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Abstract

A measurement of the Drell-Yan differential cross section at low invariant mass is pre-

sented in the di-muon channel. A 1.64 pb−1 dataset of
√
s = 7 TeV proton-proton collision

data collected by the ATLAS experiment at the LHC is used. The measurement is made

in an invariant mass range of 26 < Mµµ < 66 GeV where Mµµ is the invariant mass of

the muon pair. A review of the relevant theoretical physics and the ATLAS detector is

made. The analysis is described with particular attention paid to the determination of the

isolation efficiency corrections for the Monte Carlo and the estimate of the multijet back-

ground. The fiducial differential cross section is calculated with a statistical uncertainty

that varies between 0.8% and 1.2%. The systematic uncertainty is seen to vary between

2.4% and 4.1%. A cross section extrapolated to the full phase space is also presented.

This is dominated by theoretical uncertainties from the variation of the factorisation and

renormalisation scales. The obtained fiducial differential mass cross section is compared to

theoretical predictions at NLO and NNLO in perturbative QCD. It is shown that a move

beyond NLO is needed to describe the distribution well due to the restrictions of using a

fixed order theoretical prediction. A combination with the electron channel measurement

is also briefly discussed as well as comparisons to a di-muon measurement in an extended

invariant mass range. This allows similar, but stronger conclusions to be drawn. A discus-

sion is made of a PDF fit that uses the measurement presented here. The fit demonstrates

the impact of the measurement on the PDFs and further supports the conclusion that a

move to NNLO in pQCD is needed to describe the data.
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Chapter 1

Introduction

The Large Hadron Collider (LHC) is currently the highest energy particle accelerator in

existence. In Run I it collided protons at a centre of mass energy of 7 TeV in 2010 and 2011

data taking and 8 TeV in 2012. This opens up phase space in which the Standard Model

of particle physics has not been directly tested before. The parton distribution functions

(PDFs) that describe the structure of the proton have been constrained by lower energy

experiments and evolved to LHC energies. New measurements are needed to compare the

evolved predictions with data at this new energy. These PDFs are described in chapter 2.

Also, discussed is the Drell-Yan processes and how a measurement of the cross section,

complementary to measurements made at the Z resonance help to distinguish between

different PDFs within the proton. Chapter 3 gives an overview of the ATLAS detector,

concentrating on the sub detectors that are most important for a measurement of the

Drell-Yan process in the muon channel at low mass. Chapters 4 to 7 describe the analysis

performed, selections made and the corrections that were applied to the Monte Carlo.

Particular attention is paid to determination of the efficiency corrections (chapter 5) and

the estimation of the background from multijet events (chapter 6). In chapter 8 the

differential cross section is calculated and the uncertainties from a number of different

sources are determined. Comparisons are made to theoretical predictions and the low

mass Drell-Yan results from other LHC experiments. A short discussion is then made

(chapter 9), positioning the measurement presented in this thesis in the context of the

soon to be published ATLAS measurement of the differential low mass Drell-Yan cross

section. Also discussed is a PDF fit using the measurement in this thesis. In chapter 10

the results are summarised in a conclusion.

The work presented in this thesis was carried out within the ATLAS collaboration.

The nature of modern particle physics means that not all aspects of an analysis can be

done by a single analyser. The Monte Carlo and many of the corrections applied to it are

produced centrally to be used by analysis teams. Within the analysis teams themselves,

work is divided up among the members. All of the plots in this thesis unless referenced

otherwise were created by the author. In addition all work in this thesis by the author is

listed below:

• Chapter 4, Analysis and Selection: Determination of the muon isolation selec-

tion, both of the muon isolation variable used and the cut upon it. Plots showing
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the impact of the provided Monte Carlo corrections on the analysis were produced

by the author, along with the control distributions. The calculation of the event

yield was also the author’s own work.

• Chapter 5, Muon Isolation Efficiency: The muon isolation efficiency Monte

Carlo corrections and the associated uncertainties have been determined for muid

combined muons by the author. The method in this chapter is based on the refer-

enced Z resonance analysis.

• Chapter 6, Multijet Background Studies: All the work in this chapter is the

author’s own. Three methods for the estimation of the multijet background have

been examined.

• Chapter 7, Comparison of Data and Monte Carlo: All plots showing the

agreement between data and Monte Carlo and the cut flow tables were produced by

the author.

• Chapter 8, Low Mass Drell-Yan Differential Cross Sections: The bin-by-bin

unfolding and cross section measurement are the author’s work. Propagation of the

uncertainties from various sources was also carried out by the author. Correction

factors to scale the measured cross section to the dressed and extrapolated cross

section were provided, but applied by the author. Plots showing a comparison

between the measured cross section and theoretical predictions were made using

modified macros from the working group, which the author had a hand in creating.

As well as the analysis presented here, a number of studies of the Lorentz angle in

the semiconductor tracker were also made during the course of my PhD. These are not

included in this thesis as they are not related to the physics analysis presented in the

thesis. The Lorentz angle is extracted from a fit to the distribution of the average cluster

size vs. the angle of incidence of the track to the SCT sensor. Studies covered Monte

Carlo and data comparisons, improvements to the track selection, an examination of an

asymmetric fitting function. A series of null tests were examined that looked to measure

the Lorentz angle in scenarios where no Lorentz angle is expected as a first step towards

estimating a systematic uncertainty to assign to the fit result.
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Chapter 2

Theory

This chapter covers the theory needed to understand the measurement made in this thesis

and to put it into the context of its potential theoretical impact. The first section of this

chapter describes the particles and forces and structure of the Standard Model, while the

second section discusses some of the physics of proton-proton collisions. The Drell-Yan

process and the potential impact of a low mass measurement is discussed in the final

section.

2.1 The Standard Model

The Standard Model of particle physics is an incredibly successful model that can explain

nearly all experimental measurements from high energy experiments. It was formulated

in the 1970s and describes how matter is built from fundamental spin 1
2 fermions and the

interaction between these fermions which are mediated by bosons with integer spin. All

the particles in the Standard Model are listed in table 2.1 with their masses and electrical

charges. Each of the fermions in the table also has an antiparticle, which has the same

mass, but opposite electric charge.

The Standard Model is based on three relativistic quantum field theories. These are

Quantum Chromodynamics (QCD), Quantum Electrodynamics (QED) and the Weak The-

ory. These theories describe the strong, electromagnetic and weak forces respectively.

Gravity is not represented in the Standard Model. Currently a relativistic quantum field

theory has not been found for gravity, but as it is negligibly weak at the scales considered

in particle physics this does not limit the usefulness of the Standard Model.

2.1.1 Fermions

The fermions in the model are divided into quarks and leptons. The quarks carry one of

three colour charges, red, green or blue and are only found in bound colour singlet states.

These states are in the form of hadrons which are either mesons, such as pions and kaons,

or baryons, such as protons and neutrons. Mesons, which have integer spin, consist of two

quarks, whereas the baryons have 1
2 spin and consist of three bound quarks. The quarks

themselves have fractional units of electric charge, e, and are grouped into pairs with 1e
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difference in charge. The pairs form three generations of increasing mass,

⎛
⎝
u

d

⎞
⎠
,

⎛
⎝
c

s

⎞
⎠
,

⎛
⎝
t

b

⎞
⎠
. (2.1)

The leptons are also grouped as three sets of generational pairs, with each of the three

charged leptons having an associated neutrino. Unlike the quarks, the leptons are not

confined into bound states,

⎛
⎝
νe

e−
⎞
⎠
,

⎛
⎝
νµ

µ−
⎞
⎠
,

⎛
⎝
ντ

τ−
⎞
⎠
. (2.2)

2.1.2 Bosons

The Standard Model also describes the interactions between the fermions which are medi-

ated by the gauge bosons. The electromagnetic force which is responsible for the majority

of interactions that occur outside of the nucleus is propagated via the spin 1 photon, which

couples to electric charge. The strong force which is responsible for hadronic confinement

is propagated via the massless gluons, which couple to colour charge. The gluons them-

selves also carry colour charge, allowing for self interactions. The final force described by

the Standard Model, which couples to all fermions, is the weak force which has three as-

sociated massive gauge bosons, the neutral Z and the W + and W − bosons which between

them allow both neutral and charged current weak interactions to occur.

Particle Symbol Mass Charge [Q∣e∣]

Quarks

Up u 2.3+0.7
−0.5 MeV +2/3

Down d 4.8+0.5
−0.3 MeV −1/3

Strange s 95.0 ± 5.0 MeV +2/3
Charm c 1.275 ± 0.025 GeV −1/3
Bottom b 4.18 ± 0.03 GeV +2/3

Top t 173.07 ± 0.89 GeV −1/3

Leptons

Electron e 0.51 ± 0.00 MeV −1
Muon µ 105.66 ± 0.00 MeV −1
Tau τ 1776.82 ± 0.16 MeV −1

Electron Neutrino νe < 460 eV† 0

Muon Neutrino νµ < 0.19 MeV† 0

Tau Neutrino ντ < 18.2 MeV† 0

Bosons

Photon γ∗ 0 0
Z Z 91.188 ± 0.002 GeV 0
W ± W ± 80.385 ± 0.015 GeV ±1

Gluon g 0 0
Higgs H 125.9 ± 0.4 GeV 0

Table 2.1: Particles of the Standard Model. Particle Data Group [2] values are used,
with the charge of the particles expressed in units of the electron charge, Q∣e∣.

†: The neutrino masses are predicted to be zero in the Standard Model but an extension
to it allows them to be included.
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2.1.3 Gauge Invariance

The Standard Model is a gauge theory, with the requirement that the Standard Model La-

grangian1 is invariant under a set of space-time dependant transformations. This is known

as local gauge invariance (as opposed to global gauge invariance where the transformations

have no space-time dependence). The transformations are described by the gauge symme-

try group SU(3)C ×SU(2)L×U(1)Y . The SU(3)C group describes the strong interaction,

mediated by the gluons. The SU(2)L × U(1)Y group describes the electromagnetic and

weak interactions, which are combined into Electroweak Theory, and mediated by the

photon and the massive Z, W − and W + bosons. These bosons arise in the theory from

the act of imposing local gauge invariance, whereby new additional gauge fields need to

be added to the Lagrangian to compensate for the local gauge transformation [3].

2.1.4 Electroweak Theory

In electroweak theory the transformations from the SU(2)L × U(1)Y group require four

gauge fields to be added to ensure gauge invariance. These are the Bµ field arising from

the U(1)Y group and the W 1
µ , W 2

µ , W 3
µ arising from SU(2)L [4].

One feature of weak theory is that it does not conserve parity. This means that

different interactions occur for left handed and right-handed chiral states of a fermion. As

such these chiral states are treated separately in the Standard Model. A fermion can be

represented by a Dirac field as the sum of left-handed part ψL and right-handed part, ψR,

ψ = ψL + ψR (2.3)

where

ψL = PLψ with PL = (1 − γ5)
2

, (2.4)

ψR = PRψ with PR = (1 + γ5)
2

. (2.5)

PL and PR are projection operators that project the left-handed and right-handed chirality

states of the fermion respectively. The γ5 matrix is a 4 × 4 matrix constructed from the

product of the Dirac matrices, γ5 ≡ iγ0γ1γ2γ3. The projection operators are related via,

PLPL = PL, PRPR = PR, and PLPR = PRPL = 0. (2.6)

Chirality is not a physical observable, but in the limit of massless fermions, the chirality

is equal to the helicity of the particle. With helicity being the sign of the component

of spin of the fermion in the direction of motion. The weak interaction is seen to break

parity conservation experimentally as the W − only couples to left-handed chiral states.

This means that only left-handed neutrinos have been observed in experiment. This leads

to right-handed neutrinos not being included in the Standard Model. This is addressed

1The Lagrangian is defined as L = T − V where T is the kinetic energy of the system and V is the
potential energy. As the Standard Model deals with fields, which are functions of space-time, and hence
continuous, the Lagrangian density, L, is used. This is defined as L = ∫ Ld3x.
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in electroweak theory by grouping the fermions together into left-handed SU(2) doublets

and right-handed SU(2) singlets. As shown for the first generation of fermions,

`L =
⎛
⎝
νL

eL

⎞
⎠
, eR, qL =

⎛
⎝
uL

dL

⎞
⎠
, uR, dR. (2.7)

To allow the states in the doublets and singlets to be differentiated, a new quantum number

is constructed. This is called weak hypercharge and is defined as,

Y = 2Q − 2I3, (2.8)

where, Q is the electric charge of the fermion, and I3 the third component of isospin. The

values for the first generation of particles is given in table 2.2. It can be seen that members

of the doublets have the same value of Y , which differs to the corresponding singlet.

IW I3 Q Y

νe 1/2 1/2 0 -1
e−L

1/2 −1/2 -1 -1
e−R 0 0 -1 -2
uL 1/2 1/2 2/3 1/3
dL 1/2 −1/2 −1/3 1/3
uR 0 0 2/3 4/3
dR 0 0 −1/3 −2/3

Table 2.2: Quantum numbers related to weak hypercharge (Y ) for the first generation of
fermions. Weak isospin is given by IW , the third component of isospin by I3 and electric

charge by Q.

The SU(2) singlets are invariant under SU(2) transformations,

`R → `′R = `R. (2.9)

This means that they do no couple to the W 1
µ , W 2

µ , W 3
µ gauge fields. The doublets however

transform as,

`L → `′L = e−iωaTa`L, (2.10)

where Ta are the generators of the SU(2) group and ωa are real parameters, with a = 1,2,3.

The generators of the group can be expressed in terms of the Pauli matrices, 1
2σ

a, where

σ1 =
⎛
⎝

0 1

1 0

⎞
⎠
, σ2 =

⎛
⎝

0 −i
i 0

⎞
⎠
, σ3 =

⎛
⎝

1 0

0 1

⎞
⎠
. (2.11)

In the U(1)Y symmetry group, the generator of the group is the weak hypercharge, Y ,

of the particle. Under U(1)Y transformations both the singlet and doublets transform in

the same way, as,

ψ → ψ′ = e−iω′Y (ψ)ψ. (2.12)
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The Lagrangian density describing a massless free fermion field ψ, is given by

L = ψ̄(iγµ∂µ)ψ (2.13)

To make L invariant under the local gauge transformations of SU(2)L × U(1)Y the Bµ,

W 1
µ , W 2

µ and W 3
µ fields are introduced. This is done by replacing ∂µ by the covariant

derivative Dµ, which is defined in such a way that it transforms in the same way as ψ.

This is given by,

Dµ = ∂µ + i2gIW (f)TaW a
µ + ig′Y (f)Bµ (2.14)

where IW (f) and Y (f) are the isospin and hypercharge of the fermion, f , as given in

table 2.2. The couplings of the fermions to the SU(2) and U(1) gauge fields is given by

g and g′ respectively. Substituting ∂µ → Dµ and including all of the considered fermion

fields gives the electroweak Lagrangian density,

Lew = −1

4
BµνB

µν − 1

4
FµνF

µν

+ i¯̀TLγµDµ`L + iēTRγµDµeR + iq̄TLγµDµqL + iūTRγµDµuR + id̄TRγµDµdR. (2.15)

Here, the hypercharge field strength is given by Bµν = ∂µBν − ∂νBµ and the weak SU(2)
field strength is given by F aµν = ∂µW a

ν − ∂νW a
µ − gfabcW b

µW
c
ν . The difference in the form

of the two field strengths arises from the fact that the U(1)Y group is an abelian group

meaning that the transformations commute. The SU(2) gauge group is a non-abelian

group, leading to the addition of the gfabcW b
µW

c
ν term. Physically this term accounts

for the triplet and quartic couplings of the W a bosons. Together these first two terms of

equation 2.15 represent the kinematic terms of the gauge fields. The remainder of equa-

tion 2.15 describes the kinematics of the fermions in the theory. Substituting equation 2.14

into equation 2.15, together with the appropriate group generators allows the interaction

terms between all of the fermions considered and the gauge bosons to be calculated.

The interaction between the leptons and gauge bosons is given by,

−g
2

⎛
⎝
ν̄L

ēL

⎞
⎠

T

γµ
⎛
⎝
⎛
⎝

W 3
µ

√
2W +

µ√
2W −

µ −W 3
µ

⎞
⎠
− tan θWBµ

⎞
⎠
⎛
⎝
νL

eL

⎞
⎠
− ig tan θW ēRγ

µBµeR, (2.16)

where the charged W± bosons are given by

W ±

µ =
W 1
µ ∓ iW 2

µ√
2

. (2.17)

The fields Bµ and W 3
µ cannot be interpreted as the remaining electroweak bosons as both

are seen to couple to the neutrino which the photon does not. This problem is solved by

making a linear combination between Bµ and W 3
µ . The massless photon is identified as,

Aµ ≡ Bµ cos θW +W 3
µ sin θW , (2.18)
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and the neutral Z boson is given by

Zµ ≡ Bµ cos θW −W 3
µ sin θW , (2.19)

where θW is the weak mixing angle that needs to be determined from experiment. This is

related to the electroweak couplings by

tan θW = g
′

g
. (2.20)

By applying the parity operators the interactions between the left and right-handed

fermions and each of the bosons can be written explicitly. The interactions involving

the photon and the Z are discussed below.

The coupling of the photon with the charged fermions is given by,

g sin θW ēγ
µeAµ −

2

3
g sin θW ūγ

µuAµ +
2

3
g sin θW d̄γ

µdAµ. (2.21)

Here the photon has the same coupling to left and right-handed fermions. It can be seen

from equation 2.21 that the quantity g sin θW appears in each term and that the photon

couples to the fermions with couplings proportional to their electric charge. This allows

the relation,

g sin θW = e, (2.22)

to be made where e is the electromagnetic charge.

The coupling of the Z to the fermions, f , is given by,

− g

2 cos θW
f̄i (I3

i γ
µ (1 − γ5) − 2Qi sin

2 θWγ
µ) fiZµ, (2.23)

which, can be seen to have both a vector (γµ) term, and an axial-vector (γµγ5) term. This

can be made more explicit as,

− g

2 cos θW
f̄iγ

µ (vf − afγ5) fiZµ, (2.24)

where vf and af are the vector and axial-vector couplings respectively. These constants

are defined by

vf = I3
f − 2 sin2 θWQf , (2.25)

af = I3
f , (2.26)

and are determined by the Standard Model given θW . The Z boson can clearly be seen to

couple to the quarks with a coupling strength proportional to the weak isospin and charge

of the quarks, with different coupling strengths for the different chiral states.
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2.1.4.1 Electroweak Symmetry Breaking

The Lagrangian density shown in equation 2.15 is for massless bosons. Simply introduc-

ing the mass such that L = ψ̄(iγµ∂µ −m)ψ is not invariant under SU(2)LU(1)Y local

transformations for m ≠ 0. This is because the mass term causes a mixing of the left and

right-handed components of the fermions.

In order to give the weak bosons masses, spontaneous symmetry breaking is imposed

via the Brout-Englert-Higgs mechanism [5–9]. This introduces an SU(2) doublet of com-

plex scalar fields, known as the Higgs field. This has a potential of

V (Φ) = µ2Φ†Φ + λ(Φ†Φ)2. (2.27)

If µ2 < 0 then the field has a minimum at Φ†Φ = −1
2µ

2/λ, giving it a non-zero expectation

value. This ensures gauge invariance of the Lagrangian, but the vacuum state is not

invariant under gauge transformations. The gauge bosons acquire mass via interactions

with the Higgs field. The masses of the W ± and Z are given by

MW = 1

2
gv, MZ = 1

2

gv

cos θW
. (2.28)

where v = µ/
√
λ is the vacuum expectation value. The mass of the Higgs particle that is

a consequence of the Higgs field is given by

MH =
√

2∣µ∣. (2.29)

This is a free parameter in the Standard Model that needs to be measured from experiment.

The Higgs boson was first observed by the ATLAS [10] and CMS [11] collaborations at the

LHC in 2012. Higgs boson decays to two photons have been observed, which constrains

the spin of the Higgs boson to be either zero or two. The Standard Model predicts that

the spin should be zero, and initial measurements [12,13] are favourable to that being the

case.

2.1.5 Quantum Chromodynamics

Quantum Chromodynamics is a non-abelian gauge theory that is invariant under local

gauge transformations described by the SU(3)C group. This means that the quarks are

described by a field ψi where i = 1,2,3 where i is associated with the quantum number of

colour (red, blue and green). In order to compensate for the local gauge transformations

eight additional fields must be included into the Lagrangian. These are associated with

the eight gluons. These fields are included via the covariant derivative Dµ as was done in

Electroweak Theory. This leads to the Lagrangian density of QCD being written as,

LQCD = −1

4
GaµνG

µν
a + q̄a (iγµDµ)ab qb (2.30)

with

Dµ = ∂µ + igsTaGaµ (2.31)
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where, Ta are the generators of SU(3)C and Gaµν is the field strength tensor, given by,

Gaµν = ∂µGaν − ∂νGaµ − gsfabcGbµGcν . (2.32)

The indices a, b, c = 1...8. The gauge coupling is taken to be the strong coupling gs, which

is discussed further in section 2.2.1. As was seen for the SU(2) group in the electroweak

theory, the term gsf
abcGbµG

c
ν arises due to the non-abelian nature of SU(n) the gauge

groups. This term gives rise to the self interactions of the gluons, which makes strong

interaction processes so complex.

2.1.6 Limitations of the Standard Model

While the Standard Model has been very successful, with all of the predicted particles

having been discovered, the masses of those particles are free parameters in the model that

have to determined by experiment. The Standard Model can’t explain certain observed

symmetries such as why there are three generations of both quarks and leptons or why

the charge on the electron is the same as the charge on the proton. At a larger scale it

cannot explain the source of the matter-antimatter asymmetry in the universe or predict

a particle that explains dark matter [14].

2.2 Proton-Proton Collisions

At the LHC, protons accelerated in opposite directions are brought together to collide

in the centre of the detectors. These protons, rather than the simple valance uud quark

model often used are in fact very complicated systems containing gluons, photons, and

u, d, s, c, b sea quarks as well as the uv and dv valance quarks. The valance quarks

describe some of the macroscopic properties of the proton, whereas the sea quarks reflect

much richer structure and dynamics. Hadrons, such as the proton, are bound together by

the strong force as described by Quantum Chromodynamics (QCD).

2.2.1 Running Couplings in QED and QCD

The fine structure constant, α, determines the strength of the interaction between

charged particles and is defined as

α = e2

4π
= 1

137
, (2.33)

where e is the electron charge. However, it is seen by experiment to have a scale depen-

dence, increasing with the energy scale, Q, leading to α being known as a running coupling.

This dependence on Q arises due to the screening effects of QED quantum fluctuations

where e+e− pairs emitted by a photon propagator act to decrease the measured value of

α. At larger scales (smaller distances) this screening is overcome and the measured value

for α increases. The momenta in the loops that cause the screening can have any value,

and problems arise in the theory when this tends to infinity (known as ultra violet diver-

gence). In order to avoid these divergences the perturbation series describing α requires
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renormalisation. This introduces an additional arbitrary mass scale, µ, to the definition

of α, which is the point at which the subtractions to remove the ultra violet divergences

are performed. The renormalisation group equation [15],

1

α(µ2) = 1

α(Q2) + β0 ln(Q
2

µ2
) + ... (2.34)

here truncated to just the first two terms. This gives the general dependence of the

coupling on Q2 expanded in powers of ln(Q2/µ2). The quantity β0 depends on the number

of degrees of freedom within the loops, and is given by β0 = 1
12π (4nf) where nf = 3 is the

number of fermion generations. This gives

α(Q2) = α(µ2)
1 − α(µ2)

π ln (Q2

µ2 )
. (2.35)

The arbitrary renormalisation scale has to be chosen such that, µ2 << Q2 and acts as a

cut off to prevent α becoming divergent, with the value of α(µ2) being determined from

experiment.

The strong coupling constant, αs, is defined as

αs =
g2
s

4π
, (2.36)

where gs is the QCD gauge coupling. This definition is analogous to that of the QED fine

structure constant. Again, from experiment, it is seen that αs is dependent on the energy

scale, Q2, but this time αs is large at low Q2 and small as high Q2. Again this behaviour is

caused by virtual loops, and the fermions produced inside them. Here however, due to the

self interaction of the gluons, further gluons can also be produced. The produced quark

pairs cause a screening of the coupling, as was seen for α, but the gluons have the opposite

effect, causing an augmentation of the coupling strength at low Q2. As was seen for the

QED example, ultra violet divergences are caused by these loops and a renormalisation

scale, µ has to be introduced. The renormalisation group equation is used to do this,

but here in QCD, due to the self-interactions of the gluons an additional term in β0 is

included to account for these extra degrees of freedom. This gives β0 = 1
12π (4nf − 11nc)

where again nf is the number of available fermions (which itself is scale dependent) and

nc is the number of colour charges. This gives an expression for αs(Q2) of,

αs(Q2) = αs(µ2)
1 − αs(µ2)

12π (2nf − 33) ln (Q2

µ2 )
, (2.37)

which is commonly rearranged to give,

αs(Q2) = 12π

(33 − 2nf) ln( Q2

Λ2
QCD

)
, (2.38)
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(a) Real (b) Virtual

Figure 2.1: Real and virtual gluon emission.

where ΛQCD is the value of µ2 for αs(µ2) → ∞. This is interpreted as the scale that

divides the perturbative and non-perturbative physics and is found from experiment to be

∼ 0.3 GeV. It can be seen from equation 2.38 that the additional gluon term causes αs(Q2)
to decrease with Q2. This behaviour explains why at low Q2 the quarks are fully bound

together in a colour singlet state, yet when probed at high enough Q2 it is possible to

examine the structure of hadrons, such as the proton, taking advantage of this weakening

of the coupling strength.

2.2.2 Cross Sections

The cross section of a process is a measure of the likelihood of it occurring and is expressed

as an effective area, σ. For sufficiently large scales, αs(Q2) is small enough that the

partonic cross section can be expressed as the perturbative expansion in αs. This means

each term is progressively smaller than the last, leading to a convergent power series.

Each term in αs introduces new sub-processes into the calculation. These corrections to

the leading order cross section can take the form of real corrections, where partons are

emitted, contributing to the final state (figure 2.1(a)), or virtual corrections which arise

from quarks and gluons being produced in loops (figure 2.1(b)). Both of these scenarios

can cause problems to the theoretical calculation of the cross section as they can produce

divergences in the calculation. The ultra violet divergences from the virtual corrections

are treated by the inclusion of the renormalisation factor µR as discussed in section 2.2.1.

The real corrections from the emitted gluons introduce a 1/(p − k)2 propagator term to

the calculation, where p is the four-momentum of the incoming quark, and k is the four

momentum of the gluon. When the gluon is emitted collinearly to the quark, this term

becomes divergent. To avoid this an additional scale is introduced, called the factorisation

scale, µF . This is the scale at which the perturbative and non-perturbative physics is

separated, allowing the soft gluon emission to be absorbed into the PDF rather than

described by the perturbative expansion. A value of µF = Q is usually chosen. Once

divergences have been avoided the real and virtual corrections should cancel at any given

order of the perturbative expansion. If the cross section could be calculated to all orders,

there would be no scale dependence on the cross section, however in practice this can be

done with very few processes and the perturbative expansion is truncated. Many processes

are now calculated to LO and NLO in αs with an increasing number having the NNLO

term calculated. The dependence on the calculated cross section on µR and µF is treated
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as an uncertainty to the theoretical calculation. It is common to assess this uncertainty by

varying each of the scales by a factor of two, and examining the change in the predicted

cross section.

2.2.3 The Factorisation Theorem

As it is difficult to perform analytical calculations of proton-proton interactions from first

principles the factorisation theorem [16] is used. This allows the non-perturbative parton

distribution functions, fa/A and fb/B, which are calculated from fits to data, to be separated

from the partonic cross section, σ̂ab→X . These can then be calculated perturbatively as

a power series in αs(Q2). These components of a proton-proton collision are shown in

figure 2.2. The hadronic cross section, σAB, for a process is expressed via the factorisation

theorem as,

σAB =∑
a.b

Cab∫ dxadxb [fa/A (xa,Q2) fb/B (xb,Q2) + (A↔ B)] σ̂ab→X , (2.39)

where xa is the fraction of the momentum of proton A carried by the colliding parton

a, (similarly for xb). The PDFs also depend on Q2, the large momentum scale that

Figure 2.2: Schematic of a proton-proton collision. The labels are described in the text.

characterises the hard scatter. The equation sums over the initial and final colour states

with the initial colour averaging factor, Cab, given by

Cqq̄ =
1

9
, Cqg =

1

24
, Cgg =

1

64
, (2.40)

where the denominator of Cab is given by the square of the number of available colours

(three for quarks and eight for gluons). Neglecting the masses of the particles, the invariant

mass of the ab system,
√
ŝ, is related to the invariant mass of the AB system,

√
s, by

ŝ = (pa + pb)2 = xaxbs = τs, (2.41)
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introducing the new variable τ = xaxb. The factorisation theorem can be rewritten in

terms of τ , giving

σAB =∑
a,b

Cab∫
1

0
dτ ∫

1

τ

dxa
xa

[fa/A (xa,Q2) fb/B ( τ
xa
,Q2) + (A↔ B)] σ̂ab→X , (2.42)

which when considered differentially in terms of τ , gives,

dσAB
dτ

=∑
a,b

dLab
dτ

σ̂ab→X , (2.43)

where

dLab
dτ

= Cab∫
1

τ

dxa
xa

[fa/A (xa,Q2) fb/B ( τ
xa
,Q2) + (A↔ B)] , (2.44)

is called the parton luminosity [17] .

2.2.4 Parton Distribution Functions

The PDFs define the probability, k(x), to find a parton of type k with a 4-momentum

fraction between x and x + dx. The PDFs are determined from fits to data largely from

deep inelastic scattering (DIS), Drell-Yan and jet production measurements. A number

of different groups carry out these fits using different assumptions, parameterisations and

choices of dataset for their fits. The MSTW [18] (previously MSRT) and CTEQ [19] groups

carry out global fits using a large selection of datasets using many types of measurement.

The NNPDF [20] group also include a wide range of datasets, but fit the PDFs using a

multivariate technique not explained here. A final group worth mentioning is HERAPDF

who produce PDF sets fitted exclusively to the H1 [21] and Zeus DIS data from HERA.

The discussion given here attempts to discuss PDFs in a generalised sense rather than

concentrating on the approach of any one collaboration.

The general approach to determining the PDFs, is to define a set of functions describing

the PDFs at some initial scale, Q2
0. In principle these can take any arbitrary form but

need to have enough flexibility to allow them to be fitted to the data. The data, which is

collected at various x and Q2 is then used to fit the PDFs, which have been evolved up

to the scale of the data using the DGLAP equations. The DGLAP (Dokshitzer-Gribov-

Lipatov-Atarelli-Parisi) [22] [23] [24] [25] equations describe the evolution from one scale

to another. They consist of a perturbative expansion of splitting functions. These splitting

functions, which are calculated to NLO and NNLO, describe the probability of a parton

producing a daughter parton with a given momentum fraction. It is through the DGLAP

equations that the factorisation scale is introduced to the PDFs as they describe the PDFs

integrated over the transverse momentum up to µF . The fits are carried out using a χ2

minimisation technique that adjusts the values of the free parameters at the initial scale to

give a good χ2 at the scale of the data. While the Q2 dependence of the PDFs is described

by the DGLAP equations, the x dependence is determined from the data.

In general the QCD fits are obtained by parameterising the parton distribution func-

tions at Q2
0 using an analytical form. A common choice [26] is to parameterise the gluon
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density as

xg(x), (2.45)

the valence quark densities as,

xuv(x) = x (u(x) − ū(x)) , (2.46)

xdv(x) = x (d(x) − d̄(x)) , (2.47)

and the light sea distributions as,

xS(x) = x [2 (ū(x) + d̄(x)) + s(x) + s̄(x)] , (2.48)

x∆(x) ≡ x (d̄(x) − ū(x)) . (2.49)

With most groups using a functional form similar to

xfi(x,Q2
0) = Aixαi(1 − x)βiPi(x), (2.50)

where αi and βi are free parameters in the fit and Pi(x) can be a polynomial function in

x or
√
x. Additional constraints are also included such as the counting sum rules,

∫
1

0
[u(x) − ū(x)]dx = 2, ∫

1

0
[d(x) − d̄(x)]dx = 1, ∫

1

0
[q(x) − q̄(x)]dx = 0,

(2.51)

for q = s, c, b. These ensure the proton valence structure corresponds to uud and are used

to set the value of the normalisation term Ai. Momentum conservation is also ensured by

requiring,

∫
1

0

nf

∑
i

x [qi(x) + q̄i(x)] + xg(x)dx = 1, (2.52)

where the sum runs over all active parton flavours, allows the value of Ag to be determined.

Once the densities are parameterised at Q2
0, the DGLAP evolution equations, are used

to obtain xf(x,Q2) at any Q2. Figure 2.3 shows the parton densities for the gluons and

valence and sea quarks at NLO as described by the MSTW PDF group at Q2 = 10 GeV2

and evolved to Q2 = 104 GeV2. It is evident that the gluon and sea quark densities vary

quickly with Q2, playing a larger role in the high Q2 collisions at the LHC. As the change

in the sea quark and gluon densities is so dramatic understanding the evolution from the

energy regime in which the input measurements were made to the new energy regime of

the LHC is important. DGLAP evolution to any Q2 allows the theoretical cross sections

of any process of interest to be computed.

The parameters αi and βi in equation 2.50 that describe the PDF at the initial scale

are obtained by fitting the theoretical predictions to the experimental measurements. This
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Figure 2.3: Parton densities obtained from NLO MSTW2008 Q2 = 10 GeV2 on the left
and Q2 = 104 GeV2 on the right. [18]

is done by minimising a χ2 function, often defined as,

χ2 =∑
exp

χ2
exp, (2.53)

where, χ2
exp is the individual contribution from each independent dataset [27–29], given

by

χ2
exp =∑

i

(di −∑k βk,itisk − ti)
2

α2
i

+∑
k

s2
k, (2.54)

where di and ti are the measurement values and the corresponding theoretical predictions

respectively. The total uncorrelated uncertainty for the measurement i, is given by αi,

which is the sum in quadrature of the statistical and uncorrelated systematic uncertainties.

The sources of correlated uncertainty are labelled as k. When a source k is shifted by one

standard deviation (sk = 1), the amount of change in di is given by βk,i. The values in βk,i

are the experimental correlated systematic uncertainties published by the experiments.

The second term in equation 2.54 introduces a penalty of s2
k when the data points are

moved by βi,ksk, this restricts large deviations from sk = 0. Although most of the PDF

groups use a χ2 minimisation technique with functions similar to equations 2.53 and

2.54, two approaches can be taken with respect to the treatment of sk in the fit. The

parameter sk can either be a free parameter in the fit which is determined by the χ2

minimisation. This means that the fit is not performed to the raw data but to the data once

it has been shifted to its optimal settings for the systematic uncertainties as determined

by the fit. The second choice is to fit the data with sk = 0, ignoring the correlated

systematic uncertainties. As discussed in section 2.2.4.1 these two approaches lead to

different methods of determining the uncertainties associated with the fit.

Theoretical comparisons to LHC measurements, such as those described in [30], demon-
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strate the over all good evolution of the PDFs. They provide an example of the universality

of the PDFs allowing measurements from DIS data to be used when considering proton-

proton collisions.

2.2.4.1 Error Sets

Until recently the uncertainty associated with a PDF prediction was estimated by com-

paring the predictions from the different PDF groups who, as mentioned previously, use

different assumptions and datasets in their fits. However many of the same datasets enter

into multiple groups’ fits, meaning that the different PDFs obtained are not fully indepen-

dent. More recently, effort has been made to estimate and make available the uncertainties

associated with the different fits [31]. There are three main approaches to estimating the

uncertainties associated with the fit, the offset method, the Hessian method, and the Monte

Carlo method, these are discussed below. In all three methods a set of PDFs are produced,

the central PDF, S0, which is obtained from the χ2 minimisation, along with a series of

PDF error sets, Si.

The Offset Method uses sk = 0 for the central fit, S0, meaning that the experimental

correlated systematic errors are not considered, due to the fact they cannot be considered

to be Gaussian distributed. To obtain an uncertainty for this central fit, sk is set to ±1

for each source of systematic uncertainty and the fit is repeated. The total uncertainty

associated with the fit is obtained by adding in quadrature all the differences from the

central fit. This method produces theoretical predictions that are as close as possible to

the data. However, as it does not use the full statistical power of the fit it produces more

conservative uncertainties than the other methods and can result in an over estimate of

the uncertainty. Another disadvantage of this method is that the goodness of fit cannot

be determined from the χ2 calculated with only the statistical uncertainties. This means

that to obtain a measure of the goodness of fit the χ2 needs to be recalculated with the

experimental statistical and systematic uncertainties added in quadrature [31].

The Hessian Method uses sk as a free parameter in the fit meaning that the theoretical

predictions are based on the data points once they have been shifted within their respective

correlated uncertainty to the optimal position as determined by the fit. The uncertainties

on the fitted PDF parameters are obtained from examining the parameters around the

χ2 minimum, χ2
0 = χ2(S0), which is obtained by considering the leading quadratic terms

from the Taylor expansion of the χ2 function. Uncertainties for the central PDF set are

calculated using a Hessian matrix evaluated at the χ2 minimum. The Hessian matrix is

a matrix of second derivatives of the χ2 function with dimensions equal to the number of

free parameters in the fit. The eigenvectors of the Hessian matrix are used to produce

an Eigenvector Basis set of PDFs {S±l ; 1, ..., d}, where S± are defined by displacements

of a standard magnitude up or down along each of the d eigenvector directions. The

Hessian matrix can be diagonalised and rescaled using an iterative method [27–29] so that

the eigenvectors are orthogonal to each other. Moving the parameters away from the

minimum causes the χ2 to increase by ∆χ2. The neighbourhood around the minimum
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in which the parameters are varied is defined via the tolerance parameter, T , such that

∆χ2 ≤ T 2 [27]. If the PDF fit was using consistent datasets with Gaussian uncertainties

compared to a well defined theory then the error bands corresponding to ∆χ2 = 1 or

∆χ2 = 2.71 for the 68% (one standard deviation) and 90% (two standard deviations)

confidence levels respectively would be used. The consistent H1 and Zeus datasets allow

the HERAPDF group to do this. For the large global fits used by the CTEQ and MRST

groups these criteria are not met and so the tolerance parameter is used. This allows

inconsistencies between datasets to be reflected in the uncertainties of the fit. A value of

T is determined for each eigenvector by considering candidate fits along the eigenvector

direction in the neighbourhood of the minimum [29]. These are obtained individually for

each of the experimental datasets. The final value of T for the 90% CL fit as a whole

can be obtained from an averaging of the values obtained from each of the eigenvectors.

This is the approach CTEQ. Another option is to use a dynamic tolerance, where the

value of T is different for different eigenvectors, as is the case with MSTW fits [18]. The

uncertainties of the PDF’s are all linearly proportional to T , so the 68% confidence limit

can be obtained by scaling the values of T appropriately. The diagonalisation of the matrix

means that each of the eigenvectors are an admixture of the free PDF parameters meaning

that each eigenvector does not correspond to a single uncertainty source. However, as the

eigenvectors are orthogonal it allows the uncertainty, σF , from the PDFs on any physical

quantity that has a PDF dependence, F (S), to be easily calculated from [32]

σ2
F = 1

2

d

∑
l=1

(F (S+l ) − F (S−l ))
2
, (2.55)

or if asymmetric uncertainties are required, the following can be used,

σ+F,max =

¿
ÁÁÀ d

∑
l=1

[max (F (S+l ) − F (S0), F (S−l ) − F (S0), 0)]2
, (2.56)

σ−F,max =

¿
ÁÁÀ d

∑
l=1

[max (F (S0) − F (S+l ), F (S0) − F (S−l ), 0)]2
. (2.57)

Large asymmetries in the PDF uncertainties are indicative of a problem with the fit.

The Monte Carlo Method is the third common method used for calculating PDF

uncertainties and is used by the NNPDF group and the more recent HERAPDF sets. Here,

for each of the n experimental measurements d Monte Carlo replicas are created such that

any sufficiently large sample of them has the same mean, variance and covariance as the

experimental measurement [33]. A PDF can then be fitted for each of the Monte Carlo

replicas with the best fit being the average of the obtained fits and the uncertainty taken

as the variance between the fits. This method has the advantage that it can be used with

any parameterisation of the parton densities and becomes most useful for more complex

parameterisations with a larger number of free parameters [26].
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2.2.4.2 Uncertainty from the Strong Coupling

The PDFs are currently fitted at LO, NLO and NNLO in pQCD. But the value of αs(M2
Z)

itself has an uncertainty that should be represented in PDF uncertainties. A value of αs

can be extracted from the PDF fits themselves by including αs as a free parameter in the

fit. However the most precise measurements of αs entering the world average published by

the Particle Data Group are from processes that are free of PDF uncertainties for example

from τ and onia decays and the e+e− event shapes at the Z resonance. The shape of the

gluon PDF varies considerably with different values of αs so the most accurate one is

desirable. Another issue with leaving the value of αs completely free is that the value of

αs used in partonic cross sections matched to the PDF needs to be consistent with the

version used in the PDFs.

There are two main approaches to including an uncertainty from αs into the PDF

uncertainties. The CTEQ, HERAPDF and NNPDF groups use the PDG value of αs(Mz)
as an input in their fits, whereas the MSTW group obtain a value from the fit, but

without allowing αs(Mz) to be a free parameter. The two approaches are discussed below

concentrating on the CTEQ and MSTW groups.

CTEQ includes the PDG αs value into the fit much like any of the other experimental

measurement, allowing it to vary within the 90% CL PDG uncertainty. They then diag-

onalise the parameter space [34, 35]such that changes in αs only effect one eigenvector.

The uncertainty calculated from this eigenvector can be added in quadrature with the

others. This approach has the advantage that the uncertainties are directly related to

those determined by the world average.

The MSTW group use 20 different values for αs(M2
Z), and carries out a PDF fit using

each of them on all of the datasets that go into their global fit. For each fit, the difference

in χ2 obtained and the χ2 from the global fit is taken. For each dataset these 20 χ2

differences are plotted as a function of αs. A quadratic curve can then be fitted to these

points, for each of these curves the 68% and 90% CL are taken. The curves for each

of the datasets are combined such that all of them are described by their 68% and 90%

confidence level limits. Figure 2.4 shows the combined quadratic function for an NNLO

fit (an NLO fit is also done). A best fit value of αs(M2
Z) (α0

s(M2
Z)) is obtained from the

minima of the fit, the 68% and 90% confidence limits are also shown.

The full global fit is done (with the 2d error sets) using α0
s and the value of αs at

the 68% and 90% limits (as well as at half of these limits). To obtain the uncertainty

on a physical quantity, F , that depends on the PDFs, the asymmetric PDF uncertainties

are calculated. This is done using equations 2.56 (giving (∆FαsPDF )+) and 2.57 (giving

(∆FαsPDF )−) for each of the PDFs produced with the different fixed values of αs. For

α0
s the quantity Fα

0
s(S0) is obtained. If the 68% CL on F is required, only the PDFs

fitted using α0
s, and the αS values at the 68% limits (and at half of them) need to be

used. Similarly if the 90% CL on F is required. To get the total uncertainty on the

PDF from both the usual error sources and from αs, the spread of predictions for each αs

value, including the PDF uncertainties is considered. Asymmetric uncertainties are then
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Figure 2.4: Best fit value of αs obtained for an NNLO fit. The 68% and 90% confidence
limits are also indicated [36].

calculated as,

(∆FPDF+αs)+ = max
αs

({Fαs(S0) + (∆FαsPDF )+}) − F
α0
s(S0), (2.58)

(∆FPDF+αs)− = Fα
0
s(S0) −min

αs
({Fαs(S0) − (∆FαsPDF )−}), (2.59)

where the minimum and maximum are determined from the five values of αs considered.

The values of αs at the mid-points of the uncertainty band need to be considered. The

PDF uncertainty decreases as αs gets further from its best fit value, while correlations

between PDFs and αs can enhance αs dependence and anti-correlations decrease it. This

means that the extrema could occur for any value of αs in the CL band. Ideally αs would be

varied continuously to calculate these uncertainties, but only the two values either side of

Fα
0
s(S0) are used for ease of use. In practice, for the majority of processes considered by the

MSTW authors the extrema are found at the limits of the range considered. Reference [36]

shows that while the addition of the αs uncertainty doesn’t have a large effect on the

uncertainty bands for the quark distributions, the effect on the gluon distribution is much

more marked.

2.2.4.3 Photon Parton Distribution

As well as the quark and gluon components of the proton there is also a component from

photons, which are produced from QED radiation from the quarks. Currently only two

PDF sets are available which include the photon PDF, γ(x,Q2), in the PDF fits. Both

the MRST2004qed [36] and the recently released NNPDF2.3 QED [37, 38] PDF sets are

NLO O(α2
s) in pQCD with LO O(α) QED corrections made to the DGLAP evolution

equations [39]. This choice is motivated by the expectation that the LO QED and NLO

QCD corrections should be of similar size due to α2
s(M2

z ) and α(M2
Z) being of similar

magnitude. Figure 2.5 shows the parton densities for the different constituents evaluated

at Q2 = 20 GeV from the MRST2004qed PDF set. Here the quark and gluon distributions
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are very similar to those obtained from previous MRST analyses. It is clear that while the

photon density is small at this scale, it is larger than the b quark distribution, due to the

scale being only slightly higher than Q2 =m2
b where the b quark contribution turns on from

zero. It can also be seen to be larger than the sea quark distribution at large x. This is due

to the fact that the photons are emitted from the high x valance quarks directly, whereas

the sea quarks have to be produced via gluon emission. A recent measurement of the high

mass (116 < Mee < 1500 GeV) Drell-Yan differential cross section from ATLAS [40] has

demonstrated that the corrections from the photon PDF can have a sizeable effect on the

size of the predicted cross sections.

Figure 2.5: Proton PDF from the MRST2004QED set at Q2 = 20 GeV obtained from the
NLO pQCD + LO QED global fit [36].

2.3 The Drell-Yan Process

A quark and antiquark in the colliding protons annihilating to produce a lepton pair is

referred to as the Drell-Yan process. It was first described in 1970 [41] by Sidney Drell and

Tung-Mow Yan as a way of explaining the appearance of lepton pairs in hadronic collisions

in the context of Feynman’s parton model [42]. Figure 2.6 illustrates the leading order

process as a Feynman diagram. The phase space available at the LHC to the ATLAS,

CMS and LHCb experiments at
√
s = 7 TeV is shown in figure 2.7 in comparison to the

phase space available to the experiments at HERA. The phase space is expressed in terms

of the parton variables x and Q2, with the relation to final state variables of mass, M ,

and rapidity, y, indicated. More formally, they are related via,

xa,b =
√
Q2

√
s
e±y, (2.60)
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Figure 2.6: The Drell-Yan process.

with M = Q. The rapidity y is defined as,

y = 1

2
ln
E + pz
E − pz

= 1

2
ln
xa
xb
, (2.61)

where E is the energy of the particle and pz its momentum in the longitudinal direction, z,

(as defined in chapter 3 for ATLAS). The region of phase space studied in the measurement
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Figure 2.7: Phase space available at the LHC in comparison to HERA. The region of
phase space studied in the measurement presented in this thesis is indicated.

presented in this thesis is indicated on the diagram. The phase space is constrained within

the 26 <
√
Q2 < 66 GeV mass range considered. The constraint on the rapidity of the

virtual photon is due to the physical acceptance of the ATLAS inner detector. The overlap

of the ATLAS phase space with LHCb at larger rapidities. This allows complimentary

measurements to be made in different x regions.
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2.3.1 Leading Order Cross Section

At leading order in αs (O(α0
s)) the Drell-Yan electromagnetic partonic cross section is

given by [43],

σ̂ (qq̄ → l+l−) = 4πα2

3ŝ

1

Nc
Q2
q , (2.62)

where ŝ = M2
ll, the invariant mass of the lepton pair produced in the process which can

be physically measured. The quark electric charge is given by Qq and listed in table 2.1.

The fine structure constant, α, is also seen. A colour factor of 1
Nc

which has a value of
1
3 as the quark and antiquark need to be of the same colour type, is included to allow

annihilation into a colour singlet final state. As the lepton pairs are produced with a

range of invariant masses, the differential cross section as a function of invariant mass is

an interesting quantity to study, this is given by,

dσ̂

dM2
= σ̂0

Nc
Q2
qδ(ŝ −M2

ll), σ̂0 =
4πα2

3M2
ll

, (2.63)

where the delta function ensures that ŝ =M2
ll. To get the total hadronic cross section the

factorisation theorem, defined in equation 2.39, is used to obtain

dσ

dM2
ll

= ∫
1

0
∑
q

[fq/A(x1,M
2
ll)fq̄/B(x2,M

2
ll) + (q↔ q̄)] × dσ̂

dM2
ll

(qq̄ → l+l−) (2.64)

= σ̂0

Nc
Cqq̄ ∫

1

0
dx1dx2δ(ŝ −M2

ll) ×∑
q

Q2
q [fq/A(x1,M

2
ll)fq̄/B(x2,M

2
ll) + (q↔ q̄)]

(2.65)

= 2σ̂0

Nc
∑
q

Q2
qτ

dL(τ)
dτ

, (2.66)

where
dL(τ)

dτ is the parton luminosity, as defined in equation 2.44.

To include the production of the Z boson, Qq is modified to include terms for the weak

interaction,

Q2
q → Q2

q + 2Qqvlvqχ1(ŝ) + (a2
l + v2

l )(a2
q + v2

q)χ2(ŝ), (2.67)

which introduces two additional terms [44], one to include the weak contribution (third

term) and one taking into account interference between the electromagnetic and weak

components (second term). The weak axial and vector couplings af and vf , introduced

in section 2.1.4 now enter into the equation. These are related via vf = af − 2Qf sin2 θW ,

where af = +1
2 for ν, u, ... and af = −1

2 for µ, d, ... and θW is the weak mixing angle. The ŝ

dependent χ variables are defined as,

χ1(ŝ) = κ
ŝ(ŝ −M2

Z)
(ŝ −M2

Z)2 + Γ2
ZM

2
Z

, (2.68)

χ2(ŝ) = κ2 ŝ2

(ŝ −M2
Z)2 + Γ2

ZM
2
Z

, (2.69)

where MZ and ΓZ are the mass and width of the Z boson respectively, both of which are
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determined from experiment. The constant term κ is given by,

κ =
√

2GFM
2
Z

4πα
, (2.70)

where GF is the Fermi constant. For partonic centre of mass energies,
√
ŝ, well below the Z

resonance, the ratio ŝ/MZ is small, leading to 1 ≫ ∣χ1∣ ≫ χ2, such that the weak effects are

small enough to be neglected leaving equation 2.62 as a suitable approximation. For the

case of
√
ŝ =MZ the χ2 term dominates. Figure 2.8 shows graphically the contributions

from the three components to the total Drell-Yan differential mass cross section when

calculated at NNLO which demonstrates the same behaviour as at LO.

Mass (GeV)
20 40 60 80 100 120

 (
N

N
LO

)
-1

 p
b 

G
eV

dM
σd

-210

-110

1

10

210

310

410

 = 7 TeVs

PDF: MSTW2008nnlo
Total
EM
Weak
mod(interference)

Figure 2.8: The contributions to the total Drell-Yan differential mass cross section
calculated at NNLO using VRAP [45]

2.3.2 Higher Order Corrections

Higher order terms in the perturbative expansion come from additional Feynman diagrams

with additional αs vertices. These additional terms are represented by a range of Feynman

diagrams and constitute either real or virtual corrections. Real terms come from external

gluon lines, whereas virtual corrections come from internal gluon loops. The corrections

at NLO (O(αs)) for the Drell-Yan process are shown in figure 2.9, where figures 2.9(a)

and 2.9(b) show the virtual corrections and figure 2.9(c) shows the real corrections. Fig-

ure 2.9(d) shows a gluon induced process where a gluon in the proton produces one of the

initial state quarks. NNLO (O(α2
s)) corrections include diagrams with loops that produce

quark-antiquark pairs, but are too numerous to list here.

Theoretical calculations of the Drell-Yan process can be performed at NLO accuracy

matched to leading-long (LL) or next-to-leading log (NNL) calculations to account for soft

collinear partonic emission in the initial state [46–48]. Calculations at NNLO precision

can also be performed reliably [49–51].
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(a) (b)

(c) (d)

Figure 2.9: Drell-Yan NLO diagrams.

2.3.3 Backgrounds to the Low Mass Drell-Yan Process

As can be seen from figures 2.9 the NLO diagrams lead to a final state of pp → µ−µ+ +
X where X is any particles produced from the QCD initial state radiation. The main

background to this process are other processes that produce two or more oppositely charged

muons. These backgrounds are discussed in chapter 4.

2.3.4 Potential to Constrain the PDFs with a Low Mass Drell-Yan Mea-

surement

Figure 2.10 shows the quark-antiquark parton luminosity as a function of
√
ŝ/s (

√
τ) for

a number of NLO PDF sets as a ratio to the MSTW2008NLO PDF set. The invariant
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Figure 2.10: Parton luminosities for various PDF sets as a ratio to MSTW2008nlo [52].

masses of the W and Z bosons are given on the
√
ŝ/s axis for reference. It can be seen

that in the region of these boson resonances the different PDF groups are in relative good
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agreement with small uncertainties, but the agreement decreases rapidity at lower and

higher values of
√
ŝ/s. Further measurements in these regions will help to constrain the

PDFs. It is the region below the Z resonance that the Drell-Yan measurement made in

this thesis studies. As discussed in chapter 4 the measurement is made in the invariant

mass region of 26 < Mµµ < 66 GeV which corresponds to 7.2 × 10−3 ≲
√
ŝ/s ≲ 1.1 × 10−2,

where it is evident from figure 2.10 improvements can be made.

Drell-Yan production in proton-proton collisions at the LHC is predominantly from

uū→ γ∗/Z → l+l− and dd̄→ γ∗/Z → l+l− processes, but there is an invariant mass depen-

dence to which of these two processes is dominant. As was seen in section 2.3.1 at low

invariant masses the electromagnetic terms in the cross section dominate, however at the

Z resonance the weak term is dominant. Examining these two regimes separately using

the factorisation theorem, it is possible to make the approximation that

σZ ≈ (a2
u + v2

u) × u(x1)ū(x2) + (a2
d + v2

d) × d(x1)d̄(x2) + [1↔ 2], (2.71)

σγ∗ ≈
4

9
× u(x1)ū(x2) +

1

9
× d(x1)d̄(x2) + [1↔ 2], (2.72)

where (a2
u + v2

u) ≃ 0.29 and (a2
d + v2

d) ≃ 0.37. As such, a low mass Drell-Yan measurement

is more sensitive to the uū processes and is complementary to measurements made at the

Z resonance where the dd̄ process is more dominantly probed. Measuring both provides

a QCD fit more information to disentangle the u and d contributions.

Figure 2.7 shows the phase space of the measurement. This allows x to be between

x ∼ 5 × 10−4 and x ∼ 1.1 × 10−1 at a value of Q2 almost an order of magnitude larger than

was available at HERA for the same x.

In the lower x region of this measurement the valance quark distributions are less

well constrained by HERA data. This is particularly true for the dv distribution, the

main constraint for which comes from low statistics neutral current DIS measurements

at high x. In this same lower x region the HERA data strongly constrains the ū and d̄

densities [26]. As such, although a low mass Drell-Yan measurement will have the largest

impact on PDFs when included together with Z resonance measurements. When included

on its own, it may help to constrain the valance quark densities at lower x.

The cross section measured in this thesis is combined with an electron channel mea-

surement and included in a preliminary QCD fit with HERA-I data. This is discussed in

chapter 9 where the impact on both the uv and dv PDFs is shown in relation to a fit on

the HERA-I data alone.
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Chapter 3

The Large Hadron Collider and

the ATLAS Experiment

The Large Hadron Collider [53] (LHC) is a superconducting particle accelerator situated

at the European Organisation for Nuclear Research (CERN) on the French-Swiss border

near Geneva. The LHC is designed for proton-proton, lead ion-ion, and proton-lead ion

collisions. It is currently the highest energy particle accelerator ever constructed, designed

to have a centre of mass energy of 14 TeV. It was built to find the Higgs Boson and

allow searches for new physics and studies of QCD. There are four interaction points

around the LHC ring at which four detectors are positioned. Two of these, ATLAS [54]

and CMS [55], are general purpose detectors designed to measure a large selection of

physics. They are similar in design, although use different detector technologies. The

ALICE [56] and LHCb [57] experiments are positioned at the remaining two interaction

points, these have more specialised designs. The LHCb experiment is a single-arm forward

spectrometer designed to study hadrons containing b and c quarks. The ALICE experiment

is designed to study the particles produced in the heavy ion collisions, the large particle

fluxes produced in these collisions leads to different design decisions compared those to

study proton-proton collisions.

This chapter briefly describes the LHC and the CERN accelerator complex, before

a description of the ATLAS detector is given, concentrating on the sub-detectors most

important for the measurement of muons.

3.1 The Large Hadron Collider

The LHC is housed within the 26.7 km underground tunnel constructed for the LEP

machine in the 1980s. The tunnel is inclined by 1.4% towards Lac Léman, varying in depth

between 45 m and 170 m below the surface. As the majority of the collision schedule was

proton-proton collisions and these were used to produce the physics explored in this thesis

the description of the LHC in this section concentrates on proton-proton running.

In order to reach the high energies in the LHC the protons need to go though a series

of smaller accelerators, mostly made up of previous CERN colliders. Each one increases

the energy of the proton beams or collects the protons together into bunches, these are
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shown in figure 3.1. Protons destined for the LHC are produced by ionising hydrogen,

they are then accelerated up to 50 MeV with the Linac 2 linear accelerator, before being

injected into the Proton Synchrotron Booster (PSB) where they are further accelerated up

to 1.4 GeV. The protons are then injected into the Proton Synchrotron (PS) where a bunch

structure with 2 ns spacing is applied to the beam. The PS also further accelerates the

protons to 26 GeV. Next they are injected into the Super Proton Synchrotron (SPS) which

accelerates them up to 450 GeV before finally injecting them into the LHC to create beams

travelling in opposite directions around the ring. In the LHC the final acceleration up to

collision energy is achieved before the beams are brought to collide in the experimental

halls positioned at four points around the LHC circumference where the ATLAS, ALICE,

CMS and LHCb experiments are housed.

Due to construction imperfections in the LHC magnets, the first phase of LHC running

in 2010-2012 has been at a centre of mass energy of 7-8 TeV, rather than the design centre

of mass energy of 14 TeV. A planned downtime during 2013 will see the upgrades needed

to the machine to reach design collision energy.

Figure 3.1: The CERN accelerator complex [58]

Instantaneous luminosity, L, is a measure of the intensity of particle colliders. The

rate at which a process occurs is given by R = Lσ, where σ is the cross section for the

process. It is therefore beneficial to have high intensity beams to get a higher rate of

production. The LHC was designed to achieve a instantaneous luminosity of 1034 cm−2s−1

when running at 14 TeV centre of mass energy using a 25 ns bunch spacing [53]. To date

the LHC has achieved a maximum instantaneous luminosity of about 3.65 × 1033 cm−2s−1

in 2011 increasing to about 7.73 × 1033 cm−2s−1 in 2012 with 50 ns bunch spacing [59].

40



Luminosity is increased by increasing the number of bunches, increasing the density of

protons in the bunch or by increasing the beam focusing. The total luminosity is the time

integral of the instantaneous luminosity and is used as a measure of the number of events

produced or collected. When comparing Monte Carlo to data, the total luminosity of the

sample is normalised to that of the data to give an appropriate comparison, as discussed

in section 4.3.1.2.

3.2 The ATLAS Experiment

ATLAS (A Toroidal Lhc ApparatuS) is one of the two multi-purpose detectors at the LHC.

It has a wide physics programme and as such has been designed to observe many physics

processes. Particle physics detectors such as ATLAS are built to identify the particles

that pass through them by exploiting differences in how they interact with matter. As

described in section 2.1 there are twelve fermions (plus the anti-fermions) and six bosons

in the Standard Model, but of these only the photon, the electron and the muon will be

seen directly by ATLAS. Due to confinement, individual quarks cannot exist, but of the

hadrons they form, only pions, kaons, protons and neutrons produced at the interaction

point (IP) are long lived enough to reach the detector where they can be directly detected.

The hadrons are produced in a cone in the detector called a jet. The direction and energy

of the jet can be interpreted as that of the originating quark or gluon. A number of

jet reconstruction algorithms are available to collect the detected particles into the jet.

ATLAS utilises a range of different sub-detectors and technologies in order to measure this

relatively small number of particles available to it as well as possible. Particles that are

not detected by ATLAS directly can be inferred by looking at the topology of the event

and the kinematics and species of particles that were detected.

Particles that pass through the detector without being detected such as neutrinos, are

inferred by the missing energy in an event, taking advantage of the momentum imbalance

between the initial and final states. An ideal particle physics detector would completely

surround the IP so that the full energy and momentum of the event can be measured

allowing a more accurate measurement of the missing energy. In practice this is not

possible as the beam pipes supplying the colliding protons to the interaction point at the

centre of the experiment require gaps in the detector. The detector itself also requires

that there be gaps in the active material to allow space for support structures, magnets,

cooling, and cabling.

ATLAS is a cylindrical detector encasing the LHC beamline, and centred on the inter-

action point. It consists of a barrel, with two end-caps either side of it. The inner detector

sits at the centre of ATLAS and consists of the a pixel detector, a silicon strip detector

and straw tracking detector. The inner detector is encased within the solenoid magnet,

upstream of which lie the electromagnetic and hadronic calorimeters. Finally, the muon

spectrometer surrounds the calorimeters, this consists of a toroidal magnet system and

tracking chambers for the detection of muons.

Not all particles will interact with each section of the detector as illustrated for ATLAS

in figure 3.2. Due to their charge electrons leave a track in the tracking detector as well
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as a deposit in the electromagnetic calorimeter (ECal). Photons which also get absorbed

in the ECal, producing electromagnetic showers similar to an electron can be identified

by the fact that they are neutral and leave no tracks in the tracking detector. Charged

hadrons such as protons will leave tracks in the tracking detector and in the ECal, but

will not be fully absorbed until showering in the hadronic calorimeter (HCal). Neutral

hadrons however will not be seen in the detector at all until they shower in the HCal.

Using these differences in how the particles interact with the detector, the species of the

particle can be determined. figure 3.3 shows the ATLAS detector with the different sub-

Figure 3.2: Detection of particles in ATLAS [60].

detectors labelled. A more detailed description is given in the following sections, where

the reasoning behind the choice of technology for each sub-detector is described.

3.2.1 Nomenclature

ATLAS uses a right-handed coordinate system. The z axis is defined by the beam pipe

with positive z being in the clockwise direction around the LHC ring. The z axis is

intersected at zero by the perpendicular x−y plane, which has positive x pointing towards

the centre of the LHC ring and positive y pointing upwards. Due to the tilt of the LHC,

the ATLAS coordinate system, also has a tilt, as can be seen in figure 3.4. The azimuthal

angle, φ, is measured around the beam pipe, where φ = 0 corresponds to the x-axis. The

value of φ increases clockwise looking into the positive z direction, it is measured in the

range [−π,+π]. The polar angle, θ, is the angle from the beam axis. This is more often

expressed in terms of the pseudorapidity η = − ln tan(θ/2). This is an approximation of

rapidity, making the assumption that the mass of the particle is zero. Pseudorapidity is a

popular choice of coordinate because the particle flux from the interaction point is roughly

constant as a function of η. Transverse variables are defined in the x − y plane, where

pT , ET and /ET are the transverse momentum, transverse energy and missing transverse

energy respectively. The transverse energy is the energy of the particle projected onto the
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Figure 3.3: The ATLAS detector [61].

Figure 3.4: The ATLAS coordinate system [62].

x − y plane, such that E2
T = m2 + p2

T , where m is the invariant mass of the particle. The

missing energy is defined as /ET = −∑iEiT , where the sum is over all final state particles

in the event. The distance ∆R in pseudorapidity-azimuthal angle space is defined as

∆R =
√

∆2η +∆2φ . The two ends of the detector are referred to as Side A and Side C

with A being the side with positive z and C the side with negative z. [63]

3.2.2 Tracking

The ATLAS inner detector (ID) consists of three sub-detectors of decreasing granularity

moving away from the interaction point. The layout of the ID can be seen in figure 3.5
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where closest to the interaction point is the silicon Pixel Detector, followed by the Semi-

conductor Tracker (SCT), and the Transition Radiation Tracker (TRT). The entire inner

detector is immersed in a 2 T magnetic field.

Figure 3.5: The ATLAS inner detector [64].

The trajectories of charged particles are reconstructed as they pass through the ID

from ionisation deposits left behind after interacting with the detector material.

The ATLAS inner detector is designed to have a pT resolution of
σpT
pT

= 0.05% pT ⊕
1% [54].

3.2.2.1 The Pixel Detector

The pixel detector is the sub-detector closest to the IP, and is thus the sub-detector most

important for determining the impact parameter resolution and for the ability of the ID

to find short lived particles. It has high granularity consisting of identical silicon pixel

sensors each with a minimum Rφ × z pixel size with a coverage of 50 × 400 µm2.

As a charged particle passes through the silicon, ionisation causes mobile charge carriers

in the form of electron-hole pairs to be created in the semiconductor. By applying an

electric field across the sensor the charge carriers are attracted to the electrodes inducing

an electric current. By integrating the signal current, the signal charge is obtained, which

is proportional to the ionisation energy deposited [65].

The two dimensional segmentation of the sensors allows space points to be measured

without the ambiguities associated with strip detectors. The system consists of three barrel

layers between 50.5 mm and 122.5 mm in R and three end-cap disks either side of the IP

arranged between 495 mm and 650 mm in ∣z∣. The pixel elements are bump-bonded onto

readout chips to achieve the required density of pixels. The chips have a large area, with

circuits for each individual pixel element including buffering to store data while waiting

for the Level 1 trigger decision (see section 3.2.7). Sixteen chips are combined together to

form modules, which are identical in the barrel and end-caps. They are arranged on the
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support structures so that they overlap providing a hermetic coverage. The modules have

a spatial resolution in Rφ of 10 µm and 155 µm in z (or R in the case of the end-caps). [54]

3.2.2.2 The Semi-Conductor Tracker

The semi-conductor tracker (SCT) is a silicon micro-strip detector consisting of four barrel

layers between 255 mm and 549 mm from the IP in R, and nine end-cap disks either side

of the IP positioned between 810 mm and 2797 mm from the IP in ∣z∣. The design of the

SCT modules is different in the barrel and the end-caps.

Barrel modules consist of four singled sided silicon detectors which are 6.36 × 6.40 cm

in size with 786 readout strips of 80 µm pitch (inter-strip spacing). The detectors are

mounted either side of a heat transport plate in pairs, so that each pair form 12.8 cm

long strips in which ionisation occurs as in the pixels. Electronics are mounted above the

detectors on a hybrid, this includes a buffer to store hits above threshold while waiting

for the Level 1 trigger decision [54]. The two sides of the module are arranged at a small

stereo angle of 40 mrad. The modules are mounted on the barrel support structure with

the strips of one of the layers running parallel to the beam pipe. Rφ space points on the

module are determined from knowledge of the position of the strip on the module, with the

z coordinate determined by the examining the coincidence of hits by two crossing strips

on either side of the module. A single module with one Rφ and one stereo measurement

achieves a spatial resolution of 16 µm in Rφ and 580 µm in z. The barrel modules are

mounted on carbon-fibre cylinders which also carry the cooling system. The modules are

arranged to give a hermetic coverage, a requirement that leads to there being a slight

overlap between the modules.

The end-cap modules in the SCT follow a similar design to the barrel modules except

that they have a trapezoidal shape with an average strip pitch of 80 µm. This allows

them to be arranged so that one set of strips is radial to the beam pipe. As with the

barrel modules, two planes of sensors are mounted back-to-back at a relative angle of

40 mrad. This gives a position resolution of 16 µm in Rφ and 500 µm in R. The modules

are mounted onto the end-cap disks in up to three concentric rings. The number of rings

depends on the z position of the disk, in such a way to limit the coverage to ∣η∣ ≤ 2.5. To

achieve this coverage in η, four types of end-cap module are used, each of similar design

but of different dimensions dependant on their position in z and R. [54]

3.2.2.3 The Transition Radiation Tracker

The transition radiation tracker (TRT) is a straw tube detector. It consists of modules of

4 mm diameter gas filled polyimide tubes containing 31 µm diameter gold plated tungsten

wires. The barrel contains 96 modules, covering a radial range of 55.4 cm to 108.2 cm,

with two end-caps, each made up of 20 modules, extending from 82.7 cm to 274.4 cm in

∣z∣.
The straw tubes are 144 cm in length in the barrel, but divided in the centre and

read out at each end to reduce occupancy. The end-cap tubes are 37 cm in length and

read out only at one end. In both the barrel and end-caps, the tube acts as the cathode

with the central anode wire directly connected to the front end electronics and kept at
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ground potential. A gas mixture of 70% Xe, 27% CO2 and 3% O2, is used in the tubes.

As a charged particle passes through the gas volume it ionises the gas, freeing electrons

which then drift to the anode wire. The Rφ position of the particle in the detector can be

determined to a much better resolution than 4 mm straw diameter by making a drift time

measurement. The collection time is determined from drift velocity as a function of the

electric field in the straw and of the direction and magnitude of the magnetic field [66].

This gives an improved spatial resolution of 130 µm per straw.

The barrel is divided into three rings of 32 modules, with each module containing a

carbon-fibre laminate shell with a internal array of axially aligned straws embedded in a

matrix of polypropylene fibres which act as the radiator to produce transition radiation.

Transition radiation is emitted when a relativistic particle crosses the interface of two

materials with different dielectric constants [67], and can be used to give good separation

of electrons and hadrons. The Xe gas in the straws serves as the ionisation medium for

standard particle tracking but also has the added benefit of allowing the transition radia-

tion to be detected when a relativistic electron passes through the polypropylene radiator.

The TRT has two independent thresholds allowing the distinction between tracking hits

which pass the lower threshold and transition radiation hits which pass the higher one,

with the decision being made on the front end electronics. For a selection criteria that

gives a 90% electron efficiency, the TRT achieves a pion misidentification probability of 5%

for the majority of the detector. The misidentification probability can be as low as 1-2%

in the best performing parts of the TRT [68]. The end-caps work on the same principle,

with the modules installed with the straws running radially, with the readout at the outer

radius. The end-cap modules are constructed with foils of polypropylene interleaved be-

tween the planes of straws. The end-caps consist of two sets of wheels, with the 12 wheels

closest to the IP constructed with 8 successive layers of straws spaced 8 mm apart. The

outer set of 8 wheels is also constructed with 8 layers but with a 15 mm spacing between

them providing a reduced granularity. [54]

3.2.3 Calorimetry

ATLAS uses sampling calorimeters covering a pseudorapidity range of ∣η∣ < 4.9. Sampling

calorimeters use alternating layers of an active detector material and a passive absorber.

They sample the ionisation energy at each point in the shower and allow large or awkward

detector volumes to be filled at reasonable cost. Different technologies are used for the

different physics and radiation environments over this large η range, as is seen in figure 3.6.

Matching the range of the ID tracking, a fine granularity electromagnetic calorimeter is

used to give precision measurements of electrons and photons. The courser granularity

used over the rest of the calorimetry is sufficient for the requirements of jet reconstruction

and /ET measurements. One of the considerations when designing a calorimeter system is

that both electromagnetic and hadronic showers need to be contained, and that punch-

through (where a shower deposits energy beyond the hadronic calorimeters) into the muon

system minimised, this leads to the total depth of the calorimetry being important. Elec-

tromagnetic shower depth is measured in terms of radiation lengths, X0, which is the

mean distance over which an electron’s energy is reduced to a fraction of 1/e of the initial
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value. Hadronic showers are measured in interaction lengths, λ, which is the mean free

path over which a relativistic charged particle transverses a medium without an elastic or

quasi-elastic (diffractive) interaction [69]. The ATLAS electromagnetic calorimeter has a

total depth of > 22X0 in the barrel and > 24X0 in the end-caps. The total depth of the

calorimeters including the outer support is about 11λ at η = 0. [54]

Figure 3.6: The ATLAS calorimeters [70].

3.2.3.1 Electromagnetic Calorimeter

The electromagnetic calorimeter (ECal) is a lead liquid-argon (LAr) sampling calorimeter

which is positioned downstream of the central solenoid magnet. The barrel has a coverage

of ∣η∣ < 1.475 which is separated into two identical half barrels parted by a 4 mm gap at

z = 0. The end-caps are each divided into two coaxial wheels which together cover a range

of 1.375 < ∣η∣ < 3.2.

The ECal has accordion shaped kapton electrodes interleaved with lead absorber plates.

The lead absorber is held at ground potential, with the electrodes consisting of three copper

layers separated by the insulating polyimide sheets. The outer two layers of copper are

held at a high-voltage potential with the central layer used for reading out the signal. The

volume between the lead and the electrode is filled with liquid argon which acts as the

ionisation medium. The accordion geometry allows a complete φ symmetry without any

azimuthal cracks.

The primary source of energy loss for electrons is bremsstrahlung caused by deflection

in the electric field of the lead nuclei. Photons, above a few MeV, primarily lose energy

due to pair production. The photon interacts with the nucleus or atomic electrons in the

lead to produce electron-positron pairs [71]. Due to these two processes an electron or

photon transversing the lead produces a cascade of lower energy electrons and photons.

Through these cascades in the multiple layers of absorber material an electromagnetic

shower develops. The shower is sampled in the layers of liquid argon between the lead

47



plates. The secondary particles produced in the shower cause ionisation of the liquid

argon. The ionisation electrons are then read out from kapton electrodes.

The thickness of the lead plates varies as a function of η to optimise the energy reso-

lution of the calorimeter. The region of ∣η∣ < 2.5, which matches up with the η range of

the tracking, is devoted to precision physics and is segmented into three sections in depth,

each decreasing in granularity. The end-cap inner wheel is segmented into two sections

with courser lateral granularity than the rest of the acceptance.

For ∣η∣ < 1.8 a presampler consisting of a single active layer of LAr is used to correct

for energy loss of electrons and photons upstream of the calorimeter. [54]

The electromagnetic calorimeter is designed to have an energy resolution of σE
E =

10%
√

E
⊕ 0.7% [54]. Where the energy dependant term is due to stochastic effects from

fluctuations related to the physical development of the shower. The constant term is due

to instrumental effects that result in non-uniformity of the detector response [72].

3.2.3.2 Hadronic Calorimeter

The Hadronic Calorimeter (HCal) consists of three sub-detectors; the Tile Calorimeter, the

Hadronic End-Cap Calorimeter (HEC), and the Forward Calorimeter (FCal). All three are

sampling calorimeters and are described below; their positions within ATLAS can be seen

in figure 3.6. The hadronic calorimeter is designed to have a jet energy resolution in the

barrel and endcap of σEE = 50%
√

E
⊕3% and in the forward calorimeter of σEE = 100%

√

E
⊕10% [54].

The hadronic calorimeters work on a similar basis to the electromagnetic calorimeter.

Particles interact in the absorber material, producing a cascade of particles that ionise the

active material. Differences lie in how the particles interact with the absorber material,

with hadrons interacting with the nuclei of the absorber material via the strong force. This

produces cascades of lighter hadrons forming the hadronic showers. Hadronic showers are

much larger than electromagnetic showers leading to the hadronic calorimeter being deeper

than the electromagnetic calorimeter in order to contain the shower.

The Tile Calorimeter is positioned directly behind the electromagnetic calorimeter,

it uses steel is the absorber material, with scintillator tiles at the active medium. It covers

∣η∣ < 1.7 and is sub-divided into a 2.6 m long central barrel and two 2.6 m long extended

barrels. Each section has an inner and outer radius of 2.28 m and 4.25 m respectively,

with radial depth of about 7.4λ. The tiles are arranged radially and so that they are

normal to the beamline. They are read out at the edges by wavelength shifting fibres.

This arrangement gives almost continuous azimuthal coverage. [54]

The LAr Hadronic End-Cap Calorimeter (HEC) is a copper-liquid argon sam-

pling calorimeter consisting of two independent wheels per end-cap (referred to as the

front and rear wheels) each positioned directly behind the end-caps of the electromag-

netic calorimeter. The HEC covers the region 1.5 < ∣η∣ < 3.2 overlapping with the forward

calorimeter reducing the drop in material density in the transition between the two. Each

of the wheels in divided into two segments in depth producing four layers per end-cap.

Each of the wheels is constructed of 32 identical wedge-shaped modules. The modules in
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the front wheels use twenty-four 25 mm copper plates for the absorber material, with the

rear wheels, which have a courser sampling fraction, using sixteen 50 mm copper plates.

For all four wheels the first plate of the wheel is made at half the thickness. The gaps

between the plates are further segmented by three electrodes into separate LAr drift zones,

providing the read out and potential difference to attract the ionisation electrons. [54]

The LAr Forward Calorimeter (FCal) is integrated into the end-cap cryostats, this

acts to reduce the radiation levels in the muon spectrometer and provides improved uni-

formity of the calorimeter coverage. The front face of the FCal is recessed by about 1.2 m

with respect to the electromagnetic calorimeter front face, this is to reduce the amount of

neutron back scattering in the ID volume. This limitation in depth requires a high density

design. The calorimeter is about 10λ deep and consists of three modules per end-cap.

The first module, made of copper is optimised for electromagnetic measurements. The

following two modules are made from tungsten and mainly measure hadronic interactions.

All three modules are made of a metal matrix with regularly spaced channels running

longitudinally throughout the metal. Electrodes consisting of concentric rods and tubes

are inserted into these channels running parallel to the beamline. The gap between the

rod and tube is filled with liquid argon which acts as the sensitive material [54].

3.2.4 Muon Spectrometer

The muon system is based on the magnetic deflection of muons in the large superconduct-

ing air-core toroid magnets. The system contains separate chambers for triggering and for

high-precision tracking. In the ∣η∣ < 1.4 region the muon bending is achieved by the use of

the large barrel toroid. In the 1.6 < ∣η∣ < 2.7 region the bending is due to two smaller end-

cap magnets positioned inside the ends of the barrel magnet. In the transition region of

1.4 < ∣η∣ < 1.6 deflection is due to a combination of the barrel and end-cap magnetic fields.

This configuration gives a field that is mostly perpendicular to the muon trajectories, and

defines the η plane of ATLAS as the bending plane and the φ plane as the non-bending

plane. In the muon spectrometer the transverse momentum and charge of the muon track

is calculated using the sagitta of the track. The sagitta is a measure of the curvature of

the track and is defined as

s = 1

8

qBL2

pT
, (3.1)

where q is the charge of the track, B the strength of the magnetic field (2 T), pT the

transverse momentum, and L the length of the track as shown in figure 3.7. The charge of

the track is determined from observing which direction the muon curves in the magnetic

field. The pT of the track is obtained from the re-arrangement of equation 3.1. Mismea-

surements of the sagitta can therefore directly lead to the uncertainty of the track pT with
σpT
pT

= σs
s . The aim of the muon system is to achieve a 10% pT resolution for standalone

(see section 3.2.5) 1 TeV muon tracks, which corresponds to measuring a sagitta along

the z axis of about 500 µm to be measured with a resolution of ≤ 50 µm. For most of

the η-range precision tracking is achieved using Monitored Drift Tube Chambers, with

49



Figure 3.7: Sagitta of a track.

Cathode Strip Chambers used at larger η. The muon trigger system covers an η-range of

∣η∣ < 2.4 and uses Resistive Plate Chambers in the barrel and Thin Gap Chambers in the

end-cap region. [54]

3.2.4.1 Precision Tracking Chambers

Monitored Drift Tube Chambers (MDTs) consist of 29.87 mm diameter aluminium

pressurised drift tubes, with a 50 µm diameter tungsten-rhenium wire at the centre of the

tube. An Ar/CO2 gas mixture is used, which is shown to have excellent ageing properties.

The anode wire is kept at 3080 V with the high voltage supply being attached to the wire

at one end and the readout at the other. The MDTs are designed to measure the spatial

coordinate in the bending plane, with the non-bending plane coordinate coming from an

associated hit in the trigger chambers, as such the tubes in the barrel and end-caps are

arranged to run along φ. The MDTs achieve an average resolution per chamber of about

35 µm in z. The chambers themselves are constructed of an aluminium frame containing

two multi-layers separated by a mechanical spacer. Each multi-layer consists of three or

four layers of drift tubes. The chambers are rectangular in the barrel and trapezoidal

in the end-caps. The shapes and dimensions of the chambers were chosen to optimise

the solid angle coverage while being constrained by the shape of the magnetic coils and

support structures. [54]

Cathode Strip Chambers (CSCs) are used for precision tracking in the first layer of

the end-caps for ∣η∣ > 2, where counting rates exceed the maximum MDT counting rate of

150 Hzcm−2. The CSC system consists of two end-cap disks each with four small chambers

and four large chambers, all segmented in φ. Each of the chambers has four CSC planes

which give four independent measurements in η and φ.

The CSCs are multi-wire proportional chambers which have wires orientated in the

radial direction, in such a way that the central wire extends away from the beamline ra-

dially with the remaining wires running parallel to it. Either side of the plane of anode

wires are cathode strips with one set running parallel to the wires and one running orthog-

onal to them in order to get the two coordinates. Position of the track is determined by
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(a)

(b)

Figure 3.8: The position of the ATLAS muon chambers are shown in (a) [73], while the
arrangement in the x − y plane is shown in (b) [74].

interpolation between charges induced on neighbouring cathode strips rather than from

reading out the anode wires directly. The gas between the cathodes in which ionisation

occurs is a mixture of Ar (80%) and CO2 (20%). The CSC obtains a spatial resolution

of 50 µm per plane in the bending direction with a 5 mm resolution in the non-bending

plane due to the courser cathode segmentation. [54]

51



3.2.4.2 Trigger Chambers

The requirements of the trigger chambers are different to those of the precision tracking

chambers. They are required to quickly provide information on muons traversing the

detector, allowing the Level 1 trigger logic (see section 3.2.7) to recognise their approximate

momentum range and multiplicity. Much coarser tracking information than the precision

chambers is sufficient for this. The trigger chambers need to provide an acceptance over

the full φ-range and in the range of ∣η∣ ≤ 2.4. As the end-caps require higher granularity and

suffer from up to ten times as much radiation as the barrel region, different technologies

are used for the barrel (∣η∣ ≤ 1.05) and end-cap (1.05 ≤ ∣η∣ ≤ 2.4) trigger chambers. In the

barrel Resistive Plate Chambers (RPCs) are used due to their good spatial resolution and

adequate rate capability. In the end-caps Thin Gap Chambers (TGCs) are used as they

provide good time resolution and high rate capabilities. A schematic of the placement of

the muon trigger chambers within ATLAS is shown in figure 3.9. To enable fast decisions

on the pT of the muon an algorithm that considers the coincidences between the layers

is used. This looks at hits in a “pivot” layer (RPC2 for the RPCs and TGC3 for the

TGCs), and compares the deviation from straightness of the hit in pivot layer and a hit

in another layer to a straight line between the pivot layer hit and the IP. For example the

low pT trigger in the barrel examines the deviation of the slope between the RPC2 and

RPC1 layers to the straight line between the RPC2 and the IP. This is also illustrated in

figure 3.9. [54]

Figure 3.9: The ATLAS muon trigger chambers [54]

Resistive Plate Chambers (RPCs) are arranged in three concentric cylindrical layers

around the beam axis and are referred to as trigger stations. Each of the trigger stations

consist of three independent layers of detector, each with the ability to measure η and φ.

The RPCs achieve a 10 mm resolution in both z and φ

The RPCs are gaseous parallel electrode-plate detectors using a gas mix of C2H2F4/Iso-

C4H10/SF6 (94.7%/5%/0.3%). Two resistive plates are kept parallel to each other by 2 mm
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insulating spacers. The electric field between the plates allows avalanches towards the

anode to form along the ionising tracks. The signal is read out via capacitive coupling to

metallic strips mounted on the outer sides of the resistive plates. The readout strips on

either side of the gas gap are arranged orthogonally to each other allowing both a η and φ

coordinate to be obtained. A requirement of a coincidence in the η and φ readouts helps

to reject noise. Each RPC unit consists of two gas gaps and four panels of readout strips.

Three lightweight paper honeycomb structures are interleaved between the detectors to

support them. [54]

Thin Gap Chambers (TGCs) are multi-wire proportional chambers that provide

triggering for the muons in the end-cap region as well as determining the azimuthal coor-

dinate of muon tracks to compliment the η measurement of the MDTs. The TGCs achieve

a 2-6 mm resolution in R and a 3-7 mm resolution to φ. The arrangement of the chambers

can be seen in figure 3.9, with one wheel of chambers positioned before the end-cap toroid

(TGCI) and three after it (TGC1-3).

The chambers themselves consist of two cathodes held at ground between which is a

2.8 mm gas gap containing a mixture of CO2 and n-C5H12. At the centre of the gas gap

are anode wires spaced 1.8 mm apart. Pick-up strips on the outer side of the cathode run

orthogonal to the wires. The signal is read out from both the pick-up strips and the anode

wires to obtain the required two coordinates. The high electric field around the wires

and the small spacing between them leads to very good time resolution for the majority

of track, meaning that signals arrive with 99% probability of being within a 25 ns time

window. [54]

3.2.5 Muon Identification Algorithms

There are three different strategies towards muon identification in ATLAS. Standalone

reconstruction only uses the muon spectrometer to reconstruct the muon track. Whereas,

combined reconstruction uses information from both the muon spectrometer and the inner

detector. The third approach is to use the information in the inner detector with partially

reconstructed MS tracks or information from the calorimeters, these are referred to as

tagged tracks. There are two families of muon reconstruction algorithms in ATLAS1 staco

(sometimes referred to as chain 1) and muid (chain 2), each have a range of algorithms

covering the three strategies outlined above [75]. As described in section 4.4, the analysis

presented in this thesis uses combined muid muons.

Standalone Reconstruction only uses tracks in the muon spectrometer. Hits in the

same chamber are fitted with a straight line to form a segment. Segments from all three

chamber stations are then used to fit a track using hits from all four sub-detector technolo-

gies. The reconstructed track is then extrapolated back to the interaction point taking

into account energy loss and multiple scattering in the calorimeters. The muid family

does this is two phases, first it creates the tracks in the MS using it’s moore algorithm.

1There is now a third family of algorithms called “third chain”, which combines many of the approaches
used by muid and staco and will replace them to become the only set of ATLAS muon reconstruction
algorithms. It is not mentioned here in detail as it is a new development.
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The fitted track is then extrapolated back to the IP using muid standalone which uses

a parameterisation of energy loss in the calorimeter. The staco standalone algorithm is

called Muonboy. This reconstructs a track by taking a segment in the outer station and

obtaining a full track by iteratively adding segments from the middle and inner MS layers,

which is then extrapolated back to the IP.

Combined Reconstruction uses standalone tracks and matches them to inner detector

tracks creating a single track within the ∣η∣ < 2.5 coverage of the ID. The benefit of the

combined muons is that they take advantage of both the good low pT sensitivity of the ID

and the good high pT sensitivity of the MS. The muid standalone tracks are matched to

the ID tracks by doing a full track refit using the original hits. Muid also has an algorithm

called MuGirl which extrapolates ID tracks into the MS and creates new segments using

the MS hits near to the extrapolated tracks. This produces a combined muon if the

refit is successful, or creates a tagged muon if not. The staco approach is to take the

reconstructed ID and MS track vectors and combines them using a statistical combination.

Both the muid and staco approaches achieve similar pT resolutions.

Tagged Inner Detector Tracks are used to obtain additional muon candidates by

associating ID tracks with MS measurements to create a tagged track. This approach can

recover low energy muons due to being less sensitive to coulomb scattering and energy

loss. It is also useful at recovering muons that pass through areas of the MS with limited

coverage. The staco algorithm uses muTag which associates the extrapolated ID track to

the first available muonboy segment in the inner or middles MS layer, creating a tagged

muon. Only ID tracks and MS segments not already used in previous staco combinations

are used. The muid family uses a tagger called MuTagIMO which uses associates the ID

track to existing moore segments.

3.2.6 Muon Performance in ATLAS

In this section the performance of ATLAS with regards to muons is discussed. Below, the

muon momentum resolution, the muon reconstruction efficiency and the mass resolution

are discussed. The muon trigger efficiency, for the trigger used in this analysis is discussed

in section 4.3.2.2 in relation to the corrections applied to the Monte Carlo. The muon

isolation efficiency is calculated as part of this thesis and can be seen in chapter 5.

As discussed in section 4.4 the muons used in this analysis are required to have pT >
12 GeV, with very few of the selected muons having a pT > 60 GeV (as seen in chapter 7).

An attempt has been made to find performance plots for combined muid muons in the pT

range of the measurement presented in this thesis. Where this has not been completely

possible, the performance plots are chosen to be as relevant as possible.

3.2.6.1 Momentum Resolution

As discussed in section 3.2.5, combined muons are measured both in the muon spectrome-

ter and in the inner detector. The momentum resolution of the muons in these two regions
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of the detector is measured separately [76,77]. The momentum resolution is measured us-

ing a sample of Z → µ+µ− events, where the resolution is determined from a template fit to

the Z line-shape. The relative momentum resolution, σ(p)/p, in the inner detector takes

into account multiple scattering and the intrinsic momentum resolution of the detector.

The relative momentum in the muon spectrometer also accounts for energy loss in the

calorimeters. Figure 3.10(a) shows the measured resolution on the curvature, σ(1/pT ), in

the barrel for the inner detector as a function of muon pT . Figure 3.10(b) shows the relative

momentum for muons in the muon spectrometer as a function of muon pT . The differ-

ent representations of the resolution means that the values cannot be directly compared.

The resolutions shown were calculated with 2.54 fb−1 of data in 2011. The resolutions

are measured in the first pass of reconstruction which uses preliminary calibration and

alignment. The resolution in simulation is also shown, before it is corrected to the data.

At low and high pT the resolution in data is obtained from an extrapolation to a pT range

not available in the analysis. Up to about 20 GeV the resolution in the ID and about

10 GeV in the MS is seen to fall sharply with increasing pT . This is due to the contri-

butions from the multiple scattering becoming smaller (lower pT leads to more multiple

scattering). After this sharp fall, σ(1/pT ) in the inner detector is seen to continue to fall,

whereas the σ(pT )/pT muon spectrometer it begins to rise again. Both effects are due to

the fact the sagitta discussed at the start of section 3.2.4, is harder to measure as muon

pT increases. The combined muons used in this thesis will have a momentum resolution

that is a combination of the resolution in both the ID and the MS.

3.2.6.2 Reconstruction Efficiency

The reconstruction efficiency for a combined muon can be expressed as εreco = εID ⋅ εcomb ⋅
εMS where εID is the reconstruction efficiency in the ID, εMS the reconstruction efficiency

in the MS and εcomb the efficiency of the matching the ID and MS tracks. As the different

parts of the reconstruction efficiency can be measured separately it can be calculated uses

a tag and probe method. This is done using Z → µ+µ− resonance events [79]. This allows

one muon to be reconstructed in both the ID and MS (the tag muon). The other muon

is then identified using only one of the systems, allowing the efficiency of the other to be

measured. This means that for εID standalone muons are are used as the probe, with εID

being the fraction of probes that as be associated with an ID track. Using an ID track as

the probe the εcomb ⋅εMS can be measured. This is given by the fraction of ID probes that

can be associated with a combined muon.

Figure 3.11 shows the 2011 combined muid muon reconstruction efficiency with respect

to the inner detector efficiency for muons with pT > 20 GeV as a function of muon η. The

efficiency can be seen to be high and relatively constant as a function of the muon η. The

obvious exception is at central pseudorapidity where the efficiency is lower due to a gap

in the muon spectrometer acceptance to allow for cabling.

A more informative plot would be to show the reconstruction efficiency as a function of

the muon pT , as it might be expected to worsen with at lower pT . This could not be found

for 2011 data, but figure 3.12 shows this measured in 2010 data, using the same tag and

probe approach. Although this is not the same reconstruction efficiencies that the muons
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(a) Resolution of Curvature in the Inner Detector Barrel

(b) Relative Momentum Resolution in the Muon Spectrometer
Barrel

Figure 3.10: Muid muon momentum resolution efficiency as measured with Z → µ+µ−

decays as a function of the muon pT . These plots were produced using 2.54 fb−1 of 2011
data. Figure (a) shows the resolution on the curvature, σ(1/pT ) as a function of muons

pT in the ID. Figure (b) shows the relative momentum resolution, σ(pT )/pT as a
function of muons pT in the MS. In both plots a comparison is made to Monte Carlo

before corrections to the modelled momentum resolution are made [78].

in this thesis have, the 2011 reconstruction efficiency would be expected to be the same

or marginally better. This is due to the understanding of the detector improving from

one year to the next and any effects due to misalignment of the detector becoming better
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Figure 3.11: Muid muon (chain 2) reconstruction efficiency as measured with Z boson
decays as a function of the muon η. This plots is for pµT > 20 GeV muons using 2011

data [80].

addressed. It can be seen in figure 3.12 that in 2010 the efficiency is high and relatively

constant as a function of the muon pT .

Figure 3.12: Muid muon (chain 2) reconstruction efficiency as measured with Z boson
decays as a function of the muon pT for 2010 data [79].

Although no plots are available, the 2011 muon reconstruction efficiency is calculated

with this tag and probe method for muons down to pT = 7 GeV.

3.2.6.3 Mass Resolution

The di-muon mass resolution is a measure of the performance of the detector as the

measurement of the invariant mass of two particles depends on the measurements of their

momenta and of their direction. The mass resolution is calculated using a sample of

Z → µ+µ− resonance events [77]. The resolution is determined from a fit to the resonance

peak using a fit function that consists of the di-muon invariant mass resonance at the

generator level in Monte Carlo convoluted with a Gaussian representing the resolution.

The resolution at Mµµ = 90 GeV is plotted as a function of η for muons with pT > 20 GeV

in figure 3.13. The resolution is shown in data at two points in 2011 with different pileup
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conditions (⟨µ⟩ is the average number of interactions per bunch crossing). The variation

with pileup is seen to be small. The mass resolution is seen to be ∼ 2.2 GeV everywhere

accept at central pseudorapidity, where it drops to ∼ 1.8 GeV. Also shown is the mass

resolution measured in Monte Carlo. The difference between the data and simulation is

due to residual internal misalignments of the ID and the MS.

Figure 3.13: Di-muon mass resolution for Mµµ = 90 GeV for muons with pT > 20 GeV as
a function of η [77].
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3.2.7 The ATLAS Trigger

The ATLAS trigger has three levels; Level 1 (L1), Level 2 (L2) and the Event Filter (EF).

Together L2 and EF are often referred to as the High Level Trigger (HLT). These three

stages are illustrated in figure 3.14. At nominal running, the LHC will provide a bunch

crossing rate of 40 MHz (it was 20 MHz in 2011). The three trigger levels are designed

to reduce the output rate of ATLAS from about 40 MHz to about 200 Hz. Each level

refines the decision of the previous level, by taking advantage of the better resolution

available to each level and including a larger volume of the detector in the decision. Level

1 is hardware based using dedicated electronics to make the trigger decision. The HLT

however is software based, with the trigger decision taking place on a processor farm

adjacent to the detector.

Level 1 searches for high pT electrons, muons, photons, jets and taus decaying to

hadrons, it also considers total and missing transverse energy. L1 bases its decision on a

subset of the detectors using a reduced granularity, reducing the data rate to ∼ 75 kHz. If

the Level 1 trigger accepts the event, then it defines a region of interest (RoI) around the

objects that were triggered on. The Level 2 trigger is then seeded with the RoIs defined

by Level 1.

The Level 2 trigger uses the full detector information within the RoI to make its

decision. The Level 2 trigger reduces the data rate to about 3.5 kHz, taking an average

processing time of 40 ms. For the muon triggers, Level 2 allows further rejection by

sharpening and sometimes raising the pT threshold used by Level 1. To do this information

from both the muon chambers and the inner detector are used. Level 2 also allows the

activity around the muon candidate in the calorimeters to be considered.

Events accepted by the Level 2 trigger are passed onto the Event Filter which uses

offline algorithms adapted to the online environment to perform a complete event recon-

struction, allowing further refinement of the trigger decisions to be made. The Event Filter

takes about 4 seconds to make its decision, reducing the data rate to 200 Hz. The 200 Hz

is the total data rate out of ATLAS and is divided up among many different triggers, each

designed to select different physics objects. This selection of triggers is called the trigger

menu and changes with the different beam conditions of the LHC. The analysis presented

in this thesis uses the EF 2mu10 loose trigger, this is a di-muon trigger requiring 2 muons

both with pT ≥ 10 GeV at the event filter. This trigger is originally seeded by the Level 1

L1 2MU0 trigger, which requires 2 muons with no pT requirement, this decision is made by

the front-end electronics looking for two station coincidences of muon tracks in different

RPG and TGC layers as described in section 3.2.4.2. Events that pass the L1 trigger

are then passed on to the Level 2 L2 2mu10 loose trigger, which includes ID tracking

information, before being refined further by the EF 2mu10 loose event filter trigger.

3.3 The ATLAS Computing Model

The central feature of the ATLAS computing model is the ATHENA framework. ATHENA is

a collection of C++ packages and used in every phase of the processing chain, which is

outlined in figure 3.15. Once an event has been selected by the trigger it is readout by the
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Figure 3.14: The ATLAS trigger levels [81].

Data Acquisition System (DAQ) as the byte stream which contains the signals from the

individual sub-detector electronics. The Converters then turn this stream of bytes into a

more useful RAW format which identifies detector elements that have received a hit or

energy deposit along with the details of, for example, the amount of energy deposited. In

order to carry out a physics analysis, physics objects such as electrons, muons or jets are

more useful than simply a list of detector elements that are above threshold. To create

these, reconstruction algorithms run over the RAW data, which is used together with

conditions and geometry databases to fit tracks to the hits in the tracking detectors, and

create clusters in the calorimeters, this first phase of reconstruction is known as detector

reconstruction. Next the clusters and tracks are used together to identify the physics

object that caused them, an electron, a muon, or a jet for example, this phase is known

as combined reconstruction. Once these objects are created they can be used for physics

analysis. The output of the reconstruction is written to two main output formats Analysis

Object Data (AOD) which contain the reconstructed physics objects or Event Summary

Data (ESD) which also contain enough information to re-run parts of the reconstruction

such as track refitting or jet calibration. A third output format is also widely used which

is the Derived Physics Data (D3PD), this is a completely flat ROOT [82] ntuple, which

contain a subset of the physics objects in the AOD. There are many D3PDs for each

of the AODs, which are produced centrally by the physics analysis groups in ATLAS

with different subsets of these objects. The appeal of D3PDs is that they can be read

by standalone user analysis code rather than requiring the use of the ATHENA framework,

which is powerful but comparatively difficult to use.
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T/DAQ ConvertersByte Stream RAW

Reconstruction

AOD

ESD

Physics Analysis D3PD DnPD-Maker

ATLASATLAS

Figure 3.15: The ATLAS data processing chain. The blue rectangles denote a process
and the orange ovals denote a data format.

3.4 ATLAS Monte Carlo

Monte Carlo simulation for ATLAS is available for a number of different Monte Carlo gen-

erators. This analysis uses Monte Carlo from the Pythia [83], HERWIG [84] and MC@NLO [47]

generators. Monte Carlo events are generated with the required generator, typically ei-

ther the whole generation is done within the ATHENA framework or 4-vectors are gener-

ated with standalone generator code and hadronised using another generator within the

ATHENA framework (as is done with MC@NLO). Once the hard scatter has been generated

(known as generator level Monte Carlo), the propagation of the produced particles through

ATLAS and the detector’s response needs to be simulated. The propagation of the parti-

cles is modelled using the GEANT4 toolkit [85]. GEANT4 is supplied with the configuration

of the detector, including distortions and misalignments, it then simulates deposits in the

detector which are recorded as “hits” containing position and time of the energy deposi-

tion. Next the simulated event undergoes digitisation, producing a Monte Carlo version

of the RAW data format, mentioned in section 3.3, called a Raw Data Object (RDO) file.

The main difference being that RDO files also contain truth information about the event,

and connections between the hits and the generated particles. To make the events in the

RDO as similar to RAW as possible the generator event not only has the hard scatter

but also backgrounds from simulated minimum bias, beam gas, beam halo and cavern

background events which are overlaid onto the signal simulation. The digitisation stage

also adds detector noise to the events and each of the triggers are evaluated and their

decisions recorded without removing events as would be done in data. The RDO files can

then be passed to the reconstruction algorithms in the same way as the RAW files, and

output files are then produced in the same way as for data as described in section 3.3.

The final AOD, ESD or D3PD files can then be analysed in exactly the same way as for

data, but with the additional advantage of containing the truth information. [86]
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Chapter 4

Analysis and Selection

This chapter describes the data and Monte Carlo samples used in the analysis, the event

selection used, and many of the corrections made to the Monte Carlo samples to enable

them to be compared to the data, with additional corrections derived for this analysis

presented in chapters 5 and 6. Control plots demonstrating the agreement between data

and Monte Carlo can be seen in chapter 7.

4.1 Drell-Yan Final State

The final state considered in this analysis is pp → µ+µ− + X, where X is any particles

produced from initial state QCD radiation. As seen in section 4.4 the events are required

to have at least two oppositely charged muons, but no further restriction is made on

other physics objects in the event. For example, jets or missing transverse energy are not

considered. The final differential mass cross section measurement is made in a mass range

of 26 <Mµµ < 66 GeV using muons of opposite charge in a fiducial volume of

• pµ1

T > 15 GeV

• pµ2

T > 12 GeV

• ∣ηµ1,2 ∣ < 2.4

Where µ1 and µ2 are the leading and sub-leading muons respectively. As seen in section 8.1,

the measured cross section is unfolded, taking into account QED final state radiation

(FSR). This is referred to as unfolding to the Born level.

4.1.1 Background Processes

The main background processes to the Drell-Yan process are other process that can pro-

duce two or more muons that can be misidentified as originating from the Drell-Yan

process.

The two largest backgrounds are from γ∗/Z → τ+τ− decays and multijet processes. As

well as decaying to two oppositely charged muons, the γ∗/Z is equally likely to decay to

two oppositely charged taus. These can then go onto decay to two oppositely muons via

τ+τ− → µ+νµν̄τµ
−ν̄µντ . As discussed in more detail in chapter 6, multijet events are also a
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large contribution to the background. Muons can be produced in a jet and will typically

be produced surrounded by the other decay products of the jet. Taking advantage of

this allows the background to be reduced, but the large cross section of multijet processes

means that a significant contribution to the total background is still made.

Contributing much less to the total background are muons produced in tt̄ decays.

These can decay leptonically such that tt̄ → W +W − → bb̄ → µ+νµµ
−ν̄µ, producing two

oppositely charged muons. Leptonic decays of di-boson processes (WW /ZZ/WZ) can

also produce two or more muons that can be mistaken as the Drell-Yan process, for

example as W −Z → µ−ν̄µµ
+µ−. The final background considered is from W → µν decays

where only one muon is produced. This can mistaken as the Drell-Yan process when the

muon produced is paired with a muon of the opposite charge produced in a jet.

Table 4.1 shows the contribution from all of the background processes to the selected

data sample. All the backgrounds are estimated use Monte Carlo apart from the multijet

background. This is estimated using a template fit method using both data and Monte

Carlo, this is described in section 6.2. The percentage contributions shown for the differ-

ent background processes are after the full selection defined in section 4.4 is made. All

corrections to the Monte Carlo samples discussed in section 4.3 have been applied.

Background Process Estimate Percentage Contribution
Z/γ∗ → ττ Monte Carlo 3.7%
Multijet Data enriched template fit 3.4%

tt̄ Monte Carlo 0.6%
WW /ZZ/WZ Monte Carlo 0.2%

W → µν Monte Carlo 0.1%

Table 4.1: Background processes to the Drell-Yan process.

It can clearly be seen from table 4.1 that the largest backgrounds come from Z/γ∗ → ττ

and Multijet processes, but that even these are small, leading to a signal rich analysis.

An irreducible background to the Drell-Yan process is γγ → µµ processes, where the

initial state photons are being radiated by quarks inside the proton, as described in sec-

tion 2.2.4.3. As muon pairs produced by this process cannot be separated from those

originating from qq̄ collisions they are included in the final state. A correction is made to

the theoretical predictions that the measured cross section is compared to as described in

section 8.3.1.3.

4.2 Samples

4.2.1 Data Samples

The data used for this analysis was collected between 14th of April and 4th August in 2011

with a 50 ns bunch spacing at the LHC. The total integrated luminosity of the sample is

1.64 fb−1, as defined by the Good Runs List discussed in section 4.4.
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4.2.2 Monte Carlo Samples

A number of Monte Carlo samples are used in the analysis to estimate the amount of signal

and background processes selected, this allows them to be used to optimise the cuts to

improve the background rejection and signal efficiency. Tables 4.2 and 4.3 show the signal

and background Monte Carlo samples respectively. Signal samples produced by Pythia are

used to compare to the data and to estimate the detector response via the unfolding, as

described in section 8.1. Background samples are produced with a number of different

generators; Pythia and HERWIG are leading order generators which differ in their use of

hadronisation models. PythiaB provides an interface to Pythia within ATHENA, adding

the ability to produce specific decay chains for a process and to implement cuts either

before or after hadronisation. This is particularly useful when generating rare charm and

bottom events, where rather than fully generating huge numbers of events and rejecting

the majority of them to have a sample containing only one decay chain or kinematic

region. MC@NLO is a next to leading order generator, which only generates the four-vectors

of the hard scatter, these then need to be given to another Monte Carlo generator to be

hadronised.

Generator Mass Range [GeV] Lepton Filters Nevents σtot ⋅ εfilter [nb]
Pythia 15 <Mµµ < 60 2 × pT > 3; ∣η∣ < 2.7 1M 1.295 ⋅ 0.395
Pythia Mµµ > 60 - 10M 0.856 ⋅ 1.000

Table 4.2: Signal, Z/γ∗ → µµ, Monte Carlo samples.

Generator Process Lepton Filters Nevents σtot ⋅ εfilter [nb]
PythiaB Multijet (cc̄ + bb̄) 2 × pT > 10; ∣η∣ < 2.5 3M 2.727 ⋅ 1.000
Pythia Z → ττ (Mττ > 60 GeV) – 1M 0.854 ⋅ 1.000
Pythia Z/γ∗ → ττ (10 <Mττ < 60 GeV) – 2M 3.455 ⋅ 1.000
Pythia W → µν – 7M 8.938 ⋅ 1.000
MC@NLO tt̄ 1 × pT > 1 13M 0.167 ⋅ 0.474
HERWIG WW 1 × pT > 10; ∣η∣ < 2.8 2.5M 0.02956 ⋅ 0.349
HERWIG ZZ 1 × pT > 10; ∣η∣ < 2.8 250k 0.00460 ⋅ 0.278
HERWIG WZ 1 × pT > 10; ∣η∣ < 2.8 1M 0.01125 ⋅ 0.192

Table 4.3: Background Monte Carlo samples. The lepton filter on the tt̄ sample applies
to the lepton from the W in the decay. Although the multijet sample has filters applied,
the cross section for the sample comes with the filter efficiency already applied, so no

additional factor is needed.

Lepton filters are applied which cut on the generator level lepton pT or ∣η∣ so that

computer CPU and storage is not wasted on creating and storing events that will be

rejected by the analysis cuts. This greatly increases the number of usable events in a

sample. These filters are listed in tables 4.2 and 4.3. The filter efficiency, ε, is defined as

the fraction of events remaining after the lepton filter has been applied. This is used to

correct the cross section obtained from the generator before the lepton filter is applied. It

is this effective cross section, σmceff , that is then used as the cross section for the sample.

The multijet sample also has cuts on the b quarks at the parton level requiring them to

have pT > 15 GeV and ∣η∣ < 4.5. While PythiaB has the ability to impose cuts on the

stable particles at the end of the b-decay chain the multijet sample used in this analysis
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has no cuts applied.

4.3 Monte Carlo Corrections

ATLAS Monte Carlo is generated as described in section 3.4. This is generated with the

best knowledge and understanding of the physics and the detector at the time, however

it is not suitable for comparison to the data until corrections have been applied. The

corrections can be grouped together into two main categories either theoretical corrections

(section 4.3.1 and chapter 6) or corrections due to mismodelling of the detector or beam

conditions (section 4.3.2 and chapter 5). The corrections discussed in this section are

supplied by analysis tools either created centrally, by others involved in the Drell-Yan

analysis team, or are too standard and trivial to warrant their own chapter (as is the

case with the luminosity normalisation). The following two chapters discuss in detail

corrections calculated for this thesis.

4.3.1 Theoretical Corrections

There are two corrections made to the Monte Carlo which are theoretically driven and

are needed to have an appropriate normalisation of the Monte Carlo to allow it to be

compared to the data.

4.3.1.1 k−Factors

Few of the Monte Carlo samples listed in tables 4.2 and 4.3 are used with the cross section

as predicted by the generators directly. Instead, they get scaled to a higher order cross

section, the scale factors in this case are called k−factors. The di-boson samples and the

Z resonance samples have k−factors applied to them to scale the LO cross section up to

that of NNLO. The NNLO cross sections were calculated by MCFM [87] for the di-boson

samples and FEWZ [88] for the Z resonance samples. The k−factors are given by

kf =
σNNLO
σLO

, (4.1)

where σLO and σNNLO are the LO and NNLO cross sections respectively for each sample.

The top quark sample also has a k−factor applied to it which scales it from NLO to NNLO

using cross sections calculated in HATHOR [89] and cross-checked with the numerical cross

section calculator Top++ [90, 91]. All of the k−factors used in the analysis are listed in

table 4.4. It can clearly been seen that the k−factors can have a large effect, with some

samples having up to 60% corrections to the LO cross section. With the k−factors applied

an uncertainty on the electroweak and t̄t cross sections of 5% is used [92]. The k-factors

partially account for missing higher orders in the perturbative cross section expansion, but

kinematic effects are not included as in a full higher order calculation because distributions

such as the lepton pT are not considered. As such, single k−factors applied to the cross

section only change the number of predicted events in the sample, the shapes of the

distributions do not change. This is not the case for the k−factors used for the low mass

signal sample which has NNLO k−factors [93] applied to it that are dependant on the mass
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and rapidity of the γ∗. These k−factors were calculated using VRAP [94], which calculates

the cross sections at LO and NNLO analytically. The ratio of these cross sections are

then provided as the k−factor to apply to the Monte Carlo, these k−factors are shown in

figure 4.1 as a function of the invariant mass and rapidity of the Z/γ∗.

Figure 4.1: NNLO k−factors [93] for the low mass signal Monte Carlo sample as a
function of invariant mass and rapidity calculated with VRAP.

Sample k−Factor Order Source σmceff [nb]
Signal (15 <Mµµ < 60 GeV) see figure 4.1 NNLO VRAP 0.498 ⋅ kf

Signal (Mµµ > 60 GeV) 1.155 NNLO FEWZ 0.989
Multijet (cc̄ + bb̄) - - - 2.727

Z → ττ (Mττ > 60 GeV) 1.158 NNLO FEWZ 0.989
Z/γ∗ → ττ (10 <Mττ < 60 GeV) - - - 3.455

W → µν - - - 8.938
tt̄ 1.146 NNLO HATHOR 90.565 × 10−3

WW 1.520 NNLO MCFM 17.460 × 10−3

ZZ 1.292 NNLO MCFM 1.261 × 10−3

WZ 1.593 NNLO MCFM 5.543 × 10−3

Table 4.4: Table showing the k−factors for each sample. The effective cross section,
σmceff , for each sample is also listed, this is given by the generator cross section multiplied

by any filter efficiencies and k−factors.

4.3.1.2 Luminosity Normalisation

The integrated luminosity of the Monte Carlo samples (Lmc) must be normalised to that

of the data (Ldata). Table 4.4 lists the Monte Carlo samples used and the effective cross

sections of the samples. Typically with Monte Carlo generation as many events as possible

are generated to give a reduced statistical uncertainty. The luminosity correction is an
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event weight given by

wL = Ldata

Lmc
(4.2)

= Ldata ⋅
σmceff

Nmc
, (4.3)

where σmceff is the effective cross section of the Monte Carlo sample as listed in table 4.4

and Nmc is the number of generated events before any selection has been made.

4.3.2 Mismodelling

Detector effects concerned with the mismodelling of the detector efficiency are largely

corrected for using scale factors, sf , which are defined as

sf =
εdata
εmc

, (4.4)

where εdata is the efficiency in the data and εmc is the efficiency modelled in the Monte

Carlo. Scale factors are determined with uncertainties which allow the central values

to be used in the selection with the uncertainties propagated through to the measured

differential cross section. Scale factors are determined for all efficiencies relevant to the

analysis.

4.3.2.1 Muon Reconstruction Efficiency

The reconstruction efficiencies of the muons in the Monte Carlo are corrected to that of the

data with scale factors calculated using a tag-and-probe method at the Z resonance [79,95].

As discussed in section 3.2.6, these are determined by reconstructing one of the Z → µµ

decay muons in both the inner detector and the muon spectrometer. The other is identified

in just one of the systems so that the reconstruction efficiency in the other can be probed.

The efficiency corrections to the Monte Carlo are provided as a scale factor dependant on

the η and pT of each muon using a centrally produced package1. To obtain the weight

to be applied to the event the scale factors for the two muons in the event are multiplied

together. The tool also provides systematic and statistical errors for the scale factors.

Figure 4.2 shows the scale factors as a function of muon pT for the barrel (∣η∣ < 1.05)

and end-caps (∣η∣ ≥ 1.05). As can be seen for both, the scale factors are very close to

1, demonstrating the efficiencies were well modelled in the Monte Carlo at production.

Figure 4.2 also demonstrates that for this analysis there is no pT dependence on the scale

factors.

4.3.2.2 Trigger Efficiency

The trigger efficiency for the single muon trigger EF mu10 loose for muid muons with

pT > 12 GeV was estimated using a tag and probe method at the Z resonance by the

ATLAS low mass Drell-Yan group [1]. Efficiencies and scale factors were calculated as a

function of the muon pT and η, separately for positively and negatively charged muons.

1MuonEfficiencyCorrections-01-01-00
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Figure 4.2: Muon reconstruction scale factors showing the shifts due to the combined
statistical and systematic errors.

Figure 4.3 shows an example of the trigger efficiency for Monte Carlo and data with the

corresponding scale factor. This is as a function of pT for muons in the end-cap with

+1.2 < η < +1.4. The importance of separating the charge of the muons can be seen in

the figure. It can be seen from figure 4.3 that the efficiency at this η is high, typically

over 90%, and relatively flat as a function of muon pT . The data used in this analysis

was taken during seven data taking periods (labelled D-J). The total trigger efficiency was

measured in the barrel and endcap for each of these data taking periods. These can be

seen in table 4.5.

Both a statistical and systematic uncertainty is associated with the trigger efficiency

scale factors. Systematic uncertainties for the scale factors are estimated by varying the

tag and probe selection used in the efficiency study.

In the low mass Drell-Yan analysis, the scale factors were retrieved for each of the two

muons in the event and then multiplied to give a weight for the event. This gives the scale

factor to correct to the efficiency of the di-muon EF 2mu10 loose trigger. Figure 4.4 shows

the average scale factor from the individual muon as a function of muon pT for selected
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Figure 4.3: Example of the trigger efficiency (top) and scale factors (bottom) as a
function of pT for +1.2 < η < +1.4 for positive (right) and negative (positive) muons.

Only statistical errors are shown [1].

Period Barrel End-cap

D 72.4 ± 0.2 89.9 ± 0.1
E 71.6 ± 0.4 90.0 ± 0.3
F 70.9 ± 0.2 91.2 ± 0.1
G 71.0 ± 0.1 91.4 ± 0.1
H 76.0 ± 0.2 92.0 ± 0.1
I 76.0 ± 0.1 92.1 ± 0.1
J 76.4 ± 0.2 91.6 ± 0.1

Monte Carlo 73.2 ± 0.0 90.7 ± 0.0

Table 4.5: Trigger efficiency for pT > 12 GeV muons for Monte Carlo and each data
period considered in 2011 [1].

muons. The barrel and end-caps as shown separately. Again the good modelling of the

trigger in the Monte Carlo is shown by the average scale factors being close to 1. The

uncertainties on the average scale factors shown in figure 4.4 are the RMS spread of the

scale factors. It can be seen that the average scale factor is fairly constants in pT within

the uncertainties.

Figure 4.5 again shows the average scale factors from the individual muon as a function

of muon pT . But here the shifts to the scale factors from the statistical uncertainty and

the total uncertainty (the systematic and statistical uncertainty in quadrature) are shown.
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Figure 4.4: Average muon trigger efficiency scale factors for the EF mu10 loose trigger
as a function of muon pT for selected Drell-Yan events. Muons in the barrel and

end-caps are shown in figures (a) and (b) respectively. The uncertainties show the RMS
spread of the scale factors in each bin.

It can clearly be seen that statistical uncertainty is the dominate uncertainty on the scale

factors. This uncertainty from the trigger scale factors becomes the largest uncertainty

on the measured cross section in the majority of mass bins.
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Figure 4.5: Average muon trigger efficiency scale factors for the EF mu10 loose trigger
as a function of muon pT for selected Drell-Yan events. Muons in the barrel and

end-caps are shown in figures (a) and (b) respectively. The effect of shifting the scale
factors up and down by the statistical and total uncertainty on the scale factor are shown.
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4.3.2.3 Muon Isolation Efficiency

Scale factors were also used to correct the Monte Carlo isolation efficiency to that of the

data. These scale factors, defined as in equation 4.4 are calculated for muid muons for this

analysis. Details are given in chapter 5, where the efficiency in data and Monte Carlo is

calculated using a tag-and-probe method using Z resonance decays.

4.3.2.4 Muon Momentum Resolution and Scale Corrections

The momentum of the muons is corrected to better model the resolution seen in the de-

tector. Again, these corrections are provided from a centrally produced package2 and are

calculated using a tag-and-probe method at the Z resonance [76]. The scale corrections

correct for shifts in the reconstructed MZ value, whereas the resolution corrections ran-

domly shift the momenta of the muons to increase the width of the Z resonance. Rather

than applying a scale factor to weight the whole event, muon momentum corrections smear

the pT of the muons, the 4-vector of the muon is then recalculated with this new pT value.

As well as the smearing a shift is applied to better describe the muon momentum scale.

Figure 4.6 shows the effect of the muon momentum corrections to the analysis.
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Figure 4.6: Plot showing the average difference in muon pT due to the smearing as a
function of muon pT . The shift from 0 shows the effect of applying the muon momentum

scale shift. The error bars represent the RMS in each bin.

4.3.2.5 Pile-up Reweighting

The affect of pile-up also needs to be considered. ATLAS Monte Carlo is generated with a

minimum bias sample overlaid onto the hard scatter, as described in section 3.4. A sample

is split up into four periods each of which reflect beam conditions from different parts of the

2011 data taking. Different detector conditions are also reflected in the different Monte

Carlo periods. The pile-up reweighting tool3, reweights the distribution of the average

number of interactions per bunch crossing, ⟨µ⟩, in the Monte Carlo to that of the data.

It does this separately for each of the Monte Carlo periods, returning an event weight

2MuonMomentumCorrections-00-05-00
3PileupReweighting-00-02-01
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based both on the simulated value of ⟨µ⟩ and on the Monte Carlo period the event was

generated in. Figure 4.7 shows the affect of the pile-up reweighting on the number of

primary vertices in the event.
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Figure 4.7: Effect of reweighting the ⟨µ⟩ distribution of the Monte Carlo showing the
distribution of the number of primary vertices before and after reweighting.

4.4 Event Selection

The aim of the event selection is to select Drell-Yan events while rejecting as much back-

ground as possible. The effect of applying each cut in order can been seen in the cutflow

tables in chapter 7. Events are selected with the following requirements:

• Good Runs List (GRL)

• EF 2mu10 loose trigger

• Reject LAr Errors

• At least 2 muons in the event with opposite charge

• A primary vertex with ≥ 3 tracks

• Muon ∣η∣ < 2.4

• Leading muon pT > 15 GeV

• Sub-leading muon pT > 12 GeV

• Track quality cuts

• Muon isolation ∑p∆R=0.4
T /pµT < 0.18

• 26 GeV <Mµµ < 66 GeV
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The Good Runs List (GRL) is a list of luminosity blocks in the data that have suf-

ficient quality to be used in a physics analysis. The GRL used in this analysis contains

events suitable for Z and W ± like analyses. A luminosity block is a time interval in which

the integrated luminosity is calculated. Luminosity blocks are of the order of one minute

long, but vary due to the instantaneous luminosity of the beam falling during a run [96].

Different GRLs are made for different physics analysis groups as they reflect the opera-

tion of the different sub-detectors in ATLAS, and not all analyses would be affected by a

problem in only one sub-detector. The cut requiring a good luminosity block only affects

the data. This analysis uses the GRL4 created for the ATLAS Standard Model group.

The Trigger requirement that the EF 2mu10 loose trigger has fired is a powerful dis-

criminating cut that quickly removes unsuitable events. The trigger is discussed in more

detail in section 3.2.7.

Rejection of LAr Errors allows events where the liquid argon calorimeters have noise

bursts during data taking to be rejected. As these noise bursts are very short the events

are removed individually rather than by the GRL. Removal of the whole luminosity block

would be unnecessary and remove data that is otherwise suitable for analysis. Again this

cut only effects the data selection as noise bursts are not modelled in the Monte Carlo

samples. Once the GRL and trigger selection has been made, the rejection of LAr errors

reduces the data sample by 0.4%.

Number of Muons is required to be at least two, where the muons are combined muons

from the muid collection. From these two or more muons the two with the highest pT are

selected as the Drell-Yan candidate muons. These candidates are then required to have

opposite electric charge, as expected in a Drell-Yan event. Only these muons have further

cuts applied to them. The number of muons after the full selection has been applied is

shown in figure 4.8. As would be expected the vast majority of events have only two

muons.

Vertex Requirements that there is at least three tracks associated to the vertex en-

sures that the vertex is well reconstructed. In addition to a cut on the number of tracks

to the vertex it is ensured that the two Drell-Yan candidate muons in the event are two

of the tracks associated with the vertex. Tracks associated to the vertex are compared

to the ID track of each of the muons. If both the muons are matched the event is ac-

cepted. Figure 4.9 shows the distribution of the number of primary vertices after the full

selection cuts have been applied. It can be seen that the modelling of the distribution for

Nvertex > 10, mostly likely due to the effect of pileup.

4data11 7TeV.periodAllYear DetStatus-v36-pro10 CoolRunQuery-00-04-08 WZjets allchannels.xml
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Figure 4.8: Number of combined muid muons, after all selections are made.
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Fiducial Volume Cuts are the cuts on the muon pT and η. The η cut ensures that the

muons are well within the acceptance of the inner detector which extends out to ∣η∣ < 2.5.

The pT cuts applied to the muons need to be above the turn on curve of the trigger, in

the plateau of the trigger efficiency, so that the trigger efficiency can be relied on. As the

trigger requires two muons with pT > 10 GeV, the selection requirement of pT > 12 GeV

and pT > 15 GeV are suitable for this. The cuts are asymmetric in order to avoid the

region of phase space where Mγ∗ ≈ 2pµT where perturbative QCD calculations are unstable

and produce unphysical predictions at leading order. The muon pT and η distributions

can be seen in chapter 7.

Track Quality Cuts are recommended cuts presented by the Muon Combined Perfor-

mance (MCP) group in ATLAS and are an updated version of the selection outlined in [79].

These reflect the number of hits a muon would be expected to have in the inner detector,

they also take into account that the detector on occasions suffers from inefficiencies due

to certain sensors not being operational. The recommended cuts are:

• Number of b-layer hits > 0, unless no b-layer hit is expected

• Number of pixel hits plus the number of crossed dead pixel sensors > 1

• Number of SCT hits plus the number of crossed dead SCT sensors > 5

• Number of pixel holes and number of SCT holes < 3

• A successful extension into the TRT where expected

Figure 4.10 shows the distribution of the number of hits and crossed dead sensors for the

pixel and SCT detectors before the track quality cuts are made. All other event selections

have been applied. As discussed in chapter 3 the pixel detector has three layers in the barrel

and each end-cap. The pixel detector is designed to give three precision measurements, but

muons traversing both the barrel and the end-cap (being deflected by the magnetic field)

can cross more than six layers in the pixel detector due to the overlapping arrangement

of modules to provide a hermetic coverage. The SCT is designed to give eight precision

measurements. The SCT has four double sided layers in the barrel and nine double sided

layers in each end-cap. As well as muons traversing both the barrel and end-cap of the

SCT, again, the overlapping arrangement of the SCT modules would also allow additional

hits within a single region. The distributions in figure 4.10 demonstrates these features.

The figure also demonstrates the poor modelling of the Monte Carlo in the less populated

parts of the distributions.
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Figure 4.10: (a) Number of pixel hits and crossed dead pixels and the (b) Number of SCT
hits and crossed sensors. Both are shown for the leading muon before the track quality

cuts are applied, all other cuts have been applied.
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Muon Isolation is a powerful requirement to reject background multijet events. Muons

produced via the Drell-Yan process will have isolated muons, whereas muons produced as

part of a jet will not, for example muons from semi-leptonic b and c meson decays will

be produced with nearby hadronic activity. This manifests itself as increased deposits of

energy in a cone of ∆R around the muon in the calorimeters, or an increase in the amount

of summed pT from tracks around the muon in the inner detector. Four quantities are

used to quantify the degree of isolation,

PtConeX =∑p∆R
T , (4.5)

PtRatioX =∑p∆R
T /pµT , (4.6)

EtConeX =∑E∆R
T , (4.7)

EtRatioX =∑E∆R
T /pµT , (4.8)

where X are the different cone sizes, 20,30,40, for ∆R = 0.2,0.3,0.4 respectively. PtConeX

is the sum of the pT of all the tracks in a cone of ∆R associated to the same vertex

as the muon, this is used without the inclusion of the pT of the original muon in the

sum. PtRatioX is the PtConeX variable divided by the pT of the muon. The EtConeX

and EtRatioX variables are constructed in a similar way, but consider the sum of the ET

in the calorimeter around the muon. Only the track based isolation has been examined

as a way to impose isolation on the muons as it is effected less by pile up than the

calorimetric isolation variables. To settle on an isolation cut the effect of the cut on the

multijet background rejection and the signal efficiency is considered which is estimated

using Monte Carlo. When the two Drell-Yan muons fall in each others cones then the pT of

the other muon is removed from the sum. Figure 4.11 shows these two quantities plotted

against each other for different cuts on PtConeX and PtRatioX. The optimal cut on the

isolation was determined to be PtRatio40 < 0.18. This gives good background rejection

of 96.4% while maintaining a high signal efficiency of 95.7%.

This is demonstrated in figure 4.12 which shows the PtRatio40 distribution before the

isolation requirements are made. It can be seen that the majority of the signal lies below

the PtRatio40 < 0.18 cut, while the majority of the multijet background lies above it. In

this figure the multijet background is estimated with the template fit method described

in chapter 6.
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Figure 4.11: (a) Variation of multijet rejection versus signal efficiency for
∆R = 0.2,0.3,0.4 with PtCone and PtRatio, for a selection of cut values. (b) close-up of

region where the optimal cut lies.
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Figure 4.12: The PtRatio40 spectrum for both muons. The full event selection has been
made apart from the isolation cut of PtRatio40 < 0.18. The multijet background is

estimated using the template fit method.
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The Invariant Mass Range was chosen to be 26 GeV < Mµµ < 66 GeV. The upper

limit is in the region where the weak component of the cross section becomes more dom-

inant than the electromagnetic part, as seen in figure 2.8. It is also used by the ATLAS

2010 inclusive Z cross section measurement [92] as the minimum mass cut, allowing a

smooth transition between two ATLAS measurements. The lower mass cut is motivated

by keeping the statistics high in each bin of the Mµµ spectrum. Due to the muon pT cuts,

statistics quickly decrease for Mµµ < 26 GeV. High statistics are important in the low Mµµ

region where the multijet background is at its largest and confidence must be had that

it is controlled correctly. Figure 4.13 shows the di-muon mass spectrum with all analysis

cuts applied apart from the 26 <Mµµ < 66 GeV mass cut. The effect of the muon pT cuts

can clearly be seen for Mµµ < 30 GeV and the Z boson resonance at Mµµ > 66 GeV

4.4.1 Event Yield

A stable selection criteria should produce a constant yield across the data taking period.

This particularly demonstrates that the selection is not effected by pile-up which became

more prevalent as the year progressed. The event yield is defined as,

y = N
L
, (4.9)

where N is the number of data events selected using the criteria described in section 4.4

and L is the integrated luminosity. Figure 4.14 shows the yield as a function of run

number, nR. ATLAS assigns a run number every time the detector is in a stable data

taking condition. Run numbers are assigned regardless of the LHC beam conditions, as

such the large gaps between run numbers seen in figure 4.14 are largely due to ATLAS runs

where there were no stable beams. The average yield is obtained by fitting a flat line to

the yield as a function of run number, as shown in figure 4.14. A yield of 47.37±0.20 nb−1

is obtained, with a χ2 per degree of freedom, ndf , for the fit of 1.1.
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Figure 4.13: Di-muon mass distribution with. All selection cuts apart from the mass cuts
of 26 <Mµµ < 66 GeV are applied.
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Chapter 5

Muon Isolation Efficiency

As described in chapter 4 the selected events are required to have two isolated muons with

PtRatio40 ≥ 0.18. The PtRatio40 variable is the sum of the pT of tracks from the same

vertex in a cone of ∆R = 0.4 expressed as a fraction of the pT of the muon itself. As the

muons produced by the Drell-Yan process and the processes that form the electroweak

backgrounds are the sole product of the decay (or produced with undetectable neutrinos)

they are not surrounded by other tracks in the inner detector. In contrast, the muons

produced in multijet processes are produced with a large number of surrounding tracks.

This was seen from the isolation spectrum in figure 4.12. As such, a cut upon PtRatio40

is a powerful cut for reducing the multijet background.

The isolation efficiency is measured in data and Monte Carlo as a function muon

transverse momentum, pµT . This allows scale factors valid down to pµT = 12 GeV to be

calculated for muid muons. To do this a tag and probe method has been used using

Z → µµ resonant decays which is an ideal region in which to assess the muon isolation

efficiency. There is an abundance of isolated muons coming from the decay of the Z which

dominates over any background processes in the mass range of 66 GeV <Mµµ < 116 GeV.

As described in section 4.3.2 scale factors are the ratio of the efficiency measured in the

data and the Monte Carlo, so both need to be evaluated.

5.1 Z Selection

The Z event selection is based on that used by the 2010 ATLAS inclusive Z analysis [92],

with the following requirements:

• Good Runs List

• EF mu18 OR EF mu18 MG trigger

• 2 muid muons

• ≥ 1 Primary vertex with ≥ 3 tracks

• zvtx < 200 mm

• Muon pT > 12 GeV
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• Muon ∣η∣ < 2.4

• Oppositely charged muons

• Track Quality Cuts

• 66 GeV <Mµµ < 116 GeV.

This selection was made on the data and Monte Carlo samples for the signal and back-

ground samples for multijet, Z/γ∗ → ττ and W → µν processes. Many of the cuts are

similar to or the same as the cuts in the low mass Drell-Yan selection. The zvtx variable

is the z position of the primary vertex with respect to the nominal interaction point.

The EF mu18 trigger is a single muon trigger requiring that the event has a muon with a

pT > 18 GeV, the EF mu18 MG trigger is similar but using the MuGirl algorithm. A logical

OR of the two triggers is used in order to maximise efficiency.

The total number of selected events for the data and each of the Monte Carlo samples

is given in table 5.1 where it can clearly be seen that only a small amount of background is

selected with respect to signal events. For this study the multijet background is estimated

by normalising the Monte Carlo sample to the data in the non-isolated region (for events

where both muons have PtRatio40 ≥ 0.18). The normalisation factor was found to be

0.766±0.013. More sophisticated techniques are discussed in chapter 6, but as the amount

of multijet background in the Z peak mass range is very small, this simpler, if less accurate,

method was deemed sufficient.

Sample Events
Data 624492

γ∗/Z → µµ 627714
Multijets 519
γ∗/Z → ττ 437
W → µν 105

Table 5.1: Number of events selected using the Z peak selection.

Figures 5.1 to 5.4 shows control plots of the selected events. The distributions are

shown both on a linear scale, and on a log scale so that the background contributions can be

seen. Figure 5.1 shows the muon η distribution and demonstrates good agreement between

the data and the Monte Carlo, it can be seen that the background contributions are

relatively flat as a function of muon η. Figure 5.2 shows the muon pT which demonstrates

less good agreement. The “S” shape seen in the ratio plot is due to a shift in the muon

pT spectrum in the Monte Carlo with respect to the data. The reason for this shift is

not currently known but is probably due in part to the modelling of the boson pT in the

Monte Carlo. It is in any case small enough that it is not expected to have an effect

on the calculated isolation efficiencies. As would be expected the backgrounds are more

prominent a low pT .

Figure 5.3 shows the invariant di-muon mass distribution. This shows a good agree-

ment between the data and Monte Carlo. The background contribution can be seen to

reduce slightly with increasing mass. Figure 5.4 shows the di-muon rapidity distribution.

Agreement between the data and the Monte Carlo is seen to be good at central rapidities,
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but the modelling is less good at the edges of the distribution. The asymmetry in the

background distribution is most likely due to the low statistics of the Monte Carlo.
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Figure 5.1: Muon η distribution for the Z selection. Shown on a linear (a) and log (b)
scale.
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Figure 5.2: Muon pT distribution for the Z selection. Shown on a linear (a) and log (b)
scale.
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Figure 5.3: Di-muon invariant mass distribution for the Z selection. Shown on a
linear (a) and log (b) scale.
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Figure 5.4: Di-muon rapidity distribution for the Z selection. Shown on a linear (a) and
log (b) scale.
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5.2 Tag and Probe Method

The tag and probe method exploits the kinematic correlations between the two muons

produced by the Z boson. The idea is to select one muon with a tight criteria (the tag),

and take advantage of the correlations to measure the efficiency of interest with the second

muon (the probe). In the case of the isolation efficiency, if both muons are from the Z

decay they should have similar levels of isolation. By requiring a tag muon which is isolated

(PtRatio40 < 0.18 in our case) the probe associated with it should be too. Further cuts

are applied to select the tag and probe to ensure a very pure Z sample, the cuts are again

based on those used to calculate the isolation efficiency for the 2010 Z analysis [92]. It

should be noted that no isolation requirement was made to the sample before the tag

selection. As all probe muons should be isolated, the isolation efficiency is simply the

fraction of probe muons that pass the isolation cut.

5.2.1 Tag Requirements

Once the Z selection has been made, both of the muons are tested to see if they qualify

as a tag muon. A muon is considered a tag if it passes the following additional selection:

• pµT > 20 GeV

• ∣z0∣ < 10 mm

• PtRatio40 < 0.18

As the events are required to fire the EF mu18 or EF mu18 MG triggers a cut of pT > 20 GeV is

used which is suitably above the turn on curve of the triggers. The cut on the longitudinal

impact parameter, z0, is a loose cut to help ensure the tag muon is from the zeroth primary

vertex.

5.2.2 Probe Requirements

If an event contains a tagged muon, the other muon in the event is tested with the probe

requirements, which are defined as:

• pµT > 12 GeV

• ∣z0∣ < 10 mm

• ∣∆φ(tag, probe)∣ > 2

• ∣∆z0(tag, probe)∣ < 3 mm

• ∣∆d0(tag, probe)∣ < 3 mm

• ∣MPDG
Z −M(tag, probe)∣ < 10 GeV

The pT cut is the lower of the two asymmetric cuts in the low mass Drell-Yan selection, as

the isolation efficiency scale factors need to be applied to the full pT spectrum. Again, the

cut on z0, is a loose cut to help ensure the probe muon is from the zeroth primary vertex.
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The difference in the longitudinal and transverse, d0, impact parameters between the tag

and the probe, is a tighter cut helping to ensure that both the muons are from the zeroth

primary vertex. The ∆φ cut ensures that the tag and probe muons are not co-linear, as

it is uncommon for two muons to be produced co-linearly in Z decays unless balanced by

large initial state QCD radiation. Co-linear muons would potentially also need to undergo

overlap removal to remove each muon from the sum of pT in the ∆R = 0.4 cone of the

other muon. As the aim of the tag and probe selection is to select a very pure sample

of muons from Z decays without too much concern for selection efficiency, both of these

situations are avoided with the ∆φ cut. This is also the reason for the tight cut on the

invariant mass of the tag and probe pair to be less than 10 GeV from the PDG value of

MPDG
Z = 91.1876 GeV [2].

It is possible that both of the muons in an event are tagged, in which case both are

tested with the probe selection using the other muon in the event as the tag. Once a

sample of probes is acquired, the background probes are subtracted from the data sample.

Reference to data from here on is to data that has had the background Monte Carlo

samples subtracted.

5.3 Isolation Efficiency

Once a selection of probe muons has been made, the isolation efficiency can be calculated

by testing if they pass the isolation cut from the low mass Drell-Yan analysis selection of

PtRatio40 < 0.18. The isolation efficiency is given by:

εiso =
Nisolated probes

Nprobes
. (5.1)

This was evaluated in bins of η and pT of the probe muons for both the data and the

signal Monte Carlo.

5.3.1 Evaluation of Uncertainties

5.3.1.1 Statistical Uncertainties

As the numerator in equation 5.1 is a sub-set of the denominator, binomial errors are used

to calculate the statistical uncertainty on the isolation efficiency. These are given by,

δ(εiso)stat =
¿
ÁÁÀεiso ⋅ (1 − εiso)

(Nprobes)
, (5.2)

and are calculated in each bin of probe muon η and pT .

5.3.1.2 Systematic Uncertainties

The systematic uncertainties quantify the dependence of the efficiency on the choice of tag

and probe cuts. Changing the value of the cuts changes how much background is selected

in the sample. More background leads to lower efficiencies. Ideally the sample would only

contain prompt muons from a Z decay. The variation of the cuts are all designed to give
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an uncertainty due to the background contamination of the sample. The uncertainties are

evaluated by varying a number of the tag and probe cuts one at a time, using the shifts

detailed below:

• ptagT ∶ ±10%

• ∣MPDG
Z −M(tag, probe)∣:

– ∣MPDG
Z −M(tag, probe)∣ < 7 GeV

– ∣MPDG
Z −M(tag, probe)∣ < 15 GeV

• Multijet Normalisation Factor: ±30%

• Tag Isolation:

– PtRatio20 < 0.1

– PtRatio20 < 0.2

The choice of variation was driven by those made in the published inclusive Z measure-

ment. The 10% variation on the pT cut on the tag muon was used in that analysis, and

chosen here for consistency. The difference in the invariant mass from the PDG value is

varied somewhat arbitrarily, but varied asymmetrically, since the background will approx-

imately scale linearly with the ∣MPDG
Z −M(tag, probe)∣ window size, whereas the signal

will scale more slowly. The multijet normalisation factor is varied by the uncertainty on

the multijet Monte Carlo method described in section 6.1. The tag muon isolation was not

varied by a percentage of the nominal PtRatio40 < 0.18 value to avoid biasing the study.

Instead, two different cuts were used. The Z inclusive measurement used PtRatio20 < 0.1

as the nominal isolation cut, so this was used as one variation. The Z analysis uses vari-

ation of 10% to estimate the uncertainty from the isolation cut on the tag. It was felt

that in such a low background environment as the Z resonance region, a variation of 10%

would not change the amount of background sufficiently. As such, a second variation of

PtRatio20 < 0.2 was chosen.

The isolation efficiency is evaluated for each of the variations and the uncertainty from

each systematic source is obtained by taking,

δsyst = εup − εdown
2

, (5.3)

where εup and εdown are the upward and downward shifted efficiencies. These uncertainties

can be seen in figure 5.5 and figure 5.6 as a function of muon ∣η∣ and pT respectively. The

uncertainties from each for each source are added together in quadrature to obtain the

total systematic uncertainty.

It can be seen in the Monte Carlo plots in figures 5.5 and 5.6, that the variation of these

cuts also produces a change in the efficiency measured in the signal Monte Carlo. This is

due to kinematic effects, and these should also be reflected in the efficiencies from data.

Once the scale factor is calculated the kinematic effects should cancel in the ratio of the

two efficiencies. What should be left is variations due to the background or mis-modelling

in the isolation distribution of the Monte Carlo.
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Figure 5.5: Isolation efficiency for (a) data (background subtracted) and (b) Monte Carlo
as a function of ∣η∣.

5.4 Scale Factors

As described in section 4.3.2, the scale factor is defined as

sisof = εmciso
εdataiso

, (5.4)

where εmciso and εdataiso are the isolation efficiencies for the Monte Carlo and data respectively.

This is calculated for each η and pT bin, the results of which are shown in figure 5.7. Figure

5.7(a) shows the scale factors as a function of ∣η∣ with two bins in the barrel and two in the

end-caps. Figure 5.7(b) shows the scale factors as a function of pT . Both plots show the

statistical, systematic and total uncertainty of the scale factors. As the scale factors are

relatively constant and close to unity as a function of ∣η∣, it was decided to only implement

the scale factors in the analysis as a function of pT as two dimensional scale factors would

lead to larger statistical uncertainties. From figure 5.7(b) it can be seen that both the

statistical and systematic uncertainties on the scale factor become large at low pT , but for

pT > 20 GeV the uncertainty is < 0.2% in total. The large uncertainty at low pT is one of

the limiting factors for the measurement of the cross section in the lowest mass bins.
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Figure 5.6: Isolation efficiency for (a) data (background subtracted) and (b) Monte Carlo
as a function of pprobeT .

The scale factors are applied in the analysis by obtaining the scale factor for each of

the Drell-Yan candidate muons and multiplying the scale factors together to get an event

weight which is multiplied with the other weights discussed in section 4.3 to obtain the

total weight for the event.

5.5 Validation of Method

In order to validate the study described above, the isolation efficiency and scale factors

were calculated using the 2010 Z analysis isolation cut of PtRatio20 < 0.1. In table 5.2 the

total efficiencies and scale factors are considered rather than considering them as a function

of the probe muon ∣η∣ or pT . The 2010 Z peak analysis used the staco reconstruction

algorithm whereas this analysis uses the muid, so exact agreement is not expected, but

neither would a large disagreement be expected as the two algorithms are very competitive.

Another difference is clearly that this analysis uses 2011 data rather than 2010. Despite

this it can seen that the efficiencies are close between the two analyses although a slightly

lower efficiency is obtained here, most likely due to the increase in pileup during the
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Figure 5.7: Isolation efficiency scale factors in bins of (a) muon ∣η∣, and (b) muon pT ,
with statistical and systematic errors shown.

2011 data taking. The scale factor for both analyses is the same. While this test is far

from conclusive due to the differences mentioned, it adds confidence that the method was

implemented correctly.

2010 Analysis Cross-Check
Data Efficiency 0.9947 ± 0.0006 0.9933 ± 0.0008
MC Efficiency 0.9952 ± 0.0000 0.9938 ± 0.0007
Scale Factor 0.9995 ± 0.0006 0.9995 ± 0.0002

Table 5.2: Comparison of isolation efficiencies and scale factors between the those listed
in the support note for the 2010 inclusive Z analysis [92] for staco muons and the those

calculated using the method described in this chapter for muid muons using the Z
analysis isolation cut of PtRatio20 < 0.1.
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Chapter 6

Multijet Background Studies

The requirement that the muons are isolated removes a large fraction of potential multijet

background events. However, multijet processes have large cross sections and therefore

still remain a large background, particularly at lower muon pT and di-muon invariant

mass. Muons are produced in multijet processes via the decay of mesons produced in the

jet. These mesons can be classed as either light or heavy flavoured depending on the con-

stituent quarks. The mesons can decay semileptonically where one of the quarks decays

via a charged current weak decay to produce a charged lepton and neutrino. It is this

charged lepton that can be misidentified as coming from the Drell-Yan interaction. Only

energetic charged leptons produced from meson decays will be selected by the Drell-Yan

selection. However, the other decay products are produced collinearly with the charge

lepton, allowing the cut on the isolation variable to be used to reject these events. Cas-

cade decays can occur as illustrated in figure 6.1 where the quark changes flavour to a

lighter quark due to the emission of the W boson, this can then go on to decay to yet

lighter quarks. As such, although the bb̄ and cc̄ Monte Carlo used is described as heavy

flavoured, it will also contain light flavoured mesons, such as pions and kaons, due to these

cascade decays. The background is described as multijet as the charged current decays

of the constituent quarks in the meson can also produce a quark-antiquark pair causing

an additional jet. The isolation variable PtRatio40 discussed in chapter 5 is the sum of

Figure 6.1: A cascade decay.

the pT of tracks in a cone of ∆R = 0.4 around the muon expressed as a fraction of the
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muon pT . The sum of pT which includes the products from the meson decay, also includes

tracks from pileup and the underlying event. Multijet processes are inherently hard to

model in Monte Carlo and as such data is used to either correct the normalisation or

shape of the heavy flavour multijet Monte Carlo. Alternatively, data-driven methods can

be used to estimate the multijet background mainly using data with no multijet Monte

Carlo involvement. Three methods are considered in this chapter, each of which is more

data driven than the previous.

6.1 Monte Carlo Method

The Monte Carlo method is the simplest estimate of the multijet background. It works

on the premise that the Monte Carlo sufficiently estimates the shape of the multijet dis-

tributions but that the normalisation of these distributions is incorrect. To rectify this,

the multijet Monte Carlo is normalised to the data in a “non-isolated” control region.

The non-isolated region is selected by applying the full event selection outlined in sec-

tion 4.4 but with the isolation cut inverted, so that both muons are required to have

PtRatio40 > 0.18. The normalisation factor, NMC, is obtained by rearranging,

Ndata −NSigMC −NEWMC

NMC ⋅NOS
b,cMC

= 1, (6.1)

where Ndata, NSigMC , NEWMC and NOS
b,cMC are the number of data, signal, electroweak

and multijet events respectively in the non-isolated region. For ease of discussion the

electroweak background refers to all the backgrounds apart for the multijet, but including

the tt̄ background. The normalisation factor is found to be NMC = 0.502 ± 0.003.

Figure 6.2 shows the invariant mass spectrum in the non-isolated region after the

multijet sample has been scaled by NMC. It can be seen that the level of agreement across

the mass spectrum varies but that at its largest it is about 30%, as such an uncertainty

of 30% is assigned to this method.

Figure 6.3(b) shows the PtRatio40 distribution for both of the muons without any

isolation cut applied. There is good agreement between data and Monte Carlo at lower

values of PtRatio40 but this becomes increasingly worse for less isolated muons. It should

be noted however that only events from the first two bins contribute to the signal region,

where the large signal and electroweak contributions are clearly visible.

The disagreement seen between the normalised heavy flavoured Monte Carlo and the

data is most likely due to the fact the Monte Carlo doesn’t fully include the light flavoured

contributions (only those produced from cascade decays) and there is potential for mis-

modelling of the pileup energy or underlying event energy flow.
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Figure 6.2: Invariant mass distribution in the non-isolated region using the Monte Carlo
method multijet estimation.

98



PtRatio40

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

N
um

be
r 

of
 E

ve
nt

s

-110

1

10

210

310

410

510

610

710

810
Data

µµ →/Z *γ
Multijets (MC Method)

ττ →/Z *γ

tt

WW/ZZ/WZ

νµ →W 

PtRatio40
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

D
at

a/
M

C

0.8

0.9

1

1.1

1.2

(a)

PtRatio40

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N
um

be
r 

of
 E

ve
nt

s

-110

1

10

210

310

410

510

610

710

810

Data

µµ →/Z 
*γ

Multijets (MC Method)

ττ →/Z 
*γ

tt

WW/ZZ/WZ

νµ →W 

PtRatio40
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

D
at

a/
M

C

1

1.5

2

2.5

(b)

Figure 6.3: Isolation spectra using Monte Carlo method multijet estimation. The full
analysis selection has been applied apart from the isolation requirement of

PtRatio40 < 0.18. Figure (a) shows the more isolated end of the distribution where the
signal can be found. Figure (b) shows the same distribution over a wider range.

99



6.2 Template Fit Method

A more sophisticated estimate of the multijet background comes in the form of the Tem-

plate Fit method. This method relies on accurately improving the modelling of the muon

isolation spectrum using a two component data enhanced template fit. As with the Monte

Carlo method both the number of multijet events is estimated and an uncertainty as-

signed to the estimate based on the agreement between data and the multijet estimate in

the non-isolated region.

The multijet Monte Carlo consists of heavy flavoured b and c jets, but at low invariant

mass and low muon pT , a contribution from light flavoured jets from u, d and s quarks

might also be expected. In order to include these into the multijet background estimate,

data events where the two muons have the same electric charge are used as a proxy for

the opposite sign events coming from light flavoured multijet processes. This is done as

light flavoured jets will produce muons and antimuons with no preference, so same sign

events can be used in place of the opposite sign events that are indistinguishable from the

signal in data.

In the template fit method a sample of same sign (SS) data events is used to correct

the shape of the Monte Carlo estimate. This is done as the Monte Carlo alone was seen in

section 6.1 not to describe the data well. Using a multijet rich selection, these two samples

are used as templates in the fit. The fit determines the normalisation factors needed to

be applied to each of the templates so that together they describe the data.

To do this the TFractionFitter class in ROOT is used, which calculates normalisation

factors to be applied to two template distributions needed to give the best agreement to

a third control distribution by minimising the negative log likelihood of a fit [97]. The

normalisation factors are the only free parameters of the fit, which considers the agreement

in each bin, but returns a single normalisation factor for the whole template distribution.

The outline of the template fit method is given below, followed by a detailed explana-

tion of each step:

1. Select a multijet rich sample

2. Create control distribution and two templates

3. Perform Template Fit

4. Find template normalisation factors

5. Obtain estimate of multijet background in the signal region

6. Assign uncertainty to estimated multijet background

1. Select a multijet rich sample

An unbiased sample that is rich is multijet events is needed. The full analysis selection

is made as described in chapter 4, apart from the isolation requirement. Instead, a harsh

anti-isolation cut requiring PtRatio40 > 0.38 is made on one muon at random, while the

PtRatio40 of the other muon is plotted. This allows the full PtRatio40 spectrum to
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be plotted for events that have been selected to be very unisolated. The muon that the

harsh anti-isolation cut is applied to is chosen at random to remove any pT bias that

might have been introduced by only considering the leading or sub-leading muon. The

cut of PtRatio40 > 0.38 was chosen as it produces a multijet rich sample with less than

1% of signal Monte Carlo passing the cut. This was seen as a level of contamination small

enough for the method to work without limiting the statistics of the templates.

2. Create control distribution and two templates

Templates of the PtRatio40 spectrum are formed from a sample of same sign data events

and a sample of opposite sign heavy flavoured Monte Carlo events (that has had the same

sign events subtracted from them to avoid double counting). A sample of opposite sign

data events is used to create the PtRatio40 distribution to which the templates are fitted.

These are summarised in table 6.1 and can be seen plotted in figure 6.4(a)

Use Sample Events

Control Distribution Data OS 50540
Template 1 Multijet Monte Carlo OS-SS 67675
Template 2 Data SS 22639

Table 6.1: The control distribution and the two templates that are fitted to it. All three
distributions have had a harsh anti-isolation cut of PtRatio40 < 0.38 applied to the other

muon in the event.

3. Perform Template Fit

The histograms of all three distributions are passed to the TFractionFitter code which

returns two relative normalisation factors, s1 and s2. As the fit is carried out using the

three distributions once they are normalised to unity, s1 and s2 are the free parameters

of the fit. These represent the amount the templates for the multijet Monte Carlo and

the same sign data respectively need to be scaled so that together they describe the data

distribution of opposite sign events. The scales are found to be s1 = 0.517 ± 0.015 and

s2 = 0.483 ± 0.015.

4. Find template normalisation factors

As s1 and s2 only describe the relative normalisation of the two templates (it can be seen

that s1 + s2 = 1) they cannot be used to scale the input templates. In order to scale

the original templates correctly the original normalisation needs to be reinstated, this

produces the normalisation factors f1 and f2 which are defined as,

f1 = s1 ⋅
NOS−SS
QCD,MC

NOS
Data

, (6.2)

f2 = s2 ⋅
NSS
Data

NOS
Data

, (6.3)
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where NOS−SS
QCD,MC , NSS

Data and NOS
Data are the unnormalised number of multijet Monte Carlo

events (with same sign events subtracted), same sign and opposite sign data events re-

spectively as listed in table 6.1. The factors are found to be f1 = 0.386 ± 0.020 and

f2 = 1.077 ± 0.007. Once these normalisation factors are applied to the original multijet

templates a good agreement is seen with the opposite sign data distribution, as shown in

figure 6.4(b). The small disagreement in the first two bins is due to the signal contami-

nation of the multijet sample. This could be subtracted off from the opposite sign data

distribution before the fit is made, but this would introduce an additional reliance on the

modelling of the Monte Carlo. A cross-check was made where this was done and it was

found not to effect the final estimate within errors.

PtRatio40

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N
um

be
r 

of
 E

ve
nt

s

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Data OS
Data SS
Multijet MC OS-SS

(a) Before normalisation

PtRatio40

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N
um

be
r 

of
 E

ve
nt

s

0

1000

2000

3000

4000

5000

6000

7000

8000

9000
Data OS
Light Flavour Multijet
Heavy Flavour Multijet

(b) After normalisation

Figure 6.4: The two templates used in the template fit method compared to opposite sign
data events, before and after normalisation with factors obtained from the

TFractionFitter code as described in the text.
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5. Obtain estimate of multijet background in the signal region

The aim of the method to is find normalisation factors that can be applied for the standard

analysis selection. While f1 and f2 give good agreement for a very harsh anti-isolated

selection, it needs to be ensured that the normalisation is appropriate in the phase space

in which the analysis is made. In order to do this, an additional normalisation factor

Ntemplate is applied to the multijet OS-SS Monte Carlo distributions. To do this the non-

isolated region as used by the Monte Carlo method was examined. This requires both

muons to have PtRatio40 > 0.18. The factor Ntemplate given by the rearrangement of,

Ndata −NSigMC −NEWMC

[Ntemplate ⋅ f1 ⋅ (NOS
b,cMC −NSS

b,cMC)] + [f2 ⋅NSS
data]

= 1, (6.4)

where the variables are as defined previously. The correction to the normalisation is found

to be small (close to unity), with Ntemplate = 0.940 ± 0.051.

Figure 6.5 shows the isolation spectrum for both muons. The full analysis selection has

been applied apart from the isolation requirement. The light and heavy flavoured multi-

jet is shown separately. Both have the appropriate normalisation factors, summarised in

table 6.2, applied. It can be seen that the isolation spectrum is now described well by

the signal and background distributions. The improvement compared to the Monte Carlo

method shown in figure 6.3 is clear. Figure 6.6 shows the di-muon invariant mass distri-

bution with the full analysis selection, including the isolation requirements. It can been

seen that the light flavoured multijet background is a small but non-negligible component

of the multijet background, making up 35.9% of it.

Normalisation Factor Template 1 Template 2

Relative normalisation s1 = 0.517 ± 0.015 s2 = 0.483 ± 0.015
Template normalisation f1 = 0.386 ± 0.020 f2 = 1.077 ± 0.007
Phase-space normalisation Ntemplate = 0.940 ± 0.051 -

Table 6.2: Normalisation factors obtained from the Template Fit estimation method. The
relative normalisation factors are the output of the TFractionFitter code. The template

normalisation factors are the factors that are actually applied to the two templates to
give good agreement with the control distribution. These are also applied to the OS-SS

multijet Monte Carlo and the SS data events selected by the Drell-Yan analysis selection.
The phase-space normalisation factor ensures the correct normalisation in the analysis

phase-space.

6. Assign uncertainty to estimated multijet background

In order to assign an uncertainty to this method, the agreement between the data and

the Monte Carlo in the non-isolated region is once again considered. As can be seen in

figure 6.7 the largest disagreement between data and Monte Carlo is now about 20%,

which is therefore used as the systematic uncertainty on the background estimate from

this method.
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Figure 6.5: Isolation spectra using template fit method multijet estimation. The full
analysis selection has been applied apart from the isolation cut of PtRatio40 < 0.18.

Figure (a) shows the more isolated end of the distribution where the signal can be found.
Figure (b) shows the same distribution over a wider range.
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Figure 6.6: Isolated invariant mass distribution using the template fit method multijet
estimation.
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Figure 6.7: Non-isolated invariant mass distribution using the template fit method
multijet estimation. It can be seen in the ratio plot that maximum disagreement is about

20%. This is taken as the uncertainty on the template fit estimate.
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6.3 ABCD Methods

The move from a completely Monte Carlo based multijet background estimate to a partially

data driven one, in the form of the Template Fit method, showed a marked improvement

of the description of key distributions. The ABCD method, would allow the estimate to

be far more data driven, and as such is investigated in order to either improve upon or

verify the result from the Template Fit method.

The ABCD method relies on two uncorrelated multijet background discriminating

variables to estimate the contribution of the multijet background in the signal region. In

the plane of the two variables, two cuts divide the sample into a signal region (A) and

three background rich regions (B,C,D). As the variables are uncorrelated the relationship

of

NA

NC
= NB

ND
, (6.5)

should hold. Where NA, NB, NC and ND are the number of multijet events in quadrants

A, B, C and D respectively. In this way, the data measured in the other three quadrants

can be used to estimate the amount of multijet background in the signal quadrant. Ideally

with only minimal reliance on Monte Carlo (the electroweak and signal events need to

be subtracted from the data in B, C and D). Due to this, the variables chosen and the

cuts made should be ones that are not only uncorrelated, but offer strong discrimination

between the signal and multijet background.

Three variations of the ABCD method are investigated, these are discussed below.

The first two are quickly ruled out as useful variable combinations. The third, as will be

discussed, is used only as a cross-check of the Template Fit method, as it proves to still

be too reliant on the modelling of the Monte Carlo.

6.3.1 ABCD Method I

The first ABCD method considered looks at isolated and non-isolated events for both

di-muon events and electron-muon events. The quadrants are defined as shown in figure

6.8(a). It would be expected that a jet would produce equal numbers of electrons and

muons, from semi-leptonic decays. This means there should be a similar number of events

with an electron and a muon as with two muons. The selection used to select the eµ events

is:

• Good Runs List

• EF 2mu10 loose OR EF e10 medium mu6 Trigger

• Reject LAr Errors

• Nvertex > 1 with Ntracks > 2

• Nelectrons > 0 (with electron author 1 OR 3)

• Nmuons > 0 (combined muons)
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• ∣ηe,µ∣ < 2.4 and reject electrons in 1.37 < ∣ηe∣ < 1.52

• pl1T > 15 GeV

• pl2T > 12 GeV

• Muon Track Quality Cuts

• Electron is medium++

• 26 GeV <Mll < 66 GeV

Many of the cuts that are applied are the same as for the standard di-muon analysis. Elec-

trons are rejected in the 1.37 < ∣η∣ < 1.52 transition region between the barrel and end-cap

electromagnetic calorimeters. Only electrons with an author value of 1 OR 3 are used.

These are electrons that are reconstructed by either the standard reconstruction algo-

rithm or by the standard and softe reconstruction algorithm. The standard algorithm

reconstructs electrons seeded in the EM calorimeter and then matched to tracks. The

softe algorithm is seeded by low pT tracks and then extrapolated to deposits in the EM

calorimeter. Electrons are also required to pass the medium++ selection, which are a set of

official ATLAS requirements that consider shower shapes and number of hits in the inner

detector [98]. Events are considered isolated if both leptons pass the PtRatio40 < 0.18
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Figure 6.8: Figure (a) shows the definition of the quadrants for the ABCD method I.
Figure (b) shows the isolation spectra in the non-isolated quadrants B and D, here the

PtRatio40 of the least isolated of the two muons is plotted.

isolation requirement. The first test if this is a viable method is to check that the iso-

lation spectra in the two non-isolated quadrants have similar shapes. It can be seen in

figure 6.8(b), however, that the spectra have very poor agreement, as such this method is

ruled out. The poor agreement is believed to be due to the use of track based isolation

for the electrons. As with muons, the isolation can either be defined by summing the pT
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of the tracks or calorimeter clusters in a cone around the lepton. As electrons undergo

much more bremstrahlung than muons, track based isolation is less suitable as it will

not consider bremstrahlung photons as being associated with the electron. However, as

long as the photons remain collinear to the electron they will form deposits into the same

calorimeter clusters as the electron, so information will not be lost. It is possible to use

calorimetric isolation for the muons so that a useful comparison could be made, but this

would involve changing the main selection, which is undesirable as the current cut was

chosen to be optimal and calorimetric isolation for muons is not as resilient to pile-up as

track based isolation.

6.3.2 ABCD Method II

A second variation of the ABCD method uses muon isolation as one discriminating variable

and the charge of the muon pair as the other. This divides the plane into same sign and

opposite sign events. For this method the standard di-muon selection was used, but with

inversion of the charge requirement on the muons to form the quadrants outlined in figure

6.9(a). Again the isolation spectra in the two non-isolated quadrants are examined, as

shown in figure 6.9(b). The spectra show very poor agreement, so again the method is

rejected. The disagreement seen in figure 6.9 is suspected to be due to the same sign
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Figure 6.9: Figure (a) shows the definition of the quadrants for the ABCD method II.
Figure (b) shows the isolation spectra in the non-isolated quadrants B and D, here the

PtRatio40 of the least isolated of the two muons is plotted.

muon pairs being sampled from further down the decay chain shown in figure 6.1. This

was not investigated further, as it is clear the disagreement is large, demonstrating the

unsuitability of the choice of ABCD variables.
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6.3.3 ABCD Method III

The final approach using the ABCD method involves adding an additional cut to the stan-

dard selection. As shown in figure 6.11(a), as well as the isolation cut, the d0 significance,

sd0 , is considered. This is defined as

sd0 =
d0

δd0

, (6.6)

where δd0 is the error on the measurement of the d0 impact parameter. Figure 6.10 shows

the ∣sd0 ∣ distribution in the signal region, where the multijet background is represented

by the Monte Carlo method described in section 6.1. It can be seen that the signal is

predominantly at low ∣sd0 ∣, while the multijet background extends to larger ∣sd0 ∣.
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Figure 6.10: Control plot showing the data and Monte Carlo agreement of the sd0

distribution in the signal region.

Quadrants A and B require that both muons have sd0 < 3.0, while quadrants C and D

require at least one of the muons has sd0 ≥ 3.0. Considering the two non-isolated regions

in figure 6.11(b) good agreement, within 10%, can be seen between the two distributions.

Further verification of the suitability of this ABCD method is to check that the PtRatio40

and sd0 variables are truly uncorrelated. Using a sample of harsh anti-isolated events using

the same selection used to obtain the templates for the template fit method in section 6.2

requiring one muon to have PtRatio40 > 0.38. The correlation is shown in figure 6.12(a)

for data and 6.12(b) for the multijet Monte Carlo. The correlation is expressed by the

correlation coefficient, ρ, which is defined as:

ρxy =
Vxy

δxδy
, (6.7)

where x and y are the two variables whose correlation is being considered, δx and δy are
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Figure 6.11: Figure (a) shows the definition of the quadrants for the ABCD method III.
Figure (b) shows the isolation spectra in the non-isolated quadrants B and D, here the

PtRatio40 of the least isolated of the two muons is plotted.

the uncertainties on x and y, and Vxy is the covariance matrix. The correlation coefficient

lies in the range −1 ≤ ρxy ≤ +1. Values close to 0 represent uncorrelated variables, −1 have

negative correlation, and +1 have positive correlation [99]. When examined for the data

and the multijet Monte Carlo in figure 6.12 correlations coefficients of 0.007 and 0.017 are

found for data and the multijet Monte Carlo respectively. This demonstrates a very small

degree of correlation.
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Figure 6.12: Correlation plots showing PtRatio40 and sd0 variables for the free muon in
harsh anti-isolated sample. (a) Data (ρ = 0.007). (b) multijet Monte Carlo (ρ = 0.017).

The di-muon invariant mass distribution in each quadrant is shown in figure 6.13. The

multijet background Monte Carlo is shown here for comparison, but is not involved in

the estimate of the multijet background in quadrant A. The number of multijet events in
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(c) Quadrant C
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Figure 6.13: Di-muon invariant mass distributions in quadrants A-D, showing data and
Monte Carlo agreement. As stated in the text the multijet Monte Carlo is shown here for

comparison, but is not involved in the estimate at any point. Quadrant A is shown to
help illustrate the relative amount of multijet back background to be estimated.

quadrant A, NA
multijet, in each mass bin is estimated from the other three quadrants using

the relation,

NA
multijet = (NC

data −NC
ew −NC

sig)
(NB

data −NB
ew −NB

sig)
(ND

data −ND
ew −ND

sig)
, (6.8)

where Ndata, New and Nsig are the number of data, electroweak Monte Carlo, and signal

Monte Carlo events in each region respectively. As can be seen in figure 6.13 subtracting

the Monte Carlo distributions from the data in quadrants B and D is a small subtraction,

but in quadrant C the subtraction is much larger. This has two effects, the number of

events in quadrant C, which are already small are reduced further and a dependence is

introduced on the modelling of the Monte Carlo that the ABCD method was used to avoid.

The error bars in figure 6.14(a), which shows the normalised data distributions after the

Monte Carlo samples have been subtracted, clearly show the discrepancy in sample size for

the three regions. Figure 6.14(b) shows the ratio of events in quadrants B and D after the

signal and electroweak Monte Carlo has been subtracted. The ratio labelled “bin-by-bin”

is the simple ratio of mass distributions in quadrants B and D, whereas the “integral”

ratio uses the ratio of the total number of events in quadrants B and D.
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Figure 6.14: (a) Normalised di-muon invariant mass distributions in quadrants B-D for
the data with the Monte Carlo signal and electroweak backgrounds subtracted. (b) The
ratio of quadrants B and D for the data with the Monte Carlo signal and electroweak

backgrounds subtracted.

The dependence of the multijet estimate on the choice of d0 significance cut is examined

in figure 6.15. It can be seen that although the effect of the cut is significant in quadrants

B and D, the change in the estimate of the multijet background in quadrant A is small,

with the results all being consistent with each other within uncertainties.

Continuing with the cut of sd0 < 3 for quadrants A and B and sd0 ≥ 3 for quadrants

C and D. The estimated number of multijet events in quadrant A is shown again in

figure 6.16, where it is compared to results from the template method. The template

fit is repeated here with the sd0 cut included so a direct comparison can be made. Two

variations of the ABCD method are shown, the difference being which of the distributions

in figure 6.14(b) is used as the ratio shown in equation 6.8. For the “integral” method all

the shape information comes from quadrant C, as can be seen, this only has a small effect

on the shape of the distribution estimated for quadrant A. The majority of the bins are

consistent with the 20% uncertainty assigned to the template fit method. It is expected
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Figure 6.15: Distributions showing the effect of varying the sd0 cut in quadrants B-D for
the data with the Monte Carlo signal and electroweak backgrounds subtracted in (a) - (c).
The effect of the variation on the estimate of multijet background in quadrant A is shown

in (d).

that the disagreement of the remaining bins is due to the reliance on the modelling in the

Monte Carlo coming from quadrant C, as it was seen in figure 6.10 that the d0 significance

distribution is not well described.

As the ABCD method agrees within two standard deviations with the template fit

method even for the bins with the worst agreement it is considered to validate the template

fit method. An ideal agreement would be more desirable, but as the choice of variables

requires a heavier than desired reliance on the modelling in the Monte Carlo of the sd0

distribution the agreement is sufficient as a cross-check of the template fit method, which

will be used as the multijet background estimate with the associated 20% uncertainty, as

described previously.
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Figure 6.16: The estimated multijet background in quadrant A, as compared to that
calculated with the template fit method which was repeated as described in section 6.2, but

with the inclusion of the d0 significance cut.
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Chapter 7

Comparison of Data and Monte

Carlo

Once all the corrections have been made to the Monte Carlo samples the level of agreement

between the data and the Monte Carlo needs to be examined. This gives confidence that

the selection properly controls the backgrounds. It also gives confidence that bin-by-bin

unfolding will be appropriate as the acceptances will be well described. The control plots

shown in this chapter demonstrate good data and Monte Carlo agreement and the small

amount of background selected by the analysis. The number of events selected in data

and each of the Monte Carlo samples can be seen in the cutflow tables shown in tables 7.1

and 7.2.

7.1 Control Plots

Figures 7.1, 7.2 and 7.3 show the control plots for the leading (muon1) and sub-leading

(muon2) muons. Figure 7.4 shows control plots for the di-muon pairs. All the figures

demonstrate the data and Monte Carlo agreement after the full selection has been made.

All Monte Carlo weights discussed in the previous chapters have been applied. The plots

show the Monte Carlo samples stacked on top of each other and compared to the black

data points. The ratio plots below the distributions show the ratio of the data and all the

Monte Carlo samples added together, the uncertainty on the ratio shows the statistical

error from the data.

Figures 7.1 and 7.2 show the φ and η distributions for the leading and sub-leading

muons. Both demonstrate good agreement of the Monte Carlo to the data, with some

variations but no more than 10%. The shapes of the distributions are governed by the

position of the detector supports and the gap at η = 0 for cabling. The pT distribution of

the muons is shown in figure 7.3, again the data are well described by the Monte Carlo

although statistics are poor in the tail of the distributions. Figures showing the muon

distributions plotted with both muons on the same plot can be seen in appendix A.

The four-vectors of the two selected muons are added together to give the four-vector

of the Z/γ∗, referred to as the di-muon pair. Figure 7.4(a) shows that the pT of the

di-muon pair is not well described by the Monte Carlo, the effect of reweighting this
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(b) Sub-leading Muon φ Distribution

Figure 7.1: Muon φ control plots.

distribution to another boson pT model is examined in section 8.2.9 and is included as a

systematic uncertainty on the measured cross section. Figure 7.4(b) shows the modulus

of the rapidity of the di-muon pair which has acceptable agreement between the data and

the Monte Carlo. Figure 7.5 shows the invariant mass distribution of the di-muon pair,

again showing good agreement between the data and Monte Carlo. The distribution is

shown in the 5 GeV wide binning in which the differential cross section is measured.
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(b) Sub-leading Muon η Distribution

Figure 7.2: Muon η control plots.
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Figure 7.3: Muon pT control plots.
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Figure 7.4: Di-muon pµµT and ∣yµµ∣ control plots.
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7.2 Cutflow Tables

The effect of each cut is shown in the cutflow tables 7.1 and 7.2 where each of the cuts

is applied in turn. As well as the cuts described in section 4.4 an additional loose cut on

the muon pT and η was included in order to increase the speed of the analysis code. For

these cuts both the muons are required to have pT > 6 GeV and ∣η∣ < 2.5. The pT cut was

chosen to allow the scale factor packages to be used effectively as they are only valid for

muons with pT > 6 GeV. Therefore after this cut the scale factors are applied, although

k−factors, luminosity normalisation and pile-up reweighting are applied throughout. It is

the introduction of the scale factors that is the cause of the increase of events seen between

the Nvertex cut and the loose pT and η cuts for the signal Monte Carlo sample. The multijet

background estimation described in chapter 6 cannot be applied until after the charge of

the muons has been considered and is therefore not applied until this cut, with the number

of events listed before that being treated the same as the other background Monte Carlo

samples. It should be noted that the small percentage of signal events passing the trigger

is due to the fact that the sample goes down to pµT > 3 GeV. Thus the EF 2mu10 loose

trigger will remove a relatively large fraction of events. Similarly the small percentage

of signal events passing the invariant mass cut is due to the lower mass sample being

produced for masses MZ/γ∗ > 15 GeV and the larger mass sample being produced with no

explicit upper mass cut. Due to this the ratio of the final and first numbers in the signal

row of table 7.1 does not give the signal efficiency.
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Chapter 8

Low Mass Drell-Yan Differential

Cross Sections

The fiducial differential cross section as a function of the di-muon invariant mass has been

measured in the kinematic region defined by the muon selection pT and ∣η∣ cuts and is also

extrapolated to the total phase space.

In this chapter the calculation of the cross sections and the uncertainties considered

are discussed. The fiducial differential cross section measurement is compared to NLO

and NNLO theoretical predictions.

The differential mass cross section is defined for each bin, i, as

( dσ

dMµµ
)
i

= Ni −Bi
LCγ∗i(∆M)i

, (8.1)

where Ni and Bi are the number of selected data and Monte Carlo background events

respectively, L is the integrated luminosity of the data (1.64 pb−1), Cγ∗i is the unfolding

factor discussed in section 8.1 and (∆M)i is the width of the histogram bins (5 GeV).

8.1 Unfolding

The detector has a finite resolution which can cause distortions to physical distributions.

Corrections to the Monte Carlo discussed in section 4.3 only adjust the efficiencies and

resolution of the Monte Carlo to that of the data. The full effect of these distortions on

the cross section is taken into consideration by unfolding the Pythia signal Monte Carlo

samples after all corrections have been applied.

These distortions are estimated using the Monte Carlo both at the generator level

and after reconstruction has be applied, which takes into account the detector effects.

The detector effects can cause events to be reconstructed in a different bin to where they

were generated. Events can also not be reconstructed at all, or be reconstructed where

there was no event generated (due to detector noise). These three effects are described

by the response matrix, Rij , which connects the events generated in one bin to those
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reconstructed in others. The matrix is defined [99] as

Rij =
P (observed in bin i and true value in bin j)

P (true value in bin j) , (8.2)

= P (observed in bin i ∣ true value in bin j), (8.3)

which describes the truth distribution in bins of j, and the reconstructed distribution in

bins of i. If the effects of resolution are negligible the response matrix (if Ni = Nj) is

diagonal, Rij = δijεj , where εj is the average detection efficiency over bin j.

The inverse of the response matrix can be applied to the measured cross section to

unfold the result. However, if the migrations between bins are small enough and the

mass bins (in our case) are large enough compared to the mass resolution of the detector

then the diagonal elements alone can be used. This significantly simplifies the unfolding

procedure and is known as bin-by-bin unfolding. The unfolding factor for each invariant

mass bin, i, is given by

Cγ∗i =
N reco
i

Ngen
i

, (8.4)

where Ngen
i is the number of events generated in that bin and N reco

i is the number of events

reconstructed in that bin. This factor accounts both for efficiency and for migration of

events between bins. The numerator has all Monte Carlo corrections applied and is simply

taken from the Monte Carlo signal distribution as seen in the di-muon invariant mass

control plot in figure 7.5. It is through the numerator that the scale factor corrections

to the signal Monte Carlo are propagated to measured cross section. The denominator is

obtained from the generator level events in the signal Monte Carlo samples. Born level

(muons before they emit a FSR photon) generator Monte Carlo events are used. This

allows the Cγ∗ factor to also account for FSR. Cuts to select events in the fiducial volume

are applied at generator level, selecting the two muons with the highest pT , such that,

• pµ1

T > 15 GeV

• pµ2

T > 12 GeV

• ∣ηµ1,2 ∣ < 2.4

• 26 GeV <Mµµ < 66 GeV

• Opposite sign

Appropriate Monte Carlo corrections are also applied to the generator distribution, here

the NLO k-factors, luminosity normalisation and pile-up reweighting corrections are made.

The Cγ∗ distribution can be seen in figure 8.1(a), the statistical errors on this ratio, plot-

ted in figure 8.1(b), are calculated using binomial uncertainties. This is an approximate

treatment of the errors. Although the numerator is not a true sub-selection of the denom-

inator it is highly correlated to a sub-selection of it. The small uncertainty in the final

invariant mass bin of figure 8.1 is due to it being populated by the Monte Carlo sample
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Figure 8.1: Figures showing (a) the bin-by-bin unfolding factor Cγ∗ and (b) the statistical
uncertainty on the unfolding factor.

generated in a mass range of Mγ∗/Z > 60 GeV, this sample has much higher statistics than

the low mass sample, leading to a smaller uncertainty.

Bin-by-bin unfolding does not fully take into account migration of events between bins

due to the effect of detector resolution. However, this effect is expected to be small as

the purity of the bins is high. The purity has been calculated by the ATLAS low mass

Drell-Yan group [1] and is defined as

Purity = N(generated and reconstructed in bin i)
N(reconstructed in bin i) . (8.5)

The purity, as shown by figure 8.2(a), is greater than 80% for all bins, increasing up to

∼ 92% in the lowest mass bin. Figure 8.2(b) shows the average mass difference between

the reconstructed and truth level events. The y−axis error bars show the RMS of the mass

difference for each bin, this is a measure of the mass resolution for the selected muons.

It can clearly be seen that the RMS spread of the mass difference is much smaller than

the width of the mass bins. This further demonstrates the suitability of the bin-by-bin
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unfolding method.
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Figure 8.2: Figures showing (a) purity as a function of mass and (b) mass resolution as
a function of mass [1].

Bin-by-bin unfolding can introduce a bias, this is the difference between the unfolded

cross section and the true cross section in nature. This can be expressed for each bin, i,

as

bi =
⎛
⎝
Ngen
i

N reco
i

−
Ngen′

i

N reco′
i

⎞
⎠
N reco′

i (8.6)

=
⎛
⎝

1

Cγ∗i
− 1

C ′

γ∗i

⎞
⎠
N reco′

i (8.7)

where, Ngen
i and N reco

i are the number of generated and reconstructed events as in equa-

tion 8.4. The primed variables, Ngen′

i , N reco′

i , and C ′

γ∗i are the values of Ngen
i ,N reco

i , and

Cγ∗i if perfectly represented nature. These are in principle unknown, as this is the reason

for making the measurement. The more accurately Cγ∗i describes C ′

γ∗i the smaller the

bias. The value of Ngen
i can differ from Ngen′

i due to the mis-modelling of the mass spec-

trum being wrong either through mis-modelling or due to processes in nature not being
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represented. The value of N reco
i can also wrong for the same reasons, as well as due to

mis-modelling of the detector response or of physical variables used in the event selection.

The use of bins wider than any smearing that occurs means that while Ngen
i and N reco

i can

be mis-modelled the ratio, Cγ∗i, will be approximately correct [100]. The effect of the bias

is to pull the unfolded cross section towards that of the generator used to calculate the Cγ∗

factors. The effect of this could be estimated by using different Monte Carlo generators

to calculate Cγ∗ , or by reweighting the existing Monte Carlo samples.

Although the effect of the bias was not estimated for this measurement, the unfolding

method was cross-checked with an iterative Bayesian unfolding technique [101] which was

found to give consistent results [1]. The iterative Bayesian unfolding technique, uses the

Bayes approach, using an iterative procedure to overcome the lack of a knowledge of a

prior distribution. It has been shown that the method does not bias the result [101]. The

approach is however much more involved, and it was felt that as the bin-by-bin unfolding

could be justified it was better to use the simpler option, using the Bayesian unfolding

as a cross check. The ratio of the unfolding factors from these two methods can be seen

in figure 8.3. The uncertainties on the ratio come from the bin-by-bin unfolding alone,

demonstrating that the uncertainty from the finite Monte Carlo statistics alone covers any

difference between the two unfolding methods.
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Figure 8.3: Figure showing the ratio of the unfolding factor as calculated by the bin-by-bin
and Bayesian methods. The uncertainties are from the bin-by-bin unfolding [1].

8.2 Uncertainties on the Cross Section

Uncertainties on the cross section measurement are considered for a number of sources.

Systematic uncertainties are obtained by calculating the fiducial differential mass cross

section using the standard Monte Carlo corrections as discussed in section 4.3, then varying

the corrections by the uncertainties associated with them. The difference between the

central value and the cross section value coming from the shifted uncertainty is given as

the cross section uncertainty. Figure 8.4 shows the percentage uncertainty on the fiducial

differential cross section from each of the sources considered, these are discussed in the

following section. The values for each source of systematic uncertainty is given in table 8.1.
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The total systematic uncertainty is obtained by adding the uncertainty from each source

in quadrature. This is also listed for each mass bin in table 8.2, along with the statistical

uncertainty for each bin.
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Figure 8.4: Percentage uncertainties on the cross section from a number of sources. The
luminosity error of 1.8% is not included in the total error.

8.2.1 Data Statistical Precision

The fractional uncertainty for each invariant mass bin, i, is calculated as

δstati =
√
Ni, (8.8)

where, as with equation 8.1, Ni is the number of data events in each bin. This gives an

uncertainty on the measured cross section that varies between 0.8% and 1.2%.

8.2.2 Efficiency Scale Factors

The scale factors applied to the Monte Carlo to correct the reconstruction, isolation and

trigger efficiencies all have uncertainties associated with them, as seen in section 4.3.2. The

cross section is calculated using the scale factor shifted up and down by its uncertainty.

As the amount of background is very small, these scale factor shifts mainly enter the cross

section through the Cγ∗ factor. The cross section uncertainty from each scale factor, δ, is

then taken as the largest shift away from the central value, such that

δ = max (σ0 − σ+, σ0 − σ−) , (8.9)

where σ0 is the central cross section and σ+ and σ− are the cross sections calculated with

the scale factor under consideration shifted up and down respectively. The isolation and

reconstruction efficiency correction scale factors have uncertainties coming from both sta-
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tistical and systematic sources. To get the total shifts from these, the uncertainty on

the cross section from each source was calculated and added in quadrature. The trigger

efficiency scale factor uncertainties have already had the statistical and systematic errors

added in quadrature, so only a single pair of shifted cross sections are calculated. It can

clearly be seen in figure 8.4 that the largest contribution to the systematic uncertainty

in the majority of mass bins comes from trigger efficiency scale factor uncertainty, δtrig,

varying from 2.4% down to 2.0% with increasing mass. The isolation efficiency scale factor

uncertainty, δiso, which varies from 3.0% down to 0.6% with increasing mass is the domi-

nant source of uncertainty in the first mass bin. The uncertainty from the reconstruction

efficiency scale factors, δreco, is both smaller and more constant, giving a 0.5% uncertainty

in all invariant mass bins.

8.2.3 Muon pT Smearing

The cross section uncertainty from smearing the Monte Carlo muon pT is obtained by

separately shifting the smearing to the muon spectrometer (MS) and inner detector (ID)

parts of the muon track by their respective uncertainties. The cross section is calculated

for each smearing and an uncertainty for that smearing type determined as the smearing

that causes the maximum shift away from the central cross section [76]. The uncertainty

from the MS and ID smearing are then added in quadrature, such that

δpT smear = max(σ0 − σms+
, σ0 − σms−

)⊕max(σ0 − σid+ , σ0 − σid− ). (8.10)

This produces small uncertainties on the measured cross section between 0.1% and 0.3%.

8.2.4 Muon Momentum Scaling

The uncertainty on the momentum scale correction was obtained by calculating the differ-

ential cross section with the scale correction turned off and taking the difference with the

central cross section [76]. This contributes a cross section uncertainty, δpT scale, varying

between 0.0% and 1.0%.

8.2.5 Luminosity

The official ATLAS luminosity uncertainty for the 2011 dataset is given as 1.8% [96]. As

is convention this uncertainty is not included in the total cross section uncertainty.

8.2.6 Monte Carlo Statistics

The statistical uncertainty on the cross section is solely from data. Statistical uncertainty

from the Monte Carlo, δMC , is treated as a systematic error, the uncertainty from the Cγ∗

factor shown in figure 8.1(b) is used for this purpose, producing cross section uncertainties

between 0.3% and 0.9%.
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8.2.7 Electroweak Backgrounds

The uncertainty from the production cross sections of the electroweak backgrounds are

also considered. These are the backgrounds from WW /WZ/ZZ diboson, ττ , tt̄ and

W → µν events. The total number of selected electroweak events is varied up and down

by the 5% production cross section uncertainty, as was done in [92]. The uncertainties

on the calculated Drell-Yan cross section, δe.w., is obtained with equation 8.9, giving an

uncertainty on the measured cross section that varies between 0.1% and 0.4%.

8.2.8 Multijet Estimation

The multijet background contribution is varied by the 20% uncertainty calculated in chap-

ter 6, the uncertainty on the cross section, δm.j., is then calculated with equation 8.9, which

gives a cross section uncertainty varying between 0.3% and 1.1% with decreasing invariant

mass.

8.2.9 Di-Muon pT Reweighting

The 2011 ATLAS tuned Pythia6 signal Monte Carlo samples do not model the Z/γ∗ pT
distribution well. This was evident in figure 7.4(a) where the poor agreement between data

and Monte Carlo could be seen. The effect of reweighting the di-muon pT distribution

of the signal Monte Carlo samples to a sample generated with POWHEG and hadronised

with Pythia8 was examined using the official BosonPtReweightingTool1. The difference

between the unweighted and reweighted cross section was considered as an additional

systematic uncertainty, δreweight, due to the modelling of the Monte Carlo. Figures 8.5(a),

8.5(b) and 8.5(c) show the di-muon pT , the di-muon invariant mass and the muon pT

spectra after pT reweighting has been applied.

The reweighting improves the agreement between the data and the Monte Carlo for

the di-muon pT and invariant mass spectra. However agreement between the data and

the Monte Carlo in the muon pT spectra is much worse, particularly at higher muon pT .

The effect of the pT reweighting on the measured differential fiducial cross section was also

examined. The uncertainty on the differential cross section is found to be between 0.0%

and 0.3%.

1From the egammaAnalysisUtils-00-03-59 package.
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Figure 8.5: Control plots after the pT reweighting has been applied to the signal Monte
Carlo samples. Figures (a) and (b) show the di-muon pT and invariant mass. Figure (c)

shows the pT of the muons.

8.2.10 Correlation of Uncertainties

Bin-to-bin correlations of the uncertainties have been considered, if a change to the source

of the uncertainty causes the values of the cross section to change in all bins then the un-

certainty is considered correlated. Table 8.1 shows the systematic uncertainties obtained;

δreco
cor and δiso

cor are the uncertainties on the cross section from varying the reconstruction

and isolation scale factors by the systematic uncertainty associated with them. The δreco
unc

and δiso
unc uncertainties are obtained from varying the scale factors by the statistical un-

certainty associated with them. The uncertainty from the trigger efficiency scale factors

is considered uncorrelated as the uncertainty on the scale factor is dominated by the sta-

tistical uncertainty. This information is important when combining this analysis with the
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electron channel as discussed in chapter 9.

Correlated Uncorrelated

Mµµ δreco
cor δiso

cor δm.j. δe.w. δpT scale δreweight δreco
unc δtrig δiso

unc δsmear δMC

[GeV] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]

26 − 31 0.5 2.6 -1.1 -0.1 -0.5 -0.2 0.2 2.4 1.4 0.2 0.8
31 − 36 0.5 2.1 -1.0 -0.1 -0.8 0.2 0.2 2.4 1.2 0.1 0.6
36 − 41 0.5 1.5 -0.8 -0.2 -1.0 0.0 0.2 2.4 0.9 0.1 0.7
41 − 46 0.5 1.1 -0.8 -0.3 -0.4 -0.3 0.2 2.4 0.7 0.2 0.8
46 − 51 0.5 0.9 -0.5 -0.4 -0.6 -0.1 0.2 2.3 0.5 0.3 0.8
51 − 56 0.5 0.7 -0.5 -0.4 -0.0 -0.2 0.2 2.2 0.5 0.2 0.9
56 − 61 0.5 0.6 -0.4 -0.4 -0.3 -0.2 0.2 2.1 0.4 0.2 0.8
61 − 66 0.5 0.5 -0.3 -0.3 0.9 -0.3 0.2 2.0 0.3 0.2 0.3

Table 8.1: Bin-by-bin breakdown of the systematic uncertainties. The luminosity
uncertainty (1.8%) is not included.

The signs assigned to the correlated uncertainties are assigned consistently by the elec-

tron and muon channels. This is important for the combination of the two measurements

in PDF fits. The δm.j. and δe.w. uncertainties are negative as an increase in the cross sec-

tion of these backgrounds would cause the calculated Drell-Yan cross section to decrease.

The δreco
cor and δiso

cor which are calculated via the scale factors are positive, as an increase

in the efficiency of the Monte Carlo would cause a decrease in the scale factor which in

turn would lead to an increase in the calculated Drell-Yan cross section. The δpT scale has

the sign assigned according to whether turning the pT scaling off causes the calculated

Drell-Yan cross section to increase or decrease. A similar approach is taken to assigning a

sign to δreweight, where the effect of turning the reweighting on is considered.

All of the systematic uncertainties are considered either fully correlated or fully uncor-

related. This approach was taken as reasonable approximation. As mentioned above the

uncorrelated systematic uncertainties are taken as uncorrelated as they arise from mostly

statistical fluctuations either in data, or Monte Carlo or in the scale factor estimates.

All other systematic uncertainties are considered to be 100% correlated bin-to-bin. This

assumes for example, that the multijet and electroweak background estimates only differs

from the true background in normalisation. Whereas the reconstruction, isolation and

muon pT scale uncertainties are defined to be coherent shifts of the efficiency (or scale)

and must be taken to be 100% correlated.

8.3 Fiducial Differential Cross Section

The fiducial differential cross section was calculated as described in equation 8.1. The

born fiducial cross section is the main measurement of this analysis. Although it is only

measured in a restricted phase space defined by the fiducial cuts on the muons, all of

the uncertainty on the result is due to experimental errors. This is in contrast to the

extrapolated cross section discussed in section 8.4 which has large theoretical uncertainties

associated with it. It is therefore the fiducial cross section that is best compared to theory,

and it is the fiducial cross section that can be used in PDF fits. The cross section and

131



 [GeV]µµM

30 35 40 45 50 55 60 65

 [p
b/

G
eV

]
µµ

dM
fid σd

0

0.5

1

1.5

2

2.5

3

3.5

4

Born (stat)

Dressed (stat)

 syst)⊕Born (stat 

 syst)⊕Dressed (stat 

Figure 8.6: Fiducial differential cross section measured at the born and dressed levels.

statistical and systematic uncertainty for each invariant mass bin is shown in table 8.2. The

total uncertainty shown is the systematic and statistical uncertainties added in quadrature.

The measurement is dominated by the systematic uncertainties which vary between 4.1%

and 2.4% in increasing mass.

In addition to the born fiducial cross section, the dressed fiducial cross section has

also been measured. Here, corrections [1] calculated from generator level Monte Carlo are

applied to the born level cross section to consider FSR photons in a cone of ∆R = 0.1

around each muon, the four-vectors of which are then added to that of the muon. The

dressed cross section is of less interest for theory comparisons, but can be useful for Monte

Carlo tuning.

Mµµ N B Cγ∗ δstat δsyst δtotal dσ
dMµµ

dσdressed

dMµµ

[GeV] [%] [%] [%] [pb/GeV] [pb/GeV]

26-31 9809 675 0.59 1.0 4.1 4.2 1.89 ± 0.08 1.86 ± 0.08
31-36 15729 1053 0.57 0.8 3.8 3.8 3.14 ± 0.12 3.09 ± 0.12
36-41 13226 1005 0.59 0.9 3.4 3.5 2.55 ± 0.09 2.53 ± 0.09
41-46 10501 995 0.59 1.0 3.1 3.2 1.96 ± 0.06 1.98 ± 0.06
46-51 8762 831 0.65 1.1 2.9 3.1 1.49 ± 0.05 1.57 ± 0.05
51-56 7430 715 0.68 1.2 2.7 2.9 1.22 ± 0.04 1.37 ± 0.04
56-61 6657 597 0.74 1.2 2.5 2.8 1.00 ± 0.03 1.21 ± 0.03
61-66 6733 457 0.84 1.2 2.4 2.7 0.91 ± 0.02 1.18 ± 0.03

Table 8.2: Bin-by-bin breakdown of the nominal muon channel differential cross section

measurement, at born, dσ
dMµµ

, and dressed, dσdressed

dMµµ
, level as described in the text. Where

N , B, and Cγ∗ are defined as for equation 8.1. The statistical, δstat, systematic, δsyst,
and total, δtotal, uncertainties on the cross section are shown. The luminosity

uncertainty (1.8%) is not included.

Figure 8.6 shows both the born and dressed fiducial differential cross sections. It is

clear that the dressed corrections have a larger effect at higher mass, this is due to the

migration of events which radiate photons, moving towards lower reconstructed masses

away from the Z resonance.
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8.3.1 Comparison to Theory

The born fiducial differential cross section obtained is compared to three theoretical pre-

dictions. All three sets of predicted cross sections and uncertainties, shown in table 8.3,

were calculated by the ATLAS low mass Drell-Yan group [1]. Two of these sets are pro-

duced using FEWZ, one at NLO in αs, and one at NNLO in αs. The third comparison is

made with POWHEG which is a NLO Monte Carlo generator that also includes leading-log

parton showers (LLPS) matched to the NLO result. The table shows the uncertainties

from scale and PDF variations.

POWHEG NLO FEWZ NNLO FEWZ

Mll
dσ
dMll

δpdf δscale dσ
dMll

δpdf δscale dσ
dMll

δpdf δscale

[GeV] [pb/GeV] [%] [%] [pb/GeV] [%] [%] [pb/GeV] [%] [%]

26 − 31 1.80 2.5 +7.3
−11.4 2.22 2.7 +4.9

−7.9 1.93 +3.5
−2.6 5.7

31 − 36 3.12 2.4 +5.3
−10.0 3.49 2.7 +4.7

−6.3 2.99 +3.2
−2.5 4.5

36 − 41 2.64 2.3 +4.6
−8.8 2.68 2.6 +4.1

−5.0 2.52 +3.1
−2.4 2.3

41 − 46 2.03 2.2 +3.5
−7.5 1.99 2.6 +3.6

−4.2 1.94 +3.1
−2.3 2.1

46 − 51 1.54 1.9 +3.7
−6.1 1.51 2.5 +3.2

−3.5 1.47 +3.0
−2.2 1.7

51 − 56 1.19 2.4 +4.5
−5.1 1.17 2.4 +2.8

−2.9 1.15 +2.9
−2.2 1.3

56 − 61 1.00 2.4 +2.3
−4.7 0.96 2.4 +2.6

−2.6 0.96 +2.9
−2.1 1.3

61 − 66 0.90 2.1 +2.0
−4.5 0.87 2.3 +2.3

−2.3 0.86 +2.8
−2.1 1.2

Table 8.3: Theoretical predictions at NLO, NLO+LLPS and NNLO including the NLO
EW and photon induced corrections described in table 8.4. The scale uncertainty, δscale,

is defined as the envelope of variations for 0.5 ≤ µR, µF ≤ 2 with the constraint that
0.5 ≤ µR/µF ≤ 2 for POWHEG. For FEWZ the scale uncertainty is defined by the variation

0.5 ≤ µR = µF ≤ 2. The PDF uncertainty is defined in section 8.3.1.2 [1]

8.3.1.1 Scale Variations

The uncertainties from the renormalisation, µR, and factorisation, µF , scales were esti-

mated for all three theoretical predictions. Due to the extensive computing requirements of

FEWZ the FEWZ and POWHEG samples have different definitions of the scale uncertainty. For

POWHEG the uncertainty is defined by the envelope of 0.5 ≤ µR, µF ≤ 2 with the constraint

that 0.5 ≤ µR/µF ≤ 2, whereas for the FEWZ predictions it is defined as 0.5 ≤ µR = µF ≤ 2.

As the two scales can be varied independently in POWHEG it would be expected to have

larger scale uncertainties than the FEWZ prediction and this is shown in table 8.3. It can

also be seen that these scale uncertainties for POWHEG are generally much larger than the

PDF uncertainty. This can also be seen to a lesser extent for the NLO FEWZ predictions

at lower masses. This is understood as being due to the fact that the region Mµµ ∼ 2pµT
cannot be populated fully. The move to NNLO FEWZ significantly reduces this theoretical

uncertainty.
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8.3.1.2 PDF Variations

All three theoretical predictions were produced using the appropriate MSTW2008 PDF

set, the 68% CL uncertainty was calculated for each of these using the eigenvector error

sets discussed in chapter 2. The uncertainty on the fiducial cross section, δpdf , for each

bin, i, is defined [18] for the symmetric uncertainties as

δpdfi = 1

2

¿
ÁÁÀ

n

∑
k=1

[σi(S+k ) − σi(S−k )]
2
, (8.11)

where σi(S+k ) and σi(S−k ) are the cross sections calculated with the positive, S+k , or negative

S−k PDF error from the kth eigenvector pair. The asymmetric uncertainties are calculated

as in equations 2.56 and 2.57.

8.3.1.3 Electroweak and Photon Induced Corrections

All three theoretical predictions have NLO in α electroweak corrections, ∆HOEW , ap-

plied that consider initial and final state radiation and the interference between the two,

calculated in FEWZ using the Gµ electroweak scheme (a parameterisation scheme which

parameterises the electroweak theory in terms of Gµ, α and MZ [102]). These corrections

to the cross section vary between 1.10% and 4.09% with increasing mass. An uncertainty,

δscheme is associated with these corrections, quantifying the difference between using the

Gµ and the on-mass-shell electroweak schemes [2].

(a) (b)

Figure 8.7: Photon-photon processes producing a di-lepton pair.

All three predictions also have photon induced corrections, ∆PI , applied, these cor-

rections consider photon-photon interactions within the proton that produce a muon-

antimuon pair as shown in figure 8.7. These are calculated using the LO MRST2004QED

PDF set [36] which includes the photon distribution in the PDF, an uncertainty, δPI , of

about 36% is applied to this which was calculated with equation 8.11. This correction

increases the theoretical predictions by up to 2.2% in the higher mass bins.

Both sets of corrections can seen in table 8.4, the electroweak corrections are multi-

plicative and the photon induced corrections are additive.

8.3.2 Conclusion

Figure 8.8 shows the comparison of the measured fiducial differential cross section with

the NLO predictions. It can be seen that POWHEG with its additional LLPS describes the

data more accurately in the lower invariant mass bins than the NLO FEWZ prediction.
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Mµµ [GeV] ∆HOEW [%] ∆PI [pb/GeV] δPI [%] δscheme [%]

26 − 31 1.10 0.005 36.0 4.6
31 − 36 3.10 0.051 35.9 1.5
36 − 41 3.92 0.053 35.7 0.8
41 − 46 4.25 0.045 35.6 0.5
46 − 51 4.46 0.036 35.6 0.4
51 − 56 4.43 0.029 35.7 0.4
56 − 61 4.47 0.023 35.8 0.3
61 − 66 4.09 0.019 35.9 0.4

Table 8.4: Higher order EW corrections; ∆HOEW , the missing electroweak contribution,
∆PI , the Photon Induced correction, δPI , the uncertainty in the photon induced piece,
and δscheme, the uncertainty due to the non-convergence of calculations derived with

different electroweak scheme. [1]

Figure 8.9 shows the comparison of the data to the NNLO FEWZ prediction. It can be

seen that this also describes the data well. As such it is clear that a move beyond NLO

is needed to describe the data. This statement can be made stronger by combining the

results with the electron channel as dicussed in chapter 9.
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Figure 8.8: Measured differential cross section compared to NLO theoretical predictions.
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Figure 8.9: Measured differential cross section compared to NNLO theoretical predictions.

8.4 Extrapolated Differential Cross Section

The differential fiducial cross section is constrained by the ATLAS detector with the detec-

tor geometry imposing the ∣η∣ range and trigger menu imposing the pT cuts. Extrapolation

to the full 4π and muon pT > 0 phase space removes these constraints but is heavily reliant

on Monte Carlo. The extrapolated cross section is presented to allow comparison with

calculations that don’t apply lepton cuts. The extrapolation to the total phase space is

done with the acceptance factor, A, which can be defined for each bin, i, as

Ai =
σfid
i

σtot
i

, (8.12)

where σfid
i , is the fiducial cross section, after the born level truth selection has been ap-

plied, and σtot
i is the cross section in the full phase space. These acceptances factors

were determined by the ATLAS low mass Drell-Yan group using NNLO FEWZ with the

MSTW2008nnlo PDF set. The acceptance factor for each bin is shown in table 8.5 along

with the PDF and scale uncertainties, which are calculated as described in section 8.3.1.

The acceptance factors are applied to each bin, i, of the fiducial cross sections such

that

(dσ
tot

Mµµ
)
i

= (dσ
fid

Mµµ
)
i

⋅ 1

Ai
, (8.13)

where (dσtot

Mµµ
)
i

and (dσfid

Mµµ
)
i

are the total cross section and fiducial cross section respectively

in each mass bin. The corrections to the full phase space are large, varying between a
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Mµµ [GeV] A δscale
A [%] δpdf+αs

A [%]

26 − 31 0.069 −4.3
+4.7

−2.0
+1.4

31 − 36 0.194 −3.3
+3.7

−1.6
+1.1

36 − 41 0.270 −1.1
+1.6

−1.4
+0.9

41 − 46 0.321 −1.1
+1.5

−1.2
+0.8

46 − 51 0.356 −0.8
+1.2

−1.0
+0.7

51 − 56 0.381 −0.4
+0.8

−1.0
+0.6

56 − 61 0.406 −0.6
+0.9

−0.9
+0.6

61 − 66 0.427 −0.5
+0.8

−0.8
+0.5

Table 8.5: The acceptance A and associated systematic uncertainties from scale
variations and PDF+αs uncertainties. The MSTW2008nnlo PDFs are used and the

calculation is performed using NNLO FEWZ.

factor of 2.34 and 14.49 with decreasing invariant mass. The extrapolated differential

cross section can be seen in figure 8.10. It can clearly be seen that the uncertainties at

lower invariant mass have greatly increased compared to the fiducial cross section, these

are dominated by the scale uncertainty on the acceptance factor. This is again due to the

inability of the theoretical prediction to describe the Mµµ ∼ 2pµT region due to the use of

a fixed order calculation and highlights an area for theoretical improvement.
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Figure 8.10: Extrapolated differential cross section.

8.5 Comparison to Other Experimental Results

The conclusions of this analysis are consistent with low mass Drell-Yan measurements

made by the CMS [103] and LHCb [104] collaborations.

The CMS measurement was made using 36 pb−1 of 2010 collision data. The differential

mass cross section was measured in an invariant mass range of 15 <Mll < 600 GeV. Both
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the muon and electron channels are used and normalised to the cross section measured at

the Z resonance (60 < Mll < 120 GeV). The differential cross section over the full mass

range is shown in figure 8.11.
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Figure 8.11: The CMS differential mass cross section normalised the the Z resonance
region [103]. The vertical error bars indicate the experimental (statistical and systematic)
uncertainties summed in quadrature with the theory uncertainties. Horizontal error bars

indicate the bin width, with the position of each point being determined using bin centered
corrections [105]. The uncertainty on the NNLO FEWZ prediction is indicated by the

width of the curve.

For the muon channel, a kinematic region is defined where the triggered muon (a single

muon trigger is used) is required to have ptrigT > 16 GeV and ∣ηtrig ∣ < 2.1, with the other

muon required to have pT > 7 GeV and ∣η∣ < 2.4. The measurement also applies a restriction

on the opening angle between the two muons, requiring that it differ from π by more than

5 mrad. This selects events where the dilepton system has been boosted, selecting higher

order events where a gluon has been radiated from one of the colliding quarks, As such

the measurement also concludes that NNLO theoretical predictions are needed to describe

the cross section distribution for Mll < 30 GeV. The normalisation to the Z resonance

region allows the measurement to be independent of the luminosity uncertainty and to

reduce many of the systematic uncertainties. The uncertainties on the fiducial ratio, (at

the Born level) vary between 4.5% and 8.7% in the mass range 20 <Mll < 60 GeV which

largely corresponds to the mass range considered in this thesis.

The LHCb result uses the muon channel in the acceptance of 2.0 < η < 4.5 to measure

the differential mass cross section in a mass range of 5 < Mµµ < 120 GeV as shown in

figure 8.12. The cross section is also measured as a function of the rapidity of the muon

pair in two mass regions.

Again, the measurement uses 2010 data, with a dataset of 37 pb−1. Kinematic cuts

require that both the muons have a momentum greater than 10 GeV and pT > 3 GeV (or
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Figure 8.12: The LHCb differential mass cross section [104]. A comparison to Pythia,
NLO FEWZ, and NLO DYNNLO is made. The points for the theoretical predictions are

offset for clarity. The shaded vertical band indicates the Υ mass region which was
excluded from the measurement. The two bins with Mµµ > 40 GeV require pµT > 15 GeV.

The good agreement with the NLO predictions can clearly be seen in the ratio plot.

pT > 15 GeV for Mµµ > 40 GeV). The differential mass cross section achieves uncertainties

between 12.13% and 16.41% in the mass range of 20 < Mµµ < 60 GeV. The result is

compared to NLO theoretical predictions from FEWZ and DYNNLO where good agreement

is seen across the full mass range (apart from the lowest, 5 < Mµµ < 7.5 GeV, mass bin

where no theoretical prediction can be obtained from FEWZ or DYNNLO). The LHCb analysis

achieves a good agreement with an NLO calculation, whereas the analysis presented here

and the one by CMS need an NNLO calculation to describe the data because of the choice

of kinematic cuts. As discussed, the need to move beyond an NLO calculation is due to the

region of phase space Mll ∼ 2plT not being properly populated. As the LHCb measurement

has a selection with Mµµ ∼ pµT this problem is avoided.
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Chapter 9

Combination and QCD Fits

The work presented in this thesis forms part of a paper that is, at the time of writing,

undergoing internal ATLAS approval [1]. The analysis presented in the paper consists

of three analysis strands. Firstly, the nominal muon channel, the majority of which is

presented in this thesis. A corresponding, nominal electron channel measurement is also

measured in the same fiducial region. The final strand is referred to as the extended muon

channel. The extended channel [106] is measured in a fiducial region of p
µ1,2

T > 9,6 GeV,

∣ηµ1,2 ∣ < 2.4 in a invariant mass range of 12 < Mµµ < 66 GeV. It uses 36 pb−1 of data

collected in 2010, taking advantage of the small amount of pileup and the lower trigger

thresholds from that year. A short summary of the results from the three strands is given

here in order to place the measurement presented in this thesis in more context.

9.1 Combination of Nominal Muon and Electron Channels

The two nominal channels are combined using a method [107, 108] developed for the

HERA experiments, it has also been used in a number of other ATLAS Standard Model

measurements, such as [92, 109]. An average value for the fiducial cross section, mi, is

determined in each mass bin, by minimising the χ2, which is defined as

χ2 =∑
k,i

[mi − (µik +∑j γij,kmibj)]
2

(δistat,k)
2
µik (mi −∑j γij,kmibj) + (δiunc,kmi)

2
+∑

j

b2j , (9.1)

where i, j and k run over bins, correlated systematic error sources and channels respec-

tively. The measured cross section of bin i in channel k is given by µik. The relative

correlated systematic, relative statistical and relative uncorrelated systematic uncertain-

ties are given by γij,k δ
i
stat,k and δiunc,k respectively. The correlated systematic sources, j,

are allowed to shift by bj which is expressed as a fraction of the standard deviation. These

shifts incur a χ2 penalty of b2j , meaning deviations of mi from µik are minimised. Figure

9.1 shows the nominal electron and muon channels and the combined differential cross

section, which is in good agreement with a total χ2/NDF = 5.4/8. No systematic error

sources caused a shift of more than one standard deviation. The values for the combined

cross sections, along with the associated uncertainties are given in table 9.1. It can be

seen in figure 9.1 that the uncertainties on the muon channel are smaller than the elec-
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tron channel. This means that the muon channel results will be given more weight in the

combination.
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Figure 9.1: Fiducial differential cross section plot showing the nominal electron and
muon channels along with the combined cross section [1].

The measured fiducial differential cross section for the combined analysis and the ex-

tended analysis are shown in figures 9.2 and 9.3, all plots compare data to theoretical

predictions which have had NLO electroweak and photon induced corrections applied.

The theoretical comparisons for the nominal analysis were discussed in section 8.3.1. Ta-

bles detailing the values and corrections for the extended muon analysis are given in

appendix B.

It can be seen that all three theoretical predictions are largely in good agreement

with the data at higher masses, but in the low mass bins, particularly in the extended

analysis, the NLO FEWZ prediction doesn’t describe the data well. As with the nominal

muon channel alone, as discussed in section 8.3, the addition of the LLPS with the POWHEG

prediction does a much better job of describing the data. Unlike with the nominal muon

channel alone, however it can be seen that the move to full NNLO shows an even greater

improvement in describing the data. This can be seen more quantitatively in table 9.2

which shows the χ2 value comparing the data to each of the three theory predictions,

where the χ2 definition [110] takes into account the correlated systematic uncertainties.

This the same χ2 function shown in equation 9.7 where it is used in a PDF fit to the data.

It is discussed further in appendix C.
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Figure 9.2: Fiducial differential cross section at the born level for the combined electron
and muon nominal analyses in (a) and the 2010 extended muon analysis in (b). Both
plots compare data to theoretical predictions from NLO FEWZ and NLO+LLPS POWHEG,

both of which have NLO electroweak and photon induced corrections applied [1].
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Figure 9.3: Fiducial differential cross section at the born level for the combined electron
and muon nominal analyses in (a) and the 2010 extended muon analysis in (b). Both

plots compare data to theoretical predictions from NNLO FEWZ which has NLO
electroweak and photon induced corrections applied [1].
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9.2 Comparison of Nominal and Extended Analyses

The nominal and extended analyses have not been combined due to the difference in bin-

ning. However the differential cross sections extrapolated to the full phase-space. The

nominal channel uses the same NNLO acceptance factors shown in table 8.5. The accep-

tance factors of the extended channel are shown in appendix B. The two extrapolated

cross sections are compared in figure 9.4 where the good agreement between them can be

seen by eye.
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Figure 9.4: Comparison of the nominal and extended measurements extrapolated
differential cross sections [1].

9.3 QCD Fits

The theoretical predictions discussed so far use a fixed PDF. In order to investigate further

the improvement in the theoretical description when moving to NNLO, a QCD analysis of

the data is performed. It is also interesting to see the impact of the Drell-Yan measurement

on a PDF fit, as an improvement of the PDFs (when used in conjunction with Z resonance

measurements) was the main motivation for the measurement.

The PDFs are fitted to deep inelastic scattering data from HERA [111] and the nom-

inal and extended Drell-Yan analyses. The QCD fit is performed using the HERAFitter

framework [111, 112] at NLO and at NNLO using NNLO k-factors from FEWZ. The PDFs

are parameterised using functional forms as used in [113]. Terms are added in the poly-

nomial term of the PDFs only when required by the data, as described in [111]. The most
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appropriate functional forms are found to be:

xuv(x) = Auvx
Buv (1 − x)Cuv (1 +Euvx2) (9.2)

xdv(x) = Advx
Bdv (1 − x)Csv (9.3)

xŪ(x) = AŪx
BŪ (1 − x)CŪ (9.4)

xD̄(x) = AD̄x
BD̄(1 − x)CD̄ (9.5)

xg(x) = Agx
Bg(1 − x)Cg −A′

gx
B′g(1 − x)C′g . (9.6)

The normalisation parameters of the valence quarks, Auv and Buv are fixed using the

quark-counting sum rules. While the momentum sum rule is used to fix the normalisation

parameter for the gluon density, Ag. Both of these rules were explained in chapter 2. An

extra term for the valence density (Euv) is added, as it significantly improves the quality

of the fit both for the NLO and NNLO fits. The strange sea density is taken as the

fraction of the d sea density, xs̄ = rsd̄, with rs fixed to 1 as suggested in a recent ATLAS

measurement of the strange quark density [113]. The xū and xd̄ sea quark densities are

required to be equal for x→ 1, this condition imposes additional constraints on the xŪ = xū
and xD̄ = xd̄ + xs̄ B-coefficients (they are set equal), and normalization parameters. The

gluon density uses a form used in MSTW analyses, with C ′

g = 25. The value of the C ′

g

parameter ensures that the additional term only contributes at low x. With all these

constraints applied, both the NLO and NNLO fits have 13 free parameters to describe the

parton densities.

As discussed in chapter 2, PDF fits are carried out by minimising a χ2 function. In the

QCD fit by the ATLAS Drell-Yan analysis team presented here, the χ2 function used by

the HERAPDF group is used. This allows both the bin-to-bin correlated and uncorrelated

uncertainties to be taken into account. The function takes the form of

χ2 =∑
i

[µi −mi (1 −∑j γijbj)]
2

δ2
i,uncm

2
i + δ2

i,statµimi (1 −∑j γijbj)
+∑

j

b2j +∑
i

ln
δ2
i,uncm

2
i + δ2

i,statµimi

δ2
i,uncµ

2
i + δ2

i,statµ
2
i

, (9.7)

where mi is the theoretical prediction and µi is the measured cross section at point i,

(Q2, x, s) with the relative statistical and uncorrelated systematic uncertainty δi,stat, δi,unc,

respectively. γij denotes the relative correlated systematic uncertainties and bj their shifts

with a penalty term ∑jb2j added. In order to protect from a bias introduced by statistical

fluctuations, the expected rather than the observed number of events are used, with the

corresponding errors scaled accordingly. This scaling of errors introduces a ln term, coming

from the likelihood transition to χ2. Neglecting the ln term gives very similar results and

does not alter any of the conclusions. This is the same definition of the χ2 function used to

describe the agreement between the data and theoretical predictions presented in table 9.2

and is discussed in more detail in appendix C.

The NLO and NNLO QCD fits using only HERA data yield acceptable fits. When the

Drell-Yan measurements are added the NLO fit also has an acceptable overall χ2 of 479.66

for 551 degrees of freedom, but the fit for the Drell-Yan data is poor as seen in table 9.2.

Variations of the predictions by the scale uncertainty do not significantly improve the
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description. However, the QCD analysis performed at NNLO gives an acceptable total fit

with a χ2 value of 613.91 for 551 measurements, while also achieving a good fit from the

Drell-Yan data as seen in table 9.2. The QCD analysis further emphasises the need to

move to NNLO theoretical predictions in order to describe the data.

Prediction χ2 (8 pnts) χ2 (6 pnts)
Nominal Extended

POWHEG NLO+LLPS 8.81 21.80
FEWZ NLO 22.97 133.79
FEWZ NNLO 9.86 6.43
QCD Fit NLO 18.97 113.02
QCD Fit NNLO 4.20 6.97

Table 9.2: χ2 values of the ATLAS nominal and extended DY cross section
measurements for predictions from FEWZ at NLO and NNLO and POWHEG using

MSTW2008 PDFs accounting properly for the correlated systematic uncertainties. The
QCD fit values are the partial χ2 in the QCD fit in which the nominal and extended

measurements are fitted with the HERA-I data [1].

The uncertainties obtained from the PDF fits were evaluated using the Hessian method

(see chapter 2) with a tolerance criteria of ∆χ2 = 1. Although only experimental uncer-

tainties are shown in the plots below, a number of fit uncertainties were also examined.

The effect of model uncertainties was considered by varying theoretical inputs such as the

mass of the b and c quarks, or the initial scale at which the PDFs are parameterised.

Parametrisation uncertainties are also included. These are evaluated by adding additional

terms into the functional forms shown in equations 9.2-9.6 and the impact on the cen-

tral PDF value examined. Finally, theoretical uncertainties are evaluated by varying the

factorisation and renormalisation scales.

Figure 9.5 shows the valance quark densities obtained from the NNLO fit. A compari-

son is made to the reference fit to the HERA data alone. Figure 9.5 shows the same for the

sea quark densities. The effect of the inclusion of the low mass Drell-Yan data can be seen

more clearly in figure 9.7 where the relative uncertainties are plotted. The uncertainties

on the valance quark uncertainties shown in figure 9.7(a) clearly show an improvement in

xuv uncertainties at 0.001 ≲ x ≲ 0.01. While improvement in xdv uncertainties is seen at

0.03 ≲ x ≲ 0.4. For the sea quark distributions shown in figure 9.7(b), the impact is much

smaller. Both the xū and xd̄ densities see a small improvement both at lower x as well as

at larger x. The greater improvement in the valance quark densities is due to the HERA

data constraining these densities less well than the sea quark densities in the x range of

this measurement. This was discussed in section 2.3.4. Although the improvements seen

here are small, when used in a fit together with the Z resonance measurement the low

mass Drell-Yan measurements will allow ATLAS data to disentangle the u-type and d-type

quark densities as discussed in chapter 2.
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Figure 9.5: Valance quark densities as a function of x for Q2 = 1.9 GeV. The outer light
shaded area indicates a fit to the HERA data only. The inner dark shaded band shows a

fit to the HERA and ATLAS data. Only experimental uncertainties are shown [1].
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(a) xū distribution

(b) xd̄ distribution

Figure 9.6: Sea quark densities as a function of x for Q2 = 1.9 GeV. The outer light
shaded area indicates a fit to the HERA data only. The inner dark shaded band shows a

fit to the HERA and ATLAS data. Only experimental uncertainties are shown [1].
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(a) uv (top) and dv (bottom)

(b) ū (top) and d̄ (bottom)

Figure 9.7: Relative uncertainties for valence and sea quark densities as a function of x
for Q2 = 1.9 GeV. The outer pink shaded area is from a fit only to HERA data. The

inner green band shows the fit to HERA and the ATLAS low mass Drell-Yan data. Only
experimental uncertainties are shown [1].
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Chapter 10

Conclusions

The analysis presented in this thesis measures the differential mass cross section of the

Drell-Yan process in a mass range of 26 < Mµµ < 66 GeV. The backgrounds have been

shown to be well understood and good agreement is seen between the data and Monte

Carlo in the control plots. The differential cross section itself is compared to three dif-

ferent theoretical predictions and demonstrates that pure NLO calculations are unable to

accurately describe the data at low invariant mass.

The relevant theoretical topics are covered in chapter 2 where the PDFs are briefly

explained, describing how they are determined from fits to experimental results. The

potential impact of a low mass Drell-Yan measurement is also explained. The design of

the ATLAS experiment is described in chapter 3 where particular emphasis is given to the

sub-detectors responsible for making a measurement of low pT muons.

Chapter 4 describes the data sample and choice of Monte Carlo samples and correc-

tions, along with a discussion of the selection cuts for the analysis. It is shown that they

select a constant yield across the data taking period.

Chapter 5 covers the determination of the scale factors to correct the isolation efficiency

in the Monte Carlo to match that of the data. A tag and probe method using a sample of

Z → µ+µ− resonance events allowed scale factors as a function of muon pT to be obtained.

Systematic uncertainties on these scale factors were estimated from varying the sample

selection cuts. Over the majority of the pT spectrum the total uncertainty (statistical and

systematic) was less than 0.2%, but becomes much larger in the two lowest bins of the

pT spectrum. This leads to the isolation uncertainty being the largest uncertainty on the

fiducial differential cross section in the 26 <Mµµ < 31 GeV invariant mass bin with a 3.0%

uncertainty.

Chapter 6 considers an estimate of the background from multijet events. This is

potentially a large background, particularly at lower invariant mass which needs to be

controlled and estimated well. Three methods of estimating the multijet contribution are

considered. The first using a Monte Carlo sample of heavy flavoured (cc̄ and bb̄) decays

that has been normalised to the non-isolated region. This approach allows the isolation

spectra of the muons to be described well by the Monte Carlo for the more isolated muons,

but is it clear from considering the non-isolated mass spectrum that the shape of the data

is not reproduced well by the Monte Carlo, leading to a 30% uncertainty being assigned

to this method. A second approach that uses templates from data and Monte Carlo to
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describe the multijet background is considered. This uses same sign di-muon data events

as a proxy for the light flavoured opposite sign contribution to the multijet background.

This, along with a template for the heavy flavoured contribution from Monte Carlo are

included in a template fit, which determines the normalisation factors needed for the two

templates to best describe the data. This method gives an excellent description of the

entire isolation spectrum for the muons and gives a much better description of the non-

isolated mass spectrum. An uncertainty of 20% is assigned to the estimate due to the

non-isolated mass spectrum not being perfectly described. A third method that is far

more data driven is also considered, which couldn’t be fully used due to low statistics and

poor modelling of the d0 significance in the Monte Carlo, but which did allow a cross check

of the template fit method to be made.

Once an estimate of the multijet background has been made and all the necessary

corrections to the Monte Carlo samples determined, a comparison of the data and the

Monte Carlo can be made. This is done after all the analysis cuts are applied. This

is shown in chapter 7, where control plots demonstrate good agreement of the data and

Monte Carlo. This gives confidence that the backgrounds are properly controlled and that

a bin-by-bin unfolding technique for the cross section is appropriate.

Chapter 8 discusses the determination of the differential mass cross section. The

unfolding of the cross section to correct for detector resolution is described and the different

sources of uncertainty on the cross section are discussed. The total uncertainty decreases

from 4.2% in the lowest mass bin to 2.7% in the highest mass bin. The dominant systematic

uncertainty comes from the trigger efficiency scale factors. Apart from in the first mass bin

where the uncertainty from the isolation efficiency scale factor is dominant. The fiducial

differential cross section is compared to theoretical predictions from POWHEG and NLO and

NNLO FEWZ. It is demonstrated that the NLO FEWZ prediction does not predict the cross

section well, and the parton showers included in the POWHEG prediction or the full move

to NNLO in pQCD is needed. This is due to the pT cuts on the muons combining with

the invariant mass cut on the muon pair to restrict the phase space in such a way that

the NLO corrections are not sufficient. The issue with the need to move beyond NLO

to describe the measurement, while of interest is in many ways a technical issue of the

calculations in the phase space studied. The fact that once NNLO is used the data is

described well demonstrates the accuracy of Standard Model predictions. This is seen

both in the comparison of the cross section with the NNLO theoretical predictions, and

by the Monte Carlo comparisons seen in chapter 7 (where NNLO k-factors are applied).

Chapter 8 also shows the cross section extrapolated to the full phase space, giving a result

that has large theoretical uncertainties which are dominated by the scale uncertainties.

The conclusions of this analysis are consistent with low mass Drell-Yan measurements

made by the CMS and LHCb collaborations.

Chapter 9 puts the analysis described in the previous chapters in the context of the

ATLAS low mass Drell-Yan analysis [1]. The muon analysis described is combined with

an electron channel measurement. The results from a muon analysis that uses 2010 data

to measure the differential mass cross section at lower invariant mass and muon pT are

also shown. Together they further demonstrates the need to move beyond pure NLO
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calculations. Also discussed in chapter 9 is the QCD fit carried out by the ATLAS low

mass Drell-Yan team. The fit using the ATLAS low mass Drell-Yan data and the HERA-I

data demonstrates further the need to move to NNLO in pQCD to describe the data.

Also shown is the impact that the measurement has had on the PDFs in relation to the

HERA-I data alone. This is shown at the initial parameterisation scale of Q2 = 1.9 GeV.

The relative uncertainty on u valence density is seen to improve in a range of 0.001 ≲
x ≲ 0.01. An even greater improvement is seen in the relative uncertainty of d valence

density in the 0.03 ≲ x ≲ 0.4 range, with the sea quark densities uncertainties also seeing

some improvement. All four densities shown also seen a small change in the central

value. Although the improvements seen are small, when used together with the ATLAS Z

resonance measurements the low mass Drell-Yan measurement will allow the u-type and

d-type quark densities to be disentangled by ATLAS data.

An obvious improvement to this measurement would be to reduce impact of the trigger

scale factor uncertainties. An attempt to do this by propagating the uncorrelated compo-

nent through to the measured cross section using toy Monte Carlo will be included in the

published ATLAS paper [1]. A reduction in the muon channel uncertainty will allow it to

be given even more weight in the combination with the electron channel. It will also lead

to smaller combined uncertainties which will lead to greater impact when included into a

PDF fit with the HERA-I data. The next largest uncertainty in most bins of the mea-

sured differential cross section is from the isolation efficiency scale factors. The systematic

uncertainty on these could be improved, as it possible that it currently over estimates the

uncertainties. The variation of the cuts chosen to investigate the systematics could be

better optimised. An issue with the current method of simply varying cuts is that it will

give a systematic uncertainty even for a perfectly pure Z → µ+µ− sample. As such a better

approach to obtaining the systematic uncertainty could be investigated.

To further improve the impact of the measurement presented in this thesis a number

of extensions could be made. Most obviously a measurement at lower invariant mass

and muon pT would allow the phase space to be increased. Consideration of cuts of

Mµµ ∼ 2pµT producing problems with the theoretical calculations would also be taken

into account as, although this is purely a theoretical problem, it does mean that the

measurement presented here will not be able to be included in NLO PDF fits. As discussed

in section 2.2.4 the change inQ2 of the PDFs is very well described theoretically by DGLAP

evolution, but x dependence of the PDFs is determined by the fits to data. To contribute

to constraining the x dependence of the PDFs a measurement of the Drell-Yan differential

rapidity cross section would be useful. Using the full 2011 ATLAS dataset a measurement

of the double differential cross section in Mµµ and yµµ would most likely be possible with

sufficient statistical precision and would compliment the measurement made by LHCb.

Finally, a measurement of the Drell-Yan process at
√
s = 14 TeV would allow a factor of

two improvement in the x reach. This would be a challenging measurement requiring a

dedicated suite of triggers and good background rejection in the high pileup environment.
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Appendix A

Muon Distributions

This appendix contains muon control plots in which both the leading and sub-leading

muons have been plotted together. These plots show better agreement between the data

and the Monte Carlo than was seen in chapter 7, particularly in the tail of the pT distri-

bution.
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Figure A.1: Leading and sub-leading muon φ control plot.
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Figure A.2: Leading and sub-leading muon η control plot.
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Figure A.3: Leading and sub-leading muon pT control plot.
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Appendix B

Extended Analysis Cross Sections

Tables for the extended muon analysis [106] discussed in chapter 9 are given here for

completeness. A description of each table is given in the captions. Discussion of the

variables presented can be found in chapters 8 and 9 where they are described for the

nominal electron and muon channels.

Mµµ
dσ

dMµµ
δstat δsyst δtotal D A δscale

A δ pdf+αs
A δtotal

A

[GeV] [pb/GeV] [%] [%] [%] [%] [%] [%]

12 − 17 12.29 4.2 12.6 13.3 1.00 0.04 −7.9
+7.5

−4.1
+2.7

−16.0
+15.5

17 − 22 22.28 3.1 12.3 12.7 0.98 0.17 −4.7
+4.1

−3.0
+2.0

−13.9
+13.5

22 − 28 14.59 3.3 9.5 10.0 0.98 0.30 −1.1
+0.7

−2.3
+1.6

−10.3
+10.2

28 − 36 6.72 4.0 7.4 8.4 0.99 0.35 −0.6
+0.02

−1.8
+1.2

−8.5
+8.4

46 − 66 1.27 4.7 5.2 7.0 1.16 0.43 −0.9
+0.5

−1.0
+0.6

−6.6
+6.4

Table B.1: The extended muon channel Born level fiducial differential cross section dσ
dMll

,

with breakdown of statistical δstat, systematic δsyst, and total δtotal uncertainties. Also
shown is the correction factor used to derive the dressed cross section (D), and the

extrapolation factor (A) used to derive the cross section for the full phase space, along
with the uncertainties associated to variations in scale δscaleA , and PDF uncertainty δpdfA .
The total uncertainty on an extrapolated cross section is shown as δtotalA . The luminosity

uncertainty (3.5%) is not included.

Correlated Uncorrelated

Mµµ δreco δtrig δiso δqcd δpT scale δres δMC

[GeV] [%] [%] [%] [%] [%] [%] [%]

12 − 17 2.5 4.0 6.6 -3.0 -0.2 0.5 0.6
17 − 22 1.4 3.7 6.6 -2.8 +0.1 0.3 0.3
22 − 28 0.9 3.6 5.5 -1.8 +0.0 0.1 0.4
28 − 36 0.7 3.6 4.5 -1.6 -0.1 0.2 0.4
36 − 46 0.7 3.6 3.3 -1.3 -0.1 0.1 0.5
46 − 66 0.6 3.6 1.9 -0.7 -0.0 0.1 0.5

Table B.2: Bin-by-bin breakdown of the systematic uncertainties for the extended muon
channel cross section measurement. The luminosity uncertainty (3.5%) is not included.
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POWHEG NLO FEWZ NNLO FEWZ

Mµµ
dσ

dMµµ
δpdf δscale dσ

dMµµ
δpdf δscale dσ

dMµµ
δpdf δscale

[GeV] [pb/GeV] [%] [%] [pb/GeV] [%] [%] [pb/GeV] [%] [%]

12 − 17 9.55 1.1 +11.9
−20.0 7.47 2.7 +10.7

−15.8 12.09 +3.7
−3.0 10.0

17 − 22 20.85 1.0 +8.0
−15.2 24.46 3.0 +10.1

−13.3 21.03 +3.7
−2.8 6.1

22 − 28 13.63 0.6 +5.3
−11.5 13.65 2.9 +6.2

−8.6 13.32 +3.4
−2.6 2.3

28 − 36 6.88 0.7 +6.1
−10.0 6.61 2.7 +5.0

−6.5 6.59 +3.3
−2.5 1.3

36 − 46 3.17 0.6 +3.9
−7.6 3.01 2.6 +4.0

−4.4 3.02 +3.1
−2.3 1.2

46 − 66 1.31 0.6 +2.9
−5.1 1.24 2.4 +2.8

−3.0 1.25 +2.9
−2.1 1.3

Table B.3: Theoretical predictions at NLO, NLO+LLPS, and NNLO including higher
order electroweak corrections, for the extended analysis. The scale uncertainty is defined

as the envelope of variations for 0.5 ≤ µR, µF ≤ 2 for POWHEG. For FEWZ the scale
uncertainty is defined by the variation 0.5 ≤ µR = µF ≤ 2.

Mll ∆HOEW ∆PI δPI δscheme

[GeV] [%] [pb/GeV] [%] [%]

12 − 17 0.37 0.0 36 5.4
17 − 22 1.58 0.19 36.7 3.2
22 − 28 3.04 0.24 36.2 0.9
28 − 36 3.77 0.15 35.8 0.5
36 − 46 4.38 0.085 35.6 0.3
46 − 66 4.64 0.037 35.6 0.2

Table B.4: Higher order EW corrections in the extended binning; ∆HOEW , the missing
electroweak contribution, ∆PI , the Photon Induced correction, δPI , the uncertainty in the

photon induced piece, and δscheme, the uncertainty due to the non-convergence of
calculations derived with different electroweak schema.
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Appendix C

Definitions of the χ2 Function

Throughout this thesis, a number of χ2 definitions have been given. In relation to PDF

fitting (equations 2.53 and 9.7) and used in the combination results (equation 9.1). A

χ2 value is also used to quantify the agreement (or lack thereof) between the measured

results and theoretical predictions (equation 9.7 again).

All three of these definitions are more complicated than what could be thought of as

the standard χ2 definition. This is due to the inclusion of systematic uncertainties. This

appendix explains the relation between the three definitions given in this thesis and the

more well known definition.

C.1 The χ2 Function

The χ2 function for a number of data points, i, is commonly defined [114] as,

χ2(t⃗) =∑
i

[di − ti(p⃗)]2

σ2
stat,i

, (C.1)

where di are the data points, ti(p⃗) the theoretical prediction (with parameters p⃗) and

σstat,i the statistical uncertainty on the data. When comparing data and theory, all the

variables are kept constant, and the value of χ2 simply evaluated. When a fit is being

performed, the value of ti is a free parameter in the fit, allowing some, or all of its p⃗

theoretical parameters to vary. The best fit is found for the values of ti(p⃗) that give the

minimum of the χ2 function. Minimisation of the χ2 function is often done iteratively

using minuit [115].

C.2 Including Systematic Uncertainties

To include systematic uncertainties that are uncorrelated between the points (σuncor) into

the χ2 definition, they are simply added in quadrature with the statistical uncertainties.

This leads to,

χ2(t⃗) =∑
i

[di − ti(p⃗)]2

σ2
stat,i + σ2

uncor,i

. (C.2)
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To include systematic uncertainties that are correlated between points (σcorr), the

numerator is adapted to include the correlated systematic uncertainty into ti(p⃗). Such that

ti(p⃗) → t′i(p⃗) = ti(p⃗) +∑j bjσcorr,i,j [114]. Where the sum is over the sources of correlated

systematic uncertainty (j). The value bj is introduced as a nuisance parameter. The

nuisance parameter can be thought of as due to the calibration of the experiment, leading

to a set of ‘measurements’ of bj = 0 ± 1 [31]. The values of the σcorr are given by σcorr,i =
γijti(p⃗) where γij are relative correlated uncertainties. Substituting into equation C.2

gives,

χ2(t⃗, b⃗) =∑
i

[di − ti(p⃗)(1 +∑j bjγij)]
2

σ2
stat,i + σ2

uncor,i

. (C.3)

However, as the nuisance parameter bj has now been added to the definition of the χ2 an

extra term is required to constrain the fitted values of bj . This leads to,

χ2(t⃗, b⃗) =∑
i

[di − ti(p⃗)(1 +∑j bjγij)]
2

σ2
stat,i + σ2

uncor,i

+∑
j

b2j . (C.4)

This is the definition of the χ2 function given in equation 2.53. Here, when used in a fit

both t⃗ and b⃗ are free parameters. When used to compare data and theoretical predictions

only b⃗ is free, and the χ2 value quoted to describe the agreement is χ2
min.

C.3 Relation to the Covariance Matrix Method

In the case of off diagonal uncertainties, the χ2 function is

χ2(t⃗, b⃗) =∑
ik

⎛
⎝
di − ti(p⃗)(1 +∑

j

bjγij)
⎞
⎠
V −1
ik

⎛
⎝
dk − tk(p⃗)(1 +∑

j

bjγkj)
⎞
⎠
+∑

j

b2. (C.5)

where the the correlation matrix Vik represents the statistical and uncorrelated systematic

uncertainties,

Vik = (Vstat)ik + (Vuncor)ik, (C.6)

with

(Vstat)ik = ρσstat,iσstat,k (C.7)

(Vuncor)ik = δikσuncor,iσuncor,k, (C.8)

where, ρ is the statistical correlations between bins and δik is a Kronecker delta. Any

dependence of the statistical uncertainty on bj is ignored. Equation C.5 allows for two

methods to determine the minimum without needing to include the nuisance parameters

into the minuit minimisation. The first method uses a minimisation of χ2 vs. bj to define
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a covariance matrix for the systematic uncertainties,

(Vcorr)ik =∑
j

σcorr,ijσcorr,kj . (C.9)

This allows the total covariance matrix to be given by

Vtot = Vstat + Vcorr + Vuncor (C.10)

and the χ2 takes the function of

χ2 =∑
i,k

(di − ti)(V −1
tot )ik(dk − tk). (C.11)

The second method determines the optimal shifts of the nuisance parameters in each

iteration. Shifts given by minimising equation C.5 leads to a system of linear equations,

∑
j
∑
ik

V −1
ik σijσkj ⋅ bj =∑

ik

V −1
ik σil(dk − tk), (C.12)

where 1 ≤ l ≤ Nsyst, the total number of correlated systematic uncertainties.

Although the definition of the χ2 function given in equation C.11 appears more elegant

than the nuisance parameter approach, it involves the inversion of what can be a very

large matrix. The χ2 definition using a nuisance parameter avoids this and also has the

advantage that when used in fit it can be used in the determination of fit uncertainties as

discussed in chapter 2.

C.4 Avoiding Statistical Fluctuations

The χ2 definition given in equation C.4 uses statistical and uncorrelated systematic uncer-

tainties that are absolute. However, if the systematic uncertainties depend on the central

value of the measurement, the χ2 function has to be modified further to allow for this

scaling as defined in [108]. The relative uncertainty values are given by δstat,i = σstat,i/di
and δuncor,i = σuncor,i/di (the systematic uncertainty was already being used in its relative

form as it is applied to the theoretical value). This gives,

χ2(t⃗, b⃗) =∑
i

[di − ti(p⃗)(1 +∑j bjγij)]
2

(δstat,idi)2 + (δuncor,idi)2
+∑

j

b2j . (C.13)

In order to avoid any bias from statistical fluctuations, the uncertainties can all be

applied as a function of the expected rather than the measured result. This can be done

by simply substituting the relevant di variables with ti. A more complex scaling can

be used which depends on the shifts in bj for each iteration of the minimisation. This

also leads to the covariance matrix being modified in each iteration as explained in [114].

This is included into the χ2 function by scaling the uncertainties appropriately. This is

taken into account by a δ2
i,statdi(ti − ∑j γijtibj) term [111]. This more complex scaling

also introduces a ln term to the χ2 function which corresponds to a non-constant value
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in the covariance matrix [114]. This is to correct for any bias introduced by updating the

covariance matrix during the minimisation iterations. Once these modifications are made

the final χ2 definition is found,

χ2(t⃗, b⃗) =∑
i

[di − ti(p⃗)(1 +∑j bjγij)]
2

δ2
i,statdi(ti(p⃗) −∑j γijti(p⃗)bj) + (δuncor,idi)2

+∑
j

b2j + 2 ln
σi(ti(p⃗))
σi(di)

. (C.14)

This gives the form of the χ2 function used in equation 9.7 to perform the QCD fits to

the ATLAS and HERA data, as well as to produce the χ2 values for the comparisons

to theory. The ln term is found to not change the values of χ2 obtained by much, and

when used in a combination, is found to have no influence. This leads to the term being

excluded from the χ2 given in equation 9.1.
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