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Abstract. We discuss the problem of automatic four-part harmonisa-
tion: given a soprano part, add alto, tenor and bass in accordance with
the compositional practices of a particular musical era. In particular, we
focus on the development of representational and modelling techniques,
within the framework of multiple viewpoint systems and Prediction by
Partial Match (PPM), for the creation of statistical models of four-part
harmony by machine learning. Our ultimate goal is to create better mod-
els, according to the information theoretic measure cross-entropy, than
have yet been produced. We use multiple viewpoint systems because of
their ability to represent both surface and underlying musical structure,
and because they have already been successfully applied to melodic mod-
elling. To allow for the complexities of harmony, however, the framework
must be extended; for example, we begin by predicting complete chords,
and then extend the framework to allow part by part prediction. As
the framework is extended and generalised, the viewpoints become more
complex. This article discusses matters related to viewpoint domains
(alphabets), such as their size and consequent effect on run time; and
presents methods for their reliable construction. We also present an em-
pirical analysis of the time complexity of our computer implementation.

1 Introduction

We are attempting to solve by computational means the problem of automatic
four-part harmonisation: given a soprano part, add alto, tenor and bass in ac-
cordance with the compositional practices of a particular musical era. Multiple
viewpoint systems were introduced by Conklin and Cleary (1988), who used them
to hand-craft some simple statistical models of polyphony. Their application to
melody (Conklin, 1990; Conklin and Witten, 1995) was more successful, culmi-
nating in the work of Pearce and Wiggins (2006, 2012), who demonstrated that
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statistical models such as these can successfully model listeners’ expectations.
Conklin (2002) used viewpoints (although not multiple viewpoint systems per se)
to discover repeatedly occurring harmonic patterns in a corpus of music. In this
article we are concerned with the extension of this framework to the harmonic
domain, given its promising melodic results and obvious potential in the field of
harmony. In particular, we are focusing on the development of representational
and modelling techniques, within the framework of multiple viewpoint systems
and Prediction by Partial Match (PPM, Cleary and Witten, 1984), for the cre-
ation of statistical models of four-part harmony by machine learning. Our aim
is to create better statistical models of harmony, according to the information
theoretic measure cross-entropy (see §3.7), than have so far been produced. A
primitive viewpoint describes a single feature of a sequence of musical objects;
in this case, the objects are concurrently sounding notes. An example of a view-
point employed in the modelling of music is Pitch. In this and earlier related
research (Conklin and Witten, 1995; Pearce and Wiggins, 2004), the set of valid
elements (or symbols, or values) for this viewpoint, its domain, comprises pitch
values represented as MIDI numbers. This article addresses three fundamental
issues relating to domains, illustrating the fact that extending the multiple view-
point framework to harmony is non-trivial. One issue is the size of the Pitch

domain; to predict all possible SATB note combinations, the domain is so large
that prediction is excessively slow (we carry out a time complexity analysis in
§9). We discuss principled ways of reducing the domain size, such that reason-
able running times are made possible. Another issue is whether or not a domain
can be fixed at the beginning of the prediction process, such that it can be used
unchanged at all positions in a musical sequence. We explain why this is not,
in general, possible. Finally, we see that the construction of domains for linked
viewpoints (viewpoints formed by combining two or more primitive viewpoints)
is far from straightforward. We show how to reliably construct linked viewpoint
domains of various complexities, and explain why this is important.

§3 provides a brief description of multiple viewpoint systems and associated
modelling techniques; §4 gives a very short description of our corpus and test
data; §5 introduces domain-related issues by considering melodic viewpoint do-
mains; and §§6–8 deal with the viewpoint domains of versions 1, 2 and 3 of our
framework for modelling harmony respectively (having first introduced these
versions). A procedure for the construction of complex viewpoint domains is
outlined in the latter section, along with a detailed example. This procedure is
formally presented as algorithms in Appendix A, which includes a line-by-line
description following the same detailed example. There is an analysis of the time
complexity of our computer model in §9, and in §10 we examine four hymn tune
harmonisations automatically generated by our best model to date. Finally, we
state our conclusions and indicate the direction of our future work in §11; but
first, we review the relevant literature.
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2 Previous Approaches to the Modelling of Harmony

There have been many attempts to model musical composition, or aspects of it,
using AI techniques. Modelling four-part harmony is difficult: even if we were
to encode an entire treatise on harmony into a computer system, the harmony
produced by that system is unlikely to match that of an expert musician, who
has the advantage of having actually experienced music; that is, music always
goes beyond the rules that an analyst can synthesise from it. What we would
ideally like to do is to find a way to model harmony such that the system is
capable of producing consistently good harmony in any specified style. Previous
approaches to the modelling of harmony are briefly outlined below.

Constraint-based Methods Ebcioğlu (1988) describes CHORAL, a rule-based ex-
pert system (using first-order logic), for the four-part harmonisation of chorale
melodies in the style of J. S. Bach. The predicates are grouped in such a way
that the music is observed frommultiple viewpoints (the multiple viewpoints here
are different from those used by Conklin, 1990, not least because no statistical
modelling is involved; although they do appear to have been the original inspira-
tion). Pachet and Roy (1998) focus on the exploitation of part-whole relations;
for example, the relationship between note and chord. They use object-oriented
techniques to build a structured representation of music, called the MusES sys-
tem (Pachet et al., 1996), with which knowledge of harmony can be expressed.

Evolutionary Methods Phon-Amnuaisuk et al. (1999) use a genetic algorithm to
generate homophonic four-part harmony for given melodies. Phon-Amnuaisuk
and Wiggins (1999) compare the performance of this system with that of a
rule-based system into which the same amount of musical knowledge has been
encoded. An objective evaluation of the harmonisations clearly demonstrates the
superiority of the rule-based approach, which is thought to be due to additional
implicit knowledge in the form of a structured search mechanism.

Connectionist Methods Hild et al. (1992) have created a neural network system
called HARMONET, which is capable of producing four-part harmonisations of
chorale melodies in the style of J. S. Bach. A key feature of the architecture of
this system is that the overall harmonisation task is divided into a number of
subtasks.

Statistical Modelling Clement (1998) uses first-order N-gram models (see §3.3) to
demonstrate that two distinct (though artificial) styles of harmonic progression
can be learned. Ponsford et al. (1999) improve on this by using N-grams of
up to third-order to create statistical models of underlying harmonic movement
from a corpus of seventeenth century French sarabandes. Biyikoǧlu (2003) uses
N-gram models to study harmonic syntax and the relationship between melody
and harmony. Allan (2002) suggests that melody can be properly taken into
consideration in statistical models by using N-gram models in which a context
of melody notes is added to the historical harmonic context.
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Assayag et al. (1999) describe a dictionary-based approach to the machine
learning of music. The models they construct are similar to N-gram models in
many respects. To facilitate the modelling of polyphony, music is transformed
into a sequence of discrete events using the full expansion technique. Special
symbols indicate notes which continue to sound from event to event.

Allan (2002) describes a harmonisation model which uses hidden Markov
Models (HMMs). Following Hild et al. (1992), the overall harmonisation task
is divided into three subtasks (Allan and Williams, 2005, merge the first two
subtasks in later work). The Viterbi algorithm (Viterbi, 1967) can be used to
find the globally most probable sequence of hidden states from an observed event
sequence. The model was evaluated by calculating cross-entropies (see §3.7).

Raphael and Stoddard (2003, p. 181) propose a Bayesian network model
for harmonic analysis which “regards the data as a collection of voices where
the evolution of each voice is conditionally independent of the others, given the
harmonic state.”

3 The Multiple Viewpoint Framework

3.1 Motivation for the Use of Multiple Viewpoints to Model
Harmony

Ebcioğlu (1988) was responsible for one of the more successful efforts at mod-
elling harmony, producing an expert system which incorporated explicit hard-
coded rules to encapsulate musical knowledge. There are problems associated
with this sort of rule-based of approach, however. Firstly, for any given style of
harmonisation, there are many general rules with lots of exceptions. Formulating
a theory of a style by creating a model in this way, therefore, requires expertise,
is extremely time consuming, and results in a theory which is likely to be incom-
plete. Secondly, to formulate theories of different harmonic styles (e.g., those of
Tallis, Bach and Mozart), it is necessary to infer different sets of general rules
and exceptions, which multiplies the time expended by the expert.

Machine learning has the potential to circumvent the above problems; the
computer learns for itself how to harmonise in a particular style by constructing
a model of harmony from a corpus of stylistically homogeneous music. Once
the machine learning program has been written, and is demonstrably working
satisfactorily, it should be able to model the style of harmony of any corpus
presented to it. Providing that the resulting model is able to consistently generate
harmonisations which are indistinguishable (by an expert; Pearce and Wiggins,
2007) in style from those in the corpus, then it is a theory of that style, containing
structure equivalent to rules and exceptions.

Later work by Allan and Williams (2005) emphatically demonstrated the
potential of a statistical machine learning approach: they used HMMs to create
a model of four-part harmony from a corpus of chorale melodies harmonised by
J. S. Bach. Harmonisations generated by their model convey a definite flavour
of Bach’s style, and some of them are very good; but Allan and Williams (2005)
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themselves recognise that better modelling, possibly within the framework of
Conditional Random Fields (CRFs, Lafferty et al., 2001), could improve their
harmonisations. They say that whereas their system represents chords simply
as sets of intervals, the CRF framework would allow the inclusion of additional
features such as position in bar and key signature.

An established means of representing music which, when combined with ma-
chine learning and modelling techniques, is able to incorporate such features (and
many others beside), is a framework calledmultiple viewpoint systems, which was
formulated in seminal work by Conklin (1990) and Conklin and Witten (1995).
This not only directly represents basic musical attributes like duration and pitch,
but also derived attributes such as intervals. The use of these derived attributes
necessarily introduces a certain amount of low-level musical knowledge, which
researchers such as Dixon and Cambouropoulos (2000) have found to be bene-
ficial. Pearce (2005) has successfully used this framework to produce cognitive
models of melodic expectancy, which in turn has led to models being developed
to predict phrase segmentation (Pearce et al., 2008, 2010). On the basis of its
past success in the musical sphere, we consider the multiple viewpoint framework
to be the ideal representation scheme for the modelling of harmony.

Having motivated the representation, we now move on to the modelling.
Prediction by Partial Match (PPM, Cleary and Witten, 1984) uses an escape
method to create viewpoint prediction probability distributions from N-gram
models of different order, starting with the highest order and backing off to
lower orders (see §3.3 for more details). This is where viewpoint domains come
in: if a distribution does not contain all possible predictions by the time the 0th-
order model has been incorporated, it is completed by backing off to a uniform
distribution comprising all of the members of the relevant domain.

We consider that the flexibility which the multiple viewpoint framework af-
fords, both in terms of the number of viewpoints (and their combination) and
the ability to utilise different context sizes, gives it an advantage over methods
using a single or very few “viewpoints,” and/or methods using a single context
size. HARMONET (Hild et al., 1992) effectively uses four “viewpoints” linked
together in a predetermined way to form three different context sizes (in the
advanced system). Similarly, the Bayesian network approach described in §2
(Raphael and Stoddard, 2003) uses a very limited number of “viewpoints,” and
the models are no larger than 2nd-order. The multiple viewpoint framework, on
the other hand, allows the use of a viewpoint selection algorithm to optimise the
model by choosing which of many viewpoints should be in the system, and how
they should be linked (see §3.6).

Having motivated the use of the multiple viewpoint framework, we first de-
scribe multiple viewpoint systems as applied to the modelling of melody.

3.2 Viewpoint Types

A type τ is an attribute or property of an event in a sequence (here a note in
a melodic sequence). Basic types are the fundamental attributes of a note that
are predicted or given. One that is predicted is Pitch, which is represented as
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MIDI numbers in the current implementation; for example, the note G4 has a
Pitch value of 67. Another is Duration, which is represented using units of one
ninety-sixth of a semibreve (whole note); for example, a crotchet (quarter note)
has a Duration value of 24. Some basic types that are given are: the start-time
of a note (Onset); the number of flats or sharps in the key signature (KeySig),
where for example 3 flats has a KeySig value of −3, and 1 sharp a value of 1;
whether the melody is in a major or a minor key (Mode), where major has a
Mode value of 0, and minor a value of 9; and whether a note is at the beginning
or end of a phrase, or otherwise (Phrase), which has possible values 1 (first note
in phrase), −1 (last note in phrase) and 0 (otherwise). [τ ] denotes the set of
valid values, symbols or elements for a viewpoint type, which in the latter case
is {−1, 0, 1}; this is called the syntactic domain, hereafter simply referred to as
the domain. There are several more basic types; but if we assume that this is
the full set of basic types, then the set of representable events (notes in the case
of melody), called the event space, is

[Onset]× [Duration]× [Pitch]× [KeySig]× [Mode]× [Phrase].

Derived types such as sequential pitch interval (Interval) and sequential du-
ration ratio (DurRatio) are derived from, and can therefore predict, basic types
(in this case Pitch and Duration respectively). Interval is the difference in
pitch between two consecutive notes, measured in semitones (ascending inter-
vals have positive values); and DurRatio is the ratio of the duration of a note
to the duration of the immediately preceding note. Derived types are not neces-
sarily defined at all positions in a sequence, with both Interval and DurRatio

being undefined at the first note. An example of a viewpoint type derived from
given attributes is the tonic of the relevant major or minor scale (Tonic), which
is derived from KeySig and Mode; for example, when KeySig is 1 and Mode is 0
(major key with 1 sharp), Tonic is G. This is used in the determination of the
pitch interval from the tonic (ScaleDegree, measured in semitones), which is
primarily derived from, and can therefore predict, Pitch.

Threaded types are defined only at certain positions in a sequence, determined
by Boolean test viewpoints such as FirstInBar; for example, ScaleDegree ⊖
FirstInBar has a defined ScaleDegree value only for the first note in a bar.
Threaded types are able to model longer range dependencies. Basic, derived, and
in this research threaded types are collectively known as primitive types. Note
that Conklin and Witten (1995) included a timescale with each threaded type,
which, as Pearce (2005) pointed out, effectively meant that it was a linked type
(see below). The timescale was required to predict attributes which are assumed
to be given in this research.

A linked type, or product type, is the conjunction of two or more primitive
viewpoints; for example, DurRatio ⊗ Interval. If any of the constituent view-
points are undefined, then the linked viewpoint is also undefined. The type set of
a type τ is denoted by 〈τ〉. This set comprises the basic types that a viewpoint
is able to predict (i.e., the basic types from which it is derived); therefore

〈DurRatio ⊗ Interval〉 = {Duration, Pitch}.
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Basic: Pitch 67 67 71 69 67 69 69 71
Duration 48 48 48 48 48 48 48 48

Derived: Interval ⊥ 0 4 −2 −2 2 0 2
ScaleDegree 0 0 4 2 0 2 2 4

Threaded: ScaleDegree ⊖ FiB ⊥ 0 ⊥ ⊥ ⊥ 2 ⊥ ⊥
Linked: DurRatio ⊗ Interval ⊥ 〈1, 0〉 〈1, 4〉 〈1,−2〉 〈1,−2〉 〈1, 2〉 〈1, 0〉 〈1, 2〉

Fig. 1. First phrase of hymn tune Luther’s Hymn (Nun freut euch) adapted from
VaughanWilliams (1933), with sequences of viewpoint elements underneath. Viewpoint
FirstInBar has been abbreviated to FiB. The symbol ⊥ means that a viewpoint is
undefined.

Figure 1 shows the first phrase of hymn tune Luther’s Hymn (Nun freut euch)
adapted from Vaughan Williams (1933), with example sequences of viewpoint
elements underneath. See Table 1 for the subset of viewpoint types referred
to in this article and their meanings. Other than for threaded types, viewpoint
nomenclature in this article follows, and where necessary extends, that of Pearce
and Wiggins (2006). See also Conklin and Witten (1995) and Pearce (2005) for
more details.

3.3 N-gram Models

So far, N-gram models (or context models), which are Markov models employing
subsequences of N symbols, have been the modelling method of choice when us-
ing multiple viewpoint systems (Conklin and Witten, 1995; Pearce, 2005). The
idea is to predict the next symbol in a sequence by taking account of the imme-
diately preceding defined symbols. The transition probability of the N th symbol,
the prediction, depends only upon the previous N − 1 symbols, the context. The
number of symbols in the context is the order of the model. Transition probabili-
ties are determined by maximum likelihood estimation: see Manning and Schütze
(1999) for more details.

A viewpoint model is a weighted combination of various orders of N-gram
model of a particular viewpoint type. The N-gram models can be combined by,
for example, Prediction by Partial Match (PPM, Cleary and Witten, 1984). PPM
makes use of a sequence of models, which we call a back-off sequence, for context
matching and the construction of complete prediction probability distributions
(i.e., containing all possible predictions, however improbable). The back-off se-
quence begins with the highest order model, proceeds to the second-highest or-
der, and so on. An escape method determines weights for prediction probabilities
at each stage in this sequence, which are generally high for predictions appearing
in high-order models, and vice versa. If necessary, a probability distribution is
completed by backing off to a uniform distribution (where the probability mass
is divided equally between all elements in the relevant domain). In this research,
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Table 1. Viewpoint types τ referred to in this article.

τ Meaning Derived from

Basic

Onset start-time of event
Duration duration of event
Cont event continuation, or otherwise
Pitch chromatic pitch
KeySig number of flats or sharps
Mode major or minor key
Phrase event at start/end of phrase, or not

Derived

DurRatio sequential duration ratio Duration

Interval sequential chromatic pitch interval Pitch

Tonic tonic of relevant major/minor scale KeySig, Mode
ScaleDegree chromatic pitch interval from tonic Pitch

FirstInBar first event in bar, or otherwise Onset

LastInPhrase last event in phrase, or otherwise Phrase

Threaded

ScaleDegree ⊖ FirstInBar ScaleDegree threaded at first in bar Pitch, Onset

we are using escape method C (see Witten and Bell, 1989, for a review of this
and other escape methods). We are also using a method known as exclusion
in conjunction with escape to obtain more accurate estimates; see Cleary and
Teahan (1997) for more details.

3.4 Multiple Viewpoints

A multiple viewpoint system comprises more than one viewpoint: indeed, usu-
ally many more. If we were to use only unlinked basic viewpoint types to predict
existing data, it would be possible to back off under PPM until the required
prediction (and its associated probability) was found, without needing to com-
plete the distribution. In general, this is not the case, however; there may, for
example, be derived viewpoints in the system. Backing off only until the required
prediction is found will result in different sets of predictions in the respective dis-
tributions (once they have been converted into distributions over the domain of
the basic type), which makes it impossible to properly combine the distributions
so that the overall prediction probability can be found. This, fundamentally, is
why distributions must be completed within this framework. The reliable con-
struction of viewpoint domains, which is central to this article, ensures that
distributions are completed properly. The first step in the combination process,
then, is to convert the completed viewpoint prediction probability distributions
into distributions over the domain of whichever basic type is being predicted at
the time, for example Pitch. It is possible for a prediction in a derived view-
point (e.g., ScaleDegree) distribution to map onto more than one prediction
in the basic viewpoint distribution; in this case, the probability of the derived
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viewpoint prediction is divided equally between the corresponding basic view-
point predictions. The resulting distributions are then combined by employing
a weighted arithmetic (Conklin, 1990) or geometric (Pearce et al., 2005) combi-
nation technique.

3.5 Long-term and Short-term Models

Conklin (1990) introduced the idea of using a combination of a long-term model
(LTM), which is a general model of a style derived from a corpus, and a short-
term model (STM), which is constructed as a single piece of music is being
predicted or generated. The latter aims to capture musical structure particular to
that piece. The prediction probability distributions produced by the two models
are combined using a weighted arithmetic or geometric combination technique
to give an overall distribution. Note that prediction of test data means the
assignment of probabilities to known events using the overall model, whereas
the generation of a harmony given a melody is achieved by random sampling of
the overall distributions.

3.6 Viewpoint Selection

Pearce (2005) introduced a feature selection algorithm, based on forward step-
wise selection and N-fold cross-validation, which constructs multiple viewpoint
systems according to objective criteria (such as cross-entropy, described below).
A variant of this algorithm is used in this research, as follows. We start with a
set comprising the basic viewpoints to be predicted. At each iteration, we try
adding in turn all primitive viewpoints not already in the set, and linked view-
points comprising a primitive viewpoint already in the set plus one other (again,
avoiding duplicates). The viewpoint resulting in the largest improvement to the
model is added to the set (multiple viewpoint system). At this point, all possi-
ble deletions are considered which leave the system fully able to predict data.
When neither additions nor deletions are able to improve the model, the system
is complete (although not necessarily globally optimal). See, for example, Aha
and Bankert (1996) for the application of stepwise selection to machine learning.

3.7 Evaluation

An information theoretic measure, cross-entropy, is used to guide the construc-
tion of models, evaluate them, and compare generated harmonisations (since
cross-entropy is measured in bits per symbol, it is possible to compare harmon-
isations of any length). Cross-entropy is an upper bound on the true entropy of
the data; therefore the model assigning the lowest cross-entropy to a set of test
data is the most accurate model of the data. See Manning and Schütze (1999)
for more details.
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3.8 Concluding Remarks

Our research has developed the multiple viewpoint/PPM framework to cope
with the complexities of harmony, such that improved computational models of
four-part harmonisation can be created (an early attempt to model polyphony
using multiple viewpoints was made by Conklin and Cleary, 1988, where the
models were hand-crafted from a very limited pool of viewpoints). Whereas
a melody is a single sequence of notes, four-part harmony is composed of four
interrelated sequences of notes; and a note in one part is not necessarily sounded
at the same time as notes in the other parts (i.e., harmony is rarely completely
homophonic, and may be far from it). We have implemented three versions of
the framework, beginning with a very strict application of the existing multiple
viewpoint framework, and then extending and generalising. There are challenges
with respect to viewpoint domains even in the first of these versions; but by the
third version, the challenges are much greater.

4 Learning Corpus and Test Data

At present, 110 major key hymn tunes, with harmonisations found in Vaughan
Williams (1933), can be distributed between the learning corpus and the test
data. Most of the work we have done so far has involved the use of a learning
corpus comprising 50 hymn tune harmonisations, and test data of 5 harmonisa-
tions. The raw data is in the form of MIDI files. This data must be preprocessed
before it can be converted into sequences of viewpoint elements which are subse-
quently used to create N-gram models (see §3.3). One of the requirements is that
each part must be in the form of an event sequence, where each event comprises
a number of basic attribute values (e.g., pitch and duration). Most of this infor-
mation is derived from the MIDI data; but phrase boundaries must be indicated
by hand. The issue of automatic segmentation, which employs computational
techniques to group music into, for example, motifs, phrases and sections, is not
addressed in this research. Another requirement is that when an event occurs in
one part, simultaneous events must also occur in the other three parts. This is
achieved by applying the full expansion technique used in Assayag et al. (1999),
where the distinction between the start of a note and its continuation is made
explicit (this is explained in more detail in §6.1). Rests are problematic, as they
are not considered to be events within the current viewpoint formulation; this
must be resolved as part of the ongoing research. For the time being, it is ex-
pedient to exclude from the corpus and test data the relatively small number of
hymn tune harmonisations containing rests.

5 Melodic Viewpoint Domains

We can ease our way into consideration of issues relating to domains by consid-
ering melody alone. Melodic domains are very small compared with harmonic
domains; for example, there are only 19 different chromatic pitches (B♭3 to E5)
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in the soprano parts of our fifty-five hymn corpus plus test data, with MIDI
values of 58 to 76 inclusive. Run time, therefore, is not a problem; but other
issues do need to be tackled. First, though, recall from §3.2 that [τ ] denotes the
domain of τ , and that 〈τ〉 is the type set of τ , where τ is the viewpoint type.

5.1 Can a Domain be Fixed?

The first of these issues, whether or not a domain can be fixed, has been ad-
dressed by Pearce (2005). The domain of a basic viewpoint, such as Pitch, “is
predefined to be the set of viewpoint elements occurring in the corpus” (Pearce,
2005, p. 115). Basic viewpoint domains are therefore fixed; but let us consider
what happens if we assume that a derived viewpoint, such as Interval, also
has a domain fixed in the same way. A domain comprising all Interval values
which occur in the corpus will have both positive and negative values; that is, it
will contain both ascending and descending intervals. If the previous note had a
pitch which was, for example, the lowest in the Pitch domain, then any negative
values ending up in the Interval prediction probability distribution will predict
Pitch values which are not in the Pitch domain. On the other hand, some of
the higher values in the Pitch domain will not be predicted by anything in the
Interval distribution. Since “[a] model mτ must return a complete distribution
over the basic attributes in 〈τ〉” (Pearce, 2005, p. 115), something must be done.
The solution Pearce (2005, p. 115) arrives at is as follows:

To address this problem, the domain of each derived type τ is set prior to
prediction of each event such that there is a one-to-one correspondence
between [τ ] and the domain of the basic type τb ∈ 〈τ〉 currently being
predicted.

Although a truly one-to-one correspondence between Interval and Pitch

domains is achievable, this is not necessarily the case for other viewpoints. It is
important to be clear what is really meant here by a one-to-one correspondence;
the term is used in an informal rather than a strictly mathematical sense. Let us
consider the case of ScaleDegree (chromatic pitch interval from tonic). Unless
the Pitch domain is unrealistically small, the ScaleDegree domain is

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}.

For a Pitch domain covering more than an octave, therefore, the function from
Pitch to ScaleDegree is not one-to-one, but surjective. This is also true of other
derived viewpoints; so the solution to the problem should be clarified as follows.
The domain of a derived type τ is determined prior to prediction of each event
such that, between them, its members are able to predict all of, and only, the
members of the domain of the basic type τb ∈ 〈τ〉 currently being predicted.

Irrespective of ScaleDegree, which (in theory and practice) has a fixed do-
main, there exist derived viewpoint domains which are not fixed or static, but
dynamic with respect to sequence position (i.e., we do not know a priori what
the domains are). In the case of Interval, the domain comprises the intervals
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between the pitch of the previous note in the sequence and each of the members
of the Pitch domain in turn; that is, the domain is a partition of [Pitch] ×
[Pitch]. In general, each element of the basic domain in turn is converted to an
element of the derived domain, and the latter is added to the derived viewpoint
domain if it is not already a member of the domain (alternatively, they can all
be added to the domain initially, and duplicates removed afterwards).

5.2 Linked Viewpoint Domains

We now turn our attention to the construction of domains for linked viewpoints.
Conklin and Witten (1995) state that the linked domain is the Cartesian product
of the individual viewpoint domains, that is,

[τ ] = [τ1]× . . .× [τn].

For links between functionally unrelated viewpoints, such as Duration and
Pitch, this is undoubtedly true. Constructing linked domains for viewpoints
capable of predicting the same basic viewpoint is rather different, however. Let
us consider the linked viewpoint Pitch ⊗ Interval. The majority of elements
in the Cartesian product of the Pitch and Interval domains are nonsensical:
this is because, as we have already established above, there is a true one-to-one
correspondence between elements of the individual viewpoint domains in this
case. Only links between corresponding elements make logical sense; therefore
only these links should be included in the domain. Researchers have so far only
used linked viewpoints comprising two individual viewpoints; but the methods
outlined in this and following sections can easily be extended to the linking of
more than two viewpoints (explicitly so in §8).

6 Version 1 Viewpoint Domains

6.1 Introduction to Version 1

The starting point for the definition of the strictest possible application of view-
points to harmony is the formation of vertical viewpoint elements (Conklin,
2002). An example of such an element is 〈67, 62, 59, 43〉 (the first chord
of Figure 2), where all of the values are from the domain of the same view-
point (in this case Pitch), and all of the parts (soprano, alto, tenor and bass)
are represented in that order. Similarly, a vertical element for linked viewpoint
Pitch⊗ ScaleDegree may, for example, be 〈〈67, 0〉, 〈62, 7〉, 〈59, 4〉, 〈43, 0〉〉
(also the first chord of Figure 2). This method reduces the entire set of parallel
sequences to a single sequence, thus allowing an unchanged application of the
multiple viewpoint framework, including its use of N-grams and PPM. To ex-
emplify this, Figure 2 shows an incomplete harmonisation of the first phrase of
hymn tune Luther’s Hymn (Nun freut euch) adapted from Vaughan Williams
(1933), with a sequence of ScaleDegree vertical viewpoint elements underneath
(question marks represent unknown ScaleDegree values). The outlined elements



13







 

     




 

 



 

 


0 0 4 2 0 2 2 4 S
7 7 0 11 0 0 ? ? A
4 0 7 7 4 9 ? ? T
0 4 0 7 9 5 ? ? B

✞

✝

☎

✆

✞

✝

☎

✆

✞

✝

☎

✆
✯

Fig. 2. Incomplete harmonisation of the first phrase of hymn tune Luther’s Hymn
(Nun freut euch) adapted from Vaughan Williams (1933), with a sequence of verti-
cal ScaleDegree elements underneath. A trigram is shown predicting the penultimate
element, in which question marks represent the unknown ScaleDegree values.

form a trigram, which is predicting the penultimate chord. This is the base-level
version, which we have subsequently developed (and intend to further develop
in future work) with the aim of substantially improving performance.

Parts are a kind of layer associated with a voice. Other layers are possible;
for example, a layer for chord symbols such as Vb (a dominant chord in first
inversion) can be envisaged. The soprano part is given; so we are really only
predicting the alto, tenor and bass parts. This being the case, the given soprano
part is termed a support layer, and the other three parts (to be predicted) are
called prediction layers. Another way of thinking about vertical viewpoint ele-
ments is to see them as links between layers; after all, we already have linked
viewpoints within layers. We call the linking of viewpoints between layers inter-
layer linking, and the linking of viewpoints within layers intra-layer linking. The
formal nomenclature for inter-layer linked viewpoints is similar to that for intra-
layer linked viewpoints; but the layers are explicitly labelled, and a subscript p
is used to indicate prediction layers. If we assume that the primitive viewpoint
ScaleDegree is used on each layer, the name of the inter-layer linked viewpoint
is:

(ScaleDegree)S ⊗ (ScaleDegree)Ap ⊗ (ScaleDegree)Tp ⊗ (ScaleDegree)Bp.

Although this nomenclature is overkill for this version of the framework (and so
will not be used for the remainder of this section), it allows us to make better
comparisons with later versions. For version 1 only, we shall use names such as
(ScaleDegree)SATB.

To be completely explicit about which layer is which in a vertical element, and
which viewpoint is represented, a more sophisticated representation of viewpoint
elements has been developed. In this, relative chord position is defined as the
position in the viewpoint sequence relative to the prediction position. Each layer
is represented in the following way:

〈layer, relative chord position, intra-layer linked viewpoint, symbol tuple〉
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(the reason for the viewpoint name appearing in every layer will become clear
in §8.1). Note that a primitive viewpoint is treated as a special case of an intra-
layer linked viewpoint, and that the symbol tuple comprises as many symbols as
there are primitive viewpoints in the intra-layer linked viewpoint. An example
of the new representation is

〈〈S, 0, Pitch⊗ ScaleDegree, 〈69, 0〉〉,

〈A, 0, Pitch⊗ ScaleDegree, 〈64, 7〉〉,

〈T, 0, Pitch⊗ ScaleDegree, 〈61, 4〉〉,

〈B, 0, Pitch⊗ ScaleDegree, 〈57, 0〉〉〉.

which is equivalent to 〈〈69, 0〉, 〈64, 7〉, 〈61, 4〉, 〈57, 0〉〉 for viewpoint (Pitch
⊗ ScaleDegree)SATB. The second element of the layer tuples, a zero, is the
relative chord position. When this representation is used in the construction of
contexts for N-gram modelling, this element becomes a negative integer. The
more complex representation will be used in §8.4, where the use of the simpler
representation would be unduly ambiguous.

Basic viewpoint Cont is introduced in this research specifically for use in the
modelling of harmony: it is required because the corpus (like music in general)
is not completely homophonic. We require simultaneities (concurrent events) to
have a single value for each part, and a single duration overall; therefore full
expansion is used to partition music in this way. This technique has already
been used in conjunction with viewpoints (Conklin, 2002). Figure 3 shows the
first three full bars of the harmonisation of hymn tune Caton (or Rockingham)
in the top system, and its fully expanded form in the bottom system. Looking
at the first full bar, we see that the semibreve (whole note) D in the alto has
been split into two minims (half notes); and that where the tenor moves in
crotchets (quarter notes) from A to G, the minims in the other three parts have
been split into crotchets. To model harmony correctly, we need to know which
notes have been split in this way, and which have not. To distinguish between
the start of a note and its continuation, Assayag et al. (1999) used different
pitch symbols; for example, ‘b’ for the start of a note and ‘b’ (in bold) for its
continuation. Our preferred solution is viewpoint type Cont, which obviates the
need to further increase the size of the Pitch domain (or any other viewpoint
domain, since Cont, like any other basic viewpoint, is an attribute of a note as
a whole). This type has the value T if a note is a continuation of the previous
one in the same part (i.e., it has the same pitch, and is not re-sounded), and the
value F otherwise; therefore the vertical (Cont)SATB elements for the first full
bar of Figure 3 are

〈F, F, F, F 〉 〈F, T, F, F 〉 〈F, F, F, F 〉 〈T, T, F, T 〉.

6.2 Domain Size and Run Time

In this section, we provide some numbers to give an idea of the run time prob-
lem. A detailed empirical analysis of time complexity is presented in §9. As
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Fig. 3. The first four full bars of the harmonisation of hymn tune Caton (or Rocking-
ham), adapted from Vaughan Williams (1933), are presented in the top system, and
the full expansion of this excerpt is shown in the bottom system.

noted at the beginning of §5, there are 19 elements in the soprano Pitch do-
main. In addition, there are 18, 20 and 23 elements in the alto, tenor and bass
Pitch domains respectively. To enable a probability distribution to predict any
combination of these pitches, the full (Pitch)SATB domain (and distributions
based on it) must contain 157,320 vertical viewpoint elements; and since, for
example, the (Duration⊗ Pitch)SATB domain is the Cartesian product of the
constituent viewpoint domains, there would be well over a million elements in
the linked domain. There is also a total of 277 chords in our fully expanded
test set of five hymn tune harmonisations, each chord having three attributes
requiring prediction. If we assume a long-term model only, having a multiple
viewpoint system with three viewpoints able to predict Duration, three able to
predict Cont and four able to predict Pitch, then the total number of prediction
probability distributions required is 2,770 (ignoring the fact that the viewpoints
might not always be defined). If, in addition, we use a short-term model, this fig-
ure rises to 5,540. This may not seem too bad; but now consider what happens
during viewpoint selection. Each multiple viewpoint system tried is evaluated
using ten-fold cross-validation of the corpus, which means that fifty hymn tune
harmonisations are predicted, rather than just five; and many systems need to
be evaluated during viewpoint selection. In spite of a certain amount of caching
of distributions, a typical viewpoint selection run (using a pool of 39 primitive
viewpoints) for the optimisation of both a long-term and a short-term model
typically requires about 3 × 106 distributions to be constructed. The need to
repeatedly construct very large probability distributions definitely results in run
time problems.
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One way of substantially improving run time is to cut the number of differ-
ent combinations by placing into a basic viewpoint domain only those vertical
elements which occur in the corpus, plus any others likely to occur. Since there
is no easy way of identifying these additional elements, one solution is to simply
include such elements which occur in nominally unseen test data (no statistics
are collected from the test data; we are merely acknowledging the existence of
vertical viewpoint elements which were not seen in the corpus). This has the
practical advantage that probabilities can be assigned to all chords in the test
data. There are currently 882 vertical elements in our seen (Pitch)SATB domain.
The basic viewpoints (Duration)SATB and (Cont)SATB have much smaller do-
mains than (Pitch)SATB : only 11 vertical (Duration)SATB elements appear in
the data, while the (Cont)SATB domain is limited to 15 (since 〈T, T, T, T 〉
does not occur in the data).

If we were predicting or generating all four parts of the harmonic texture,
this would be as far as we could go with respect to simplifying the basic domains.
What we are particularly interested in, however, is the harmonisation of given
melodies, which is a hard enough problem to be tackling for the time being
(predicting all four parts is even more difficult, because it is a less constrained
problem). In this case, since the soprano is given, and we do not wish to change it,
only those vertical elements having a soprano pitch value the same as that given
are allowed in the (Pitch)SATB domain (and the resulting prediction probability
distribution). In other words, domain elements contain a “must have” value
from the support layer. This again greatly improves run time, since if the 882
vertical (Pitch)SATB elements were divided equally amongst the 19 soprano
(Pitch)SATB elements, the size of the domain would be reduced to about 46. Of
course, the distribution of elements is not really uniform; the true distribution
is shown in Figure 4.

The use of the seen domain for the generation of test data melody harmon-
isations is not ideal, however. If the test data contains a single vertical element
containing a soprano note not seen in the corpus, then that element has to be
used to harmonise that soprano note. In addition, we know from Figure 10,
which includes data from 110 hymns, that roughly 400 elements will be added
to our 55-hymn seen (Pitch)SATB domain by doubling the number of hymns.
In other words, there are a great many possible chords which have not been
seen by the machine learning program, but which could perfectly well be used to
harmonise melodies. Our solution is simply to transpose chords which have been
seen up and down, semitone by semitone, until one or other of the parts goes
out of the range seen in the data. Such elements are added to the augmented
(Pitch)SATB domain, with the proviso that no duplicates are allowed. Obvi-
ously, these elements do not appear in the (Pitch)SATB statistics gathered from
the corpus, and so have very low prediction probabilities in (Pitch)SATB distri-
butions; but they can potentially have relatively high prediction probabilities in
derived viewpoint distributions, such as those using (ScaleDegree)SATB. There
are currently 5,040 vertical elements in our augmented (Pitch)SATB domain. If
these elements were divided equally amongst the 19 soprano Pitch elements, the
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Fig. 4. Bar chart showing the number of different vertical elements in the seen
(Pitch)SATB domain for each soprano note.

size of the domain for each prediction would be reduced to about 265. The true
distribution of elements is shown in Figure 5. Note that the augmented domain
is much closer in size to the seen domain than it is to the full domain. The seen
domain is always a subset of the augmented domain, and for a large enough
corpus could potentially closely approach the augmented domain in terms of
size. Similarly, the augmented domain is always a subset of the full domain; but
unless the corpus were to contain a large number of very strange chords, the size
of the augmented domain could never approach that of the full domain.

6.3 Less Obvious Constraints

Following Conklin (1990) and Pearce (2005), we predict each basic attribute
in turn at each chord prediction. In this research, prediction is carried out in
the following order: Duration, Cont, Pitch. The reasoning is that Duration

distributions were thought to have the lowest entropy, meaning that Duration is
the most predictable attribute. Similarly, in general, Pitch distributions have the
highest entropy, meaning that Pitch is usually the least predictable attribute.
Following their prediction, known values of Duration and Cont (or viewpoint
types derived from them) are used in linked viewpoints better to predict the
(normally) more unpredictable Pitch. Having said all this, it was later found
that, in fact, Cont distributions generally have the lowest entropy. Although it
is usual in AI to deal with the most predictable attribute first, there is evidence
from another area of our research to suggest that this will not necessarily produce
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Fig. 5. Bar chart showing the number of different vertical elements in the augmented
(Pitch)SATB domain for each soprano note.

the best results in the case of harmonisation. Our current Duration, Cont, Pitch
ordering is certainly not intrinsically bad. A detailed investigation into the effect
of attribute prediction order is planned for future work.

Let us consider the basic viewpoint (Duration)SATB from the point of view
of generation of a harmonisation. First of all, since a simultaneity has a single
overall duration, a vertical viewpoint element always contains the same duration
value for each part, such as 〈48, 48, 48, 48〉. The domain comprises vertical
elements containing durations which are less than or equal to the duration of
the soprano note to be harmonised. This allows the possibility of passing and
other unessential notes in the lower three parts. If, for example, the soprano
note had a duration of 24 (a crotchet, or quarter note), and a duration of 12
(a quaver, or eighth note) was generated, the soprano note would be expanded,
with the second quaver being assigned a Cont value of T . The (Cont)SATB and
(Pitch)SATB values of the first quaver are predicted before the focus is shifted to
the second quaver, when prediction begins again with (Duration)SATB. After the
prediction of (Duration)SATB , its domain contains only the predicted vertical
viewpoint.

There are interactions between Cont and Pitch, with different constraints
operating depending on the attribute being predicted. During the prediction of
(Cont)SATB, the (Cont)SATB domain must not contain elements which would
predict elements outside of the (Pitch)SATB domain. For example, let us assume
that we have an E♭major chord, 〈67, 63, 58, 51〉, followed by an F4 (MIDI value
65) in the soprano, as shown in the first bar of Figure 6. For simplicity, let us also
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Fig. 6. The effect of viewpoint (Cont)SATB on a chord progression. Bar 1 shows the
soprano note to be harmonised and the preceding chord. Bars 2 to 5 illustrate the
effect of vertical (Cont)SATB elements 〈F, F, F, F 〉, 〈F, T, F, F 〉, 〈F, F, T, F 〉 and
〈F, T, T, F 〉 respectively on the chosen second chord.

assume that the only vertical element in the (Pitch)SATB domain constrained
by the soprano note is 〈65, 63, 58, 50〉. The set of vertical (Cont)SATB elements
compatible with this artificially small (Pitch)SATB domain is

{〈F, F, F, F 〉 〈F, T, F, F 〉 〈F, F, T, F 〉 〈F, T, T, F 〉}.

Any other (Cont)SATB element, such as 〈F, T, T, T 〉 or 〈F, F, F, T 〉, would
map onto a (Pitch)SATB element which is not in the domain. Bars 2 to 5 of
Figure 6 show the chord progression resulting from each of these (Cont)SATB

elements respectively, in conventional musical notation. Even realistically sized
(Pitch)SATB domains can restrict the (Cont)SATB domain beyond what might
be expected by constraining according to the Cont attribute of the soprano note.
Once (Cont)SATB has been predicted, its domain comprises a single vertical
element, and the (Pitch)SATB domain is further constrained to vertical elements
which are compatible with the predicted vertical (Cont)SATB element.

6.4 Construction of Derived and Linked Viewpoint Domains

Derived viewpoint domains are constructed by converting each vertical element
of the relevant basic viewpoint domain (however it is currently constrained) into
a vertical element of the derived domain. By constructing the domain in this way,
we can be sure that between them, the members will be able to predict all of,
and only, the members of the basic domain. As with melodic domains, after each
conversion the vertical element is added to the derived domain only if it is not
already a member (recalling that the conversion function is surjective). For ex-
ample, assuming a key of A, vertical (Pitch)SATB elements 〈69, 64, 61, 57〉 and
〈69, 64, 61, 45〉 both map to vertical (ScaleDegree)SATB element 〈0, 7, 4, 0〉.

As with melodic domains, for links between functionally unrelated view-
points, the linked domain is the Cartesian product of the individual viewpoint
domains; and for links between viewpoints capable of predicting the same ba-
sic viewpoint, the informal unidirectional one-to-one correspondence between
elements of the individual viewpoint domains means that only corresponding
elements are included in the linked domain (there are also correspondences be-
tween Cont and Pitch, and viewpoints derived from it, as discussed above).
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Continuing the example in the paragraph above, for a key of A, vertical ele-
ments 〈〈69, 0〉, 〈64, 7〉, 〈61, 4〉, 〈57, 0〉〉 and 〈〈69, 0〉, 〈64, 7〉, 〈61, 4〉, 〈45, 0〉〉
would both appear in the (Pitch ⊗ ScaleDegree)SATB domain; but 〈〈69, 0〉,
〈64, 7〉, 〈61, 4〉, 〈55, 0〉〉 would not, since in the bass part the Pitch value of
55 corresponds to a G, and the ScaleDegree value of 0 corresponds to an A.

The reason that we must be able to reliably construct such domains is be-
cause prediction probability distributions are completed by backing off to uni-
form distributions based on these domains. The various viewpoint distributions
are converted into basic viewpoint distributions prior to combination. To facili-
tate combination, the distributions are sorted into the same order. An unreliable
domain construction procedure might, for example, result in one or two predic-
tions being missing from some distributions, which means that at some point a
succession of probabilities will be erroneously combined.

7 Version 2 Viewpoint Domains

7.1 Introduction to Version 2

In this version, it is hypothesised that predicting all unknown symbols in a verti-
cal viewpoint element (as in version 1) at the same time is neither necessary nor
desirable. It is anticipated that by dividing the overall harmonisation task into
a number of subtasks (Allan and Williams, 2005; Hild et al., 1992), each mod-
elled by its own multiple viewpoint system, an increase in performance can be
achieved. For example, given a soprano line, the first subtask might be to predict
the entire bass line. Since there is no supporting context in the alto and tenor lay-
ers yet, inter-layer linked viewpoints such as (ScaleDegree)S⊗(ScaleDegree)Bp

are used (recall that subscript p indicates the prediction layer; that is, the layer
to be predicted). Once the bass line has been predicted, it becomes a support
layer in subsequent subtasks. This version allows us to experiment with differ-
ent arrangements of subtasks. For example, having predicted the bass line, is it
better to predict the alto and tenor lines together, or one before the other? Note
that text books on harmonisation generally advocate the completion of the bass
line first, in conjunction with harmonic function symbols such as Ib for tonic
in first inversion. Alto and tenor notes are then added together (see Whorley
et al. (2013) for an information theoretic investigation of this subject). Another
alternative (not implemented) would be to predict all of the notes of a chord by
the application of a sequence of subtask models before moving on to the next
chord. As in version 1, vertical viewpoint elements are restricted to using the
same viewpoint on each layer. The difference is that not all of the layers are
now necessarily represented in a vertical viewpoint element; for example, for the
prediction of bass given soprano, only the soprano and bass are represented, as
shown in Figure 7.

7.2 Domains

Provided we always predict only one part at a time, and always constrain the
Pitch domain as much as possible, we could reasonably construct full domains
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Fig. 7. Incomplete harmonisation of the first phrase of hymn tune Luther’s Hymn
(Nun freut euch) adapted from Vaughan Williams (1933), with a sequence of vertical
ScaleDegree elements (comprising soprano and bass values only) underneath. A tri-
gram is shown predicting the penultimate element, in which a question mark represents
the unknown ScaleDegree value.

(i.e., without having to resort to using only combinations which occur in the
corpus and test data). Let us, for example, assume that we are predicting bass
given soprano. The Pitch domain would comprise vertical elements containing
the given soprano pitch and each of the pitches occurring in the bass in turn,
giving a total of only 23 elements. We wish, however, to retain the option of
predicting more than one part at a time; and a domain constructed in this way
which is capable of predicting two parts at once would require up to 460 vertical
viewpoint elements. The following treatment, then, assumes the use of vertical
basic viewpoint elements seen in the corpus and test data, with the option of
augmentation with transposed elements as described in §6.2.

To obtain basic viewpoint domains for the required combination of parts,
say soprano and bass only, the corpus and test data can be traversed, with each
new soprano/bass combination (and optionally its transpositions) being added
to the relevant domain. Although not present in the domain, transposed alto
and tenor notes must still be within their part ranges. Alternatively, if a domain
of vertical elements containing all four parts has already been found, this can be
similarly traversed to obtain the domain of soprano/bass elements. Construction
of derived and linked viewpoint domains is then carried out in exactly the same
way as in version 1.

8 Version 3 Viewpoint Domains

8.1 Introduction to Version 3

There are two differences between version 2 and version 3. The first is that differ-
ent viewpoints on different layers can now be linked; for example, ScaleDegree
in the soprano can be linked with Pitch in the bass, giving inter-layer linked
viewpoint (ScaleDegree)S⊗(Pitch)Bp. The second is that linking with support
layers (given parts) is not compulsory; so if we are given the soprano and bass,
and are predicting the alto and tenor, we can, for instance, link viewpoints from
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Fig. 8. Incomplete harmonisation of the first phrase of hymn tune Luther’s Hymn
(Nun freut euch) adapted from Vaughan Williams (1933), with a sequence of
(ScaleDegree)Ap ⊗ (ScaleDegree)Tp ⊗ (Pitch)B elements underneath. A trigram is
shown predicting the penultimate element, in which question marks represent the un-
known ScaleDegree values.

the alto, tenor and bass, but not soprano, as shown in Figure 8. It should be
noted, however, that even if a support layer is not represented in a linked view-
point, the domain is still constrained by the given note at the prediction point of
this layer. At present, for (relative) ease of implementation, prediction layers are
assigned the same viewpoint, although support layers may have any combination
of viewpoints (c.f. version 2, where the same viewpoint appears on all layers). A
relaxation of the prediction layer restriction could conceivably result in better
(but more complex) models; so we are contemplating a sub-version without this
restriction. As usual, if at any point in the event sequence a derived viewpoint
is undefined, an inter-layer linked viewpoint containing that viewpoint is also
undefined.

It is necessary to modify the viewpoint selection algorithm described in §3.6.
We start with a set consisting of the basic viewpoints to be predicted, which
now comprise prediction layers only. Assuming that we are given the soprano
and bass, and are predicting the alto and tenor, one of the viewpoints in this
initial set is (Duration)Ap ⊗ (Duration)Tp. At each iteration, we try adding in
turn viewpoints such as (ScaleDegree)Ap ⊗ (ScaleDegree)Tp; and viewpoints
involving incremental intra- or inter-layer linkages with viewpoints already in
the set, such as (Duration⊗ ScaleDegree)Ap ⊗ (Duration⊗ ScaleDegree)Tp

or (Duration)Ap ⊗ (Duration)Tp ⊗ (ScaleDegree)B. The rest of the algorithm
is the same as before.

8.2 Domain Construction Issues

Version 3 viewpoints can be much more complex than any we have seen before:
especially when three parts are given and we are predicting the remaining part. In
this case, each of the four parts could have a different viewpoint; but let us begin
with something far more simple. During prediction of bass given soprano, we
may use the viewpoint (ScaleDegree)S ⊗ (Pitch)Bp. Although the constituent
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viewpoints are able to predict the same basic viewpoint, the fact that they are
assigned to different layers means that there are no correspondences which need
to be taken into account; therefore taking the Cartesian product of the individual
layer domains (as constrained by the given soprano note) is a perfectly acceptable
way of constructing the inter-layer linked domain. We would not wish to do so in
practice, however, for reasons outlined above. As before, we would place elements
into the domain which correspond to Pitch combinations found in the corpus
and test data (and optionally, transpositions of these combinations).

Unfortunately, most version 3 viewpoints are not as straightforward as this.
We are predicting basic viewpoints Duration, Cont and Pitch, each of which
has its own domain of a particular size; there are other basic viewpoints which
we assume to be given; there are many derived viewpoints, most of them derived
from Pitch, having domains of various sizes; and there are up to four layers rep-
resented in any viewpoint. A general method for reliably constructing domains
for these complex viewpoints is required. As usual, the domains must be able
to predict all of, and only, the members of the basic viewpoint domain(s). It is
possible for each layer to have a different viewpoint; therefore it is expedient
to deal with each layer in turn. This being the case, to achieve precisely the
correct combinations of viewpoint elements, we need to know in advance how
many elements there are in the provisional inter-layer linked viewpoint domain
(which, as we shall see, may end up containing undefined or duplicate elements
which must be removed). To calculate this number, we also need to know the
set of basic viewpoints that the constituent viewpoints are derived from, that is,
the type set 〈τ〉 (note that the set of basic viewpoints that the inter-layer linked
viewpoint is able to predict is a subset of 〈τ〉, since only constituent viewpoints
of the prediction layers should be considered); since we can determine what the
domains of these basic viewpoints are for the combination of layers in question,
we are easily able to ascertain their sizes. For the purposes of constructing a
provisional inter-layer linked domain, we assume that the size of each derived
domain (covering all of the parts represented in the viewpoint) is the same as
that of the relevant basic domain. This means that we can relatively easily assign
inner- and outer-multipliers to each basic or derived constituent viewpoint prior
to construction of the inter-layer linked viewpoint. These multipliers respectively
determine the number of times a primitive domain element is repeated prior to
moving on to the next, and the number of times the entire primitive domain is
repeated (along with any internal repeats).

As a simple example, let us assume that there are only two elements (A and
B) in the primitive domain, and that the inner- and outer-multipliers have values
of 3 and 2 respectively. Figure 9 illustrates the effect of the multipliers on the
primitive domain. The elements of this domain are each shown as the root of
a tree. The outer-multiplier is 2; therefore each root divides into two branches,
resulting in the primitive domain being shown twice. The inner-multiplier is 3; so
each of the four nodes splits into three, thereby duplicating elements within each
of the copies of the primitive domain. The number of elements in the provisional



24

A A A B B B A A A B B B

A B A B

A B❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳

❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳

✡
✡

✡
✡✡

❏
❏
❏
❏❏

✡
✡

✡
✡✡

❏
❏
❏
❏❏

✡
✡

✡
✡✡

❏
❏
❏
❏❏

✡
✡

✡
✡✡

❏
❏
❏
❏❏

Fig. 9. Trees illustrating the effect of multipliers on primitive domain {A,B}. Branch-
ing from the roots is due to the outer-multiplier (2); and further branching to produce
the leaves is due to the inner-multiplier (3).

inter-layer linked domain is the same as the total number of leaves on the trees,
which is the product of the primitive domain size and the two multipliers.

8.3 Determination of Multipliers

In calculating the multipliers, we assume that the basic viewpoints are in a
particular order: Duration, Cont, Pitch, followed by other basic viewpoints.
The order of the other basic viewpoints is not important, as in our research they
are given and therefore effectively have a domain containing only one element.
Once we know which of Duration, Cont and Pitch the constituent viewpoints
are derived from, we can assign multipliers according to their relative positions in
the ordered list. For a particular basic viewpoint, the inner- and outer-multipliers
are the product of the domain sizes of any basic viewpoints occurring after it,
and before it, respectively. The default value of both is 1. For example, consider
a linked viewpoint with constituents derived from Duration, Cont and Pitch,
and which also contains viewpoint LastInPhrase (derived from basic viewpoint
Phrase). If we assume that Duration, Cont and Pitch have domain sizes of
5, 10 and 40 respectively, then for any constituent viewpoint able to predict
Duration, the inner- and outer-multipliers are 400 and 1; for any constituent
viewpoint able to predict Cont, the inner- and outer-multipliers are 40 and 5; for
any constituent viewpoint able to predict Pitch, the inner- and outer-multipliers
are 1 and 50; and for any other constituent viewpoint (e.g., LastInPhrase), the
inner- and outer-multipliers are 1 and 2000 respectively. Generalised algorithms
for the determination of multipliers can be found in Algorithms 1, 2 and 3
in Appendix A, along with a line-by-line description of their use in the above
example.

8.4 Domain Construction Procedure

This procedure will be illustrated by a modified real example: only a small subset
of the actual Pitch domain is used, comprising note names such as A♭4 rather
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than MIDI numbers, in order to make the illustration more readily intelligible.
We are predicting bass given soprano using, amongst other viewpoints,

(Duration⊗ Pitch)S ⊗ (Cont⊗ ScaleDegree)Bp.

The set of basic viewpoints (type set 〈τ〉) that the above’s constituent viewpoints
are derived from is {Duration, Cont, Pitch}. The Duration attribute of a bass
note has already been predicted; therefore the Duration domain contains only
one element:

{〈〈S, 0, Duration, 〈24〉〉 〈B, 0, Duration, 〈24〉〉〉}.

The next attribute to be predicted is Cont. The given soprano note has a Cont

attribute of F ; therefore the domain is constrained to two elements:

{〈〈S, 0, Cont, 〈F 〉〉 〈B, 0, Cont, 〈T 〉〉〉,

〈〈S, 0, Cont, 〈F 〉〉 〈B, 0, Cont, 〈F 〉〉〉}.

The 5-element Pitch domain (constrained to have a soprano A♭4) is

{〈〈S, 0, Pitch, 〈A♭4〉〉 〈B, 0, Pitch, 〈F2〉〉〉,

〈〈S, 0, Pitch, 〈A♭4〉〉 〈B, 0, Pitch, 〈E♭3〉〉〉,
〈〈S, 0, Pitch, 〈A♭4〉〉 〈B, 0, Pitch, 〈E3〉〉〉,
〈〈S, 0, Pitch, 〈A♭4〉〉 〈B, 0, Pitch, 〈F3〉〉〉,
〈〈S, 0, Pitch, 〈A♭4〉〉 〈B, 0, Pitch, 〈F♯3〉〉〉}.

The highest part (in terms of pitch) is dealt with first. If the viewpoint
on this layer is, or contains, a basic viewpoint, each of the symbols or values
belonging to that layer in the basic viewpoint domain is added, in turn, to what
will become the inter-layer linked viewpoint domain, with repeats determined
by the inner- and outer-multipliers. If the viewpoint is derived, the procedure
is the same except that each basic viewpoint symbol is converted to a derived
viewpoint symbol. In the example, viewpoint Duration in the soprano part is
dealt with first. Its inner-multiplier is the product of the Cont and Pitch domain
sizes, which is 10, and its outer-multiplier is 1. The provisional linked domain
therefore starts off as

{〈〈S, 0, Duration, 〈24〉〉〉, 〈〈S, 0, Duration, 〈24〉〉〉,
〈〈S, 0, Duration, 〈24〉〉〉, 〈〈S, 0, Duration, 〈24〉〉〉,
〈〈S, 0, Duration, 〈24〉〉〉, 〈〈S, 0, Duration, 〈24〉〉〉,
〈〈S, 0, Duration, 〈24〉〉〉, 〈〈S, 0, Duration, 〈24〉〉〉,
〈〈S, 0, Duration, 〈24〉〉〉, 〈〈S, 0, Duration, 〈24〉〉〉}.

At this point, the provisional inter-layer linked viewpoint domain contains all
of the elements we need (and probably more), albeit that they are incomplete.
If there is a second basic or derived viewpoint associated with this layer (i.e.,
a constituent of an intra-layer linked viewpoint), then the same procedure is
followed except that the symbols are linked with the symbols already in the
provisional domain, in the same order as the original additions to the domain.
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In the example, viewpoint Pitch in the soprano part is dealt with next. Its
inner-multiplier is 1, and its outer-multiplier is the product of the Duration and
Cont domain sizes, which is 2. The provisional linked domain then becomes

{〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉〉}.

We then move on to the next layer, again adding to the elements already
in the provisional domain, and so on, until all the layers have been dealt with.
There is only one other layer in the example, the bass part, which contains the
intra-layer linked viewpoint Cont ⊗ ScaleDegree. Primitive viewpoint Cont is
dealt with first; its inner-multiplier is 5 (the size of the Pitch domain), and its
outer-multiplier is 1 (the size of the Duration domain). The provisional linked
domain then becomes

{〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, 〈B, 0, Cont, 〈T 〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, 〈B, 0, Cont, 〈T 〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, 〈B, 0, Cont, 〈T 〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, 〈B, 0, Cont, 〈T 〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, 〈B, 0, Cont, 〈T 〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, 〈B, 0, Cont, 〈F 〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, 〈B, 0, Cont, 〈F 〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, 〈B, 0, Cont, 〈F 〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, 〈B, 0, Cont, 〈F 〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, 〈B, 0, Cont, 〈F 〉〉〉}.

The final viewpoint to be added is ScaleDegree in the bass part; because
it predicts Pitch, its inner-multiplier is 1, and its outer-multiplier is 2. There
is a particular problem to be overcome with respect to the intra-layer linking
of Cont with Pitch, or viewpoints derived from it, however. As we have seen
in §6.3, there is an interaction between the Cont and Pitch domains; therefore
the Cartesian product would contain pairings making no logical sense. In this
case, as the Pitch domain is traversed, the Pitch symbol is checked against the
relevant Cont symbol (which is already in the provisional domain): if the pairing
makes logical sense, the Pitch symbol, or a symbol derived from it, is added to
the element in the provisional domain as usual; if not, the element is tagged as
undefined. The previous note was F3 (MIDI value 53); therefore 53 is the only
Pitch value which can be sensibly paired with a Cont value of T . The tonic is
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E♭; therefore F has a ScaleDegree value of 2. The provisional linked domain
then becomes

{〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, undef 〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, undef 〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, undef 〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, 〈B, 0, Cont⊗ ScaleDegree, 〈T, 2〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, undef 〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, 〈B, 0, Cont⊗ ScaleDegree, 〈F, 2〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, 〈B, 0, Cont⊗ ScaleDegree, 〈F, 0〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, 〈B, 0, Cont⊗ ScaleDegree, 〈F, 1〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, 〈B, 0, Cont⊗ ScaleDegree, 〈F, 2〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, 〈B, 0, Cont⊗ ScaleDegree, 〈F, 3〉〉〉}.

The provisional domain, constructed in this way in order to ensure that
symbols which do not correspond with each other are not linked, may contain
elements tagged as undefined, and may also contain duplicate elements; therefore
the final inter-layer linked viewpoint domain is achieved once undefined and
duplicate elements have been removed:

{〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, 〈B, 0, Cont⊗ ScaleDegree, 〈T, 2〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, 〈B, 0, Cont⊗ ScaleDegree, 〈F, 0〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, 〈B, 0, Cont⊗ ScaleDegree, 〈F, 1〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, 〈B, 0, Cont⊗ ScaleDegree, 〈F, 2〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, 〈B, 0, Cont⊗ ScaleDegree, 〈F, 3〉〉〉}.

A generalised algorithm for the construction of version 3 inter-layer linked
viewpoint domains can be found in Algorithm 4 in Appendix A, along with a
line-by-line description of its use in the above example.

9 Time Complexity Analysis

To demonstrate the utility of reducing domain size, we have carried out an empir-
ical time complexity analysis on version 1 prediction runs. This involved running
the computer model with different numbers of viewpoints, different sizes of cor-
pus, and different types of (Pitch)SATB domain (seen, augmented and full).
Maximum N-gram order also influences run time, but we have not yet investi-
gated it; all runs used a maximum N-gram order of 3. Seen (Duration)SATB

and (Cont)SATB domains are used throughout, which are small enough to be
neglected for the purposes of this analysis. During the course of this exercise,
we have also determined how (Pitch)SATB domain size varies with corpus/test
data size for the seen, augmented and full domain cases. It is with this that we
shall begin.
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Fig. 10. Plot of number of events in the corpus/test data against seen (Pitch)SATB

domain size.

9.1 Variation of Domain Size with Corpus/Test Data Size

Seen, augmented and full (Pitch)SATB domains were computed using 19 differ-
ent combined domain and test data sizes between 1 and 110 hymns. For each
of these sizes (except 110, which comprised all available data), there were three
randomly selected sets of hymns; since the hymns vary in length, this greatly
increased the number of different corpus/test data sizes in terms of the num-
ber of events. A plot of number of events in the corpus/test data against seen
(Pitch)SATB domain size (see Figure 10) shows a rapid discovery of novel chords
at very low corpus/test data sizes. The discovery rate tails off with increasing
corpus/test data size until the size reaches about 2,000 events, above which there
appears to be a linear relation. Given sufficiently large corpus/test data sizes, we
would expect the discovery rate to decline, leading to the relationship becoming
asymptotic.

A similar plot for the augmented (Pitch)SATB domain has much the same
shape (see Figure 11); but the data points are more dispersed, since the domain
size depends on both the number of novel chords and the domain sizes of the
individual parts (SATB). The augmented domain is about five times larger than
the seen domain. We would expect the augmented domain relationship to become
asymptotic at lower corpus/test data sizes than that for the seen domain.

Finally, Figure 12 is a similar plot for the full (Pitch)SATB domain. In this
case, there is initially an extremely rapid increase in domain size with corpus/test
data size, followed by a rapid decline in the increase, followed by a long tail with
relatively little increase (i.e., the relationship is already close to asymptotic).
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Fig. 11. Plot of number of events in the corpus/test data against augmented
(Pitch)SATB domain size.

The data points are very dispersed, due to the fact that domain size depends
solely on the domain sizes of the individual parts. A log curve seems to fit this
data best, which is not the case for the seen and augmented data.

9.2 Effect of Domain Size on Program Running Time

Figure 13 is a log-log plot of (Pitch)SATB domain size against time for the
learning phase of the program, which was run using a corpus of 30 hymns and
multiple viewpoint systems comprising 2 and 10 viewpoints. There are three
domain sizes, corresponding to the seen, augmented and full domains. The seen
domain causes the program to run about two orders of magnitude faster than
the full domain. Encouragingly, the use of the augmented domain results in a
running time which is not too much slower than that of the seen domain.

For the prediction phase of the program (Duration, Cont and Pitch predic-
tion), the relative differences in running time are even greater: the seen domain
causes the program to run about three orders of magnitude faster than the full
domain (see Figure 14). The running time of the program using the augmented
domain is still fairly close to that using the seen domain.

We have demonstrated the utility of reducing the (Pitch)SATB domain size.
The full (Pitch)SATB domain causes the program to run very slowly even for the
prediction of only one short harmonisation. For viewpoint selection runs, which
involve ten-fold cross-validation of the corpus, the situation is far worse. During
the course of such a run, many multiple viewpoint systems are tried. For each of
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Fig. 12. Plot of number of events in the corpus/test data against full (Pitch)SATB

domain size.
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Fig. 13. Log-log plot of (Pitch)SATB domain size against time for the learning phase
of the program, which was run using a corpus of 30 hymns and multiple viewpoint
systems comprising 2 and 10 viewpoints.
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Fig. 14. Log-log plot of (Pitch)SATB domain size against time for the prediction phase
of the program, which was run using a corpus of 30 hymns and multiple viewpoint
systems comprising 2 and 10 viewpoints. A single hymn tune harmonisation comprising
33 events was predicted.

these systems, the learning phase is run ten times, and every harmonisation in
the corpus is predicted. Since it is clearly not practical to use the full domain,
further analysis will concentrate on the use of the seen and augmented domains.
Time complexities will be derived in terms of number of viewpoints, size of
corpus and size of test data, to give prospective developers of similar programs
an idea of their effect on running time.

9.3 Empirical Time Complexity Analysis Using Seen and
Augmented Domains

In this more detailed analysis, the learning phase is split into domain construc-
tion and model construction phases. First of all, it is appropriate to explain why
we have decided to derive time complexities empirically rather than analytically.
The domain construction phase should be the easiest to analyse, since the num-
ber of viewpoints is irrelevant: we are only constructing the three basic domains
during this phase. We can simplify things further by neglecting the Duration

and Cont domains, which are very small in comparison with that of Pitch. The
procedure is to traverse the corpus and test data, adding previously unseen el-
ements to the Pitch domain. The traversal time, ignoring domain processing
time, is proportional to the number of events in the corpus and test data; but
we cannot ignore domain processing. For each event in the corpus and test data,
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its Pitch element must, in the worst case, be compared with every element in
the Pitch domain, which increases in size throughout this process. The rate of
increase and ultimate size is much greater for the augmented domain than for
the seen domain. In neither case, however, can this information be accurately
determined a priori for any given corpus and test data (although inspection of
Figures 10 and 11 can give a rough idea for this style of music); we consider it
better, therefore, to derive the time complexity empirically.

Having said that, we know that in this particular case there are only 882
elements in the seen domain, compared with 2,601 events in the corpus and
test data (a ratio of 0.34). If we define nc to be the number of events in the
corpus and ntd to be the number of events in the test data, at worst the time
complexity for the seen domain is O((nc + ntd)

1.34). On the other hand, there
are 5,040 elements in the augmented domain; therefore in this case we would
expect a complexity of O((nc + ntd)

2.94) at worst.

Since time complexities for the model construction and prediction phases are
even more difficult to derive analytically (e.g., we cannot determine the size and
structure of the viewpoint models a priori), we have made no attempt to do so.
Let us now look at the empirical analyses.

Domain Construction Phase Figure 15 shows a plot of number of viewpoints
against time for the seen domain construction phase of the program, which was
run using corpora of 5, 10, 15, 20, 25 and 30 hymns. Each data point has a
mean time of ten runs, each run using a different randomly selected multiple
viewpoint system capable of predicting Duration, Cont and Pitch (the ten runs
vary widely in duration). Straight lines fit the data reasonably well. All six lines
are close to horizontal; therefore it has been concluded that, in reality, the run
times are constant with respect to the number of viewpoints. This makes sense,
considering that only the three basic viewpoint domains are constructed during
this phase. A similar plot for the augmented domain (see Figure 16) also leads
us to the conclusion that the times are constant with respect to the number of
viewpoints. The times are taken to be those in the centre of the fitted lines;
that is, at the 6 viewpoint mark. Two other data sets were also generated and
analysed, using different sets of hymns for each corpus size (resulting in different
numbers of corpus events). The graphs, which are not shown here, are similar
to those for the first data set.

Bearing in mind that the test data (in addition to the corpus) is taken into
account when constructing domains, we are now in a position to plot the number
of events in the corpus and test data against time; see Figure 17, which makes
use of all three of the generated data sets. The data is rather sparse and scat-
tered; but a straight line seems to produce a reasonable fit for the seen domain,
and a quadratic curve a reasonable fit for the augmented domain (both fits are
constrained to extend to the origin). The fact that time increases more rapidly
with increasing number of events for the augmented domain is not unreasonable,
since there is additional processing involved in its construction.
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Fig. 15. Plot of number of viewpoints against time for the seen domain construction
phase of the program, which was run using corpora of 5, 10, 15, 20, 25 and 30 hymns.
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Fig. 16. Plot of number of viewpoints against time for the augmented domain con-
struction phase of the program, which was run using corpora of 5, 10, 15, 20, 25 and
30 hymns.
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Fig. 17. Plot of number of events in the corpus and test data against time for the seen
and augmented domain construction phases of the program.

From the foregoing we gather that the time complexity of the domain con-
struction phase of the program is at worst O((nc + ntd)

2
). In other words, run

time is proportional to the square of the number of events in the corpus and test
data. This is better than the semi-analytically derived worst case complexity of
O((nc + ntd)

2.94
), which necessarily made use of simplifying assumptions.

Model Construction Phase Figure 18 shows a plot of number of viewpoints
against time for the model construction phase of the program, which was run
using the seen (Pitch)SATB domain and corpora of 5, 10, 15, 20, 25 and 30
hymns. Again, straight lines fit the data reasonably well; but in this case there
is a definite increase in run time with increasing number of viewpoints, which
is due to the fact that a separate model needs to be built for each viewpoint.
A similar plot for the augmented (Pitch)SATB domain (see Figure 19) shows a
larger increase in run time with increasing number of viewpoints. This is almost
certainly not due to an increase in the time required to construct the models
from the corpus per se, but rather to the time needed for other processing in-
volving domains in this part of the program. Again, two other data sets were
also generated and analysed, with similar results.

We can now plot the number of of events in the corpus against time; see
Figure 20. The times are taken from the fitted lines on the plots described above
rather than from the original data points. In this case, the best fit to the data
is a quadratic curve (constrained to extend to the origin); but the trend is close
to linear for the range of data analysed. As expected, run time increases with
the number of events in the corpus: there is a more rapid increase in time with
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Fig. 18. Plot of number of viewpoints against time for the model construction phase
of the program, which was run using the seen (Pitch)SATB domain and corpora of 5,
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increasing number of viewpoints, and the augmented domain gives rise to longer
run times than the seen domain.

If we define v to be the number of viewpoints, then from the above we con-
clude that the time complexity of the model construction phase of the program
is O(vn2

c). In other words, run time is proportional to the number of viewpoints,
and also proportional to the square of the number of events in the corpus. For the
range of data analysed here, however, we can say that run time is approximately
proportional to nc.

Prediction Phase Figure 21 shows a plot of number of viewpoints against
time for the prediction phase of the program, which was run using the seen
(Pitch)SATB domain and corpora of 5, 10, 15, 20, 25 and 30 hymns. Once more,
there is a reasonably good linear fit to the data, with increasing run time resulting
from increasing number of viewpoints. The reason for this is that more prediction
probability distributions need to be constructed and combined as the number
of viewpoints increases. A similar plot for the augmented (Pitch)SATB domain
(see Figure 22) shows a larger increase in run time with increasing number of
viewpoints. Once more, two other data sets were also generated and analysed,
with similar results.

Figure 23 shows a plot of the number of events in the the corpus against
time (taken from the fitted lines on the plots described above). The data is best
fitted using straight lines, which have been constrained to extend to the origin.
Again, run time increases with the number of events in the corpus, and the
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Fig. 21. Plot of number of viewpoints against time for the prediction phase of the
program, which was run using the seen (Pitch)SATB domain and corpora of 5, 10, 15,
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Fig. 22. Plot of number of viewpoints against time for the prediction phase of the
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effect of domain type and number of viewpoints is similar to that in the model
construction phase.

We can be fairly certain, without doing experiments, that the run time of
this phase is proportional to the number of events in the test data being pre-
dicted. This, combined with the above analysis, results in a time complexity of
O(vncntd) for the prediction phase of the program. In other words, run time is
proportional to the number of viewpoints, the size of the corpus, and the size of
the test data.

Complete Prediction Run The time complexity of a complete prediction
run is the same as the worst complexity of the three constituent phases, which
is O(vn2

c) as for model construction.

9.4 Time complexity Analysis of Viewpoint Selection

For viewpoint selection, an important factor in determining run time is the num-
ber of primitive viewpoints vp in a pool to be used in the stepwise optimisation
of the multiple viewpoint system. At any viewpoint addition stage, single ad-
ditions are made to the current multiple viewpoint system, and each of these
new systems is evaluated using ten-fold cross-validation. In the limiting case,
each primitive viewpoint in turn is added to the current system on its own and
as part of a link with primitive viewpoints already in the system. This means
that an evaluation is run the same number of times (at most) for each primitive
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viewpoint in the pool, which in turn means that run time is proportional to vp
(with a very large coefficient). This is only approximately true, however, since
the optimisation path can change dramatically with the addition of a primitive
viewpoint to the pool; it could, for example, result in a different number of view-
point addition stages, which cannot be predicted in advance. With this proviso
in mind, the time complexity of a viewpoint selection run is O(vpvn

2
c), where v is

the number of viewpoints in the ultimately selected multiple viewpoint system.

9.5 Time Complexity of Versions 2 and 3

Although no analysis has yet been done of the time complexity of versions 2
and 3, we anticipate that it will be broadly the same as for version 1 except for
the additional factor of prediction in stages. If, for example, the alto, tenor and
bass parts are predicted one after the other, the version 2 run time is likely to
be approximately three times that for prediction of ATB together. For version
3, each each successive prediction stage will take longer than the preceding one.
Other than that, coefficients and constants are likely to be higher in versions 2
and 3 (especially 3), thereby contributing to longer run times.

10 Harmony Produced by Our Best Model to Date

Although the focus of this article is the alleviation of time complexity, and in
particular its consequences for the reliable and efficient construction of domains,
we have included four automatically generated hymn tune harmonisations to
give a flavour of what the multiple viewpoint models can do. They were deliber-
ately chosen to demonstrate a range of quality. All of these harmonisations were
generated using the lowest cross-entropy model found so far, which is a version
3 long- and short-term model using the augmented Pitch domain generating B
given S followed by AT given SB. Although a fifty-hymn corpus was used during
viewpoint selection (for time complexity reasons), generation was undertaken
using a hundred-hymn corpus.

Before looking at the harmonisations, we need to explain the concept of prob-
ability thresholds. The generation of harmony relies on the random sampling of
prediction probability distributions. It was quickly very obvious to us, judging
by the quality (or rather, the lack of it) of generated harmonisations, that a mod-
ification to the generation procedure would be required to produce reasonably
good harmony. The problem was that random sampling sometimes generated a
chord of very low probability, which was bad in itself because it was likely to
be inappropriate in its context; but also bad because it then formed part of the
next chord’s context, which had probably rarely or never been seen in the cor-
pus. This led to the generation of more low probability chords. The solution we
proposed was to disallow the use of predictions below a chosen value, the prob-
ability threshold, defined as a fraction of the highest prediction probability in a
given distribution. This definition ensures that there is always at least one usable
prediction in the distribution, however high the threshold. Bearing in mind that
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an expert musician faced with the task of harmonising a melody would consider
only a limited number of the more likely options for each chord position, we
considered the removal of low probability predictions to be a reasonable solution
to the problem (unfortunately, low probability predictions known to be accept-
able are disallowed along with those known to be unacceptable; better solutions
will be sought in future work). The following harmonisations were all generated
using (Dur)SB, (Dur)SATB, (Cont)SB and (Cont)SATB probability thresholds of
0.5; a (Pitch)SB threshold of 0.2; and a (Pitch)SATB threshold of 0.4.

A harmonisation of hymn tune Bromsgrove (Vaughan Williams 1933, hymn
no. 144) is shown in Figure 24. Let us first examine what is wrong with this least
successful of the four harmonisations. There are four parallel octaves within the
first three bars, and another straddling bars 8 and 9. The change of harmony is
too rapid in the first half of the second bar. There are unnecessary repeated notes
in bars 5, 6, 7, 14 and 17; and the last chords of bars 13 and 16 are discordant.
On the third beat of bar 5 the alto and tenor notes could be better chosen to
make smoother chord progressions. In bar 11 there is a plagal cadence in the
key of F major with an incorrect strong-to-weak metrical arrangement; and the
piece does not end on a recognisable cadence. Although the harmony is generally
weak, there are some good points. The modulation to the relative minor in the
first phrase is interesting, although the appearance of an F♯ would have made it
more convincing. The modulation to F major in the second phrase is reasonably
well executed, ending with a solid ii7b–V–I.

Figure 25 shows a slightly more successful harmonisation of hymn tune Das
ist meine Freude (Vaughan Williams 1933, hymn no. 97). Although the harmony
sounds more convincing, there is still plenty wrong with it. There is a parallel
fifth in bar 12 and a parallel octave in bar 13 (both between tenor and bass).
Similarly, there is a parallel unison straddling bars 5 and 6. There are unnecessary
repeated notes in bars 4, 5, 8 and 12; and the last chord of bar 9 is discordant.
There are unessential notes which are not properly resolved in bars 1 and 11.
The soprano note on the first beat of bar 2 is below the preceding alto note;
that is, the parts overlap, which is frowned upon. There is similar overlapping
between tenor and bass in bars 7, 8, 9 and 11. The last chord of bar 13 (ignoring
the auxiliary note) fulfils some of the criteria for a passing 6

4
, in that it is a

metrically weak Ic approached by step; importantly, however, it is not quitted
by step. There is not a proper cadence at the end of bar 6, and the final cadence
is weak. On the other hand, most others are strong perfect cadences, with an
imperfect cadence occurring at the end of bar 10. The ii7b–I (in C major) at
the end of bar 8 has the flavour of a plagal cadence, since the first chord can
be heard as a subdominant chord with an added sixth. A well executed passing
note at the end of bar 3 goes some way to disguising a parallel octave and a false
relation. The use of modulation makes the harmony interesting. Starting in the
tonic, a modulation to the dominant is established in bar 4. The music reverts
to the tonic in bar 9, before modulating to the dominant again in bar 12. The
piece ends in the tonic, as usual.
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Fig. 24. Automatically generated harmonisation of hymn tune Bromsgrove (Vaughan
Williams 1933, hymn no. 144).
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Fig. 26. Automatically generated harmonisation of hymn tune Das walt’ Gott Vater
(Vaughan Williams 1933, hymn no. 36).

Figure 26 shows an even more successful harmonisation, this time of hymn
tune Das walt’ Gott Vater (Vaughan Williams 1933, hymn no. 36). It is still far
from perfect, however. There are four parallel unisons between the middle of bar
5 and the beginning of bar 7, and a parallel fifth between the second and third
chords of bar 6. The alto and tenor notes cross unnecessarily in the fourth chord
of bar 1; and there are two part overlaps in the second and third chords of bar
3. Notes are unnecessarily repeated at the beginning of bar 2 and the end of bar
6. An opportunity to modulate to the dominant is missed in the second phrase,
which instead ends with an imperfect cadence. On the positive side, there is a
good example of a passing note between the second and third beats of bar 2,
which helps to justify the doubled major third (often frowned upon) on the third
beat. The harmony is generally strong, albeit completely in the tonic, with two
perfect and two imperfect cadences.

Figure 27 shows a reasonably good harmonisation (arguably the best of the
four) of hymn tune Innocents (Vaughan Williams 1933, hymn no. 37), albeit that
there are still some imperfections. There is a parallel octave between the second
and third chords of bar 5, and another straddling bars 5 and 6. The doubled
major third in the last chord of bar 5 is better avoided; and the last quaver
(eighth note) of bar 6 is discordant. There are overlapping parts in bar 1 caused
by the B3 in the bass (a B2 would solve the problem). Doubled major thirds
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Fig. 27. Automatically generated harmonisation of hymn tune Innocents (Vaughan
Williams 1933, hymn no. 37).

in the soprano and bass are fairly common in the corpus, as appear in the last
chord of bar 3; but the following chord would sound better with an A3 in the
bass. Much of this harmony comprises good, strong chord progressions (including
cadences). It is made more interesting by a modulation to the dominant in the
first phrase (although one would normally expect the tonic to be established
over a longer period before modulating). There is a good example of a passing
note in the alto in bar 6.

These are just a few examples of the many harmonisations that we have pro-
duced, using gradually improving models, during the course our research. These
harmonisations vary widely in quality; but we have ideas for further improving
the models, which we are working on. In this way, we hope to be able to produce
consistently high quality harmony.

11 Conclusions and Future Work

The goal of extending the multiple viewpoint framework to the harmonic sphere
is hampered by the computational complexity arising from the increased num-
ber of possible different musical events to be predicted. We have developed and
tested a series of measures for making the problem tractable, allowing the imple-
mentation of new model features which contribute to the generation of improved
harmonisations. In the context of the multiple viewpoint framework, a viewpoint
domain is the set of valid elements (or symbols, or values) for a viewpoint, which
is a means of representing a musical attribute such as pitch. We have discussed
three issues affecting domains, and described how to construct them for increas-
ingly complex viewpoints, culminating in a formal procedure for the construction
of the most complex viewpoint domains.
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Firstly, we have seen in §6.2 that very large domains, like that of (Pitch)SATB

in version 1, can be vastly reduced in size by only including elements seen in the
corpus and test data, thereby greatly reducing run time. To take better account
of elements as yet unseen, this domain can be augmented by chord transpositions
occurring within the bounds of the known part ranges. If a part is given, such
as the soprano in version 1, the domain is further constrained by the attributes
of the given note.

Secondly, it has been known for some time with respect to melodic modelling
that it is not possible in general to fix derived viewpoint domains: they need to
be specially constructed before each prediction such that between them, the
members of the domain are able to predict all of, and only, the members of
the basic viewpoint domain (see §5.1). This article discusses the extension and
implementation of this principle for harmony.

Thirdly, we have shown in §5.2 that linked viewpoint domains are not, in
general, constructed simply by taking the Cartesian product of the constituent
viewpoint domains. This is due to the correspondences between basic and derived
viewpoints, and between the basic viewpoints Cont and Pitch (see §6.3): many
of the tuples in the Cartesian product make no logical sense and can therefore
be excluded.

In taking account of the above three issues whilst constructing domains, we
must be careful not to introduce errors for the reasons outlined in §6.4. We
have therefore described how to reliably construct domains for melody alone,
and for three versions of the framework for representing and modelling harmony
that we have developed (motivated by our aim to take better account of the
complexities of four-part harmony). The domain construction method outlined
for the most complex version has been implemented, and so far found to be
suitably robust. The method can easily be extended beyond the prediction of
three basic viewpoints.

The empirical analysis of the time complexity of version 1 of our computer
model has demonstrated beyond doubt the utility, from a run time point of
view, of reducing the Pitch domain from full to seen or augmented (see §9.2).
In the initial domain construction phase (for basic viewpoints only), run time is
proportional to the number of events in the corpus and test data for the seen
domain, whereas there is a quadratic relationship for the augmented domain.
This is because for each event in the corpus and test data, its Pitch element
must, in the worst case, be compared with every element in the Pitch domain;
and the size of the augmented domain increases at a much faster rate than
that of the seen domain as the corpus and test data is traversed. The semitone
by semitone transposition of newly seen chords further adds to the processing
requirements for the augmented domain.

In the model construction phase, run time is proportional to the number of
viewpoints, and is quadratic with respect to the number of events in the corpus,
for both the seen and the augmented domains. The viewpoint relationship is
entirely expected; but the behaviour with respect to the size of the corpus needs
some explanation. To create a viewpoint model, an N-gram sized window incre-
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mentally traverses the corpus. At each event, the partially constructed model
must be traversed to check whether or not the N-gram context has been seen
before. If it has, its count is updated; and if it has not, it is added to the model.
The larger the context the rarer it will be, leading to a larger model (possibly
approaching the size of the corpus); hence the relationship is bound to be worse
than linear.

In the prediction phase, run time is proportional to the number of viewpoints,
the size of the corpus and the size of the test data. For each event in the test
data, each viewpoint model is traversed to find a match with the context, and a
prediction probability distribution of (constrained) domain size is constructed.
Domain size increases with corpus size (actually corpus size plus test data size;
but we assume the test data size to be negligible) according to a sub-linear rela-
tionship (see Figures 10 and 11), and we would expect a similar relationship with
respect to model size (context discovery is similar to domain element discovery).
Since model traversal and domain construction occur in series, run time should
be at worst linear with respect to corpus size.

In the limit, overall prediction run time (all three phases) is proportional to
the number of viewpoints and the square of the number of elements in the corpus.
Viewpoint selection run time is also proportional (with a large coefficient) to the
number of primitive viewpoints employed in the stepwise optimisation of the
multiple viewpoint system (see §9.4).

Finally, we have drawn attention to the strengths and weaknesses of a few
example harmonisations produced by our best model to date. In the immediate
future, we intend to implement other versions which push the development of
the multiple viewpoint/PPM framework further, which we hope will enable us to
produce consistently high quality harmony which is recognisably in the style of
the learning corpus. In the light of the work described here, we do not anticipate
any significant problems with the construction of domains for these proposed
versions.
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Pearce, M. T., Müllensiefen, D., and Wiggins, G. A. (2008). A comparison of
statistical and rule-based models of melodic segmentation. In Proceedings of
the 9th International Conference on Music Information Retrieval (ISMIR),
pages 89–94, Philadelphia, USA. Drexel University.
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A Domain Construction Algorithms

A.1 Determination of Multipliers

Generalised algorithms for the determination of multipliers can be found in Algo-
rithms 1, 2 and 3. As an example, consider a linked viewpoint with constituents
derived from Duration, Cont and Pitch, and which also contains viewpoint
LastInPhrase (derived from basic viewpoint Phrase). Algorithm input param-
eter basic-type is an array equivalent to the type set 〈τ〉, which is {Duration,
Cont, Pitch, Phrase}; and input parameter basic-domain is an array of corre-
sponding domains. Let us assume that Duration, Cont and Pitch have domain
sizes of 5, 10 and 40 respectively, and that we wish to determine the multipliers
relating to Duration in the first instance. In this case, the input parameter k
(the basic-type index for the current constituent viewpoint) has a value of 0. The
inner-multiplier is obtained from Algorithm 2. In line 1, variable n is set to 3,
which is the highest basic-type index. The predicate in line 2 is false; therefore
line 4 is executed next. Algorithm 1 is called in this line, with input parameters
start and finish set to 1 and 3 respectively. On line 1, variable multiplier is set to
1; and in the for loop beginning on line 2, counter i is initially set to 1. In line
3, there are 10 elements in the Cont domain; therefore multiplier is reassigned
to 10. The for loop is executed again with i set to 2. In line 3, there are 40
elements in the Pitch domain; therefore multiplier becomes 400. The for loop
is executed once more with i set to 3. In line 3, there is only one element in the
Phrase domain (since Phrase attribute values are given); therefore the value of
multiplier remains at 400. This value is returned to line 4 of Algorithm 2, where
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Algorithm 1 Generalised algorithm for the determination of multipliers, in the
style of Corman et al. (2001). It is used in both Algorithm 2 and Algorithm 3. A
domain is an array of all viewpoint elements which could possibly be predicted.
Input parameter basic-domain is an array of domains corresponding to the basic
types in type set 〈τ〉. Procedure SIZE() returns the number of elements in an
array.

GET-MULTIPLIER(start, finish, basic-domain)
1 multiplier ← 1
2 for i ← start to finish
3 multiplier ← multiplier × SIZE(basic-domain[i])
4 return multiplier

Algorithm 2 Algorithm for the determination of inner-multipliers, in the style
of Corman et al. (2001). A domain is an array of all viewpoint elements which
could possibly be predicted. Input parameter basic-type is an array equivalent to
the type set 〈τ〉; input parameter basic-domain is an array of corresponding do-
mains; and input parameter k is the basic-type index for the current constituent
viewpoint. Procedure SIZE() returns the number of elements in an array; and
procedure GET-MULTIPLIER() can be found in Algorithm 1.

GET-INNER-MULTIPLIER(k, basic-type, basic-domain)
1 n ← SIZE(basic-type) − 1
2 if basic-type[k] = basic-type[n]
3 then inner-multiplier ← 1
4 else inner-multiplier ← GET-MULTIPLIER(k + 1, n, basic-domain)
5 return inner-multiplier

is is assigned to variable inner-multiplier. The value 400 is returned in line 5.
The outer-multiplier is obtained from Algorithm 3. The predicate in line 1 is
true; therefore line 2 is executed next. In this line, variable outer-multiplier is
set to 1. This value is returned in line 4.

By the continued application of these algorithms, for this example we can
see that for any constituent viewpoint able to predict Duration, the inner- and
outer-multipliers are 400 and 1; for any constituent viewpoint able to predict
Cont, the inner- and outer-multipliers are 40 and 5; for any constituent viewpoint
able to predict Pitch, the inner- and outer-multipliers are 1 and 50; and for any
other constituent viewpoint (LastInPhrase in this case), the inner- and outer-
multipliers are 1 and 2000 respectively.
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Algorithm 3 Algorithm for the determination of outer-multipliers, in the style
of Corman et al. (2001). A domain is an array of all viewpoint elements which
could possibly be predicted. Input parameter basic-type is an array equivalent to
the type set 〈τ〉; input parameter basic-domain is an array of corresponding do-
mains; and input parameter k is the basic-type index for the current constituent
viewpoint. Procedure GET-MULTIPLIER() can be found in Algorithm 1.

GET-OUTER-MULTIPLIER(k, basic-type, basic-domain)
1 if basic-type[k] = basic-type[0]
2 then outer-multiplier ← 1
3 else outer-multiplier ← GET-MULTIPLIER(0, k − 1, basic-domain)
4 return outer-multiplier

A.2 Domain Construction Procedure

A generalised algorithm for the construction of version 3 inter-layer linked view-
point domains can be found in Algorithm 4. This algorithm will be illustrated
by a modified real example: only a small subset of the actual Pitch domain is
used, comprising note names such as A♭4 rather than MIDI numbers, in order
to make the illustration more readily intelligible. We are predicting bass given
soprano using, amongst other viewpoints,

(Duration⊗ Pitch)S ⊗ (Cont⊗ ScaleDegree)Bp.

Input parameter viewpoint-type is an array of layers, which in turn are arrays of
primitive viewpoints; viewpoint-type is therefore the 2-dimensional array

0 1
S 0 Duration Pitch

B 1 Cont ScaleDegree.

The set of basic viewpoints that the above’s constituent viewpoints are derived
from (type set 〈τ〉) is {Duration, Cont, Pitch}. Input parameter basic-type is an
array containing these three viewpoints in the order given, with indices 0, 1 and
2 respectively. For the purposes of this example, we assume that the Duration

attribute of a bass note has already been predicted; therefore the Duration

domain contains only one element:

{〈〈S, 0, Duration, 〈24〉〉 〈B, 0, Duration, 〈24〉〉〉}.

The next attribute to be predicted is Cont. The given soprano note has a Cont

attribute of F ; therefore the domain is constrained to two elements:

{〈〈S, 0, Cont, 〈F 〉〉 〈B, 0, Cont, 〈T 〉〉〉,
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〈〈S, 0, Cont, 〈F 〉〉 〈B, 0, Cont, 〈F 〉〉〉}.

The 5-element Pitch domain (constrained to have a soprano A♭4) is

{〈〈S, 0, Pitch, 〈A♭4〉〉 〈B, 0, Pitch, 〈F2〉〉〉,

〈〈S, 0, Pitch, 〈A♭4〉〉 〈B, 0, Pitch, 〈E♭3〉〉〉,
〈〈S, 0, Pitch, 〈A♭4〉〉 〈B, 0, Pitch, 〈E3〉〉〉,
〈〈S, 0, Pitch, 〈A♭4〉〉 〈B, 0, Pitch, 〈F3〉〉〉,

〈〈S, 0, Pitch, 〈A♭4〉〉 〈B, 0, Pitch, 〈F♯3〉〉〉}.

Input parameter basic-domain is an array containing the above three domains
in the order given, with indices 0, 1 and 2 respectively.

The highest part (in terms of pitch) is dealt with first. If the viewpoint
on this layer is, or contains, a basic viewpoint, each of the symbols or values
belonging to that layer in the basic viewpoint domain is added, in turn, to what
will become the inter-layer linked viewpoint domain, with repeats determined
by the inner- and outer-multipliers. If the viewpoint is derived, the procedure is
the same except that each basic viewpoint symbol is converted to the relevant
derived viewpoint symbol.

In the for loop beginning on line 3, variable layer is initially assigned the
array of viewpoints in the soprano layer. Having been initialised as −1 in line 2,
counter p (an index indicating the layer) is incremented to 0 in line 5. In the for
loop beginning on line 6, variable constituent-viewpoint is initially assigned layer
element Duration. Having been initialised as−1 in line 4, layer-constituent-count
is incremented to 0 in line 7. In line 8, variable i is assigned the basic-type index
for Duration, which is 0. The return value of Algorithm 2, in this case, is the
product of the Cont and Pitch domain sizes, which is 10. This value is assigned
to variable inner-multiplier on line 9. Algorithm 3 returns the default value 1,
which is assigned to variable outer-multiplier on line 10. In line 12, variable
outer-counter is set to 1; and since there is only one element in basic-domain[0]
(the Duration domain), variable j is set to 0 in line 13. Variable basic-element
is assigned the single Duration element

〈〈S, 0, Duration, 〈24〉〉, 〈B, 0, Duration, 〈24〉〉〉

in line 14. Since the constituent viewpoint is Duration, in line 15 variable
derived-element is assigned precisely the same element as basic-element. In line
16, in the first instance, inner-counter is set to 1. Having been initialised as −1
in line 11, variable e (an index indicating the inter-layer linked viewpoint domain
element) is incremented to 0 in line 17. The predicate in line 18 is true; there-
fore line 19 is executed, which assigns 〈S, 0, Duration, 〈24〉〉 to array element
domain[0][0]. Lines 16 – 19 (inclusive) are executed a further nine times, giving
a provisional linked domain of

{〈〈S, 0, Duration, 〈24〉〉〉, 〈〈S, 0, Duration, 〈24〉〉〉,

〈〈S, 0, Duration, 〈24〉〉〉, 〈〈S, 0, Duration, 〈24〉〉〉,

〈〈S, 0, Duration, 〈24〉〉〉, 〈〈S, 0, Duration, 〈24〉〉〉,
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Algorithm 4 Generalised algorithm for the construction of version 3 inter-layer
linked viewpoint domains, in the style of Corman et al. (2001). A domain is an
array of all viewpoint elements which could possibly be predicted, which in turn
are arrays of layers. Input parameter viewpoint-type is an array of layers, which
in turn are arrays of primitive viewpoint types; input parameter basic-type is an
array equivalent to the type set 〈τ〉; and input parameter basic-domain is an ar-
ray of corresponding domains. Procedure SIZE() returns the number of elements
in an array; procedure GET-BASIC-TYPE-INDEX() returns the basic-type index
for the current constituent viewpoint; procedures GET-INNER-MULTIPLIER()
and GET-OUTER-MULTIPLIER can be found in Algorithms 2 and 3 respec-
tively; procedure GET-DERIVED-ELEMENT() converts a basic viewpoint ele-
ment into a derived viewpoint element; procedure INTRA-LAYER-ELEMENTS-
COMPATIBLE() returns TRUE if a viewpoint symbol to be added to a layer
portion of a domain element is logically compatible with a symbol (or sym-
bols) already in it; and procedure MERGE-DOMAIN-ELEMENT-LAYER() links
a viewpoint type and symbol with a type and symbol already in a layer por-
tion of a domain element. Procedures REMOVE-UNDEFINED-ELEMENTS() and
REMOVE-DUPLICATE-ELEMENTS() are self-explanatory.

CONSTRUCT-DOMAIN(viewpoint-type, basic-type, basic-domain)
1 domain ← initialise array
2 p ← −1
3 for layer ← viewpoint-type[0] to viewpoint-type[SIZE(viewpoint-type) − 1]
4 layer-constituent-count ← −1
5 p ← p+ 1
6 for constituent-viewpoint ← layer[0] to layer[SIZE(layer) − 1]
7 layer-constituent-count ← layer-constituent-count + 1
8 i ← GET-BASIC-TYPE-INDEX(constituent-viewpoint)
9 inner-multiplier ← GET-INNER-MULTIPLIER(i, basic-type,

basic-domain)
10 outer-multiplier ← GET-OUTER-MULTIPLIER(i, basic-type,

basic-domain)
11 e ← −1
12 for outer-counter ← 1 to outer-multiplier
13 j ← SIZE(basic-domain[i]) − 1
14 for basic-element ← basic-domain[i][0] to basic-domain[i][j]
15 derived-element ← GET-DERIVED-ELEMENT(constituent-

viewpoint, basic-element)
16 for inner-counter ← 1 to inner-multiplier
17 e ← e+ 1
18 if layer-constituent-count = 0
19 then domain[e][p] ← derived-element[p]
20 else if INTRA-LAYER-ELEMENTS-COMPATIBLE(

domain[e][p], basic-element[p]) = TRUE
21 then domain[e][p] ← MERGE-DOMAIN-

ELEMENT-LAYER(
domain[e][p], derived-element[p])

22 else domain[e][p] ← “undef”
23 domain ← REMOVE-UNDEFINED-ELEMENTS(domain)
24 domain ← REMOVE-DUPLICATE-ELEMENTS(domain)
25 return domain
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〈〈S, 0, Duration, 〈24〉〉〉, 〈〈S, 0, Duration, 〈24〉〉〉,

〈〈S, 0, Duration, 〈24〉〉〉, 〈〈S, 0, Duration, 〈24〉〉〉}.

At this point, the provisional inter-layer linked viewpoint domain contains all
of the elements we need (and probably more), albeit that they are incomplete.
If there is a second basic or derived viewpoint associated with this layer (i.e.,
a constituent of an intra-layer linked viewpoint), then the same procedure is
followed except that the symbols are linked with the symbols already in the
provisional domain, in the same order as the original additions to the domain.

The for loop beginning on line 6 is executed again, with constituent-viewpoint
set to Pitch. In line 7, layer-constituent-count is incremented to 1; and in line 8,
i is assigned the value 2 (the basic-type index for Pitch). Algorithm 2 returns the
default value 1, which is assigned to inner-multiplier on line 9. The return value
of Algorithm 3 is the product of the Duration and Cont domain sizes, which is 2.
This value is assigned to outer-multiplier on line 10. In line 12, outer-counter is
initially set to 1; and since there are five elements in basic-domain[2] (the Pitch
domain), j is set to 4 in line 13. Variable basic-element is initially assigned the
Pitch element

〈〈S, 0, Pitch, 〈A♭4〉〉, 〈B, 0, Pitch, 〈F2〉〉〉

in line 14. Since the constituent viewpoint is Pitch, in line 15 derived-element is
assigned precisely the same element as basic-element. In line 16, inner-counter
is set to 1; and having been initialised as −1 in line 11, e is incremented to 0
in line 17. The predicate in line 18 is false; therefore line 20 is executed next.
The predicate in this line can only possibly be false if the current layer contains
both Cont and a viewpoint derived from Pitch. In this case, the predicate is
true; therefore line 21 is executed, which replaces the contents of domain[0][0]
with 〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉. The for loop beginning on line 14
is executed a further four times (thereby running through the rest of the Pitch

domain) before executing the for loop beginning on line 12 one more time. At
this stage the soprano layer has been completed, giving a provisional linked
domain of

{〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉〉}.

We then move on to the next layer, again adding to the elements already
in the provisional domain, and so on, until all the layers have been dealt with.
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There is only one other layer in the example, the bass part, which contains the
intra-layer linked viewpoint Cont ⊗ ScaleDegree.

The for loop beginning on line 3 is executed again, with layer assigned the
array of viewpoints in the bass layer. Counter p is incremented to 1 in line
5; and in the for loop beginning on line 6, constituent-viewpoint is initially
assigned Cont. Having been initialised as −1 in line 4, layer-constituent-count is
incremented to 0 in line 7; and in line 8, i is assigned the value 1 (the basic-type
index for Cont). The return value of Algorithm 2 is the Pitch domain size, which
is 5. This value is assigned to variable inner-multiplier on line 9. Algorithm 3
returns 1 (the size of the Duration domain), which is assigned to variable outer-
multiplier on line 10. In line 12, outer-counter is set to 1; and since there are two
elements in basic-domain[1] (the Cont domain), j is set to 1 in line 13. Variable
basic-element is initially assigned the Cont element

〈〈S, 0, Cont, 〈F 〉〉, 〈B, 0, Cont, 〈T 〉〉〉

in line 14. Since the constituent viewpoint is Cont, in line 15 derived-element
is assigned precisely the same element as basic-element. In line 16, in the first
instance, inner-counter is set to 1; and having been initialised as −1 in line 11,
e is incremented to 0 in line 17. The predicate in line 18 is true; therefore line
19 is executed, which assigns 〈B, 0, Cont, 〈T 〉〉 to array element domain[0][1].
Lines 16 – 19 (inclusive) are executed a further four times, and then the for loop
beginning on line 14 is executed again (thereby processing the remaining Cont

domain element). The provisional linked domain then becomes

{〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, 〈B, 0, Cont, 〈T 〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, 〈B, 0, Cont, 〈T 〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, 〈B, 0, Cont, 〈T 〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, 〈B, 0, Cont, 〈T 〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, 〈B, 0, Cont, 〈T 〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, 〈B, 0, Cont, 〈F 〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, 〈B, 0, Cont, 〈F 〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, 〈B, 0, Cont, 〈F 〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, 〈B, 0, Cont, 〈F 〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, 〈B, 0, Cont, 〈F 〉〉〉}.

The final viewpoint to be added is ScaleDegree in the bass part; because
it predicts Pitch, its inner-multiplier is 1, and its outer-multiplier is 2. There
is a particular problem to be overcome with respect to the intra-layer linking
of Cont with Pitch, or viewpoints derived from it, however. As we have seen
in §6.3, there is an interaction between the Cont and Pitch domains; therefore
the Cartesian product would contain pairings making no logical sense. In this
case, as the Pitch domain is traversed, the Pitch symbol is checked against the
relevant Cont symbol (which is already in the provisional domain): if the pairing
makes logical sense, the Pitch symbol, or a symbol derived from it, is added to
the element in the provisional domain as usual; if not, the element is tagged as
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undefined. The previous note was F3 (MIDI value 53); therefore 53 is the only
Pitch value which can be sensibly paired with a Cont value of T . The tonic is
E♭; therefore F has a ScaleDegree value of 2.

The for loop beginning on line 6 is executed again, with constituent-viewpoint
set to ScaleDegree. In line 7, layer-constituent-count is incremented to 1; and
in line 8, i is assigned the value 2 (the basic-type index for Pitch). Algorithm 2
returns the default value 1, which is assigned to inner-multiplier on line 9. The
return value of Algorithm 3 is the product of the Duration and Cont domain
sizes, which is 2. This value is assigned to outer-multiplier on line 10. In line
12, outer-counter is initially set to 1; and since there are five elements in basic-
domain[2] (the Pitch domain), j is set to 4 in line 13. Variable basic-element is
initially assigned the Pitch element

〈〈S, 0, Pitch, 〈A♭4〉〉, 〈B, 0, Pitch, 〈F2〉〉〉

in line 14. This time, since the constituent viewpoint is ScaleDegree, in line 15
derived-element is assigned the element

〈〈S, 0, ScaleDegree, 〈5〉〉, 〈B, 0, ScaleDegree, 〈2〉〉〉.

In line 16, inner-counter is set to 1; and having been initialised as −1 in line 11,
e is incremented to 0 in line 17. The predicate in line 18 is false; therefore line 20
is executed next. The predicate in this line is false, because F3 followed by F2 is
not compatible with a Cont value of T (it is assumed that previous predictions
have global scope; that is, they can be accessed from anywhere); therefore line 22
is executed, in which the contents of domain[0][1] are replaced with undef. The
for loop beginning on line 14 is executed a further four times, thereby running
through the rest of the Pitch domain. The predicate in line 20 is true on only
one of these passes (when F3 is followed by F3), in which case the contents of
domain[3][1] are replaced with 〈B, 0, Cont ⊗ ScaleDegree, 〈T, 2〉〉. The for
loop beginning on line 12 is executed one more time, giving a provisional linked
domain of

{〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, undef 〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, undef 〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, undef 〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, 〈B, 0, Cont⊗ ScaleDegree, 〈T, 2〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, undef 〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, 〈B, 0, Cont⊗ ScaleDegree, 〈F, 2〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, 〈B, 0, Cont⊗ ScaleDegree, 〈F, 0〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, 〈B, 0, Cont⊗ ScaleDegree, 〈F, 1〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, 〈B, 0, Cont⊗ ScaleDegree, 〈F, 2〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, 〈B, 0, Cont⊗ ScaleDegree, 〈F, 3〉〉〉}.

The provisional domain, constructed in this way in order to ensure that
symbols which do not correspond with each other are not linked, may contain
elements tagged as undefined, and may also contain duplicate elements; therefore
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the final inter-layer linked viewpoint domain is achieved once undefined and
duplicate elements have been removed (lines 23 and 24):

{〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, 〈B, 0, Cont⊗ ScaleDegree, 〈T, 2〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, 〈B, 0, Cont⊗ ScaleDegree, 〈F, 0〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, 〈B, 0, Cont⊗ ScaleDegree, 〈F, 1〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, 〈B, 0, Cont⊗ ScaleDegree, 〈F, 2〉〉〉,

〈〈S, 0, Duration⊗ Pitch, 〈24, A♭4〉〉, 〈B, 0, Cont⊗ ScaleDegree, 〈F, 3〉〉〉}.


