-
hoc computing. ACM, 2004: 127-134.

[25] Tran P, Greenfield P, Gorton I. Behavior and performance
of message-oriented middleware systems[C]//Distributed
Computing Systems Workshops, 2002. Proceedings. 22nd
International Conference on. IEEE, 2002: 645-650.

[26] Shaikh-Husin N, Hani M K, Seng T G. Implementation of
recurrent neural network algorithm for shortest path
calculation in network routing[C]//Parallel Architectures,
Algorithms and Networks, 2002. I-SPAN'02. Proceedings.
International Symposium on. IEEE, 2002: 313-317.

