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Objectives: Metallo-b-lactamase (MBL)-based resistance is a threat to the use of most b-lactam antibiotics.
Multiple variants of the New Delhi MBL (NDM) have recently been reported. Previous reports indicate that the sub-
stitutions affect NDM activity despite being located outside the active site. This study compares the biochemical
properties of seven clinically reported NDM variants.

Methods: NDM variants were generated by site-directed mutagenesis; recombinant proteins were purified to near
homogeneity. Thermal stability and secondary structures of the variants were investigated using differential
scanning fluorimetry and circular dichroism; kinetic parameters and MIC values were investigated for represen-
tative carbapenem, cephalosporin and penicillin substrates.

Results: The substitutions did not affect the overall folds of the NDM variants, within limits of detection; however,
differences in thermal stabilities were observed. NDM-8 was the most stable variant with a melting temperature
of 728C compared with 608C for NDM-1. In contrast to some previous studies, kcat/KM values were similar for car-
bapenem and penicillin substrates for NDM variants, but differences in kinetics were observed for cephalosporin
substrates. Apparent substrate inhibition was observed with nitrocefin for variants containing the M154L substi-
tution. In all cases, cefoxitin and ceftazidime were poorly hydrolysed with kcat/KM values ,1 s21 mM21.

Conclusions: These results do not define major differences in the catalytic efficiencies of the studied NDM variants
and carbapenem or penicillin substrates. Differences in the kinetics of cephalosporin hydrolysis were observed.
The results do reveal that the clinically observed substitutions can make substantial differences in thermo-
dynamic stability, suggesting that this may be a factor in MBL evolution.
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Introduction
Infectious diseases remain a major public health problem
worldwide. However, the utility of antimicrobial chemotherapy is
compromised by the spread of resistant strains.1 Since their intro-
duction over seven decades ago, the b-lactam antibiotics have
been preferred antibiotics due to their high efficacy, affordability
and low toxicity. Presently, b-lactams constitute .60% of anti-
biotics marketed worldwide.2,3 b-Lactamases are the most
important type of resistance to b-lactam antibiotics and catalyse
the hydrolysis of the b-lactam ring, rendering the antibiotics
inactive.4,5 b-Lactamases can be classified into those that utilize
an active site serine residue [serine-b-lactamases (SBLs)] or zinc
ions [metallo-b-lactamases (MBLs)] in promoting the hydrolytic
step in catalysis.6,7 From a clinical perspective, MBLs pose an

increasing public health risk; they catalyse the hydrolysis of virtu-
ally all known b-lactam antibiotics except monobactams and are
not inactivated by SBL inhibitors, resulting in a limited range of
treatment options.8 – 11

The New Delhi MBL (NDM)-1 is a clinically significant MBL en-
coded by the blaNDM-1 gene. NDM-1 was initially identified in
2008 in a Klebsiella pneumonia isolate.12 Since then, blaNDM-1

genes have been identified in various pathogenic bacteria, includ-
ing Escherichia coli, Acinetobacter baumannii and Pseudomonas
aeruginosa.13 – 15 The rapid global dissemination of NDM-1 and
its spread to unrelated bacterial isolates via mobile genetic ele-
ments has the potential to substantially undermine b-lactam-
based antibacterial chemotherapy. At the onset of this work,
eight NDM variants had been described, differing from each other
by one or two residues (Figure S1, available as Supplementary data
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at JAC Online). NDM-2, which has been widely reported in the
Middle East, has the P28A substitution, which occurs in the pre-
dicted N-terminal periplasmic signal peptide.16,17 NDM-3 (D95N),
NDM-4 (M154L) and NDM-6 (A233V) have a single substitution pre-
sent relatively far from the zinc binding site;18–21 NDM-5, -7 and -8
are double-mutants containing the M154L substitution as well as
the V88L, D130N and D130G substitutions, respectively (Figure 1
and Table S1).22–24Genetic characterization of the NDM-1 mutants
has yielded information on other resistance genes that
co-harbour with blaNDM as well as mobile genetic elements
responsible for the spread of resistance.25 – 27 The biochemical
characterization of NDM variants is interesting as it may provide
insights into the catalytic properties of variants, the inhibition of
which is desirable in the development of MBL inhibitors with a suf-
ficient breadth of selectivity for clinical use.19,24

Substitutions in MBLs can cause changes in stability and/or
activity; in some cases the latter are proposed to confer selective
advantage during evolution of drug resistance.28,29 Previous bio-
chemical analyses on NDM-3, -4 and -8 have reported different
results, e.g. NDM-419 is reported to have increased hydrolytic
activity towards carbapenems and some cephalosporins whilst
NDM-321 and -824 are reported to have similar or lower kcat/KM

values for various b-lactams. To address the question of whether
the NDM variants have different biochemical properties, we car-
ried out comparative studies on the substrate selectivity and
thermal stabilities of seven NDM variants.

Materials and methods

Cloning and MIC analysis of NDM variants in E. coli
Genes encoding the NDM variants NDM-1, -2, -4, -5, -6 and -7 were amp-
lified using DNA templates prepared from NDM-producing clinical isolates
or E. coli transconjugants.22 – 24 Both full coding sequences and the NDM
gene with the native ISAb125 promoter22 were amplified and cloned in
the pCR-Blunt II TOPO vector (Invitrogen, Paisley, UK) and transformed

in E. coli TOP10. The susceptibility of the transformants containing
pCR2.1 NDM and pCR2.1 NDM P+ plasmids to ampicillin, cefalotin, cefoxi-
tin, ceftazidime, ertapenem, imipenem, meropenem and doripenem was
determined using the Etest method (bioMérieux, Basingstoke, UK) on
Mueller–Hinton agar.

Mutagenesis
The reported pTriEx-based pOPIN-F NDM-1 plasmid, encoding the DN42
NDM-1 construct (amino acids G42-R270) and a cleavable N-terminal
His6-tag, was used as a template for site-directed mutagenesis.30 The
truncated NDM-1 construct, lacking the NDM-1 periplasmic targeting
sequence, was used due to its relative stability and activity.31 Primers for
site-directed mutagenesis (Table S2) were from Sigma-Aldrich (Poole, UK).
Site-directed mutagenesis PCR was carried out employing the Stratagene
QuikChangew method. A plasmid encoding for the NDM-4 variant (with the
M154L substitution) was generated, and then used as a template for the
production of the NDM-5, -7 and -8 variants.

Protein production
The resultant plasmids were transformed into E. coli BL21 (DE3) pLysS cells
for protein production; cells were cultured in modified auto-induction
media.32,33 Protein purification was carried out by affinity chromatography
and gel filtration as reported.34 The N-terminal His6-tag was cleaved
using recombinant human Rhinovirus 3C Protease, and the untagged
protein further purified by affinity chromatography. The purity of the
resulting proteins was ascertained by SDS–PAGE (Figure S2); purified pro-
teins were concentrated by centrifugal ultrafiltration to give a protein con-
centration of 15–25 mg/mL as determined by absorbance measurements
at 280 nm using calculated extinction coefficients.

MS
For LC-MS a Waters Micromass LCT PremierTM time-of-flight mass
spectrometer and electrospray ionization were used. Waters MassLynxTM

version 4.1 was used for data analysis (see Section 3 of the Supplementary
data). The resulting combined positive ion series was deconvoluted using a
maximum entropy algorithm (Figure S3). The observed masses were veri-
fied by comparison with the predicted masses obtained using the ExPasy
ProtParam tool (Table S3).

Steady-state kinetics
The hydrolysis of various b-lactam substrates was monitored at 258C in
50 mM HEPES buffer (pH 7.2) supplemented with 1 mg/mL BSA, 1 mM
ZnSO4 and 0.01% Triton X-100.35 For ampicillin hydrolysis, 50 mM MOPS
buffer (pH 7.2) was used due to the high background hydrolysis of this
penicillin in HEPES buffer.36 Analyses were carried out in triplicate
(n≥3); the absorbance values were read using a BMG Labtech
Pherastar FS plate reader. Extinction coefficients were determined by
plotting the absorbance units against increasing concentrations of the
substrates or product (Table S4). Kinetic constants (KM and kcat) were
obtained by determining the initial rate of the reaction at different sub-
strate concentrations. The concentration-dependence of the initial rate
was fitted and analysed using GraphPad Prismw 5.01 software to gener-
ate Michaelis–Menten and substrate inhibition curves (Figure S4).

Differential scanning fluorimetry (DSF)
For DSF assays a MiniOpticonTM Real-Time PCR Detection System (Bio-Rad)
was used. SYPROw Orange Protein Gel Stain (Life Technologies Corporation)
was used to analyse non-specific binding to hydrophobic residues; the
increase in fluorescence was monitored as a function of temperature.37

A233V

D95N

M154L

D130N/G

V88L
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H250

C208 D124

H122

H189

C

Figure 1. View from an NDM-1 crystal structure with hydrolysed
methicillin (PDB code: 4EY2) showing the positions of the identified
substitutions relative to the active site: NDM-3, D95N; NDM-4, M154L;
NDM-5, V88L and M154L; NDM-6, A233V; NDM-7, D130N and M154L;
and NDM-8, D130G and M154L. Pink spheres indicate the two zinc ions.
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Fluorescence readings (492 nm excitation and 610 nm emission) were
taken in triplicate between 258C and 808C, increasing the temperature
linearly in steps of 18C/min (see Section 5 of the Supplementary data
for details). Melting curves for each triplicate dataset were exported into
GraphPad Prismw 5.01 software, and a Boltzmann curve was fitted
to determine melting temperature values (Figure S5).

Circular dichroism (CD)
CD measurements were carried out using a Chirascan CD spectrometer
(Applied Photophysics model) equipped with a Peltier temperature-
controlled cell holder. Experiments were performed at 238C in a 0.1 cm path-
length cuvette using 0.2 mg/mL protein in 10 mM sodium phosphate buffer
(pH 8.0) supplemented with 50 mM ZnSO4. Data were recorded from 260 to
185 nm at 0.5 nm intervals; each data point was averaged for 1 s. Spectra
were baseline corrected and smoothed using the Savitzky–Golay filter. Data
recorded in the 190–240 nm range were analysed using DichroWeb;38 the
CDSSTR deconvolution method was used to estimate secondary structural
content using reference set 4.39 To minimize the effects of differences in pro-
tein concentration, the data were normalized at 207 nm.40

Thermal denaturation profiles were monitored by CD at 222 nm, with
data recorded every 18C from 10 to 908C at a ramp-rate of 18C/min.
Normalized data were fitted to a Boltzmann sigmoidal curve in
GraphPad Prismw 5.01 software to determine melting temperature values.
Spearman’s rank correlation coefficient was used to compare the data
from DSF with the temperature-dependent CD results to determine their
correlation (Table S5). The correlation analysis was carried out using
StatsDirect (http://www.statsdirect.com/).

Results

Comparative analysis of the b-lactam susceptibility of
the NDM variants in E. coli

Due to the variations in the reported MIC values for NDM
variants from different studies19,21 – 24 (Table S6), we tested the

antibiotic susceptibility of the reported NDM variants using the
same expression system. Differences in the effects of the NDM
variants on the susceptibility of E. coli to a range of b-lactams
were assessed in E. coli TOP10 cells that were transformed with
plasmids containing NDM genes cloned with and without the
native promoter. Consistent with previous reports,22,23 expression
from the native (ISAba125) promoter resulted in .4-fold higher
MICs of ertapenem, imipenem and doripenem in E. coli TOP10
(Table 1). Almost all of the transformants were resistant to ampi-
cillin, cefalotin, cefoxitin and ceftazidime (MIC .256 mg/L) with
both native and T7 promoters. However, differences in the suscep-
tibility of the variants to carbapenems were clearly observed when
the genes were expressed under the native promoter (Table 1 and
Figure S6). Constructs containing NDM-4, -5 and -7 displayed
.4-fold higher MIC values of imipenem compared with NDM-1,
-2 and -6 (for expression from the native promoter), and the
values were also higher than those reported for NDM-3 and -8
(transformed in E. coli DH5a).21,24 We therefore investigated
whether the observed differences reflect changes in the biochem-
ical properties of the variants by studies on the recombinant
enzymes.

NDM variants present similar structural properties

To investigate the biochemical effects of clinically reported NDM
variants, we generated seven NDM variants by site-directed
mutagenesis. A three-step chromatography-based purification
procedure yielded the active NDM variants with .90% purity (by
SDS–PAGE). All the variants were expressed at similar levels in the
growth conditions used. Mass spectrometric analyses by LC-MS
verified the masses of the recombinant proteins, which were all
in close agreement with the calculated values (Table S3). The sec-
ondary structure of the variants was then investigated using CD

Table 1. Susceptibility of E. coli transformed with plasmids containing NDM variants

Host strain Plasmida

MIC determined by Etest (mg/L)

AMP CEF FOX CAZ ERT IMP DOR MEM

E. coli TOP10 pCR2.1 4 0.008 0.008 0.125 0.008 0.25 0.032 0.047
E. coli TOP10 pCR2.1 NDM-1 .256 .256 24 .256 0.38 0.38 0.25 0.38
E. coli TOP10 pCR2.1 NDM-1 P+ .256 .256 .256 .256 8 8 8 4
E. coli TOP10 pCR2.1 NDM-2 .256 .256 .256 .256 2 0.38 0.38 0.38
E. coli TOP10 pCR2.1 NDM-2 P+ .256 .256 .256 .256 16 8 8 4
E. coli DH5a pHSG398/NDM-3b 256 NA 32 256 NA 0.25 0.125 0.25
E. coli TOP10 pCR2.1 NDM-4 .256 .256 .256 .256 2 0.25 0.032 0.38
E. coli TOP10 pCR2.1 NDM-4 P+ .256 .256 .256 .256 16 .32 12 8
E. coli TOP10 pCR2.1 NDM-5 .256 .256 .256 .256 2 0.25 0.5 0.38
E. coli TOP10 pCR2.1 NDM-5 P+ .256 .256 .256 .256 .32 .32 12 .32
E. coli TOP10 pCR2.1 NDM-6 .256 .256 .256 .256 1 0.38 0.125 0.38
E. coli TOP10 pCR2.1 NDM-6 P+ .256 .256 .256 .256 .32 8 1.5 .32
E. coli TOP10 pCR2.1 NDM-7 .256 .256 .256 32 2 2 0.5 1
E. coli TOP10 pCR2.1 NDM-7 P+ .256 .256 .256 .256 .32 .32 8 .32
E. coli DH5a pHSG398/NDM-8b 256 NA 64 256 NA 0.5 NA 0.25

AMP, ampicillin; CEF, cefalotin; FOX, cefoxitin; CAZ, ceftazidime; ERT, ertapenem; IMP, imipenem; DOR, doripenem; MEM, meropenem; NA, not available.
aP+ indicates plasmids containing the native ISAba125 promoter.
bData from Tada et al.21,24 MICs determined by broth microtitre dilution.
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spectroscopy at 238C. The CD spectra for all tested variants were
characteristic of well-folded, structured proteins;41 the b-sheet
and a-helical content from the deconvolution were in agreement
with the crystallographically observed structural features of
NDM-1.17,30 Despite the observation of slight differences in the
190 nm region, the CD spectra and predicted secondary structure
content of the wild-type and the tested NDM variants were simi-
lar, suggesting that the substitutions do not substantially affect
the overall folds of the NDM variants (Figure 2a).

Investigation of kinetic parameters of NDM variants

We then investigated the roles of the clinically observed substitu-
tions in NDM catalysis. Steady-state kinetic parameters were
determined for the variants against a representative set of carba-
penem, penicillin and cephalosporinb-lactam antibiotic substrates.

The enzymes hydrolysed all the tested carbapenems, as do
other MBLs (Table 2). There was no evidence for substantial differ-
ences in catalytic efficiencies of the variants with carbapenems as
reflected in kcat/KM values, with the largest differences observed
being in the 5-fold range, i.e. NDM-6 has �5-fold higher kcat/KM

values compared with NDM-1 and -8, respectively, for doripenem.
Somewhat larger differences in the separate kcat and KM values
were observed (e.g. NDM-8 has an 11-fold decrease in kcat com-
pared with NDM-1 for imipenem). Our results are therefore not
consistent with a recent study21 reporting consistently lower
kcat/KM values for NDM-3 compared with NDM-1 with a similar
set of substrates.

The tested penicillin substrate (ampicillin) was readily hydro-
lysed by all of the NDM variants. However, for all of the variants
the kcat/KM values were lower than for NDM-1. Except for NDM-8
(the least active variant with ampicillin), the apparently elevated
KM values are, in part, compensated for by increased kcat values.

There were evident differences in the kinetic parameters for the
tested cephalosporins. Although the differences in kcat/KM values
for the cephalosporins were at most 3 –4-fold, there were
substantial differences in the separate kcat and KM values,
e.g. NDM-8 shows an 8-fold lower kcat for cefalotin than NDM-1.
Indeed, the doubly substituted variants NDM-5 (V88L, M154L),
NDM-7 (D130N, M154L) and NDM-8 (D130G, M154L) showed con-
sistently lower kcat values for the tested cephalosporins except
for nitrocefin. There were also differences in the KM values of the

NDM variants with the tested cephalosporins, with the variants
having low KM values for nitrocefin and cefalotin. Unlike other
variants, NDM-8 showed a distinctly lower KM for ceftazidime
(�7-fold lower than NDM-4 and -6). Cefoxitin and ceftazidime
were relatively poorly hydrolysed by NDM-1 and all variants,
with kcat/KM values being ,1 s21 mM21 for all of the variants, con-
sistent with work on ceftazidime and cefotaxime resistance by
NDM-1-producing E. coli cells.42

Notably, apparent substrate inhibition was observed for nitro-
cefin with NDM-4, -5, -7 and -8 (Ki values of 102+32, 139+28,
79+18 and 146+47 mM, respectively). Nitrocefin substrate inhib-
ition was not observed for NDM-1 or the other tested NDM var-
iants, or the other tested cephalosporins.

NDM variants display differences in thermal stability

Although, we did not observe substantial differences in the kinetic
parameters for carbapenem hydrolysis by the NDM variants, the
positions of some of the substitutions in the MBL fold (Figure 1)
suggested that they may affect the biophysical properties of the
variants. We therefore investigated the effects of the substitutions
on the stability of the variants using temperature-dependent CD.
In contrast to (most of) the kinetic analyses, the CD results
revealed clear differences in the thermal stabilities of the NDM
variants (Figure 2b). In general, the NDM variants containing
two substitutions were found to be more stable to thermal
denaturation compared with the single-substituted variants
(Figure 2c), suggesting that ‘second substitutions’ may be
involved in stabilization. The doubly substituted NDM-8 (D130G,
M154L) had the highest melting temperature at 728C while both
NDM-5 (V88L, M154L) and NDM-7 (D130N, M154L) had a melting
temperature of about 658C compared with NDM-1, which had a
melting temperature of 608C (Figure 2c). Singly substituted
NDM-6 (A233V) was the least stable variant with a melting tem-
perature of 558C, while NDM-3 (D95N) and NDM-4 (M154L) had
melting temperature values of 63 and 618C, respectively. These
results were corroborated by DSF melting temperature-shift ana-
lysis. According to the DSF analyses (Figure S5), the NDM variants
exhibited higher melting temperatures in HEPES buffer. To investi-
gate the stabilizing effect of Zn (II) ions, a comparison was carried
out in the absence or presence of 50 mM ZnCl2. In both buffers,
addition of zinc ions stabilized the NDM variants with the
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exception of NDM-5. The relative stabilizing effect of HEPES buffer
was less apparent in the presence of zinc ions, as similar melting
temperature values were recorded in both buffers in the presence
of 50 mM ZnCl2. Spearman’s rank correlation coefficient analysis
(r¼0.76, P,0.05), indicates a strong positive correlation between
the DSF and CD data (Table S5).

Discussion
Selective pressure caused by increased use of carbapenems, spe-
cifically imipenem, has been suggested to drive evolution of MBLs,

including variants of the IMP and VIM MBLs.43 Considering both
our work and that of others,19,21,24 as well as the differences
arising from the use of different procedures, the small differences
(3–5-fold) observed in reported kcat/KM values for NDM variants
with carbapenem substrates may be within error. The variations
observed between our work and literature values and between
different literature studies19,21,24 (Table S7) could reflect differ-
ences in enzyme preparation procedures and assay conditions,
which may influence purity, protein folding and metal content.
In contrast to the proposals of others,19 our current view is
that, whilst the observed substitutions likely do have effects on
the kinetic parameters with some substrates, there is as yet no

Table 2. Kinetic parameters of seven NDM variants with representative b-lactam antibiotics

Antibiotic NDM-1 NDM-3 NDM-4 NDM-5 NDM-6 NDM-7 NDM-8

Carbapenems
imipenem

KM (mM) 78+4 82+12 62+8 148+16 62+6 56+6 20+3
kcat (s21) 600 757 252 332 355 127 54
kcat/KM (s21 mM21) 7.6 9.2 4.1 2.2 5.8 2.3 2.9

meropenem
KM (mM) 57+9 58+11 119+9 99+4 49+4 45+5 54+5
kcat (s21) 301 238 583 413 362 194 141.7
kcat/KM (s21 mM21) 5.2 4.2 4.9 4.1 7.4 4.3 2.6

doripenem
KM (mM) 119+17 83+15 125+10 126+11 119+18 64+11 151+9
kcat (s21) 226 170 743 570 1032 348 267.4
kcat/KM (s21 mM21) 1.9 2.0 6.0 4.5 8.6 5.4 1.7

Penicillins
ampicillin

KM (mM) 110+23 258+54 305+48 156+20 455+69 207+55 229+45
kcat (s21) 447 724 900 408 1375 477 273
kcat/KM (s21 mM21) 4.1 2.8 2.9 2.6 3.0 2.3 1.2

Cephalosporins
cefalotin

KM (mM) 29+6 13+3 11+2 15+3 10+2 11+3 5+1
kcat (s21) 75 53 45 25 63 18 9
kcat/KM (s21 mM21) 2.6 4.6 4.1 1.6 6.1 1.5 1.9

cefoxitin
KM (mM) 43+6 50+6 63+7 27+5 107+9 23+3 16+3
kcat (s21) 10 6 14 4 18 4 3
kcat/KM (s21 mM21) 0.23 0.13 0.22 0.14 0.17 0.15 0.18

ceftazidime
KM (mM) 100+19 115+15 133+18 86+11 144+25 79+10 19+5
kcat (s21) 24 23 28 15 29 16 5
kcat/KM (s21 mM21) 0.23 0.20 0.21 0.18 0.20 0.20 0.26

nitrocefin
KM (mM) 11+2 4+1 4+1 6+1 8+2 5+1 4+1
Ki (mM) NR NR 102+32 139+28 NR 79+18 146+47
kcat (s21) 65 30 38 33 49 15 44
kcat/KM (s21 mM21) 5.9 7.5 6.3 5.6 6.1 3.1 10.9

NR, not reported.
Measurements were carried out in triplicate (n≥3) using a single batch of enzyme; KM values are the means of three independent measurements+
standard deviation. Standard deviation values for kcat did not exceed 10%.
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compelling evidence that the studied variants have evolved
to directly increase kinetic parameters for carbapenem
hydrolysis.

Despite this conclusion, our results do reveal kinetic differences
between the NDM variants, notably in that some, but not all,
display substrate inhibition kinetics with nitrocefin. Nitrocefin
substrate inhibition has been reported for IMP MBL variants with
substitutions relatively remote from the active site (S121G and
F218Y).44 In the case of the NDM variants, nitrocefin substrate
inhibition was only observed in variants with the M154L sub-
stitution (NDM-4, -5, -7 and -8), suggesting that it results from a
specific interaction. Although nitrocefin is not used clinically,
these results do reveal the potential for clinically observed NDM
variants to have different kinetic properties with different
b-lactams. One possibility is that the M154L substitution alters
interactions between residue Met-154 and the nitrocefin
dinitroaryl-substituent slowing catalysis (Figure S7). These obser-
vations may be useful in work on the development of MBL inhibi-
tors and b-lactam antibiotics with reduced susceptibility to MBL
catalysis.

The substitutions present in NDM variants did not alter the
overall structural composition of the enzymes as indicated by
their CD spectra. However, the variants showed differences in
their stabilities with respect to thermal denaturation as deter-
mined by CD and DSF analyses, with .108C differences in melting
temperature values being observed in some cases. Notably, the
variants with higher melting temperature values, i.e. doubly sub-
stituted NDM-5, -7 and -8, were less catalytically active in com-
parison with the variants with lower melting temperature values
such as NDM-6. The detailed structural reasons for the observed
differences in stability and their potential relationship to differ-
ences in catalytic properties are as yet not apparent. However,
from a practical perspective, it is important that the potential dif-
ferences in thermodynamic stability of the NDM variants, and pos-
sibly other MBLs, are taken into account in future kinetic studies of
NDM variants, including in inhibition studies.

According to the antibiotic susceptibility profiles of the NDM
variants, the more stable variants, NDM-5 and -7, did show an
increase in MIC values of selected carbapenems in comparison
with the less stable variants. However, the biological relevance,
if any, of the different stabilities of NDM variants is as yet unclear.
It should be noted that the NDM enzymes are mostly found in
Enterobacteriaceae that normally live (at least in humans) at
�378C, which is below the melting temperature values for all
the studied variants (≥558C). Other than non-functionally related
evolutionary drift (which cannot be entirely excluded), it is pos-
sible that the differences in thermodynamic stabilities reflect
environmental pressures (including temperature variations) on
bacteria harbouring specific NDM variants. In the case of the
SBLs, it is proposed that, at least in some cases, the evolution of
improved catalytic efficiency with ‘new’ substrates can come at a
cost with respect to decreased thermodynamic stability.45,46

However, as yet, there is no evidence for such a relationship
with the known NDM variants. It is also possible that the relative
differences in stability reflect longer lifetimes in cells, resulting in
elevated MIC values. This could be due to increased thermo-
dynamic stability, a decreased propensity to aggregate under in
vivo conditions and/or increased stability with respect to
protease-mediated degradation, which can, but does not neces-
sarily, correlate with thermodynamic stability.47
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