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Abstract. We discuss correlations among spectral observables as a new tool for differen-
tiating between models for the primordial perturbation. We show that if generated in the
isocurvature sector, a running of the scalar spectral index is correlated with the statistical
properties of non-Gaussianities. In particular, we find a large running will inevitably be
accompanied by a large running of fNL and enhanced gNL, with gNL � f2NL. If the tensor
to scalar ratio is large, a large negative running must turn positive on smaller scales. Inter-
estingly, the characteristic scale of the transition could potentially distinguish between the
inflaton and isocurvature fields.
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1 Introduction

Recently an unprecedented amount of data has become available to constrain the properties
of primordial fluctuations which source structure in our universe. This includes the results
from the Planck satellite [1, 2, 3], the BICEP2 collaboration [4], and the South Pole Telescope
(SPT)[5], as well as many others. Single field slow roll inflation, based on a scalar field, the
inflaton, appears compatible with all the data. However, in addition to the inflaton, there
might be other scalars present during inflation. Indeed, unless the Standard Model couplings
are drastically modified at inflationary energies, we know that there is at least one light
isocurvature scalar, the Higgs, which was present during inflation and acted as a spectator
field [6, 7, 8, 9, 10, 11].

While the SM Higgs appears to have little impact on primordial perturbations, see
however [12, 13], isocurvature fields in general could play a significant role if an efficient
curvaton-type conversion into adiabatic perturbations takes place. Here we take curvaton-
type to cover in addition to the curvaton scenario [14, 15, 16, 17, 18] also all other mod-
els where isocurvature fields can be converted efficiently into adiabatic perturbations, e.g.
modulated reheating [19, 20] and modulated end of inflation [21]. The Planck bound on
non-Gaussianity f localNL = 2.7± 5.8 (68% CL) alone places stringent constraints on curvaton-
type fields as the dominant source of primordial perturbations, see e.g. [22, 23, 24, 25, 26].
Moreover, as is well known, this would be ruled out entirely by an eventual detection of large
amplitude primordial gravitational waves. Constraints, however, are significantly weaker for
an admixture of curvaton and inflaton sourced perturbations [27, 28, 29, 30]. The question
then arises: given the data, how one could most efficiently constrain, or possibly detect,
additional scalars such as the curvaton?

Here we pursue one possible avenue and point out that correlations between the observed
signatures of the primordial perturbation could provide a new handle on the dynamics during
inflation. Given that leading order effects in slow-roll are well understood, our focus is what
new can be learnt from effects at second order, and what a detectable running of the scalar
spectral index, denoted by α, could tell us. In particular, we will investigate the information
encoded in the mutual dependence of non-Gaussian statistics and the lowest order running
of the scalar spectral index. As we will demonstrate, a large α would signal the presence
of features in the potential, which in turn would give rise to a different structure of non-
Gaussianities for the pure inflaton and the mixed inflaton-curvaton models, thus making it
possible to distinguish between the two.

In general, there are two options for the origin of large running, |α| = O(ns− 1), of the
spectral index. The first lays the responsibility with the inflaton potential. All that is required
in this case is that the inflaton’s third slow-roll parameter, ξ, becomes of O(ns − 1). The
conventional assumption is that |ξ| = O((ns−1)2). As emphasised by Stewart [31], however,
this is a superfluous assumption often made in slow-roll inflation for reasons of convenience
only. It greatly simplifies calculations, and is satisfied by the simplest inflationary potentials,
but it is not required by general inflationary dynamics.

The second possibility for generating a large running is that the potential of a curvaton
type isocurvature field gives rise to the running. This option has recently been studied by
Takahashi [32] using a curvaton scenario as a concrete example. The idea was then revisited
in light of the BICEP2 data by Sloth [33].

As we will see, the latter case leads to distinct signatures in the non-Gaussian statistics,
while in the former non-Gaussianity remains negligible. Moreover, we find that there is a

– 2 –



further difference between the two cases for examples in which the running is accompanied by
a significant gravitational wave signal. If the large running is accompanied by a significant
tensor to scalar ratio r, this implies that the potential contains a feature. This feature is
not required to violate slow-roll, but the condition required on the third slow-roll parameter
cannot be maintained for many e-folds, implying that a negative running on the pivot scale
has to be accompanied by a positive running on shorter scales. This would correspond to a
feature of a specific type in the potential, but with differing constraints on the feature in the
inflaton and isocurvature cases.

Observational bounds on the running parameter α are relatively weak. Interestingly,
however, there have been several reports of hints for a sizeable running. Analysis of the
SPT data implies a preference for α = −O(ns − 1) at the 2σ level [5]. More recently the
BICEP2 collaboration [4] detected a significant B-mode signal in CMB data, which however
now looks to be mostly or even entirely due to galactic dust [34]. However, if the joint
analysis of Planck and BICEP2 data currently in progress (or any future instrument such
as BICEP3, Keck, Spider or PIPER [35, 36, 37, 38]), did reveal a primordial component
in the signal, the discovery would likely favour a sizeable running of the spectral index, see
for example Refs. [4, 39]. In the more distant future, surveys of spectral distortions could
significantly extend the currently accessible window of ∆N ∼ 7 inflationary e-folds. Progress
of 21-cm cosmology could extend the window even further. This would open up entirely new
possibilities to efficiently probe the scale dependence of the spectrum.

It is therefore of great interest to carefully address second order effects such as the
running of spectral indices, and to address the question: if a scenario generates a significant
running, are there further observational consequences that would result? This is the primary
aim of the present study.

The structure of the paper is as follows. In § 2 we discuss large running generated by a
feature in the inflaton potential. This is contrasted to the isocurvature case in § 3, where we
analyse large running from an isocurvature field and its correlation with non-Gaussianities.
In § 4 we present and analyse numerically two illustrative examples of curvaton models where
features in potential generate a large running. We conclude in § 5.

2 Running from the inflaton field

Let us consider first the running generated by single field inflation. In this case, for a given
inflaton potential, V (φ), the tensor to scalar ratio, r, the spectral index, ns, and the running,
α, are given by the expressions

r = = 16ε ,

ns − 1 = −6ε+ 2η + 1.062ξ + . . . ,

α = 16εη − 24ε2 − 2ξ + . . . , (2.1)

where the slow-roll parameters are

ε = M2
P

V ′2

2V 2
,

η = M2
P

V ′′

V
,

ξ = M4
P

V ′V ′′′

V 2
. (2.2)

– 3 –



The additional terms in Eq. (2.1) are here taken to be negligible on the assumption that
slow-roll parameters beyond ξ are subdominant compared to the first three. In models in
which ξ is of order ε or η, however, this is not the case in general. A quantitative analysis
then requires a generalised slow-roll expansion [31, 40], or a numerical analysis. The above
expressions are however sufficient for a qualitative discussion. Considering Eqs. (2.1), we find
that in the absence of a fine tuned cancelation, ε, and η need to be (ns − 1) ∼ 0.01 or much
smaller, in order that the spectral index can take a value in the observationally preferred
range ns = 0.96± 0.007 [3]. It is necessary, therefore, that ξ be of a similar magnitude, if the
running is also to be O(ns − 1).

Assuming the potential supports a positive ξ of this amplitude for at least a few e-folds,
the fact that dη/dN ∼ −ξ implies that η will change by at least at few times O(ξ). After
the phase of evolution which generates such a large negative running, therefore, barring fine
tuned cancelations, η will be negative even if it was positive at the start of this phase. Such
a negative η also feeds an increase in the rate at which ε increases if ε is large enough for r
to be significant, through the equation dε/dN = −2ε(η − 2ε). The implication then is that
the inflation would not last sufficiently long if such a behaviour continues. This will be made
more transparent below. After a few e-folds of this kind of a behaviour, a decrease in ε is
needed for the potential to be able to generate a sufficient number of e-folds of inflation.

Such a decrease requires a positive η with η > 2ε, so the mass of the potential must
switch back to positive. This in turn requires a large negative ξ and a hence a large positive
running. Again barring fine tuning, therefore, potentials which realise a large negative run-
ning on the pivot scale must have a large positive running on shorter scales, and must possess
an inflection point. For example, the potentials considered by Takahashi and collaborators
[41, 42] consisted of a series of inflection points. This behaviour implies that on shorter scales
the spectral index must evolve towards bluer values. Such behaviour is potentially observable
though joint analysis of CMB and LSS data, or possibly on even shorter scales by virtue of
CMB spectral distortions [43] if the spectral index actually becomes blue. The condition
required for this to occur is mildly stronger than the condition for the growth of ε, since it
requires η > 3ε. However, in concrete models this condition may well be realised, potentially
leading to a correlated signature to a negative running on the pivot scale. A spectrum which
is blue tilted for an range of scales shorter is indeed what occurs in the model of Ref. [42].

2.1 Explicit parametrisation of the inflaton feature

With the preceding discussion in mind, let us therefore consider the running generated by
single field inflation with an inflection point in the inflaton’s potential. For convenience we
parameterise the potential around an inflection point as

V (φ) = V0

(
1 + b

(
φ− φ0
φ0

)
+ c

(
φ− φ0
φ0

)3

+ . . .

)
, (2.3)

and we assume b > 0 and c > 0. At the inflection point the slow roll parameters are given by

ε0 =
b2

2

(
φ0
MP

)−2
, (2.4)

η0 = 0 , (2.5)

ξ0 = 6cb

(
φ0
MP

)−4
. (2.6)
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Here we concentrate on the case ξ0 � ε20 where a large negative running α0 ' −2ξ is
generated at the inflection point. Assuming the higher order terms in (2.3) are negligible,
the slow roll inflation can be sustained only for a limited range of e-folds

Nmax =
1√
|α0|

(
2arctan(xe)−

r0

12
√
|α0|

(
x2e + 2ln(1 + x2e)

))
, xe =

√
3c

b

φ0 − φe
φ0

(2.7)
In the limit of large gravitational waves r0 > 4|α0| the slow roll ends as ε(φe) = 1 and the
corresponding field value is determined by the condition

x2e +

√
r0
|α0|

(
xe +

1

3
x3e

)
=

4
√
r0
− 1 . (2.8)

For r0 = 0.2 and α0 = 0.02 this yields Nmax . 10. Decreasing the running and the tensor-
to-scalar ratio to r0 = 0.1 and α0 = 0.01 increases the number of e-folds up to Nmax . 15.

Therefore, if r = O(0.1) and α = O(ns− 1) at the horizon crossing of observable modes
the potential (2.3) necessarily needs to be flattened out by higher order terms within N =
O(10) e-folds. The flattening essentially requires a second inflection point and a subsequent
evolution of η to positive values. This will push the spectral index ns towards, and possibly
over, to blue tilted values, as discussed above.

It would be interesting to investigate how generically blue values will be reached, and if
this effect, which necessarily follows from the large running and large tensor-to-scalar ratio
in single field models of the form (2.3), could be detectable through future observations of
LSS, CMB spectral distortions or 21-cm cosmology. However, we defer a detailed study to
future work. Examples of this behaviour in models with a large running can be found in for
example Refs. [40, 42]

3 Running from an isocurvature field

Let us now consider the case where more than one light field is present during inflation. In
this case the running can be generated by isocurvature fields which after the end of inflation
convert their fluctuations into adiabatic perturbations.

Using the δN formalism [44, 45, 46, 47, 48] the spectral index to lowest order in slow
roll is given by

ns − 1 = −2ε∗ − 2
1− ηabNaNb

NcNc
+ . . . . (3.1)

Here Na are the derivatives of N defined in the usual way [48], and the subscript Roman
letters run over all light fields present. In a similar manner to the single field case, however,
additional terms in Eq. (3.1) cannot in general be neglected if the running is significant. Here
we will use expressions such Eq. (3.1) only to guide us in analytical estimates, but where
necessary use numerical analysis which does not rely on them.

Differentiating this expression with respect to ln k = ln(aH) provides an expression for
the running, and one finds

dns
d ln k

⊇ − 2

NfNf

ξ∗acNaNc

NfNf
+ . . . (3.2)

where ξab = VabcVc/V
2. As in the single field case, to enhance running while adhering to

slow-roll typically requires ξ = O(ε), while in the simplest models ξ = O(ε2). In this section
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we consider two field models, and the consequences of a large ξχχ, where χ is considered to
be a field which is a spectator at horizon crossing. This will lead to a large running if the
perturbation in this field is converted into a curvature perturbation. We now discuss the
conditions needed for the enhancement of the running, as well as the number of e-folds over
which such an enhancement can be maintained.

3.1 Explicit parametrisation of the isocurvature feature

In a manner similar to the inflaton case above, we consider a potential for the isocurvaure
field χ expanded about an inflection point, given by

U(χ) = U0

(
1 + β

(
χ− χ0

χ0

)
+ γ

(
χ− χ0

χ0

)3

+ . . .

)
. (3.3)

Here U0, β and γ are constants and we take the full scalar potential to be of the form
V = V (φ) + U(χ).

In order to be an isocurvature field, χ should be energetically subdominant and the
gradient of the full potential in χ direction should vanish to first order in slow roll

Ωχ =
U

3H2M2
P

� 1 , εχ . ε2H . (3.4)

A conversion of the isocurvature fluctuations of χ into adiabatic perturbations after
inflation could generate a sizeable running of the spectral index, as suggested by Takahashi
[32] and Sloth [33]. In the examples considered here, the eventual magnitude of the running
is controlled by the c in the potential (3.3) expanded around the inflection point. Assuming
the third derivative of the inflaton potential is negligible, the running generated through the
isocurvature field at scales exiting the horizon as χ = χ0 is given by

α0 = −2wχξχχ +O(ε2H) , ξχχ = 12 b cΩ2
χ

(
MP

χ0

)4

. (3.5)

Here wχ = Pχ/Pζ is the χ contribution to the total curvature perturbation at the time when
the system becomes adiabatic and ζ freezes to constant. For a large tensor perturbation with
r ∼ 0.1, the isocurvature contribution could not account for the total curvature perturbation
but its typical contribution is constrained by wχ . 0.5 [27, 30].

The range of χ0 values for which the isocurvature conditions (3.4) are satisfied and a
large running |α0| & εH can be obtained at least locally is given by

b

(
Ωχ

10−7

)(
0.1

r

)3/2

.
χ0

H
.

(
Ωχ

10−5

)1/2

w1/4
χ b1/4

( c

10−5

)1/4(0.1

r

)3/4

. (3.6)

Moving away from the inflection point εχ will rapidly grow due to the large running.
Unless the growth is leveled out by higher order terms in (3.3) the isocurvature condition
(3.4) eventually gets violated as

εχ = εχ0

(
1 + tan2

(
ξχχ
6
N

))2

' ε2H . (3.7)
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The corresponding maximum amount of e-folds after the inflection point under which χ
remains an isocurvature field is given by

Nmax '

√
4wχ
|α0|

arctan

(√
ε2H
εχ0

− 1

)
< π

√
wχ
|α0|

(3.8)

Taking α0 ∼ 0.01 with wχ . 0.5 as a representative example we find

Nmax . 30 , (3.9)

no matter how small the isocurvature slope εχ0 would be at the inflection point. In order to
keep χ as an isocurvature field, its potential necessarily needs to be levelled out by higher
order terms in (3.3) within the N ∼ 30 e-folds after the inflection point.

We therefore find that a single feature in the isocurvature potential is in general not
enough to generate a large running |α| ∼ 0.01 while still keeping the isocurvature field
decoupled from the adiabatic direction over the observable NCMB ∼ 60 e-folds. It appears
that a large running from an isocurvature field can be consistently generated only if there
are multiple features in the isocurvature potential, as was the case for the inflaton potential.
In both setups a large negative running α = −O(ns− 1) needs to be followed by a transition
to positive running on smaller scales.

The characteristic scale of the transition however distinguishes the inflaton induced
running from the isocurvature case. In the inflaton case the transition from positive to
negative running occurs within N ∼ 10 e-folds after the inflection point whereas for the
isocurvature case the transition can take place at much smaller scales. This difference could
be observable by future measurements of spectral distortions and 21-cm spectrum which are
expected to significantly extend the currently observable range ∆N ∼ 7 of CMB scales.

3.2 Estimates of isocurvature features in fNL and gNL

We now consider further consequences of a large running generated in the isocurvature sec-
tor. In particular, we will consider the amplitude of the reduced bispectrum fNL, and of
trispectrum parameter gNL, given respectively by

fNL =
5

6

NaNbNab

(NcNc)2
(3.10)

and

gNL =
25

54

NaNbNcNabc

(NdNd)3
. (3.11)

In a multi-field inflationary model, the derivatives of N are not unrelated to one another.
Rather one finds [47]

NaVa
V

= 1 (3.12)

and differentiating this expression

NabVa
V

=
NaVaVb
V 2

− NaVab
V

(3.13)

and
NabcVa
V

+
NabVac
V

+
NacVac
V

+
NaVabc
V

=
Vbc
V

. (3.14)
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In a two field model in which one field is a spectator at horizon crossing, the derivative
of N for the inflation field φ is very nearly constant from horizon crossing for the entire
subsequent evolution, and is given by |Nφ| ≈ 1/(2ε∗φ)1/2 (with MP = 1). On the other hand,
Nχ will grow from a negligible initial value if isocurvature fluctuations are converted into ζ.

We are interested in the case where Nχ does indeed grow, and moreover, in order to
make analytic progress we will often consider the point at which Nχ ≈ Nφ. This condition is
reasonable in our study to gain an estimate of the effects of a large running, since we know
the isocurvture field must contribute significantly to ζ for the running of ζ to be significant,
while if there is a significant detection of gravitational waves, it must not dominate it. If Nχ

came to dominate r would become negligible since

r =
16ε∗

1 +R
, (3.15)

where R = N2
χ/N

2
φ. Moreover, the condition R = 1 typically coincides approximately with

the peak value of fNL generated during the evolution of ζ in a two-field model [49, 50]. We
see numerically that our conclusions regarding non-Gaussianity hold more generally than for
the case Nχ ≈ Nφ, and thus do not require a significant value of r.

Considering Eq. (3.13), and assuming Vφχ = 0, we find

NφχVφ +NχχVχ = Vχ −NχVχχ (3.16)

assuming there is no cancelation between the two terms on the lhs, when fNL is large, its
value when Nφ = Nχ, which is close to it peak value can be estimated by

6

5
fNL ≈

1

2
Nχχε

∗
φ = O

(
−ηχχ

4

(
ε∗φ
ε∗χ

)1/2
)
. (3.17)

Playing the same game with Eq. (3.14), and again assuming there is no cancellation one finds
that when ξ is first order in slow-roll, as required to source a large running, then the leading
term gives

54

25
gNL ≈

1

23/2
Nχχχε

∗3/2 = O
(−ξ∗χχ

8

ε∗φ
ε∗χ

)
(3.18)

and hence

gNL = O
(
−f2NL

ξχχ
η2χχ

)
. (3.19)

The last expression is clearly only valid if ηχχ is non-zero. Consequently we see that when
a large running is present we expect an enhanced value of gNL. A further consequence is a
large running [51, 52, 53, 54, 55] of fNL. This is because in the same approximation

dfNL

d ln k
⊇ −5

6
gNL

√
εχ
√
εφ
. (3.20)

As we will see this enhanced running will prove to be a constraint on otherwise viable models.
A word of caution about these expressions is in order. There are two terms on the

LHS of the expressions above we use to generate our estimates for fNL and gNL, and either
or both of these can contribute towards any large value on the RHS. This means that the
expressions we write down are only order of magnitude considerations, and cancellations
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between terms can render them inaccurate, even altering the sign of fNL and gNL. Applying
the fNL expression above to the simplest curvaton model with a quadratic curvaton potential,
for example, gives an estimate for fNL of the correct magnitude, but gives the incorrect sign.

Below we will see that these estimates work very well for two separate models which
generate a large running (for both sign and magnitude). Never-the-less they should be
regarded as useful guides rather than concrete expressions, and we will use numerical δN
simulations to confirm our expectations in each case.

4 Concrete isocurvature examples

To provide concrete examples of models of inflation in which a large running is generated in
the isocurvature sector together with a correlated signal in the bispectrum and trispectrum,
we consider the curvaton model [14, 15, 16, 17, 18, 23, 24, 29, 56, 57, 58]. This is a two
field model in which one field, which is a spectator at horizon crossing decays to radiation
long after the other field which dominates the energy density during inflation. During the
oscillations of this field its relative contribution to the energy density can gradually increase,
and so too does the contribution of its perturbations to the curvature perturbation ζ. We
restrict our attention to this model, although similar results would be expected in other two-
field models, for example those which generate a large gNL during inflation when ξχχ is large
[59].

4.1 Oscillatory isocurvature potential

As a first a concrete example, therefore, we follow Takahashi and Sloth by considering a
curvaton model where the curvaton potential has subdominant oscillations. The potential
we use is given by

V (φ) =
1

2
m2
φφ

2 ,

V (χ) =
1

2
m2
χχ

2 (1 +A cos(χ/w)) , (4.1)

where φ is the inflation and χ the curvaton, and we have chosen a slightly different potential
to Takahashi so as to ensure the mass at the minimum of the curvaton potential is given by
mχ.

We take A < 1, and for w < 1 find that potential contains successive inflection points
when χ ≈ w(1/2 + 2n)π and χ ≈ w(3/2 + 2n)π. The condition that the field does not get
stuck in a local maxima requires χ∗ < w/(2A). At the inflection points one finds

ξχχ ≈
(

1± Aχ

2w

)
Aχ3m4

χ

2w3V (φ)2
. (4.2)

and that increasing A or mφ, or decreasing ω increases ξ.

4.2 Numerical evolution

As a concrete example we take the parameters values: mφ = 5mχ, A = 0.0001 and w =
4× 10−5. Together with the field values when scales corresponding to the pivot scale exited
the horizon (which we take to be 50 e-folds before the end of inflation): φ = 14MP and
χ = w(1/2+2∗198)πMP. In this example we are not being overly careful to ensure consistency
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Figure 1. Results for the oscillatory isocurvature potential eq. (4.1) with mφ = 5mχ, A = 0.0001
and w = 4× 10−5 and initial conditions φ = 14MP and χ = w(1/2 + 2 ∗ 198)πMP set N = 50 e-folds
before the end of inflation. The figures present the time evolution (in e-folds) from the end of inflation
of Nφ (dashed line top left), Nχ (solid line top left), ns (top right), r (middle left), α (middle right),
fNL (bottom left) and gNL (bottom right).

with observation, but rather aim to illustrate the features we have been discussing for models
with a significant running and significant production of gravitational waves. To generate our
results we numerically evolve the covariance matrix 〈δφa(k)δφb(k)〉 until all scales we are
interested in have exited the horizon, the method we use is described in detail elsewhere
[60]. Then we relate this to the spectrum for curvature perturbation ζ by calculating the
derivatives of N from the point we stop evolving the covariance matrix. To calculate non-
Gaussianities, we use calculate the derivatives of N over a range of scales, from the pivot scale
down to the final scale we evolve the covariance matrix for. We use the numerical method
discussed in Ref. [49], with the added assumptions that the inflaton reheats instantaneously
when it starts to oscillate, and that once the curvaton has undergone a large number of
oscillations it may be approximated by a fluid with zero pressure.

In Fig. 1, we show how Nφ, Nχ calculated on the pivot scale, ns r, α, fNL, and gNL evolve
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Figure 2. Results for the oscillatory isocurvature potential eq. (4.1) with mφ = 5mχ, A = 0.0001
and w = 4× 10−5 and initial conditions φ = 14MP and χ = w(1/2 + 2 ∗ 198)πMP set N = 50 e-folds
before the end of inflation. The figures present the scale dependence of ns (top left), r (top right),
fNL (bottom left solid), the estimate of fNL (bottom right dashed), gNL (bottom right solid) and the
estimate of gNL (bottom right dashed). The results are shown as a function of e-folds from the pivot
scale N = 50 and measured at the point Nφ = Nχ for the pivot scale.

during the phase of evolution in which the curvaton is oscillating about its minimum and its
energy density red-shifting more slowly than that of the radiation produced by the inflaton
field. In these figures different numbers of e-folds along the x axis correspond to different
reheating times for the curvaton field, and hence different energy scales for the reheating. In
a real model the value of the observational parameters which are realised is then fixed by
the curvaton’s reheating scale. Plotting the results in this way allows us to simultaneously
present results for many different reheating scales at once.

In these figures one can see the almost constant Nφ described above, the growing Nχ,
and the generation of the large running in the spectral index as the curvaton starts to
contaminate the spectrum. We see in this example that at a reheating time of about 7
e-folds after inflation ends ns is close to the observationally preferred value, and r ≈ 0.1.
As expected, α is enhanced. It is clear that there is an very enhanced value of gNL which
accompanies an enhanced α, irrespective of the value of r.

Next we plot how the observables behave as a function of horizon exit time. To do this
we calculate ns, α, fNL and gNL as a function of horizon exit time over the range of e-fold
taken for the isocurvature field to evolve over on oscillation in the potential. We evaluate the
answer at the point where the derivatives of N are equal for the pivot scale. We expect the
estimates for fNL and gNL above to be accurate to at least at the order of magnitude level at
this point. We plot the results in Fig. 2. This again clearly illustrates the correlation between
gNL and the running of the spectral index for a variety of initial conditions, in addition to
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the usefulness of the estimates we have derived.
In Fig. 3, we repeat this exercise but for the case mφ = 20/3mχ, A = 0.0003 and

w = 4× 10−5, and the same initial conditions. In this case the values of ns and α are similar
at horizon crossing, but the slower rate at which the isocurvature field evolves means it takes
roughly twice as long in e-folds for on oscillation of the potential to be traversed. In this
case the large running of fNL, and the extra e-folds over which it applies, means that fNL

becomes large over CMB scales, and this model is likely ruled out.
Finally for this case we plot the spectra of ζ directly as a function of e-folds after horizon

crossing in Fig.4.

Figure 3. Results for the oscillatory isocurvature potential eq. (4.1) with mφ = 20/3mχ, A = 0.0003
and w = 4× 10−5 and initial conditions φ = 14MP and χ = w(1/2 + 2 ∗ 198)πMP set N = 50 e-folds
before the end of inflation. The figures present the scale dependence of ns (top left), r (top right),
fNL (bottom left solid), the estimate of fNL (bottom right dashed), gNL (bottom right solid) and the
estimate of gNL (bottom right dashed), as a function of e-folds from the pivot scale fixed at N = 50
and measured at the point Nφ = Nχ for the pivot scale.

4.3 Piecewise isocurvature potential

As a second example, in order to have more control over the shape of the potential, we study
an isolated feature rather the a continuous series as in the previous example. We therefore
consider a potential of the form (3.3), including also a quartic piece in the potential, and
match it to a potential of purely quadratic form about the minimum, i.e. V = 1/2m2

χχ
2.

We do so by requiring that the first and second derivatives of the potential agree at some
matching position χm. This fixes the coefficient of the quartic term, and V0, leaving us free
to adjust b and c as we wish. In particular, this allows us to arbitrary fix ξ = M4

Pbc/χ
4
0.
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Figure 4. Results for the oscillatory isocurvature potential eq. (4.1) with mφ = 20/3mχ, A = 0.0003
and w = 4× 10−5 and initial conditions φ = 14MP and χ = w(1/2 + 2 ∗ 198)πMP set N = 50 e-folds
before the end of inflation. A plot of the spectrum over one oscillation as a function of e-folds from
pivot scale N = 50.

Explicitly the potential is then of the from

V (φ) =
1

2
m2
φφ

2 ,

V (χ) = V0

(
1 + b

(
χ− χ0

χ0

)
+ c

(
χ− χ0

χ0

)3

+ d

(
χ− χ0

χ0

)4
)
, χ > χm

V (χ) =
1

2
m2
χχ

2 , χ < χm . (4.3)

In this case as a concrete example we generate observable results evaluated on the
pivot scale with initial conditions φ∗ = 14MP, χ∗ = χ0 = 0.05MP, and parameter values
mφ = 5mχ, V0b/χ0 = m2

φχ0 and χm = 0.049MP. The initial value of χ is therefore at

the inflection point. We do so for a series of values of V0c/χ
3
0 in the range {0, 0.01}. In

contrast with the example above, therefore, we enforce 50 e-folds for a series of different
model parameters and plot how the observables evolve with the parameters, rather than as
a function of scale.

The results for, ns, α, fNL and gNL at the point the derivates of N are equal are shown
in Fig. 5 together with the analytical estimates where appropriate, r always takes value
r ≈ 0.08. As above, one can clearly see the correlation between a large running and the
enhanced gNL.

5 Conclusions

The unprecedented accuracy of cosmological surveys opens up new possibilities to probe infla-
tionary physics through correlated patterns of several observables. After the possible hints of
primordial gravitational waves in BICEP2 data there has been a significant interest towards
running of the spectral index. An eventual detection of large amplitude primordial gravi-
tational waves would favour a large negative running to alleviate tension with the accurate
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Figure 5. Results for the piecewise isocurvature potential eq. (4.3). Parametric scan of the pivot
scale values (N = 50) of ns (top left), r (top right), fNL (bottom left solid), the estimate of fNL

(bottom right dashed), gNL (bottom right solid) and the estimate of gNL (bottom right dashed). The
results are shown as a function of the parameter combination cV0/χ

3
0 and measured at the point

Nφ = Nχ.

Planck measurements of the spectral index at high multipoles. While the current BICEP2
data appears compatible with dust [4] the possibility for a large tensor to scalar ratio r and
large running αs is certainly still allowed by observations. The combined analysis BICEP2
and Planck data and the new data from successors of BICEP2 is expected to clarify the
situation in near future. It is therefore interesting to investigate the physical ramifications
of a large running in more detail.

In this work we have found new possibilities to discriminate between inflaton and cur-
vaton fields including through correlated signatures in scale dependence of the spectral index
and non-Gaussian statistics. In both cases a large running of the spectral index can be
generated by features in the scalar field potential. Using a simple two parameter descrip-
tion for a local feature either in the inflaton or curvaton potential we have investigated the
observational signatures allowing for mixed inflaton and curvaton perturbations. We have
shown that a curvaton field generating a large running of the spectral index also necessarily
induces a specific non-Gaussian signature in the form of an enhanced trispectrum amplitude
gNL peaked around the feature scale. If the curvaton induced running is of the same order as
the spectral index |αs| = O(ns − 1) we find the parametric relation |gNL| = O(f2NL/(ns − 1))
between the peak values of gNL and the bispectrum amplitude fNL. There is no such am-
plification if the running is generated by the inflaton(s). Thus the correlated signatures of
running and non-Gaussianities provide a novel and potentially very useful probe of isocurva-
ture fields present during inflation. This signature is expected no matter what the amplitude
of gravitational waves.
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Another interesting difference concerns the behaviour of the spectrum away from the
feature in cases where a large running is accompanied by an observable value of the tensor to
scalar ratio, r. In the inflaton case a single feature generating a large running αs = −O(ns−1)
would rapidly lead to breakdown of slow roll dynamics. A self-consistent setup therefore
requires additional structure which levels out the potential within N ∼ 10 e-folds and brings
the spectral index closer to unity. For curvaton induced running due to a single feature,
the inflationary dynamics is not affected and the curvaton can stay in the vicinity of the
feature resulting a decreasing spectral index over a period up to N ∼ 30 e-folds. Beyond this
regime the potential either needs to be levelled out by additional structure or the curvaton
will not stay an isocurvature field. If a large running and r are observed, therefore, and such
a levelling out ruled out within N ∼ 10, the origin would have to be an isocurvature field.

These considerations serve to emphasise the importance of a careful treatment of the
second order effects and their correlated behaviour. They could help to uncover potential
features and facilitate differentiation between models for the primordial perturbation. As
argued here, measuring the running of the spectral index would be very useful in this regard.
Correlated with the non-Gaussian statistics, the scaling of the spectrum provides an addi-
tional observational tool to discriminate between curvatons and inflatons. To determine the
running more accurately, the widening of the observable window of e-folds would be highly
desirable. Interestingly, such a possibility might be in the offing by future surveys, which
will measure spectral distortions of the CMB and probe the spectrum over a range of up to
17 e-folds.
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