
Automating Test-Suite Augmentation
Roderick Bloem∗, Robert Könighofer∗, Franz Röck∗† and Michael Tautschnig‡

∗ Institute for Applied Information Processing and Communications, Graz University of Technology, A-8010 Graz, Austria
Email: {roderick.bloem, robert.koenighofer, franz.roeck}@iaik.tugraz.at

† NXP Semiconductors Austria GmbH, Gratkorn, A-8101 Gratkorn, Austria
Email: franz.roeck@nxp.com

‡ Queen Mary University of London, London E1 4NS, United Kingdom
Email: mt@eecs.qmul.ac.uk

Abstract—Test suites are hardly ever created from scratch.
Hence, automatic test case generation methods should take
advantage of existing tests to produce high-quality test suites
more efficiently. We present an approach for automatic test suite
augmentation addressing this challenge. It modifies existing test
cases in such a way that full branch coverage in specified target
functions is achieved. It is based on symbolic execution and model
checking, and has been implemented as an extension to FShell,
a test case generation tool for C programs. Finally, we present
a case study where we apply our tool to augment a model-based
test suite for real industrial code of a Java Card applet firewall,
ultimately achieving 100% branch coverage fully automatically.

Keywords-test suite augmentation; symbolic execution; model
checking;

I. INTRODUCTION

Testing is supposed to find bugs and increase the confidence
in the quality of the product. While these objectives are hard
to quantify, coverage goals are widely accepted means for
estimating the progress and quality of the testing process.
In practice, the effort for creating new tests often increases
excessively the closer the test suite comes to satisfying the
coverage goal. Automatic test case generation can help to find
missing corner cases, but most methods create test cases from
scratch and do not exploit already available ones.

In this paper, we consider test suite augmentation: Given a
program and an initial test suite, we compute additional tests
to maximize code coverage. We focus on branch coverage, but
our approach can also be extended to other metrics. The idea
is that some existing tests already get “close” to uncovered
features, and can be altered to enter new terrain easily. This
is potentially cheaper than computing new tests from scratch.

Besides manual test case generation, test suite augmentation
is also useful in other scenarios. Test suites computed (auto-
matically) with model-based testing [1], [2], [3] may cover
the model well, but often fall short of achieving acceptable
code coverage. The reason is that implementation details like
null-pointer checks are omitted in the model, but also require
proper testing. Also during the development or maintenance
phase of a software product, code is changed and extended,
but the regression test suite is usually not. This can make the
coverage drop to poor rates, even if the initial test suite was of

This work was supported in part by the Austrian Research Promotion
Agency (FFG) through project NewP@ss (835917).

Test case 
selection 

New test case 
derivation 

Test case execution & 
coverage analysis 

Program 

New test cases 

Target function 

Test suite 

New test 
cases 

Figure 1. Workflow of our approach.

high quality. Automatic test suite augmentation, exploiting the
available test cases, can fix this issue with acceptable effort.

Figure 1 illustrates our approach. It takes as input a program,
existing test cases, and a target function. It outputs additional
test cases to achieve full branch coverage in the target function.
First, we perform a coverage analysis of the existing tests
by executing them on an instrumented version of the code.
The next step is test case selection, where we select all test
cases that pass a yet uncovered branch in the target function.
When this set is empty, all branches in the target function
are covered and our approach terminates. The last and central
step is the new test case derivation. The path conditions of
the selected test cases are investigated one by one with the
goal of deriving a new test case that covers a previously
uncovered branch. In the simplest case, this is possible by just
negating the branching condition of the uncovered branching
point and computing a satisfying assignment. If the formula
is unsatisfiable, our approach backtracks along the execution
path in order to search for a new path through the control
flow graph to reach the desired branch. The search is guided
by heuristics and parameters to configure them. Eventually
(given enough time and resources), we will end up with a
satisfiable path condition describing how we can reach the
desired branch, because in the worst case the backtracking
approach just iterates over all execution paths leading to the
desired branch. Once a new test case is found, it is added to
the test suite and the procedure is repeated.

We implemented our approach as an extension to FShell [4],
building on its infrastructure for robust parsing of programs,
the construction of formulas and path conditions, interfaces to
solvers, etc. Our new approach consumes far less resources
because it only analyzes one execution path at a time. If our
backtracking does not succeed in reasonable time, we can fall
back to FShell’s default method for test case generation, which

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/77038459?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


we also improve for our purpose by discarding irrelevant parts
of the constructed formula. Finally, we evaluate our approach
on an industrial implementation of a Java Card applet firewall,
where we extend a test suite that has been derived from a
model, and use this model as oracle.
In summary, this paper makes the following contributions:

1) We present efficient methods to augment an existing test
suite such that it achieves branch coverage.

2) We describe an implementation of these methods, en-
hancing the FShell [4] test case generation tool.

3) We present a case study with real industrial code of a
Java Card applet firewall implementation.

This paper is structured as follows. Section II discusses related
work, Section III presents our approach in detail, Section III-F
outlines our implementation in FShell, Section IV presents our
case study and evaluation, and Section V concludes.

II. BACKGROUND AND RELATED WORK

Generating meaningful input data is a fundamental problem
in software testing. Over the last years, model checking tools
made big strides and, therefore, received much attention in
software verification and testing. A model checker verifies if a
given program (model) satisfies a given specification. If not, a
counterexample in form of concrete input values is produced to
illustrate the specification violation. Tools such as CBMC [5],
LLBMC [6], BLAST [7] and Java Pathfinder [8] are only a
few of the available software model checking engines.

Model checkers can be used for test case generation [9] by
generating so-called trap properties expressing that a desired
situation can never occur. The model checker will then produce
a counterexample demonstrating that it can actually occur.
Using appropriate trap properties, a test suite achieving a
desired coverage on the model can be derived automatically.

FShell [4] follows this idea using its own query language
FQL for specifying which parts of the source code the user
wants to cover. The underlying model checker CBMC [5] is
used to build a formal representation of the program. Claiming
then that the goals specified via FQL cannot be reached,
counterexamples are constructed which satisfy the specified
coverage goals. This approach is systematic and target ori-
ented, but can be very resource demanding, because the model
checkers operate on a formal representation of the entire
program under test. Also, this approach does not benefit from
existing test cases – a scenario which is more common than
creating all test cases from scratch. Our test suite augmentation
approach aims at eliminating these shortcomings.

Symbolic execution [10], is another test case generation
approach related to our work. The program is executed using
symbols (placeholders for concrete values) as inputs, tracking
the symbolic values of program variables. When a branching
point is reached, the execution forks. Along each path, a path
condition, expressing the trace of this path, is computed. An
SMT solver can then compute concrete inputs to activate
a certain path. This approach is implemented in tools like
KLEE [11]. The advantage of symbolic execution compared
to model checking is that only one execution path is analyzed

at a time. Our test suite augmentation method also works with
path conditions, inheriting this advantage. On top of that, our
methods are more target oriented (standard symbolic execution
attempts to cover all paths) and exploit available test cases.
The disadvantage of symbolic execution, as well as of our
approach, is that the number of paths can explode. We address
this issue with heuristics and parameters to guide the search.

Concolic execution is a mixture of symbolic and concrete
execution, implemented in tools like DART [12], CUTE [13],
CREST [14], and PathCrawler [15]. The program is executed
with concrete inputs, while computing a symbolic path condi-
tion along the way. This path condition can then be (modified
and) solved to calculate new inputs taking a different path.
However, these tools do not take advantage of already existing
test cases. Test suite augmentation using concolic execution is
addressed in [16]. It explores alternative paths for existing test
cases up to a certain iteration limit. In contrast, our method
is more target oriented by analyzing the control flow graph in
order to find feasible paths to a target branch. The work of [16]
also presents a genetic approach based on selection of test
cases according to a fitness function, and crossover operations
to compute new test cases. A similar genetic approach is
presented in [17]. Our test suite augmentation method is very
different from these genetic approaches.

PathCrawler [15] aims to generate tests for all paths. It
chooses a starting input randomly out of all possible inputs. It
follows this path and calculates all inputs taking the same path.
Those inputs are then excluded from the domain of possible
inputs for new paths. In contrast, our approach augments an
existing test suite by modifying the path condition of existing
test cases such that a new branch is entered.

Among the existing tools and approaches, make-zesti [18],
based on the KLEE symbolic execution engine, is one of
the most similar tools to our work. It exploits an existing
regression test suite to focus symbolic execution on interesting
program features. As soon as the execution comes around
“sensitive” operations like pointer dereferences, the tool ex-
plores additional paths around them. Besides the difference
in the objective (testing sensitive operations vs. maximizing
coverage), there is also a difference in the applied technique.
make-zesti identifies points on the concrete execution path at
which the execution can diverge, prioritizes them according
to the distance to the sensitive operation, and uses them as
starting point for symbolic execution. This is not guaranteed to
hit the sensitive operation. In contrast, we analyze the control
flow graph in order to find feasible paths to our target branch.

Another closely related tool is KATCH [19], a tool to
increase the coverage on new patches committed to software
repositories, also using KLEE. Like our work, KATCH also
leverages existing test cases as a starting point for computing
new ones. It finds the test case that is closest (according to
some metric) to reaching the modified code. Then it applies
symbolic execution with three heuristics to modify the test
case in such a way that it reaches the target. Again, there
are differences in the objective (covering code patches vs.
maximizing coverage) and also in the methods and heuristics



to reach them. For instance, KATCH only considers the one
existing test case that is closest to reaching the target, while
our approach iterates over all existing test cases to find one
that can be modified to reach the target.

III. TEST CASE GENERATION

This section describes our test suite augmentation approach
as outlined in Figure 1, as well as our implementation.

A. Test case execution and coverage analysis

In the beginning, we need to gather the coverage informa-
tion for the existing test cases. For each test case, we track the
sequence of branching points that are executed, and whether
the respective condition evaluated to true or false. We achieve
this by instrumenting the source code to store this information,
and executing the test cases on the instrumented code.

B. Test case selection

After the function to cover got specified, we extract all test
cases which enter the desired target function and pass at least
one uncovered branch. This is done by searching our stored
information for all conditions in the desired function which
have no test case in either the true-branch or the false-branch.

Having the test cases which pass an uncovered branch, we
can now apply different heuristics to generate new test cases.
Our heuristics will be explained in the next sections. Every
new test case gets executed immediately after discovery. The
accompanying update of the coverage information possibly
leads to a new set of test cases which can then be used by the
heuristics again. Assuming that we can cover every branch,
this set will become empty as soon as we covered the last
uncovered branch. If the set is not empty but we cannot derive
new test data, the still uncovered branch is potentially dead
code and should be investigated by the test engineer.

C. Deriving New Test Cases: Simple Approach

A simple approach to derive a new test case is by walking
through the program the same way an existing test case does,
and gathering all conditions of the branching points into a
path condition along the way: when the true-branch is taken
by the test case, we take the condition as it is; when the
false-branch is taken, we take the negated condition. When
we reach the branching point with the yet uncovered branch,
we do the opposite: if the test case takes the false-branch,
we add the condition, otherwise the negated condition. No
more conditions are added after the desired branch. The path
condition so obtained evaluates to true whenever an input
assignment takes exactly the same path as our initial test case,
but the opposite turn at the desired branch. Hence, if the path
condition is satisfiable, a new test case covering the branch is
computed as a satisfying assignment of the path condition.

In a more formal way, we can define the procedure as
follows: Let φ(path) be the path condition of the initial
test case up until the first uncovered branch in the target
function, excluding this branch condition. Let θ(branch) be
this branch condition of the first uncovered branch in the target

branching 
point 

branching 
point 

β(k) 

¬β(k) 

θ(branch) 

¬θ(branch) 

Φ(path0-k) 

Ψ(pathk-n) 

Ψ‘(pathk-n) 

Figure 2. Illustration of the formulas when backtracking.

function. The initial test case satisfies φ(path) ∧ θ(branch).
If φ(path) ∧ ¬θ(branch) is satisfiable, the new test case is
computed as satisfying assignment to this formula.

The advantage of this approach is that only a single path
condition needs to be solved per uncovered branching point
and existing test case. The path conditions are much simpler
than the formulas representing the entire program, as used in
the standard FShell approach. While this simple approach has
the potential of hitting many previously uncovered branches
at low costs, it may fail to cover certain branches due to
dependencies of variables in the target condition.

D. Deriving New Test Cases: Backtracking

We use a backtracking approach to deal with unsatisfiable
formulas occurring in the simple approach. While building
the path condition, at every branching point we store the
current path condition and current branching node on a stack.
Intuitively, the stack contains yet unexplored possibilities
for reaching the target branch. When we reach the desired
branching point, but fail to compute a new test case with
the simple approach, we analyze the control flow graph in
order to find alternative paths to the target branch. This is
done by traversing the control flow graph backwards, starting
from the target branch, and marking all nodes that can reach
the target branch in principle (without any semantic analysis).
Next, we use the collected information for finding alternative
paths to the target branch. We take the last branching point
from the stack, take the other branch, and try to reach our
desired branch, again pushing all branches that have not yet
been investigated to our stack along the new way. Once a
maximum path depth (defined by the user) is exceeded, the
path condition becomes false, or we reach a node which cannot
reach our desired branch according to the control flow graph,
we stop the exploration and continue with the last branch from
the stack. This is repeated until we either find a satisfiable path
to cover the target branch, or exceed a maximum number of
paths (defined by the user). Hence, our backtracking approach
effectively implements a depth-first search of alternative paths
to the target branch, restricted by reachability information from
the control flow graph, and by user-defined parameters.

Figure 2 illustrates the backtracking approach in a more
formal way. Let φ(path0−k) be the path condition of the
test case up to the kth branch condition, but excluding this
branch condition. Let β(k) be the kth branch condition. Let
ψ(pathk−n) be the path condition of the test case from
the kth branch condition to the first uncovered branch in
the target function, excluding this branch condition and the
kth branch condition. Finally, let θ(branch) be this branch



condition of the first uncovered branch in the target func-
tion. The current test case satisfies φ(path0−k) ∧ β(k) ∧
ψ(pathk−n) ∧ θ(branch). A new case is derived by solving
φ(path0−k) ∧ ¬β(k) ∧ ψ′(pathk−n) ∧ ¬θ(branch), where
ψ′(pathk−n) is a new path from the kth branch condition
to the target branch. Our algorithm searches over different k
and ψ′(pathk−n) until the formula becomes satisfiable.

The backtracking approach solves the problem of unsatis-
fiable formulas in the simple approach. The formulas only
represent a single path, and are thus simple compared to
the standard approach (building one monolithic formula) used
by FShell and CBMC. When run without limits, and given
enough time and memory, the approach will always find a
test case to cover an uncovered branch if such a test case
exists. The reason is that, in the worst case, the algorithm
simply iterates over all paths to the uncovered branch. In
theory, this number of paths may be infinite, so “enough time”
may mean “infinitely long”, which is not surprising because
the underlying problem is undecidable. In practice, we use
a bounded model checking approach in our implementation,
which limits the number of execution paths to a finite number.
This bound can be increased iteratively upon failure, until we
run out of resources. Compared to the standard approach used
by FShell and CBMC, our approach can handle much higher
bounds in our experiments before running out of resources
(especially memory). On the other hand, our approach may
need many iterations, where FShell needs only one call to the
model checker. The reason is that the amount of paths which
need to be explored may explode, especially in programs with
loops. In this sense, compared to FShell, we decompose the
test case generation problem into several smaller problems,
which are solved one after the other. Both approaches have
their merits, and complement each other.

E. Reduced Formula Optimization

In our implementation, we can always fall back to test
case generation with monolithic formulas using FShell. In
this section, we describe an optimization of the standard
FShell-approach in our setting. Inspired by ideas from program
slicing [20], it builds the formula representing the program
only for those parts that can reach the target branch. In contrast
to static backward slicing, we only analyze the control flow
graph and ignore data dependencies.

Similar to our backtracking approach, we mark in the
control flow graph all preceding nodes of the desired branch
as nodes which can possible reach our target branch. Then
we restart the CBMC procedure to set up the formula for
the program. However, when we reach a node which is not
marked, we do not add the corresponding constraints to the
formula and stop further exploration. In the end, the created
formula contains only statements which could potentially be
executed before reaching our desired target branch.

Despite this optimization, the formulas can become quite
large, and the case generation approach resource demanding.
Nevertheless, it can be a valuable alternative if the number of
paths to search with our backtracking method explodes.

F. Implementation

The test case generation techniques presented in the previ-
ous sub-sections have been integrated into FShell [4], a test
case generation tool which uses the bounded model checker
CBMC [5] as a back-end. Using command-line parameters,
the user can choose between the standard mode or one of our
new methods. We also made part of the infrastructure required
for test suite augmentation available from the command-line.
For instance, it is possible to execute test cases right from the
command line and integrate the gathered coverage information
into the data file in which all the coverage information is col-
lected. For generating test cases, the user specifies – using the
available query language FQL – which function of the source
code should be covered with branch coverage. In the automatic
mode, FShell executes the new test case immediately after the
data got generated and continues searching for new test cases
until either every branch of the target function is covered or
no new test case can be generated.

The files containing all the coverage information are stored
in XML format and remain available after FShell is closed.
There is one log-file for every test case, containing the actual
path through the program. One additional file contains all
passed conditions, and which test cases passed either the
true- or the false-branch. Finally, one additional file stores the
command line parameter for every test case and the according
log-file name of their traces. Other tools can also use this
information to calculate the coverage for different metrics, or
present more detailed information to individual test cases.

IV. EVALUATION AND CASE STUDY

In this section, we first evaluate our prototype implement-
ation on two open source examples and then present a case
study on real industrial code of a Java Card applet firewall.

A. Evaluation

Our first example is the factor implementation of the
GNU coreutils1 version 8.5. We had to make some small
modifications, like inlining library functions such that our tool
is able to handle and instrument the source code. The factoring
function itself was not modified. It contains two nested loops
where the loop conditions are input dependent.

Our initial test suite contains three test cases. The standard
FShell implementation is not able to compute new tests that
cover previously uncovered branches. As there are loops in the
program, an unrolling bound has to be specified for CBMC.
Low bounds are not sufficient to cover new branches. For
higher bounds, the tool runs out of memory. In contrast, our
backtracking approach is able to augment our existing test
suite and derive the missing three test cases such that full
branch coverage is achieved on this function. A single FQL
query for generating a new test case takes between seven and
fourteen seconds. Most of the time is spent for searching a
new path to the desired branch. The time spent in the main
SAT solver is only around half a second. This also points out

1http://www.gnu.org/software/coreutils/



Table I
TCAS RUNTIME RESULTS.

alt_sep_test() Query CPU time time in SAT solver
normal (FShell) 288 ms 68 ms
normal (backtracking) 232 ms 20 ms
main-loop (FShell) 27162 ms 25138 ms
main-loop (backtracking) 1190 ms 48 ms

the challenge of this example, which is the large number of
possible paths within the a small amount of lines of code.
We are aware that the comparison to FShell is not totally fair,
because the goal of FShell is different from ours: FShell aims
at test suite generation from the scratch, whereas our goal is
test suite augmentation.

Our second example is the tcas2 benchmark from the
Siemens suite [21], implementing a traffic collision avoidance
system for aircrafts in 180 lines of code. This program has
12 integer inputs. Our initial test suite contains only a single
test. We compare our backtracking method with the standard
FShell approach in achieving branch coverage on the top-level
function alt_sep_test(). The results are summarized in
Table I. FShell took 288 ms to generate a test suite from
the scratch, while our approach required 232 ms to achieve
full branch coverage. When we disregard the overhead and
only look at the solving time, the relative difference is larger.
The absolute solving time is small with either method, so we
increase the complexity by adding a loop, and calling the top-
level function only if the loop counter has a specific value. The
computation time with FShell increases to 27 seconds, while
our backtracking still succeeds in 1.2 seconds. We used a loop
with 500 iterations in this experiment. With a higher iteration
count, the difference becomes even greater. The reason is that
the monolithic formula representing the program semantics
grows very large due to the loop. Our approach works with
path conditions, where the formula grows more moderately.

B. Case Study

To test our tool on real code from industry, we applied it
to an applet firewall for a Java Card operating system. The
Java Card operating system must be able to handle several
(independent) applets. The firewall ensures that applets cannot
arbitrarily access data belonging to other applets, but only in
well defined cases, as defined in the JCRE specification [22].
It either grants access, or throws a security exception. In
our implementation, the firewall is not implemented in one
function, but is distributed between several functions.

We created an initial test suite using model-based testing
techniques. The model formalizes the object access rules from
Section 6.2.8 of the JCRE specification. Conceptually, it is
very simple with only two states. However, the conditions on
the edges, expressing when access is allowed or denied, are
very complicated. We applied the method of [23] with the goal
of achieving MCDC coverage [24] on these transition guards.
This is done by generating equations expressing the MCDC

2http://pleuma.cc.gatech.edu/aristotle/Tools/subjects/

Table II
COVERAGE RESULTS.

Branch Coverage total total (without unreachable)
basis test suite 58.11% 71.67%
augmented test suite 83.78% 100%

criteria. An SMT solver then calculates satisfying assignments,
which serve as abstract test cases. The test adapter then maps
the values to concrete program variables in order to execute
these test cases. It parses the input, sets the object flags and
environment variables accordingly, calls the required firewall
function and evaluates the obtained result by comparing it with
the result obtained from the model.

The so computed test suite consists of 211 test cases.
Unfortunately, since the model is on a high abstraction level,
it covers the source code only to a certain extend. We used
gcov3 to measure its branch coverage on the implementation.
The results can be seen in Table II: only around 58 percent
of the branches are covered. Some of the uncovered branches
are security checks, which actually contain dead code branches
under normal execution. There is no chance that these branches
get covered during a normal execution. If we subtract those
dead code branches from the result, we still cover only
approximately 72 percent.

To improve this coverage, we applied our tool with back-
tracking on the firewall-related code of the Java Card operating
system. We use a similar test adapter as for model-based
testing. It uses the model as oracle also for our newly created
test cases. Our tool generates 37 new test cases and identifies
seven unreachable branches. As illustrated in Table II, the
augmented test suites achieve 84 percent branch coverage (still
including the dead code branches). All remaining uncovered
branches in the firewall implementation are either unreachable
by the design of the firewall due to security mechanisms
or unreachable due to the design of the test adapter (e.g.,
certain pointers are never null because we always initialize
them with valid values). After subtracting those unreachable
branches from the result, the branch coverage is 100 percent.
The only manual work required by the user is the inspection of
branches which remain uncovered. Those uncovered branches
are likely to be unreachable and have to be inspected. They
can be marked as unreachable so that they are ignored in the
next test suite augmentation session.

As this implementation of the applet firewall is already well
tested and reviewed, it is not a surprise that no new bug was
discovered. Nevertheless, the increased coverage gives a higher
confidence in correctness.

As many of the initial test cases generated from the model
are redundant with respect to branch coverage on the code,
we also used a second test suite, which contains only one test
case per firewall function. Hence, instead of starting with a
test suite containing 211 test cases, we started with a test suite
containing 7 test cases. Our test suite augmentation approach
was able to complete the test suite with 41 additional test

3http://gcc.gnu.org/onlinedocs/gcc/Gcov.html



cases. The resulting test suite, which contains 48 test cases,
achieves full branch coverage with respect to the reachable
branches. The number of newly generated test cases is only
sightly larger compared to the other case, where the generation
started with the larger test suite.

Next, we compare our backtracking method with the stand-
ard FShell approach on one particular firewall function. While
the standard FShell approach generates all test cases within a
single FQL query, our method uses one FQL query per new
test case. For the backtracking approach, we observed query
times between two and seven seconds. The execution time
roughly correlates with the number of steps which have to
be made back along the path of the used test case to find a
new path to the desired branch. The query CPU time for the
backtracking algorithm was 3.8 sec on average if our initial test
suite consisted of only a single test case. Four new test cases
were created in this case. If the initial test suite contained
already two test cases, the average time dropped to 2.7 sec
per query (three new tests were created). For three existing
test cases, two new ones could be computed within 2.6 sec on
average. The standard FShell approach calculates a whole test
suite within a single query. For the same function, this takes
standard FShell 6 sec. Hence, with more than two existing test
cases, our backtracking method is faster than standard FShell.

To evaluate our results, we also applied random testing to
the firewall using the same test adapter. It required approxim-
ately 900 test cases with random inputs to achieve full branch
coverage with respect to the reachable branches in the firewall
functions. Compared to our test suite of 48 test cases, this
difference in test suite size is quite significant.

V. CONCLUSION

We have presented an enhancement of FShell, making it
capable of augmenting an existing test suite to achieve branch
coverage on given target functions. Our approach generates
new test cases by varying the paths of existing ones. This is
potentially cheaper than computing new tests from scratch.

We presented and implemented three techniques. The first
one is lightweight but incomplete, i.e., may fail to cover certain
branches even if this is possible. The second one extends the
former with backtracking to make it complete. Both techniques
work with path conditions, which are simpler than formulas
representing the entire program. The third technique is an
optimization of the existing approach of FShell, restricting the
formula construction to relevant parts of the program.

We evaluated our implementation on several smaller ex-
amples. Furthermore, we applied our tool on an industrial
implementation of the firewall part of the Java Card operating
system. Our tool augmented an existing test suite to achieve
100% branch coverage on the target functions. Our tool also
identified dead code branches which are all due to security
mechanisms in the code or restrictions by the test adapter.

In the future, we plan to enhance FShell by adding addi-
tional heuristics to trade execution time for memory consump-
tion in a more flexible way. Instead of analyzing one execution
path after the other, or all at the same time, we envision to

operate on bundles of similar execution paths, thereby bridging
the gap between symbolic execution and model checking even
more. We will also research ways to enhance our heuristics
with data flow analysis. Finally, additional coverage metrics
can be added to the tool with low effort, as coverage collection
and test case generation methods are already available.

REFERENCES

[1] P. Ammann, P. E. Black, and W. Majurski, “Using model checking to
generate tests from specifications,” in ICFEM’98, 1998, pp. 46–54.

[2] A. J. Offutt, S. Liu, A. Abdurazik, and P. Ammann, “Generating test
data from state-based specifications,” Softw. Test., Verif. Reliab., vol. 13,
no. 1, pp. 25–53, 2003.

[3] J. Philipps, A. Pretschner, O. Slotosch, E. Aiglstorfer, S. Kriebel, and
K. Scholl, “Model-based test case generation for smart cards,” Electronic
Notes in Theoretical Computer Science, vol. 80, pp. 170–184, 2003.

[4] A. Holzer, C. Schallhart, M. Tautschnig, and H. Veith, “FShell: Sys-
tematic test case generation for dynamic analysis and measurement,” in
CAV’08, ser. LNCS, vol. 5123. Springer, 2008, pp. 209–213.

[5] E. M. Clarke, D. Kroening, and F. Lerda, “A tool for checking ANSI-C
programs,” in TACAS, ser. LNCS 2988. Springer, 2004, pp. 168–176.

[6] S. Falke, F. Merz, and C. Sinz, “The bounded model checker LLBMC,”
in ASE’13. IEEE, 2013, pp. 706–709.

[7] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar, “The software
model checker BLAST,” STTT, vol. 9, no. 5-6, pp. 505–525, 2007.

[8] K. Havelund and T. Pressburger, “Model checking JAVA programs using
JAVA PathFinder,” STTT, vol. 2, no. 4, pp. 366–381, 2000.

[9] G. Fraser, F. Wotawa, and P. Ammann, “Testing with model checkers:
a survey,” Softw. Test., Verif. Reliab., vol. 19, no. 3, pp. 215–261, 2009.

[10] J. C. King, “Symbolic execution and program testing,” Commun. ACM,
vol. 19, no. 7, pp. 385–394, 1976.

[11] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: Unassisted and auto-
matic generation of high-coverage tests for complex systems programs,”
in OSDI’08. USENIX Association, 2008, pp. 209–224.

[12] P. Godefroid, N. Klarlund, and K. Sen, “DART: directed automated
random testing,” in PLDI’05. ACM, 2005, pp. 213–223.

[13] K. Sen, D. Marinov, and G. Agha, “CUTE: a concolic unit testing engine
for C,” in ESEC/FSE’05. ACM, 2005, pp. 263–272.

[14] J. Burnim and K. Sen, “Heuristics for scalable dynamic test generation,”
in ASE’08. IEEE, 2008, pp. 443–446.

[15] N. Williams, B. Marre, P. Mouy, and M. Roger, “PathCrawler: Automatic
generation of path tests by combining static and dynamic analysis,” in
EDCC’05, ser. LNCS 3463. Springer, 2005, pp. 281–292.

[16] Z. Xu, Y. Kim, M. Kim, G. Rothermel, and M. B. Cohen, “Directed
test suite augmentation: techniques and tradeoffs,” in FSE’10. ACM,
2010, pp. 257–266.

[17] R. P. Pargas, M. J. Harrold, and R. Peck, “Test-data generation using
genetic algorithms,” Softw. Test., Verif. Reliab., vol. 9, no. 4, pp. 263–
282, 1999.

[18] P. D. Marinescu and C. Cadar, “make test-zesti: A symbolic execution
solution for improving regression testing,” in ICSE’12. IEEE, 2012,
pp. 716–726.

[19] ——, “KATCH: high-coverage testing of software patches,” in ES-
EC/FSE’13. ACM, 2013, pp. 235–245.

[20] F. Tip, “A survey of program slicing techniques,” J. Prog. Lang., vol. 3,
no. 3, 1995.

[21] H. Do, S. G. Elbaum, and G. Rothermel, “Supporting controlled exper-
imentation with testing techniques: An infrastructure and its potential
impact,” Empirical Software Engineering, vol. 10, no. 4, pp. 405–435,
2005.

[22] Oracle, “Java Card 3 Platform Runtime Environment Specification,
Classic Edition Version 3.0.4,” 2011.

[23] R. Bloem, K. Greimel, R. Könighofer, and F. Röck, “Model-based
MCDC testing of complex decisions for the Java Card applet firewall,”
in VALID’13, 2013, pp. 1–6.

[24] J. J. Chilenski and S. P. Miller, “Applicability of modified condition/-
decision coverage to software testing,” Software Engineering Journal,
vol. 9, no. 5, pp. 193–200, 1994.


