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Abstract

The goal of this thesis is to propose a new quantile regression approach

to identify and estimate the quantiles of the private value conditional

distribution in ascending and first price auctions under the Independent

Private Value (IPV) paradigm. The quantile regression framework

provides a flexible and convenient parametrization of the private value

distribution, which is not affected by the curse of dimensionality. The

first Chapter of the thesis introduces a quantile regression methodology

for ascending auctions. The Chapter focuses on revenue analysis,

optimal reservation price and its associated screening level. An empirical

application for the USFS timber auctions suggests an optimal reservation

price policy with a probability of selling the good as low as 58% for

some auctions with two bidders. The second Chapter tries to address

this issue by considering a risk averse seller with a CRRA utility

function. A numerical exercise based on the USFS timber auctions

shows that increasing the CRRA of the sellers is sufficient to give more

reasonable policy recommendations and a higher probability of selling the

auctioned timber lot. The third Chapter develops a quantile regression

methodology for first-price auction. The estimation method combines

local polynomial, quantile regression and additive sieve methods. It is

shown in addition that the new quantile regression methodology is not

subject to boundary issues. The choice of smoothing parameters is also

discussed.
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Introduction

Auction is a market institution involving strategic interaction and asymmetric

information that can be easily captured by a theoretical model. That is because

the primitives of the strategic model, such as the set of players, the rules, the

players’ objectives and the information structure, can often be well described. By

imposing some structure in the theoretical model, the economist is then able to

answer relevant questions regarding the players’ strategical behaviour and policy

recommendations. The cummulative distribution function (c.d.f.) that characterizes

the bidders’ underlying demand/willingness to pay and the game information

structure is however not observed by econometricians and policy makers because

bidders do not reveal their own private values. Such a distribution function is

therefore the key primitive of the game to be recovered. The goal of the structural

analysis is to investigate whether the auction theoretical model can impose some

restrictions on the observable data so that the underlying distribution of bidder’s

private value can be rationalized.

In the past 20 years, several researchers have proposed structural approaches

to identify and estimate the private values distribution. The first wave of

researches concerns parametric and semiparametric approaches that were proposed

to circumvent the complexities in the computation of the equilibrium bidding

strategy (See e.g. Paarsch (1992), Donald and Paarsch (1993, 1996), Laffont,

Ossard and Vuong (1995)). Some other works have proposed nonparametric

approaches to circumvent the misspecification bias that could arise from

parametric/semiparametric approaches (See e.g. Guerre, Perrigne and Vuong

(2000) and Haile and Tamer (2003)). Chapters 1 and 3 better describe the

previous literature and its corresponding drawbacks. The goal of this thesis is to

propose a new quantile regression approach to identify and estimate the quantiles

of the private value conditional distribution in ascending and first-price auctions

under the Independent Private Value (IPV) paradigm. The quantile regression

framework provides a flexible and convenient parametrization of the private value

distribution, which can cope with misspecifications and is not affected by the curse

of dimensionality. The latter can be indeed a potential estimation issue given the

importance of controlling for auction characteristics. Quantile has been recently

considered in the auction literature, see e.g. Haile, Hong and Shum (2003), Bajari

and Hortaçsu (2005), Guerre, Perrigne and Vuong (2009), Marmer and Shneyerov
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Introduction

(2012), Guerre and Sabbah (2012), Enache and Florens (2012) and Zincenko (2013).

Quantile levels can be indeed useful for bidders and sellers. Bidders can use a

private value quantile level to benchmark their bids in order to achieve a prescribed

probability of winning the auction. For the seller, a key decision is the choice of

the reservation price. The quantile framework then allows to highlight the screening

level implied by the choice of an optimal reservation price, a policy characteristic

that has been mostly ignored by previous empirical approaches. As discussed in

Chapter 1 and 2, the optimal screening level in timber auctions are usually high,

leading to a low probability of trading, which can be inappropriate from a seller’s

point of view. The focus on the screening level can thus provide the seller a better

understanding about how reasonable and appropriate is his optimal reservation price

choice.

The first Chapter of this thesis describes a quantile regression methodology for

ascending auctions. Starting from the result shown in Athey and Haile (2002)

that the c.d.f. of the winning bids can nonparametrically identify the private

values distribution, I show that the private value conditional quantiles can then

be recovered by a transformation of the winning bid conditional quantile function.

A key stability property of the approach proposed is that a linear quantile regression

specification for the private value quantiles implies a corresponding linear quantile

regression specification for the winning bid quantiles, which then leads to simple

estimation methods for private value linear quantile specifications. In this first

Chapter, the quantile regression method developed by Koenker and Bassett (1978) is

used. The first main advantage of the quantile regression approach in the ascending

auction framework is that the private value conditional quantiles can be estimated

at a faster parametric rate independently of the covariate dimension. A second

advantage is that the entire distribution of private values, including the boundary,

can be recovered, which is potentially important for policy recommendations.

Several specification test are proposed as a contribution to the empirical auction

literature. In the end of the first Chapter, there is an empirical application of the

methodology using ascending timber auctions data from the United States Forest

Service (USFS).

The second Chapter of this thesis proposes a numerical investigation of the

optimal reservation price policy as the seller become more risk averse of not

11



Introduction

selling the good. This is motivated by the findings in the empirical section of

the first Chapter that the optimal screening level when assuming that sellers are

risk neutral usually leads to a low probability of selling the auctioned timber lot.

This undesirable feature was due to a sharp increase in the private value conditional

quantile function, which may also be an indication of strong heterogeneity among

the bidders. The numerical experiment proposed shows that considering a constant

relative risk averse (CRRA) family of utility functions for the seller is sufficient to

achieve a resonable high probability of selling the auctioned good.

The third and last Chapter of this thesis considers a quantile framework for first-

price auctions under the IPV paradigm. It is shown that a linear specification for

the private value conditional quantile function generates a linear specification for

its bids counterpart, which then allows for simple and flexible estimation methods

for private value linear quantile specifications. This applies to standard quantile

regression models as discussed in Chapter 1 as well as to more flexible additive sieve

specifications. Both estimation methods can circumvent the curse of dimensionality

and hence are specially convenient to handle a large data set with several auction

covariates. The estimation method proposed is a combination of local polynomial,

quantile regression and additive sieve methods, which allows to estimate the private

value quantile function with the optimal rate of Guerre, Perrigne and Vuong (2000)

in the case of only one covariate. It is also considered the case of a higher level

of interactions among the variables. The estimation method proposed in this third

chapter allows to estimate all the quantile levels of the private value conditional

distribution without any boundary issue, that is, all bidders’ private values, including

the highest ones, can be recovered. This is an advantage in view of important

nonparametric contributions for the structural analysis of auctions that suffer from

boundary bias.
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Econometrics of Ascending

Auctions by Quantile Regression
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1. Econometrics of Ascending Auctions by Quantile Regression

Abstract

This Chapter suggests an identification and estimation approach based on

quantile regression to recover the underlying distribution of bidders’ private values

in ascending auctions under the IPV paradigm. The quantile regression approach

provides a flexible and convenient parametrization of the private values distribution,

with an estimation methodology easy to implement and with several specification

tests. The quantile framework provides a new focus on the quantile level of the

private values distribution and on the seller’s optimal screening level, which can be

both useful for bidders and seller. The empirical application on timber auctions

suggests that using policy recommendations from seller’s expected payoff may be

sometimes inappropriate from a seller’s point of view due to the low probability

of selling the good. This seems to be an important issue specially in auctions with

strong heterogeneity among the bidders, since the seller has incentive to screen some

bidders by setting a high reservation price, which in turn leads to a low probability

of selling the good.
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1. Econometrics of Ascending Auctions by Quantile Regression

1.1 Introduction

In an auction theoretical game, the bidders’ private value cumulative distribution

function (c.d.f) is a key element for analysing the demand that a seller faces. Because

it is required for the computation of the seller’s expected payoff, its knowledge is

crucial for policy recommendation, as e.g. the optimal reservation price policy. The

issue here is that bidders’ private values are not observed, thereby their distribution

function is unknown for the econometricians and policy makers. In the past 20

years, several structural researches in auction theory have proposed parametric,

semiparametric and nonparametric approaches to estimate such a latent distribution

function.

The goal of this Chapter is to propose an identification and estimation approach

based on quantile regression to recover the private value conditional distribution in

ascending auctions. The identification strategy is developed for the Independent

Private Values (IPV) setup, but can also be extended for other paradigms. The

ascending auction is one of the most common design in practice and is especially

suitable for the identification of the private value distribution under the IPV

paradigm because, under mild assumptions, the transaction price equals the

second-highest private value. As a result, the private value distribution can be

nonparametrically identified through the winning bids distribution, as well known

from Athey and Haile (2002).

A first wave of researchers has focused on parametric identification and

estimation approaches. Paarsch (1992) and Donald and Paarsch (1993, 1996) have

proposed to estimate the parameters of the private value distribution via the method

of Maximum Likelihood (ML) using the winning bids of a button auction. In an

attempt to circumvent the difficulties that arise from ML methods, Laffont, Ossard

and Vuong (1995) suggested simulated method of moments based on the revenue

equivalence theorem, which can handle a larger class of auction mechanisms and

parametric models. A key observation of Rezende (2008) is that Laffont, Ossard

and Vuong (1995)’s approach carries over with drastic simplifications for simple

semiparametric linear regression models which can still be identified through the

revenue equivalence theorem. More recently, taking into consideration endogenous

entry and unobserved heterogeneity, Li and Zheng (2009) propose a semiparametric

15



1. Econometrics of Ascending Auctions by Quantile Regression

Bayesian method to estimate the distributions of costs, entry costs and of the

unobserved auction heterogeneity. Athey, Levin and Seira (2011) also consider an

entry stage and adopt a parametric approach to estimate the distribution of the

unobserved heterogeneity. Roberts and Sweeting (2012) investigate parametrically

the relative revenue performance of a simultaneous outcry auction and a sequential

game when entry is costly and selective.

Some works have proposed nonparametric identification and estimation

approaches for ascending auctions in an attempt to circumvent the misspecification

bias of parametric ones. Athey and Haile (2002) have shown that the c.d.f of the

transaction price can nonparametrically identify the private value distribution. Haile

and Tamer (2003) identify bounds on the private value distribution for a model

of English auction in which bids are below bidder’s value. They also suggest to

use a median regression in the estimation as an alternative to the nonparametric

estimation method, but not really developed the idea.

Some other nonparametric approaches for first-price sealed-bid auctions have

been built on quantiles, starting from the insight of Haile, Hong and Shum (2003)

that the quantiles of the private value distribution can be written as a function

of the quantiles of the observed bids distribution and density function. Marmer

and Shneyerov (2010) have shown that adopting a quantile approach makes the

estimation of the private value p.d.f. easier from a technical point of view,

whereas Guerre and Sabbah (2012) go one step further by proposing to estimate

quantile function instead of p.d.f.. Marmer, Shneyerov and Xu (2011) proposed a

nonparametric approach to test for alternative models of entry by exploring variation

in the quantiles of the private value distribution due to competition. Enache and

Florens (2012) developed a nonparametric approach for third-price auctions under

risk aversion.

To my knowledge, quantile approaches have not been systematically and

throughly applied to ascending auctions so far. Although nonparametric approaches

have the advantages of being flexible in analysing the data at hand since no structure

is imposed on that, it has some disadvantages as the curse of dimensionality and

the need to choose for a bandwidth parameter. The curse of dimensionality can

be indeed a relevant estimation issue in view of important contributions to the

empirical auction literature such as Haile and Tamer (2003) and Aradillas-Lopez,

16



1. Econometrics of Ascending Auctions by Quantile Regression

Gandhi and Quint (2013), which consider, respectively, 5 and 6 exlanatory variables

for a sample size of a few thousands at best. Hastie and Tibshirani (1990) give a

convenient example of the curse of dimensionality. Suppose that 1000 points are

uniformly distributed over a 5-dimensional unit cube and we wish to construct a

cube-shaped neighbourhood containing 10 observations, that is, 1% of the data.

The subcube is then required to have length 0.40, on average. If instead of 5 the

covariate dimension was set to 1, the length required in a similar exercise would now

be 1% of the covariate range, which is much smaller and then local than the 40% of

the 5 dimensional case. To improve accuracy of the estimates, is then required to use

kernels with very small bandwidths and far more observations. This suggests that

the bias in standard nonparametric approaches can be high considering the usual

auction sample sizes. By contrast, the quantile regression model used in this Chapter

can be in principle estimated with a parametric rate, independently of the dimension

of the covariate, and does not involve the choice of a smoothing parameter.

Addressing the curse of dimensionality is an important step to develop a

nonparametric framework allowing for many covariates. This is also a first step to

better capture unobserved heterogeneity by increasing the number of covariates in

a nonparametric framework. Specific quantile techniques have also been developed

to deal with omitted variables using instrumental variables, see Chernozhukov and

Hansen (2006) among others. Such approaches have natural sieve extensions which

could also fit in extensions of the framework studied here. Although not so clearly

related with the structure of auction data, quantile panel data estimation techniques

has provided important recent development, see eg Canay (2011) and Galvao Jr.

(2011). This suggests that nonparametric quantile approach could be much more

useful regarding unobserved heterogeneity than other nonparametric methods.

The quantile regression approach is also more flexible than many of the

parametric or semiparametric methods mentioned above. Indeed, the model includes

functional components that may be helpful to reduce the impact of misspecifications.

Compared to the semiparametric regression approach of Rezende (2008), quantile

regression is computationally more difficult to perform but delivers an estimation

of the full private value distribution, as needed for instance to derive an optimal

reservation price. As a consequence, quantile regression is probably better suited

for policy recommendations than a simpler regression approach. Also in the context
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1. Econometrics of Ascending Auctions by Quantile Regression

of policy analysis, the quantile regression approach allows to highlight the screening

level implied by the choice of a reservation price, a policy characteristic that has

been mostly ignored by previous empirical approaches. Based on data from the

United States Forest Service (USFS) timber auctions, the empirical application

suggests that pratical implementation of the optimal reservation price derived from

maximization of the expected payoff may lead to a low probability of selling the

auctioned good. This is due to a strong variation observed in the private value

conditional quantiles, which may then incentive sellers to screen bidders with low

valuation in the auction.

This first Chapter is organized as follows. Section 1.2 describes the ascending

auction considered, the quantile regression identification approach and a quantile

version for the seller’s expected payoff with a corresponding screening level

maximizer. Section 1.3 provides the estimation methodology and asymptotic results,

allowing for potential misspecifications. Section 1.4 presents some specification tests.

Section 1.5 provides an empirical application of the methodology proposed. Finally,

section 1.6 concludes the Chapter. The Appendix A of this thesis groups all the

proofs of the results achieved in this first Chapter, a description of the random

weighting bootstrap method used in two of the hypotheses tests and some Monte

Carlo experiments.

1.2 Ascending Auctions in a Quantile Setup

A single and indivisible object with some characteristics Z ∈ RP is auctioned to

I ≥ 2 bidders through an ascending auction. The seller sets a reservation price r

prior to the auction that is the minimum price that he would be willing to accept.

Both the set of auction covariates X = (1, Z) and the number of actual bidders

I participating in the auction are common knowledge. The object is sold to the

highest bidder for the price of his last bid, provided that it is at least as high as the

reservation price r. Within the IPV paradigm, each bidder i = 1, · · · , I is assumed

to have a private value vi for the auctioned good, which is not observed by other

bidders. The bidder only knows his own private value, but it is common knowledge

for bidders and sellers that private values have been identically and independently

drawn from a common c.d.f. Fv (·|X, I) conditional upon (X, I), or equivalently,

18



1. Econometrics of Ascending Auctions by Quantile Regression

with a conditional quantile function V (α|X, I), α ∈ [0, 1], defined as

V (α|X, I) := inf {v : Fv (v|X, I) ≥ α} . (1.2.1)

When the private value conditional distribution is absolutely continuous

with a probability density function (p.d.f) fv (·|X, I) positive on its support

[V (0|X, I) , V (1|X, I)] ⊂ R+, as considered from now on, V (α|X, I) is the

reciprocal function F−1
v (α|X, I).

It is well known that ui = Fv (vi|X, I), which can be viewed as the rank of

a bidder with private value vi in the population, is independent of (X, I) with

a uniform distribution over [0, 1]. The IPV paradigm implies that the ranks ui,

i = 1, · · · , I, are independent. In other words, the dependence between the private

values vi and the auction covariates (X, I) can be fully captured by the nonseparable

model

vi = V (ui|X, I) , ui
iid∼ U[0,1] ⊥ (X, I) . (1.2.2)

Therefore, bidders are identical up to the variable ui, which represents the bidder

ith’s position in the private value distribution.

The quantile regression approach, developed by Koenker and Bassett (1978),

restricts the quantile representation (1.2.2) to a regression specification, such as

V (α|X, I) = h (Xγ (α|I))

= h (γ0 (α|I) + Zγ1 (α|I)) ,
(1.2.3)

where h (·) is a given function, γ0 (α|I) the quantile regression intercept and γ1 (α|I)

the quantile regression slopes. In the basic specification, h (·) is equal to the identity.

Note that in (1.2.3), both the intercept and the slope quantile regression coefficients

depend upon the rank α of the bidder in the population1. Therefore, changes in the

conditioning variables not only shift the location of the conditional distribution of

v, but may also affect its scale and shape. A shock on the covariate X may affect a

bidder with a low rank α in a different way than a bidder with a higher rank. Strong

variation of the slope and location coefficients, γ1 (α|I) and γ0 (α|I), indicates large

1Throughout this chapter, the rank of the bidder can be interchangeably represented by α and
u.
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1. Econometrics of Ascending Auctions by Quantile Regression

heterogeneity among the bidders. In the empirical section, the term ”heterogeneity”

will be used for brevity to indicate such a strong variation2 in the private value

quantiles. As discussed later, taking into consideration such heterogeneity among

the bidders may have important implications for both seller and bidders.

We now turn to the assumptions of the model. In the considered ascending

auction, bidders raise continuously their prices and drop out of the auction as the

prices reach their valuation.

Assumption 1.1. The transaction price in an auction is the greater of the

reservation price and the second-highest bidder’s willingness to pay.

Assumption 1.1 is an assumption on equilibrium play. This assumption was also

used in Aradillas-Lopez et al. (2013) and, as noted in Athey and Haile (2002) and

Bikhchandani, Haile and Riley (2002), is compatible with the multiple equilibra

generated by the ascending auctions. It is for instance the result of the dominant

strategy equilibrium of a button3 auction, which is a stylized version of an ascending

auction. Haile and Tamer (2003) use stronger assumptions concerning bidder’s

behaviour, which determine the joint distribution of all the bids. This is not needed

when using only the winning bid. This assumption would also hold approximately

in the context of Haile and Tamer (2003) if bidders do not use jump bids at the end

of the auction.

The ascending auction format is specially convenient for the identification

of the bidders’ private value distribution under the IPV paradigm4 because,

under assumption 1.1 and a nonbinding reservation price, the latent private value

conditional distribution can be nonparametrically identified from the winning bid

conditional distribution. Such a nice feature will be considered in the identification

of the model.

2Note that heterogeneity and asymmetry are two concepts that should not be confused.
Heterogenity is concerned with the variation of γ (α) across quantile levels α, while asymmetry
implies that different bidders can have different coefficients γ (α).

3In a button auction, bidders hold down a button to remain active while the price rises
continuously, releasing the button to drop out of the game, and the willingness to pay of the
losing bidders is learned from their drop out prices.

4In the case of affiliated private values, the private value conditional quantiles cannot be
nonparametrically point-identified. It is possible however to extend the methodology to identify
bounds on the private value conditional quantiles using a strategy similar to Aradillas-Lopez et al.
(2013).
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The next two assumptions deal with the quantiles of the bidders’ private value

distribution:

Assumption 1.2. V (α|X, I) is strictly increasing and continuous on its support

[V (0|X, I) , V (1|X, I)] for all (X, I).

Assumption 1.3. The private value conditional quantiles has a quantile regression

specification

V (α|X, I) = h (Xγ (α|I)) , (1.2.4)

where h (·) is known by the econometrician.

Assumption 1.2 is usual in the quantile regression literature. Assumption 1.3

imposes correct specification of the private value conditional quantiles as necessary

for our identification results. This will be relaxed when studying estimation of the

model.

As shown in the next Lemma, the rank α of a bidder in the population has a

direct relationship with his probability of winning the auction, so that estimating

V (α|X, I) can then be used as a benchmark for bidders interested in increasing their

chance of winning the auction5.

Lemma 1.1. Under the IPV paradigm and assumptions 1.1-1.2, a bidder with

private value V (α|X, I) wins with probability αI−1.

The proof of Lemma 1.1 is given in Appendix A.1 of this thesis, which also groups

the proof of all the results stated in this Chapter.

Define

ΨI (t) = ItI−1 − (I − 1) tI .

and let B (α|X, I) be the α-quantile of the winning bids conditional distribution

given (X, I). It follows from Athey and Haile (2002, equation (5)) that

ΨI (Fv (·|X, I)) is the distribution of the second-highest private value, which is equal

to the winning bid. This gives the following cornerstone quantile identification result.

5Consider e.g. a procurement auction: if a bidder can estimate and target a low quantile α
of the private cost distribution, he can then work on his technological capacity to decrease his
production cost and be able to offer a lower price for the buyer, thereby increasing his probability
of winning the auction.
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Lemma 1.2. Under IPV and assumptions 1.1-1.2, for each I and α ∈ [0, 1],

V (α|X, I) = B (ΨI (α) |X, I) . (1.2.5)

Lemma 1.2 shows that the private value conditional quantile function can be

nonparametrically identified by the conditional quantile of the observed winning

bid. Before introducing the quantile regression identification result, we require the

following assumption for the auction specific covariate X = (1, Z):

Assumption 1.4. The auction specific variable, Z, has dimension P , with a

compact support in Z ⊂ (0,+∞)P and a nonempty interior.

Assumption 1.4 ensures that if xγ1 = xγ2, for all x ∈ X, thus γ1 = γ2, and is

necessary for the quantile regression identification below.

Lemma 1.3. Under IPV and assumptions 1.1-1.4,

(i) There exists, for each α ∈ [0, 1], a vector of coefficients β (α|I) such that

B (α|X, I) = h (Xβ (α|I)) ;

(ii) β (α|I) is uniquely defined and satisfies

β (ΨI (α) |I) = γ (α|I) . (1.2.6)

Result (i) in Lemma 1.3 is a stability property of the quantile regression

specification, which is a consequence of Lemma 1.2. Indeed, Lemma 1.2 shows

that the winning bid quantile function admits the same specification that the one

postulated for the private values, but for a transformed quantile level. Lemma 1.3-

(ii) gives the identification result of the quantile regression approach. It shows that

the coefficient γ (·|I) of the private value conditional quantile function is identified

through the coefficient β (·|I) of the winning bid conditional quantile function, but

evaluated at a different quantile level ΨI (·).
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Dependence upon Bidders Participation

It is assumed for now that the private value distribution is conditional upon the

number of bidders I participating in the auction. Although standard in many

econometric works as Guerre, Perrigne and Vuong (2000) among others, conditioning

on I is not usual in theoretical auction models, see e.g. Krishna (2010). This

choice can be however motivated by the three following reasons which consider

either unobserved heterogeneity or an entry stage.

A first setting of interest is unobserved heterogeneity. Instead of the observed

X, the bidders use an auction characteristic (X,Xu) which includes a component

Xu that is not observed by the econometrician. Hence, the private value quantile

relevant for policy analysis is V (α|X,Xu), which cannot be estimated without

further assumption. It can be for instance assumed that the actual number of

bidders depends upon the auction characteristic, that is I = I (X,Xu), in a way

that fully captures the impact of the unobserved characteristic, i.e. V (·|X,Xu) =

V (·|X, I (X,Xu)) so that the conditional quantile V (·|X, I) is fully relevant for

policy analysis purposes.

A second motivation is given by the recent econometric literature on entry, see

Gentry and Li (2012), Li and Zheng (2009) and Marmer et al. (2011). These

models consider a two stage game, where the first stage is entry and the second

stage is the auction game. The structural parameter is the joint distribution of the

private values and signals given the characteristic X, which is used in the entry

stage of the game. The second stage involves an actual number of bidders I, who

have decided to participate in the auction, and the conditional quantile V (·|X, I) of

private values given X and I. A key contribution of the aforementioned econometric

literature is that the structural parameter is identified from I and V (·|X, I), so that

estimation of the model can be performed through estimation of the conditional

c.d.f. or quantile of private values given X and I.

A third motivation notes that, whereas the reality of the auction is physically

clear, the entry stage of the game described above may have a more conceptual

nature. Therefore, in some cases, the importance of a entry stage is an assumption

that should be tested by investigating whether V (·|X, I) depends indeed upon I.

A test built on the null hypothesis of independence, i.e. V (·|X) = V (·|X, I), is
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proposed in section 1.4 and then applied in the empricial section.

Optimal Reservation Price

Consider a binding reservation price set by the seller, i.e. r (X, I) ∈
[V (0|X, I) , V (1|X, I)]. The reservation price thus plays the role of a screening

level in the auction since bidders with V (αi|X, I) < r (X, I) are prevented from

participating in the game. Let αr be the screening level in the private value

conditional distribution, i.e. αr is such that r (X, I) = V (αr|X, I). It thus represents

the percentage of bidders in the population that are not participating in the auction

because of a low valuation. Note that the auctioned good will not be sold if all the

players have valuation below r (X, I), which implies that the probability of trading

is 1 − αIr . Therefore, for a given I, the probability of trading decreases with the

screening level αr.

Let the seller’s payoff be defined as

π (r (X, I)) = bwI (bw ≥ r (X, I)) + v0 (X) (1− I (bw ≥ r (X, I))) , (1.2.7)

where bw is the winning bid and v0 (X) the seller’s private value6. In what follows,

let v0 = v0 (X) and r = r (X, I). The following proposition gives a quantile

version for the seller’s expected payoff, a candidate for the optimal screening level

α∗r = α∗r (X, I, v0) and the corresponding optimal reservation price V (α∗r|X, I). Let

Π (αr|X, I, v0) be the seller’s expected payoff given (X, I) when the screening level

is αr.

Proposition 1.1. Under IPV and assumptions 1.1-1.2,

(i) the seller’s expected payoff is

Π (αr|X, I, v0) = v0α
I
r + V (αr|X, I) IαI−1

r (1− αr)

+ I (I − 1)

∫ 1

αr

V (α|X, I)αI−2 (1− α) dα,
(1.2.8)

where v0 is the seller’s private value;

6The seller’s profit is given by his payoff minus his private value. We will focus our analysis on
the seller’s payoff.
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(ii) The optimal reservation price V (α∗r|X, I) satisfies

V (α∗r|X, I)− V (1) (α∗r|X, I) (1− α∗r) = v0, (1.2.9)

where V (1) (α∗r|X, I) is the private value quantile density7 function.

Equation (1.2.8) in Proposition 1.1 gives the seller’s expected payoff in a quantile

setup. It differs from the expression given in Riley and Samuelson (1981, Proposition

1) because it does not involve the private value conditional density. It is nevertheless

convenient for estimation purposes because, in a nonparametric setup, V (·|X, I) can

be estimated in a faster rate than V (1) (·|X, I). Equation (2.2.3) is the first-order

condition (FOC) associated with the maximization of the seller’s expected payoff and

represents a quantile version of a well known formula that states that the optimal

reservation price satisfies 1 − Fv (r∗|X, I) − (r∗ − v0) fv (r∗|X, I) = 0, see Krishna

(2010, p.23), Riley and Samuelson (1981, Proposition 3) and Myerson (1981). An

interesting implication of (2.2.3) is that when V (α|X, I) does not depend upon I

the optimal reservation price V (α∗r|X) and the optimal screening level α∗r also do

not depend on I, as well known from the aforementioned reference. In addition,

since V (1) (·|X, I) > 0, it is clear that α∗r > α0, where v0 = V (α0|X, I). That is, the

optimal reservation price is above v0.

Although equation (2.2.3) in Proposition 1.1 gives a closed form to estimate

the optimal reservation price V (α∗r|X, I), it involves an estimation of the quantile

density function V (1) (·|X, I). It is, therefore, better to maximize an estimation

of Π (αr|X, I, v0) to get α̂∗r than to solve an estimation of the quantile FOC8. To

estimate the seller’s expected payoff, we first estimate V (·|X, I) by using the quantile

regression methodology proposed in the next section and then apply numerical

integration via a trapezoildal rule over a grid of quantiles A = {α1, α2 · · · , αK}9 to

7The quantile density function is defined as the derivative of the quantile function with respect
to α, i.e. V (1) (α|X, I) = ∂V (α|X, I) /∂α = 1/fv (V (α|X, I) |X, I).

8Li, Perrigne and Vuong (2003) have also used the same strategy to estimate the optimal
reservation price in the case of affiliated private values, which includes the IPV as a special case.
They define such a strategy as semiparametric, since the optimal reservation price is obtained
as the maximizer of an estimated expected payoff in which the distributions and densities were
nonparametrically estimated in a first step.

9In the empirical application, the grid of prescribed quantiles used for this numerical integration
is A = {0.12, 0.14, · · · , 0.80}.
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estimate the definite integral in (1.2.8). The optimal screening level α̂∗r is then chosen

over A such that Π̂ (αr|X, I, v0) is maximized, where the latter is an estimation

of Π (αr|X, I, v0). As mentioned above, when V (·|X) = V (·|X, I), the optimal

screening level does not depend upon I. In the empirical section, this case is

considered and α̂∗r is therefore estimated by maximizing an aggregate Π̂ (αr|X, v0),

i.e.

α̂∗r = arg max
I∑
I=2

Π̂ (αr|X, I, v0)LI/L, (1.2.10)

where
{

2, · · · , I
}

is the support of I, LI is the number of auctions in the sample

with I bidders competing and L the total sample size. The intuition here is that

aggregating over I may potentially give a better estimation α̂∗r .

A comparison of the quantile regression estimation methodology with a

nonparametric alternative is also presented in the end of the empirical section.

For the nonparametric approach, the conditional distribution of private values

is used instead of their quantiles. Consider that P (vI:I < r|X, I) = F I
v (r|X, I),

P (vI−1:I < r ≤ vI:I |X, I) = Fbw (r|X, I)− F I
v (r|X, I) and

E [vI−1:II (r ≤ vI−1:I) |X, I] =

∫ v

r

vfbw (v|X, I) dv,

where Fbw (·|X, I) and fbw (·|X, I) are, respectively, the c.d.f. and p.d.f. of the

winning bids conditional on (X, I). From the proof of Proposition 1.1, the seller’s

expected payoff can be then written as

Π (r|X, I, v0) = v0F
I
v (r|X, I) + r

(
Fbw (r|X, I)− F I

v (r|X, I)
)

+

∫ v

r

vfbw (v|X, I) dv.
(1.2.11)

To estimate Π (r|X, I, v0), we first estimate the winning bid conditional c.d.f. and

p.d.f., then apply the transformation Ψ−1
I (·) to find the solution of F̂v (·|Z, I) =

Ψ−1
I

(
F̂bw (·|Z, I)

)
and estimate the integral term using numerical integration as

above. The winning bid conditional c.d.f. and p.d.f can be nonparametrically
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estimated10 via

F̂bw (bw|Z, I) =

1
LIh

P
Z

∑LI
`=1 I (I` = I) I (bw` ≤ bw)K

(
Z−Z`
hZ

)
1

LIh
P
Z

∑LI
`=1 I (I` = I)K

(
Z−Z`
hZ

) (1.2.12)

and

f̂bw (bw|Z, I) =

1
LIh

P
Z

∑LI
`=1 I (I` = I) I (bw` ≤ bw)K

(
Z−Z`
hZ

)
1

LIh
P
Z

∑LI
`=1 I (I` = I)K

(
Z−Z`
hZ

) , (1.2.13)

where K (u) is a kernel function and hZ a vanishing bandwidth. In the estimation,

a triweight kernel, K (u) = 35
32

(1− u2)
3 I (|u| ≤ 1), is considered and the bandwidth

parameter is computed using the rule h∗z = σzzL
−1/5
I as suggested by Silverman

(1998), where σzz is the standard deviation of the corresponding variable Z. In the

case that Fv (·|X) = Fv (·|X, I), the estimated private values conditional distribution

is then aggregated over I via

F̂v (·|Z) =
I∑
I=2

F̂v (·|Z, I)LI/L. (1.2.14)

Note that it is not necessary to compute f̂v (·|Z) in the approach described above.

It is nevertheless possible to estimate the optimal reservation price using

1− F̂v (r∗|Z)− (r∗ − v0) f̂v (r∗|Z) = 0,

where f̂v (·|Z) is also aggregated over I as in (1.2.14). Lu and Perrigne (2008)

have used the same strategy as above to estimate Fv (·|Z, I) and fv (·|Z, I) in their

risk aversion analysis. They however assume that Fv (·|X, I) depend upon I and

therefore do not aggregate the c.d.f. and p.d.f. over I.

10Recall that X = (1, Z). Therefore, the constant term will not be considered in the
nonparametric approach.
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1.3 Estimation Methodology and Asymptotic

Properties

Consider independent and identically distributed observations (bw` , Z`, ` = 1, . . . , L),

where bw` is the winning bid at auction `, and Z` a specific characteristic of the good

auctioned in auction `. Let X` = (1, Z`) ∈ X be a row vector of dimension P + 1

and X = {1} × Z. Define LI as the number of auctions with I players,

LI =
L∑
`=1

I (I` = I)

for I ∈ I, where I is a bounded subset of {2, 3, . . .}.
The following assumption concerns the variables in our model:

Assumption 1.5. The variables {I`, X`, vi`, i = 1, 2, . . . I`, ` = 1, . . . , L} are

independent and identically distributed. Conditional on (X`, I`), the private values

vi` are independent with common c.d.f. Fv (·|X`, I`) and a density function

fv (·|X`, I`) bounded away from zero.

Assumption 1.5 implies that each auction is independent and that, within an

auction, the IPV paradigm holds. Note that we do not assume that I` is independent

upon X`. Recall that V (·|X`, I`) = F−1
v (·|X`, I`).

Assumption 1.3 from the preceding section was considering a correct specification

of the private value quantile regression model as necessary for identification. This

is not requested in our estimation setup and Assumption 1.6 below, which does not

assume a correct specification and considers instead the function h (·), will be used

instead of Assumption 1.3.

Assumption 1.6. The function h (t) used in the private values regression model is

a given continuous, monotonically increasing and twice differentiable function.

We are interested in studying two special functions to characterize the bidders’

private values: the identity function h (t) = t and the exponential function

h (t) = exp (t).
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Consider the winning bid bw` at the auction `, ` = 1, · · · , L, which is the amount

paid by the winner. From the quantile regression identification result (1.2.6) in

Lemma 1.3, γ (α|I) can be estimated through

γ̂ (α|I) = β̂ (ΨI (α) |I) .

I propose to estimate the winning bid quantile regression population parameter

β (α|I) via the method of quantile regression,

β̂ (α|I) = arg min
β∈Γ

1

LI

LI∑
`=1

I (I` = I) ρα (bw` − h (X`β))

where ρα (u) = u (α− I (u < 0)) and Γ is a compact subset of RP+1. In other words,

γ̂ (α|I) = arg min
γ∈Γ

1

LI

LI∑
`=1

I (I` = I) ρΨI(α) (bw` − h (X`γ)) . (1.3.15)

In what follows, let

Q (γ|α, I) = E
[
ρΨI(α) (bw − h (Xγ)) |I

]
,

Q̂ (γ|α, I) =
1

LI

LI∑
`=1

I (I` = I) ρΨI(α) (bw` − h (X`γ))

and

Q̂ (γ̂|α, I) = Q̂ (γ̂ (α|I) |α, I) = min
γ∈Γ

Q̂ (γ|α, I) (1.3.16)

be the population, the empirical and the optimized quantile regression objective

functions. I will denote the first and second derivatives of Q (γ|α, I) with respect

to γ respectively by Qγ (γ|α, I) and Qγγ (γ|α, I), whereas h(1) (·) and h(2) (·) will be

respectively the first and second derivatives of h (·).
In the case of a misspecified model, γ̂ (α|I) is expected to converge to a pseudo-

true private value quantile regression coefficient defined as

γ∗ (α|I) = arg min
γ∈Γ

Q (γ|α, I) , (1.3.17)
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where the expectation is taken with respect to the true model distribution. In what

follows, it is assumed that the considered pseudo-true values are uniquely defined.

Theorem 1.1 gives the asymptotic distribution of the private value quantile

regression estimator (1.3.15). Its proof relies on arguments sketched in Newey and

McFadden (1994) for estimators optimizing non smooth objective functions.

Theorem 1.1. Under assumptions 1.1-1.2, 1.4-1.6 and if γ∗ (α|I) from (1.3.17) is

an inner point of Γ,√
LI (γ̂ (α|I)− γ∗ (α|I))

d−→ N
(
0, Q−1

γγ (γ∗|α, I) J (γ∗|α, I)Q−1
γγ (γ∗|α, I)

)
,

where

J (γ∗|α, I) = E
[{
Fbw (h (Xγ∗ (α|I)) |X, I)− 2ΨI (α)Fbw (h (Xγ∗ (α|I)) |X, I)

+ΨI (α)2
}
h(1) (Xγ∗ (α|I))2X ′X|I

]
and

Qγγ (γ∗|α, I) = E
[
fbw (h (Xγ∗ (α|I)) |X, I)h(1) (Xγ∗ (α|I))2X ′X|I

]
+

E
[
(Fbw (h (Xγ∗ (α|I)) |X, I)−ΨI (α))h(2) (Xγ∗ (α|I))X ′X|I

]
,

Fbw (·|X, I) = ΨI (Fv (·|X, I)) and fbw (·|X, I) being the c.d.f. and p.d.f. of the

winning bids given (X, I).

Although γ (α|I) is a parameter of the private value distribution, the asymptotic

variance of γ̂ (α|I) in the Theorem is computed using the winning bids distribution.

Note that if the model is correctly specified, then γ∗ (α|I) = γ (α|I) and

Fbw (h (Xγ∗ (α|I)) |X, I) = ΨI (α), so that

J (γ|α, I) = ΨI (α) (1−ΨI (α))E
[
h(1) (Xγ (α|I))2X ′X|I

]
,

and

Qγγ (γ|α, I) = E
[
fbw (h (Xγ (α|I)) |X, I)h(1) (Xγ (α|I))2X ′X|I

]
.

The asymptotic variance of the quantile regression estimator can be estimated

using techniques described in Koenker (2005). The applications considered here
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uses bootstrap inference and for this reason the variance estimation aspects are not

detailed.

If the private value distribution is independent upon I given X, then

γ∗ (α|I) = arg min
γ∈Γ

E
[
ρΨI(α) (bw − h (Xγ)) |I

]
= arg min

γ∈Γ
E
[
ρΨI(α) (bw − h (Xγ))

]
=γ∗ (α) ,

which opens space for a potential improvement in the estimation efficiency since

samples with different number of bidders I` can be pooled, increasing the sample

size to L ≥ LI . This therefore leads to consider

γ̂ (α) = arg min
γ∈Γ

Q̂ (γ|α) , (1.3.18)

where

Q̂ (γ|α) =
1

L

L∑
`=1

ρΨI` (α) (bw` − h (X`γ)) .

Let

γ∗ (α) = arg min
γ∈Γ

Q (γ|α) where Q (γ|α) = E
[
ρΨI(α) (bw − h (Xγ))

]
.

The following Corollary gives the asymptotic distribution of the pooled quantile

regression estimator.

Corollary 1.1. Under assumptions 1.1-1.2 and 1.4-1.6,

√
L (γ̂ (α)− γ∗ (α))

d−→ N
(
0, Q−1

γγ (γ∗|α) J (γ∗|α)Q−1
γγ (γ∗|α)

)
,

where γ∗ (α) = arg minγ∈ΓQ (γ|α), with Q (γ|α) = E
[
Q̂ (γ|α)

]
, is the pseudo-true

private value quantile regression coefficient,

J (γ∗|α) = E
[{
Fbw (h (Xγ∗ (α)) |X, I)− 2ΨI (α)Fbw (h (Xγ∗ (α)) |X, I) + ΨI (α)2}

×h(1) (Xγ∗ (α))2X ′X
]
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and

Qγγ (γ∗|α) = E
[
fbw (h (Xγ∗ (α)) |X, I)h(1) (Xγ∗ (α))2X ′X

]
+

E
[
(Fbw (h (Xγ∗ (α)) |X, I)−ΨI (α))h(2) (Xγ∗ (α))X ′X

]
,

Fbw (·|X, I) = ΨI (Fv (·|X)) and fbw (·|X, I) being the c.d.f. and p.d.f. of the winning

bids given (X, I).

Since L can be substantially larger than LI , Corollary 1.1 suggests that γ̂ (α) can

considerably improve on γ̂ (α|I) when the private values distribution is independent

from I given X.

The regression specification of Rezende (2008)11 can offer another interesting

source of improvement under special conditions. Assume for instance that, for h (·)
as in Assumption 1.6,

vi` = h (γ0 + Z`γ1 + εi`) , (1.3.19)

where the εi` are i.i.d. and independent of (Z`, I`). In this case the conditional

quantile function of the private values is

V (α|Z) = h (γ0 (α) + Zγ1) where γ0 (α) = γ0 + F−1
ε (α) . (1.3.20)

For such specification, pooling over α can improve the estimation of the slope

coefficients γ1 as proposed by Zou and Yuan (2008) with the Composite Quantile

Regression (CQR) estimator

γ̂CQR = arg min
γ0,1,...,γ0,K ,γ1

1

K

K∑
k=1

{ 1

L

L∑
`=1

ρΨI` (αk) (bw` − h (γ0,k + Z`γ1))
}
, (1.3.21)

where γ̂CQR = (γ̂0 (α1) , . . . , γ̂0 (αK) , γ̂1)′ and αk ∈ [0, 1], k = 1, . . . , K, are some

quantile levels. Zou and Yuan (2008) have shown in particular that the CQR

estimator can improve on least squares estimation. That estimator is asymptotically

normal with a limit variance that can be derived with arguments similar to the ones

used in Theorem 1.1. However, implementing this strategy with the considered

11For simplicity of notation, it is assumed independence of the private value distribution upon
I.
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auction dataset has led to a rejection of the correct specification of (1.3.20) (that

is, a rejection of γ1 (α) = γ1 for all retained αk) so that the limit distribution of the

CQR estimator is not detailed here for the sake of brevity.

1.4 Auction Hypotheses Testing

The estimation methodology developed above enables us to investigate some

interesting questions for the empirical auction literature that are grouped in the

following three hypotheses tests: exclusion participation restriction, functional form

of the private values conditional quantile function and constancy in the impact of

the auction characteristics across the private values distribution. In what follows,

A = {α1, · · · , αK} is a set of prescribed quantile levels used in the considered test

statistics.

Testing the Exclusion Participation Restriction

As discussed in section 1.2, testing the condition V (·|X, I) = V (·|X) gives

indication about potential unobserved heterogeneity or presence of a entry stage

in the auction game. An important policy implication of that condition is that

the optimal reservation price is also not dependent upon the number of actual

bidders I as usual in the auction literature. In addition, as discussed in the previous

section, the exclusion participation restriction enables a potential improvement in

the estimation efficiency. The considered null and alternative hypotheses are

H0 : γ∗ (α|I) = γ∗ (α) for all α ∈ A and I ∈ I

H1 : not H0.

Note that even if V (·|X, I) differs from h (Xγ (·|I)), i.e. the function h (·)
is misspecified, the pseudo-true coefficients still satisfy γ∗ (·|I) = γ∗ (·) when

V (·|X, I) = V (·|X).

A simple way of testing the null hypothesis above is via a Wald test, jointly for

all the coefficients and quantile levels. However, the latter involves standardization

of the test-statistic by the variance-covariance matrix of the coefficients, which in
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turn involves estimation of the unknown density function of the random errors.

The estimation of the latter requires either a bandwidth choice (see Powell (1991))

or bootstrap resampling methods (see Buchinsky (1995)). Some preliminary

experiments had suggested that an alternative strategy as described below may

give better results.

A strategy similar to a maximum likelihood ratio test can be implemented to

avoid the estimation of the variance-covariance matrix. Let Q̂ (γ̂|α) represents the

optimized pooled objective function, i.e.

Q̂ (γ̂|α) = Q̂ (γ̂ (α) |α) = min
γ∈Γ

Q̂ (γ|α)

and Q̂ (γ̂|α, I) the optimized individual objective function as defined in (1.3.16).

Under the null hypothesis of independence, Q (γ|α) =
∑

I∈IQ (γ|α, I)P (I). This

leads to consider the distance metric statistics in the terminology of Newey and

McFadden (1994), or the M-statistic in the terminology of Rao and Zhao (1992),

MInd = Q̂ (γ̂|α)−
∑
I∈I

Q̂ (γ̂|α, I)LI/L. (1.4.22)

In the application, the critical values and p-values of tests based on (1.4.22) will be

calculated using the random weighting bootstrap method proposed by Rao and Zhao

(1992), Wang and Zhou (2004) and Zhao, Wu and Yang (2007), which is detailed in

the Appendix A.2. Appendix A.3 describes a Monte Carlo experiment of the test of

exclusion participation restriction and its corresponding rejection probabilities.

Choice of Specification for the Bidders’ Private Values:

Linear versus Exponential

As mentioned earlier, we are interested in choosing between a linear or exponential

function for the quantile regression specification (1.2.4). While the linear

specification is apparently more popular and simpler to estimate, the exponential

specification delivers positive private values, which may not be the case of a linear

one. Both models may be also misspecified for the data at hand. An additional

difficulty is that the retained specification must be valid for several quantile levels.
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This section thus proposes a test to investigate which of the two model specifications

has a better measure of fit for a prescribed range of quantiles.

There is a extensive literature on testing hypotheses for model selection and

goodness of fit. See e.g. Koenker and Machado (1999) for nested quantile regression

models, White (1982) for conditional mean analysis, Zheng (1998), Horowitz

and Spokoiny (2001) and Whang (2006) for parametric against nonparametrics

alternatives.

Considering model selection and non-nested hypothesis testing, Vuong (1989)

has proposed likelihood ratio tests using the Kullback-Leibler (1951) information

criterion, which measures the distance between a given distribution and the true

distribution function. The best model among a collection of competing models is

defined to be the one that is closest to the true distribution. The tests are derived

for cases in which the models are non-nested, overlapping, or nested and whether

both, one, or neither is misspecified. The null hypothesis is the equivalence of the

two specifications, i.e. the two specifications are at the same distance of the true

distribution function, although dominance can also be considered.

Based on the insights of Vuong (1989), the test proposed in this section leads to

compare the population objective function measures of the linear and the exponential

models. Let the population objective functions under the previous two models be

defined respectively as

QL (γ|α, I) = E
[
ρΨI(α) (bw −Xγ) |I

]
and

QE (γ|α, I) = E
[
ρΨI(α) (bw − exp (Xγ)) |I

]
.

Define the pseudo-true private values quantile regression coefficients as γ∗j (α|I) =

arg minγ∈ΓQj (γ|α, I) and the infimum of the population objective functions as

Qj

(
γ∗j |α, I

)
= Qj

(
γ∗j (α|I) |α, I

)
= inf

γ∈Γ
Qj (γ|α, I) ,

where j = E,L.
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The next set of hypotheses considers dominance of the exponential specification:

H0 : QE (γ∗E|α, I)−QL (γ∗L|α, I) ≤ 0 for all α ∈ A and I ∈ I

H1 : not H0,

which in turn motivates the following test statistic:

V̂uong =
√
LI sup

α∈A

(
Q̂E (γ̂E|α, I)− Q̂L (γ̂L|α, I)

)
. (1.4.23)

Note that exchanging Q̂E (γ̂E|α, I) and Q̂L (γ̂L|α, I) in (1.4.23) gives a test statistic

for dominance of the linear specification.

In the application, the critical values and p-values of the test based on (1.4.23)

will be computed by the pairwise bootstrap method in each original subsample LI
12,

i.e. samples of the (X`, bw`) pairs are drawn with replacement from the LI pairs

{(X`, bw`) : ` = 1, · · · , LI} of the original subsample, each with probability 1/LI .

Appendix A.3 describes a Monte Carlo experiment of the specification test above

and its rejection probabilities.

Constancy of the Slope Coefficients

In this section, we investigate the impact of changes in the auctioned good

characteristics across the entire distribution of private values. Consider the private

values conditional quantile specification given in (1.2.3), where the vector γ1 (α|I)

groups all the slope coefficients, excluding so the intercept. The hypothesis of

interest is that γ1 (α|I) does not depend upon α, in which case the model (1.2.3)

with h (t) = t is the regression model of Rezende (2008).

The null and alternative hypothesis considered in this test are therefore:

H0 : γ∗1 (α|I) = γ∗1 (I) for all α ∈ A and I ∈ I

H1 : not H0.

12This form of bootstrap is also known as (X,Y)-pair bootstrap method and has been widely
used in the quantile regression literature.

36



1. Econometrics of Ascending Auctions by Quantile Regression

Define the CQR empirical objective function as

Q̂CQR (γCQR|I) =
1

K

K∑
k=1

{ 1

L

L∑
`=1

ρΨI` (αk) (bw` − h (γ0,k + Z`γ1))
}
.

Under the null hypothesis, the CQR population objective function equals the

average of the individual objective functions over the set of prescribed quantiles

A = {α1, · · · , αK}. The test statistic proposed here will be constructed as in the

test of exclusion participation restriction by using the M-statistic defined as follows

MCQR = L

[
Q̂CQR (γ̂CQR|I)− 1

K

K∑
k=1

Q̂ (γ̂|αk, I)

]
, (1.4.24)

where Q̂CQR (γ̂CQR|I) is the optimized CQR objective function.

The critical values and p-values of tests based on (1.4.24) will be calculated

using the random weighting bootstrap method as described in the Appendix A.2.

A Monte Carlo experiment for the test of constancy of slope coefficients above and

the corresponding rejection probabilities are given in the Appendix A.3.

1.5 Empirical Application

In this section, we illustrate empirically the methodology proposed in this first

chapter using data from ascending timber auctions run by the USFS. Timber

auctions data have been used in several empirical studies, see e.g. Baldwin, Marshall

and Richard (1997), Haile (2001), Athey and Levin (2001), Athey, Levin and Seira

(2011), Li and Zheng (2012), Aradillas-Lopez, Gandhi and Quint (2013), Li and

Perrigne (2003) and others. Some other works have investigated risk-aversion on

timber auctions, as e.g. Lu and Perrigne (2008), Athey and Levin (2001) and Campo,

Guerre, Perrigne and Vuong (2011).
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The Timber Auction Data

The data set used here is publicly available on the internet13. It aggregates ascending

auctions from the states covering the western half of the US (regions 1-6 as labeled

by the USFS) occurred in 1979. It contains 472 auctions involving a total of 1175

bids and a set of variables characterizing each timber tract including the estimated

volume of the timber measured in thousand of board feet (or mbf) and its estimated

appraisal value given in Dollar per unit of volume. The latter measures how much

the tract worths at the present time, taking into consideration a combination of

factors as volume of each specie, quality and marketable price. Only scaled sales are

considered, in which bids are per unit of timber. Therefore, winning bids are given

in Dollar per unit of volume.

The government conducts a cruise of the timber tract prior to the auction and

publishes a report with the characteristics of the tract uncovered by the cruise. The

reservation price is announced prior to the auction and equals the appraisal value

of the tract14. The auction is conducted in two rounds: in the first round, bidders

submit sealed bids15 that must exceed the appraisal value of the tract to be qualified

for the auction; in the second round, bidders compete in an ascending auction.

Table 1.1 gives some descriptive statistics about the dataset. The auctioned tract

displays significant heterogeneity in quality and size. The mean of the variables are

all above the median, indicating tailored marginal distributions. In particular, the

marginal distribution of winning bids is highly positive skewed. In the dataset, the

number of actual bidders I takes values 2 and 3, with I = 2 more than 50% of the

cases. Table 1.2 provides the results of a median regression analysis of the winning

bids on the timber appraisal value per mbf and the volume. Lu and Perrigne (2008)

performed a mean regression analysis and concluded that the estimated appraisal

value and the volume of the timber are the variables that better explain the winning

13The same dataset was used by Haile and Tamer (2003), Lu and Perrigne (2008) and
Aradillas-Lopez et al. (2013), and it is available at the JAE Data Archieve website:
http://qed.econ.queensu.ca/jae/2008-v23.7/lu-perrigne/

14It is well known that the screening effect of the appraisal value in timber auctions is almost
negligible, being plausible to consider that the reservation price is nonbinding. See e.g. Campo,
Guerre, Perrigne and Vuong (2011), Haile and Tamer (2003) and Aradillas-Lopez at al. (2013).

15Note that the bids in the first round are not proper bids, but a proposal to be qualified for
bidding in the second round.
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Table 1.1: Summary Statistics

Winning Bids Appraisal Value Volume Number of Bidders

Mean 129.17 72.34 3,171.10 2.49
Std. Deviation 119.76 52.92 4,418.20 0.50
25% 59.13 24.47 294 2
50% 113.81 68.38 967 2
75% 172.53 111.25 4,724 3
Min 0.30 0.25 12 2
Max 1,981.50 219.58 24,800 3
Skewness 8.16 0.44 1.99 0.04
Observations 472 472 472 472

bid’s variability. Both variables are also highly significant in the median analysis,

which can be seen by the coefficient of determination Rα at the median quantile16.

For this reason, we shall consider a two-dimensional vector of covariates Z grouping

both the appraisal value per mbf and the volume of the timber17.

Table 1.2: Winning Bids

Variable Coefficient Std. Deviation t-value p-value

Constant 11.1265*** 3.8554 2.886 4.08E-03

Appraisal Value 1.2873*** 0.0505 25.514 0.000

Volume 0.0029*** 0.0008 3.503 0.0005
R0.5 0.4159

Significance level: * 10%, ** 5% and *** 1%.

Results

The choice of the set of prescribed quantiles A = {α1, · · · , αK} used in the tests is an

important issue. It would be ideal to estimate all the quantiles of the private values

16The coefficient of determination is given by

Rα = 1−
Q̂
(
β̂0, β̂1, β̂2|α

)
Q̂
(
β̂0|α

) ,

and represents how much of the variability in the winning bids is explained by both covariates
above at the quantile level α.

17We also investigated nonlinearity with respect to the appraisal value and the volume of the
timber. However, the results were not statistically significant.
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conditional distribution. However, as noticed by Koenker (2005) and also seen from

our estimation results, the asymptotic precision of the quantile estimates in general,

and the quantile regression estimates in particular, depend on the quantile density

function evaluated at the quantile of interest. If the data are sparse at the quantile

of interest, then the quantile regression estimates will be less precise. I observed

this lack of precision when estimating the quantiles closer to the boundary. For this

reason, I restrict to A = {0.12, 0.14, · · · , 0.80}.
The first sealed bid auction stage used to qualify bidders for the ascending auction

may select a certain number of bidders for the ascending auction stage, so that it

might be interesting to use V (·|X, I), which depends upon I, in the policy analysis

to be conducted. Roberts and Sweeting (2012) found evidences for a selective

entry when studying timber auctions in California. They consider in the model

a significant entry cost affecting bidders participation because bidders are allowed

to conduct their own cruise. They argue that conducting a private cruise responds

for a large fraction of the bidder’s entry cost. Because bidders in our application

do not conduct their own cruise, the entry cost might be small compared to the

Californian timber auctions. There are nevertheless other costs that may affect

bidders participation, such as developing a market studying, preparing the bids and

attending to the auction. If indeed the entry costs are not relevant for the bidders’

decision in participating, then the optimal reservation price policy could be chosen

independently of I, as shown in Proposition 1.1-(ii).

Table 1.3: Test of the Exclusion Participation Restriction

Null Hypothesis Specification M-Statistic p-valuea,b

γ∗ (α|I) = γ∗ (α) for all α ∈ A and I ∈ I
Linear 653.83 0.3096

Exponential 720.37 0.4136
a The p-value and critical values are computed using the random weighting bootstrap method. More

details about the test are given in section 1.4;
b The number of bootstrapping replications is 5,000; A = {0.12, 0.14, · · · , 0.80} and I = {2, 3}.

Testing the relevance of a private value quantile function conditional upon

bidder’s participation can thus be very useful in the analysis that follows. Table

1.3 gives the results of the test of exclusion participation restriction suggested in

section 1.4. There is not enough statistical evidences to reject the null hypothesis

of independence in both specification models (linear and exponential), implying
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that a possible improvement in efficiency can be achieved by pooling both samples.

In other words, it is possible to rule out unobserved heterogeneity and entry stage

affecting bidders participation. Note that an entry model as Levin and Smith (1994),

where bidders do not know their private values at the entry stage, would generate

private values independent upon I as observed in Table 1.3. However, the bidders’

participation decision in Levin and Smith (1994) is random, which may be considered

a bit unrealistic.

Table 1.4 gives the results of the choice of specification test described in section

1.4 that investigates which of both regression specifications, linear or exponential,

better represents the private value conditional quantiles. In the first row of Table 1.4,

the test considers a null hypothesis in favour of the exponential specification, whereas

in the second row the null hypothesis is reversed in favour of the linear specification.

Both tests conclude that the linear specification dominates the exponential one over

the set of prescribed quantiles A. Therefore the linear specification is used in the

rest of this section.

Table 1.4: Choice of Specification

Null Hypothesis Test Statistic p-valuea,b

QE (γ∗E|α)−QL (γ∗L|α) ≤ 0 for all α ∈ A 20,142.55 0.0000
QL (γ∗L|α)−QE (γ∗E|α) ≤ 0 for all α ∈ A -3,103.58 0.9938
a The p-value and critical values are computed by resampling with replacement the

(X`, bw` )-pair in each original subsample LI . Note however that the result of
independence given by the test of exclusion participation restriction is considered,
so that both samples with I = {2, 3} are pooled in this analysis. More details about
the test are given in section 1.4;

b The number of bootstrapping replications is 5,000; A = {0.12, 0.14, · · · , 0.80}.

Table 1.5 provides the result of testing constancy of the slope coefficients.

This test investigates whether changes in the auctioned characteristic Z affect

the private values quantiles similarly across the entire distribution. It may also

show how heterogeneous18 are the bidders across the population. The test gives

strong statistical evidence to reject the null hypothesis that the slope coefficients are

constant across the quantiles α ∈ A. Therefore, bidders react differently to changes

in the quality and size of the timber tract, as also clearly illustrated by Table 1.6

18Recall that heterogeneity is the term used in this chapter to represent the different reaction
of the bidders to changes in the auctioned characteristics according to their rank in the private
values conditional distribution.
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and Figures 1.1 and 1.2 below. Given the test result, the pooled quantile regression

estimator provides a better characterization of the private value conditional quantiles

than the CQR estimator defined in (1.3.21) and the mean analysis suggested by

Rezende (2008).

Table 1.5: Constancy of the Slope Coefficients

Null Hypothesis M-Statistic p-valuea,b

γ∗1 (α) = γ∗1 for all α ∈ A 124.51 0.0048
a The p-value and critical values are computed using the

random weighting bootstrap method. Note however that the
results obtained in the previous two tests were considered for
this analysis. More details about the test are given in section
1.4;

b The number of bootstrapping replications is 5,000; A =
{0.12, 0.14, · · · , 0.80}.

The next Table and two following Figures describe the private values quantile

regression coefficients. The most important variable is the appraisal value, a quality

measure released by the seller, which is often interpreted as the seller’s private

value, see Lu and Perrigne (2008) and Aradillas-Lopez et al. (2013). The associated

quantile regression coefficient is given in the second column of Table 1.6 and Figure

1.1 for a median auction, where the volume is 967 thousand of board feet and the

appraisal value is about $68 per thousand of board feet. Note that the coefficient is

always significant and larger than 1, suggesting that it acts as a markup indicating

how much more the auctioned good appraisal value is valued by the bidders than

the seller. The private values can be also interpreted as a measure of how much the

bidders would be willing to sell goods made with the timber bought at the auction19.

This suggests that the higher the bidder’s private value, the higher is his efficiency

in aggregating value to the timber. The coefficients increase over the quantile levels,

suggesting a relative increase in the markup of 75% when comparing bidders in

the quantiles α = 0.10 and α = 0.80 of the private value conditional distribution.

This is also evidence that bidders belonging to the upper tail of the private value

distribution are more highly affected by changes in the appraisal value than median

bidders.

19In this interpretation, it is necessary to assume that timber is the most important component
of the goods produced by the bidders. This could be however modified to cover other cases where
timber would only be a part of these goods.
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Table 1.6: Private Value Quantile Regression Estimates

Quantile Level Intercept Appraisal Value Volume
0.1 0.95 1.01 0.0007

[-0.97,2.28] [0.99,1.04] [0.0004,0.0016]

0.2 3.00 1.04 0.0016
[-0.72,8.49] [0.99,1.13] [0.0005,0.0027]

0.3 9.39 1.15 0.0018
[2.05,15.01] [1.05,1.22] [0.0010,0.0033]

0.4 11.77 1.25 0.0034
[5.32,20.83] [1.14,1.33] [0.0013,0.0049]

0.5 21.03 1.29 0.0041
[10.92,29.24] [1.22,1.43] [0.0023,0.0054]

0.6 35.68 1.36 0.0041
[21.63,45.02] [1.27,1.56] [0.0029,0.0055]

0.7 44.28 1.57 0.0045
[29.94,77.15] [1.22,1.81] [0.0029,0.0071]

0.8 67.64 1.75 0.0060
[32.91,101.02] [1.31,2.02] [0.0024,0.0138]

0.9* 72.98 2.37 0.0167
[12.89,124.22] [1.54,4.56] [0.0031,0.0384]

The estimates are for a median auction and were computed using the pooled quantile
regression estimator defined in (1.3.18). The 95% confidence interval of the quantile
regression estimates in square brackets were computed by resampling with replacement
the (X`, bw` )-pair in each original subsample LI ;

* Note the loss in precision when α gets closer to the upper boundary. This is why such
higher quantile have been excluded from the test statistics.

Figure 1.1 shows the quantile regression and the OLS estimates of the appraisal

value slopes with their corresponding 95% confidence intervals. Observe how the

estimated markup increases over the quantile levels. Figure 1.2 shows the quantile

regression and OLS estimates associated with the variable volume and their 95%

confidence intervals. Although the coefficients seem to increase with the quantile

level in Table 1.6, they lie inside the estimated OLS 95% confidence intervals,

suggesting that the volume coefficient may not depend upon α. In the upper tail

of the distribution, the coefficients are larger, but the confidence intervals are also

wider.
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Figure 1.1: Appraisal Value Slope Coefficients

Notes: The 95% confidence intervals for the OLS estimate consider
the heteroscedasticity-robust (White) standard errors. The ones for
the quantile regression estimates were computed by resampling with
replacement the (X`, bw`

)-pair in each original subsample LI .

Figure 1.2: Volume Slope Coefficients

Notes: The 95% confidence intervals for the OLS estimate consider
the heteroscedasticity-robust (White) standard errors. The ones for
the quantile regression estimates were computed by resampling with
replacement the (X`, bw`

)-pair in each original subsample LI .
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In what follows X (τ) = (X1 (τ) , X2 (τ) , X3 (τ)), where Xj (τ) is the quantile

of order τ of the variable Xj, j = 1, 2, 3. With some abuse of terminology,

X (τ) will be called the quantile of order τ of the matrix of auction covariates

X, X (0.50) being called its median. Figure 1.3 gives the private value conditional

quantile estimates for a median auction and their 95% confidence intervals. Figure

1.4 presents the quantile estimates for several quantile levels of X (τ), where

τ = {0.15, 0.25, 0.50, 0.75, 0.85}. In particular, it shows the change in the shape

of the private value quantiles due to variations in the quality and size of the timber

tract.

Figure 1.3: Private Values Conditional Quantiles

Notes: The estimates are for a median auction. The 95%
confidence intervals were computed by resampling with replacement
the (X`, bw`

)-pair in each original subsample LI .

Figure 1.4 indeed shows that the auction covariates change significantly the shape

of the private value distribution. This effect becomes even clear when comparing

a high and a low quantile of the private value conditional distribution. Consider

in particular the quantiles α = 0.12 and α = 0.80 of the private value conditional

quantile curves and the quantiles of order τ = 0.15, 0.50 and 0.85 of the auction

covariates X, that is, auctions with low, median and high quality and size. The

relative increase in the private value is of about 600% in the auctions with low

quality and size, whereas it reduces to 172% and 142% in the median and high
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Figure 1.4: Private Values Conditional Quantiles and X (τ)

quality and size auctions, respectively. It seems that less productive bidders, i.e.

the ones with a low rank α, choose not to participate in auctions with higher quality

and size20.

We now turn to the estimation of the seller’s expected payoff and the associated

optimal reservation price. The expected payoff of a seller with private values v0,

Π (αr|X, v0), is estimated using numerical integration via a trapezoidal rule to

approximate the definite integral given in Proposition 1.1-(i). Figures 1.5 and 1.6

give the expected payoff of the seller for a median auction with the 95% confidence

intervals for I = 2 and I = 3 bidders, respectively. In both Figures, the estimation

procedures given by the pooled and the individual estimators defined respectively in

(1.3.18) and (1.3.15) are compared. Observe that the former gives smaller confidence

intervals than the latter due to its higher estimation efficiency. Note that the only

difference between the seller’s expected payoffs estimated via (1.3.18) and (1.3.15)

is given by the way the private value conditional quantiles are estimated. In the

former, both subsamples with different number of bidders are pooled, whereas in

the latter the estimation is done for each I.

20Note that this suggests that the rank of the participant and the number of participants are
simultaneously determined, so that quantile regression estimation can be affected by endogeneity.
Addressing this issue is outside the scope of this present chapter.
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Figure 1.5: Pooled Vs Individual I = 2

Notes: The estimates are for a median auction. The seller’s private
value considered here is v0 = AV , i.e. v0 = $68 per unit of timber.
The 95% confidence intervals were computed by resampling with
replacement the (X`, bw`

)-pair in each original subsample LI .

Figure 1.6: Pooled Vs Individual I = 3

Notes: The estimates are for a median auction. The seller’s private
value considered here is v0 = AV , i.e. v0 = $68 per unit of timber.
The 95% confidence intervals were computed by resampling with
replacement the (X`, bw`

)-pair in each original subsample LI .
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The sensitivity of the seller’s expected payoff and the associated optimal

reservation price to choices of the seller’s private value v0 will be now investigated.

The choice of the latter seems to be indeed important to determine the optimal

screening level policy since it represents the possible gains that the seller may have

when selling the good in the outside market. Note that v0 = 0 may represent the

case in which the seller has no opportunity to sell the good outside the auction.

The most common choice for v0 is the appraisal value of the timber21. The results

obtained for v0 = Appraisal Value (AV) are compared with the case with no outside

option v0 = 0. It is also investigated the effect on the seller’s optimal behaviour

when the quality and size of the auction change.

Table 1.7 gives the optimal screening level α∗r , the corresponding optimal

reservation price r∗ = V (α∗r|X) and the seller optimal expected payoff Π (α∗r|X, v0)

for the auctions with quality and size specified by τ = 0.15, 0.50 and 0.85 and

considering both choices of v0. Recall that the optimal screening level α∗r is chosen

as the maximizer of the seller’s expected payoff over A. It is expected that α∗r that

maximize the aggregate expected payoff, as defined in (1.2.10), is the same as the one

maximizing the expected payoff computed for each I, i.e. α∗r = α∗r (I) for all I, given

the independence result obtained in the test of exclusion participation restriction.

The estimation indeed confirms that α∗r is independent upon the number of actual

bidders participating in the auction. This will be then reflected in the computation

of the corresponding optimal reservation price, which will also not depend upon I.

Note however, that α∗r still depend upon (X, v0).

A general conclusion from Table 1.7, which is also expected, is that auctions with

higher quality and size provide larger expected payoffs for the seller. The optimal

screening level in turn reduces when the quality and size of the auction increase. A

possible reason for that is the low heterogeneity among bidders observed in better

auctions. Recall from Figure 1.4 that auctions with low quality and size show a

significant increase in the markup over the timber value. Therefore, as seen from

21As mentioned in Aradillas-Lopez et al. (2013), the seller’s private value may be even lower
than the appraisal value of the timber if exercising an outside option (through, for example, a
lump-sum contract) entails additional cost to the seller. It is also possible that v0 is nevertheless
higher than the appraisal value since scaled sales require the timber service to measure the timber
actually harvested to calculate the payment. Therefore, by exercising the outside option the seller
would avoid those costs.
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Table 1.7: Optimal Reservation Price

v0 0 AV
α∗r (v0, X (0.15)) 0.75 0.75

[0.52,0.80]a [0.56,0.80]

V (α∗r|X (0.15)) 83.08 83.08
[38.93,104.58] [45.34,109.03]

Π (α∗r|X (0.15) , I = 2, v0) 32.64 39.05
[26.16,44.78] [30.26,50.33]

Π (α∗r|X (0.15) , I = 3, v0) 38.98 43.80
[30.62,52.92] [33.32,56.73]

α∗r (v0, X (0.50)) 0.28 0.71
[0.12,0.36] [0.56,0.78]

V (α∗r|X (0.50)) 87.93 159.89
[67.73,101.96] [123.40,192.43]

Π (α∗r|X (0.50) , I = 2, v0) 91.71 108.49
[79.17,102.32] [95.11,122.13]

Π (α∗r|X (0.50) , I = 3, v0) 102.93 112.50
[99,126.57] [89.63,114.26]

α∗r (v0, X (0.85)) 0.24 0.56
[0.12,0.42] [0.47,0.80]

V (α∗r|X (0.85)) 163.65 243.97
[135.51,213.63] [220.03,376.25]

Π (α∗r|X (0.85) , I = 2, v0) 177.66 203.26
[163.40,192.73] [187.71,223.19]

Π (α∗r|X (0.85) , I = 3, v0) 196.37 208.61
[179.89,212.72] [191.63,231.26]

a The 95% confidence intervals in square brackets were computed by resampling
with replacement the (X`, bw` )-pair in each original subsample LI .

Proposition 1.2.8, the seller has a stronger incentive to use screening for low quality

and size auctioned goods. For these low quality and size auctions, the seller private

value does not seem to change reservation price recommendations, which, as the

expected payoff, remains constant when v0 grows from 0 to the appraisal value.

This may also be related with the large heterogeneity among the bidders, which
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resulted in a strong increase in the private value conditional quantiles. Observe as

well that the increase in α∗r when v0 grows from 0 to the appraisal value is smaller

when comparing median auctions with auctions with higher quality and size.

As mentioned in Section 1.2, the probability of trading in the auction with a

screening level αr is 1− αIr . Table 1.8 groups the probabilities of trading in each of

the three kinds of auctions for the two choices of v0. Note that in the auctions with

low quality and size, the probability of selling the good is very low (44% and 58% for

I = 2 and I = 3, respectively). This is because bidders are very heterogeneous and

the seller should set a high screening level to avoid low bidders from participating.

This somehow carries over for median and higher quality and size auctions when the

seller’s private value is the appraisal value. Policy recommendations with such low

probability of selling may not make sense in practice, especially for goods with a

potential high storage cost. Note however that auctions with high quality and size

and I = 3 seem not to be so much affected by this issue.

Table 1.8: Probability of Trading

v0 = 0 v0 = AV
X (0.15) I = 2 44% 44%

I = 3 58% 58%

X (0.50) I = 2 92% 50%
I = 3 98% 65%

X (0.85) I = 2 94% 69%
I = 3 99% 82%

By reducing the seller’s private value, the probability of trading increase, but

such a consideration is mostly theoretical since it is not possible in practice to

change the seller’s private value. It nevertheless shows that the seller has a high

incentive to decrease the optimal screening level when he faces the case in which

there is no trade outside the auction. As can be seen, the practical implementation

of the auction theory can be sometimes difficult in the sense that usual choices for

the seller’s private value may lead to recommendation of mechanisms with very low

probability of trading. This may question the relevance of considering expected

payoff in the maximization process.

I now show a comparison of the quantile regression estimation approach proposed
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in this Chapter with a nonparametric alternative. The latter is widely used in

the empirical auction literature due to its flexibility in representing the data at

hand because no structure is imposed in the analysis. Comparing a nonparametric

revenue analysis with a quantile regression one is therefore a way to assess whether

the quantile regression is correct from a policy recommendation point of view. The

nonparametric estimation is conducted as detailed in the end of section 1.2 and

considers a median auction as representative. It is taken into consideration that

Fv (·|X) = Fv (·|X, I) due to the exclusion participation restriction test, which

implies that F̂v (·|X (0.50) , I) must be aggregate over I = 2, 3 as in (1.2.14).

Table 1.9 gives the estimates of the optimal reservation price and optimal expected

payoff using both nonparametric and quantile regression approaches. Note that

the nonparametric estimation results are less precise than the ones derived from

a quantile regression specification. The confidence intervals of the nonparametric

estimates are on average 2.58 times larger than the ones obtained in the quantile

regression analysis. The two estimation strategies seem to give similar results and

there is no reason to reject a quantile regression specification on the ground of policy

recommendation.
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1.6 Conclusion

In this Chapter I proposed an identification and estimation approach based

on quantile regression to recover the bidders’ private values conditional

distribution. The quantile regression framework provides a flexible and convenient

parametrization of the private value distribution, with an estimation methodology

easy to implement and with various specification tests that can be derived. The

latter includes tests of private values and actual number of bidders dependence,

linear versus exponential specifications and constant slope coefficients across quantile

levels.

The Chapter shows that a focus on the quantile level of the private values

distribution and on the seller’s optimal screening level can be both useful for policy

recommendations. The former helps bidders to benchmark their bids in order to

achieve a desired probability of winning the auction, whereas the latter provides a

better understanding of how appropriate is the recommended policy from a seller’s

point of view. Both focuses above are new in the empirical auction literature.

The empirical application using timber auctions from the USFS shows that policy

recommendations should be carefully examined before practical implementation.

The screening level associated with the optimal reservation price is usually high,

resulting in a low probability of trading. The analysis of the shape of the private

value conditional quantile curves suggests that such inappropriate recommendations

are due to a sharp increase in the private value conditional quantiles, which may be

evidence of large heterogeneity among the bidders. As a consequence, the seller has

a strong incentive to screen the bidders by using a high reservation price, leading

then to a low probability of selling the auctioned good.

The private values estimated quantile shapes can be genuine but can also be the

consequence of a model misspecification. Some other works have also noticed such

a high level of the optimal reservation price in timber auctions. Aradillas-Lopez

et al. (2013) suggest that neglecting private values affiliation can generate high

reservation prices. However, their nonparametric methodology may be affected by

the curse of dimensionality. In addition, as noted in Roberts and Sweeting (2012),

timber auctions include a preliminary selection that can affect the estimated shape

of the private value quantile functions. The strong heterogeneity revealed by the
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estimation of the private value conditional quantile function can also be an indication

of asymmetry. As discussed in Cantillon (2008) and Gavious and Minchunk (2012),

sellers facing asymmetry have an incentive to increase competition by increasing

reservation prices.

However, analyzing revenue with a risk neutral seller perspective may be not

appropriate to address issues such as high reservation prices and low probability of

selling the auctioned object. The results given in Hu, Matthews and Zou (2010)

regarding risk aversion affecting sellers can be useful to provide more relevant

reservation price recommendations. In the next Chapter, I propose a numerical

investigation of the variation in the optimal screening level when the seller has a

constant relative risk aversion utility function. I then conclude that considering risk

averse sellers is indeed sufficient to achieve reasonable policy recomendations.
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Abstract

This Chapter proposes a numerical investigation of the variation in the optimal

reservation price and the associated screening level when the seller risk aversion

increases. As noted in the empirical application of the previous Chapter, the optimal

screening level when the seller is risk neutral usually leads to a low probability

of selling the auctioned timber lot. The numerical experiments of this Chapter

then shows that using a higher constant relative risk aversion (CRRA) utility when

computing the optimal reservation price increases the probability of trading in

comparison with the assumption of risk neutrality.
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2.1 Introduction

It is usual in the empirical auction literature to assume that sellers are risk neutral

about selling the good (see e.g. Haile and Tamer (2003), Li, Perrigne and Vuong

(2003), Li and Perrigne (2003), Lu and Perrigne (2008) and Aradillas-Lopez, Gandhi

and Quint (2013)). It is however possible that the costs of holding the auctioned

good for a long period makes sellers risk averse of the possibility of not selling at

the auction in comparison with an outside option in which the trade is certain but

probably at a lower price. As Bulow and Klemperer (2009) say, sellers prefer auctions

because it involves bidders competing simultaneously, which may then increase the

price at which the object is finally sold22. If sellers are risk averse of not trading in

the auction, it is thus more likely that an optimal reservation price recommendation

that yields a higher probability of selling the good is more appropriate from a seller’s

point of view.

Chapter 1 in this thesis analysed ascending timber auctions via a quantile

regression approach under the Independent Private Value (IPV) framework and

a risk neutral seller. The empirical application conducted suggests that the optimal

reservation price policy, or equivalently, the optimal screening level was most of the

time high, yielding a low probability of selling the good. For instance, in some

auctions the optimal reservation price under risk neutrality was about $83 per unit

of volume, which corresponds to the 0.75-quantile of the private values distribution,

i.e. 75% of the population of bidders would be out of the game because of a low

valuation. Such a recommendation policy yields then a probability of selling the

good of about 44% and 58% for 2 and 3 bidders competing, respectively. In the

case of timber auctions, the Government sells via an auction the right to clear-cut

a timber tract. Not selling may penalize the business activities of the bidders and

may have important local economic and political consequences. Not cutting the

wood may also have ecological consequences and delaying the trading may not be

possible when the forest administration is not in a position to manage forests by

itself. Finally, the financial resource may be helpful to ensure a more efficient forest

administration. All these consequences would then motivate a risk averse behaviour

22Auctions may be inefficient when entry is costly, bidders are asymmetric and/or there might
exists a selective process.
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by the Government that was not considered in the previous analysis.

The goal of this Chapter is to investigate whether such a high screening level

policy can be addressed when a risk aversion parameter affecting the Government’s

utility in the auction is introduced in the analysis. The econometric motivation

behind a concave utility function is that it may smooth out the strong variation

observed in the private values quantiles when computing the seller’s payoff. If the

seller risk aversion decreases with the monetary quantity, he would have a strong

incentive to deviate of the situation of no trade. Hu, Matthews and Zou (2010) show

that the optimal screening level policy indeed decreases as the sellers becomes more

risk averse. The empirical study proposed in this Chapter complements the results

in Hu, Matthews and Zou (2010) by showing that risk aversion can drastically

increases the probability of selling the good in the case of US forest ascending

auctions. The dataset considered here was also used in Haile and Tamer (2003),

Lu and Perrigne (2008) and Aradillas-Lopez et al. (2013). A parametric constant

relative risk aversion (CRRA) family of utility functions will be used to represent

the seller’s utility, since it satisfies the seller’s deviation incentive mentioned above.

This Chapter is organized as follows. Section 2.2 presents the auction mechanism

and a quantile version of the seller’s expected payoff. Section 2.3 shows the quantile

regression identification and estimation methodology, the assumptions of the model

and how to estimate the optimal screening level. Section 2.4 gives the results of an

empirical study of the optimal screening level under a risk averse seller. Finally,

section 2.5 concludes this chapter.

2.2 Seller’s Expected Payoff in a Quantile Setup

A single and indivisible object with some characteristics Z ∈ RP is auctioned to

I ≥ 2 bidders through an ascending auction. The seller announces a reservation price

r prior to the auction that is the minimum price that he would be willing to accept.

Both the set of auction covariates X = (1, Z) and the number of actual bidders

I participating in the auction are common knowledge. The object is sold to the

highest bidder for the price of his last bid, provided that it is at least as high as the

reservation price r. Within the IPV paradigm, each bidder i = 1, · · · , I is assumed

to have a private value vi for the auctioned good, which is not observed by other
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bidders. The bidder only knows his own private value, but it is common knowledge

for bidders and sellers that private values have been identically and independently

drawn from a common c.d.f. Fv (·|X) conditional upon the auction characteristics23,

or equivalently, with a conditional quantile function V (α|X), α ∈ [0, 1], defined as

V (α|X) := inf {v : Fv (v|X) ≥ α} = F−1
v (α|X) .

The rank ui of a bidder with private value vi satisfies ui = Fv (vi|X), being

independent of X and with a uniform distribution over [0, 1]. The IPV paradigm

implies that the ranks ui, i = 1, · · · , I, are independent. In other words, the

dependence between the private values vi and the auction covariates X can be fully

captured by the nonseparable model

vi = V (ui|X) , ui
iid∼ U[0,1] ⊥ X. (2.2.1)

Therefore, bidders are identical up to the variable ui, which represents the bidder

ith’s position in the private value distribution. Consider the next two assumptions

concerning the equilibrium bidding in the ascending auction described above and

the private value conditional quantile representation (2.2.1).

Assumption 2.1. The transaction price in an auction is the greater of the

reservation price and the second-highest bidder’s willingness to pay.

Assumption 2.2. V (α|X) is strictly increasing and continuous on its support

[V (0|X) , V (1|X)] for all X.

Assumption 2.1 is from Aradillas-Lopez, Gandhi and Quint (2013) and, as noted

in Athey and Haile (2002) and Bikhchandani, Haile and Riley (2002), is compatible

with the multiple equilibra generated by the ascending auctions. It is for instance the

result of the dominant strategy equilibrium of a button24 auction, which is a stylized

version of an ascending auction. This assumption would also hold approximately in

23It is assumed that the private values distribution is independent upon the number of actual
bidders I competing in the auction, i.e. Fv (·|X) = Fv (·|X, I). This independence assumption is
only consistent with a model with no selective entry. See Chapter 1 for a related discussion.

24In a button auction, bidders hold down a button to remain active while the price rises
continuously, releasing the button to drop out of the game, and the willingness to pay of the
losing bidders is learned from their drop out prices.
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the context of Haile and Tamer (2003) if bidders do not use jump bids at the end

of the auction. Assumption 2.2 is usual in the quantile regression literature.

Consider a binding reservation price r(X) ∈ [V (0|X) , V (1|X)]. The latter

induces screening in the auction since bidders with V (αi|X) < r(X) are prevented

from participating in the game. Let αr be the screening level in the private values

conditional distribution, such that V (αr|X) = r(X). It represents the percentage of

bidders in the population not participating in the auction because of a low valuation.

This gives a probability of not selling the good of 1 − αIr , which implies that, for

a given I, the probability of trading decreases with the level of screening αr. Let

U (·) be the seller’s Von Neumann-Morgenstern (vNM) utility function, satisfying

U (0) = 0, U (1) (·) > 0 and U (2) (·) < 0, where the superscripts (1) and (2) represent

the first and second derivatives of U (·).
Let π (r(X)) denotes the seller’s payoff

π (r(X)) = U (bw) I (bw ≥ r(X)) + U (v0(X)) (1− I (bw ≥ r(X))) ,

where v0(X) ∈ [V (0|X) , V (1|X)] is the seller’s private value for the good that will

be sold. In what follows, let v0 = v0(X) and r = r(X). The following Proposition

gives a quantile expression for the seller’s expected payoff, a candidate for the

optimal screening level α∗r = α∗r (X, v0) and the corresponding optimal reservation

price V (α∗r|X). Let Π (αr|X, I, v0) be the seller’s expected payoff given (X, I, v0)

when the screening level is αr.

Proposition 2.1. Suppose the seller has a vNM utility function U (·). Under IPV

and assumptions 2.1-2.2,

(i) the seller’s expected payoff is

Π (αr|X, I, v0) = U (v0)αIr + U (V (αr|X)) IαI−1
r (1− αr)

+ I (I − 1)

∫ 1

αr

U (V (α|X))αI−2 (1− α) dα,

(2.2.2)

where v0 = V (α0|X) is the seller’s private value;
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(ii) The optimal reservation price V (α∗r|X) satisfies

U (V (α∗r|X))− U (1) (V (α∗r|X))V (1) (α∗r|X) (1− α∗r) = U (v0) , (2.2.3)

where V (1) (α∗r|X) is the private value quantile density25 function.

The proof of Proposition 2.1 is the same as the one in Chapter 1 for Proposition

1.1 since, compared to the risk neutrality case, introducing the utility function only

amounts to transform the private value quantile function V (α|X) into U (V (α|X)).

Equation (2.2.2) in Proposition 2.1 gives the seller’s expected payoff in a quantile

setup. Equation (2.2.3) is the first-order condition (FOC) associated with the

maximization of the seller’s expected payoff. The first implication of (2.2.3) is

that α∗r > α0, or equivalently, V (α∗r|X) > V (α0|X), since V (1) (·|X) > 0 and

U (1) (V (·|X)) > 0. That is, the seller always benefits from choosing a reservation

price above his own private value. The second implication of (2.2.3) is that the

optimal screening level is independent upon I if V (·|X) = V (·|X, I), i.e. the seller

can choose his optimal screening level policy independently of the number of bidders

participating in the auction.

This Chapter considers a CRRA utility function, i.e. U (c; θ) = cθ, where

0 < θ ≤ 1 is the risk aversion parameter and (1− θ) /c is the corresponding Arrow-

Pratt risk aversion measure −U (2) (c) /U (1) (c). The risk neutrality case is given by

θ = 1. As a result, the seller’s expected payoff with screening level αr is given by

Π (αr|X, I, v0, θ) = vθ0α
I
r + V (αr|X)θ IαI−1

r (1− αr)

+ I (I − 1)

∫ 1

αr

V (α|X)θ αI−2 (1− α) dα.

The CRRA family of utility functions provides a measure of risk aversion decreasing

in the monetary quantity c, which can be more useful than a CARA family in the

framework considered here because the seller is relatively more risk averse as his gain

in the auction approximates zero. Note that, for a given θ, ∂U (c; θ) /∂c = θcθ−1 →
∞ as c → 0. In other words, when there is no outside option so that v0 = 0, the

25The quantile density function is defined as the derivative of the quantile function with respect
to α, i.e. V (1) (α|X) = ∂V (α|X) /∂α = 1/fv (V (α|X) |X).
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seller has a strong incentive to sell the good in the auction since his marginal utility

explodes in comparison with the no trade scenario, i.e. he has a strong incentive

to deviate from the situation in which there is no trade. On the other hand, the

utility implied by a CARA family is pratically the same for all values of c given its

exponential behaviour. As a consequence, the seller would not have much incentive

to sell the good when c → 0 as in the CRRA case. Hu, Matthews and Zou (2010)

show that the optimal reservation price decreases with the Arrow-Pratt measure of

risk aversion −U (2) (c) /U (1) (c). As a consequence, the optimal screening level of

the CRRA case will increase with the risk aversion parameter θ.

2.3 Quantile Regression Estimation Methodology

This section describes the quantile regression methodology used to identify and

estimate the private value conditional quantiles and the corresponding expected

payoff maximizer α∗r . The quantile regression approach, developed by Koenker

and Bassett (1978), restricts the quantile representation (2.2.1) to a regression

specification, such as

V (α|X) = Xγ (α)

= γ0 (α) + Zγ1 (α) ,
(2.3.4)

where γ0 (α) is the quantile regression intercept and γ1 (α) the quantile regression

slopes. Note that both the intercept and the slope quantile regression coefficients

depend upon the rank α of the bidder in the population. Therefore, changes in the

conditioning variables not only shift the location of the conditional distribution of

v, but may also affect its scale and shape. A shock on the covariate X may affect

bidders differently according to their rank, i.e. a bidder with a low rank α may

react in a different way than a bidder with a higher rank. A large variation of the

slope and location coefficients, γ1 (α) and γ0 (α), may indicate strong heterogeneity

among the bidders. From now on, the term ”heterogeneity” will be used for brevity
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to represent this strong variation in the private values quantiles26.

The quantile regression specification (2.3.4) is derived from Chapter 1 in this

thesis, where it has been successfully tested against several alternatives. Note that

it is assumed a linear specification for the private values conditional quantiles and

also that the latter are independent upon the number of actual bidders I competing

in the auction, i.e. V (·|X) = V (·|X, I). The identification and estimation strategies

are also derived from Chapter 1. As mentioned in the latter, the ascending auction

format is specially suitable to identify the private value quantiles under the IPV

paradigm since, as shown in Athey and Haile (2002), the c.d.f. of the winning

bids can nonparametrically identify the private value distribution. The following

assumptions are required for the identification and estimation of V (·|X):

Assumption 2.3. The private value conditional quantiles has a quantile regression

specification such as

V (α|X) = Xγ (α) . (2.3.5)

Assumption 2.4. The auction specific variable, Z, has dimension P , with a

compact support in Z ⊂ (0,+∞)P and a nonempty interior.

Assumption 2.5. The variables {I`, X`, vi`, i = 1, 2, . . . I`, ` = 1, · · · , L} are

independent and identically distributed. Conditional on X`, the private values vi` are

independent with common c.d.f. Fv (·|X`) and a density function fv (·|X`) bounded

away from zero.

Assumptions 2.3 deals with the quantiles of the private value distribution.

It imposes a correct specification of the private value conditional quantiles.

Assumption 2.4 ensures that if xγ1 = xγ2, for all x ∈ X, thus γ1 = γ2. Both

assumptions 2.3 and 2.4 are required for the private value quantile identification.

Assumption 2.5 is necessary for estimation purposes and implies that each auction

is independent and that, within an auction, the IPV paradigm holds.

Consider the winning bid bw` at the auction `, ` = 1, · · · , L, which is the amount

paid by the winner. Let B (α|X) be the α-quantile of the winning bids conditional

26Note that heterogeneity and asymmetry are two concepts that should not be confused.
Heterogenity is concerned with the variation of γ (α) across quantile levels α, while asymmetry
implies that different bidders can have different coefficients γ (α).
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distribution given the auction characteristics X. It follows from Athey and Haile

(2002, equation (5)) that ΨI (Fv (·|X)) is the distribution of the second highest

private value, which is equal to the winning bid. Lemma 1.3 in Chapter 1 establishes

that if the private value quantile admits a linear quantile regression representation

such as (2.3.5), then the winning bid quantile function is also given by

B (α|X) = Xβ (α)

with β (α) = γ
(
Ψ−1
I (α)

)
for α ∈ [0, 1], or equivalently,

γ (α) = β (ΨI (α)) , (2.3.6)

where ΨI (t) = ItI−1 − (I − 1) tI . Equation (2.3.6) shows that the private value

quantile regression coefficient γ (·) can be recovered from the winning bids coefficient

β (·) but at a different quantile level ΨI (·). The coefficient γ (α) can thus be

estimated via quantile regression method,

γ̂ (α) = arg min
γ∈Γ

1

L

L∑
`=1

ρΨI` (α) (bw` −X`γ) ,

where ρα (u) = u (α− I (u < 0)) and Γ is a compact subset of RP .

I now turn to the estimation of the seller’s expected payoff and its maximizer

α∗r . As mentioned in Chapter 1, it is more convenient to find the optimal screening

level α∗r as a maximizer of an estimation of Π (αr|X, I, v0, θ) than to use the closed

form FOC given in (2.2.3)27. This is because the latter requires an estimation

of the private value quantile density function, which in turn cannot be estimated

at a parametric rate since it would eventually involve a smoothing parameter.

On the other hand, the private value conditional quantile can be estimated at a

parametric rate due to the quantile regression methodology. The seller’s expected

payoff Π (αr|X, I, v0, θ) will be estimated over a grid of prescribed quantiles A =

{0.12, 0.14, · · · , 0.80}. The quantiles closer to the boundary are not considered given

a lack of precision in the estimates due to sparsity of the data around this region. To

estimate Π (αr|X, I, v0, θ), I first estimate V (·|X) via quantile regression and then

27See Li, Perrigne and Vuong (2003) for a similar approach.
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apply numerical integration using a trapezoildal rule over the grid A to approximate

the definite integral in (2.2.2). Since the optimal screening level does not depend

upon I by Proposition 2.1-(ii), the optimal screening level is then chosen over A

such that an aggregate Π̂ (αr|X, v0, θ) is maximized, i.e.

α̂∗r = arg max
I∑
I=2

Π̂ (αr|X, I, v0, θ)LI/L, (2.3.7)

where
{

2, · · · , I
}

is the support of I, LI is the number of auctions in the sample

with I bidders competing and L the total sample size. The estimation will be done

for each value of θ in order to understand the impact of a risk averse seller on the

optimal reservation price policy.

2.4 Empirical Results

This section investigates empirically whether the optimal screening level decreases

when the seller becomes more risk averse. It is also investigated the sensitivity of α∗r

to changes in the auction covariates X and the seller’s private value v0. The former

seems to play an important role in the recommendation policy, since e.g. goods with

better quality may attract stronger bidders to the auction. The seller’s private value

v0 represents the price at which the seller would sell the good in the outside market.

In particular, v0 = 0 may represent the case in which the seller has no opportunity

to sell the good outside the auction.

The data set used here is publicly available on the internet and aggregates

ascending auctions from the states covering the western half of the US (regions

1-6 as labeled by the USFS) occurred in 1979. It contains 472 auctions involving a

total of 1175 bids and a set of variables characterizing each timber tract including

the estimated volume of the timber measured in thousand of board feet (or mbf)

and its estimated appraisal value given in Dollar per unit of volume. The latter

measures how much the tract worths at the present time, taking into consideration

a combination of factors as volume of each specie, quality and marketable price.

Only scaled sales are considered, where bids are per unit of timber. Therefore, the

winning bids are given in Dollar per unit of volume.
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The government announces a reservation price prior to the auction that is equal

to the appraisal value of the tract. The auction is conducted in two rounds: in the

first round, bidders submit sealed bids28 that must exceed the appraisal value of the

tract to be qualified for the auction; in the second round, bidders compete in an

ascending auction. See Lu and Perrigne (2008) and Aradillas-Lopez, Gandhi and

Quint (2013) for more details about the dataset.

Table 2.1: Summary Statistics

Winning Bids Appraisal Value Volume Number of Bidders

Mean 129.17 72.34 3,171.10 2.49
Std. Deviation 119.76 52.92 4,418.20 0.50
25% 59.13 24.47 294 2
50% 113.81 68.38 967 2
75% 172.53 111.25 4,724 3
Min 0.30 0.25 12 2
Max 1,981.50 219.58 24,800 3
Skewness 8.16 0.44 1.99 0.04
Observations 472 472 472 472

Table 2.1 gives some descriptive statistics about the data set. The auctioned tract

displays significant heterogeneity in quality and size. The mean of the variables are

all above the median, indicating tailored marginal distributions. In particular, the

marginal distribution of the winning bids is highly positive skewed. In the data set,

the number of actual bidders I takes values 2 and 3, with I = 2 more than 50%

of the cases. Table 2.2 provides the results of a median regression analysis of the

winning bids on the timber appraisal value per mbf and the volume. Both variables

are highly significant in the median analysis, which can be seen by the coefficient

of determination R0.50 at the median quantile29. For this reason, a two-dimensional

28Note that the bids in the first round are not proper bids, but a proposal to be qualified for
bidding in the second round.

29The coefficient of determination is given by

Rα = 1−
Q̂
(
β̂0, β̂1, β̂2|α

)
Q̂
(
β̂0|α

) ,

where Q̂
(
β̂|α
)

is the optimized quantile regression objective function. It represents how much of

the variability in the winning bids is explained by both covariates above at the quantile level α.
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vector of covariates Z grouping both the appraisal value per mbf and the volume of

the timber will be considered.

Table 2.2: Winning Bids

Variable Coefficient Std. Deviation t-value p-value

Constant 11.1265*** 3.8554 2.886 4.08E-03

Appraisal Value 1.2873*** 0.0505 25.514 0.000

Volume 0.0029*** 0.0008 3.503 0.0005
R0.50 0.4159

Significance level: * 10%, ** 5% and *** 1%.

Table 2.3 gives the estimates of the private values quantile regression coefficients.

The most important variable is the appraisal value, a quality measure released by the

seller, which is often interpreted as the seller’s private value, see Lu and Perrigne

(2008) and Aradillas-Lopez, Gandhi and Quint (2013). The associated quantile

regression coefficient is given in the second column of the table. The appraisal value

coefficient is always significant and larger than 1, suggesting that this coefficient

acts as a markup indicating how much more the auctioned good appraisal value is

valued by the bidders than the seller. Note that the private value can be interpreted

as a measure of how much a bidder would be willing to sell a good made with the

timber bought at the auction. This then suggests that the higher the bidder’s private

value, the higher is his efficiency in aggregating value to the timber. This strong

variation in the private values quantile regression coefficients can be also interpreted

as heterogeneity among the bidders.

The appraisal value coefficients also suggests that the associated rank of the

appraisal value in the private values distribution is likely to be very low. Indeed in

26 out of 472 auctions, the appraisal value rank is in the range of quantiles α = 0.05

and α = 0.08, while most of the time it is below V (0.05|X). This result is expected

given the requirement of the first round of the game. Recall that in the first round,

bidders submit sealed bids that must exceed the appraisal value of the tract to be

qualified for the auction. Note as well that the appraisal value coefficients increase

over the quantile levels, suggesting a relative increase in the markup of 75% when

comparing bidders in the quantiles α = 0.10 and α = 0.80 of the private values

conditional distribution. This is also evidence that bidders belonging to the upper

tail of the private values distribution are more highly affected by changes in the
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appraisal value than median bidders30.

Table 2.3: Private Value Quantile Regression Estimates

Quantile Level Intercept Appraisal Value Volume
0.1 0.95 1.01 0.0007

[-0.97,2.28] [0.99,1.04] [0.0004,0.0016]

0.2 3.00 1.04 0.0016
[-0.72,8.49] [0.99,1.13] [0.0005,0.0027]

0.3 9.39 1.15 0.0018
[2.05,15.01] [1.05,1.22] [0.0010,0.0033]

0.4 11.77 1.25 0.0034
[5.32,20.83] [1.14,1.33] [0.0013,0.0049]

0.5 21.03 1.29 0.0041
[10.92,29.24] [1.22,1.43] [0.0023,0.0054]

0.6 35.68 1.36 0.0041
[21.63,45.02] [1.27,1.56] [0.0029,0.0055]

0.7 44.28 1.57 0.0045
[29.94,77.15] [1.22,1.81] [0.0029,0.0071]

0.8 67.64 1.75 0.0060
[32.91,101.02] [1.31,2.02] [0.0024,0.0138]

0.9* 72.98 2.37 0.0167
[12.89,124.22] [1.54,4.56] [0.0031,0.0384]

The estimates are for a median auction and were computed by pooling the samples
with different number of bidders. The 95% confidence interval of the quantile regression
estimates in square brackets were computed using a bootstrap procedure that resample
with replacement the (X`, bw` )-pair in each original subsample LI ;

* Note the loss in precision when α gets closer to the upper boundary. This is why such
higher quantile have been excluded from our test statistics.

In what follows X (τ) = (X1 (τ) , X2 (τ) , X3 (τ)), where Xj (τ) is the quantile of

order τ of the variable Xj, j = 1, 2, 3. With some abuse of terminology, X (τ) will

be called the quantile of order τ of the vector X, X (0.50) being called its median.

Figure 2.1 gives the private value conditional quantile estimates for a median auction

and their 95% confidence intervals. Figure 2.2 presents the quantile estimates for

30In Chapter 1 of this thesis, the hypothesis of constancy of the slope coefficients across the
entire distribution of private values is indeed rejected, which is evidence of strong heterogeneity
among the bidders.
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three quantile levels of X (τ), τ = {0.15, 0.50, 0.85}, which represent auctions with

low, median and high quality and size. In particular, it shows how the shape of

the private value conditional quantile curve changes when there is variation in the

quality and size of the timber tract.

Figure 2.1: Private Values Conditional Quantiles

Notes: The estimates are for a median auction. The 95% confidence
intervals were computed using a bootstrap procedure that resample
with replacement the (X`, bw`

)-pair in each original subsample LI .

Figure 2.2: Private Values Conditional Quantiles and X (τ)
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Figure 2.2 indeed shows that the auction covariates change significantly the shape

of the private value distribution. This effect becomes even clear when comparing

a high and a low quantile of the private value conditional distribution. Consider

in particular the quantiles α = 0.12 and α = 0.80. The relative increase in the

private value quantile is about 600% in the auctions with low quality and size,

whereas it reduces to 172% and 142% in the median and high quality and size

auctions, respectively. This strong variation in the private values seems to affect the

optimal screening level policy recommended to the seller, since the latter has a strong

incentive to increase the reservation price when bidders are more heterogeneous.

Chapter 1 indeed shows that the optimal screening level in auctions with strong

heterogeneity is α∗r = 0.75, which yields a probability of trading of 44% and 58% for

2 and 3 bidders, respectively. Note that I = 2 in more than half of the sample.

When the seller is risk averse, the concavity of his utility function may smooth

out the effect of the strong variation in the private value conditional quantiles. This

would then reduce the screening level that maximize the seller’s expected payoff.

Consider for instance a CRRA U (·; θ) where θ = 0.60. Figure 2.3 and 2.4 show

how such a concavity in the utility function would smooth out the seller’s payoff in

auctions with low and high quality and size, respectively. The case θ = 1 corresponds

to the risk neutrality framework used in Chapter 1. Indeed the strong increase

observed in the private value conditional quantile function is neutralized by the

concave utility function. This is even more significant in the case of auctions with

low quality and size, i.e. the ones with strong heterogeneity among the bidders.

The next three Figures give the optimal screening levels and their 95% confidence

intervals for several values of the risk aversion parameter θ and auction quality and

size. Each Figure compares the optimal screening level policy according to the choice

of the seller’s private value: v0 = Appraisal Value (AV) is shown in red and the case

with no outside option v0 = 0 is shown in blue. This is done to understand how the

seller’s optimal screening level policy changes according to his possible gains in the

outside market.

A general conclusion from Figures 2.5, 2.6 and 2.7 is that α∗r is very sensitive to

changes in both (v0, θ) at auctions with low quality and size, whereas it becomes

stable as the quality and size of the auction improve. Consider first the case in

which v0 = AV. Note that the optimal screening level reduces as the quality and
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Figure 2.3: Private Values Transformed Quantile Function (X (0.15))

Figure 2.4: Private Values Transformed Quantile Function (X (0.85))

size of the auction increase. This reduction is however more significant when the

seller is less risk averse (i.e., θ is closer to 1). This sensitivity to changes in θ can be

better understood from Table 2.4. It seems that quality and size do not play a role

when the seller becomes more risk averse. Observe that α∗r remains almost constant

when θ ≤ 0.6. Note that the optimal screening level reduces significantly when the

seller’s private value reduces to zero.

The probability of trading in the auction with a screening level αr is given by
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Figure 2.5: Optimal Screening Level for a Risk Averse Seller (X (0.15))

Notes: The estimates are for an auction of low quality and size,
i.e. X (0.15). The 95% confidence intervals were computed using a
bootstrap procedure that resample with replacement the (X`, bw`

)-
pair in each original subsample LI .

Figure 2.6: Optimal Screening Level for a Risk Averse Seller (X (0.50))

Notes: The estimates are for a median auction, i.e. X (0.50).
The 95% confidence intervals were computed by resampling with
replacement the (X`, bw`

)-pair in each original subsample LI .
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Figure 2.7: Optimal Screening Level for a Risk Averse Seller (X (0.85))

Notes: The estimates are for an auction of higher quality and size,
i.e. X (0.85). The 95% confidence intervals were computed using a
bootstrap procedure that resample with replacement the (X`, bw`

)-
pair in each original subsample LI .

1−αIr , as mentioned in section 2.2. Figures 2.8, 2.9 and 2.10 show how the probability

of trading changes when the quality and size of the auction change and the seller

becomes more risk averse for the case in which v0 = AV. As the optimal screening

level decreases when the seller becomes more risk averse, the probability of trading

then increases. It seems that a concave utility function for the seller has been indeed

sufficient to reduce the optimal screening level, specially in the case in which I = 3.

The probability of trading is moderately high (ranging e.g. from 65% to 71%) when

I = 2 and the seller is very risk averse. It however increases to 80% when I = 3.

The chance of selling the good also increases as the quality and size of the auction

improves. Note as well that such a probability remains almost constant over the

risk aversion parameter at these better auctions. Therefore, risk aversion does not

seem to play a role in determining α∗r at auctions with high quality and size.
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Table 2.4: Optimal Screening Level for a Risk Averse Seller

θ X (0.15) X (0.50) X (0.85)
0.1 0.59 0.59 0.54

[0.42,0.68]b [0.52,0.68] [0.40,0.64]

0.2 0.59 0.59 0.54
[0.47,0.71] [0.52,0.68] [0.40,0.66]

0.3 0.59 0.59 0.54
[0.49,0.73] [0.52,0.71] [0.40,0.71]

0.4 0.59 0.59 0.54
[0.49,0.75] [0.52,0.73] [0.40,0.73]

0.5 0.59 0.59 0.54
[0.52,0.75] [0.54,0.73] [0.42,0.75]

0.6 0.59 0.59 0.56
[0.54,0.78] [0.54,0.75] [0.42,0.75]

0.7 0.75 0.68 0.56
[0.54,0.78] [0.54,0.75] [0.42,0.75]

0.8 0.75 0.71 0.56
[0.54,0.80] [0.54,0.75] [0.45,0.78]

0.9 0.75 0.71 0.56
[0.54,0.80] [0.54,0.78] [0.45,0.78]

1.0 0.75 0.71 0.56
[0.56,0.80] [0.56,0.78] [0.47,0.80]

a The estimates cosider the seller’s private value equal
to the appraisal value of the timber, i.e. v0 = AV.

b The 95% confidence intervals in square brackets
were computed using a bootstrap procedure that
resample with replacement the (X`, bw` )-pair in
each original subsample LI .

2.5 Conclusion

This second chapter of the thesis proposes a numerical investigation of the optimal

screening level policy when seller becomes risk averse of not selling the good. As

shown by the empirical analysis of Chapter 1, the optimal reservation price policy

assuming a risk neutral seller may lead to a low probability of selling the good in

ascending timber auctions. This undesirable feature was due to a sharp increase of
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Figure 2.8: Probability of Trading for a Risk Averse Seller (X (0.15))

Notes: The estimates are for an auction of low quality and size, i.e.
X (0.15).

Figure 2.9: Probability of Trading for a Risk Averse Seller (X (0.50))

Notes: The estimates are for a median auction, i.e. X (0.50).

the private value quantile function, which leads to a high screening level policy in

the risk neutrality case.

The results of Hu, Matthews and Zou (2010) suggest that taking into

consideration risk aversion in the seller’s utility function may be useful to provide

more relevant policy recommendations. This motivates to consider a concave utility

75



2. To Sell or not to Sell? An Empirical Analysis of the Optimal
Reservation Price in Ascending Timber Auctions.

Figure 2.10: Probability of Trading for a Risk Averse Seller (X (0.85))

Notes: The estimates are for an auction of higher quality and size,
i.e. X (0.85).

function into the computation of the seller’s expected payoff, which may neutralize

the effect of the strong variation in the private value quantile function on the optimal

screening level policy. This chapter shows that considering a CRRA family of utility

functions for the seller can indeed help to address this issue related with the high

screening levels since the probability of selling the good increased from 44% to about

80% for very risk averse sellers.

Some authors have previously mentioned that reservation prices were very high in

timber auctions. Consider e.g. Aradillas-Lopez et al. (2013), which suggest that the

IPV framework may not be appropriate to study ascending timber auctions. They

show that this framework may overestimate the optimal reservation price policy for

small values of I in comparison with the case in which private values are positively

correlated. However, their approach is affected by the curse of dimensionality.

Roberts and Sweeting (2012) also argue that the two stage nature of timber auctions

may increase the optimal reservation price because the first stage of the game may

select a few strong bidders and a bunch of low bidders expecting the absence of the

latter. The present chapter proposes an alternative explanation which argues that

high reservation prices are due to the shape of the private value quantile function and

the assumption of a risk neutral seller. As shown empirically for USFS ascending
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timber auctions, assuming that the Government has an increasing CRRA utility is

sufficient to achieve a reasonable high probability of selling the auctioned good.
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Augmented Quantile Regression

for First-Price Auction
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Abstract

This third chapter considers a quantile framework for first-price auction under

the independent private value paradigm. A key stability property is that a linear

specification for the private value conditional quantile function generates a linear

specification for the bids one, from which it can be easily identified. This applies

in particular for standard quantile regression models but also to more flexible

additive sieve specification which are not affected by the curse of dimensionality.

A combination of local polynomial and sieve methods allows to estimate the private

value quantile function with a fast optimal rate and for all quantile levels in [0, 1]

without boundary effects. This allows to estimate the optimal bidding strategy

and all bidder’s private values near the boundaries with a fast rate. Extensions to

binding reservation price and the case where only the winning bid is observed are

considered. The choice of the smoothing parameters is also discussed.
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3.1 Introduction

Many econometric approaches for auctions have been based on structural models.

The equilibrium bidding strategy characterized by Riley and Samuelson (1981)

involves numerical complexities because it depends on the latent private values

distribution, which is unknown to the econometrician. Donald and Paarsch (1996,

2002) have proposed estimation approaches based on maximum likelihood. Their

estimators achieve a rate of convergence faster than the usual parametric one.

Laffont, Ossard and Vuong (1995) have proposed a simulation based estimation

method allowing for general parametric specifications, see also Li (2005) for an

extension to binding reservation price and entry. The semiparametric Bayesian

framework of Li and Zheng (2009) allow for unobserved heterogeneity. Semi

nonparametric methods were considered in Bierens and Song (2012). These

parametric methods can be computationally demanding and are subject to possible

misspecifications which may give erroneous policy recommendations. Closer to our

approach is the simpler least squares procedure of Rezende (2008).

Another branch of the literature has developed a nonparametric approach. Since

the private values are not observed, it may indeed be difficult to choose a parametric

model and using a nonparametric method in a first stage may be suitable to

avoid strong misspecifications. Guerre, Perrigne and Vuong (2000), hereafter GPV,

have shown that, in a first step, it was possible to recover nonparametrically the

latent private values from the observed bids. The second step uses the estimated

private values to estimate the probability density function (p.d.f) of the true ones.

The resulting estimator is computationally simple and rate-optimal under fairly

weak smoothness conditions. However, as any other nonparametric methods, this

approach is subject to the curse of dimensionality. That such issue is potentially

important in empirical approaches can be seen in works as Haile and Tamer (2003),

or more recently Aradillas-Lopez, Gandhi and Quint (2013), which in the simpler

context of ascending auctions have considered 5 or 6 explanatory variables for at

a best a few thousands observations. The parametric approach of Li and Zheng

(2009) involve 8 variables and Athey, Levin and Seira (2011) investigates the effects

of more than 10 variables. With 2,000 observations and 5 covariates with a uniform

distribution over the unit cube, the length of a cube containing an average of 10
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observations is 0.34, which is as large as one third of the range of each covariates

and suggests that the bias of standard nonparametric procedures can be important

for usual auction sample sizes. Because the estimation of the private values involves

estimation of a conditional p.d.f, implementing dimension reduction approaches

based on additive or single-index restrictions is not straightforward. Another

undesirable feature is, as noted in Hickman and Hubbard (2013), the boundary bias

which affects the estimation of the private values. This means in particular that it

is difficult to recover the privates values of high bids which are especially important

since such bidders have a high probability to win the auction. As a consequence

empirical applications based on such estimated private values may fail to properly

picture the upper tail of the private value distribution, although it is clearly a key

component of the model.

The purpose of this third chapter of the thesis is to propose a new quantile

approach which can deal with rich set of covariates and are free from asymptotic

boundary bias. Quantiles have already been used in econometrics with various

purposes. This covers risk aversion identification and estimation as in Campo

(2012), Bajari and Hortaçsu (2005) for experimental data, Guerre, Perrigne and

Vuong (2009) and Zincenko (2013) for field data. Haile, Hong and Shum (2003)

have proposed a quantile based test of the common values hypothesis. Marmer and

Shneyerov (2012) build on the insights of Haile et al. (2003) to estimate the p.d.f of

the private values through the quantile function of the bids, bypassing the private

values estimation step of GPV. Guerre and Sabbah (2012) have proposed to estimate

the private value conditional quantile function, which is a weighted sum of the bids

conditional quantile function and its derivative with respect to the quantile level as

noted in Marmer and Shneyerov (2012). Enache and Florens (2012) have estimated

the private values quantile function in a third-price auction model. Marmer,

Shneyerov and Xu (2013a) have used a nonparametric estimation of quantiles to test

for selective entry as Lee, Song and Whang (2013) who test dominance implications

of the independent private value paradigm. Gimenes (2013) has studied quantile

regression estimation in ascending auctions as a way to circumvent the curse of

dimensionality and the need to choose a bandwidth which affect nonparametric

estimation methods. Hence very few works have considered private values quantile

function estimation for first-price auctions.
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Quantile and quantile levels are useful for bidders and sellers. It is shown that

private values quantiles can be used to compute a private value benchmark above

which bidders have a prescribed probability to win the auction. Optimal bidding

strategies can also be written using bid quantiles which can be estimated from

auction data. For the seller, a key decision is the choice of a reservation price.

Equating the reservation price with the cost quantile function gives the screening

level, which should remain low enough to ensure that bidders will enter the auction

and that the auctioned object will be sold. This chapter also shows that the expected

utility of the seller can be easily expressed using the private value quantile function.

As noticed in Guerre and Sabbah (2012), a key point for econometric approaches

is that the mapping which transforms the private value quantile function into its

bid counterpart is linear, see also Gimenes (2013) for ascending auctions. Further

implications are that a linear private value quantile specification, as for instance a

quantile regression model, is mapped into a linear bid one and that this mapping

is one to one due to identification as established in GPV, a key stability property

of linear quantile specification. A contribution is to show that this leads to simple

estimation methods for private value linear quantile specifications. This includes

the quantile regression model of Koenker and Bassett (1978). This specification

can be estimated with the optimal rate of GPV holding in the absence of covariate,

independently of the number of explanatory used in the quantile regression. As

a consequence, quantile regression models are especially convenient to handle

large dataset with many covariates. However, as argued in Horowitz and Lee

(2005), quantile regression may fit poorly in many applications and more flexible

approaches are also needed as a potential alternative. The dimension reduction

estimation strategy considered here extends the additive interactive regression (AIR)

approach of Andrews and Whang (1990) to quantile models for first-price auctions.

This amounts to consider a infinite dimensional sieve quantile regression model

constrained by a certain level of interactions. This includes the nonparametric

additive quantile regression model of Horowitz and Lee (2005) which corresponds to

the case of no interactions. It is shown that the sieve quantile regression estimator

achieves the optimal rate of GPV of the case where there is only one covariate, so

that this specification can also be used to circumvent the curse of dimensionality.

The case of a higher level of interactions is also considered.
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A new aspect of the proposed quantile regression model deals with estimation of

bid conditional quantile function first derivative with respect to the quantile level.

Indeed, it is first shown that the private value conditional quantile function can be

written as a sum involving the bid conditional quantile function and its derivative.

To estimate the latter the sieve quantile regression objective function is modified

by smoothing around the quantile level of interest. Such additional quantile level

variation allows to estimate the quantile derivative with respect to the quantile level

by standard local polynomial techniques as reviewed in Fan and Gijbels (1996). This

is apparently new in both the local polynomial and quantile regression literature

and is a key ingredient to obtain an estimation of the conditional private value

quantile function which is free of boundary bias. Due to the additional smoothing

and derivative estimation, it is refered as an augmented quantile approach all along

the chapter. Estimating the conditional private value quantile function without

asymptotic boundary bias allows to estimate all the bidders’ private values. This

can be important for applications which, as in Cassola, Hortaçsu and Kastl (2013),

implement further statistical analysis using the estimated private values as if they

were the true ones.

The rest of the chapter is organized as follows. Section 2 explains identification

of the conditional private value quantile function and studies the transformation

which maps it into a conditional bid quantile function. This is in particular useful

to understand how a sieve expansion for the conditional private value quantile

function generates a sieve expansion for the conditional bid quantile function with

similar convergence properties, which is important for sieve estimation. Section 3

presents the new quantile regression estimation strategy. The uniform convergence

rate, pointwise bias variance expansion and asymptotic normality are obtained for

the quantile regression estimation procedure. For the sake of brevity, the results

for its nonparametric additive extension focuses on integrated mean square error

and uniform consistency rates. Section 4 considers some extensions of interest as

estimation of the optimal bidding strategy and the private values, the cases where

only the winning bid is observed or where the reservation price is binding. The

choice of a bandwidth parameter and of the order of the sieve is also discussed and

investigated in a small simulation experiment. Section 5 concludes the chapter and

Section 6 gathers the proofs of the theoretical results.
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3.2 First price auction and quantile regression

models

A single and indivisible object with some characteristic x ∈ Rd is auctioned to I ≥ 2

risk-neutral buyers, with a reservation price r chosen by a risk-neutral seller. The

reservation price r is announced prior the auction. The potential number of bidders

I, covariates x and reservation price r are known to the seller, the bidders and

the econometrician, while the reservation price r may be only known to the seller.

The object is sold to the highest bidder who pays his bid to the seller, provided

it is at least as high as the reservation price r. In the sealed bids framework

considered here, each bids are sealed so that a bidder does not know others’ bid

when forming his own bid. Within the Independent private value (IPV) paradigm,

each potential bidder is assumed to have a private value, which he knows, Vi ≥ 0,

i = 1, . . . , I for the auctioned object. He does not know the private value of

the other bidders. The bidders and the seller know that the private values have

been independently drawn from a common distribution given (x, I) with conditional

cumulative distribution (c.d.f) F (·|x, I), or equivalently with conditional quantile

function V (α|x, I), α ∈ [0, 1], which is such that

V (α|x, I) = inf {v ∈ R : F (v|x, I) ≥ α} .

When the private value conditional distribution is absolutely continuous with a

probability density function (p.d.f) f (·|x, I) positive on its support as assumed from

now on, V (α|x, I) is the reciprocal function F−1 (α|x, I). It is also well-known that

Ui = F (Vi|x, I), which can be viewed as the rank of the ith bidder in the private

value population, is independent of x and I with a uniform distribution over [0, 1].

It follows from the IPV paradigm that the private value ranks Ui = 1, . . . , I are

independent. In other words, the dependence between the private value Vi and the

auction covariates x and I is fully captured by the nonseparable model,

Vi = V (Ui|x, I) , Ui
i.i.d∼ U[0,1] ⊥ (x, I) . (3.2.1)
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As a consequence each bidder are identical up to the variable Ui which describes

the ith bidder’s rank in the private value distribution. Since the Ui are i.i.d with a

known distribution, the bidders are identical ex ante and the game is symmetric.

In a first-price auction, the ith bidder submits a sealed bid Bi and wins the

auction if Bi > maxj 6=iBj and Bi ≥ r, giving a payoff Vi − Bi while his payoff

is 0 otherwise. The unique symmetric differentiable Bayesian Nash equilibrium of

the game has been characterized by many authors, including Riley and Samuelson

(1981), Maskin and Riley (1984) and Krishna (2002). A key finding is that the

optimal bids Bi are given by a strictly increasing and continuous transformation of

the private values Vi above r,

Bi = sr (Vi;x, I) , sr (v;x, I) = v − 1

F (v|x, I)I−1

∫ v

r

F I−1 (t|x, I)I−1 dt for v ≥ r,

(3.2.2)

assuming that the reservation price r lies in the support of the private value

conditional distribution. We shall consider here the case of a non binding reservation

price r = 0. Especially relevant for a quantile approach is the fact that the optimal

bidding strategy s0 (·;x, I) is strictly increasing. Indeed, if B (α|x, I) denotes the

common conditional equilibrium quantile function of the distribution of i.i.d optimal

bids Bi, the quantile invariance property implies that,

B (α|x, I) = s0 (V (α|x, I) ;x, I) . (3.2.3)

The fact that s0 (·;x, I) is increasing and (3.2.3) have several important implications

for the bidder. In the next lemma, G (b|x, I) stands for the conditional c.d.f. of an

optimal bid Bi, i.e. G (·|x, I) = B−1 (·|x, I).

Lemma 3.1. Consider a given (x, I). Suppose that the independent private value

paradigm holds and that α ∈ [0, 1] 7→ V (α|x, I) is continuously differentiable with a

strictly positive α-derivative V (1) (α|x, I). Then

i. The private value ranks Ui = F (Vi|x, I) are identical to the bid ranks

G (Bi|x, I),

Ui = F (Vi|x, I) = G (Bi|x, I) for all i = 1, . . . , I.
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ii. The optimal bids are given by,

Bi = B (Ui|x, I) = B (F (Vi|x, I) |x, I) , for all i = 1, . . . , I. (3.2.4)

iii. Suppose that the ith bid is B (a|x, I) for some a ∈ [0, 1] and assume that the

other bidders make optimal bids. Then the probability that the ith bidder wins

the auction is aI−1.

Lemma 3.1-(i) states that the rank Ui is an invariant of the model which is a

key property and implies (ii) and (iii). Such invariance also holds for many different

models involving an increasing strategy. Lemma 3.1-(ii) gives alternative expressions

for the optimal bidding strategy s0 (·|x, I) of (3.2.2). In the case where the ith

bidder knows his private value rank Ui, an optimal bid can be computed from

the conditional bid quantile function as seen from (3.2.4) and, as B (·|x, I), can be

estimated from the observed bids. Computing an optimal bid from the private value

Vi is more involved due to the private value distribution F (·|x, I).31 Lemma 3.1-(iii)

has important practical implications. Assuming that all bidders use optimal bids

and combined with (i), (iii) implies that a bidder with a private value V (a|x, I) has

a probability aI−1 to win the auction. If a bidder wants to win the auction with a

prescribed probability π, he must ensure that his private value is larger or equal than

V
(
π1/(I−1)|x, I

)
. Lemma 3.1 has also some important econometric implications.

Since the ranks Ui are an invariant of the model, it can be estimated from the

observed bids, so that the private values Vi = V (Ui|x, I) can be estimated from an

estimation of the private value conditional quantile function. The expression (3.2.4)

implies that an optimal bid can be estimated using an estimation of the conditional

quantile bid function B (·|x, I) as soon as the rank Ui is known. When the bidder

knows his private value Vi but not his rank Ui, an additional estimation of the private

value conditional c.d.f. F (·|x, I) = V −1 (·|x, I) is needed to estimate an optimal bid.

Such econometric applications of Lemma 3.1 are discussed in Section 3.4.

31Interestingly, Lemma 3.1-(i) also holds when the bidders are identically risk averse, in which
case the optimal strategy depends upon risk aversion. However, Lemma 3.1-(ii) also holds and
shows that an optimal bid can be estimated without estimating the utility function, through an
estimation of B (·|x, I) only when using the rank Ui.
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From the seller perspective, the knowledge of the conditional function V (α|x, I)

is sufficient to compute the expected revenue of a large class of auction mechanisms

with a reservation price r as shown by the next lemma. To ensure that the expected

revenue equivalence theorem holds, consider an auction mechanism A such that

(i) any bid higher than r can bid the auction; (ii) the highest bid is awarded the

auctioned object; (iii) each bidders are treated alike, and (iv) there is a strictly

increasing common equilibrium strategy Bi = b (Vi;x, I) for each buyer willing to

bid.

Lemma 3.2. Consider some (x, I) for which α ∈ [0, 1] 7→ V (α|x, I) is strictly

increasing and continuously differentiable. Let αr (x, I) be the screening level

associated with the public reservation price r (x, I) ∈ [V (0|x, I) , V (1|x, I)], that

is the unique quantile level such that,

r (x, I) = V (αr (x, I) |x, I) .

Suppose that the seller is risk-neutral with a valuation V0 (x, I) of the auctioned

good. Then, under the IPV paradigm, the common equilibrium bidding strategy

Bi = b (Vi;x, I) for any auction mechanism A gives an expected utility to the seller

of

V0 (x, I)αr (x, I)I

+ I

{
r (x, I)αr (x, I)I−1 (1− αr (x, I)) + (I − 1)

∫ 1

αr(x,I)

V (α|x, I)αI−2 (1− α) dα

}
.

The expression of the expected utility of the seller differs from the one given

in Riley and Samuelson (1981) which involves the conditional p.d.f of the private

values, or equivalently the α−derivative V (1) (α|x, I), but can easily be recovered

from Krishna (2002, p.25). The expression in Lemma 3.2 is more convenient for

estimation purpose because, in a nonparametric setup, V (α|x, I) can be estimated

with a faster rate than V (1) (α|x, I). The first-order condition associated with the

maximization of the expected revenue as a function of the screening level writes, for

V (1) (α|x, I) = ∂V (α|x, I) /∂α,

(1− αr (x, I))V (1) (αr (x, I) |x, I) = V (αr (x, I) |x, I)− V0 (x, I) ,
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which since r (x, I) = V (αr (x, I) |x, I), αr (x, I) = F (r (x, I) |x, I) and

V (1) (α|x, I) =
1

f (V (α|x, I) |x, I)
,

is identical to the

first-order condition r (x, I) − (1− F (r (x, I) |x, I)) /f (r (x, I) |x, I) = V0 (x, I) in

Krishna (2002, eq. 2.12). When V (α|x, I) = V (α|x) and V0 (x, I) = V0 (x), that is

when there is no unobserved heterogeneity, both the optimal screening level α∗r and

reservation price r∗ = V (α∗r|x) does not depend upon the number of bidders I.

How econometric modelling can benefit from a quantile perspective is clarified

by the next theorem. Theorem 3.1 has two different purposes. The first part solves

the auction game by computing the equilibrium bid quantile function B (·|x, I) as

a function of the private value one V (·|x, I). The second part of Theorem 3.1

explains how to identify the private value quantile function V (·|x, I) from the

bid one B (·|x, I), see (3.2.6) below. It is therefore the cornerstone of a quantile

identification strategy. In Theorem 3.1 and all over the chapter, V (1) (α|x, I) stands

for the α-derivative ∂V (α|x, I) /∂α.

Theorem 3.1. Suppose that the reservation price r is not binding and that I ≥ 2.

i. Assume that V (α|x, I) is continuous over [0, 1] with infα∈[0,1] V
(1) (α|x, I) > 0.

The conditional equilibrium quantile function B (·|x, I) of the I i.i.d optimal

bids Bi satisfies,

B (α|x, I) =
I − 1

αI−1

∫ α

0

tI−2V (t|x, I) dt, (3.2.5)

which is continuously differentiable over [0, 1].

ii. Let B (α|x, I) be a continuously differentiable function with respect to α ∈ [0, 1]

and assume it is the common conditional equilibrium quantile function of I i.i.d

optimal bids Bi generated from I i.i.d private values drawn from V (·|x, I) as

in Part (i). Then it must hold that,

V (α|x, I) = B (α|x, I) +
αB(1) (α|x, I)

I − 1
. (3.2.6)
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As in GPV, equation (3.2.6) in Theorem 3.1 shows that the theoretical auction

model imposes some restrictions on the quantile function of the observed bids.

Indeed the LHS of (3.2.6) must increase with α.32 Interestingly, an heuristic

argument for proving Theorem 3.1 will derive (3.2.6) in the first place. Consider a

bidder with rank α and suppose that he bids B (a|x, I) instead of his optimal bid

B (α|x, I). Since the probability of winning with such a bid is aI−1, it follows that

his expected payoff satisfies,

(V (α|x, I)−B (a|x, I)) aI−1 ≤ (V (α|x, I)−B (α|x, I))αI−1,

meaning that the LHS is maximal when a = α. The associated first-order condition

is,

(I − 1) (V (α|x, I)−B (α|x, I))αI−2 −B(1) (α|x, I)αI−1 = 0,

and rearranging gives (3.2.6). Viewing (3.2.6) as a differential equation with initial

condition B (0|x, I) = V (0|x, I) and solving gives (3.2.5) in a second step.

Another important implication of Theorem 3.1 comes from the linear functional

relationship between the private value and bids quantile functions. Consider a

linear model, possibly infinite dimensional, for the conditional private value quantile

function,

MV = {V (α|x, I) ;V (α|x, I) = L (x, γ (α|I))} ,

where, for each x, γ 7→ L (x, γ) is a known linear operator over a finite or infinite

linear span containing the admissible parameter γ, which can depend upon I. Then,

up to some regularity conditions, (3.2.5) maps MV into a linear model MB for the

conditional bid quantile function,

MB =

{
B (α|x, I) ;B (α|x, I) = L (x, β (α|I)) with β (α|I) =

I − 1

αI−1

∫ α

0

tI−2γ (t|I) dt

}
,

for some admissible γ (·|·). Hence linearity of a private value quantile specification

is preserved when turning to the quantile function of the observed bids, a key

stability property. Reciprocally, given a parameter value β (α|I) of the bid linear

32Quantile functions which do not satisfy this condition can be derived from the c.d.f. G (b) =

(b/ (5− 4b))
1/5

and I = 2 as in GPV, p. 530.
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quantile model such that B (α|x, I) = L (x, β (α|I)), (3.2.6) allows to recover the

corresponding parameter of the private value linear quantile model,

V (α|x, I) = L (x, γ (α|I)) with γ (α|I) = β (α|x, I) +
αβ(1) (α|x, I)

I − 1
.

Hence estimating a linear private value quantile specification is feasible as soon

as it is possible to estimate the coefficient β (α|I), together with β(1) (α|I), in the

associated linear bid quantile model.

This includes the quantile regression specification pioneered in Koenker and

Bassett (1978) and a sieve additive interactive quantile version of the additive

interactive regression of Andrews and Whang (1990). The quantile regression model

writes, for the (d+ 1) × 1 vector X = (1, x′)′ and a conformable vector parameter

γ (α|I) =
(
γ0 (α|I) , γ1 (α|I)′

)′
,

V (α|x, I) = X ′γ (α|I) = γ0 (α|I) + x′γ1 (α|I) , for all α ∈ [0, 1] . (3.2.7)

The stability property stated in Theorem 3.1-(i) implies that the conditional bid

quantile function satisfies,

B (α|x, I) = X ′β (α|I) with β (α|I) =
I − 1

αI−1

∫ α

0

tI−2γ (t|I) dt. (3.2.8)

When the private value quantile regression specification (3.2.7) is correct, the

represention (3.2.1) shows that,

Vi = γ0 (Ui|I) + x′γ1 (Ui|I) ,

showing that the private value response to a change of the covariate can depend

upon the rank Ui of the bidder. Setting γ (I) = E [γ (Ui|I) |I] =
∫ 1

0
γ (α|I) dα and

ηi = X ′ (γ (Ui|I)− γ (I)) gives the linear regression model

Vi = X ′γ (I) + ηi,

where ηi is an heteroskedastic regression error term. When the slope coefficient

γ1 (Ui|I) is constant so that γ1 (Ui|I) = γ1 (I), ηi = γ0 (Ui|I) − γ0 (I) becomes
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homoskedastic. Such linear regressions were previously considered in Rezende

(2008). However Rezende (2008) has focused on the estimation of the slope and

intercept coefficients γ (I). This does not allow without further restrictions for the

distribution of ηi to compute the expected utility of the seller in full generality.

Indeed, as seen from Lemma 3.2 depends upon an integral of γ (α|I) which differs

from γ (I), and γ (αr (x, I) |I) where αr (x, I) is the screening level associated with

the reservation price. Hence focusing on the estimation of γ (I) is not sufficient to

compute an optimal reservation price without further assumption on the regression

error term or additional estimation steps. This contrasts with the quantile regression

specification (3.2.7) which allows such computation because it is a functional model

for the whole quantile function. In addition, as seen from Koenker and Bassett

(1978) and in the ideal case of observed private values, this specification can be

estimated with a parametric rate although it includes the infinite dimensional

parameter γ (·|I).

Other specifications considered in the next section cannot be estimated with

a parametric rate but are, on one hand more flexible and more robust to

misspecifications than quantile regression and, in the other hand, not subject to

the curse of dimensionality which plagues fully nonparametric estimation methods

for V (α|x, I). Consider the additive quantile specification,

M1 =

{
V (α|x, I) ;V (α|x, I) =

d∑
j=1

Vj (α;xj, I)

}
,

with a suitable convention to ensure identification. Since such quantile specifications

are obtained by summing some univariate functions, the effective dimension of this

model is 1 and is lower that the dimension d of the model allowing for all quantile

functions. Following Andrews and Whang (1990) or Horowitz and Lee (2005) and

given a sieve {pk (·) , k ≥ 1} for univariate functions,33 M1 can be embedded in the

infinite dimension linear model,

M1 =

{
V (α|x, I) ;V (α|x, I) =

d∑
j=1

∞∑
k=1

γjk (α|I) pk (xj)

}
.

33Note that a different basis system could be considered for each variables. Our results can easily
extended to consider this setup.
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As in Andrews and Whang (1990), the number of covariate interactions can be

increased. Allowing for pairwise interactions leads to the linear specification,

M2 =

{
V (α|x, I) ;V (α|x, I) =

d∑
j=1

∞∑
k=1

γjk (α|I) pk (xj)

+
∑

1≤j1<j2≤d

∞∑
k1,k2=1

γj1j2k1k2 (α|I) pk1 (xj1) pk2 (xj2)

}

with effective dimension 2. All these models are a specific case of the infinite linear

sieve quantile regression model,

M =

{
V (α|x, I) ;V (α|x, I) =

∞∑
k=1

γk (α|I)Pk (x)

}
,

which gives M1 or M2 by a suitable choice of the system {Pk (·) , k ≥ 1}. Note

also that, when {Pk (·) , k ≥ 1} is a sieve allowing approximation of all continuous

functions Q (x), M can be identified with the a non restricted model allowing for all

possible interactions between the covariates xj, j = 1, . . . , d. This can be useful for

testing purpose.

However, finding the expression of the conditional bid quantile function generated

by M needs some regularity conditions that are stated in the next lemma. The key

conditions is the uniform convergence of the series expansion of V (α|x, I). In what

follows, X stands for the support of the covariate x.

Lemma 3.3. Assume that, for some continuous γk (·|I), k ≥ 1,

V (α|x, I) =
∞∑
k=1

γk (α|I)Pk (x) , (3.2.9)

converge uniformly over [0, 1] × X. Then the conditional bid quantile function in
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(3.2.6) satisfies,

B (α|x, I) =
∞∑
k=1

βk (α|I)Pk (x) , βk (α|I) =
I − 1

αI−1

∫ α

0

tI−2γk (t|I) dt, (3.2.10)

V (α|x, I) =
∞∑
k=1

(
βk (α|I) +

αβ
(1)
k (α|I)

I − 1

)
Pk (x) , (3.2.11)

where the two series expansion converge uniformly over [0, 1]×X, and, for all k ≥ 1,

βk (α|I) is continuously differentiable over (0, 1] and αβ
(1)
k (α|I) is continuous over

[0, 1].

Starting from the infinite dimensional private value quantile regression

specification (3.2.9), Lemma 3.3 derives the corresponding bids quantile regression

specification (3.2.10), and (3.2.11) explains how to recover the conditional private

value quantile function from the bid one. Before turning to estimation of the finite

or infinite dimensional quantile regression specifications, we complete Theorem 3.1

and Lemma 3.3 by analyzing how the first-price auction model acts on the series

convergence rate and smoothness. Let X ⊂Rd be the support of x, which is assumed

to be compact with an nonempty interior. Let s1, s2 be two nonegative integer

numbers and Ps1,s2 ⊂ M the set of functions Q (α, x) such that, for some integer

number 0 ≤ dM ≤ d

i. For each K, there exists some real numbers q1 (α) , . . . , qK (α) which may

depend upon K such that

max
(α,x)∈[0,1]×X

∣∣∣∣∣Q (α, x)−
K∑
k=1

qk (α)Pk (x)

∣∣∣∣∣ = o
(
K
− s2
dM

)
. (3.2.12)

ii. The functions α ∈ [0, 1] 7→ qk (α) are s1 times continuously differentiable with,

for some Q(s1) (α, x) continuous over (α, x) ∈ [0, 1]× X

lim
K→∞

max
(α,x)∈[0,1]×X

∣∣∣∣∣Q(s1) (α, x)−
K∑
k=1

q
(s1)
k (α)Pk (x)

∣∣∣∣∣ = 0. (3.2.13)
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As seen from (3.2.12), the parameter s2 describes the convergence rate of the

series expansion Q (α, x) =
∑∞

k=1 qk (α)Pk (x) up to a dimension parameter dM

which corresponds to the number of interactions allowed in M. A limit case is

dM = 0, in which case Q (α, x) =
∑K

k=1 qk (α)Pk (x) for some K, as for instance

when the quantile regression specification (3.2.7) holds. Consider now the case

of a univariate x, i.e d = dM = 1 in which case we use sieve {pk (·) , k ≥ 1}
instead of {Pk (·) , k ≥ 1}. As surveyed in Chen (2007), the rate condition (3.2.12),

o (K−s2), typically holds for functions Q (α, x) such that x ∈ X 7−→Q (α, x) is s2

times continuously differentiable and {pk (·) , k ≥ 1} is a suitable sieve sequence,

like Trigonometric or Legendre polynomial functions, B-splines or wavelets. For

these examples of sieves given by orthonormal system, qk (α) is given by the scalar

product,

qk (α) =

∫
X

Q (α, x) pk (x) dx.

When α ∈ [0, 1] 7→ Q (α, x) is s1 times continuously differentiable,

q
(s1)
k (α) =

∫
X

Q(s1) (α, x) pk (x) dx,

and, as shown by taking s2 = 0 in (3.2.12), (3.2.13) holds provided Q(s1) (α, x) is

continuous over [0, 1]× X.

Let us now turn to the case of a multivariate x, i.e d > 1. In the

case of the additive specification M1 with one interaction, the convergence rate

(3.2.12) holds for dM = 1 taking a sieve sequence {Pk (·) , k ≥ 1} which writes

{pk (x1) , . . . , pk (xd) , k ≥ 1} where {pk (·) , k ≥ 1} is as in the examples of the

univariate case. The case of the additive specification M2 with two interactions

is more complicated because the corresponding sieve is

{pk1 (xj1) pk2 (xj2) , k1, k2 ≥ 1, 1 ≤ j1 < j2 ≤ d} .

Taking the first K elements of this sieve amounts to take for instance all the

product pk1 (xj1) pk2 (xj2) with k1, k2 ≤ K1/2. This new upper bound affects the

convergence rate which is now o
((
K1/2

)−s2)
= o

(
K−s2/2

)
, i.e dM = 2 in (3.2.12).

The next Proposition describes in particular the implications of assuming that
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V (α|x, I) ∈ Ps+1,s+2 for the convergence rate of the series expansion of B (α|x, I).

Proposition 3.1. Suppose that V (α|x, I) is a function of Ps+1,s+2 for each I ∈ I

satisfying,

inf
(α,x)∈[0,1]×X

V (1) (α|x, I) > 0 and sup
(α,x,I)∈[0,1]×X

V (1) (α|x, I) <∞.

Then, for B (α|x, I) as in (3.2.5),

i. min(α,x)∈[0,1]×X ∂B (α|x, I) /∂α > 0 and max(α,x)∈[0,1]×X ∂B (α|x, I) /∂α <∞.

ii. B (α|x, I) is in Ps+1,s+2.

iii. αB (α|x, I) is in Ps+2,s+2 and max(α,x)∈(0,1]×X
∣∣αB(s+2) (α|x, I)

∣∣ <∞.

Proposition 3.1-(i) implies that the p.d.f g (b|x, I) = 1/B(1) (B−1 (b|x, I) |x, I)

stays bounded away from 0 and infinity, a property which is important for

inference with quantile estimation method. Proposition 3.1-(iii) indicates that the

conditional bid function B (α|x, I) and its series coefficients βk (α|I) have one more

α−derivatives than V (α|x, I) over (0, 1].34 In the case of the quantile regression

specification (3.2.7), V (α|x, I) = X ′γ (α|I) where γ (α|I) is s+1 times continuously

differentiable over [0, 1], it implies that B (α|x, I) = X ′β (α|I) where β (α|I) is s+ 2

times continuously differentiable over (0, 1] but with a derivative β(s+2) (α|I) which

can diverge when α goes to 0.

3.3 Augmented quantile regression estimation

The identification Theorem 3.1 gives some guidance for estimating the conditional

private value quantile function, which suggests to proceed through an estimation of

the bid quantile functionB (α|x, I) and its derivativeB(1) (α|x, I) = ∂B (α|x, I) /∂α.

While there is an important literature on the estimation of a conditional quantile

function, estimating B(1) (α|x, I) has received much less attention. The function

B(1) (α|x, I) is also known as the sparsity function and appears in the expression of

34This is why it is assumed that V (α|x, I) is an element of Ps+1,s+2 instead of Ps+2,s+2 since it
is important the brevity of exposition to have identical indices as in Ps+2,s+2.
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the asymptotic variance of many quantile estimators. Most of the results reviewed in

Koenker (2005) focuses on consistent estimation of B(1) (α|x, I) but do not establish

consistency rate or asymptotic normality. Exceptions are Marmer and Shneyerov

(2012) and Guerre and Sabbah (2012). However Marmer and Shneyerov (2012)

estimator is based on standard kernel density estimation which is not flexible enough

to deliver good consistency rates for quantile regression or additive specifications as

in the preceding section. The local polynomial quantile approach of Guerre and

Sabbah (2012) can be tailored to additive specification but it requests to employ a

backfitting algorithm as in Hastie and Tibshirani (1986) which is not straightforward

to implement. The estimation method of these papers do not pay attention to

boundary bias. The method proposed here copes with boundaries and jointly

estimate B (α|x, I) and its derivative B(1) (α|x, I), combining local polynomial

technique with a finite or infinite dimensional quantile regression specification.

Definition of the estimators

Consider L i.id. first-price auctions (I`, x`, Bi`, i = 1, . . . , I`) and let X` = (1, x′`)
′.

Let ρα (u) be the usual check function,

ρα (q) = q (α− I (q ≤ 0)) ,

where I (·) is the indicator function, i.e I (q ≤ 0) = 1 when q ≤ 0 and 0 otherwise.

The intuition of the estimator is better understood at the population level. The

conditional quantile function B (α|x, I) satisfies,

B (α|·, I) = arg min
Q(x)

E [I (I` = I) ρα (Bi` −Q (x`))] ,

where, except for the boundary case with α ∈ {0, 1}, the argument of the minimum

is unique provided min(α,x)∈[0,1]×XB
(1) (α|x, I) > 0. To estimate B(1) (α|x, I) can be

done by introducing local variation of the quantile level in the vicinity of α. Let K (·)
be a kernel function with support [−1, 1] and h = hL → 0 be a positive bandwidth
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parameter. Then it follows from the equation above that,

{B (a|·, I) , a ∈ [α− h, α + h] ∩ [0, 1]}

= arg min
Q(a,x)

∫ 1

0

E [I (I` = I) ρa (Bi` −Q (a, x`))]
1

h
K

(
a− α
h

)
da, (3.3.1)

where the minimization is performed over the set of functions Q (a, x) which are

continuous on [α− h, α + h] ∩ [0, 1] × X. Note that the argument of the minimum

is now unique even when α = 0 or α = 1. However, performing a sample version

of (3.3.1) is not simple in practice because the functional parameter Q (a, x) lies in

a very general set of continuous functions. Local polynomial methods circumvent

this issue by performing an approximate minimization of the objective function in

(3.3.1) by restricting to Taylor polynomial function instead of functions Q (a, x).

How it works in practice is easily understood in the case of the standard

quantile regression specification V (α|x, I) = X ′γ (α|I) in (3.2.7), in which case

B (α|x, I) = X ′β (α|I) with β (α|I) as in (3.2.8). Applying Proposition 3.1, a Taylor

expansion of β (a|x, I) in the vicinity of α ∈ (0, 1] gives,

β (a|I) = β (α|I)+(a− α) β(1) (α|I)+ · · ·+ (a− α)s+1

(s+ 1)!
β(s+1) (α|I)+O

(
(a− α)s+2) .

So an approximate minimization of (3.3.1) up to a O (hs+2) error uses the Taylor

polynomial function, where βj, j = 0, . . . , s+ 1 are some (d+ 1)× 1 vectors,

Q (a, x) = X ′
{
β0 + (a− α) β1 + · · ·+ (a− α)s+1 βs+1

}
.

The corresponding minimizers β∗j (α|I), j = 0, . . . , s+ 1 of the objective function in

(3.3.1) are close to β(j) (α|I) /j! up to a O (hs+2−j) bias term, as suggested by Fan

and Gijbels (1996) and established in the proof section. Note that (3.2.6) shows

that it is in fact sufficient that such approximation results holds for β∗0 (α|I) and

β∗1 (α|I). As well known from Fan and Gijbels (1996), it is important to include

in the estimation the higher-order Taylor coefficients βj, j = 2, . . . , s + 1 to have

β∗0 (α|I) = β (α|I) +O (hs+2) and β∗1 (α|I) = β(1) (α|I) +O (hs+1).

Due to the additional smoothing of quantile levels and estimation of the

derivatives of the slope coefficient, the corresponding estimator introduced now will
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be called the Augmented Quantile Regression (AQR) estimator. Let a be a real

number and define, ⊗ being the Kronecker product,

π (a) =
[
1, a, . . . , as+1

]′
,

X` (a) = X` ⊗ π (a) =
[
X ′`, aX

′
`, . . . , a

s+1X ′`
]′
,

b =
[
β′0, β

′
1, β

′
2, . . . , β

′
s+1

]′
,

where the βj, j = 0, . . . , s + 1, are all (d+ 1) × 1 so that X` (a) and b are both of

dimension (s+ 2) × (d+ 1).35 The Taylor polynomial function is X` (a)′ b. Stack

the derivatives of the slope coefficients in,

b (α|I) =
(
β (α|I)′ , β(1) (α|I)′ , . . . , (s+ 1)!β(s+1) (α|I)′

)′
. (3.3.2)

The AQR estimator of b (α|I) is, up to a suitable rule to break ties,36

b̂AQR (α|I) = arg min
b

R̂AQR (b;α, I) , α ∈ [0, 1] ,

where, as suggested by (3.3.1), the objective function R̂AQR (b;α, I) is defined as

R̂AQR (b;α, I) =
1

LIh

L∑
`=1

I (I` = I)

I∑̀
i=1

∫ 1

0

ρa
(
Bi` −X` (a− α)′ b

)
K

(
a− α
h

)
da

=
1

LI

L∑
`=1

I (I` = I)

I∑̀
i=1

∫ 1−α
h

−α
h

ρα+ht

(
Bi` −X` (ht)′ b

)
K (t) dt.

(3.3.3)

35As seen from Guerre and Sabbah (2012), any upper bound for the number of derivatives can
be used instead of the exact one s+ 1, so that s needs not to be exactly known because using an
upper bound is sufficient to achieve the convergence results stated later. This also holds for the
ASQR estimator introduced below.

36An important feature of the objective function R̂AQR (b;α, I) is that it is still ”bowl-shaped”

at the boundaries α = 0, 1, that is for on α = 0, lim‖b‖→∞ R̂AQR (b; 0, I) = +∞, and that the

same rule to break ties can be applied. This is due to smoothing, which implies that R̂AQR (b; 0, I)

diverges when b does, because all the R̂AQR (b; a, I), a > 0 even close to 0, diverge. This contrasts
with the standard quantile regression estimator. Indeed, since ρ0 (q) = 0 for all q < 0, the quantile
regression objective function is 0 for all β such that X`

′β ≤ Bi` for all i and `, so that it may be
difficult to define the quantile regression estimator when α = 0.
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The corresponding AQR estimator of the private values quantile regression slope

γ (α|I) and of the private value quantile regression model (3.2.7) are obtained by

plugging in b̂AQR (α|I) in (3.2.6),

γ̂AQR (α|I) = β̂
(0)
AQR (α|I) +

αβ̂
(1)
AQR (α|I)

I − 1
, V̂AQR (α|x, I) = X ′γ̂AQR (α|I) , (3.3.4)

where β̂
(0)
AQR (α|I) and β̂

(1)
AQR (α|I) are the two first vectors of dimension s+1 stacked

in b̂AQR (α|I).37

The case of additive interactive quantile specification is a natural extension

of the AQR procedure which involves a series truncation parameter KL → ∞
in addition to the bandwidth h. By Lemma 3.3, a series expansion V (α|x, I) =∑∞

k=1 γk (α|I)Pk (x) for the private value conditional quantile function yields that

the bid conditional quantile function can be similarly written as B (α|x, I) =∑∞
k=1 βk (α|I)Pk (x). Instead of estimating the full expansion, focusing on the

first coefficients
{
γk (α|I) , βk (α|I) , β

(1)
k (α|I) , k ≤ KL

}
gives a model which is very

similar to the first-price auction quantile regression model considered above, up to

a dimension KL which is growing with the sample size.38 Let

P (x) = [P1 (x) , . . . , PKL (x)]′ ,

P (x, a) = P (x)⊗ π (a) =
[
P (x)′ , aP (x)′ , . . . , as+1P (x)′

]′
,

and let bL be a vector of dimension (s+ 2)×KL which, as b above, stacks subvectors

βj associated with ajP (x`, a), j = 0, . . . , s + 1. The Augmented Sieve Quantile

Regression estimator of V (α|x, I) writes

V̂ASQR (α|x, I) = P (x)′
{
β̂

(0)
ASQR (α|I) +

αβ̂
(1)
ASQR (α|I)

I − 1

}
, (3.3.5)

37Although not explicitely considered here for the sake of brevity, different bandwidths can be

used for β̂
(0)
AQR (α|I) and β̂

(1)
AQR (α|I), and our theoretical results carry over for such extension under

additional bandwidth rate conditions.
38In principle it would be possible to consider different series truncation parameters when

estimating B (α|x, I) and its derivatives B(1) (α|x, I), putting to 0 the missing βk (α|I) or β
(1)
k (α|I)

in the expression γk (α|I) = βk (α|I)+αβ
(1)
k (α|I) / (I − 1). It is not explicitely considered here for

the sake of notation but such extension can be easily studied with the techniques developed here.
As well, distinct bandwidths can be used for the estimation of B (α|x, I) and B(1) (α|x, I).
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where

b̂ASQR (α|I) =
[
β̂

(0)
ASQR (α|I)′ , β̂

(1)
ASQR (α|I)′ , . . . , β̂

(s+1)
ASQR (α|I)′

]′
satisfies

b̂ASQR (α|I) = arg min
bL

R̂ASQR (bL;α, I) ,

R̂ASQR (bL;α, I) =
1

LIh

L∑
`=1

I (I` = I)

I∑̀
i=1

∫ 1

0

ρa
(
Bi` − P (x`, a− α)′ bL

)
K

(
a− α
h

)
da

=
1

LI

L∑
`=1

I (I` = I)

I∑̀
i=1

∫ 1−α
h

−α
h

ρα+ht

(
Bi` − P (x`, ht)

′ bL
)
K (t) dt.

(3.3.6)

Theoretical estimation results

The main assumptions used in the theoretical results of the chapter are stated below.

Assumptions A and S deal with the first-price auction model and the finite or infinite

dimensional private value quantile regression specifications. Assumptions R and H

concern the estimation method. Recall aL � bL means that both aL/bL = O (1)

and bL/aL = O (1). The norm ‖·‖ is the Euclidean one, i.e ‖e‖ = (e′e)1/2 where

the dimension of the column vector e can depend upon the sample size L. For

Assumption H-(iii), Recall that the `1 norm of e = (ej) is
∑

j |ej|.

Assumption A. (i) The auction variables {I`, x`, Vi`, Bi`, i = 1, . . . , I`} are

independent and identically distributed. The common p.d.f f (x|I) of the covariates

x` given I` = I is continuous and bounded away from 0 over its support X, which

is a compact subset of Rd, and the actual number of bidders I` takes values in a

bounded set I of integer numbers larger or equal to 2.

(ii) Given (x`, I`) = (x, I), the Vi`, i = 1, . . . , I` are independent and identically

distributed with conditional quantile function V (α|x, I), p.d.f f (v|x, I) and c.d.f

F (v|x, I) satisfying,

inf
(α,x,I)∈[0,1]×X×I

V (1) (α|x, I) > 0 and sup
(α,x,I)∈[0,1]×X×I

V (1) (α|x, I) <∞.

(iii) Given (x`, I`) = (x, I), (3.2.5) holds, that is for all α ∈ [0, 1] and all
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(x, I) ∈ X× I,

B (α|x, I) +
αB(1) (α|x, I)

I − 1
= V (α|x, I) , with B (0|x, I) = V (0|x, I) .

Assumption S. For s ≥ 1 as in Assumption A and each I ∈ I,

(i) For the quantile regression model V (α|x, I) = X ′γ (α|I) as in (3.2.7), the

slope coefficient γ (α|I) ∈ Rd+1 has s+ 1 bounded derivatives over [0, 1].

(ii) For the sieve quantile regression model (3.2.9), there is a nonnegative number

dM such that V (α|x, I) ∈ Ps+1,s+2.

Assumption A recalls the implications of the IPV paradigm and imposes that

bids are determined by the Bayesian Nash equilibrium. Assumption A-(i) assumes

that each auctions are independent and identically distributed. The existence of

a conditional p.d.f for the covariate x` is only used for the infinite dimensional

quantile regression specification. For a standard quantile regression specification,

it is sufficient to assume that the matrix E [I (I` = I)X`X
′
`] has an inverse for all

I ∈ I as recalled in Assumption R-(i) below. Note that, as all along this chapter,

private values and number of bidders need not to be independent. A discussion

of dependence in relation with an entry stage preliminary to the auction and

unobserved heterogenity can be found in Marmer, Shneyerov and Xu (2013a) or

Gimenes (2013), who also explains how to improve quantile regression estimation

under independence by pooling. Assumption A-(ii) is standard regarding both

auction models and quantile regression inference theory. The purpose of Assumption

S is first to ensure that the estimated quantile regression specification is the correct

one. Misspecified quantile regression specifications could also be considered as in

Gimenes (2013) at the price of additional technicalities. Assumption S-(ii) has been

discussed in detail prior Proposition 3.1 and concerns both the sieve method together

with the smoothness of the conditional private value quantile function.

Assumption R. (i) The matrix E [I (I` = I)X`X
′
`] is full rank for each I ∈ I.
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(ii) The sieve {Pk, k ≥ 1} has the Riesz property, that is there is a constant C ≥ 1

such that for any sequence {γk, k ≥ 1} of real numbers satisfying
∑∞

k=1 γ
2
k <∞,

1

C

{
∞∑
k=1

γ2
k

}
≤
∫
X

(
∞∑
k=1

γkPk (x)

)2

dx ≤ C

{
∞∑
k=1

γ2
k

}
.

Assumption H. (i) The kernel function K (·) is continuous and strictly positive

over (−1, 1) and h→ 0 with log3 L/ (Lh2) = o (1).

(ii) In addition, for the ASQR estimator, KL � h−dM, and some ζ > 0 such

(1 + ζ) dM ≤ 2s,

max
x∈X
‖P (x)‖ = O

(
K

1+ζ
2

L

)
,

with log3 L/
(
Lh(2+ζ)dM+2

)
= O (1) .

(iii) maxx∈X ‖P (x)‖ = O
(
K

1/2
L

)
and logL/

(
Lh4dM+2

)
= O(1). The `1 norm of

each column of E−1
[
I (I` = I)P (x`)P (x`)

′] is bounded by the same constant C for

each L and I,

max
k≤KL

{∫
X

|Pk (x)| dx
}
×max

x∈X

KL∑
k=1

|Pk (x)| = O (1) , (3.3.7)

and for some p ∈ (0, 1], K1L with logK1L = O (logL),

‖P (x)− P (x′)‖ ≤ K1L ‖x− x′‖p for all x,x′ofX.

Assumption R is a key identification condition which ensures that the coefficients

of the private value and bid quantile regression are uniquely defined, in the finite

dimensional case for (i) and in the infinite dimensional case for (ii). Assumption R-

(ii) and Assumption A-(i) ensures that the eigenvalues of E
[
I (I` = I)P (x`)P (x`)

′]
stays bounded away from 0 and infinity when L increases, which is a key property

to ensure that the ASQR estimator has a well-behaved variance. Assumption H-

(i,ii) groups some growth conditions for the bandwidth h and series truncation

parameter KL. Part (i) is specific to the standard quantile regression specification
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(3.2.7) and the AQR procedure. The rate condition log3 L/ (Lh2) = o (1) is stronger

than the condition logL/ (Lh) = o (1) used in Guerre and Sabbah (2012) for local

polynomial conditional estimation in a univariate context. This new condition

rate is driven by the order of the remainder term in the Bahadur representation

and is specific to the augmented procedure, i.e smoothing with respect to quantile

level. Part (ii) considers infinite dimensional quantile regression specification and

the ASQR procedure. It is possible to obtain general results without KL � h−dM but

this constraint simplifies the discussion on the sieve truncation KL and smoothing

parameter h. The effective dimension dM is the number of interactions in the

infinite dimensional quantile regression specification (3.2.9) from M. The condition

KL � h−dM recalls that KL plays the role of a smoothing parameter associated

with a covariate with dimension dM. Setting the exponent ζ to 0 shows that

the bandwidth should now satisfies the rate condition log3 L/
(
Lh2(dM+1)

)
= O (1)

which is identical to the one in Assumption H-(i), up to the fact that the effective

dimension dM now appears while it can be set 0 for a standard quantile regression

model. The exponent ζ is typical of the sieve {Pk (·) , k ≥ 1}. As reviewed in Chen

(2007), ζ = 0 for the (multivariate) trigonometric system, B-spline and wavelets,

while ζ = 1/2 for Legendre polynomial functions. While Assumption H-(ii) is used

for integrated mean squared error, Assumption H-(iii) is used to derive optimal

consistency rates with respect to uniform norm. Such results are difficult to obtain

because the ASQR estimator is not constrained to be bounded or smooth, so that

it is sometimes necessary to rely on a crude Cauchy-Schwarz inequality bound∣∣P (x)′ e
∣∣ ≤ ‖P (x)‖ ‖e‖ to bound some functional error term P (x)′ e, see e.g. Newey

(1997). 39 Assumption H-(iii) strengthens the bandwidth rate condition of (ii) to

logL/
(
Lh2(2dM+1)

)
= O(1). The condition (3.3.7) is used to study a bias term. It

greatly restricts the sieve which cannot be the trigonometric or Legendre polynomial

functions but holds for B-splines and wavelet functions. To see this, observe that,

in the univariate case or of a purely additive model, father wavelet with a compact

39Imposing smoothness conditions may help to obtain better bounds. This is the purpose of
penalized methods as in Portnoy (1997), Eggermont and LaRiccia (2009) and as also reviewed
in Chen (2007). However, these methods consider roughness penalties which depend upon the
support X of the covariates, which needs to be known. Unconstrained methods do not require such
a knowledge and may be more appropriate when the support is unknown or can only be poorly
estimated.
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support or B-spline sieve take the form,

Pk (x) = C1/22Kn/2ψ
(
C2KNx− k

)
, x ∈ R,

for some scaling constant C and integrable function ψ (·) with a compact support, so

that maxk≤KL
{∫

X
|Pk (x)| dx

}
= O

(
2−Kn/2

)
and maxx∈X

∑KL
k=1 |Pk (x)| = O

(
2Kn/2

)
which gives (3.3.7). The Hölder condition in Assumption H-(iii) is flexible

enough to allow for B-splines, and more specifically wavelets which are not always

differentiable, see Daubechies (1992). The `1 condition follows from the property of

Gram band matrices.40

The two next results states the uniform convergence and asymptotic normality

of the AQR procedure when (3.2.7) is correctly specified.

Theorem 3.2. Suppose the quantile regression specification (3.2.7) is correct. Then

under Assumptions A, S-(i) and H-(i),

sup
(α,x,I)∈[0,1]×X×I

∣∣∣V̂AQR (α|x, I)− V (α|x, I)
∣∣∣ = OP

((
logL

Lh

)1/2

+ hs+1

)
.

Theorem 3.2 shows that uniform convergence holds uniformly over [0, 1]×X× I

so that the AQR procedure is free from asymptotic boundary bias issues. As for all

40That splines can achieve optimal uniform consistency rates without a penalization as
established below was known since Portnoy (1997) for the univariate case and a single quantile level,
and Assumption H-(iii) allows to extend this in particular to the multivariate case and to wavelets,
uniform convergence with respect to α of the conditional quantile function and its α-derivative.
For localized sieve as the B-splines and compact wavelets considered here, the `1 condition holds
because the entries of E

[
I (I` = I)P (x`)P (x`)

′]
are bounded by the ones of C (Id +% (J + J ′))

where J is a lower band matrix with an order independent of L and 0 < % < 1. Then the entries
pij of E−1

[
I (I` = I)P (x`)P (x`)

′]
are bounded by the ones of

C ′

(
Id +

∞∑
n=1

%n
(
Jn + Jn

′
))

.

This implies that |pij | ≤ C ′′%|i−j| uniformly in i, j and L, which implies that maxL maxj
∑
i |pij | <

∞.
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the rates stated here, the rate of Theorem 3.2 is determined by the rate of,

sup
(α,x,I)∈[0,1]×X×I

∣∣∣∣∣αβ̂
(1)
AQR (α|I)

I − 1
− αβ(1) (α|I)

I − 1

∣∣∣∣∣ ,
since β̂AQR (α|I) converges faster than αβ̂

(1)
AQR (α|I). The optimal bandwidth order

is h � (logL/L)1/(2s+3) which is compatible with Assumption H-(i) for all s ≥ 1.

For such choice of the bandwidth,

sup
(α,x,I)∈[0,1]×X×I

∣∣∣V̂AQR (α|x, I)− V (α|x, I)
∣∣∣ = OP

((
logL

L

) s+1
2s+3

)
,

which corresponds to the nonparametric optimal minimax rate in GPV for

estimating the cumulative distribution function of the private values in the absence

of covariate.41 For instance assuming that s = 1 gives a rate (logL/L)2/5 which is

often considered as acceptable for sample size as large as 100.

Theorem 3.2 investigates global convergence and its consistency rate can be due

to some specific α or x. The next pointwise asymptotic normality result implies that

it is not the case. Let us first introduce some additional notations. Let s1 be the 1×
(s+ 2) vector (0, 1, 0, . . . , 0) which is such that Idd+1⊗s1β̂AQR (α|I) = β̂

(1)
AQR (α|I).

Let Πt
h (α) be the second column of the inverse of

∫ (1−α)/h

−α/h π (t) π (t)′K (t) dt, i.e,

Πt
h (α) =

(∫ 1−α
h

−α
h

π (t) π (t)′K (t) dt

)−1

s ′1,

and define the AQR variance quantities,

v2
h (α) = Πt

h (α)′
∫ 1−α

h

−α
h

∫ 1−α
h

−α
h

π (t1) π (t2)′min (t1, t2)K (t1)K (t2) dt1dt2Πt
h (α) ,

41Although GPV focus on the p.d.f for which the optimal minimax rate for uniform convergence

is (logL/L)
s/(2s+d+3)

, their results can easily be extended to the case of the c.d.f for which the

minimax rate becomes (logL/L)
(s+1)/(2s+d+3)

. A simple inversion argument shows that it is also
the optimal minimax uniform consistency rate when estimating the conditional quantile function.
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Σh (α|I) =
α2v2

h (α)

(I − 1)2 I
E−1

[
X`X

′
`I (I` = I)

B(1) (α|x`, I`)

]
E [X`X

′
`I (I` = I)]E−1

[
X`X

′
`I (I` = I)

B(1) (α|x`, I`)

]
.

(3.3.8)

The bias of the AQR estimator will depend upon,

Biash(α|I) =
1

I − 1
s1

(∫ 1−α
h

−α
h

π (t)π (t)′K (t) dt

)−1 ∫ 1−α
h

−α
h

ts+2π (t)

(s+ 2)!
K (t) dt

× E−1

[
I (I` = I)X`X

′
`

B(1) (α|x`, I)

]
E
[
I (I` = I)X`αB

(s+2) (α|x`, I)

B(1) (α|x`, I)

]
. (3.3.9)

Theorem 3.3 states the asymptotic normality of γ̂AQR (α|I) and V̂AQR (α|x, I).

Theorem 3.3. Suppose the quantile regression specification (3.2.7) is correct. Then

under Assumptions A, S-(i) and H-(i) and for all α ∈ [0, 1], all X = (1, x′)′ with

x ∈ X,(
Lh

X ′Σh (α|I)X

)1/2 (
V̂AQR (α|x, I)− V (α|x, I)− hs+1X ′Biash(α|I) + o

(
hs+1

)) d→ N (0, 1) .

Theorem 3.3 implies that

V̂AQR (α|x, I)− V (α|x, I) = OP

(
1

(Lh)1/2
+ hs+1

)
,

and that, except for α = 0, this order cannot be improved since Σ (α|I) is a full-rank

covariance matrix for α ∈ (0, 1]. It may however happen that X ′Biash(α|I) = 0 in

which case the order above can be changed into 1/ (Lh)1/2. The only possibility of

rate improvement occurs at α = 0. The intuition is that the rate of Theorem 3.3 is

given by the estimator component αβ̂
(1)
AQR (α|I) which converges with a slower rate

than β̂AQR (α|I), and that the former vanishes for α = 0. In fact, Chernozhukov

(2005) has shown that standard quantile regression estimators can converge faster

than L1/2 when α goes to 0 or 1. This is also likely to hold here for α = 0, but

not for α = 1 because the asymptotic behavior of β̂
(1)
AQR (α|I) fundamentally differs

from the one of β̂AQR (α|I) near the boundary. Indeed, the estimator β̂AQR (α|I)
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is close to a vector weighted average of (I (Bi` ≤ B (α|x`, I`))− α) I (I` = I) with a

variance proportional α (1− α) which goes to 0 when α goes to 0 or 1. By contrast,

β̂
(1)
AQR (α|I) is somehow similar to the growth rate

(
β̂AQR (α|I)− β̂AQR (α− h|I)

)
/h

that is to a vector weighted average of variables as,

1

h
(I (B (α− h|x`, I`) ≤ Bi` ≤ B (α|x`, I`))− h) I (I` = I) ,

which variance is asymptotically proportional to

1/h independently of the quantile level α. This heuristic argument also suggests

that V̂AQR (α1|x1, I1) , . . . , V̂AQR (αJ |xJ , IJ) are asymptotically independent as soon

as the αj, j = 1, . . . , J are distinct.

Theorem 3.3 can also be used to propose plug in bandwidth choice. Indeed, for

α far enough the boundaries so that Biash(α|I) and Σh (α|I) do not depend upon

h, an optimal bandwidth with respect to the asymptotic MSE of V̂AQR (α|x, I) is,

provided that X ′Biash(α|I) differs from 0,

hopt =

(
X ′Σh (α|I)X

2 (s+ 1)X ′Biash(α|I)
× 1

L

) 1
2s+3

.

Such a bandwidth can easily be estimated using standard pluging techniques.

Second order improvement can also be obtained by including the effect of

B̂AQR (α|x, I) in the asymptotic distribution above.

Although not detailed here, a similar asymptotic normality result also holds

for the ASQR estimator, taking into account an additional bias term due to sieve

truncation and changing X` int P (x`) in the expression of the asymptotic variance

(3.3.8). The next theorem describes the global integrated mean square error (IMSE)

and uniform convergence rates.

Theorem 3.4. Suppose the sieve quantile regression specification (3.2.9) is correct.

Then under Assumptions A, S-(ii) and H-(i,ii) and for all I ∈ I,

∫ 1

0

{∫
X

(
V̂ASQR (α|x, I)− V (α|x, I)

)2

dx

}
dα = OP

(
1

(LhdM+1)1/2
+ hs+1

)
.
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If Assumption H-(iii) also holds,

max
(α,x,I)∈[0,1]×X×I

∣∣∣V̂AQR (α|x, I)− V (α|x, I)
∣∣∣ = OP

((
logL

LhdM+1

)1/2

+ hs+1

)
.

Theorem 3.4 is qualitatively similar to Theorem 3.2, up to the number of

interactions dM of the infinite dimensional additive quantile regression specification

(3.2.9). The optimal convergence rates are

(
1

L

) s+1
2s+dM+3

for IMSE,

(
logL

L

) s+1
2s+dM+3

for uniform convergence.

However these rates are not always feasible due to the bandwidth constraints in

Assumption H-(ii,iii). The optimal order of the bandwidth is now

(
1

L

) 1
2s+dM+3

for IMSE,

(
logL

L

) 1
2s+dM+3

for uniform convergence.

These optimal bandwidth rates satisfy Assumption H-(ii,iii) provided,

dM − 1

2
< s for IMSE,

3 (dM − 1)

2
≤ s for uniform convergence,

which both holds for s = 1 and the infinite dimensional additive quantile regression

specification for which dM = 1. The IMSE restriction holds for s = 1 and two

interactions but not above dM ≥ 3. This suggests that the ASQR procedure works

well for low dimensional models. For higher number of interactions, the two step

procedure of Horowitz and Lee (2005) or the augmented local polynomial quantile

estimator of Guerre and Vuong (2013) with backfitting when dM < d can be useful.
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3.4 Extensions, discussions and simulations

Some potentially important extensions deal with imposing no interaction between

the rank and the covariates, as in the quantile specifications,

V (α|x, I) = γ0 (α) + x′γ1,

V (α|x, I) = V0 (α) +
d∑
j=1

Vj (xj) .

The former implies that, for some η independent of (x, I), V = x′γ1 + η as

considered in Rezende (2008) while the latter gives the additive regression model

with independent and homoskedastic error V =
∑d

j=1 Vj (xj)+η. Such specifications

are important because the components x′γ1 of the former and
∑d

j=1 Vj (xj) of the

latter can be identified even when the number of bidders is not observed. Gimenes

(2013) has considered the former quantile regression specification for ascending

auctions, as well as the case where the slope coefficient γ (α|I) in (3.2.7) does not

depend upon I. Her estimation methods can easily be adapted to the first-price

auction and sieve expansions. Gimenes (2013) considers also some specification

tests for dependence on I and higher order interactions that can be extended to

a first-price auction nonparametric setup. Other extensions considered now deal

with optimal bidding strategy and private values estimations, the case where only

the winning bid is observed and reservation price. The last discussion concerns the

choice of the smoothing parameter.

Optimal bidding strategy estimation

When the bidder knows his private value rank u, equation (3.2.4) in Lemma 3.1

shows that the optimal bid is given by B (u|x, I) which can be estimated using

B̂ (u|x, I) = B̂AQR (u|x, I) or B̂ASQR (u|x, I) depending on the specification of

interest. Under the conditions of Theorems 3.2 and 3.4-(ii), it is shown in the

proof section that

max
(u,x,I)∈[0,1]×X×I

∣∣∣B̂ (u|x, I)−B (u|x, I)
∣∣∣ = OP

((
logL

LhdM

)1/2

+ hs+2

)
,
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recalling that dM is the number of interactions in the model with the convention that

dM = 0 for a quantile regression. This gives an optimal uniform convergence rate

(logL/L)(s+2)/(2(s+2)+dM) which is faster than the ones derived for the estimation

of V (α|x, I) in Theorems 3.2 and 3.4-(ii). For a quantile regression specification

with dM = 0, it can be shown that the uniform consistency rate of B̂ (u|x, I) is the

parametric rate 1/L1/2.

When the bidder does not know his rank u, it can be estimated from his private

value v = V (u|x, I). For V̂ (u|x, I) = V̂AQR (u|x, I) or V̂ASQR (u|x, I), a possible

estimator of u is,

û = arg min
α∈[0,1]

∣∣∣v − V̂ (α|x, I)
∣∣∣ ,

using an appropriate convention to break ties. The estimation of the optimal bid is

then B̂ (û|x, I) and the next Lemma describes its uniform consistency rate.

Lemma 3.4. Assume that Assumption A holds. Let %̂ be the maximum of

max
(α,x,I)∈[0,1]×X×I

∣∣∣B̂ (α|x, I)−B (α|x, I)
∣∣∣ and max

(α,x,I)∈[0,1]×X×I

∣∣∣V̂ (α|x, I)− V (α|x, I)
∣∣∣ .

Then,

max
(x,I)∈X

max
v∈[V (0|x,I),V (1|x,I)]

∣∣∣B̂ (û|x, I)−B (F (v|x, I) |x, I)
∣∣∣ = O (%̂) .

Under the conditions of Theorems 3.2 and 3.4-(ii), V̂ (·|·, ·) has a slower uniform

convergence rate than B̂ (·|·, ·). It follows that the uniform convergence rate of

B̂ (û|x, I) is (logL/L)
s+1

2s+dM+3 at best for the AQR and ASQR estimators.

Private values estimation

As noted by Marmer and Shneyerov (2012), a quantile approach avoids estimating

the private values, a step which was a key element of the two step procedure of GPV.

However, as shown by Cassola, Hortaçsu and Kastl (2013) in the related context

of Treasury auctions, the private values or some equivalent quantities may have a

strong economic content especially useful in empirical applications. The quantile

regression approach allows to estimate the private values Vi` from an estimation of
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the conditional bid and private values quantile function as delivered by the AQR

or the ASQR procedure, say B̂ (α|x, I) and V̂ (α|x, I). A key fact from Lemma 3.1

is that the private value and bid ranks of bidder i are identical. In the case of the

private value Vi` of bidder i in auction `, the rank Ui` can be estimated from (3.2.4)

using,

Ûi` = arg min
α∈[0,1]

∣∣∣Bi` − B̂ (α|x`, I`)
∣∣∣ ,

using an appropriate convention to break ties. Then (3.2.1) suggests the estimated

private values,

V̂i` = V̂
(
Ûi`|x`, I`

)
.

The next Lemma gives the convergence rate of V̂i`.

Lemma 3.5. Assume that Assumption A holds. Let %̂ be the maximum of

max
(α,x,I)∈[0,1]×X×I

∣∣∣B̂ (α|x, I)−B (α|x, I)
∣∣∣ and max

(α,x,I)∈[0,1]×X×I

∣∣∣V̂ (α|x, I)− V (α|x, I)
∣∣∣ .

Then,

max
`=1,...,L

max
i=1,...,I`

∣∣∣V̂i` − Vi`∣∣∣ = O (%̂) .

For the AQR and ASQR procedures, the rate %̂ is the uniform convergence rate

V̂ (α|x, I), which is respectively given by Theorems 3.2 and 3.4, since the uniform

convergence rate V̂ (α|x, I) is the one of αB̂(1) (α|x, I) which is slower than uniform

convergence rate of B̂ (α|x, I). Compared to GPV, the proposed private value

estimation procedure is free of boundary issues so that all the private values can

be recovered asymptotically. The intermediary results used to establish these two

theorems can be used to obtain a more precise uniform stochastic expansion for

V̂i` − Vi`. Such expansions can be useful to study estimators based on V̂i` as in the

two step estimation studied in Newey and McFadden (1994). Indeed, using the rate

of Lemma 3.5 may give too conservative rates of convergence for such procedure.

Winning bids

It has been considered so far that all the bids of the auction were observed but

the quantile regression approach easily extends to the case where only the winning
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bid is observed. The next Proposition shows that the conditional private value

quantile function can be identified from the one of the winning bid. This follows from

Theorem 3.1 and the fact that the conditional bid quantile function B (·|x, I) is easily

recovered from the winning bid one Bmax (·|x, I) since Bmax (α|x, I) = B
(
α1/I |x, I

)
Proposition 3.2. Assume that Assumption A holds. Then

i. The conditional equilibrium quantile function Bmax (·|x, I) of the winning bid

satisfies

Bmax (α|x, I) = B
(
α1/I |x, I

)
with B (α|x, I) =

I − 1

αI−1

∫ α

0

tI−2V (t|x, I) dt,

and Bmax

(
αI |x, I

)
is continuously differentiable over [0, 1].

ii. Let Bmax (α|x, I) be as in (i). Then it must hold that,

V (α|x, I) = Bmax

(
αI |x, I

)
+

α

I − 1

∂

∂α

[
Bmax

(
αI |x, I

)]
.

Proposition 3.2-(i) implies that linear quantile regression specification enjoys

the same stability property than discussed after Theorem 3.1. Proposition 3.2-(ii)

indicates how to implement the AQR or ASQR procedure to the winning bid. The

key difference with the case where all the bids are observed is that the quantile αI

should be used instead of α in the estimation procedure. It follows that Theorems

3.2-3.4 can easily be modified to cover this observational scheme. The estimation

procedure can be modified in a similar way to cover the case where any prescribed

subset of the ordered bids is observed.

Reservation price

A binding reservation price changes the bidders’ optimal strategy and introduces

censorship. Let r = r (x, I) be the reservation price chosen by the seller. The

associated screening level is the rank αr = αr (x, I) solving V (α|x, I) = r (x, I),

or equivalently αr (x, I) = F (r (x, I) |x, I). Bidders ranked below αr (x, I) will not

bid and a bidder with rank αr (x, I) will bid r (x, I). Consequently the optimal
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bidding strategy Br (α|x, I) solves (3.2.6) for α ≥ αr (x, I) with the initial condition

Br (αr (x, I) |x, I) = r (x, I). Solving gives, for all α ≥ αr (x, I) ,

Br (α|x, I) =
1

αI−1

{
r (x, I)αr (x, I)I−1 + (I − 1)

∫ α

αr(x,I)

tI−2V (t|x, I) dt

}
=

(
αr (x, I)

α

)I−1

(r (x, I)−B (αr (x, I) |x, I)) +B (α|x, I) ,

where B (·|x, I) is the optimal bidding strategy in the absence of reservation price

defined in (3.2.5). Since B (αr (x, I) |x, I) < r (x, I), Br (α|x, I)−B (α|x, I) > 0 and

decreases with α.

Three econometric issues must be addressed here. First, (3.2.6) together with

the new constraint Br (αr (x, I) |x, I) = r (x, I) implies that B
(1)
r (αr (x, I) |x, I) = 0,

so that quantile estimation may have non standard asymptotic properties. Second,

the fact that Br (α|x, I) depends upon r (x, I) and αr (x, I) implies that quantile

linear specifications are not as stable as for the case where the reservation price is

nonbinding. Third some bids are not observed. To address the first issue can be

done as in GPV by considering the transformed observations B†i = (Bi − r (x, I))1/2,

with conditional quantile function,

B†r (α|x, I) = (Br (α|x, I)− r (x, I))1/2 , α > αr (x, I) .

In order to extend this function for α ≤ αr (x, I), set B†i = 0 for all those buyers

who did not bid, so that the model is somehow analogous to the censored quantile

regression in Powell (1986).

It is assumed here that r (x, I), x and the number of potential bidders I are

observed, together with the number I∗ of actual bidders and their bids Bi. The

next proposition is a key result to design an estimation strategy when the reservation

price is binding.

Proposition 3.3. Assume that Assumption A and that the reservation price is now

binding, r (x, I) ∈ (V (0|x, I) , V (1|x, I)). Then given x and I,

i. The number of observed bids I∗ has a binomial distribution with parameter

(I, 1− αr (x, I)) with αr (x, I) = 1− E [I∗|x, I] /I.
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ii. The equilibrium conditional quantile function B†r (α|x, I) satisfies, for all

α > αr (x, I),

B†r (α|x, I) =

(
r (x, I)

((
αr (x, I)

α

)I−1

− 1

)
+
I − 1

αI−1

∫ α

αr(x,I)

tI−2V (t|x, I) dt

)1/2

.

iii. The private value conditional quantile function is given by, for all α >

αr (x, I),

V (α|x, I) = r (x, I) +B2
†r (α|x, I) +

α

I − 1

∂

∂α

[
B2
†r (α|x, I)

]
.

Proposition 3.3 shows that identification and estimation of the model are

straightforward when αr (x, I) = αr (I), including the case αr (x, I) = αr where

the reservation price is given by the αrth quantile of the private value conditional

distribution. Part (i) implies that αr (I) can be estimated using α̂r (I) = 1 −∑L
`=1 I (I` = I) I∗` /

(
I
∑L

`=1 I (I` = I)
)

which is L1/2-consistent. Assuming that the

quantile regression specification V (α|x, I) = X ′γ (α|I) holds, part (ii) implies that

B†r (α|x, I) =

(
r (x, I)

((
αr (I)

α

)I−1

− 1

)
+X ′β (α|I)

)1/2

,

with

β (α|I) =
I − 1

αI−1

∫ α

αr(I)

tI−2γ (t|I) dt for all α > αr (I) . (3.4.1)

Since r (x, I) is known, r (x, I)
(

(αr (I) /α)I−1 − 1
)

can be estimating leading to

consider the estimated quantile model,

Q̂β (α, x, I) =

(
r (x, I)

((
α̂r (I)

α

)I−1

− 1

)
+X ′β (α|I)

)1/2

.

Combining the augmented methodology, nonlinear quantile regression and Powell

(1986) to account for “censored” bids42 will deliver estimation of β (α|I) and

42Alternatively it is possible to restrict to the observed bids and to change the quantile functions
into quantile functions given that the Bi` are such that Vi` ≥ r (x`, I`) to account for selection.
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β(1) (α|I) which can be used as in (3.3.4) to estimate γ (α|I) for all α ≥ αr (I).

Indeed, (3.4.1) gives again that (3.3.4) holds, leading to an estimator γ̂ (α|I) =

β̂ (α|I) + αβ̂(1) (α|I) / (I − 1).43

The case where αr (x, I) depends upon x44 is more challenging. However the

whole conditional quantile function V (α|x, I) = X ′γ (α|I), α ∈ [0, 1], can be

identified provided infx∈X αr (x, I) = 0 for all I ∈ I. The issue here is that the

linear specification is not stable since changing αr (I) into αr (x, I) in (3.4.1) would

give a slope coefficient β (α|I) which depends upon x. It is however possible to

estimate γ (α|I) by selecting those x such that αr (x, I) is close to some prescribed

deterministic a provided an estimator of αr (x, I) is available. Proposition 3.3-(i)

suggests a nonparametric estimation but using the fact that V (α|x, I) = X ′γ (α|I)

may improve this estimator in the favorable case where the whole quantile regression

can be recovered. An iterative algorithm uses an additional smoothing parameter

1/J where J = JL is an integer number which diverges with the sample size, a

preliminary estimation α̂
(0)
r (x, I) of αr (x, I), and given the updated α̂

(k)
r (x, I), a

partition of the sample according (x`, I`),
45

L
(k)
j =

{
` = 1, . . . , L;

j − 1

J
≤ α̂(k)

r (x`, I`) <
j

J

}
, j = 1, . . . , J .

The algorithm decomposes into the following steps.

Step 1: a first estimation. For each j, estimate β (α|I), β(1) (α|I) and γ (α|I)

using the modified AQR procedure detailed above for αr (x, I) = j/J and the

subsample L
(k)
j , for all α ≥ j/J . Let γ̂j,k (α|I) be the resulting estimator.

Step 2: aggregation. Step 1 gives several estimation of γ (α|I), which can be

improved using weighted estimators as

γ̂(k) (α|I) =

∑J
j=1 γ̂

j,k (α|I) I
(
j
J
≤ α

)∑J
j=1 I

(
j
J
≤ α

) .

43Using a quantile specification Qβ,αr(I) (α, x, I) where αr (I) becomes a parameter to be
estimated is also feasible in principle.

44This can be in principle tested nonparametrically using Proposition 3.3-(i).
45The partition could be replaced by a kernel function as seen from the details of the algorithm.

Using a kernel instead of a partition may be useful to decrease bias in the same way that a kernel
p.d.f estimator improves on histogram.
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Define also V̂(k) (α|x, I) = X ′γ̂(k) (α|I).

Step 3: updating α̂
(k)
r (x, I). For each (x`, I`), define

α̂(k+1)
r (x`, I`) = arg min

α

∣∣∣V̂(k) (α|x, I)− r`
∣∣∣ .

Stop if the updated α̂
(k+1)
r (x`, I`) are close to the previous one and if the

slope coefficient γ̂(k) (α|I)’s do not differ too much from the ones of previous

iterations.

The updating Step 3 aims to improve the initial nonparametric estimation α̂
(0)
r (x, I)

suggested by Proposition 3.3, which may be inefficient if the dimension of the

covariate is large so that the resulting estimation of the slope γ (α|I) would be

poor. Using an unconstrained estimator like α̂
(0)
r (x, I) may also give a poor idea of

where the estimation performs well and where it does not. The aggregation step 2

is also important to recover fast estimation rates.

Choice of the smoothing parameters

Theorem 3.3 gives some asymptotic expressions for the bias and variance which can

be used to propose a plug in bandwidth choice. Such bandwidth choices are however

difficult to justify theoretically because they rely on an estimation of the bias which

is hard to perform because it depends on higher order derivatives which cannot be

estimated with a good rate.46 Before proposing an alternative bandwidth choice for

the AQR procedure, let us detail the integrated MSE approximation which follows

46Such plug in procedures are affected by an important contradiction: the focus should be on a
bias corrected version of the initial estimator if estimating the bias was easily feasible.
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from Theorem 3.3. Define, where s1 is the 1× (s+ 2) vector (0, 1, 0, . . . , 0),

M1 (α) = E
[
I (I` = I)X`αB

(s+2) (α|x`, I)

B(1) (α|x`, I)

]
, M2 (α) = E

[
I (I` = I)X`X

′
`

B(1) (α|x`, I)

]
,

M = E [I (I` = I)X`X
′
`] ,

Π1 =

∫
ts+2π (t)

(s+ 2)!
K (t) dt, Π2 =

∫
π (t) π (t)′K (t) dt,

v2 = s1Π−1
2

∫ ∫
π (t1) π (t2)′min (t1, t2)K (t1)K (t2) dt1dt2s ′1.

The formulas of the asymptotic bias and variance in (3.3.9) and (3.3.8) and Theorem

3.3 suggest that the weighted integrated MSE,∫
X

∫ 1

0

(
V̂AQR (α|x, I)− V (α|x, I)

)2 dα

B (α|x, I)
f (x, I) dx

has an expectation which leading term is,

v2

LIh

∫ 1

0

Tr
(
M2 (α)−1M

) α2

(I − 1)2dα

+ h2(s+1) (s1Π′1)2 s1Π−1
2 s ′1

(I − 1)2

∫ 1

0

M1 (α)′M2 (α)−1M1 (α) dα. (3.4.2)

The first item in (3.4.2) is a variance term which can be estimated while the second

item is a bias term which involves the high-order derivative B(s+2) (α|x`, I) through

M1 (α). The bandwidth miminizing the asymptotic leading term (3.4.2) of the IMSE

is,

hopt =

(
v2
∫ 1

0
Tr
(
M2 (α)−1M

)
α2dα

2 (s+ 1)× s1Π′1Π−1
2 Π1s ′1

∫ 1

0
M1 (α)′M2 (α)−1M1 (α) dα

1

LI

) 1
2s+3

. (3.4.3)

The key point is that

it is possible to estimate the bias term
∫ 1

0
M1 (α)′M2 (α)−1M1 (α) dα up to scale

and translation without estimating B(s+2) (α|x`, I). Define,

Ka

(
a− α
h

)
=

K
(
a−α
h

)∫
K
(
a−α
h

)
dα
,
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B̂ (h;α, I) =
1

LI

L∑
`=1

I (I` = I)

I∑̀
i=1

∫ 1

0

a2ρa

(
Bi` −X` (a− α)′ β̂AQR (α|I)

)
Ka

(
a− α
h

)
da

h
.

The kernel renormalisation is necessary to ensure that the leading term of∫ 1

0
B̂ (h;α, I) dα is independent of h as implied by the next Proposition, and gives

a simpler expression for the term in front of h2(s+2).

Proposition 3.4. Suppose Assumptions A, S-(i), R-(i) and H-(i) hold, that the

kernel K (·) is symmetric with
∫
K (t) dt = 1 and limL→∞ h log(s+2)/4 L = 0. Then,

∫ 1

0

B̂ (h;α, I) dα =
1

LI

L∑
`=1

I (I` = I)

I∑̀
i=1

∫ 1

0

α2ρα (Bi` −B (α|x`, I`)) dα

+
h2(s+2)Π′1Π−1

2 Π1

2

∫ 1

0

M1 (α)′M2 (α)−1M1 (α) dα

+ oP

(
h2(s+2) +

1

Lh

)
.

The expansion of Proposition 3.4 does not allow for a direct estimation of

the optimal bandwidth derived from (3.4.2) due to the power h2(s+2) instead

of h2(s+1) in front of the bias term and a proportionality factor Π′1Π−1
2 Π1/2I

instead of s1Π′1Π−1
2 Π1s ′1/ (I − 1). However building on correction ideas from Müller,

Stadtmüller and Schmitt (1987) or Fan and Gijbels (1996, Sections 4.5 and 4.9)

allows to propose an indirect estimator of the optimal bandwidth of (3.4.2). Let σ̂2

be an estimator of v2
∫ 1

0
Tr
(
M2 (α)−1M

)
α2dα and consider the pilot bandwidth,

ĥ0 = arg min
h

{
2

∫ 1

0

B̂ (h;α, I) dα +
σ̂2

Lh

}
. (3.4.4)

Then Proposition 3.4 suggests that ĥ0/h0
P→ 1 where,47

h0 =

(
v2
∫ 1

0
Tr
(
M2 (α)−1M

)
α2dα

2 (s+ 2)× Π′1Π−1
2 Π1

∫ 1

0
M1 (α)′M2 (α)−1M1 (α) dα

1

LI

) 1
2s+5

.

47Establishing such a result would request a uniform in bandwidth version of Proposition 3.4
which can be obtained with arguments similar to the ones used in Guerre and Sabbah (2012).
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The pilot bandwidth h0 differs from the optimal bandwidth hopt of (3.4.3) through

an exponent term and a proportionality factor. But it should be noted that hopt is

a known function of h0 and the smoothness index s. This suggests, following Müller

et al. (1987), to propose the following estimation of hopt,

ĥopt =

(
(s+ 2)× Π′1Π−1

2 Π1

(s+ 1)× (s1Π′1)2 s1Π−1
2 s ′1

ĥ2s+5
0

) 1
2s+3

. (3.4.5)

Alternative bandwidth choices to (3.4.5) can be derived from Rice (1986)

or Charnigo, Hall and Srinivasab (2011), which propose bandwidth choices for

estimation of the derivative of a regression function, including cross validation

algorithm. Cross validation for local polynomial quantile estimation has been

introduced in Abberger (1998), see also Li, Lin and Racine (2013) and Reiss and

Huang (2012) for a review in the spline setup. Horowitz and Lee (2005) have used

an Schwarz information criterion for the choice of the sieve truncation order K, see

also Koenker, Ng and Portnoy (1994).

The ASQR case is more difficult due to the sieve truncation bias. However

it is likely that Proposition 3.4 can be extended to cover this case, and that a

minimization of a modified version of the objective function in (3.4.4) can deliver a

suitable choice of KL. The adaptive procedure of Goldenshluger and Lepski (2011)

can also be useful here.

3.5 Conclusion

Starting with the standard quantile regression of Koenker and Bassett (1978), this

third chapter has studied estimation of flexible additive interactive sieve quantile

specifications which can be used with a rich set of covariates without being subject

to the curse of dimensionality. A simple modification of the quantile regression

objective function allows to estimate the first derivative of the conditional bid

quantile function with respect to the quantile level. The conditional private value

quantile function is recovered by summing the estimation of this derivative and of

the conditional bid quantile function. The resulting estimator is free of asymptotic

boundary bias, as necessary to estimate private values in the upper tail of the
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distribution or to estimate corresponding optimal bids. Hence the characteristics

of potential winners can be better discovered using such quantile approaches than

using other nonparametric methods which are subject to boundary bias. A small

simulation study shows that the proposed private value quantile regression estimator

using a data-driven bandwidth performs well even with small sample size of 100 bids.

Various extensions can be considered. Automatic bandwidth and sieve order

choices were briefly considered but need deeper investigations. When the reservation

price is binding, the first-price auction model involves censoring, and a dependence to

the censoring quantile level which was not apparently considered elsewhere. Another

issue is models with interactions higher than pairwise, for which the proposed

approach works but under stronger conditions than for additive models, an issue

that can probably be addressed with augmented local polynomial estimation of

the bids quantile function and backfitting, or a two step procedure building on the

proposed sieve approach as in Horowitz and Lee (2005). The proposed approach can

also be implemented with alternative dimension reduction techniques such as single

index quantile modelling as recently studied by Kong and Xia (2012) and suggested

in an auction context by Marmer, Shneyerov and Xu (2013a,b). The fact that the

augmented methodology is free from boundary effects can be useful for risk aversion

estimation where the lower tail matters, see respectively Guerre et al. (2009) and

Guerre and Vuong (2013) for risk aversion identification and estimation.
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A. Appendix for Chapter 1

A.1 Proofs

Proof of Lemma 1.1:

From the definition (1.2.1), the α-quantile of the private values conditional

distribution must satisfies

Fv (V (α|X, I) |X, I) = α.

Under the IPV paradigm, a bidder i with private value vi wins with probability

F I−1
v (vi|X, I). Therefore, in a quantile setup, we have that

F I−1
v (V (α|X, I) |X, I) = αI−1,

which gives the result. �

Proof of Lemma 1.2:

From the definitions of quantiles and ΨI (·), the α-quantile of the winning bids c.d.f.

must satisfies ΨI (Fv (B (α|X, I) |X, I)) = α. Because ΨI (·) is strictly increasing48

in [0, 1], the winning bids conditional quantile can be written as

B (α|X, I) = F−1
v

(
Ψ−1
I (α) |X, I

)
,

where Ψ−1
I (·) is the inverse of ΨI (·). Hence, from (1.2.1) we find (1.2.5). �

Proof of Lemma 1.3:

If the private values conditional quantile has a quantile regression specification as in

(1.2.4), by Lemma 1.2 there exists a vector of coefficient β (α|I), for each α ∈ [0, 1],

such that the winning bids conditional quantile satisfies B (α|X, I) = h (Xβ (α|I)).

48The first derivative of ΨI (t) is always positive for all t ∈ (0, 1):

Ψ
(1)
I (t) =

∂ΨI (t)

∂t
= I (I − 1) tI−2 (1− t) .
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This is a stability property of the quantile regression approach. Since h(·) is

continuous and strictly increasing, the candidate γ(·|I) must solve

Xγ(α|I) = Xβ(ΨI(α)|I)

for all X = {1} × Z. Since Z has a nonempty interior by Assumption 1.4, this

equation has a unique solution and γ(.|I) is identified for all I. �

Proof of Proposition 1.1:

Consider the seller’s payoff defined in (1.2.7). Under assumption 1.1, the seller

possible payoffs are

π (r) =


v0 if vI:I < r,

r if vI−1:I < r ≤ vI:I ,

vI−1:I if r ≤ vI−1:I .

,

where v1:I ≤ · · · ≤ vI:I are the ordered private values.

We now rewrite π (r) using quantiles and the ordered ranks

α1:I ≤ · · · ≤ αI:I , vi:I = V (αi:I) for i = 1, . . . , I.

Recall that the non ordered αi are i.i.d. U[0,1] random variables. Because V (·|X, I)

is strictly increasing by assumption 1.2,

π (αr|X, I) =


v0, if αI:I < αr,

V (αr|X, I) , if αI−1:I < αr ≤ αI:I ,

V (αI−1:I |X, I) , if αr ≤ αI−1:I ,

where αr is the level of screening and V (αr|X, I) the reservation price. It follows

that the seller’s expected payoff is

Π (αr|X, I, v0) = v0P (αI:I < αr|I) + V (αr|X, I)P (αI−1:I < αr ≤ αI:I |I)

+ E [V (αI−1:I |X, I) I (αr ≤ αI−1:I) |X, I] .
(A.1.1)

Observe that:
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(i) P (αI:I < αr|I) = αIr ;

(ii) Since
∑I

i=1 I (αi ≤ αr) is a binomial distribution with parameters I and αr,

P (αI−1:I < αr ≤ αI:I |I) = P

(
I∑
i=1

I (αi ≤ αr) = I − 1|I

)
= IαI−1

r (1− αr) ;

(iii) Since the c.d.f of αI−1:I given I is ΨI (α) with p.d.f. I (I − 1)αI−2 (1− α),

α ∈ [0, 1],

E [V (αI−1:I |X, I) I (αr ≤ αI−1:I) |X, I] = I (I − 1)

∫ 1

αr

V (α|X, I)αI−2 (1− α) dα.

Therefore, substituting (i)-(iii) into (A.1.1) gives equation (1.2.8), which is a quantile

version of the seller’s expected payoff.

Now, if Π (αr|X, I, v0) achieves a maximum for α∗r = α∗r (X, I, v0) ∈ [0, 1], α∗r

must satisfy a first order condition ∂
∂α
{Π (α∗r|X, I, v0)} = 0. An expression for the

first derivative of Π (α∗r|X, I, v0) with respect to the rank α is

∂

∂α
{Π (α|X, I, v0)} = v0Iα

I−1 + V (1) (α|X, I) IαI−1 (1− α)

+ V (α|X, I)
{
I (I − 1)αI−2 (1− α)− IαI−1

}
− V (α|X, I) I (I − 1)αI−2 (1− α)

= IαI−1
{
v0 + V (1) (α|X, I) (1− α)− V (α|X, I)

}
.

Hence, a candidate for the optimal level of screening α∗r is given by

V (α∗r|X, I)− V (1) (α∗r|X, I) (1− α∗r) = v0.

�

Proof of Theorem 1.1 and Corollary 1.1:

We just detail the proof of the Theorem since the proof of the Corollary follows the

same steps. Changes needed for the proof of the Corollary are discussed at the end
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of the section.

We show first that the private values quantile regression estimator in (1.3.15) is

consistent. Since −1 ≤ ∂ρΨI(α) (t) /∂t ≤ 1, the Taylor inequality gives

∣∣ρΨI(α) (bw` − h (X`γ))− ρΨI(α) (bw`)
∣∣ ≤ |h (X`γ)| ≤ C0,

because X`γ ∈ X×Γ compact, and for this reason stays bounded from above. Hence,

sup
γ∈Γ

∣∣∣Q̂ (γ|α, I)−Q (γ|α, I)
∣∣∣ P−→ 0,

by the Uniform Law of Large Numbers in Newey and McFadden (1994, Lemma

2.4), where Q (γ|α, I) and Q̂ (γ|α, I) are defined in section 1.3. Therefore, by (ii)

in Lemma 1.3 and Newey and McFadden (1994, Theorem 2.1), γ∗ (α|I) is uniquely

identified and γ̂ (α|I)
P−→ γ∗ (α|I).

For the sake of brevity, we remove the dependence on α and I, that is Q̂ (γ|α, I),

Q (γ|α, I), γ̂ (α|I) and γ∗ (α|I) become Q̂ (γ), Q (γ), γ̂ and γ∗. Observe that the

first and second-order derivatives of Q (γ) are

Qγ (γ) = E
[
{I (bw < h (Xγ))−ΨI (α)}h(1) (Xγ)X ′|I

]
= E

[
{P (bw < h (Xγ) |X, I)−ΨI (α)}h(1) (Xγ)X ′|I

]
= E

[
{Fbw (h (Xγ) |X, I)−ΨI (α)}h(1) (Xγ)X ′|I

]
,

Qγγ (γ) = E
[
fbw (h (Xγ) |X, I)h(1) (Xγ)X ′X|I

]
+E

[
{Fbw (h (Xγ) |X, I)−ΨI (α)}h(2) (Xγ)X ′X|I

]
,

as stated in the Theorem. Define

u` = bw` − h (X`γ
∗) ,

Ŵ =
1

LI

L∑
`=1

h(1) (X`γ
∗) I (I` = I) (I (u` < 0)−ΨI (α))X`,

R̂ (γ) =

√
LI

{
Q̂ (γ)− Q̂ (γ∗)− (γ − γ∗)′ Ŵ − (Q (γ)−Q (γ∗))

}
‖γ − γ∗‖

,

where ‖·‖ is the usual Euclidean norm. Since γ∗ is an interior point of Γ and because
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γ̂ is consistent, the asymptotic normality of the Theorem follows from√
LIŴ

d→ N (0, J (γ∗|α, I)) , (A.1.2)

sup
γ∈Γ;‖γ−γ∗‖≤εL

∣∣∣∣∣ R̂ (γ)

1 +
√
LI‖γ − γ∗‖

∣∣∣∣∣ = oP (1) for any εL = o (1) , (A.1.3)

see Theorem 7.1 in Newey and Mc Fadden (1994). We first establish (A.1.2). Note

that the summands in Ŵ are centered since

E
[
(I (u < 0)−ΨI (α))h(1) (Xγ∗)X ′|I

]
= Qγ (γ∗) = 0,

because γ∗ in the interior of Γ minimizes Q (·), and with a variance given I which is

E
[
(I (u < 0)−ΨI (α))2 h(1) (Xγ∗)2X ′X|I

]
=

E
[(
P (u < 0|X, I)− 2ΨI (α)P (u < 0|X, I) + ΨI (α)2)h(1) (Xγ∗)2X ′X|I

]
= J (γ∗|α, I) ,

since P (u < 0|X, I) = Fbw (h (Xγ∗) |X, I). Hence (A.1.2) follows from the Central

Limit Theorem.

The rest of the proof consists then in showing (A.1.3). We first introduce some

useful notations. Note that Qγγ (γ) = Q1
γγ (γ) +Q2

γγ (γ) with

Q1
γγ (γ) = E

[
{Fbw (h (Xγ) |X, I)−ΨI (α)}h(2) (Xγ)X ′X|I

]
,

Q2
γγ (γ) = E

[
fbw (h (Xγ) |X, I)h(1) (Xγ)2X ′X|I

]
.

Write

Q̂ (γ)− Q̂ (γ∗) =
1

LI

L∑
`=1

I (I` = I)
{
ρΨI(α) (u` − v`)− ρΨI(α) (u`)

}
where,

v` = v` (δ) = h (X`γ)− h (X`γ
∗) , where δ = γ − γ∗.
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By an identity from Knight (1998),

ρΨI(α) (u` − v`)− ρΨI(α) (u`) =

v` {I (u` < 0)−ΨI (α)}+

∫ v`

0

{I (u` ≤ s)− I (u` ≤ 0)} ds.

Hence, for δ = γ − γ∗,

Q̂ (γ)− Q̂ (γ∗)− (γ − γ∗)′ Ŵ − (Q (γ)−Q (γ∗)) =
5∑
j=1

∆j (δ) ,

where ∆j (δ) =
∑L

`=1 ∆j` (δ) /LI with

∆1` (δ) = I (I` = I)
[(
v` − h(1) (X`γ

∗)X`δ
)
{I (u` < 0)−ΨI (α)}

−E
[(
v` − h(1) (X`γ

∗)X`δ
)
{I (u` < 0)−ΨI (α)} |I`

]]
,

∆2` (δ) = I (I` = I)
[
E
[(
v` − h(1) (X`γ

∗)X`δ
)
{I (u` < 0)−ΨI (α)} |I`

]
−
δ′Q1

γγ (γ∗) δ

2

]
,

∆3` (δ) = I (I` = I)

[
E
[∫ v`

0

{I (u` ≤ s)− I (u` ≤ 0)} ds|I`
]
−
δ′Q2

γγ (γ∗) δ

2

]
,

∆4` (δ) = I (I` = I)

[∫ v`

0

{I (u` ≤ s)− I (u` ≤ 0)} ds

−E
[∫ v`

0

{I (u` ≤ s)− I (u` ≤ 0)} |I`
]]
,

∆5` (δ) = I (I` = I)

[
Q (γ)−Q (γ∗)−

δ′Q1
γγ (γ∗) δ

2
−
δ′Q2

γγ (γ∗) δ

2

]
.

Now, since v` = h (X` (γ∗ + δ))− h (X`γ) satisfies,

v` = X`δ

∫ 1

0

h(1) (X` (γ∗ + tδ)) (1− t) dt,

v` − h(1) (X`γ
∗)X`δ =

δ′X ′`X`δ

2

∫ 1

0

h(2) (X` (γ∗ + tδ)) (1− t) dt,

128



A. Appendix for Chapter 1

we have

∂

∂δ

[
v` − h(1) (X`γ

∗)X`δ

‖δ‖

]
=

v`
‖δ‖
−
δ
(
v` − h(1) (X`γ

∗)X`δ
)

‖δ‖2

=
δ

‖δ‖
X`

∫ 1

0

h(1) (X` (γ∗ + tδ)) (1− t) dt−

δ
δ′X ′`X`δ

2 ‖δ‖2

∫ 1

0

h(2) (X` (γ∗ + tδ)) (1− t) dt.

This first differential is bounded when ‖δ‖ ≤ 1. Hence the set of functions

{∆1` (δ) / ‖δ‖ , ‖δ‖ ≤ 1} can be covered with a number less than O
(
ε−C
)

of functional brackets with length ε. To see that the same holds for

{∆4` (δ) / ‖δ‖ , ‖δ‖ ≤ 1}, observe

1

‖δ‖

∫ v`

0

{I (u` ≤ s)− I (u` ≤ 0)} ds =
v`
‖δ‖

∫ 1

0

{I (u` ≤ s+ tv`)− I (u` ≤ 0)} dt

=

(
X`

δ

‖δ‖

)
×
(∫ 1

0

h(1) (X` (γ∗ + tδ)) (1− t) dt
)

×
(∫ 1

0

{I (u` ≤ s+ tv`)− I (u` ≤ 0)} dt
)
.

Each of the three functions of δ in this product can be covered with O
(
ε−C
)

of

functional brackets with length ε, implying that the same covering property holds for

{∆4` (δ) / ‖δ‖ , ‖δ‖ ≤ 1}. Hence, since {∆j` (δ) / ‖δ‖ , ‖δ‖ ≤ εL} admits an envelope

∆j (X`) satisfying E
[
∆2

j (X`)
]

= o (1), j = 1, 4, Lemma 19.38 in van der Vaart

(1998) gives that, with Γδ = {δ; γ∗ + δ ∈ Γ}

E
[

max
δ∈Γδ;‖δ‖≤εL

∣∣∣∣√LI
∆j (δ)

‖δ‖

∣∣∣∣ |I`, 1 ≤ ` ≤ L

]
= oP (1) , j = 1, 4.

This gives, by the Markov inequality,

max
δ∈Γδ;‖δ‖≤εL

∣∣∣∣√LI
∆j (δ)

‖δ‖

∣∣∣∣ = oP (1) , j = 1, 4. (A.1.4)

Now elementary expansions give, for the items in ∆j` (δ), j = 2, 3, 5, uniformly
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in ` since X` lies in a compact set,

I (I` = I)E
[(
v` − h(1) (X`γ

∗)X`δ
)
{I (u` < 0)−ΨI (α)} |I`

]
=

I (I` = I)E
[(

h(2) (X`γ
∗) δ′X`X`δ

2
+ o

(
‖δ‖2)) {P (u` < 0|X`, I`)−ΨI (α)} |I`

]
= I (I` = I)

δ′Q1
γγ (γ∗) δ

2
+ o

(
‖δ‖2) ,

I (I` = I)E
[∫ v`

0

{I (u` ≤ s)− I (u` ≤ 0)} ds|I`
]

=

I (I` = I)E
[∫ v`

0

{P (u` ≤ s|X`, I`)− P (u` ≤ 0|X`, I`)} ds|I`
]

=

I (I` = I)E
[∫ v`

0

{fbw (h (X`γ
∗) |X`, I`) + o (1)} sds|I`

]
=

I (I` = I)E
[
{fbw (h (X`γ

∗) |X`, I`) + o (1)} v
2
`

2
|I`
]

=

I (I` = I)E

[
fbw (h (X`γ

∗) |X`, I`)

(
h(1) (X`γ

∗)X`

)2

2
|I`

]
+ o

(
‖δ‖2)

= I (I` = I)
δ′Q2

γγ (γ∗) δ

2
+ o

(
‖δ‖2) ,

Q (γ)−Q (γ∗)−
δ′Q1

γγ (γ∗) δ

2
−
δ′Q2

γγ (γ∗) δ

2
= o

(
‖δ‖2) .

This gives by definition of ∆j (δ), j = 2, 3, 5,

max
δ∈Γδ;‖δ‖≤εL

∣∣∣∣∆j (δ)

‖δ‖2

∣∣∣∣ = oP (1) , j = 2, 3, 5. (A.1.5)

Therefore (A.1.4), (A.1.5), γ − γ∗ = δ, and R̂ (γ) =
√
LI
∑5

j=1 ∆j (δ) imply

sup
γ∈Γ;‖γ−γ∗‖≤εL

∣∣∣∣∣ R̂ (γ)

1 +
√
LI‖γ − γ∗‖

∣∣∣∣∣ ≤ 2 max
j=1,4

max
δ∈Γδ;‖δ‖≤εL

∣∣∣∣√LI
∆j (δ)

‖δ‖

∣∣∣∣
+3 max

j=1,3,5
max

δ∈Γδ;‖δ‖≤εL

∣∣∣∣∆j (δ)

‖δ‖2

∣∣∣∣
= oP (1) .

Hence (A.1.3) is true.
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For Corrollary 1.1, the first derivative of Q̂0 (γ) = Q̂ (γ|α) is

Q̂0
γ (γ) =

1

L

L∑
`=1

(I (bw` ≤ h (X`γ))−ΨI` (α))h(1) (X`γ)X ′`.

Let γ∗ = γ (α). As seen from the proof of Theorem 1.1, the matrix J (γ∗|α) is

the variance of Ŵ 0 = L1/2Q̂0
γ (γ∗) and because E

[
Ŵ 0
]

= 0 asymptotic normality

follows. Hence J (γ∗|α) is equal to

E
[(
I (bw ≤ h (Xγ∗))− 2I (bw ≤ h (Xγ∗)) ΨI (α) + Ψ2

I (α)
)
h(1) (Xγ∗)X ′X

]
=

E
[(
P (bw ≤ h (Xγ∗) |X, I)− 2P (bw ≤ h (Xγ∗) |X, I) ΨI (α) + Ψ2

I (α)
)

×h(1) (Xγ∗)X ′X
]
,

which gives the expression of the Corollary since P (bw ≤ h (Xγ∗) |X, I) =

Fbw (h (Xγ∗) |X, I). Now, similar computations give that

Q0
γγ (γ∗) = E

[
Q̂0
γγ (γ∗)

]
= E

[
(fbw (h (Xγ∗) |X, I)−ΨI` (α))h(1) (Xγ∗)X ′X

]
+ E

[
(Fbw (h (Xγ∗) |X, I)−ΨI` (α))h(2) (Xγ∗)X ′X

]
.

�

A.2 Random Weighting Bootstrap Method

This section describes the random weighting bootstrap method used in the tests

of exclusion participation restriction and constancy of the slope coefficients. Let

Q̂H0 (γ̂H0 |α, I) and Q̂H1 (γ̂H1|α, I) be the optimized value of the quantile regression

objective function under the null and alternative hypothesis, respectively. The M-

test statistic defined in Rao and Zhao (1992), Wang and Zhou (2004) and Zhao, Wu

and Yang (2007) is

M = LI

[
Q̂H0 (γ̂H0|α, I)− Q̂H1 (γ̂H1|α, I)

]
. (A.2.6)
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Let π` be i.i.d. random weights multinomially distributed with parameters

(LI , 1/LI). Define the random weighting empirical objective function under the

null and alternative hypotheses as Q̂H0 (γH0 |α, I, π) and Q̂H1 (γH1|α, I, π), where

Q̂Hj

(
γHj |α, I, π

)
=

1

LI

LI∑
`=1

I (I` = I) π`ρΨI(α) (bw` − h (X`γ)) , (A.2.7)

for j = {0, 1}. The aforementioned reference suggests to random weighting

bootstrap the M-statistic (A.2.6) by using the random weights π`. Let b be the

index for a draw πb of the weights. For each j = {0, 1}, define

γ̂bHj (α|I) = arg min
γHj∈Γ

Q̂Hj

(
γHj |α, I, πb

)
.

Then, the bth draw of the bootstrapped statistic is

M b = LI

[
Q̂H0

(
γ̂bH0
|α, I, πb

)
− Q̂H1

(
γ̂bH1
|α, I, πb

)]
− LI

[
Q̂H0

(
γ̂H0|α, I, πb

)
− Q̂H1

(
γ̂H1 |α, I, πb

)]
where γ̂Hj are the estimators obtained from the initial population.

The null hypothesis H0 is rejected at a significance level τ if M is larger than

the sample (1− τ)-quantile of the bootstrapped statistic M1, · · · ,MB and accepted

otherwise, where B is the number of bootstrap replications.

A.3 Monte Carlo Experiments

This section presents some Monte Carlo experiments used to illustrate the

hypotheses tests and their performance in terms of size. For all the experiments

below, let A = {0.50, 0.60, 0.70, 0.80}.

Exclusion Participation Restriction.

Data Generating Process. We generate two samples of auction covariates and

error terms. One sample corresponds to L2 auctions with I = 2 actual bidders

and the other to L3 auctions with I = 3, where L2 = L3 = 100. For the auction
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covariates, we generate LI random Normal (0, 1) variables and replicate it I times.

The I×LI error terms are randomly generated considering three different parametric

distributions: Uniform (0, 1), Standard Exponential and Standard Normal. The

bidders’ private values are generated via two possible regression specifications: linear

vi` = 1 + X1` + X2` + ui` and exponential vi` = exp (0.3 + 0.3X1` + 0.3X2` + ui`)
49.

The winning bid is given by the second-highest private value: bw` = vI−1:I,`.

Estimation and Test. We use the winning bids to estimate γ (α|I = 2) and

γ (α|I = 3), via the individual quantile regression estimator (1.3.15), and γ (α), via

the pooled quantile regression estimator (1.3.18), for all α ∈ A. We then compute

M = Q̂ (γ̂|α)−
∑

I∈{2,3}

Q̂ (γ̂ (α|I) |α, I)LI/L

for each quantile level α and sum over A.

Bootstrap. We generate L2 and L3 i.i.d. random weights π multinomially

distributed with parameters (LI , 1/LI) and estimate Q̂
(
γ̂b (α) |α, πb

)
and

Q̂
(
γ̂b (α|I) |α, I, πb

)
for each bootstrap draw b, where the former corresponds to

the pooled optimized objective function and the latter to the individual one. We

then compute the random weighting bootstrap statistic

M b =
[
Q̂
(
γ̂b (α) |α, πb

)
−
∑

I∈{2,3}

Q̂
(
γ̂b (α|I) |α, I, πb

)
LI/L

]
−[

Q̂
(
γ̂ (α) |α, πb

)
−
∑

I∈{2,3}

Q̂
(
γ̂ (α|I) |α, I, πb

)
LI/L

]
,

where γ̂ (α) and γ̂ (α|I) are the estimates of the original population, and sum over

the quantile levels. The number of bootstrap replications is B = 500.

Bootstrap Critical Values. We choose a significance level τ for the test. The

bootstrap critical value c∗ (τ) is an approximation of the c (τ) critical value of the

test statistic M and is given by the (1− τ)th quantile of the empirical distribution

of the bootstrapped statistic.

Rejection Rule. If M < c∗ (τ), then we do not reject the null hypothesis at

τ% significance level.

49The values of the intercept and slope coefficients are not an important issue and were chosen
simply to speed up the estimation process.
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Table A.1: Rejection Probability - Linear Specification

Nominal Level Std. Normal Uniform (0, 1) Std. Exponential

1% 1.06% 1.18% 0.87%
5% 5.09% 5.47% 3.62%
10% 9.84% 10.84% 7.30%

The number of bootstrap replications is B = 500; The experiment was repeated
N = 10, 000 times; The set of prescribed quantiles is A = {0.50, 0.60, 0.70, 0.80}.

Table A.2: Rejection Probability - Exponential Specification

Nominal Level Std. Normal Uniform (0, 1) Std. Exponential

1% 1.32% 1.62% 1.17%
5% 5.14% 6.16% 4.61%
10% 9.94% 11.54% 9.34%

The number of bootstrap replications is B = 500; The experiment was repeated
N = 10, 000 times; The set of prescribed quantiles is A = {0.50, 0.60, 0.70, 0.80}.

Rejection Probability. We repeat the procedure above N = 10, 000 times and

compute how many times the null hypothesis is rejected.

The results from the Monte Carlo experiment above are given in Tables A.1 and

A.2. The rejection probabilities are very close to the nominal levels in both cases.

It is slightly undersized in the case in which the errors follow a standard exponential

distribution and the model has a linear specification.

Choice of Specification

Data Generating Process. As in the previous experiment, we generate two

samples of auction covariates and error term with L2 and L3 auctions, where

L2 = L3 = 200. The auction covariates are random Standard Normal variables that

are replicated I times. For the error terms, we consider the distributions: Standard

Normal, Uniform (0, 1) and Standard Exponential. The bidders’ private values are

generated via two possible regression specifications: linear vL
i` = γ0 + γ1Z1` + ui`

and exponential vE
i` = exp (γ0 + γ1Z1` + ui`), where (γ0, γ1) = (1, 1) in the case

the errors are normally distributed and (γ0, γ1) = (0, 0.5) when the errors are

either uniformly or exponentially distributed50. Under the null hypothesis, the

50The values of the intercept and slope parameters were chosen according to the distribution of
the errors in an attempt to find a DGP that satisfies the equivalence property for a given quantile
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exponential specification is equivalent to the linear specification for a given α0 ∈ A

and dominates the latter for all α ∈ A\ {α0}. In order to have equivalence at α0 ∈ A,

we create a private value vi` that is a linear combination of both private values above:

vi` = λvL
i` + (1− λ) vE

i`. To find the weight λ that satisfies the equivalence property,

we split λ ∈ [0, 1] into 1, 000 equal spaces and compute the relative difference

between both optimized objective functions,

∆ (α, λt) =

(
Q̂E (γ̂E|α, λt)− Q̂L (γ̂L|α, λt)

)
Q̂L (γ̂L|α, λt)

,

for t = {1, · · · , 1, 000}. We choose λ∗ across t that minimizes ∆ (α, λt) for a given

α. The equivalence property must hold for a given α0 ∈ A and the exponential

specification should be better than the linear one for all α ∈ A\ {α0}. Therefore,

we choose λ∗max such that supα∈A ∆ (α, λ∗) = 0. The winning bid is given by the

second-highest private value: bw` = vI−1:I,`.

Estimation and Test. We generate a DGP using λ∗max and compute the test

statistic V̂uong as in (1.4.23).

Bootstrap. We resample with replacement the (X`, bw`)-pair from their joint

sample distribution in each original subsample LI . The number of bootstrap

replications is B = 500.

Bootstrapping the Test Statistic. For each bootstrap replication b, we

compute the recentered bootstrapped test statistic V̂uong
b

as

V̂uong
b

= sup
α∈A

√
L
{(
Q̂E

(
γ̂bE|α

)
− Q̂L

(
γ̂bL|α

))
−
(
Q̂E (γ̂E|α)− Q̂L (γ̂L|α)

)}
,

where γ̂E and γ̂L are the estimates of the original population generated by λ∗max.

The bootstrap critical values, rejection rule and rejection probability are

computed as in Appendix C.1. In Table A.3, we present the rejection probabilities

and the values for λ∗max used in each experiment. The test performs well although

a bit undersized. That is because we use the supremum over the quantiles in the

formula, which means that the rejection probability could be higher for a given

quantile level.

level.
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Table A.3: Rejection Probability - Test of Specification

Nominal Level Std. Normal Uniform (0, 1) Std. Exponential

1% 2.23% 0.94% 0.91%
5% 5.67% 4.50% 4.22%
10% 8.31% 9.04% 8.22%

λ∗max 0.6547 0.5846 0.5095

The number of bootstrap replications is B = 500; The experiment was repeated
N = 10, 000 times; The set of prescribed quantiles is A = {0.50, 0.60, 0.70, 0.80};
It is assumed independence of the private values distribution upon I in this Monte
Carlo experiment.

Constancy of the Slope Coefficients

Data Generating Process. As in the previous two experiments, we generate

two samples of auction covariates and error terms with L2 and L3 auctions, where

L2 = L3 = 100. For the auction covariates, we generate LI random Standard Normal

variables and replicate it I times. The I × LI error terms are randomly generated

considering the parametric distributions: Uniform (0, 1), Standard Exponential and

Standard Normal. The private values are generated using a linear regression model

due to the results of the empirical application, i.e. vi` = 0 + Z` + ui`. The winning

bid is given by the second-highest private value: bw` = vI−1:I,`.

Estimation and Test. We use the winning bids to estimate (γ0k , γ1),

k = 1, · · · , K, via the CQR estimator defined in (1.3.21), and γ (α) via the

pooled quantile regression estimator (1.3.18). Under the null hypothesis, the CQR

population objective function equals the average of the individual objective functions

over A. We then compute the M-statistic

M = L

[
Q̂CQR (γ̂CQR)− 1

K

K∑
k=1

Q̂ (γ̂|αk)

]
,

where K = 4 since A = {0.50, 0.60, 0.70, 0.80}.
Bootstrap. We generate L2 and L3 i.i.d. random weights π multinomially

distributed with parameters (LI , 1/LI) and estimate Q̂CQR

(
γ̂bCQR|πb

)
and

Q̂
(
γ̂b (αk) |αk, πb

)
at each bootstrap draw b and quantile level αk. We then compute
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Table A.4: Rejection Probability - Constancy of the Slope Coefficients

Nominal Level Std. Normal Uniform (0, 1) Std. Exponential

1% 1.25% 1.15% 1.09%
5% 6.25% 6.73% 5.59%
10% 11.74% 12.27% 10.95%

The number of bootstrap replications is B = 500; The experiment was repeated
N = 10, 000 times; The set of prescribed quantiles is A = {0.50, 0.60, 0.70, 0.80};
It is assumed independence of the private values distribution upon I in this Monte
Carlo experiment.

the random weight bootstrap statistic as

M b = L
[
Q̂CQR

(
γ̂bCQR|πb

)
− 1

K

K∑
k=1

Q̂
(
γ̂b (αk) |αk, πb

)]
−

L

[
Q̂CQR

(
γ̂CQR|πb

)
− 1

K

K∑
k=1

Q̂
(
γ̂ (αk) |αk, πb

)]
,

where γ̂CQR and γ̂ (αk) are the estimates of the original population. The number of

bootstrap replications is B = 500.

The bootstrap critical values, rejection rule and rejection probability are

computed as in Appendix C.1. Table A.4 gives the rejection probabilities of the

test. The test performs well although a bit oversized, which is due to the tolerance

level asigned for the convergence of the algorithm.
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Proofs

In all this proof section, g (b|x, I) and G (b|x, I) are respectively the conditional p.d.f

and c.d.f of the bids Bi` given (x`, I`) = (x, I), so that

B (α|x, I) = G−1 (α|x, I) , B(1) (α|x, I) =
1

g (B (α|x, I) |x, I)

will be often used.

Proofs of the results in Sections 3.2 and 3.4

This subsection groups the proofs of the results of Sections 3.2 and 3.4 with

the exception of the proof of Proposition 3.4 which is established with our main

estimation results, see Section B below.

Proof of Lemma 3.1. If α ∈ [0, 1] 7→ V (α|x, I) is continuous and strictly

increasing, the private value rank Ui in (3.2.1) is uniquely defined. Recall also

that Lemma A2 in GPV yields that the continuously differentiable s0 (·|x, I) has

a derivative s
(1)
0 (v|x, I) > 0 over [V (0|x, I) , V (1|x, I)] so that B (·|x, I) in (3.2.3)

is continuous strictly increasing. Bi = s0 (Vi|x, I) and Vi = V (Ui|x, I) give, for

s0 (v|x, I) as in (3.2.2),

Bi = s0 (V (Ui|x, I) |x, I) .

This implies that the optimal bids satisfies Bi = B (Ui|x, I) by (3.2.3), hence (ii) is

proved. Since the continuous strictly increasing B (·|x, I) has a reciprocal function

B−1 (·|x, I) and Ui = F (Vi|x, I) is uniform over [0, 1], B−1 (·|x, I) = G (·|x, I) and

Bi = B (Ui|x, I) gives Ui = G (Bi|x, I), hence (i). For (iii), B (a|x, I) is a winning

bid if and only if B (a|x, I) > max1≤j 6=i≤I Bj so that the probability of interest is,

since B (·|x, I) is continuous and strictly increasing and Bj = B (Uj|x, I) with i.i.d.

uniform Uj given (x, I),

P
(
B (a|x, I) > max

1≤j 6=i≤I
Bj|x, I

)
= P

(
B (a|x, I) > max

1≤j 6=i≤I
B (Uj|x, I) |x, I

)
= P

(
a > max

1≤j 6=i≤I
Uj

)
= aI−1. �
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Proof of Lemma 3.2. Drop the dependence upon x and I for the sake of

brevity. By the expected revenue theorem, it is sufficient to compute the expected

revenue for a second price auction where the paid price is the maximum of r and

second highest bid, assuming that the largest bid is higher than r since there is no

transaction otherwise. For such auction, a dominant strategy is to bid his private

value. Let V(1) = V
(
U(1)

)
≤ · · · ≤ V(I) = V

(
U(I)

)
be the ordered private values, so

that the expected revenue is, since V (·) is continuous and strictly increasing,

V0 (x, I)P
(
V(I) ≤ r

)
+ E

[
rI
(
V(I−1) ≤ r ≤ V(I)

)
+ V(I−1)I

(
r ≤ V(I−1)

)]
= V0 (x, I)αIr + rP

(
I∑
i=1

I (Ui ≤ αr) = I − 1

)
+ E

[
V
(
U(I−1)

)
I
(
αr ≤ U(I−1)

)]
.

The probability above is IαI−1
r (1− αr) by definition of the binomial distribution

with parameter (I, αr). As recalled in Athey and Haile (2002, eq. 5), the c.d.f

of U(I−2) is Ψ (α) = IαI−1 − (I − 1)αI , with density ψ (α) = I (I − 1)αI−2 −
I (I − 1)αI−1 = I (I − 1)αI−2 (1− α), so that

E
[
V
(
U(I−1)

)
I
(
r ≤ V

(
U(I−1)

))]
= I (I − 1)

∫ 1

αr

V (α)αI−2 (1− α) dα,

which establishes the claim of the Lemma. �

Proof of Theorem 3.1. Drop the dependence on x and I. We first prove part

(ii). As shown in GPV and provided f (v) is continuous with infv∈[V (0),V (1)] f (v) > 0

as ensured by the condition on V (·), an optimal bid b computed from a private value

v satisfies v = ξ (b) where the continuously differentiable and strictly increasing ξ (·)
is the inverse of s0 (·) and can be written,

ξ (b) = b+
1

I − 1

G (b)

g (b)
.

Note that G (b) = F
(
s−1

0 (b)
)

is one to one with infb∈[B(0),B(1)] g (b) > 0 since s0 (·)
is continuously differentiable with infv∈[V (0),V (1)] s

(1)
0 (v) > 0, so that G (B (α)) = α

and B(1) (α) = 1/g (B (α)) . Hence since B (α) is an optimal bid for a private value
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V (α) by (3.2.3),

V (α) = B (α) +
1

I − 1

G (B (α))

g (B (α))
= B (α) +

αB(1) (α)

I − 1
,

which is (3.2.6).

Consider now part (i). Since s0 (V (0)) = V (0), the initial condition B (0) =

V (0) holds. Write, for α ∈ (0, 1], B (α) = C (α) /αI−1, so that B(1) (α) =

C(1) (α) /αI−1 − (I − 1)B (α) /α. Substituting in (3.2.6) gives that C (·) satisfies

C(1) (α) = (I − 1)αI−2V (α), implying that

C (α) = C (0) + (I − 1)

∫ α

0

tI−2V (t) dt.

Since continuity of V (·) gives limα→0 α
−(I−1) (I − 1)

∫ α
0
tI−2V (t) dt = V (0), B (α) =

limα→0C (α) /αI−1 = B (0) = V (0) implies,

B (α) =
I − 1

αI−1

∫ α

0

tI−2V (t) dt,

showing that the claim of part (i) is true. �

Proof of Lemma 3.3. Observe that,

I − 1

αI−1

∫ α

0

tI−2V (t|x, I) dt = (I − 1)

∫ 1

0

uI−2V (αu|x, I) dt,

I − 1

αI−1

∫ α

0

tI−2γk (t|I) dt = (I − 1)

∫ 1

0

uI−2γk (αu|I) dt,

which implies that
∑∞

k=1 βk (α|I)Pk (x) converges uniformly over [0, 1] × X and is

equal to B (α|x, I) as defined in (3.2.5). For B(1) (α|x, I), integrating by parts gives

βk (α|I) =
1

αI−1

∫ α

0

γk (t|I) d
[
tI−1

]
= γk (α|I)− 1

αI−1

∫ α

0

tI−1γ
(1)
k (t|I) dt.

It follows that,

β
(1)
k (α|I) = γ

(1)
k (α|I)−γ(1)

k (α|I)+
I − 1

αI

∫ α

0

tI−1γ
(1)
k (t|I) dt = (I − 1)

∫ 1

0

uI−1γ
(1)
k (αu|I) dt,
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which implies that, as
∑∞

k=1 γ
(1)
k (α|I)Pk (x),

∑∞
k=1 β

(1)
k (α|I)Pk (x) converges

uniformly over [0, 1] × X and is equal to the α-derivative of
∑∞

k=1 βk (α|I)Pk (x) =

B (α|x, I). This also gives that βk (α|I) + αβ
(1)
k (α|I) / (I − 1) = γk (α|I). �

Proof of

Proposition 3.1. By (3.2.5), B (α|x, I) = (I − 1)
∫ 1

0
uI−2V (αu|x, I) du, so that

B(1) (α|x, I) = (I − 1)
∫ 1

0
uI−1V (1) (αu|x, I) du which gives (i). For (ii), (3.2.10) and

βk (α|I) = (I − 1)
∫ 1

0
uI−2γk (αu|I) du implies,

max
(α,x)∈[0,1]×X

∣∣∣∣∣B (α|x, I)−
K∑
k=1

βk (α|I)Pk (x)

∣∣∣∣∣
≤ max

(α,x)∈[0,1]×X

∣∣∣∣∣V (α|x, I)−
K∑
k=1

γk (α|I)Pk (x)

∣∣∣∣∣ = o
(
K
− s+2
dM

)
.

This also implies that B(s+1) (α|x, I) = (I − 1)
∫ 1

0
uI−1V (s+1) (αu|x, I) du is

continuous over [0, 1]× X as is V (s+1) (α|x, I), that

β
(s+1)
k (α|I) = (I − 1)

∫ 1

0

uI+s−1γ
(s+1)
k (αu|I) du,

and then,

max
(α,x)∈[0,1]×X

∣∣∣∣∣B(s+1) (α|x, I)−
K∑
k=1

β
(s+1)
k (α|I)Pk (x)

∣∣∣∣∣
≤ max

(α,x)∈[0,1]×X

∣∣∣∣∣V (s+1) (α|x, I)−
K∑
k=1

γ
(s+1)
k (α|I)Pk (x)

∣∣∣∣∣ −→K→∞
0.

For (iii), it follows from (ii) that,

max
(α,x)∈[0,1]×X

∣∣∣∣∣αB (α|x, I)−
K∑
k=1

αβk (α|I)Pk (x)

∣∣∣∣∣ = o
(
K
− s+2
dM

)
.
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Moreover, for all α ∈ [0, 1],

B(s+1) (α|x, I) = (I − 1)

∫ 1

0

uI−1+sV (s+1) (αu|x, I) du =
I − 1

αI+s

∫ α

0

tI−1+sV (s+1) (t|x, I) dt,

and then, for α ∈ (0, 1],

B(s+2) (α|x, I) = −(I − 1) (I + s)

αI+s+1

∫ α

0

tI−1+sV (s+1) (t|x, I) dt+
(I − 1)V (s+1) (α|x, I)

α

= −(I + s)

α
B(s+1) (α|x, I) +

(I − 1)V (s+1) (α|x, I)

α
.

Hence, it follows from the L’Hospital rule that, for all α ∈ [0, 1] ,

∂s+2

∂αs+2
[αB (α|x, I)] = αB(s+2) (α|x, I) + (s+ 2)B(s+1) (α|x, I)

= (2− I)B(s+1) (α|x, I) + (I − 1)V (s+1) (α|x, I) ,

∂s+2

∂αs+2
[αβk (α|I)] = (2− I) β

(s+1)
k (α|I) + (I − 1) γ

(s+1)
k (α|I) .

This shows αB (α|x, I) ∈ Ps+2,s+1 since B (α|x, I) and V (α|x, I) are both in

Ps+1,s+1. �

Proofs of Lemmas 3.4 and 3.5. Since the two proofs are similar, we just

detail the one of Lemma 3.5. Let

%̂A = max
(α,x,I)∈[0,1]×X×I

∣∣∣Â (α|x, I)− A (α|x, I)
∣∣∣ , A ∈ {B, V } .

Then, since Ûi` = arg minα∈[0,1]

∣∣∣Bi` − B̂ (α|x`, I`)
∣∣∣ and Bi` = B (Ui`|x`, I`) where
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B (·|x`, I`) is increasing,{∣∣∣Ûi` − Ui`∣∣∣ ≥ t
}

⊂
{

min
α∈[0,1];|Ui`−α|≥t

∣∣∣Bi` − B̂ (α|x`, I`)
∣∣∣ ≤ min

α∈[0,1];|Ui`−α|<t

∣∣∣Bi` − B̂ (α|x`, I`)
∣∣∣}

⊂
{

min
α∈[0,1];|Ui`−α|≥t

∣∣∣Bi` − B̂ (α|x`, I`)
∣∣∣ ≤ ∣∣∣B (Ui`|x`, I`)− B̂ (Ui`|x`, I`)

∣∣∣}
⊂
{

min
α∈[0,1];|Ui`−α|≥t

|B (Ui`|x`, I`)−B (α|x`, I`)| − %̂B ≤ %̂B

}
⊂
{
t× min

(α,x,I)∈[0,1]×X×I
B(1) (α|x, I) ≤ 2%̂B

}
,

and Proposition 3.1 implies that, for C > 2/min(α,x,I)∈[0,1]×X×IB
(1) (α|x, I),

max
`=1,...,L

max
i=1,...,I`

∣∣∣Ûi` − Ui`∣∣∣ ≤ C%̂B.

Hence, since max(α,x,I)∈[0,1]×X×I V
(1) (α|x, I) <∞,

max
`=1,...,L

max
i=1,...,I`

∣∣∣V̂i` − Vi`∣∣∣ = max
`=1,...,L

max
i=1,...,I`

∣∣∣V̂ (Ûi`|x`, I`)− V (Ui`|x`, I`)
∣∣∣

≤ max
(α,x,I)∈[0,1]×X×I

∣∣∣V̂ (α|x, I)− V (α|x, I)
∣∣∣+ max

`=1,...,L
max
i=1,...,I`

∣∣∣V (Ûi`|x`, I`)− V (Ui`|x`, I`)
∣∣∣

≤ %̂V + C%̂B. �

Proof of Proposition 3.2. This follows from similar steps than the proof of

Theorem 3.1. �

Proof of Proposition 3.3. (i) is true because all bidders with a private

value larger than r (x, I) make a bid, so that the conditional distribution I∗ is a

binomial distribution with parameters I and 1 − F (r (x, I) |x, I) = 1 − αr, and

E [I∗|x, I] = I (1− αr). (ii) follows from solving (3.2.6) with the initial condition

B (αr (x, I) |x, I) = r (x, I) as in Theorem 3.1. Dropping the dependence on x and

I, and setting B (α) = C (α) /αI−1 now gives

C (α) = C (αr) + (I − 1)

∫ α

αr

tI−2V (t) dt.
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The initial condition implies that C (αr) = αI−1
r r, which gives the desired solution.

(iii) follows from (ii). �

Bias of the AQR and ASQR estimators

We start with additional notations used all along the proof section and some

preliminary lemmas. Let RAQR (b;α, I) and RASQR (bL;α, I) be the population

counterparts of R̂AQR (b;α, I) and R̂ASQR (bL;α, I), that is, setting bL = b for the

sake of brevity,

RAQR (b;α, I) = E

[
I (I` = I)

∫ 1−α
h

−α
h

ρα+ht

(
Bi` −X` (ht)′ b

)
K (t) dt

]
,

RASQR (b;α, I) = E

[
I (I` = I)

∫ 1−α
h

−α
h

ρα+ht

(
Bi` − P (x`, ht)

′ b
)
K (t) dt

]
,

where U is a U[0,1] random variable independent of (x`, I`). These objective functions

are very similar so that it is sufficient in many cases to study RASQR (b;α, I). Since

∂ρα+ht

(
B (U |x`, I)− P (x`, ht)

′ b
)

∂b
=
{
I
(
Bi` ≤ P (x`, ht)

′ b
)
− (α + ht)

}
P (x`, ht) ,

almost everywhere, the Lebesgue differentiation theorem yields that the partial

derivative of RASQR (b;α, I) with respect to b is

R
(1)
ASQR (b;α, I) = E

[
I (I` = I)

∫ 1−α
h

−α
h

{
G
(
P (x`, ht)

′ b|x`, I`
)
− (α + ht)

}
P (x`, ht)K (t) dt

]
,

where G (·|x, I) = B−1 (·|x, I) is the conditional c.d.f of Bi` given (x`, I`) = (x, I).

By Proposition 3.1 and s+ 1 ≥ 1, G (·|x, I) has a p.d.f g (·|x, I) satisfying,

g (y|x, I) =
1

∂B
∂α

(G (y|x, I) , x, I)
, y ∈ [B (0|x, I) , B (1|x, I)] .
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Hence RASQR (b;α, I) has a second-order partial derivative with respect to b, which

is,

R
(2)
ASQR (b;α, I) = E

[
I (I` = I)

∫ 1−α
h

−α
h

g
(
P (x`, ht)

′ b|x`, I`
)
P (x`, ht)P (x`, ht)

′K (t) dt

]
,

and R
(2)
AQR (b;α, I) has a similar expression. However these matrices depends upon

h→ 0 and will not have an inverse. To avoid such a drawback, define

b =
[
β0,1, . . . , β0,k, hβ1,1, . . . , hβ1,k, . . . , h

s+1β1,1, . . . , h
s+1β1,k

]
, (B.0.1)

with k = d + 1 for AQR and k = KL for ASQR, so that P (x`, ht)
′ b = P (x`, t)

′ b.

Define also

RAQR (b;α, I) = RAQR (b;α, I) , RASQR (b;α, I) = RASQR (b;α, I) ,

so that,

R
(2)
ASQR (b;α, I) = E

[
I (I` = I)

∫ 1−α
h

−α
h

g
(
P (x`, t)

′ b|x`, I`
)
P (x`, t)P (x`, t)

′K (t) dt

]
,

the expression of R
(2)
AQR (b;α, I) being very similar. The next Lemma gives conditions

ensuring that R
(2)
ASQR (b;α, I) is definite positive.

Lemma B.1. Suppose that Assumptions A, H, R hold and that h ∈ [0, 1/2]. Then

there are some constants ΛAQR > 0 and ΛASQR > 0 such that, for all L,

i. For all conformable vector v, all α ∈ [0, 1], I ∈ I and b,

v′R
(2)
AQR (b;α, I) v ≤ ΛAQR × (v′v) , v′R

(2)
ASQR (b;α, I) v ≤ ΛASQR × (v′v) ;

ii. Suppose that for all x ∈ X, all t ∈
[

1
4
, 3

4

]
if α ∈

[
0, 1

2

]
or all t ∈

[
−3

8
,−1

4

]
if α ∈

(
1
2
, 1
]
, X (x, t)′ b (respectively P (x, t)′ b) is in [B (0|x, I) , B (1|x, I)].

Then, for all α ∈ [0, 1], I ∈ I and all such b, it holds that for all conformable
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vector v,

v′R
(2)
AQR (b;α, I) v ≥ v′v

ΛAQR

, (respectively v′R
(2)
ASQR (b;α, I) v ≥ v′v

ΛASQR

).

Proof of Lemma B.1. It is sufficient to study the ASQR case and α ∈
[0, 1/2]. Let � be the usual order for symmetric matrices. Then Assumption

A, the expression of g (·|·, ·) and Proposition 3.1-(i) give R
(2)
ASQR (b;α, I) �

C
∫ 1−α

h

−α
h

∫ 1−α
h

−α
h
P (x, t)P (x, t)′K (t) dtdx. But

∫ 1−α
h

−α
h

∫ 1−α
h

−α
h

P (x, t)P (x, t)′K (t) dtdx =

∫ 1−α
h

−α
h

P (x)P (x)′ dx⊗
∫ 1−α

h

−α
h

π (t) π (t)′K (t) dt,

where the eigenvalues of
∫ 1−α

h

−α
h
P (x)P (x)′ dx are in a compact set for all L by

Assumption R-(ii). This gives (i). For (ii), consider the case where α ∈ [0, 1/2].

Then Assumption A, the expression of g (·|·, ·) and Proposition 3.1-(i) yield for those

b,

R
(2)
ASQR (b;α, I) � min

(x,I)∈X×I
min

y∈[B(0|x,I),B(1|x,I)]
{g (y|x, I) f (x|I)P (I` = I)}

×
∫ 1−α

h

−α
h

P (x)P (x)′ dx⊗
∫ 3

4

1
4

π (t) π (t)′K (t) dt,

which gives the desired result since the two matrices in the tensor product are

symmetric and strictly definite positive. �

Since

ρα+ht

(
Bi` − P (x`, ht)

′ b
)
≥ min (α + ht, 1− (α + ht))

∣∣Bi` − P (x`, ht)
′ b
∣∣ ,
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it follows, under Assumption H, that for all b,

RASQR (b;α, I) = E

[
I (I` = I)

∫ 1−α
h

−α
h

ρα+ht

(
Bi` − P (x`, ht)

′ b
)
K (t) dt

]
≥ ChE

[
I (I` = I)

∣∣Bi` − P (x`, ht)
′ b
∣∣]

≥ Ch
{
E
[
I (I` = I)

∣∣P (x`, ht)
′ b
∣∣]− E [I (I` = I) |Bi`|]

}
.

Because b → E
[
I (I` = I)

∣∣P (x`, ht)
′ b
∣∣] is a norm under Assumption A,

lim‖b‖→∞RASQR (b;α, I) = +∞, and the convex and continuous b→ RASQR (b;α, I)

is bowl-shaped, and so is also RAQR (b;α, I). Therefore, RAQR (b;α, I) and

RASQR (b;α, I) both have a minimizer, say for all α ∈ [0, 1],

bAQR (α|I) = arg min
b

RAQR (b;α, I) ,

bASQR (α|I) = arg min
b

RASQR (b;α, I) .

It will be shown below that these minimizers are both unique. Recall that,

bAQR (α|I) =
[
β0,AQR (α|I)′ , . . . , β′s+1,AQR (α|I)

]′
, β0,AQR (α|I) , β1,AQR (α|I) ∈ Rd+1,

bAQR (α|I) = Diag (π (h))⊗ Idp+1 bAQR (α|I) ,

b0,AQR (α|I) = β0,AQR (α|I) , b1,AQR (α|I) = hβ1,AQR (α|I) , (B.0.2)

bASQR (α|I) =
[
β0,ASQR (α|I)′ , . . . , β′s+1,ASQR (α|I)

]′
, β0,ASQR (α|I) , β1,ASQR (α|I) ∈ RKL ,

bSAQR (α|I) = Diag (π (h))⊗ IdKL bASQR (α|I) ,

b0,ASQR (α|I) = β0,ASQR (α|I) , b1,ASQR (α|I) = hβ1,ASQR (α|I) .

Following (3.2.5) in Theorem 3.1, (3.3.4) and (3.3.5), define,

γAQR (α|I) = β0,AQR (α|I) +
αβ1,AQR (α|I)

I − 1
,

γASQR (α|I) = β0,ASQR (α|I) +
αβ1,ASQR (α|I)

I − 1
,

VAQR (α|x, I) = X ′γAQR (α|I) , VASQR (α|x, I) = P (x)′ γASQR (α|I) .

The study of the bias VAQR (α|x, I) − V (α|x, I) and VASQR (α|x, I) − V (α|x, I)
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requires some specific techniques to cope with the fact that B(s+2) (α|x, I) may be

unbounded in the vicinity of 0. It is based on the following Lemma which is a

consequence of the Kantorovitch-Newton Theorem, see e.g Gragg and Tapia (1974).

In this lemma ‖·‖ stands for the Euclidean norm over RD or for the associate operator

norm.

Lemma B.2. Let F (·) : RD → R be a function. Suppose that there is a x∗∈RD

and some real numbers ε > 0 and C0 > 0 such that F (·) is twice differentiable on

B (x∗,2C0ε) =
{
x∈RD; ‖x− x∗‖ < 2C0ε

}
. If, in addition,

i.
∥∥F(1) (x∗)

∥∥ ≤ ε and
∥∥∥[F(2) (x∗)

]−1
∥∥∥ ≤ C0;

ii. There is a C1 > 0 such that
∥∥F(2) (x)− F(2) (x′)

∥∥ ≤ C1 ‖x− x′‖ for all

x, x′ ∈ B (x∗,2C0ε);

iii. C2
0C1ε ≤ 1/2.

Then there is a unique x such that ‖x− x∗‖ < 2C0ε and F(1) (x) = 0.

In the next theorem, Biash(α|x, I) is from (3.3.9).

Theorem B.1. Suppose that Assumptions A and H-(i) hold. Then,

i. If the quantile regression model in Assumption S-(i) is the true one,

Assumption R-(i) holds, bAQR (α|I) is unique and

max
(α,x,I)∈[0,1]×X×I

‖VAQR (α|x, I)− V (α|x, I)‖ = O
(
hs+1

)
.

Moreover, VAQR (α|x, I) = V (α|x, I)+hs+1X ′Biash(α|x, I)+o (hs+1) uniformly

over [0, 1]× X.

ii. For the sieve quantile regression model (3.2.9) with KL → 0 and under

Assumptions S-(ii), R-(ii),

max
x∈X

{
KL∑
k=1

P 2
k (x)

}
= O

 h2(
hs+1 +K

−(s+2)/dM
L

)2

 and K
−(s+2)/dM
L = o (h) ,

(B.0.3)
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bASQR (α|I) is unique and

max
(α,I)∈[0,1]×I

∫
X

(VASQR (α|x, I)− V (α|x, I))2 dx = O

(
hs+1 +

K
−(s+2)/dM
L

h

)
;

iii. If in addition Assumption H-(iii) holds,

max
(α,x,I)∈[0,1]×X×I

|VASQR (α|x, I)− V (α|x, I)| = O

(
hs+1 +

K
−(s+2)/dM
L

h

)
.

Note that (B.0.3) follows from Assumption H-(ii) since, by KL � h−dM ,

K
−(s+2)/dM
L � hs+2 = o (h) and, because (1 + ζ) dM/2 ≤ s, maxx∈X ‖P (x)‖ =

O
(
K

(1+ζ)/2
L

)
= O

(
h−(1+ζ)dM/2

)
= O (h−s).

Proof of Theorem B.1. Consider (ii) and (iii), the proof of (i) being similar as

detailed below. The proof works by establishing that there is a solution of the first-

order condition in a open ball where RASQR (b;α, I) is strictly convex by checking

the conditions of Lemma B.2, which will also gives the rate stated in the Theorem.

Define, for βk (α|I) as in (3.2.10) and a+ ht ∈ [0, 1],

b=
[
β0,1, . . . , β0,KL , hβ1,1, . . . , hβ1,KL , . . . , h

s+1β1,1, . . . , h
s+1β1,KL

]
,

b (α|I) =

[
β1 (α|I) , . . . , βKL (α|I) , . . . ,

hs+1

(s+ 1)!
β

(s+1)
1 (α|I) , . . . ,

hs+1

(s+ 1)!
β

(s+1)
KL

(α|I)

]
.

Abbreviate RASQR (b;α, I) into R (b;α, I). Note that,

B (α + ht|x, I)− P (x, t)′ b (α|I) =

KL∑
k=1

(
βk (α + ht|I)−

s+1∑
j=0

(ht)j

j!
β

(j)
k (α|I)

)
Pk (x)

+
+∞∑

k=KL+1

βk (α + ht|I)Pk (x) .

Assumption S-(ii), Proposition 3.1 and a Taylor expansion give

max
∣∣P (x, t)′ b (α|I)−B (α + ht|x, I)

∣∣ = o
(
hs+1 +K

−(s+2)/dM
L

)
, (B.0.4)
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where the maximum is over those (α, t, x, I) ∈ [0, 1]× [−1, 1]×X× I with a+ ht ∈
[0, 1]. This, together with the expression of R(1) (b;α, I) and Assumption R-(ii) give,

max
(α,I)∈[0,1]×I

∥∥R(1) (b (α|I) ;α, I)
∥∥ = εL with εL = o

(
hs+1 +K

−(s+2)/dM
L

)
. (B.0.5)

To see this, observe that

∥∥R(1) (b (α|I) ;α, I)
∥∥ = max

θ;θ′θ=1

∣∣θ′R(1) (b (α|I) ;α, I)
∣∣ . (B.0.6)

But uniformly in α ∈ [0, 1], setting π (t) = [1, . . . , ts+1]
′

and by Assumption R-(ii),

(B.0.4),

∣∣θ′R(1) (b (α|I) ;α, I)
∣∣

= E

[
I (I` = I)

∫ 1−α
h

−α
h

{G (P (x`, t) b (α|I) |x`, I`)−G (B (α + ht|x, I) |x`, I`)}

θ′ (P (x`)⊗ π (t))K (t) dt]

≤ CεLE1/2

[∫ 1

−1

(θ′ (P (x`)⊗ π (t)))
2
dt

]
≤ CεL (θ′θ)

1/2
.

Consider without loss of generality the case where α ∈ [0, 1/2], α ∈ (1/2, 1]

being similar. Since B (α + ht|x, I) = B (α|x, I) + O (h) uniformly in α, x, I and

t ∈ [−1, 1], ∂B (α|x, I) /∂α is bounded away from 0 and K
−(s+2)/dM
L = o (h), (B.0.4)

gives that

P (x, t)′ b (α|I) ∈ [B (0|x, I) , B (1|x, I)] for all t ∈
[

1

4
,
3

4

]
,

all α ∈ [0, 1/2], x and I and L large enough. It then follows by Lemma B.1 that,

for some C0 > 0 and all L large enough,

max
(α,I)∈[0,1/2]×I

∥∥∥[R(2) (b (α|I) ;α, I)
]−1
∥∥∥ ≤ C0,

recalling that ‖·‖ stands for the spectral norm in the equation above. Hence

condition (i) in Lemma B.2 holds provided L is large enough, as assumed from
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now on. Let B = B (b (α|I) , 2C0εL). For each b ∈B,

∣∣P (x, t)′ b−B (α + ht|x, I)
∣∣ ≤ ∣∣P (x, t)′ b (α|I)−B (α + ht|x, I)

∣∣
+ ‖P (x, t)‖ ‖b− b (α|I)‖

= O

({
1 + max

x∈X
‖P (x)‖

}
εL

)
= o (h) ,

uniformly by (B.0.3), so that

max
b∈B

max
∣∣P (x, t)′ b−B (α + ht|x, I)

∣∣ = o (h) , (B.0.7)

where the second max is as in (B.0.4). For condition (ii), recall that, for π (t) =

[1, . . . , ts+1]
′
,

R(2) (b;α, I) = E

[
I (I` = I)

∫ 1−α
h

−α
h

g
(
P (x`, t)

′ b|x`, I`
)
P (x`)P (x`)

′ ⊗ π (t) π (t)′K (t) dt

]
.

To deal with the discontinuities of y → g (y|x`, I`), let δt (·) be the Dirac mass

at t. By Jones (2008, Theorem 7.40), the generalized derivative R(3) (b;α, I) of

b→ R(2) (b;α, I) is the linear function taking value in the space of squared matrices

with dimension (s+ 2)KL, that is for any vector ∆ in R(s+2)KL

R(3) (b;α, I) (∆)

= E

[
I (I` = I)

∫ 1−α
h

−α
h

(
P (x`, t)

′∆
)
g(1)

(
P (x`, t)

′ b|x`, I`
)

×P (x`)P (x`)
′ ⊗ π (t) π (t)′K (t) dt

]
+ E

[
I (I` = I)

∫ 1−α
h

−α
h

(
P (x`, t)

′∆
)
δV (1|x`,I`)

(
P (x`, t)

′ b
)
g (V (1|x`, I`) |x`, I`)

P (x`)P (x`)
′ ⊗ π (t) π (t)′K (t) dt

]
− E

[
I (I` = I)

∫ 1−α
h

−α
h

(
P (x`, t)

′∆
)
δV (0|x`,I`)

(
P (x`, t)

′ b
)
g (V (0|x`, I`) |x`, I`)

P (x`)P (x`)
′ ⊗ π (t) π (t)′K (t) dt

]
.
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The items involving a Dirac mass can be written as, focusing on the term with

δV (1|x`,I`) (·) without loss of generality,

E

I (I` = I)
∑

t∈[−αh ,
1−α
h ];P (x`,t)

′b=V (1|x`,I`)

(
P (x`, t)

′∆
)
g (V (1|x`, I`) |x`, I`)

P (x`)P (x`)
′ ⊗ π (t)π (t)′K (t)

]
.

Because B (α + ht|x, I) is strictly increasing in t ∈ [−α/h, (1− α) /h] by Proposition

3.1-(i) and by (B.0.7), the equation P (x`, t)
′ b =V (1|x`, I`) has at most s + 1

solutions for all b ∈B. Since the matrix π (t) π (t)′K (t) has a finite dimension and

bounded entries, it follows from the boundedness of g (·|·, ·) and Assumption H that

R(3) (b;α, I) (∆) � C max
x∈X
‖P (x)‖ ‖∆‖E

[
P (x`)P (x`)

′]⊗ Ids+2 . (B.0.8)

Assumption R-(ii) implies that the operator norm of R(3) (b;α, I) is bounded by

C maxx∈X ‖P (x)‖ uniformly in b ∈B and α ∈ [0, 1]. Hence there is a constant c1

such that, for all α ∈ [0, 1],

∥∥R(2) (b1;α, I)− R(2) (b0;α, I)
∥∥ ≤ c1 max

x∈X
‖P (x)‖ ‖b1 − b0‖ for all b0, b1 ∈ B.

Now, since (B.0.3) ensures that C2
0c1 maxx∈X ‖P (x)‖ εL → 0, it follows by Lemma

B.2 that, for L large enough and all α ∈ [0, 1], R (·;α, I) has a unique minimizer

bASQR (α|I) over B, and therefore of the all space since R (·;α, I) is convex.

Moreover, by definition of B = B (b (α|I) , 2C0εL),

max
α∈[0,1]

‖bASQR (α|I)− b (α|I)‖ ≤ 2C0εL. (B.0.9)

Recall that VASQR (α|x, I) = BASQR (α|x, I) + αB
(1)
ASQR (α|x, I) / (I − 1) with

BASQR (α|x, I) = P (x)′ b0,ASQR (α|I) , B
(1)
ASQR (α|x, I) = h−1P (x)′ b1,ASQR (α|I) .

The definition of b (α|I) and (B.0.4), (B.0.7), Assumptions S-(ii) and R-(ii) give
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that,

max
α∈[0,1]

∫
X

(BASQR (α|x, I)−B (α|x, I))2 dx = O
(
ε2L
)
,

max
(α+ht,x)∈[0,1]×X

∣∣P (x, t)′ bASQR (α|I)−B (α + ht|x, I)
∣∣ = O

(
εL max

x∈
‖P (x)‖

)
= o (h) .

(B.0.10)

We now study
∫
X

(
αB

(1)
ASQR (α|x, I)− αB(1) (α|x, I)

)2

dx. bASQR (α|I) =

arg maxb R (·;α, I) satisfies the first-order condition R(1) (bASQR (α|I) ;α, I) = 0

which can be rearranged as follows. Define

g (α|t, x, I) =

∫ 1

0

g
(
P (x, t)′ bASQR (α|I) + u

(
B (α + ht|x, I)− P (x, t)′ bASQR (α|I)

))
du.

Arguing as in the proof of Lemma B.1 gives that min(α+ht,x)∈[0,1]×X g (α|t, x, I) ≥
C > 0 for L large enough. Since α + ht = G (B (α + ht|x, I) |x, I),

R(1) (bASQR (α|I) ;α, I) = 0 and the definition of g (α|t, x, I) gives, for any 0 < η < 1,

E

[
I (I` = I)

∫ 1−α
h

−α
h

g (α|t, x`, I)P (x`, t)P (x`, t)
′K (t) dt

]
{αbASQR (α|I)− αb (α|I)}

= E

[
I (I` = I)

∫ 1+α
h

− α
(1+η)h

g (α|t, x`, I)P (x`, t)
{
αB (α + ht|x`, I)− P (x`, t)

′ αb (α|I)
}
K (t) dt

]
(B.0.11)

+ E

[
I (I` = I)

∫ − α
(1+η)h

−α
h

g (α|t, x`, I)P (x`, t)
{
αB (α + ht|x`, I)− P (x`, t)

′ αb (α|I)
}
K (t) dt

]
.

(B.0.12)

For (B.0.12), observe that this item differs fom 0 only when α ≤ h. Hence a Taylor

expansion gives that, by (B.0.9) and arguing as for (B.0.6),∥∥∥∥∥E
[
I (I` = I)

∫ − α
(1+η)h

−α
h

g (α|t, x`, I)P (x`, t)
{
αB (α + ht|x`, I)− P (x`, t)

′ αb (α|I)
}
K (t) dt

]∥∥∥∥∥
≤ CηhO (εL) = η

{
o
(
hs+2

)
+ o

(
hK

−(s+2)/dM
L

)}
.
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For (B.0.11), note that α+ ht ≥ ηα/ (1 + η) when t ∈ [−α/ ((1 + η)h) , (1− α) /h].

Assumption S-(ii), a corresponding Taylor expansion of order s+ 2 and Proposition

3.1 give

max
(α,x)∈(0,1]×X

max
t∈[− α

(1+η)h
, 1−α
h ]

∣∣αB (α + ht|x, I)− P (x, t)′ αb (α|I)
∣∣

≤ Chs+2 max
(a,x)∈[0,1]×X

∣∣∣∣1 + η

η
aB(s+2) (a|x, I)

∣∣∣∣+O
(
K
−(s+2)/dM
L

)
= η−1O

(
hs+2 +K

−(s+2)/dM
L

)
. (B.0.13)

Hence min(α+ht,x)∈[0,1]×X g (α|t, x, I) ≥ C and Assumption R-(ii) give, arguing as for

(B.0.6),

max
α∈[0,1]

‖αbASQR (α|I)− αb (α|I)‖ = O
(
hs+2 +K

−(s+2)/dM
L

)
, (B.0.14)

so that, since B
(1)
ASQR (α|x, I) = P (x)′ b1,ASQR (α|I) /h and by Assumption R-(ii)

max
α∈[0,1]

∫
X

(
αB

(1)
ASQR (α|x, I)− αB(1) (α|x, I)

)2

dx = O

(
hs+1 +

K
−(s+2)/dM
L

h

)
,

which, together with the equation above (B.0.10), implies the first order stated

in Theorem B.1-(ii). The uniform rate of Theorem B.1-(i) follows from (B.0.9)

and (B.0.14) since the power of KL can be removed for the ASR case and the

Euclidean norm operates over a space with finite dimension in the case of the quantile

regression specification (3.2.7).Moreover, since V (α|x, I) = Xγ (α|I) is (s+1) times

continuously differentiable, it follows from (B.0.11), a suitable choice of η → 0 and

Proposition 3.1 that, since g (B (α|x, I) |x, I) = 1/B(1) (α|x, I) and for all α ∈ [0, 1]

αbAQR (α|I)− αb (α|I) =

(
E

[
I (I` = I)X`X

′
`

B(1) (α|x`, I)
⊗
∫ 1−α

h

−α
h

π (t)π (t)′K (t) dt

]
+ o (1)

)−1

× E

[
I (I` = I)X`αB

(s+2) (α|x`, I)

B(1) (α|x`, I)
⊗
∫ 1−α

h

−α
h

ts+2π (t)

(s+ 2)!
K (t) dt

]
hs+2 + o

(
hs+2

)
,

(B.0.15)
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which gives the second expansion in Theorem B.1-(i) since hβ1 = S1b and because

the estimation of αB(1) (α|x, I) gives the dominant bias term.

Consider now max |VASQR (α|x, I)− V (α|x, I)| for which we only detail how to

bound max
∣∣∣αB(1)

ASQR (α|x, I)− αB(1) (α|x, I)
∣∣∣ since the study of

max |BASQR (α|x, I)−B (α|x, I)| can be similarly done. Let A = [A1, . . . AJ1 ] be

a a J2× J1 matrix with columns Aj, j = 1, . . . , J1, |Aj|1 the associated `1 norm and

|A|1,∞ = maxj≤J1 |Aj|1, a, b some conformable vectors so that,

|a′Ab| =

∣∣∣∣∣
J∑
j=1

bja
′Aj

∣∣∣∣∣ ≤ |b|1 |A|1,∞max
j≤J2

|aj| .

Let S1 be the selection matrix such that S1b = b1. (B.0.11), (B.0.13) with

min(α+ht,x)∈[0,1]×X g (α|t, x, I) ≥ C, P (x, t) = P (x) ⊗ π (t) give by Assumptions

A and H-(iii) and the bound above,∣∣∣α(B(1)
ASQR (α|x, I)−B(1) (α|x, I)

)∣∣∣
= h−1

∣∣∣∣∣P (x)′ S1E−1

[
I (I` = I)

∫ 1−α
h

−α
h

g (α|t, x`, I)P (x`, t)P (x`, t)
′K (t) dt

]

× E

[
I (I` = I)

∫ 1−α
h

−α
h

g (α|t, x`, I)P (x`, t)

×
{
αB (α + ht|x`, I)− P (x`, t)

′ αb (α|I)
}
K (t) dt

]
≤ C

hs+2 +K
− s+2
dM

L

h

( KL∑
k=1

|Pk (x)|

)∣∣E−1
[
P (x`)P (x`)

′]∣∣
1,∞ max

k≤KL

∣∣∣∣∫
X

|Pk (x)| dx
∣∣∣∣

≤ C

hs+1 +
K
− s+2
dM

L

h

 ,

uniformly in α and x. This ends the proof of (iii). �

Bahadur representation for the AQR and ASQR estimators

The notations bAQR (α|I), bASQR (α|I), b (α|I), b from (B.0.1), which renormalizes

the parameter β, and P (x, t), RAQR (b;α, I), RASQR (b;α, I) from the proof of
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Proposition B.1, will be used here. Define also R̂AQR (b;α, I), R̂ASQR (b;α, I) as

the corresponding R̂AQR (b;α, I), R̂ASQR (b;α, I) and

b̂AQR (α|I) = arg min
b

R̂AQR (b;α, I) , b̂ASQR (α|I) = arg min
b

R̂ASQR (b;α, I) ,

êAQR (α|I) = −
(

R
(2)
AQR (bAQR (α|I) ;α, I)

)−1

R̂
(1)
AQR (bAQR (α|I) ;α, I) ,

êASQR (α|I) = −
(

R
(2)
ASQR (bASQR (α|I) ;α, I)

)−1

R̂
(1)
ASQR (bASQR (α|I) ;α, I) ,

d̂AQR (α|I) = b̂AQR (α|I)− bAQR (α|I)− êAQR (α|I) , (B.0.16)

d̂ASQR (α|I) = b̂ASQR (α|I)− bASQR (α|I)− êASQR (α|I) . (B.0.17)

The aim of this section is to study the Bahadur remainder terms d̂AQR (α|I),

d̂ASQR (α|I) and the score terms R̂
(1)
AQR (bAQR (α|I) ;α, I), R̂

(1)
ASQR (bAQR (α|I) ;α, I),

that is to establish that,

Theorem B.2. Suppose that Assumptions A and H-(i) hold and let d̂AQR (α|I),

d̂ASQR (α|I) be as in (B.0.16) and (B.0.17). Then,

i. If the quantile regression model in Assumption S-(i) is the true one and under

Assumption R-(i),

max
(α,I)∈[0,1]×I

∥∥∥d̂AQR (α|I)
∥∥∥ = OP

((
logL

L

)3/4
)

;

ii. For the sieve quantile regression model (3.2.9) and under Assumptions S-(ii),

R-(ii), (H)-(ii), and for PL = maxx∈X ‖P (x)‖, it holds that,

max
(α,I)∈[0,1]×I

∥∥∥d̂ASQR (α|I)
∥∥∥ = OP

(
P

1/2

L

(
KL logL

L

)3/4
)

+OP

(
KLPL logL

L

)
.

Horowitz and Lee (2005) have derived a similar expansion for a fixed α in

the case where PL = O
(
K

1/2
L

)
in their Theorem 2. The rate of Theorem B.2-

(ii) is slightly better since instead of the order P
1/2

L (KL logL/L)3/4 they obtained

157



B. Appendix for Chapter 3

P
3/2

L (KL logL/L)3/4 up to a logarithmic term. Because KL plays a role similar

to a bandwidth term 1/hd, the rate of Theorem B.2-(ii) is slightly worse than the

one derived in Guerre and Sabbah (2012) for local polynomial conditional quantile

due to the item P
1/2

L in front of (KL logL/L)3/4 . This term is used as a bound for

P (x, t)′ θ for all (x, t) ∈ X× [−1, 1] and θ in the unit sphere of dimension KL (s+ 2),

where θ plays the role of the normalized estimated parameter. A better bound can

therefore be obtained by imposing some smoothness constraints on θ, for instance

by imposing that the x−derivatives of P (x, t)′ θ must stay bounded in quadratic

mean or by using a corresponding penalty term, see e.g, Chen (2007) eq. (2.18).

That sieve estimators must be constrained to satisfy some smoothness conditions is

a key difference with kernel smoothing where this holds asymptotically by uniform

convergence of derivatives of the kernel estimator.

The next lemma derives the order of the Euclidean norm of

R̂
(1)
AQR (bAQR (α|I) ;α, I) and R̂

(1)
ASQR (bASQR (α|I) ;α, I). Let � be the usual order

for symmetric matrices, i.e A � B if B − A is semidefinite positive. The proofs

of Lemma B.3, Propositions B.1 and B.2 are given in the last subsection B of this

proof section.

Lemma B.3. Suppose that Assumptions A and H-(i) hold. Then,

i. If the quantile regression model in Assumption S-(i) is the true one and under

Assumption R-(i),

Var
(

R̂
(1)
AQR (bAQR (α|I) ;α, I)

)
� CL−1/2 Id(s+2)(d+1),

for all (α, I) ∈ [0, 1]× I and,

E
[

max
(α,I)∈[0,1]×I

∥∥∥R̂
(1)
AQR (bAQR (α|I) ;α, I)

∥∥∥] ≤ C

(
logL

L

)1/2

;

ii. For the sieve quantile regression model (3.2.9) and under Assumptions S-(ii),

R-(ii),

Var
(

R̂
(1)
AQR (bAQR (α|I) ;α, I)

)
� CL−1/2 IdKL(s+2),

for all (α, I) ∈ [0, 1]× I . If (B.0.3) is true and for PL = maxx∈X ‖P (x)‖, it
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holds that,

E
[

max
(α,I)∈[0,1]×I

∥∥∥R̂
(1)
ASQR (bASQR (α|I) ;α, I)

∥∥∥] ≤ C

((
KL logL

L

)1/2

+
KLPL logL

L

)
.

We now introduce some linearization remainders for R̂AQR (·;α, I) and

R̂ASQR (·;α, I) which are useful to study d̂AQR (α|I) and d̂ASQR (α|I). Observe that,

d̂AQR (α|I) = arg min
d

R̂AQR (bAQR (α|I) + êAQR (α|I) + d;α, I) .

By Lemmas B.3 and B.1, êAQR (α|I) goes to 0. This leads to consider the following

remainder terms, where e is a new variable which would be set equal to êAQR (α|I)

or êASQR (α|I) accordingly,

ÔAQR (d, e;α, I) = R̂AQR (bAQR (α|I) + e + d;α, I)− R̂AQR (bAQR (α|I) + e;α, I)

− R̂
(1)
AQR (bAQR (α|I) ;α, I)′ d,

Ô1,AQR (d, e;α, I) = ÔAQR (d, e;α, I)− E
[

ÔAQR (d, e;α, I)
]
,

O1,AQR (d, e;α, I) = E
[

ÔAQR (d, e;α, I)
]
,

ÔASQR, Ô1,ASQR and O1,ASQR being defined as ÔAQR, Ô1,AQR and O1,AQR.

Proposition B.1. Let B (0, %) be the Euclidean closed ball of center 0 and radius %,

and consider %d, %e > 0 which can depend upon L but must stay bounded away from

infinity. Suppose that Assumptions A and H-(i) hold. Then,

i. If the quantile regression model in Assumption S-(i) is the true one and under

Assumption R-(i),

E
[

max
(α,d,e,I)∈[0,1]×B(0,%d)×B(0,%e)×I

∣∣∣Ô1,AQR (d, e;α, I)
∣∣∣]

≤ C

(
logL

L

)1/2

%d

(
(%d + %e)

1/2 +

(
logL

L

)1/2
)

;
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ii. For the sieve quantile regression model (3.2.9) and under Assumptions S-(ii),

R-(ii), (H)-(ii), and for PL = maxx∈X ‖P (x)‖, it holds that,

E
[

max
(α,d,e,I)∈[0,1]×B(0,%d)×B(0,%e)×I

∣∣∣Ô1,ASQR (d, e;α, I)
∣∣∣]

≤ C

(
KLPL logL

L

)1/2

%d

(
(%d + %e)

1/2 +

(
KLPL logL

L

)1/2
)
.

Proposition B.2. Let B (0, %) be the Euclidean closed ball of center 0 and radius %,

and consider %d, %e > 0 which can depend upon L but must stay bounded away from

infinity. Suppose that Assumptions A and H-(i) hold. Then,

i. If the quantile regression model in Assumption S-(i) is the true one and under

Assumption R-(i),

max
(α,d,e,I)∈[0,1]×B(0,%d)×B(0,%e)×I

∣∣∣∣∣O1,AQR (d, e;α, I)−
d′R

(2)
AQR (bAQR (α|I) ;α, I) (d + 2e)

2

∣∣∣∣∣
= O

(
(%d + %e)

2 %d
)

;

ii. For the sieve quantile regression model (3.2.9) and under Assumptions S-(ii),

R-(ii), (H)-(ii), and for PL = maxx∈X ‖P (x)‖, it holds that,

max
(α,d,e,I)∈[0,1]×B(0,%d)×B(0,%e)×I

∣∣∣∣∣O1,ASQR (d, e;α, I)−
d′R

(2)
ASQR (bASQR (α|I) ;α, I) (d + 2e)

2

∣∣∣∣∣
= O

(
PL (%d + %e)

2 %d
)
.

Proof of Theorem B.2. It is sufficient to study the ASQR case and for the

sake of brevity the subscript ASQR is removed from the notations. Define for some

Cd, Ce ≥ 1 to be chosen large enough,

%e = Ce

(
KL logL

L

)1/2

%d =

(
KL logL

L

)1/2

rd with rd = Cd max

{
P

1/2

L

(
KL logL

L

)1/4

, PL

(
KL logL

L

)1/2
}
.
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Under Assumption H-(ii), %e, %d and rd go to 0 when L→∞. Observe that Lemmas

B.1 and B.3 give under Assumption H-(ii), by the Markov inequality and for L large

enough,

lim sup
Ce→∞

sup
L≥L

P
(

max
(α,I)∈[0,1]×I

‖ê (α|I)‖ ≥ %e

)
= 0. (B.0.18)

Define

R̂0 (d, e) = R̂(1) (b (α|I) ;α, I)′ d +
d′R(2) (b (α|I`) ;α, I) (d + 2e)

2
,

R̂c (d, e) = R̂ (b (α|I) + e + d;α, I)− R̂ (b (α|I) + e;α, I) ,

Ô2 (d, e) = R̂c (b (α|I) + e + d;α, I)− R̂0 (d, e) .

Propositions B.1 and B.2 give, under Assumption H-(ii)

E
[

max
(α,d,e,I)∈[0,1]×B(0,%d)×B(0,%e)×I

∣∣∣Ô2 (d, e)
∣∣∣] ≤ C

{
PL%

2
e%d +

(
KLPL logL

L

)1/2

%e%d

}
.

(B.0.19)

Recall also that,

d̂ (α|I) = arg min
d

R̂c (d, ê (α|I)) .

Let also Λ = ΛASQR be as in Lemma B.1. Consider some arbitrary ε > 0.

Step 1: Comparing max
∣∣∣Ô2 (d,̂e (α|I))

∣∣∣ and %2
d. For Ce large enough and by

(B.0.18) and (B.0.19),

P
(

max
(α,d,I)∈[0,1]×B(0,%d)×I

∣∣∣Ô2 (d,̂e (α|I))
∣∣∣ ≥ %2

d

Λ

)
≤ ε

2
+ P

(
max

(α,d,e,I)∈[0,1]×B(0,%d)×B(0,%e)×I

∣∣∣Ô2 (d, e)
∣∣∣ ≥ %2

d

Λ

)
≤ ε

2
+ C

Λ

%2
d

Ce%
2
d

Cd
,

which in turn can be made arbitrarily small by increasing Cd.
51 Hence

P
(

max
(α,d,I)∈[0,1]×B(0,%d)×I

∣∣∣Ô2 (d,̂e (α|I))
∣∣∣ ≥ %2

d

Λ

)
≤ ε. (B.0.20)

51Take for instance Cd = C2
e here.
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Step 2: order of supα∈[0,1]

∥∥∥d̂ (α|I)
∥∥∥. Note that

{∥∥∥d̂ (α|I)
∥∥∥ ≥ %d

}
⊂
{

min
d;‖d‖≥%d

R̂c (d, ê (α|I)) ≤ min
d∈B(0,%d)

R̂c (d, ê (α|I))

}
We first recall a convexity argument due to Pollard (1991) which allows to change

{d; ‖d‖ ≥ %d} into S (%d) = {d; ‖d‖ = %d} in the inclusion above. Recall that

R̂c (d, ê (α|I)) = R̂0 (d, ê (α|I)) + Ô2 (d,̂e (α|I)) ,

where both d 7−→R̂c (d, ê (α|I)), R̂0 (d, ê (α|I)) are convex with, by definition of

ê (α|I),

R̂0 (d, ê (α|I)) = R̂(1) (b (α|I) ;α, I)′ d +
d′R(2) (b (α|I`) ;α, I) (d + 2ê (α|I))

2

=
d′R(2) (b (α|I`) ;α, I) d

2
.

Consider a δ with ‖δ‖ = 1 and d = %δ for some % ≥ %d. Since R̂c (0, ê (α|I)) = 0, the

convexity inequality implies

%d
%

R̂c (d, ê (α|I)) =
%d
%

R̂c (d, ê (α|I)) +

(
1− %d

%

)
R̂c (0, ê (α|I))

≥ R̂c

(
%d
%

d, ê (α|I)

)
= R̂c (%dδ, ê (α|I)) .

Since mind∈B(0,%d) R̂c (d, ê (α|I)) ≤ R̂c (0, ê (α|I)) = 0 this implies{
min

d;‖d‖≥%d
R̂c (d, ê (α|I)) ≤ min

d∈B(0,%d)
R̂c (d, ê (α|I))

}
⊂
{

R̂c (d, ê (α|I)) ≤ 0 for all d with ‖d‖ ≥ %d

}
⊂
{

R̂c (%dδ, ê (α|I)) ≤ 0 for all δ with ‖δ‖ = 1
}

=

{
min

d∈S(%d)
R̂c (d, ê (α|I)) ≤ 0

}
⊂
{

min
d∈S(%d)

R̂0 (d, ê (α|I)) ≤ max
d∈B(0,%d)

∣∣∣Ô2 (d,̂e (α|I))
∣∣∣} .
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It then follows that, by definition of R̂0 (d, ê (α|I)) and Lemma B.1,{
sup
α∈[0,1]

∥∥∥d̂ (α|I)
∥∥∥ ≥ %d

}
=

⋃
α∈[0,1]

{∥∥∥d̂ (α|I)
∥∥∥ ≥ %d

}
⊂
{

min
(α,d)∈[0,1]×S(%d)

R̂0 (d, ê (α|I)) ≤ max
(α,d)∈[0,1]×B(0,%d)

∣∣∣Ô2 (d,̂e (α|I))
∣∣∣}

⊂
{

min
(α,d)∈[0,1]×S(%d)

d′R(2) (b (α|I`) ;α, I) d

2
≤ max

(α,d)∈[0,1]×B(0,%d)

∣∣∣Ô2 (d,̂e (α|I))
∣∣∣}

⊂
{
%2
d

2Λ
≤ max

(α,d)∈[0,1]×B(0,%d)

∣∣∣Ô2 (d,̂e (α|I))
∣∣∣} .

Now (B.0.20) gives that for any ε > 0, there are some large enough Ce and Cd such

that

P

(
sup
α∈[0,1]

∥∥∥d̂ (α|I)
∥∥∥ ≥ %d

)
≤ ε,

which shows that the Theorem is proved since I is finite under Assumption A. �

Main estimation theorems and Proposition 3.4

The end of this section groups the proofs of the main estimation theorems and some

additional intermediary Lemmas are now stated. Lemma B.3 gives an upper bound

for order of the score vectors R̂
(1)
AQR (bAQR (α|I) ;α, I) and R̂

(1)
ASQR (bASQR (α|I) ;α, I)

which can be improved for some linear combinations corresponding to estimation

of the derivatives of βAQR (α|I) and in particular hβ
(1)
AQR (α|I) as considered now.

Let SAQR be as S1 from Theorem B.1-(i), such that, using the notations of

(3.3.2), S1,AQRb (α|I) = β
(1)
AQR (α|I) and define S1,ASQR for the ASQR case. The

next lemma completes Lemma B.3 by studying the order of S1,AQRêAQR (α|I) and

S1,ASQRêASQR (α|I) which are the stochastic error error terms when estimating

hβ
(1)
AQR (α|I) and hβ

(1)
ASQR (α|I) as seen from Theorem B.2. Recall that � is the

usual order for symmetric matrices.

Lemma B.4. Suppose that Assumptions A and H-(i) hold. Then,

i. If the quantile regression model in Assumption S-(i) is the true one and under
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Assumption R-(i),

Var (S1,AQRêAQR (α|I)) =
h

LI
v2
h (α)E−1

[
X`X

′
`I (I` = I)

B(1) (α|x`, I`)

]
E [X`X

′
`I (I` = I)]

× E−1

[
X`X

′
`I (I` = I)

B(1) (α|x`, I`)

]
+ o (h) ,

uniformly in (α, I) ∈ [0, 1]× I and,

E
[

max
(α,I)∈[0,1]×I

‖S1,AQRêAQR (α|I)‖
]
≤ Ch1/2

(
logL

L

)1/2

;

ii. For the sieve quantile regression model (3.2.9) and under Assumptions S-(ii)

with s ≥ 1, R-(ii), (B.0.3), and PL = maxx∈X ‖P (x)‖, it holds that,

Var (S1,ASQRêASQR (α|I)) =
h

LI
v2
h (α)E−1

[
P (x`)P (x`)

′ I (I` = I)

B(1) (α|x`, I`)

]
× E

[
P (x`)P (x`)

′ I (I` = I)
]
E−1

[
P (x`)P (x`)

′ I (I` = I)

B(1) (α|x`, I`)

]
+ o (h) ,

uniformly in (α, I) ∈ [0, 1]× I and,

E
[

max
(α,I)∈[0,1]×I

‖S1,ASQRêASQR (α|I)‖
]
≤ C

(
h1/2

(
KL logL

L

)1/2

+
KLPL logL

L

)
.

In the next lemma, S0,ASQR = IdKL ⊗ [1, 0, . . . , 0] be the KL × (KL (s+ 2))

selection matrix such that S0,AQRb (α|I) = βAQR (α|I) .

Lemma B.5. Consider the sieve quantile regression model (3.2.9). Then under

Assumptions A and H-(i,ii), S-(ii) with s ≥ 1, R-(ii), Then, uniformly in (α, x) ∈
[0, 1]× X,

Var
(
P (x)′ S0,ASQRêASQR (α|I)

)
= O

(
‖P (x)‖2) ,
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and

Var (P ′ (x) S1,ASQRêASQR (α|I)) = hvh (α)P ′ (x)E−1

[
P (x`)P (x`)

′ I (I` = I)

B(1) (α|x`, I`)

]
× E

[
P (x`)P (x`)

′ I (I` = I)
]
E−1

[
P (x`)P (x`)

′ I (I` = I)

B(1) (α|x`, I`)

]
P (x) + o (h)

= O
(
h ‖P (x)‖2) .

If moreover Assumption H-(iii) holds,

max
(α,x,I)∈[0,1]×X×I

∣∣∣∣ P (x)′

‖P (x)‖+ 1
S0,ASQRêASQR (α|I)

∣∣∣∣ = OP

((
logL

L

)1/2
)
,

max
(α,x,I)∈[0,1]×X×I

∣∣∣∣ P (x)′

‖P (x)‖+ 1
S1,ASQRêASQR (α|I)

∣∣∣∣ = OP

(
h1/2

(
logL

L

)1/2
)
.

Proof of Theorem 3.2. Recall that s1 is the column vector [0, 1, 0, . . . , 0] of

dimension s+ 2 and let s0 = [1, 0, . . . , 0], S0 = Idp+1⊗s0, S1 = Idp+1⊗s1 so that for

b̂AQR (α|I) as in Theorem B.2 and bAQR (α|I) as in (B.0.2),

V̂AQR (α|x, I) = X ′
(

S0 +
αS1

h (I − 1)

)
b̂AQR (α|I) ,

VAQR (α|x, I) = X ′
(

S0 +
αS1

h (I − 1)

)
bAQR (α|I) .

It follows from Theorems B.1-(i) and B.2-(i) that, since X is compact by Assumption
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A-(i),

sup
(α,x,I)∈[0,1]×X×I

∣∣∣V̂AQR (α|x, I)− V (α|x, I)
∣∣∣

≤ sup
(α,x,I)∈[0,1]×X×I

∣∣∣V̂AQR (α|x, I)− VAQR (α|x, I)
∣∣∣+ sup

(α,x,I)∈[0,1]×X×I
|VAQR (α|x, I)− V (α|x, I)|

≤ C

(
sup

(α,x,I)∈[0,1]×X×I
|S0êAQR (α|I)|+ h−1 sup

(α,x,I)∈[0,1]×X×I
|S1êAQR (α|I)|

)

+OP

(
1

h

(
logL

L

)3/4
)

+O
(
hs+1

)
.

By Lemmas B.3-(i), B.1 and definition of êAQR (α|I), Lemma B.4-(i),

sup
(α,x,I)∈[0,1]×X×I

|S0êAQR (α|I)| = OP

((
logL

L

)1/2
)
,

h−1 sup
(α,x,I)∈[0,1]×X×I

|S1êAQR (α|I)| = OP

((
logL

Lh

)1/2
)
.

Substituting gives

sup
(α,x,I)∈[0,1]×X×I

∣∣∣V̂AQR (α|x, I)− V (α|x, I)
∣∣∣ = OP

((
logL

Lh

)1/2
(

1 +

(
logL

Lh2

)1/4
))

+O
(
hs+1

)
,

which gives the desired result since Lh2/ logL→∞ by Assumption H-(i). �

Proof of Theorem 3.3. By Theorem B.2-(i), Lemmas B.3-(i) and B.1,

(Lh)1/2

(
V̂AQR (α|x, I)− V (α|x, I)− αS1êAQR (α|I)

h (I − 1)
− (VAQR (α|x, I)− V (α|x, I))

)
= (Lh)1/2

{
OP

(
1

L1/2

)
+OP

(
1

h

(
logL

L

)3/4
)}

= OP
(
h1/2

)
+OP

((
log3 L

Lh2

)1/4
)

= oP (1) ,

by Assumption H-(i), with VAQR (α|x, I)−V (α|x, I) = hs+1X ′Biash (α|I) + o (hs+1)

by Theorem B.1-(i). Recall that (B.0.5), Lemma B.4-(i), the expression of
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(L/h)1/2 êAQR (α|I) give that this vector is a triangular average of weighted centered

binomial variables which cannot degenerate. The Lindebergh Central Limit

Theorem together with Theorem B.1-(i) and Lemma B.4-(i) gives that

(Lh)1/2 Σ
−1/2
h (α|I)

αS1êAQR (α|I)

h (I − 1)

d→ N (0, Id) . �

Proof of Theorem 3.4. Redefine S0 and S1 as S0 = IdKL ⊗s0, S1 = IdKL ⊗s1

and recall that

V̂ASQR (α|x, I) = P (x)′
(

S0 +
αS1

h (I − 1)

)
b̂ASQR (α|I) ,

VASQR (α|x, I) = P (x)′
(

S0 +
αS1

h (I − 1)

)
bASQR (α|I) .

For êASQR (α|I) and d̂ASQR (α|I) as in (B.0.17), define

ÊASQR (α|x, I) = P (x)′
(

S0 +
αS1

h (I − 1)

)
êASQR (α|I) ,

D̂ASQR (α|x, I) = P (x)′
(

S0 +
αS1

h (I − 1)

)
d̂ASQR (α|I) ,

so that

V̂ASQR (α|x, I)−V (α|x, I) = VASQR (α|x, I)−V (α|x, I)+ÊASQR (α|x, I)+D̂ASQR (α|x, I) .

By Theorem B.1-(ii) and KL � h−dM , Assumption Riesz-(ii),

(∫ 1

0

∫
X

(
V̂ASQR (α|x, I)− V (α|x, I)

)2

dxdα

)1/2

= O
(
hs+1

)
+O

(∫ 1

0

{
‖S0êASQR (α|I)‖+ h−1 ‖S0êASQR (α|I)‖

}
dα

)
+O

(
max
α∈[0,1]

{∥∥∥S0d̂ASQR (α|I)
∥∥∥+ h−1

∥∥∥S0d̂ASQR (α|I)
∥∥∥})

Theorem B.2-(ii) gives, for PL = maxx∈X ‖P (x)‖ � h−(1+ζ)dM/2 and since

167



B. Appendix for Chapter 3

KLP
2

L logL/L = logL/
(
Lh(2+ζ)dM

)
→ 0 by Assumption H-(ii)

max
α∈[0,1]

{∥∥∥S0d̂ASQR (α|I)
∥∥∥+ h−1

∥∥∥S0d̂ASQR (α|I)
∥∥∥}

= h−1OP

P 1/2

L

(
KL logL

L

)3/4
1 +

(
KLP

2

L logL

L

)1/4


= h−1OP

(
P

1/2

L

(
KL logL

L

)3/4
)
.

By Lemmas B.4-(ii), B.3-(ii) and B.1,∫ 1

0

{
‖S0êASQR (α|I)‖+ h−1 ‖S0êASQR (α|I)‖

}
dα

= OP

((∫ 1

0

E
[(
h−1 ‖S0êASQR (α|I)‖

)2
]
dα

)1/2
)

= OP

((
KL

Lh

)1/2
)
.

Substituting gives, since
(
P

2

LKL log3 L
)
/ (Lh2) = log3 L/

(
Lh(2+ζ)dM+2

)
= O (1)

(∫ 1

0

∫
X

(
V̂ASQR (α|x, I)− V (α|x, I)

)2

dxdα

)1/2

= O
(
hs+1

)
+OP

(KL

Lh

)1/2
1 +

(
P

2

LKL log3 L

Lh2

)1/4


= O
(
hs+1

)
+OP

((
KL

Lh

)1/2
)

= O
(
hs+1

)
+OP

(
1

(LhdM+1)1/2

)
,

which gives the desired result for the integrated mean squared error.

For the uniform norm, observe first that, since PL = O
(
K

1/2
L

)
by Assumption
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H-(ii),

max
(α,x,I)∈[0,1]×X×I

∣∣∣D̂ASQR (α|x, I)
∣∣∣ = O

(
max
x∈X
‖P (x)‖ × h−1 max

(α,I)∈[0,1]×I

∥∥∥S0d̂ASQR (α|I)
∥∥∥)

= h−1OP

(
P

3/2

L

(
KL logL

L

)3/4
)

= h−1OP

((
K2
L logL

L

)3/4
)
.

Consider now the uniform convergence result, which will use the following

normalization of V̂ASQR (α|x, I), VASQR (α|x, I) and V (α|x, I),

N̂ (α|x, I) =
V̂ASQR (α|x, I)

‖P (x)‖+ 1
=

P (x)′

‖P (x)‖+ 1

(
S0 +

αS1

h (I − 1)

)
b̂ASQR (α|I) ,

N (α|x, I) =
VASQR (α|x, I)

‖P (x)‖+ 1
=

P (x)′

‖P (x)‖+ 1

(
S0 +

αS1

h (I − 1)

)
bASQR (α|I) ,

keeping in mind that ‖P (x) / (1 + ‖P (x)‖)‖ ≤ 1. Theorem B.1-(iii) and KL �
h−dM , the Cauchy-Schwarz inequality, Lemma B.5-(ii) and Theorem B.2-(ii), PL =

O
(
K

1/2
L

)
by Assumption H-(iii) give,

max
(α,x,I)∈[0,1]×X×I

∣∣∣V̂ASQR (α|x, I)− V (α|x, I)
∣∣∣

≤ max
(α,x,I)∈[0,1]×X×I

|VAQR (α|x, I)− V (α|x, I)|+
(
1 + PL

)
max

(α,x,I)∈[0,1]×X×I

∣∣∣N̂ (α|x, I)−N (α|x, I)
∣∣∣

≤ O
(
hs+1

)
+
(
1 + PL

)
max

(α,x,I)∈[0,1]×X×I

∣∣∣∣ P (x)′

‖P (x)‖+ 1

(
S0 +

αS1

h (I − 1)

)
(̂eASQR (α|I)− eASQR (α|I))

∣∣∣∣
+
(
1 + PL

)
max

(α,I)∈[0,1]×I

∥∥∥∥(S0 +
αS1

h (I − 1)

)(
d̂ASQR (α|I)− dASQR (α|I)

)∥∥∥∥
≤ O

(
hs+1

)
+
(
1 + PL

){
OP

((
logL

Lh

)1/2
)

+ h−1OP

(
P

1/2

L

(
KL logL

L

)3/4
)}

= O
(
hs+1

)
+OP

((
KL logL

Lh

)1/2
){

1 +OP

((
K4
L logL

Lh2

)1/4
)}

= O
(
hs+1

)
+OP

((
logL

LhdM+1

)1/2
){

1 +OP

((
logL

Lh4dM+2

)1/4
)}

,
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which gives the desired result since logL/
(
Lh4dM+2

)
= O (1). �

Proof of Proposition 3.4. Observe first that, for b̂AQR (α|I) computed from

β̂AQR (α|I) as in (B.0.1),

B̂ (h;α, I) =
1

LI

L∑
`=1

I (I` = I)

I∑̀
i=1

∫ 1−α
h

−α
h

ρ̃α+ht

(
Bi` −X` (t)′ b̂AQR (α|I)

)
Kα+ht (t) dt.

Let bAQR (α|I) is as defined in (B.0.2) and d̂AQR (α|I), êAQR (α|I) as in (B.0.16) so

that b̂AQR (α|I) = bAQR (α|I) + ∆̂ (α|I), ∆̂ (α|I) = d̂AQR (α|I) + êAQR (α|I). Define,

for ρ
(1)
α (q) = α− I (q ≤ 0),

B̂0 (h;α, I) =
1

L

L∑
`=1

I (I` = I)

I∑̀
i=1

∫ 1−α
h

−α
h

ρ̃α+ht (Bi` −B (α + ht|x`, I))Kα+ht (t) dt,

B̂
(1)

0 (h;α, I) = − 1

LI

L∑
`=1

I (I` = I)

I∑̀
i=1

∫ 1−α
h

−α
h

ρ̃
(1)
α+ht (Bi` −B (α + ht|x`, I))

× (X` (t) bAQR (α|I)−B (α + ht|x`, I))Kα+ht (t) dt,

B̂
(1)

1 (h;α, I) = − 1

LI

L∑
`=1

I (I` = I)

I∑̀
i=1

∫ 1−α
h

−α
h

ρ̃
(1)
α+ht (Bi` −B (α + ht|x`, I))

×X` (t)′Kα+ht (t) dt∆̂ (α|I) ,

B
(2)
0 (h;α, I) = E

[
I (I` = I)

∫ 1−α
h

−α
h

(X` (t) bAQR (α|I)−B (α + ht|x`, I))2

B(1) (α + ht|x`, I)

(α + ht)2Kα+ht (t) dt
]
,

B
(2)
1 (h;α, I) = ∆̂ (α|I)′

× E

[
I (I` = I)

∫ 1−α
h

−α
h

X` (t)X` (t)′

B(1) (α + ht|x`, I)
(α + ht)2Kα+ht (t) dt

]
∆̂ (α|I) .

Repeating the arguments in Propositions B.1 and B.2 gives, uniformly in
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α ∈ [0, 1].∫ 1

0

B̂ (h;α, I) dα =

∫ 1

0

B̂0 (h;α, I) dα +
1

2

∫ 1

0

B
(2)
0 (h;α, I) dα

+

∫ 1

0

{
B̂

(1)

0 (h;α, I) dα +
1

2
B

(2)
1 (h;α, I)

}
dα +O

(∫ 1

0

(
B

(2)
0 (h;α, I)B

(2)
1 (h;α, I)

)1/2

dα

)
+OP

((
logL

L

)1/2

max
(α,x)∈[0,1]×X

{∥∥∥∆̂ (α|I)
∥∥∥3/2

+ ‖α (bAQR (α|I)− b (α|I))‖3/2

})
.

Repeating the arguments in Lemma B.4 gives, using (B.0.14),

max
(α,I)∈[0,1]×I

∣∣∣B̂(1)

0 (h;α, I)
∣∣∣ = OP

(
hs+2

L1/2

)
= OP

(
hs+2 × h1/4

L1/2 × h1/4

)
= OP

(
h2(s+2)+ 1

2 +
1

Lh1/2

)
= oP

(
h2(s+2) +

1

Lh

)
,

since 2 |ab| ≤ a2 + b2. Theorem B.2-(i) and (B.0.14) also yield,

max
(α,I)∈[0,1]×I

∣∣∣B(2)
1 (h;α, I)

∣∣∣ = OP

((
logL

L

)3/2
)

= oP

(
h2(s+2) +

1

Lh

)
,

∫ 1

0

(
B

(2)
0 (h;α, I)B

(2)
1 (h;α, I)

)1/2

dα = OP

((
logL

L

)3/4

hs+2

)

= OP

((
logL

L

)1+ 1
4

+

(
logL

L

) 1
4

h2(s+2)

)
= oP

(
h2(s+2) +

1

Lh

)
,
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(
logL

L

)1/2

max
(α,x)∈[0,1]×X

{∥∥∥∆̂ (α|I)
∥∥∥3/2

+ ‖α (bAQR (α|I)− b (α|I))‖3/2

}
=

(
logL

L

)1/2
{
OP

((
logL

L

)3/4
)

+O
(
h

3
2

(s+2)
)}

= OP

((
logL

L

)5/4
)

+O

(
logL

L
h

1
4

(s+2)

)
+O

(
h2(s+2)h

1
4

(s+2)
)

= oP

(
h2(s+2) +

1

Lh

)
.

Let

M1 (α) = E
[
I (I` = I)X`αB

(s+2) (α|x`, I)

B(1) (α|x`, I)

]
, M2 (α) = E

[
I (I` = I)X`X

′
`

B(1) (α|x`, I)

]
,

Π1 (α, h) =

∫ 1−α
h

−α
h

ts+2π (t)

(s+ 2)!
K (t) dt, Π2 (α, h) =

∫ 1−α
h

−α
h

π (t) π (t)′K (t) dt.

Observe that except for α = 0, 1,

lim
h→0

Kα+ht (t) = K (t) , lim
h→0

Π1 (α, h) =

∫
ts+2π (t)

(s+ 2)!
K (t) dt = Π1,

lim
h→0

Π2 (α, h) =

∫
π (t) π (t)′K (t) dt = Π2.

A Taylor expansion, (B.0.15) and arguing as for (B.0.12), and the dominated
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convergence theorem give,∫ 1

0

B
(2)
0 (h;α, I) dα

= E

[
I (I` = I)

∫ 1

0

∫ 1−α
h

−α
h

(X` (t) bAQR (α|I)−B (α + ht|x`, I))2

B(1) (α + ht|x`, I)
(α + ht)2Kα+ht (t) dtdα

]

=

∫ 1

0

∫ 1−α
h

−α
h

(α (bAQR (α|I)− b (α|I)))′ (M2 (α + ht)⊗ Π2 (α, h))

× (α (bAQR (α|I)− b (α|I)))Kα+ht (t) dtdα + o
(
h2(s+2)

)
= h2(s+2)

∫ 1

0

∫ 1−α
h

−α
h

(M1 (α)⊗ Π1 (α, h))′ (M2 (α)⊗ Π2 (α, h))−1 (M2 (α + ht)⊗ Π2 (α, h))

× (M2 (α)⊗ Π2 (α, h))−1 (M1 (α)⊗ Π1 (α, h))Kα+ht (t) dtdα + o
(
h2(s+2)

)
= h2(s+2)

∫ 1

0

M1 (α)′M2 (α)−1M1 (α) dα× Π′1Π−1
2 Π1 + o

(
h2(s+2)

)
.

Hence,∫ 1

0

B̂ (h;α, I) dα =

∫ 1

0

B̂0 (h;α, I) dα +
h2(s+2)Π′1Π−1

2 Π1

2I

∫ 1

0

M1 (α)′M2 (α)−1M1 (α) dα

+ oP

(
h2(s+2) +

1

Lh

)
.

Observe now that,∫ 1

0

B̂0 (h;α, I) dα

=
1

LI

L∑
`=1

I (I` = I)

I∑̀
i=1

∫ 1

0

∫ 1

0

ρa (Bi` −B (a|x`, I))Ka

(
a− α
h

)
da
dα

h

=
1

LI

L∑
`=1

I (I` = I)

I∑̀
i=1

∫ 1

0

ρa (Bi` −B (a|x`, I))

{∫
K
(
a−α
h

)
dα
h∫

K
(
a−α
h

)
dα
h

}
da

=
1

LI

L∑
`=1

I (I` = I)

I∑̀
i=1

∫ 1

0

ρa (Bi` −B (a|x`, I)) da,

which ends the proof of the Proposition. �
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Proof of intermediary results

We now give the proof of Lemma B.3, B.4, Propositions B.1 and B.2, for which it is

sufficient to consider the ASQR case since taking constant KL and maxx∈X ‖P (x)‖
gives the results stated in the AQR case. The proofs of this section heavily

relies on the following maximal inequality from Massart (2007, Theorem 6.8 and

Corollary 6.9). When applying this bound, the variable ξ` will stand for the auction

observation (I`, x`, Bi`, i = 1, . . . , I`) or some function of this variable.

Theorem B.3. Let {ξ`, ` ≥ 1} be a sequence of independent variables and let F be

a separable class of real functions of ξ`. Assume that (i) there exists some positive

numbers σ and b such that for all integer numbers k ≥ 2 and any f (·) ∈ F,

1

L

L∑
`=1

E
[
|f (ξ`)|k

]
≤ k!

2
σ2Mk−2;

(ii) for any ε > 0, there exists some finite set Fε of exp (H (ε)) brackets which union

covers F and such that, for any
[
f, f

]
∈ Fε,

1

L

L∑
`=1

E
[∣∣f (ξ`)− f (ξ`)

∣∣k] ≤ k!

2
ε2Mk−2.

Then, for

E = 27L1/2

∫ σ

0

min1/2 (H (t) , L) dt+ 2 (M + σ)H (σ) ,

it holds that,

E

[
sup
f∈F

∣∣∣∣∣
L∑
`=1

(f (ξ`)− E (f (ξ`)))

∣∣∣∣∣
]
≤ E.

The upper bound for the mean in Theorem B.3 implies that, for any e ∈ (0, 1] ,

sup
f∈F

∣∣∣∣∣
L∑
`=1

(f (ξ`)− E (f (ξ`)))

∣∣∣∣∣ = OP (E) ,

where σ, b and therefore E can depend upon L. In this statement and when the ξ`
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are i.i.d, σ2 and M can be viewed as, respectively upper bounds for Var (f (ξ`)) and

|f (ξ`)| valid for all f (·) ∈ F
⋃
∪ε∈(0,eσ] Fε.

Note that it is sufficient to establish the intermediary results for the ASQR

case since it implies the results for the AQR case by taking constant KL and

maxx∈X ‖P (x)‖.

Proof of Lemma B.3. It is sufficient to consider R̂
(1)
ASQR (bASQR (α|I) ;α, I) and

a fixed I since I is finite. Abbreviate bASQR (α|I) into b (α|I) and R̂
(1)
ASQR (b;α, I),

R
(1)
ASQR (b;α, I) into R̂(1) (b;α, I), R(1) (b;α, I). Recall also that R̂(1) (b (α|I) ;α, I) is

centered since b (α|I) = arg minb R (b;α, I) satisfies a first-order condition so that,

E
[

R̂(1) (b (α|I) ;α, I)
]

= R(1) (b (α|I) ;α, I) = 0.

Define,

r̂ (θ;α, I) = R̂(1) (b (α|I) ;α, I)′ θ, S = {θ; θ′θ = 1} ,

which is such that
∥∥∥R̂(1) (b (α|I) ;α, I)

∥∥∥ = maxθ∈S |̂r (θ;α, I)|. It is then sufficient to

bound the exceedance probability of

max
(α,θ)∈[0,1]×S

|̂r (θ;α, I)| .

Define, using the notations of Theorem B.1,

f (ξ`;α, θ) =
I (I` = I)

I

I∑
i=1

∫ 1−α
h

−α
h

{
I
(
Bi` ≤ P (x`, t)

′ b (α|I)
)
− (α + ht)

}
× θ′P (x`)⊗ π (t)K (t) dt,

which is such that r̂ (θ;α, I) =
∑L

`=1 f (ξ`;α, θ) /L, with,

max
`≥1

sup
(α,θ)∈[0,1]×S

|f (ξ`;α, θ)| ≤ C max
x∈X
‖P (x)‖ ≤ CPL.

For the variance of f (ξ`;α, θ), observe that, under Assumptions H, A and by
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(B.0.10),

Var (If (ξ`;α, θ)) = E
[
E
[
f 2 (ξ`;α, θ) |x`, I`

]]
≤ CIE

[∫ 1−α
h

−α
h

E
[{

I
(
Bi` ≤ P (x`, t)

′ b (α|I)
)
− (α + ht)

}2 |x`, I` = I
]

× (θ′P (x`)⊗ π (t))
2
K (t) dt

]
≤ CE

[∫ 1−α
h

−α
h

{
P
(
Bi` ≤ P (x`, t)

′ b (α|I) |x`, I
)
− 2 (α + ht)P

(
Bi` ≤ P (x`, t)

′ b (α|I) |x`, I
)

+ (α + ht)2} (θ′P (x`)⊗ π (t))
2
K (t) dt

]
= 2CE

[∫ 1−α
h

−α
h

{(α + ht) (1− α− ht) +o (h)} (θ′P (x`)⊗ π (t))
2
K (t) dt

]
= C {α (1− α)}+O (h) ≤ σ2.

This bound hold for all α and I and implies the variance result of the Lemma.

To find some brackets as in Theorem B.3, we first bound the differential

b(1) (α|I) = db (α|I) /dα. The implicit function theorem gives since b (α|I) is the

unique solution of R(1) (b;α, I) = 0,

b(1) (α|I) = −
(
R(2) (b (α|I) ;α, I)

)−1 ∂R(1) (b (α|I) ;α, I)

∂α
,

where

∂R(1) (b (α|I) ;α, I)

∂α

=
1

h
E
[
I (I` = I)

{
G
(
P
(
x`,−

α

h

)
b (α|I) |x`, I`

)
− α

}(
P (x`)⊗ π

(
−α
h

))
K
(
−α
h

)]
− 1

h
E
[
I (I` = I)

{
G

(
P

(
x`,

1− α
h

)
b (α|I) |x`, I`

)
− 1− α

}
×
(
P (x`)⊗ π

(
1− α
h

))
K

(
1− α
h

)]
− E

[
I (I` = I)

∫ 1−α
h

−α
h

P (x`)⊗ π (t)K (t) dt

]
.
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By (B.0.10) and Assumption R-(ii),

max
α∈[0,1]

∥∥∥∥∂R(1) (b (α|I) ;α, I)

∂α

∥∥∥∥ ≤ C ‖E [P (x`)]‖ = C max
θ∈S

∣∣E [P (x`)
′ θ
]∣∣

≤ C max
θ∈S

∣∣∣E 1
2

[(
P (x`)

′ θ
)2
]∣∣∣ ≤ C,

and then, by Lemma B.1 and for all h small enough,

max
α∈[0,1]

∥∥b(1) (α|I)
∥∥ ≤ C1. (B.0.21)

Let DL = (s+ 2)KL + 1 be the dimension of (α, θ′)′, |(α, θ′)|2 = |α|+ ‖θ‖ and

∆ =
hε2

2C2 (1 + maxx∈X ‖P (x)‖)
.

Let
{(
αj, θ

′
j

)′
, j ∈ Jε

}
⊂ [0, 1] × S be such that for any (α, θ′)′ ∈ [0, 1] × S there is

a
(
αj, θ

′
j

)
such that

∣∣(α, θ′)− (αj, θ′j)∣∣2 ≤ ∆. Define

f
j
(ξ`) = min

α∈[0,1],θ′;|(α−αj ,θ′−θj)|2≤∆

{
I (I` = I)

I∑
i=1

∫ 1−α
h

−α
h{

I
(
Bi` ≤ P (x`, t)

′ b(1) (αj|I) + C1 (α− αj) ‖P (x`)‖
)
− (α + ht)

}
θ′P (x`)⊗ π (t)K (t) dt} ,

fj (ξ`) = max
α∈[0,1],θ′;|(α−αj ,θ′−θj)|2≤∆

{
I (I` = I)

I∑
i=1

∫ 1−α
h

−α
h{

I
(
Bi` ≤ P (x`, t)

′ b(1) (αj|I) + C1 (α− αj) ‖P (x`)‖
)
− (α + ht)

}
θ′P (x`)⊗ π (t)K (t) dt}

where the min and the max are achieved by some (α, θ′)′ such that

|(α− αj, θ′ − θj)|2 = ∆. Since [0, 1] × S ⊂ ∪j∈Jε
{

(α, θ′) ; |(α− αj, θ′ − θj)|2 ≤ ∆
}

,

it follows that by (B.0.21),

F :=
{
f (·) = f (·, α, θ) , (α, θ′)′ ∈ [0, 1]× S

}
⊂ ∪j∈Jε

[
f
j
, fj

]
.
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Observe now that,∣∣∣fj (ξ`)− f j (ξ`)
∣∣∣ ≤ ∣∣fj (ξ`)− f (ξ`, αj, θj)

∣∣+
∣∣∣f
j
(ξ`)− f (ξ`, αj, θj)

∣∣∣
≤ C

∣∣P (x`) θ
′
j

∣∣{∫ 1−αj+∆

h

1−αj−∆

h

K (t) dt+

∫ −αj+∆

h

−αj−∆

h

K (t) dt+

+ I
(∣∣Bi` − P (x`, t)

′ b(1) (αj|I)
∣∣ ≤ C1∆ ‖P (x`)‖

)}
+ C ‖P (x`)‖∆

This gives, taking M = CPL which is also a bound for |f (ξ`, α, θ)|, by Proposition

3.1 which implies that the p.d.f g (·|·, ·) of Bi` given (x`, I`) is bounded, Assumptions

A and R-(ii),

E
[∣∣∣fj (ξ`)− f j (ξ`)

∣∣∣k] ≤Mk−2E
[∣∣∣fj (ξ`)− f j (ξ`)

∣∣∣2]
≤ CMk−2

{
E
[∣∣P (x`) θ

′
j

∣∣2] ∆2

h2
+ E

[∣∣P (x`) θ
′
j

∣∣2 ‖P (x`)‖
]

∆ + E
[
‖P (x`)‖2]∆2

}
≤ C (2ε+ 1)

C2

Mk−2ε,

which can make smaller that Mk−2ε for all ε ∈ (0, C] by increasing C2. Before

applying Theorem B.3, observe that van de Geer (1999, p.20) gives

H (ε) = log (Card Jε) = CDL log

(
1

∆

)
≤ CKL

(
log

1

ε
+ logL

)
.

Note that, for L large enough,∫ σ

0

H1/2 (t) dt ≤ CK
1/2
L

∫ σ

0

{
log1/2 1

t
+ log1/2 L

}
dt

≤ CK
1/2
L σ

{
log1/2 L+

(∫ σ

0

log
1

t
dt

)1/2
}

= CK
1/2
L σ

{
log1/2 L− t (log t+ 1)]σ0

}
≤ CK

1/2
L log1/2 L.
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This gives for E as in Theorem B.3,

E ≤ C
(

(LKL logL)1/2 +KLPL logL
)
.

Hence Theorem B.3 gives for r̂ (θ;α, I) =
∑L

`=1 f (ξ`;α, θ) /L,

E
[

max
(α,θ)∈[0,1]×S

|̂r (θ;α, I)|
]
≤ C

((
KL logL

L

)1/2

+
KLPL logL

L

)
,

which gives the desired result. �

Proof of Lemma B.4. It is sufficient to consider the ASQR case. Following the

steps of the proof of Lemma B.3 gives, since maxα∈[0,1] v
2
h (α) = O (1) and by (B.0.8),

the bound for the expectation of the maximum of S1,ASQRêASQR (α|I) provided

the variance bound holds as established now. Remove for the sake of brevity the

subscript ASQR and the variables α and I from the notations, so that

ê = êASQR (α|I) = −
(
R(2) (b)

)−1
R̂(1) (b) ,

with b = bASQR (α|I) and R(2) (·) = R
(2)
ASQR (·|α, I), R̂(1) (·) = R̂

(1)
ASQR (·|α, I). Let

R̃(2) (b) = E

[
I (I` = I)P (x`)P (x`)

′ ⊗
∫ 1−α

h

−α
h

π (t) π′ (t)K (t)

B(1) (α + ht|x`, I)
dt

]
,

and let ‖·‖ stands for the Euclidean or operator norm. (B.0.9), (B.0.8) and the

Taylor inequality of order s+ 1 gives, since s ≥ 1 and by (B.0.3),

max
α∈[0,1]

∥∥∥R̃(2) (b)− R(2) (b)
∥∥∥ = o

(
PL

(
hs+1 +K

− s+2
dM

L

))
+ o (hs) = o (h) .
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Define now,

P = E
[
I (I` = I)P (x`)P (x`)

′] ,
P0 = E

[
I (I` = I)P (x`)P (x`)

′

B(1) (α|x`, I)

]
,

P1 = −E

[
I (I` = I)P (x`)P (x`)

′ B(2) (α|x`, I)

(B(1) (α|x`, I))
2

]
,

Π0 =

∫ 1−α
h

−α
h

π (t) π′ (t)K (t) dt, π0 =

∫ 1−α
h

−α
h

π (t) π′ (t)K (t) dt,

Π1 =

∫ 1−α
h

−α
h

tπ (t) π′ (t)K (t) dt, π1 =

∫ 1−α
h

−α
h

tπ (t)K (t) dt,

Πm =

∫ 1−α
h

−α
h

∫ 1−α
h

−α
h

min (t1, t2) π (t1) π′ (t2)K (t1)K (t2) dt1dt2.

Then Proposition 3.1 and a standard Taylor expansion give

max
α∈[0,1]

∥∥∥R̃(2) (b)−P0 ⊗Π0 − hP1 ⊗Π1

∥∥∥ = o (h) ,

so that

max
α∈[0,1]

∥∥R(2) (b)−P0 ⊗Π0 − hP1 ⊗Π1

∥∥ = o (h) . (B.0.22)

Consider now V (b) = Var
(

R̂(1) (b)
)

. Elementary manipulations and (B.0.10) give,

with min (t1, t2) = t1 ∧ t2 and uniform remainder terms with respect to ‖·‖,

V (b) = I−1E

[
I (I` = I)P (x`)P (x`)

′ ⊗
∫ 1−α

h

−α
h

∫ 1−α
h

−α
h

{
G
(
P (x`, t1)′ b ∧ P (x`, t2)′ b|x`, I`

)
− 2 (α + ht1)G

(
P (x`, t2)′ b|x`, I`

)
+ (α + ht1) (α + ht2)}

×π (t1) π (t2)′K (t1)K (t2) dt1dt2
]

= I−1P⊗
∫ 1−α

h

−α
h

∫ 1−α
h

−α
h

{(α + ht1) ∧ (α + ht2)− (α + ht1) (α + ht2)}

× π (t1) π (t2)′K (t1)K (t2) dt1dt2 + o (h)

=
α (1− α)

I
P⊗ π0π

′
0 + h {P⊗Πm − αP⊗ (π1π

′
0 + π0π

′
1)}+ o (h) .
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Hence an elementary expansion gives, uniformly in α ∈ [0, 1], Var (̂e) = Ve + o (h)

with

Ve = α (1− α) P−1
0 ⊗Π−1

0 ×P⊗ π0π
′
0 ×P−1

0 ⊗Π−1
0

− hα (1− α)
(
P−1

0 ⊗Π−1
0

)2 ×P1 ⊗Π1 ×P⊗ π0π
′
0 ×P−1

0 ⊗Π−1
0

− hα (1− α) P−1
0 ⊗Π−1

0 ×P⊗ π0π
′
0 ×P1 ⊗Π1 ×

(
P−1

0 ⊗Π−1
0

)2

+ hP−1
0 ⊗Π−1

0 × {P⊗Πm − αP⊗ (π1π
′
0 + π0π

′
1)} ×P−1

0 ⊗Π−1
0

= α (1− α)
(
P−1

0 ×P×P−1
0

)
⊗
(
Π−1

0 × π0π
′
0 ×Π−1

0

)
− hα (1− α)

(
P−2

0 ×P1 ×P×P−1
0

)
⊗
(
Π−2

0 ×Π1 × π0π
′
0 ×Π−1

0

)
− hα (1− α)

(
P−1

0 ×P×P1 ×P−2
0

)
⊗
(
Π−1

0 × π0π
′
0 ×Π1 ×Π−2

0

)
+ h

(
P−1

0 ×P×P−1
0

)
⊗
(
Π−1

0 ×Πm ×Π−1
0 − αΠ−1

0 × (π1π
′
0 + π0π

′
1)×Π−1

0

)
Observe now that

S1,ASQR = IdKL ⊗s ′1 with s1= [0, 1, 0, . . . , 0]′ ∈ Rs+2.

Let s0 = [1, 0, 0, . . . , 0]′ ∈ Rs+2. The key point here is that s ′0s1 = s ′1s0 = 0 gives

Π−1
0 π0 = s0 so that π′0Π

−1
0 s1 = s ′1Π

−1
0 π0 = 0.

Because Π−1
0 s1 = Πt

h (α), the expression of Ve gives, uniformly in α ∈ [0, 1],

Var (D1,ASQRê) = I−1 (IdKL ⊗s ′1)× Ve × (IdKL ⊗s1) + o (h)

= I−1h
(
P−1

0 ×P×P−1
0

)
⊗ s ′1Π

−1
0 ×Πm ×Π−1

0 s1 + o (h)

= h
v2
h (α)

I

(
P−1

0 ×P×P−1
0

)
+ o (h)

= h
v2
h (α)

I
E−1

[
I (I` = I)P (x`)P (x`)

′

B(1) (α|x`, I)

]
E−1

[
I (I` = I)P (x`)P (x`)

′]
× E−1

[
I (I` = I)P (x`)P (x`)

′

B(1) (α|x`, I)

]
+ o (h) ,

as stated in the Lemma. �

Proof of Proposition B.1. It is sufficient to study Ô1,ASQR (d, e;α, I)

181



B. Appendix for Chapter 3

and ÔASQR (d, e;α, I) which are abbreviated into Ô1 (d, e) and Ô (d, e), as

R̂ASQR (bASQR (α|I) + e;α, I) which will be denoted R̂0 (e). Observe that,

Ô (d, e) =

∫ 1

0

{
R̂

(1)
0 (e+ud)− R̂

(1)
0 (e)

}′
dud+

{
R̂

(1)
0 (e)− R̂

(1)
0 (0)

}′
d

:=
1

L

L∑
`=1

(f (ξ`; τ) + g (ξ`; τ)) ,

where τ stands for α, e, and d and,

f (ξ`; τ) =

∫ 1

0

{∫ 1−α
h

−α
h

I` (t, u; τ) d′P (x`, t)K (t) dt

}
duI (I` = I) ,

I` (t, u; τ) =

I∑̀
i=1

{
I
(
Bi` ≤ P (x`, t)

′ (b (α|I`) + e+ud)
)
− I
(
Bi` ≤ P (x`, t)

′ (b (α|I`) + e)
)}

= sgn
(
P (x`, t)

′ d
) I∑̀
i=1

I
(
Bi` − P (x`, t)

′ (b (α|I`) + e) between 0 and uP (x`, t)
′ d
)
,

g (ξ`; τ) =

∫ 1−α
h

−α
h

I∑̀
i=1

{
I
(
Bi` ≤ P (x`, t)

′ (b (α|I`) + e)
)
− I
(
Bi` ≤ P (x`, t)

′ (b (α|I`))
)}

× d′P (x`, t)K (t) dtI (I` = I) .

It then follows that, under Assumptions H-(i), R-(ii) and because the conditional

p.d.f of Bi` is bounded,

Var (f (ξ`; τ)) ≤ CI

∫ 1

0

{∫ 1−α
h

−α
h

E
[
(I` (t, u; τ) d′P (x`, t)K (t))

2
]
dt

}
du

≤ C

∫ 1

0

∫ 1−α
h

−α
h

E
[
P
(
Bi` − P (x`, t)

′ (b (α|I`) + e) between 0 and P (x`, t)
′ d|x`, I`

)
(d′P (x`, t)K (t))

2
]
dtdu

≤ CE

[∫ 1−α
h

−α
h

(d′P (x`, t))
3
K2 (t) dt

]
≤ C ‖d‖max

x∈X
‖P (x)‖

∫ 1−α
h

−α
h

E
[
(d′P (x`, t))

2
]
K2 (t) dt

≤ C ‖d‖3 max
x∈X
‖P (x)‖ ≤ CPL%

3
d,
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while |f (ξ`; τ)| ≤ CPL%d uniformly. Similarly

Var (g (ξ`; τ)) ≤ CPL%
2
d%e, max

τ
|g (ξ`; τ)| ≤ CPL%d.

Then arguing as in the proof of Lemma B.3 gives

E

[
max
τ

∣∣∣∣∣ 1L
L∑
`=1

f (ξ`; τ)

∣∣∣∣∣
]
≤ C

((
KLPL%

3
d logL

L

)1/2

+
KLPL%d logL

L

)
,

E

[
max
τ

∣∣∣∣∣ 1L
L∑
`=1

g (ξ`; τ)

∣∣∣∣∣
]
≤ C

((
KLPL%

2
d%e logL

L

)1/2

+
KLPL%d logL

L

)
,

which shows that the Proposition is proved. �

Proof of Proposition B.2. The notations of the proof of Proposition B.1 are

used and the proof is detailed for the ASQR case. Observe first that,

E [I` (t, u; τ) |x`, I` = I]

= I
{
G
(
Bi` ≤ P (x`, t)

′ (b (α|I`) + e+ud) |x`, I
)
−G

(
Bi` ≤ P (x`, t)

′ (b (α|I`) + e) |x`, I
)}

= I

∫ 1

0

g
(
Bi` ≤ P (x`, t)

′ (b (α|I`) + e+vud) |x`, I
)
uP (x`, t)

′ ddv.

It then follows that

O1 (d, e;α, I) = d′
∫ 1

0

∫ 1

0

R(2) (b (α|I`) + e+vud;α, I) vdvdud

+ d′
∫ 1

0

R(2) (b (α|I`) + ue;α, I) dve.
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Hence (B.0.8) gives,∣∣∣∣O1 (d, e;α, I)− d′R(2) (b (α|I`) ;α, I) (d + 2e)

2

∣∣∣∣
≤
∥∥∥∥∫ 1

0

∫ 1

0

{
R(2) (b (α|I`) + e+vud;α, I)− R(2) (bASQR (α|I`) ;α, I)

}
vdvdu

∥∥∥∥ %2
d

+

∥∥∥∥∫ 1

0

{
R(2) (b (α|I`) + ue;α, I)− R(2) (b (α|I`) ;α, I)

}
du

∥∥∥∥ %d%e
≤ C max

x∈X
‖P (x)‖

(
%2
d (%d + %e) + %d%

2
e

)
≤ CPL (%d+%e)

2 %d,

uniformly with respect to (α, d, e,I) in [0, 1]×B (0, %d)×B (0, %e)× I. �

Proof of Lemma B.5. The variance results follows from Lemma B.3-(ii) and

Lemma B.4-(ii) together with Assumption R-(ii) and the fact that B(1) (α|x, I) is

bounded away from 0 and infinity by Proposition 3.1. For the maximum order,

consider the first one and define with S0 = S0,ASQR,

r̂0 (α, x) =
P (x)′

1 + ‖P (x)‖
S0êASQR (α|I) :=

1

L

L∑
`=1

f0 (ξ`, θ) ,

with θ = (α, x′)′ and,

f0 (ξ`, θ) = −I (I` = I)P (x)′

1 + ‖P (x)‖
S0R(2) (b (α|I) ;α, I)−1

×
I∑̀
i=1

∫ 1−α
h

−α
h

{
I
(
Bi` ≤ P (x`, t)

′ b (α|I)
)
− (α + ht)

}
P (x`)K (t) dt,

which is centered by (B.0.5) and satisfies, since R(2) (b (α|I) ;α, I)−1 � C Id,

Var (f0 (ξ`, θ)) ≤ C
‖P (x)‖2

(1 + ‖P (x)‖)2 ≤ C,

|f0 (ξ`, θ)| ≤ C
‖P (x)‖ ‖P (x`)‖

1 + ‖P (x)‖
≤ C max

x∈X
‖P (x)‖ = O

(
K

1/2
L

)
.

Under Assumption H-(iii), P (x) / (1 + ‖P (x)‖) is a Hölder function with exponent

p and constant K2n satisfying logK2n = O (logL). By arguments as in the proof of
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Lemmas B.3 and B.4, the bracketing entropy H (ε) to cover {f (ξ, θ) , θ ∈ [0, 1]× X}
in Theorem B.3 satisfies H (ε) ≤ C log (L/ε). Hence using the bound for∫ C

0
H1/2 (t) dt of Lemma B.3 gives

E
[

max
θ∈[0,1]×X

|̂r0 (α, x)|
]
≤ C

((
logL

L

)1/2

+
K

1/2
L logL

L

)
≤ C

(
logL

L

)1/2

,

since KL = O (logL/L) under Assumption H-(ii). The Markov inequality then gives

max
(α,x,I)∈[0,1]×X×I

|P ′ (x) S0,ASQRêASQR (α|I)| ≤
(

1 + max
x∈X
‖P (x)‖

)
max

θ∈[0,1]×X
|̂r0 (α, x)|

= OP

((
KL logL

L

)1/2
)
.

The proof of the second bound proceeds similarly starting from

r̂1 (α, x) =
P ′ (x)

1 + ‖P (x)‖
S1,ASQRêASQR (α|I) .

Arguing as above gives

E
[

max
θ∈[0,1]×X

|̂r1 (α, x)|
]
≤ C

(
h1/2

(
logL

L

)1/2

+
K

1/2
L logL

L

)
≤ Ch1/2

(
logL

L

)1/2

,

since KL = O (Lh/ logL). The bound above implies the last bound of Lemma B.5.�
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