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Toward Flexibility in Sensor Placement for Motion
Capture Systems: A Signal Processing Approach

Roya Haratian, Richard Twycross-Lewis, Tijana Timotijevic, and Chris Phillips, Member, IEEE

Abstract— Human body motion can be captured by body area
sensor networks. Accurate sensor placement with respect to
anatomical landmarks is one of the main factors determining
the accuracy of motion-capture systems. Changes in position
of the sensors cause increased variability in the motion data,
so isolating the characteristic features that represent the most
important motion patterns is our concern. As accurate sensor
placement is time-consuming and hard to achieve, we propose
a signal processing technique that can enable salient data to
be isolated. By using functional principal component analysis
(f-PCA), we compensate for the variation in data due to changes
in the on-body positioning of sensors. More precisely, we inves-
tigate the use of f-PCA for filtering and interpreting motion
data, whilst accounting for variability in the sensor origin. Data
are collected through a marker-based motion capture system
from two designed experiments based on human body and robot
arm movement. Results show differences between similar actions
across different sessions of marker wearing with random changes
in position of sensors. After applying the f-PCA filter on the data,
we show how uncertainties due to sensor position changes can
be compensated for.

Index Terms— Functional principal component analysis, mea-
surement variability, motion capture.

I. INTRODUCTION

ON-BODY sensors can be used for capturing human
motion. The motion of a body can be thought of

as a collection of time series streams describing the joint
angles, which is called the motion data. Motion data can be
used in applications such as animation, sports biomechanics,
rehabilitation, and so on. In many applications, the human
body is approximated by a collection of articulated limbs
that form a kinematic tree. Determining the anthropometry
of the individual subject is called model calibration. Accurate
sensor placement with respect to anatomical landmarks and
location determination of joint centers with regard to these
sensors are two important aspects of model calibration in
motion capture. Special care must be taken to achieve levels
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of reliability sufficient to justify the results of motion capture
systems despite measurement variability.

Variability in movement patterns plays a fundamental role
in motion analysis and its influence on the analysis of motion
data should be taken into account. Inconsistencies due to
placement errors of on-body sensors can come from three
primary sources: the technicians responsible for placing the
sensors/markers, the measurement system, and the subject
under evaluation [1]. Variability is defined by the sum of
variances from each independent source [2]. Sensor placement
among technicians is the largest source of variability [3].
Particular care should be taken to ensure that sweating, rapid
movements and the placement of markers during different
trials and sessions on the subject’s body, do not affect sen-
sor/marker positioning according to the marker placement
guidelines.

Changes in the position of sensors can also be influenced
by their fitting on/within smart sensing garments, which in
turn affect performance. While appropriate for continuous
use, sensing garments need to consider the wearers’ comfort
and fitting requirements [4], which often hamper measure-
ment performance. Tight-fitting cloths are frequently perceived
uncomfortable while most sensors and applications benefit
from a close textile-body coupling. For less-tight garments,
selecting appropriate sensor positions is essential and it is
often performed empirically by expert opinion [5], which may
not be optimal, or generalized to a population aggravating
measurement variability [6]. This issue arises with intelligent
textile technologies for applications in wearable computing
and health monitoring, smart human–machine interface, and
so forth [7]. Silicon flexible skins have been introduced
to address flexibility in sensing garments [8]. While such
techniques try to develop a new technology for intelligent
sensing, in our research we explore techniques that can permit
current commercial off-the-shelf technologies to be used more
effectively. We elect to use signal processing for its flexibility
with smart sensing.

The reliability of measurements is directly affected by the
sensor placement during different sessions. If experimental
errors conceal important motion deviations, meaningful infor-
mation will be lost. On the other hand, if the limitations
of the motion capture methods are not understood, small
deviations may be considered meaningful, thereby leading to
over interpolation [9]. Every time that a subject tries to carry
out the same movement, a certain amount of variation may
be registered between different sessions of marker wearing.
Variability between sessions was found to be much higher
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than within-session variability because of the high probability
of differences in the marker placement that arise [2].

Sensor misplacement and thus anatomical landmark mis-
location have a substantial effect on joint kinematics and
angles. Sensitivity of joint kinematics variables to anatomical
landmark misplacement has been reviewed in [10]. In [11]
it is shown substantial differences can arise in determining
anatomical landmark location between the expert and self-
marking operators. The “greater trochanter” location was
found by two groups of operators to be more than 20 mm apart
and all pelvic anatomical landmarks were determined with
more than 10 mm difference. In [12] it has been studied that
hip joint centre mislocation of 30 mm in the anterior-posterior
direction generates a mean error on the flexion/extension
moment of about 22%. Furthermore, it has been shown in [13]
that anatomical landmark position uncertainties result in the
observation of physiological knee motions such as the “screw-
home” mechanism even when such motion did not occur.
These uncertainties can lead to erroneous clinical interpreta-
tion of the estimation and thus misdiagnosis.

As discussed increased variability in motion data can be
associated with arbitrary changes in position of sensors, so
discovering the characteristic features that represent the main
motion pattern is our concern. Standard data analysis tech-
niques, which determine the mean and standard deviation of
time series data, summarize motion data in single patterns that
is the average behaviour and show deviations as possible errors
by standard deviation bands. Such techniques severely reduce
the information gleaned from the raw data, and may discard
much important information [14]. In particular, the results does
not account for the information that may be inherent in all
the variations apparent in the data. When different sessions of
marker wearing are averaged, information can be lost and the
averaged curve does not closely resemble any of the individual
curves.

To facilitate analysis, eliminate collinearity and present only
the essential structures contained within the data, multivariate
statistical analysis has proved to be a powerful tool [15].
However, the extent of data loss remains a matter of con-
cern. Among multivariate statistical techniques, linear trans-
formations are computationally easy to perform. With linear
transformations, the use of functional techniques may provide
additional insight into differences in motion patterns. Treating
the data as functions preserves all the information contained
in the raw data. Functional principal component analysis
(f-PCA) is an effective tool for the study of human motion in
modelling motion curves by identifying hidden combinations
and relationships between variables [16].

The basic philosophy of functional data analysis on human
motion data is the belief that the best unit of information is
the entire observed function rather than a string of numbers.
It is assumed that human motion data are supposed to have
an underlying functional relationship governing them [17].
A central idea in functional data analysis is smoothness which
implies that adjacent values in time are linked and it is unlikely
that these values will differ largely [18]. Since f-PCA, which
is an extension of traditional PCA, provides a means of
identifying and examining the main source of variability of

a set of curves, it is useful for analysing human movement
data where variability plays a key role [19].

Principal Component Analysis (PCA) is a multivariate sta-
tistical technique that provides an orthogonal projection of
the data onto a lower dimensional linear space, known as the
principal subspace. It can be used as a decorrelation technique
by computing a new, much smaller set of uncorrelated vari-
ables, i.e. principal components (PCs) [20]–[21]. Each new
variable is a linear combination of the original ones. All the
principal components are orthogonal to each other, so there is
no redundant information. All remaining principal components
are defined similarly, so that the lowest order components
normally account for very little variance and can usually be
ignored [22]–[23]. In other words, PCA can be defined as a
linear projection that minimizes the average projection cost,
defined as the mean squared distance between the data points
and their projections [24]. PCA has already been used as
an effective tool in motion analysis for extracting variation
features in motion data [25]–[26].

In f-PCA, there is an eigenfunction associated with each
eigenvalue, while in PCA there is eigenvector. These eigen-
fuctions describe major variational components. It also permits
extracting loadings and scores. Loadings are the correlation
coefficients between variables and components. Scores are the
contributions of the principal components to each individual
variable [14]. Motion data can be decorrelated by projection on
the eigenfuctions. After projection, stochastic components can
be separated from deterministic components, by subtracting
either one or the other from the signal.

In our previous work [27], a PCA based filtering technique
has been used to compensate for the effect of changes in the
position of sensors. Conversely, in this paper we focus on
f-PCA, and by designing and performing an experiment with
a robot arm we assess the validity and the applicability of the
technique that we introduce. We study and compensate for
the uncertainties in the data due to sensor position changes.
To reflect the true nature of motion data variability, we
investigate the use of f-PCA for filtering and interpreting
motion data, while accounting for their positional variability.
In Section 2, after summarising the problem, our method
is introduced by describing motion data acquisition process,
designed experiments, data analysis and a brief review of
functional principal component analysis. There are two sets
of experiments, one on a human subject and the other on
a robot arm to validate the human subject experiment in a
more controlled movement. Results and a discussion are then
presented in Section 3. Our paper is concluded in Section 4.

II. METHOD

We use functional principal component analysis to discover
the characteristic features that represent the main patterns
of motion, while reducing the variability in motion data
due to arbitrary changes in position of sensors. To describe
the compensation procedure, we first consider the process
of motion data acquisition and then the data processing
techniques used in our study. Our subsequent experiments
comprise two scenarios: motion capture of a human subject
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and a robot arm. The second scenario, which utilizes a more
controlled movement in comparison to the first scenario,
validates the experiment on the human subject. Our data
processing techniques are then discussed.

A. Motion Data Acquisition Process

We use a commercial optical motion capture system named
Codamotion. The system is a general-purpose 3D Motion
tracking system. The measurement unit contains three pre-
aligned solid-state cameras which track the position of a
number of active markers, i.e. infra-red LEDs, in real-time.
The LED markers are powered from small battery boxes,
drive boxes, which are available in two sizes, 2-marker
or 8-marker. Sampling rates are selectable from 1Hz up to
200Hz, dependent on the numbers of markers in use. Each
Codamotion scanner unit contains three special cameras which
detect infra-red pulses of light emitted by the Codamotion
markers and locate the marker positions with very high
resolution and linearity. The cameras are rigidly mounted in
the scanner units so that the system can be pre-calibrated.
The calibrated system measures the positions of markers
within a three dimensional coordinate system that is fixed in
relation to the scanner unit. The active range of the capturing
system is 1.5–5.2m from the scanners and follows a Gaussian
distribution function so that optimal visibility occurs at a
distance of approximately 3m from each scanner. All the
experiments are carried out in this range in accordance with the
motion capture system setup in the laboratory. The process of
system alignment is done by defining the X, Y, and Z axes
of the reference coordinate system before performing each
experiment [28]. The maximum measurement time depends
on a combination of the sampling rate and the total number of
markers being tracked. As the number of markers decreases,
the maximum measurement time can be increased proportion-
ally for a given sampling rate. The angular resolution of each
camera is about 0.002 degrees; this results in a lateral position
resolution of about 0.05mm at 3 metres distance (horizontally
and vertically), and a distance resolution of about 0.3mm [28].

For human motion capture experiments, the long axis of the
measurement unit defines the direction of the X axis, normally
a horizontal line parallel to the walkway. The perpendicular
line from the unit defines the positive Y axi. The other
perpendicular (vertical) line defines the Z axis (positive up)
as is shown in Fig. 1. The marker numbers specified in Fig. 2
are the recommended sets; different numbers may be used as
long as the appropriate names are assigned to the markers in
the motion analysis setup. The geometrical properties of each
body segment are derived, generally speaking, from three non-
collinear points bearing particular anatomical relationships to
the given segment.

There are several standard marker-sets for placing markers
on the human body such as Cleveland Clinic, Saflo, Helen
Hayes, Codamotion, and so forth. The Cleveland Clinic marker
set uses a rigid triad of markers in a plane parallel to the
long axis of the bone to capture the motion of the thigh and
shank in 3 dimensions. The Saflo marker-set consists of a
total body marker-set with 19 retro-reflective markers fixed

Fig. 1. Segment embedded coordinate frames according to the gait set up
of Codamotion marker-set [28].

Fig. 2. Position of markers on human body according to the gait set up of
Codamotion marker-set [28].

on specific anatomic landmarks. The Helen Hayes marker set
is a relatively simple set of external markers developed for
time-efficient video analysis of lower extremity kinematics.
The original configuration of 13 markers minimizes the patient
preparation and data acquisition time and reduces the number
of trajectories that must be tracked or edited. All methods
listed are used for clinical gait analysis. For bilateral gait,
the recommended Codamotion marker-set comprises a total
of 22 standard markers as shown in Fig. 2 for the right side
of the body. Markers shown in parentheses () are optional [28].
The marker sets determine ankle and knee joint centres and
segment coordinate systems by means of a marker on a post
or wand protruding from the anterior aspect of the thigh and
shank, and by single markers placed over the lateral aspect of
the joint flexion/extension axis.

For the purpose of the current investigation in our experi-
ments with controlled motion capture a robotic arm [29] was
used to measure the effect of random marker placement errors
during controlled rotations of one rigid body segment with
respect to another. The robot has a positional repeatability of
±0.02mm, stemming from its high precision when performing
repetitive actions. When defining rigid body segments for
three dimensional kinematic analysis, a minimum of three
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markers are required per segment, two markers define the
longitudinal axis of the segment (in our laboratory, we define
the longitudinal axis as the Z axis; anterior-posterior axis is
the X axis and the medio-lateral axis is the Y axis) and a
third marker is placed off centre from the Z axis to define
the segment as a rigid body so that all three markers are
noncolinear [30].

This arrangement of markers on rigid segments serves two
functions. First: it enables us to define an Embedded Vector
Basis (EVB) for the segment whereby each axis is mutually
orthogonal (a process known as Gram-Schmidt orthogonali-
sation) [31], therefore allowing us to measure rotations using
Euler angles. Second: the embedded axes of the local segment
co-ordinate system are anatomically meaningful [32]. Euler
angles are expressed through three sets of 3 by 3 matrices, with
each matrix describing the rotation of a specific axis. In the
case of our robotic arm segments, the rotation matrices, R,
used to describe rotation in each axis were:

Rx =
⎡
⎣

1 0 0
0 cos θ −sinθ
0 sin θ cos θ

⎤
⎦ (1)

Ry =
⎡
⎣

cosφ 0 sin φ
0 1 0

− sin φ 0 cosφ

⎤
⎦ (2)

Rz =
⎡
⎣

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

⎤
⎦ (3)

Non-cummulative matrix multiplication in the order Z,Y,X
results in the decomposition matrix,

Rzyx = RxRyRz (4)

which correspond to the direction cosines between axes of two
rigid body segments [32]. Equation (4) is called a decompo-
sition matrix because the angles of rotation are decomposed
into their projections onto the axes of the laboratory global
co-ordinate system.

B. Designed Experiments

A full analysis of an individuals’ motor behaviour should
involve the evaluation of an appropriate number of individual
repetitions. We used ten human subjects in ten sessions of
marker wearing. There were inadvertent changes in the posi-
tion of markers for each session while following the standard
marker set. The process of measurements in each session
involves instrumenting the legs and pelvis with active mark-
ers according to the Codamotion marker-set to perform the
motion capture. Ten healthy human subjects, five male (weight
69 ± 7.9 kg, height 170.2 ± 3.4 cm, age 26.6 ± 1.5 years,
BMI 23.8 ± 1.9) and five female (weight 56.4 ± 6.9 kg, height
167.2 ± 3.2 cm, age 25.6 ± 1.5 years, BMI 20.2 ± 2.4)
were recruited for the instrumented gait analysis. Feigned
“inadvertent changes” in position of markers in radius of 2 cm
were made for each of ten sessions of marker wearing. We
used a random number generator to generate random positions
for sensors within a radius of 2 cm around body landmarks.
Each session consisted of six trials. In each trial the subject

Fig. 3. Segment embedded coordinate frames for the robot arm.

walks from the start point to an end point while the motion
capture system captures the subject’s motion. Each trial lasts
for five seconds and the sampling frequency of the system is
200 Hz. The subject was asked to walk at normal walking
speed. This walking speed is maintained as far as possible
whilst different marker placements are made across different
sessions of marker wearing.

For motion analysis of the robot arm which was divided into
two rigid body; the upper segment defined as rigid body 1
(RB1); the lower defined as rigid body 2 (RB2). On RB1,
markers were placed at either end of the segment, 3 cm
from the end and defined the longitudinal Z axis of RB1.
A marker was placed over the hinge joint between RB1 and
RB2. This marker served as the upper marker for the Z
axis marker for RB2 as well as the third, off-centre, marker
required to define RB1 of the local coordinate system within
the Codamotion software. As with RB1, RB2 was defined by
two markers along the length of the segment and two further
markers were used to define the RB2 segment local coordinate
system (Fig. 3). The same configuration of markers was
used on both sides of each segment and the local coordinate
axis system for each segment was defined using a set of
orthogonal axes.

The arm was programmed to rotate for 130 degree with
markers in the described reference position as shown in Fig. 4.
Measurements were recorded over intervals of fifteen seconds.
The motion of the robot arm was recorded while the markers
were in correct position to provide reference motion data. Then
each marker was moved in a random direction at distances of
1 or 2 cm from the initial reference positions on the same
plane of either segment. Twenty sets of data were collected:
ten sets with markers randomly positioned 1 cm from the
initial reference positions and ten sets of data with markers
set randomly at a distance of 2 cm from the initial reference
positions. In order to control rotation data as much as possible,
movement was restricted to one degree of freedom; that is,
the only movement was rotation of RB1 with respect to
RB2 in one fixed plane. This movement was analogous to
flexion-extension in the human arm. All other movements
were constrained in order to reduce any measured confounding
rotation data from orthogonal planes from the axis of rotation
that we measured.
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Fig. 4. Placement of markers which are attached to drive boxes positioned
toward or on the mid-section of each rigid body in such a way that the robot
arm could be modelled as two rigid body segments.

C. Data Analysis

Walking sequences were segmented into cycles. Each cycle
comprises two steps. We asked a subject to walk in a certain
time interval and divide the action into cycles. Each cycle
is identified as the interval from initial contact of one step to
initial contact of the following step of the ipsilateral limb, with
a demarcation marker placed at toe off to define both stance
and swing phases of the gait cycle. The same protocol was also
used to mark the gait cycle for the contralateral limb so that
the gait cycle was marked for both limbs. We use consecutive
right heel contacts to separate each stride.

For the robot arm experiment, all joints with the excep-
tion of the flexion/extension joint of the robot arm were
constrained; therefore, our experiment considered movement
with one degree of freedom. We collected data from cyclic
movement of the robot arm whereby each cycle is identified
as the interval from maximal flexion to the following maximal
flexion of the unconstrained flexion/extension joint. By using
the Z axis position changes of Marker #1 which is the
proximal marker to the grabber, data cycles can be determined.
Segmenting motion data into cycles almost always results in
data cycles of differing lengths due to differences in motion
speed.

In action recognition, identifying features during action
sequences with different speeds or different numbers of sam-
ples in each cycle is an important issue. In such cases time
normalization is necessary before or during the recognition
process. Each cycle should be normalized so it is represented
by the same number of samples. Linear and nonlinear time
normalization using dynamic time warping are the most com-
mon technique that can be used for this purpose. Linear time
normalization linearly converts the trajectory’s time axis from
the experimentally-recorded time units to an axis representing
of the gait cycle [33].

D. Functional Principal Component Analysis

To find the dominant modes of variation in the data, and
tease apart the deterministic and stochastic components of
movement patterns, f-PCA can be a useful tool usually after
subtracting the mean from each observation. It allows for
separation of the main and residual components of a data set.
Viewing consistent features as coherent components imply the
mechanisms generating these common structures follow deter-
ministic rules otherwise they would not be consistent/coherent.
In contrast the residual components often contain a degree of
randomness or stochasticity.

Functional principal component analysis is an extension of
the traditional multivariate PCA statistical technique, where
the principal components are represented by functions rather
than vectors. The upper limit number of principal components
in the multivariate case is the number of variables, while in
f-PCA the number of eigenfunctions is equal to minimum
of K , which is the number of basis functions, and N which is
the number of variables [18]. The number of basis functions
should be less than or equal to the number of sampled data
points, n. An exact representation is achieved when K = n.
The smaller K is and the better the basis functions reflect
certain characteristics of the data, the less computation that
is required. However, if we make K too small, we may miss
some important aspects of the function that we are trying to
estimate. A larger K provides a better fit to the data.

In the first step, we should fit function to the data. To fit
a function to our data, we use a set of functional building
blocks ∅k , k= 1, 2, . . . , K , called basis functions which are
combined linearly (5). That is, a function x(t) defined in
this way is expressed as follows, and called a basis function
expansion.

x (t) =
K∑

k=1

ck∅k (5)

Parameters ck , are the coefficients of the expansion. The
matrix expression of N functions will be like X (t)= C ∅ (t),
where X (t) is a vector of length N containing the func-
tion xi(t), and the coefficient matrix C has N rows and K
columns. To compute these coefficients with more careful
consideration of measurement error, there are two strategies.
The two methods used for computing the coefficients more
accurately are smoothing by regression analysis and by rough-
ness penalties. In the first approach, it can be achieved by
defining data fitting as the minimization of the Sum of Squared
Errors, SSE, and considering the error model as follows,

y j = x
(
t j

) + ε j = C
′ ∅ (t)+ ε j = ∅′

(t j )C + ε j (6)

Using matrix notation let the n−vector y contain the n
values to be fitted, vector ε contains the corresponding true
residual values, and n by k matrix ∅ contains the basis function
values ∅k(t j ). Then we have y = ∅c+ε . The least-square
estimate of the coefficient vectorc is

ĉ = (∅′∅)−1∅′
y (7)

The roughness penalty approach uses a large number of
basis functions but at the same time imposing smoothness by
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penalizing some measure of function complexity. A measure
of roughness of the fitted curves, can be the square of the
second derivate of a function x at argument value t which is
called curvature at t .Thus, a measure of a function’s roughness
is the integrated squared second derivative or total curvature,

PEN2 (x) =
∫ [

D2x (t)
]2

dt . (8)

Consequently the roughness penalized fitting criterion can
be as (9), where λ is the smoothing parameter specifying the
emphasis on the second term penalizing curvature relative to
goodness of fit quantified in the sum of squared residuals in
the first term.

F(c) =
∑

j

[y j − x
(
t j

)]2 + λ PEN2

(
K∑

k=1

ck∅k

)
(9)

By defining the K symmetric roughness penalty matrix
as R = ∫ ∅ (t) ∅′

(t) dt , We can express the estimate of the
coefficient vector c as follows,

ĉ = (∅′∅+λR)
−1∅′

y (10)

After calculating the coefficients and deriving the fitted
functions into our data, we calculate the sample variance-
covariance function, v(st), which is defined as follows,

v (s, t) = N−1
N∑
i

yi (s)yi (t) (11)

The functional eigenequation is
∫
v (s, t) ξ (t) dt = ρξ (s) , (12)

where ρ is eigenvalue and ξ (s) is an eigenfunction of
the variance-covariance function. The eigenfunction which is
called principal component weight function, ξ1(s), can be
found by (13).

Maximize
∑

i
f 2
i1

Subject to
∫
ξ2

1 (s) ds = ‖ξ1‖2 = 1, (13)

where the principal component score, is defined as

fi1 =
∫
ξ1(s) xi (s)ds. (14)

A non-increasing sequence of eigenvalues ρ1≥ρ2≥ . . . ≥ρk

can be constructed stepwise by requiring each new eigenfunc-
tion computed in step l, to be orthogonal to those computed
in the previous steps,

∫
ξ j (t)ξl (t) dt = 0, j = 1, . . . , l − 1

∫
ξ2

l (t) dt = 1. (15)

Solving the eigenequation for extracting functional Principal
Components essentially reduces to performing Singular Value
Decomposition (SVD) of (16). The columns of 	 contain the
eigenfunctions (f-PCs) evaluated at time t and 
 contains

the corresponding eigenvalues. The notation 	T (t) is used to
identify that we are dealing with functions.

v (s, t) = 	(s)
	T (t) (16)

To tease apart the deterministic and stochastic components
of movement patterns, f-PCA can be used as a filtering tech-
nique, especially when partitioning signals into deterministic
and stochastic components. This is achieved by subtracting
either one or other from the signal and can be regarded as
filtering the noise or the common parts, respectively.

As the effect of random changes in position of sensors
causes a random effect on the motion data, to tease apart this
effect from main and coherent component of movement, we
partition the data into two elements, �xi

(global) and �xi
(filtered) as

shown in (17);

�xi = �xi
(global) + �xi

( f iltered)

=
∑L<N

n=1
ξn(t) f (n)i +

∑N

n=L+1
ξn(t) f (n)i (17)

where we assume the number of basis functions are more than
the number of variables. The sum of the dominant principal
components weight functions is given by �xi

(global) , so the
filter characteristic depends on the data. The number of modes
that define the global pattern influences the filtered pattern.

After applying functional PCA on our data, we consider the
main source of variation in data by keeping the most relevant
principal component weight function and removing the rest
from the f-PCA domain. After this stage, the data will be
returned to the first domain whilst removing eigenfunctions
with less variation. We apply this data-driven filter to the
motion data of two sets of experiments on human subject
and robot arm to separate out the effect of random changes
in sensors position from main motion pattern by keeping the
dominant modes of variation in the data whilst considering the
proportion of corresponding eigenvalues to the total variance.

III. RESULTS AND DISCUSSION

Kinematics variables were acquired for several motion cap-
ture sessions of the human body and the robot arm. Positions
of sensors in 3D space are measured in accordance to the
laboratory coordinate system. The captured sensors’ positions
in 3D space will differ depending on where the subject starts to
walk. Since joint angles are descriptive of motion and do not
vary with the change of the position of the subject with respect
to the reference point, we choose to focus on angles of joints
and the effect of sensors’ position changes on derived angles.
For experiments with the human body these variables are the
angles of the pelvis, hip, knee, ankle, and foot in the X, Y, and
Z axes. Kinematics variables of each marker wearing session
were averaged over six trials of each session to eliminate the
effect of factors that are irrelevant to differences in position
of sensors in each session. The cause of these factors could
be different walking speed, different ways of walking because
of the tiredness of the subject and so on.

The aforementioned kinematics variables prior to f-PCA
filtering are shown in Fig. 5. The differences which are
shown between the variables of different sessions are due
to inadvertent changes in position of sensors. The placement
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Fig. 5. Kinematics variables of 10 marker wearing sessions, respectively the normalized angles of pelvis, hip, knee, ankle, and foot in X, Y, and Z planes
separately from each other before applying the filtering technique.

Fig. 6. Kinematics variables of 10 marker wearing sessions, respectively the normalized angles of pelvis, hip, knee, ankle, and foot in X, Y, and Z planes
separately from each other after applying the filtering technique.

changes are random on all X, Y, and Z axes and they were
made within a radius of 2 cm from the correct position which
simulates the effect of technician marker placement errors
across different sessions. Fitting Fourier basis functions into
data from each session, we partition our initial cohort of 150
functions to a set of 10 groups, in which each group contains
15 function to describe each joint kinematic variables.

Each lot, therefore, contains one of the 15 kinematics
variables in a cycle for each of the 10 sessions. By applying
the proposed filtering technique on these lots, we obtain the
functional principal component functions for each kinematic
variable. The most dominant mode of variation is retained, and

the remainder is eliminated, we thus preserve the principle
variations in data and eliminate the effect of inadvertent
changes in the position of the sensors. Finally, after deleting
the non-dominant mode of variation, the functions are returned
into initial domain by using the inverse f-PCA transform.

Figures 5 and 6 show motion averaged over 10 trials of 10
sessions on a human subject data pre and post f-PCA filtering.
Using the technique on the motion data of ten subjects with
ten of marker wearing sessions in each case, shows the mean
variance between curves typically decreases by 95.76%. The
minimum averaged improvement is 88.15% for pelvic angle in
the Y direction and the maximum 99.59% for knee angle in the
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TABLE I

VARIATION AROUND THE REFERENCE ACTION WHILE 1 AND 2 cm

RANDOM CHANGES IN POSITION OF SENSORS BEFORE AND

AFTER APPLYING THE TECHNIQUE

Y direction. It can be readily determined that f-PCA reduces
variability associated with marker placement error. This was
confirmed in the second experiment using robot arm.

The movement of the robot arm was analogous to flexion-
extension in the human arm. All other rotations were con-
strained to eliminate any movement in planes orthogonal to
the measured plane. The movement was restricted to 1 degree
of freedom in order to control rotation data as much as
possible. After applying the technique we can see that the
effect of random changes in position of sensors is reduced.
We compared the motion data with data from reference marker
positioning. As the radius of random changes in the position
of sensors was increased, the variation in motion data from
the reference data also increased as it is shown in Table 1.

Variation has been calculated as summation of differences
between data of motion capture sessions from the reference
motion capture data, divided by the number of samples.
Because of high accuracy of the robot arm we are sure that
the variation in data from the reference motion data is only
due to random changes in position of sensors. Variability in
marker placement error was reduced by 63 % in both 1 cm and
2 cm random marker placement error experiments (Table 1).
As the radius of random changes in position of sensors was
increased, the variation in motion data from the reference data
also increased. Thus it is clear that despite the benefits of
filtering, variability still increases as markers are placed further
away from the known reference positions.

IV. CONCLUSION

Variability of kinematic measurements due to inadvertent
sensor placement changes was discussed in this paper. It has
shown that there is measurement variability due to the failure
to place sensors accurately even following same placement
protocol for each session. The variability may conceal impor-
tant motion deviations and meaningful information can be
lost. A functional PCA-based technique followed by other
techniques was applied on data of the designed experiment.
The goal is to compensate for the effects of sensors position
changes and having more flexible set-up in terms of sensor
placement. Results show differences between similar repetitive
actions with random marker position changes and how these
variations can be compensated for by applying f-PCA filtering.
By keeping the most dominant mode of variation the common
motion pattern can be extracted from motion data of several
marker wearing sessions. By using the data driven filter, we
can realistically derive accurate movement patterns, regardless
of random error associated with marker placement.
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