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Abstract

Anomalous dynamics characterized by non-Gaussian probability distributions (PDFs) and/or
temporal long-range correlations can cause subtle modifications of conventional fluctuation relations
(FRs). As prototypes we study three variants of a generic time-fractional Fokker—Planck equation with
constant force. Type A generates superdiffusion, type B subdiffusion and type C both super- and
subdiffusion depending on parameter variation. Furthermore type C obeys a fluctuation—dissipation
relation whereas A and B do not. We calculate analytically the position PDFs for all three cases and
explore numerically their strongly non-Gaussian shapes. While for type C we obtain the conventional
transient work FR, type A and type B both yield deviations by featuring a coefficient that depends on
time and by a nonlinear dependence on the work. We discuss possible applications of these types of
dynamics and FRs to experiments.

1. Introduction

Understanding fluctuations far from equilibrium defines a key topic of non-equilibrium statistical physics. A
new line of activities started about three decades ago by discovering different forms of fluctuation relations (FRs)
which generalize fundamental laws of thermodynamics to small systems in non-equilibrium; see [1-8] for
reviews and further references therein. More recently these laws got unified by over-arching schemes, most
notably the deterministic dissipation function approach by Evans and coworkers [ 1], and by stochastic
thermodynamics [7, 9-11]. The latter theory starts from defining entropy production on the level of individual
trajectories in stochastic models such as Langevin and master equations. Given that stochastic thermodynamics
is based on rather simple Markov models one may ask to which extent FRs derived from it are reproduced if the
dynamics is more complicated. In our paper we address this problem by testing FRs for stochastic dynamics that
is anomalous due to non-Markovian dynamical correlations and/or strongly non-Gaussian probability
distributions (PDFs).

Anomalous dynamics has been observed in many experiments and is widely studied by the theory of
anomalous stochastic processes [12—17]. A characteristic property of anomalous dynamics is that the mean
square displacement (MSD) grows nonlinearly in time yielding anomalous diffusion in the long time limit [15].
In contrast, Markovian dynamics like Brownian motion generates a MSD that increases linearly for long times. If
the MSD grows faster than linear one speaks of superdiffusion, if it grows slower than linear one obtains
subdiffusion. There are many different ways to model anomalous stochastic dynamics such as continuous time
random walks (CTRW) [12, 18-20], generalized Langevin equations [13, 21-23], Lévy flights and walks [17, 24],
fractional diffusion equations [ 16], scaled Brownian motion [25, 26] and heterogeneous diffusion processes
[27], to name a few.
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The study of FRs for anomalous stochastic processes appears to be rather at the beginning: Crooks and
Jarzynski work relations as well as transient and steady state fluctuation theorems have been confirmed for non-
Markovian Gaussian dynamics modelled by generalized Langevin equations with memory kernels, given specific
conditions are fulfilled [28-31]. These results have been reproduced and generalized by a stochastic
thermodynamics approach [32]. For non-Gaussian PDFs generated by Langevin equations with non-Gaussian
noise, such as Lévy noise or Poissonian shot noise, violations of conventional steady state and transient
fluctuation relations (TFRs) have been reported [33-38]. For a CTRW model with a power law waiting time
distribution it was found that the steady state FRs may or may not hold depending on the exponent of the waiting
time distribution [39]. Computer simulations of glassy dynamics exhibiting anomalous diffusion also showed
violations of TFRs [40, 41]. In [42—44] several of the above types of stochastic dynamics including fractional
Fokker—Planck equations (FFPEs) were considered. It was found that the validity of fluctuation—dissipation
relations [45] for a given anomalous stochastic process plays a crucial role for the validity or violation of
conventional FRs.

In this article we test TFRs for a class of anomalous stochastic processes that so far has not been in the focus of
investigations, which are time-FFPEs. Such equations model the emergence of non-Gaussian PDFs by using
power law memory kernels via time-fractional derivatives [46]. They need to be distinguished from equations
modeling correlations in space via space-fractional derivatives as they naturally arise, e.g., for generating Lévy
flights [12, 42]. FFPE can be derived from stochastic equations of motion either by CTRWs [12, 16] or by
subordinated Langevin dynamics [47]. Quite a variety of them have been studied in the literature, both from a
purely theoretical point of view and with respect to applications to experiments: Prominent examples are
fractional Klein—Kramers equations that were used to analyse biological cell migration data [48-50]. Another
type was designed to model the dynamics of tracer particles in random environments [51]. Closely related time-
fractional diffusion equations [12, 21, 52] have been used to model a variety of different processes, from
diffusion in crowded cellular environments [ 15, 53] to geophysical and environmental systems [14]. They have
also been derived for weakly chaotic dynamical systems [54, 55]. A bifractional diffusion equation famously
reproduced the spreading of dollar bills in the United States [56].

Our paper is structured as follows: In section 2 we discuss three types of FFPEs which differ from each other
in terms of their anomalous diffusive properties, and by whether or not they fulfill fluctuation—dissipation
relations. We solve these models for their position PDFs and study their properties both analytically and
numerically. In section 3 we test the (work) TFR for our three models by analytical asymptotic expansions and
by numerically plotting the results. We conclude with a summary and an outlook towards physical applications
insection 4.

2. Time-FFPEs

This section introduces to three different types of FFPEs: we first outline how starting from stochastic dynamics
a FFPE generating superdiffusion can be constructed in the form of an overdamped Langevin equation with
correlated noise. Our argument illustrates how a time-fractional derivative naturally emerges from modelling
power law time correlation decay. The other two types of FFPEs that we consider have already been derived in
the literature from CTRW theory and are either subdiffusive or exhibit a transition from sub- to superdiffusion
under parameter variation. We analytically calculate the first and second moments for all three models, which
enables us to check for the validity of the fluctuation—dissipation relation of the first kind (FDR1). We also
comment on the Galilean invariance of our models. We then analytically calculate the position PDFs of all FFPEs
and study the solutions numerically by plotting the results.

2.1. Constructing a superdiffusive FFPE

The study of an overdamped Langevin equation for the position x (¢) of a particle on the line driven by a
correlated stochastic process and an external force allows to gain insight into the origin of a superdiffusive FFPE.
Our Langevin equation of interest is given by

F,
&_ B, (1)
dt  my

a

where F,, denotes a constant external force, y, a friction coefficient and m the mass of the particle. We assume
that v (¢) is a stationary correlated stochastic process with zero mean (v (t) ) = 0 and a power—law correlation
function




10P Publishing

NewJ. Phys. 17 (2015) 075004 P Dieterich et al

K, 1
@””4”>=rw—mu—nwa 2)

with1 < a < 2, gamma function /" and generalized diffusion coefficient K. Note that we do not further specify
the noise. Following the pseudo-Liouville hybrid approach of Balescu [57, 58] (see appendix A) one obtains the
following exact result in equation (A.8) for the PDF f (x, t):

(% + voai)f(x, 1= ;722/(: dn <v(t)v(t1) f(x=a(tn), t1)> (3)

X

t
with vy = F/(my,)and A(t, ;) = v (t — ;) + / dt, v (t;). This exact equation is non-local in time (i.e.
31

non-Markovian) and non-local in space. We now make a local-in-space approximation by neglecting the term
of the fluctuating displacement A (¢, #;) on the right hand side of the probability density f. Such an
approximation seems to be reasonable in the long time and large space asymptotic limit if the drift and velocity
fluctuations are weak enough. This assumption results in the following non-Markovian Fokker—Planck
equation:

0 0 0> [t
(5 + a0 =g ) an (v (a)) (). @
Insertion of the correlation function of velocities equation (2) into equation (4) leads to
0 0 0> K, t a=2
— + vy— X, t =——f dy (t—t¢ , 1. 5
(at "ax)f( = Ta-1/o =0 (o n) ©)

The integral on the right hand side matches to the Riemann-Liouville (RL) fractional integral of order y given by
(59]

e =Drgt) = —— [ dr (- g (o) )
t 8 =D g —F(#)[)T -7 g\

with g > 0and ¢ = @ — 1forequation (5). We also introduce the definition of the RL fractional derivative of
positive order

dﬂ
D} g(t) =
felt)=—2
with g > 0, n = [pu] + 1, where[...]refers to the integer part of the given number. Applying equations (6) to
(5) gives us our first type of FFPE that we denote as

gt (7)

I, (%, 1) 0 0
——— =——|w - KD = |f,(x, 1), L <a <2 8
ot dx[ ’ f dx]fA( : ®)
To show the relation of this equation with previous works we put 1, = 0. Then it can be written as
0? ?
—f(xt)=Ky — D/f(x, 1), 1 <a < 2. 9)
P pea]

This equation was called a fractional wave equation in the seminal paper of Schneider and Wyss [52] and has also
been derived for along-range correlated dichotomous stochastic process [60] from a fractional Klein—Kramers
equation [48] and from a generalized Chapman—Kolmogorov equation [61]. The solution of this equation has
been studied in detail in [62] where it was called a fractional kinetic equation for sub-ballistic superdiffusion.
The equivalent form of this equation using the Caputo fractional derivative was investigated in [63].

Our presentation above illustrates how a FFPE can be derived from a Langevin equation with power—law
decay in the velocity correlation function. It furthermore demonstrates that a fractional derivative provides the
natural mathematical formulation to model equations containing power law memory kernels.

2.2. Definition and properties of FFPEs

In addition to type A FFPE equation (8) we consider two further types of FFPEs. Both have been derived from
CTRW theory [12, 18-20]. Note that the underlying stochastic dynamics and the derivation of these two FFPEs
are very different from what we presented for type A above. Indeed, both type B and type C are essentially
(almost) Markovian models, in contrast to type A. Our two new FFPEs describe subdiffusion under the
influence of a constant external force and naturally appear in physical systems where diffusion is slowed down by
deep traps [12, 20, 64]. The difference between these two types arises from the position of the fractional RL
derivative with respect to the diffusive and drift part of the equations and the range of the anomaly parameter a.
Our second FFPE is defined as




10P Publishing

NewJ. Phys. 17 (2015) 075004 P Dieterich et al

of  (x,
M = _ilivo _ KaDtl—ai]fB (x’ t). (10)
ox

e B:
RL ot ox

For type C FFPE the RL fractional derivative is also included in the drift term:

afc(xa t) 0 J
e o2 a, Dl-“—KaDl—“—] 1), 11
o ax[ Yot Loox fc (6 1) (1)

where A, hasa dimension of time to the power of 1 — a. Note that type B and type C FFPEs are defined for
0 < a < 1whereas for type AFFPE aisin therange 1 < a < 2.For all three FFPEs we use the initial condition
f, ABC (x, t = 0) = 6 (x). By means of Fourier and Laplace transforms

fh= [~ awr,  Fo= [T dere (12)
asolution of equations (8), (10) and (11) can be obtained in Fourier-Laplace space as
2 1
k,s) = R 13
faphs) s + voik + K k? s'=¢ (13)
5 1
folk, s) = (14)

s+ Agvoiks' =% + K k2 s=@’

where the fractional derivative D,;~*f (t) transforms to s'~%f (s). The solutions of type A and type B FFPE only
differ in the range of @ as defined above. The representation in Fourier-Laplace space allows the calculation of
moments by differentiation with respect to k:

iy 2K 9)

n — -1
(x"(t)) =L P

(15)

k=0

After Laplace inversion one obtains the first two moments and the central second moment for dx = x — (x) of
type C FFPE defined in equation (11) [20]

= Aant”
(e = ra+1) "
N 2K " 2A,v5 1"
W= T+ D T TRar ) Uﬂ
o M 2.2,2a 2 - !
{(@xF)c = I'a+1) * Aavot [F(Za +1) TI'(a+ 1)2]' "

These results show that the FDRI [43, 45] (x (£) )¢ ~ (x2(¢) )&= is valid for type C. Interestingly the external
force influences the second central moment ~v; 2%, Technically this is due to the coupling term v,iks'~® in the
Laplace-Fourier representation of equation (14). The first moment increases sublinearly despite the constant
external force. This can be interpreted as a partial sticking effect of particles [65]. By contrast, the second central
moment shows a crossover from ~t% to ~t2*, Thus, for 1, # 0 type C switches from a subdiffusive behavior of
the second central moment for 0 < @ < 1/2 to a superdiffusive behavior for 1/2 < a < 1[12].

Analogously, the moments of type A and type B FFPEs of equations (8) and (10) are obtained as [20]

<x>A,B = 1ot, (19)

<x2>A,B = % V()ztzr (20)
) _ 2K, t*

()00 = 7o (21)

In both cases the first moment only depends on v, and increases linearly in time. The second central moment
shows a superdiffusive and subdiffusive increase ~¢“ for type A and type B FFPE, respectively. In contrast to type
CFFPE, the second moment of type A and type B FFPEs is without any coupling to v,. In addition, type A and
type B FFPEs break FDR1 between the first (x (¢) ) 4  and the second moment {x? (¢) WB %, Inboth cases this is
what one should expect according to the definition of both models: Type A is based on the Langevin equation (1)
where the fluctuation—dissipation relation of the second kind (FDR2) is broken by construction. Note that FDR2
establishes a relation between the noise and the friction [45]. The breaking of FDR2 suggests a breaking of FDR1
as was shown for Gaussian stochastic processes in [43]. For type B the fractional derivative acts only on the
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diffusion term in equation (10) thus breaking FDR1 while for type C it acts simultaneously on both the drift and
the diffusion terms in equation (11) hence preserving FDRI.
A second difference between these FFPEs consists in their behavior under Galilean transformation. With

X =x — vyt and T=tthe PDF f (x, t)istransformedto 2 (X, T). The coupling of the fractional RL derivative
to the v, drift term of type C FFPE in equation (11) breaks Galilean invariance. However, type A and B FFPE of
equations (8) and (10) fulfill Galilean invariance in the long time and large space limit [ 12, 20, 66], where they
can be written as

045X, T) e 0724 8(X, T)

oT T ox?

This means that in this limit breaking or preserving FDR1 corresponds to preserving respectively breaking
Galilean invariance in the case of these FFPEs. This property will be exploited in the next subsection where we
discuss analytical and numerical solutions of our three types of FFPEs.

(22)

2.3. Analytical solution of time-FFPEs
Type C FFPE: Fourier inversion [42] leads to the solution of type C FFPE in (x, s) space:

531 Agvox | JAZVE + 4Ky s”

fc (x,5) = exp - |x

Aé"oz + 4Ka5a ZKa ZKa

In this case, a solution in (x, t) space can be given as a superposition of the @ = 1 Gaussian solution with a Lévy
kernel [12, 67]. However, for numerical analysis we apply a direct numerical Laplace inversion of equation (23).

Type A and B FFPE: Analogously to equation (23) the solutions of type A and type B FFPEs can be calculated
in (x, s) space with A1y — vs*~ ! to

— 2 —
sa-1 vos® Lk Vg $2%72 + 4K 457

- exp - |x|
Vo 2772 + 4K, s” 2K, 2K,

As the FFPEs of type A and type B are Galilean invariant in the long time and large space limit, the solution for
vy = 0 allows the exact calculation of the PDFs with drift v in this limit [ 12, 20], which becomes approximate
otherwise [66]. The solution to equation (22) is well-known [12] and is given using a Fox H-function (see
Appendix B for definitions). Thus, applying Galilean transformation and replacing x with x — vt gives
solutions of type A and type B FFPEs in (x;, t) space as

(23)

fA’B (x,5) = (24)

1 |x = vot| [(1 —a/2, al2)
(x, 1) = HY (25)
Jas 4K, t° H K, 1 (0, 1)

These approximate solutions in terms of shifted Fox functions are the basis for our further analysis of type A and
B FFPEs.

2.4. Numerical analysis of time-FFPEs
Numerical methods are required to study the analytical results given in form of Fox H-functions of type A and
type B FFPE and in Laplace space for type C FFPE.
Type A and type B FFPE: the series expansion of the solution f, ; (x, t) ofequation (25) as given by

equation (B.3) is used for numerical evaluations,

52 \i”2

b=y (= r)

X, t) = ] .
AB [aK, 1% ST (L= a(+ D/2)|  Ket®

(26)

with1 < a < 2fortype AFFPEand 0 < a < 1for type B FFPE. The series is evaluated with multiple-precision
arithmetic.

Type C FFPE: direct numerical Laplace inversion is applied to equation (23) to obtain the probability density
function f, (x, t). Here we use a multiple-precision algorithm for the Laplace inversion based on Talbot’s
method [68, 69].

Typical behavior in space and time: figure 1 shows the time development of the solutions f (x, t) of the three
FFPE types for different times t = 1, 2, 4, 8. Parameters were selected as A,y = 1and K, = 1, the anomaly index
awas chosen from a € (0.4, 0.6... 1.6). The first row shows the Gaussian limit @ — 1 for all three types. In this
normal diffusive case the PDF is spreading with /2K; t and its center is moving according to v, ¢. The PDFs of
type A (left column) and type B FFPE (middle column) preserve this constant drift for @ # 1. However, the
shapes of the PDFs of both models immediately change profoundly showing characteristically different types of

5
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Figure 1. Time development of PDFs for type A FFPE (left column), type B FFPE (middle column) and type C FFPE (right column)
for different values of a (rows) and time points t = 1, 2, 4, 8. Parameters were selected as K, = 1, vy = 1and A,v = 1. Whereas
superdiffusive type A FFPE (left column) and subdiffusive type B FFPE (middle column) show a drift and spreading of the PDFs with
typical non-Gaussian structures for a # 1, type C FFPE (right column) displays a spreading of the PDFs together with stickiness to the

non-Gaussian behavior: For type A the PDFs spread superdiffusively with the variance of equation (21) by
exhibiting a double-peaked structure with a dip in the middle. Qualitatively, the highly characteristic double-
peak structure is explained in [58]: The propagator of type A decays asymptotically faster than the Gaussian, see
equation (B.5). However, since two maxima move away from the origin in the opposite directions,

superdiffusion is possible in spite of the thin tail of the propagator; see also equation (9) [62]. Note that there are
cusp singularities in all three models for a # 1, in contrast to the smooth behavior of the Gaussian PDF shown in
the top row. In the Galilean invariant cases A and B the propagators are symmetric with respect to their cusps,

which are translated with velocity v, = 1, asit should be. For the Galilean non-invariant model C the propagator

is asymmetric with respect to its cusp, which stays fixed at the origin [12].
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3. Work FRs for FFPEs

3.1. Definition of FRs

Using the results of the previous section, we now study the PDF p (W, t) of the mechanical work W = —F) x
generated by the constant external field F. For a constant field the PDF of work p (W, t)isrelated to the PDF
f (x, t) of positions by the simple scaling transformation

1 (W
W,t)=—f|—, t] 27
p(W, 1) Fof ( F, ] (27)
Itis the main aim of this work to study the TFR of the work PDFs defined by the logarithmic fluctuation ratio
R(W, t) := log M (28)
p (_ W) t)

for the three types of FFPEs. All three FFPE types reduce to a normal Gaussian process with drift for « — 1. Fora
Gaussian PDF the ratio R is trivially given by the ratio of the first and second central moment, i.e. 2(W)/(sW?)
[43]. Thus one obtains a normal or conventional FR fora =1,

Vo

R(W, t)

W= W/(kBT). (29)

a=1=
04N

with alinear increase in W that is independent of time as it has been found for a large class of systems [ 1-3, 6-8].
The last expression has been obtained by using the Einstein relation K, = kT /(my, ) with temperature T,
Boltzmann constant kg and the definition vy = F/(my, ). The general case for @ # 1is studied in the next
section.

3.2. FRs for FFPEs

Type C FFPE: for this type the fluctuation ratio can be studied analytically [42]. With equation (23) R(W, t)is
given in Laplace space by

(30)

peWos)  Jo(W/Fw s) [ Aavy W)

- = — =exp| —W|.
Do (=W, s) fc(—w /Fo, s) FoKq

As the right side is independent of the Laplace variable s, the Laplace inverse of the PDFs can be calculated

directly after multiplication with p. (=W, s). Thus, despite the complicated form of the PDFs a linear normal
TFR is obtained for type C FFPE:

pc(W) t) _ A,,VO
PC(—W, t) FOKa

log (31)
This result based on the Laplace transformed ratio of p. (W, s) seems to be surprising with respect to the
complex form of the PDF in Laplace space and the asymmetric sticking behavior at the origin of the PDFs as
illustrated in the right column of figure 1. The right side of figure 2 shows the numerical calculation of the
fluctuation ratio which is linear and constant for all times in agreement with the given analytical result.

We remark that a normal TFR for type C can also be obtained with the use of the subordination principle:
Indeed, it is known that the fractional kinetic equation C can be derived from the coupled Langevin equations
for the motion of a particle [42,47, 70]

dx(u) _ Fo + ) dt (u) _

du my du v (), (32)

where the random walk x (¢) is parameterized by the random variable #1. The random process & (1) is a white
Gaussian noise, (¢ (1)) = 0, (E ()& (u')) = 2k, TS (u — u')/(my), and 7 (u) is a white stable Lévy noise, which
takes positive values only and obeys a totally skewed a-stable Lévy distribution with 0 < @ < 1. The PDF f (x, t)
of the process x (¢) is then given by

Flot) = /000 duf (x, wh(u, 1), (33)

where f, (x, u) is a shifted Gaussian PDF with drift, and & (u, t) is the inverse one-sided Lévy stable density [67].
It is then easy to show that the linear normal TFR equation (31) holds due to Gaussianity of f;. Moreover, it
becomes clear that the normal TFR also holds for a more general form of the PDFs k (u, t), thatis, for amore
general class of the positively valued stochastic processes 7 (u).
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Figure 2. Time dependence of the fluctuation ratio for type A FFPE (left column), type B FFPE (middle column) and type C FFPE
(right column) for different values of @ (rows) and times ¢ = 1, 2, 4, 8. Parameters were selectedas K, = 1, v = land A,vp = 1.
Whereas a = 1 and all cases of & for type C FFPE show a normal fluctuation ratio with time-independent slope (in all of these cases the
linear t = 8 curve hides the previous times t = 1, 2, 4) all other sub-plots show a more complex time- and work-dependent
fluctuation ratio: anomalous non-Markovian dynamics and/or non-Gaussian behavior cause a complicated time-dependence and
nonlinear behavior of the work fluctuation ratio.

Type A and B FFPEs: for these two types the fluctuation ratio in Laplace space is more complicated than for
type C FFPE in equation (30). It is obtained with equation (24) as

Bap(W,9)

Fus(W/Fo, s)

(34)

exp 0 ey |,
FyK,

In contrast to equation (30), here the right hand side depends on the Laplace variable s. Consequently, one may
expect an anomalous ratio R which is confirmed numerically in the overview of figure 2. The fluctuation ratios
of type A (left column) and type B FFPEs (middle column) show a nonlinear increase as functions of W. For type

PasWo9)  Foy(-W/Rns)
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B FFPEs there is a clear transition at the current maximum of the PDFs at Wy, = vt which is equal to t with
v = land Fy = linfigure 2. For W > W]« the fluctuation ratio increases with time. In contrast, the TFR of
type A FFPE increases faster in W than for type B. At the scale of this overview plot there is no transition point
visible as for type B FFPE. However, the qualitative time-dependence of the fluctuation ratio for type A FFPE is
the opposite to type B FFPE: the ratio increases faster for smaller times. To gain further insight into this behavior,
some asymptotic expansions of the TFR for type A and type B FFPEs are performed in the next section.

3.3. Asymptotic expansions of the fluctuation ratio for type A and B FFPE
In this section we analyze the asymptotic behavior of the work fluctuation ratio for type A and B FFPE.
Differences between type A and type B simply correspond to the value of @ whichis1 < a < 2 for the
superdiffusive FFPE of type Aand 0 < a < 1for the subdiffusive type B FFPE. Type Cis not considered
anymore, as the analytical calculation of equation (31) and the numerical analysis in figure 2 have delivered a
normal FR with a time-independent linear increase in the work W.

Small W expansion: first, the behavior of the TFR for the work PDFs of the FFPEs is studied for small Was a
function of time. The logarithmic ratio of a continuously differentiable function p(z) can be expanded as Taylor
series for positive zas

Pz _ 2 dp(2)
p(=z) p(z=0) dz

log + (9(zz>. (35)

z=0

Inserting the approximate work PDF p (W, t) from equation (25) together with the transformation of
equation (27) into equation (35) requires the calculation of the derivative of the Fox H-function. Using
equation (B.4) withr=1,h=1,c = —1/\/K,t* /K,and d = wyt/,/ K, t* allows us to calculate the linear term in
the Taylor expansion of equation (35). With the assumption W /E < vyt and after some simplifications using
the definition of the Fox H-function by the Mellin—Barnes integral in equation (B.1) one obtains the fluctuation
ratio for small Was a quotient of two Fox H-functions:

Hm[ vt |(1 = ar2, a/Z)]
1|
JKat® (1, 1)
R(W, t)lw-o = (i) ' w =A(t) W. (36)
Vot o[ ot (1-a/2,ar2)| Fo
MK (0, 1)

The prefactor A (t) summarizes the time-dependence of the fluctuation ratio. Its numerical evaluation based on
the Taylor series of equation (B.3) is shown in figure 3(A). In the superdiffusive case 1 < a < 2 (type A FFPE)
the prefactor A (¢) increases as a function of time, whereas in the subdiffusive case it decreases with time. The
argument of the Fox H-functions z = v, t/1 |K,t% in equation (36) scales ~t' ~*2with 1 — a/2 > 0 for

0 < a < 2. Thus the asymptotic expansion of these Fox H-functions can be used for t — 0. In the long time
limit the scaling function A (t) converges towards the following non-zero constant value:

/2-a)
2 alla=2) a w
limA(t)zz(—) Yo 2o N W for a=1. (37)
t— o0 a K;/a FO KIFO

The corresponding values are shown as squares in figure 3(A) indicating the predicted asymptotic behavior.
Figure 3(B) shows the spatial behavior of the work fluctuation ratio for two subdiffusive examples « = 0.4 and
0.8 at different instants of time # (compare to small Wvalues in the overview given in figure 2). The slope of the
ratio decreases with increasing time and agrees well with the small W expansion given in equation (36). The
superdiffusive case in figure 3(C) shows a reverse behavior as the small W ratio increases with time. As indicated
in figure 3(A) it can also be negative as show in figure 3(C) for @ = 1.6 and ¢=1,2. In the superdiftusive case, the
small W expansion has a smaller region of agreement with the exact ratio. The more complex behavior is
technically due to the two separating peaks of the PDF as illustrated in figure 1.

Large W expansion: finally, the behavior of the work fluctuation ratio is studied for large values of the work
W. The overview given in figure 2 shows a different nonlinear behavior for the subdiffusive and superdiffusive
case. Assuming W /K > vt and large arguments of the Fox H-function for type A and type B FFPE in
equation (25) allows us to use the asymptotic expansion of the corresponding Fox H-function in equation (B.5).
For large W one obtains the following relation:

5 w/(2—a) 2/(2—a)
t - 1
R(W, t) |W_)°o _ Vo ((X) [ ] Wa/(Z—a). (38)

Fy 2 Ko t*

Thus the work fluctuation ratio scales as a power law with an exponent /(2 — ). This exponent is between 0
and 1 for the subdiffusive type B FFPE. For superdiffusive type A FFPE it is larger than 1. This asymptotic power

9



10P Publishing

NewJ. Phys. 17 (2015) 075004 P Dieterich et al

A

(o y)
(@)

— t=1 — t=1] _ : PoA
— =2 — 2|
— t=4 — t=4| : ‘ 2 0
— =8 — sl
15 s 1.0 rrrer Ll
sy a=0.4 o
g 1.0} s E 0.5 B
© : 3
a=0.8
05k i T O S B 0.0 ]
0.0 i i ] i \ —05 i 1= == ! i
00 02 04 06 08 1.0 1.2 00 02 04 06 08 1.0 1.2
work W work W

Figure 3. (A) Time dependent decay of the initial fluctuation ratio A () defined by equation (36) for small work Wand different
values of @ corresponding to type AFFPE (1 < a < 2) andtype BFFPE (0 < a < 1) with parameters K, = 1, Fy = 1, vy = land
Agvp = 1. Circles show the direct calculation for small W from the ratio of PDFs as defined in equation (28) whereas lines result from
the computation of the first term of the small W expansion of equations (35) and (36). Both calculations agree and A (t) converges
towards the long time limit given by equation (37) as indicated by the squares. Whereas A (t) is time-independent for a = 1, it decrease
or increases as a function of time for the subdiffusive (type B FFPE) and superdiffusive case (type A FFPE), respectively. (B) The
fluctuation ratio of work is shown for the subdiffusive case as a function of work and different time points as indicated. The slope
decreases for increasing time. Thin black lines indicate the small work limit of equation (36). The obvious kink at W= 1 for t= 1 is due
to the peak of the corresponding PDF in figure 1. (C) The superdiffusive case shows a more complicated behavior: the small work
slope increases with time. In addition, it also changes from negative to positive for small time in the @ = 1.6 case.

law behavior is shown in figure 4 for two examples. Continuous lines represent the result of equation (38) and
agree for larger Wvalues with the exact results denoted by circles. Equation (38) additionally contains a time-
dependent scaling factor that is proportional ¢(2#~2/(@=2)_This factor is positive for the subdiffusive type B FFPE
and negative for type A FFPE.

4. Summary and outlook

In this work we studied three different types of FFPEs generating anomalous diffusion: a superdiffusive one (type
A), asubdiffusive one (type B), and another one that exhibits a transition from sub- to superdiffusion under
parameter variation (type C). Type A and type B break FDR1 while type C preserves it. Type A can be derived,
under certain assumptions, from an overdamped Langevin equation with power law correlations of the velocity
fluctuations, types B and C have been derived before in the literature from CTRW theory. Type C can also be
obtained via subordination. We then calculated position PDFs for all models analytically and studied the shapes
of all PDFs numerically under variation of the anomaly index as they evolve in time. Finally we checked the work
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R(W,t)

work W

Figure 4. Large W asymptotic of the work fluctuation ratio of type A and type B FFPEs. Continuous lines show the asymptotic large W
result given by equation (38). Circles indicate the exact result from the direct computation of the work fluctuation ratio. (A)
Subdiffusive case for @ = 0.8 corresponding to type B FFPE. (B) Superdiffusive case for a = 1.2 as example for type A FFPE.

TER for all three models. Especially, we studied the time dependence of the ratio of the work fluctuations both
for small and for large work by analytical asymptotic expansions in comparison to numerical evaluations.

We find that our type C model with FDR1 exhibits a conventional work TER for all times, meaning the
fluctuation ratio is constant in time and linear in the work. For a correlated Gaussian stochastic process it was
shown that FDR1 implies the existence of a conventional TFR [43]. Our work generalizes this result to an
example of non-Gaussian PDFs generated by FFPE dynamics. It is interesting that the conventional TFR s still
obeyed, despite the highly non-trivial dynamics exhibited by both the position PDFs and the corresponding
moments. The existence of the conventional TFR for this case is connected to the fact that only the equation for
Type C describes a subordinated process, namely the one subordinated to Brownian motion with drift under
random time transformation. An important open question is to which extent figure 1 in [43] summarizing the
interplay between FDR1, FDR2 and TFRs for correlated Gaussian stochastic processes in terms of necessary and
sufficient conditions can be generalized to non-Gaussian processes. For our other two models type A and type B
the position PDFs show also very subtle and non-trivial non-Gaussian shapes. However, in contrast to type C
they are characterized by a highly non-trivial fluctuation ratio: For type A the latter decreases with time, for type
Bitincreases. Similar results have been obtained for the work TFR of strongly correlated Gaussian stochastic
processes without FDR1 [42, 43]. On top of this, for both types of FFPEs the fluctuation ratio yields different
long time limits depending on whether the work is small or large: for small work the fluctuation ratio converges
to linearity in the work with constant prefactors, which reminds of the conventional TFR; however, here the
slopes depend on the anomaly index of the dynamics. For large work the fluctuation ratio remains nonlinear in
the work, with convex and concave shapes for type A and type B, respectively.

Our work was motivated by experiments on cell migration [50], where data were successfully fitted by
solutions of a fractional Klein—Kramers equation [48]. Several generalizations of such a Klein—Kramers equation
have been proposed to describe processes under external fields [48, 49, 51], which in turn yield FFPEs for the
position only, similar to the ones studied in our paper, as special cases [12, 21, 52]. We thus believe that our
present work might have important applications to understand cell migration in non-equilibrium situations
such as under chemical gradients; see [44] for first results. More generally, our theory might have applications to
understand glassy non-equilibrium dynamics: In computer simulations of a number of glassy systems violations
of conventional TFRs have been observed featuring fluctuation ratios that are nonlinear in the work with time-
dependent prefactors [40, 41].

Apart from such experimental applications, our first approach for deriving a FFPE pioneered by Balescu
[57,58] deserves to be studied in more detail. For example, it would be interesting to derive a superdiffusive
FFPE from it that preserves FDR1, and to check again the TFR. On a broader scale it would be important to
generalize our approach by considering more general observables, ideally dissipation functions [1] or related
functionals defined within stochastic thermodynamics [7]. More general force fields than simply constant forces
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[42] and other types of FRs could be tested as well. Such theoretical studies may pave the way to identify different
classes of anomalous FRs characterized by specific functional forms, generalized FDRs associated with them, and
to explore the physical significance of these results. Last not least the quality of the Galilean invariant
approximate solution equation (25) [12, 20] of the FFPEs (8), (10) needs to be investigated in detail.
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Appendix A. Pseudo-Liouville approach

Following the so-called pseudo-Liouville hybrid approach of Balescu [57, 58] allows us to relate the dynamics of
a particle defined by a Langevin equation to the corresponding PDF of the stochastic process. We start from the
Langevin equation for the position x (¢) of a particle
dx (1)
dt
where v (¢) is a correlated stochastic process with zero mean (v (¢) ) = 0 and a given correlation function

(v(t)v(t'))=T(t — t'), where the average is performed over the stochastic process v (#). vy denotes a constant
external force. The stochastic function F (x, t)

F(x,t) =6(x— x(1)) (A.2)

represents the exact density of the process. Derivation of equation (A.2) with respect to time and the usage of the
Langevin equation (A.1) delivers the continuity equation for the exact density F (x, t):

=vy+ v (1), (A.1)

OF (x, t) 0 dx(t) OF (x, t) OF (x, t)
—=—-— t + + v(t =0. A3
p” —3x = x(1)) [ ] == (A3)
Now, the exact density F (x, f)is decomposed into an averaged part f (x, t) and fluctuations &f (x, t)
F(x,t) =f(x, t) + 6f (x, t) with f(x,t) =(F(x, 1)). (A.4)

It is the further aim of this appendix to calculate the PDF f (x, t) for the stochastic process defined by the
Langevin equation (A.1) for given correlations of v (¢). Averaging of the exact density in equation (A.3) leads to

0 0 0
(E + v%)f (51) = = (v (05 (3 1) (A5)

Subtraction of equation (A.5) from equation (A.3) results in
0 0 0
(E v+ v(t)]g)éf (6 1) = == (v(1) £ (5, 1) = (v(0) 8f (1)), (A6)
Equation (A.6) can be solved with the method of characteristics

of (x, 1) = —% /Ot de'(v(t') f(x = A5, 1), 1) = (v (1)) of (x — A8, '), ') (A.7)

t

with the definition A(t, t') = vy (t — t') — / dfy v (#;). Inserting equation (A.7) into equation (A.5) delivers
.

the final equation for the PDF f (x, t):

0 ] o rt , N
(E +v0$)f(x, £) =$/O A (v (v (t) f(x = At 1), ). (A.8)

This is an exact relation for f (x, t) thatis generally non-local in space and non-local in time, i.e. non-
Markovian. Applications and approximations of this relation are studied in section 2.1.

Appendix B. Definiton and properties of Fox H-functions

The Fox H-function is defined as inverse Mellin transform of the function y (s) [12,71]

((l]‘,A L
HI (2) = HP'| 2 = L 1 (92ds (B.1)
(05, 3))
j=1q
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over asuitable path £, with

x(s) = H;n:l F(bj_Bjs) Hj’zl F(l_“j"'AJ'S)
q

Hj=m+1 F(l _bf+st) H;H F(“j—AJ‘S)’

0<n<p,1<m<gq(ajb;)€C,and (A}, Bj) € R*. Empty products in equation (B.2) are taken as one.
A series expansion allows the numerical calculation of Fox H-functions. The following form for a special Fox

(B.2)

H-function is used:

()l & cp W

HY = ) (B.3)
1|z (bl’Bl> Z (al_Albl_'-k) k! B

k=0 I

1

Summation in this work is performed numerically with multiple-precision arithmetic.
The derivation of the Fox H-function is required to calculate the fluctuation ratio for the FFPEs of type A and
B. This can be performed using the following relation [72]:

" aj A;
Ll (ex + ay Lor 4k,
dx (b]-,Bj)Lq

0, h), (ajy Aj)l,p

¢ )r 1
= (— H™ L (ex + d)! . (B.4)
p+1l,g+1
x+d (bj, Bj)l,q,(r, h)
For large arguments the Fox H-functions of type H g”g (z) decay as stretched exponential functions. The
asymptotics of the PDF in equation (25) is given for large zby [72, 73]
1—a 1-a
~a 2 \e=a 2 — AYE
funter )~ e (2] ewd - (25%) (2] T (B.5)
' Jar (2 — a) K t* \a 2 a

forz = coandz = |x — v0t|/1/Kat"‘.
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