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Abstract. Over the course of the London 2012 Olympics a large public
installation took place in Central London. Its premise was to enable mem-
bers of the public to express themselves by controlling the lights around
the rim of the London Eye. The installation’s design and development
was undertaken as a collaborative project between an interactive arts
studio and researchers in the field of affective and behavioural comput-
ing. Over 800 people participated, taking control of the lights using their
heart rates and hand gestures. This paper approaches nonverbal and af-
fective behaviour understanding for new media art as a case study, and
reports the design of this installation and the subsequent analysis of over
one million frames of physiological and motion capture data. In doing so
it sheds light on how the intersection of affective and behavioural com-
puting and new media art could be beneficial to both researchers and
artists.
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1 Introduction

New Media Art is defined as art that utilises new media, such as digital electron-
ics, computer animation, interactive interfaces or networked communication [1].
In many cases, these media comprise the very same tools that affective and be-
havioural computing researchers are adopting for the computerised recognition
and expression of human nonverbal behaviour and affect. Despite this plurality,
there is currently very little exploration or utilisation of affective and behavioural
computing techniques in artistic practices. This is surprising, given the impor-
tant roles that nonverbal behaviour and affect play in creative expression and
experience [2]. As affective and behavioural computing starts to migrate from
the laboratory and into the wider world, the question of whether artists will
welcome affective and behavioural computing based technologies as a positive
addition to their new media palettes is likely to come to the fore.

During the summer of 2012 we undertook a collaborative project with Cin-
imod Studio - an interactive arts studio based in London. The project involved
both artists and researchers in affective and behavioural computing and led to



the design and analysis of a high profile interactive installation called the Mood
Conductor. Our work was conducted in the wild (non-laboratory settings) and
consequently this paper approaches nonverbal behaviour analysis as a case study,
when subjective evaluation of the user experience cannot be obtained. We report
the design of the installation and the subsequent unsupervised analysis of over
one million frames of physiological and motion capture data. By presenting and
discussing the processes, challenges and results of this study, we hope to provide
valuable insights into the nature of the intersection of affective and behavioural
computing and new media art practices.

2 Background

Physiological measurement and gesture recognition are two techniques that have
been adopted by technologists, artists and researchers in order to enrich the ways
we interact with computers, artworks and creative installations. However, there
has been little cross-pollination of ideas between the commercial and academic
worlds. While researchers attempt to identify affective states from measurable
components of nonverbal behaviour and physiology, artists and technologists are
creating entities that enable new forms of expression. The project discussed in
this paper combined both physiological and gestural measurements in an attempt
to bring an affective and behavioural dimension to a large public installation.

2.1 Heart Rate Measures, Affect and Art

In the field of psychophysiology many studies have been carried out which at-
tempt to quantify the physiological aspects of different emotions [3–5]. The most
commonly measured variables are galvanic skin response (sweating), breathing
rate, muscle contraction, pupil dilation, and cardiac output (e.g. heart rate,
blood pressure, heart rate variability) [6]. Heart related measurements are par-
ticularly attractive to affective and behavioural computing researchers due to
the fact that changes in cardiac output occur very quickly in response to exter-
nal stimuli. In a study of emotional reactions to video game events Ravaja et
al [7] found that phasic heart rate changes occurred in response to specific game
events. Rewarding and positive game events were accompanied by an increase
in heart rate, whilst the authors suggested that decreases in heart rate could be
associated with a rise in attentional engagement. In relation to sadness, a study
of emotion during musical performance observed a decrease in average heart
rate when musicians performed under the condition of induced sadness relative
to performances in which they merely expressed sadness [8]. Heart rate changes
in response to negative emotional stimuli have also been found to be more pro-
longed when compared to equivalent exposure to positive stimuli [9]. The main
challenge in using heart rate as a reliable indicator of affect is that it is necessary
to control for the numerous variables that can affect a person’s heart rate. These
include health factors, physical exertion and the influence of drugs such as caf-
feine. In laboratory based experiments it is possible to account for these extra



variables using controlled settings, subject profiles and questionnaires. However,
if we are to use heart rate measures in media and arts applications in the wild
there is a much greater challenge in extracting meaningful data from heart rate
measures alone.

2.2 Hand Gestures, Affect and Art

One of the first gestural interfaces was the Theremin [10], a musical instrument
which creates sound oscillations with varying frequency and amplitude accord-
ing to the position of the player’s hands relative to two antennas. The Theremin
serves as a good example of the design considerations that should be made when
using gestural input as a control interface. Sturman and Zeltzer [11] formalise
these considerations and organise them as sequential stages in the design process.
The initial stage involves assessing the appropriateness of whole hand input as
a method of interaction by considering its distinguishing features - naturalness,
adaptability, coordination and real-time control. The second stage concerns tax-
onomy - distinguishing which styles of whole-hand input will fit the application.
Sturman and Zeltzer organise the expressivity of the hand into two categories -
continuous features, which concern quantifiable measurements of the physics of
the hand (e.g. force applied, and degrees of rotation); and discrete features that
refer to symbolic ‘input tokens’ such as postures (e.g. thumbs-up) or gestures
(e.g. waving). The third and final stage involves the matching of ‘task primitives’
to particular hand actions. In the case of the Theremin the primitives are pitch
and amplitude adjustment, and the actions are the continuous movement of the
hands in three dimensions.

In more recent years the release of open source drivers for the Microsoft
Kinect has provided an accessible way for artists and interaction designers to
work with motion capture based gesture recognition. When looking at examples
of the use of the Kinect in these contexts (see [12] and [13] for specific works),
a common feature is that less defined input to output mappings are used, an
approach which puts more creative freedom in the hands of the person using the
interface. The LEAP motion sensor, released in July 2013, purports to be able
to measure finger movement to a resolution of 0.01 millimetres. Technologies like
this will undoubtedly contribute towards on-going advances in the measurement
of fine-grained gestures.

The Component Process Model (CPM) [14] breaks emotion down into five
components - cognitive, neurophysiological, motivational, motor expression and
subjective feeling - each with associated functions and ‘organismic subsystems’ [15].
The study of affective gestures relates to the motor expression component of this
model - the movement of joints, muscles and limbs. In a study of the percep-
tion of affect from arm movement, Pollick et al. [16] used point-light displays to
represent knocking and drinking movements, each performed with ten different
affects (afraid, angry, excited, happy, neutral, relaxed, sad, strong, tired, and
weak). They found that the arousal dimension [17] of each affective state had
a strong correlation to kinematic features of the movement such as velocity, ac-



celeration and jerk. Similar experiments have since supported this link between
emotional arousal and motion [18,19].

3 Design and Development

Cinimod Studio1 were commissioned to create an installation which would enable
members of the public to represent their mood by taking control of the lights
on the London Eye. Participants would be invited free-of-charge to step onto
a podium for roughly one minute, during which they would be able to use the
motion of their hands to control the 320 lights which line the rim of the Eye.

3.1 Design

Simplicity was one of the main concepts that guided the design process. Given
the potentially short amount of time that each participant would have to interact
with the installation, the following were identified as prerequisites: (i) ensuring
that the participants would not spend a majority of the time trying to understand
how their movements affected the lights, and (ii) making the sense of control clear
and powerful by focusing on direct mappings of hand and arm movements to
lighting changes, as opposed to recognising and responding to specific symbolic
gestures.

The Kinect SDK was used to track the position of each of the participants’
hands and the centre of their body (torso). The angles between each hand and
the torso (along the coronal plane) were then directly mapped to the angular
positions of two segments of lighting content on the perimeter of the Eye (see
Fig. 1). In order to create a robust motion tracking system the Kinect data was
passed through three stages of processing: (i) detecting the current user and
extracting joint coordinates (shoulder, elbow, hand, etc.), (ii) filtering to discard
false participants based upon coordinate positions and quantity of motion, and
(iii) smoothing the motion data and calculating hand-torso angles to be used by
the lighting content generator.

Three distinct lighting content styles were designed in order to give some
aesthetic variation to the artwork. We also wanted the variation in these styles
to be somewhat representative of different mood states. The three styles were
named Wave, Fire and Spectrum (see Fig. 2). Wave had a sense of calmness (a
low arousal, high valence mood), simulating the fluidic motion caused by waving
your hands in a pool of water. Fire gave the impression of juggling with flaming
torches, which we associated with high arousal moods. Spectrum was the most
colourful of the three and had a sparkling appearance that gave it a sense of
representing high valence (positive) moods. Since the Eye was rotating during
the installation, a gyroscope (positioned on the rim of the Eye) was used to sense
the angle of rotation and correct the orientation of the lighting content so that
it did not appear to move with the Eye.

1 http://cinimodstudio.com/



The inclusion of a pulse rate sensor was intended to provide an additional,
symbolic means of representing the participants’ moods through the lights on the
Eye. We built a custom heart rate monitor, which used a photo-plethysmographic
ear-clip sensor coupled with an analog switch. The signal from this was then
transmitted wirelessly (using XBee modules). The resulting device was small
enough to be worn around the neck, and could be quickly transferred between
participants. An additional lighting content feature was developed, allowing the
participants to view their heart beats as a pulsing red strip of lights at the top
of the Eye. The feature was triggered when a participant held their hands still
for longer than three seconds. The software for processing the inputs from the
Kinect and pulse monitor was developed using VVVV, a visual programming
environment which has inbuilt support for Kinect, as well as DMX protocol
lighting output. An overview of the full system is given in Fig. 1.

Fig. 1. System diagram detailing the basic setup and functioning of the installation

Fig. 2. Content styles: (from left) Wave, Spectrum, Fire, Wave with heart pulse feature



3.2 Mood Profiling

We decided to assign a fixed content style to each participant. It would be
confusing if the content style changed, especially given the short time people had
to explore the installation. As previously discussed, heart rate and kinematic
features of gesture have been shown to be linked to the arousal dimension of
affect. By analysing each participant’s initial motion and heart rate data, we
created a snapshot profile of their mood state which was then used to select the
content style.

The profiling was performed at the beginning of each participant’s turn (first
5 sec). Content choice was implemented by assigning a score to each of the three
content styles based upon weighted contributions of six features: the average
heart rate and five kinematic variables - fluidity, angular motion, range of depth,
average height and unique movement. The contribution of these factors to each
content score is shown in Table 1. Heart rate thresholds were chosen based on the
average median, maximum and minimum heart rates for a healthy individual.

Table 1. Content scoring criteria

Content Style
Positively Contributing Factors

Heart Rate (bpm) Kinematic

Wave <80 Fluidity, low average height

Spectrum 80 - 100 Unique movement, range of depth

Fire >100 Angular motion, high average height

For each participant the highest scoring content style was selected for the dura-
tion of their turn on the installation. For example, if the participant waved their
hands high and had a heart rate above 100 bpm then the system would select
the Fire content for them. The five kinematic features of hand movement are
described in more detail below.

1. Fluidity(flu): A measure of the uniformity of motion [18], calculated based
upon the variance in the first n velocity values for each hand,

flu =
1

n

n∑
i=1

(v(i) − µ)2 (1)

where µ is the average velocity over first n samples and v(i) is the velocity
at sample i:

v(i) =

√
(xi − xi+1))2 + (yi − yi+1)2 + (zi − zi+1)2)

ti+1 − ti
(2)

(xi, yizi) are the 3D coordinates of the hand at sample i, and ti is the time
at sample i.



2. Angular motion (mα): A measure of amount of rotational movement of
the arms, calculated by finding the range in the first n angle values.

mα =
n

max
i=1

(α(i)) −
n

min
i=1

(α(i)) (3)

where α(i) is the angle value for the ith sample:

α = arctan 2(yh − yt, xh − xt) (4)

(xh, yh) is the 2D position coordinates of left or right hand, and (xt, yt) is
the 2D position coordinates of the torso.

3. Range of depth(rd): Calculated as the maximum range in the first n depth
range values along the Z axis (depth) for each hand.

rd =
n

max
i=1

(z(i)) −
n

min
i=1

(z(i)) (5)

4. Average height(h): Calculated as the average of first n height values along
the Y axis (vertical) for each hand.

h =
1

n

n∑
i=1

y(i) (6)

5. Unique movement: A measure of the uniqueness of the hand movement
during a given sampling period. This was calculated using a function in
VVVV which outputs the number of unique coordinates in an array con-
taining all of the hand coordinates over n samples. For example, if someone
kept their hand still for the duration of the sampling period then there would
only be one unique coordinate value (uniqueness = 1), whereas if they waved
their hand between multiple positions the uniqueness value would be greater,
reflecting the number of positions their hand covered.

4 Data Analysis and Results

Due to the restrictions of collecting data in the wild we were aware that our
ability to draw significant conclusions from our data analysis would be some-
what restricted. For example, we were unable to collect video data or subjective
feedback from participants. Consequently we approached our data analysis with
an intention to broadly investigate the outcomes of applying affective and be-
havioural computing inspired techniques in a real-world interactive media and
arts context. More specifically, the goal was (i) to explore the potential of using
unsupervised data analysis techniques for new media art and design, and (ii)
to contrast the embedded intentions in the design of this specific installation to
the actual outcomes of it, in terms of recorded participant behaviours. The data
collected over the course of the installation amounted to over one million frames
of motion capture and physiological data from over 800 individuals.

In the following section we analyse the data acquired under (i) spatial analy-
sis, (ii) physiological and kinematic analysis, and (iii) gestural analysis categories.



4.1 Spatial Analysis

The goal of the spatial analysis was to obtain an overview of how the motion
capture data was spread spatially. We achieved this by using histogram images
to represent the spread of data in both the X-Y (face-on) and Z-Y (side-on)
planes. The histogram images were generated by (i) separating the coordinate
space into a two dimensional grid and creating a corresponding array (where the
row and column numbers corresponded to the centre coordinates of each grid
element), (ii) summing up the number of times that hand coordinates appeared
in each grid element, and (iii) plotting the array as an image to distinguish them
in terms of different intensity values. To account for variations in hand position
due to differences in where the participants were standing, we scaled all of the
hand coordinates relative to the coordinates for the centre of the participant’s
body. Figure 3(a) shows the histogram generated for the frontal (X-Y) plane
using the right hand coordinates for all data frames. it indicates that right hand
motion was predominantly situated in a semi-circular pathway about the centre
of the participant, corresponding to outstretched arm movement, pivoting at the
shoulder.

When analysing the images for the side-on (Z-Y) plane, we observed little
variation in depth, which showed that the movement predominantly occurred in
the coronal plane. When comparing the left and right hand histogram images
we observed that the spread of motion was much more restricted for the left
hand, suggesting that handedness influenced how people interacted with the
installation. By applying a lower threshold to the histogram values (for both
hands), we created a scatter plot of the most common hand positions. We then
used a mixture of Gaussian clustering algorithm to outline the overall use of the
interaction space and regions where hand motion was most frequent (Fig. 3 (b)).
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Fig. 3. (a) Right-hand X-Y histogram image. (b) Mixture of Gaussian plot showing
six regions where hand motion was most prevalent: horizontally outstretched (2 & 6),
above the head (1), down by the thighs (3 & 5), and in front of the torso (4)



4.2 Physiological and Kinematic Analysis

From the motion capture data we were able to extract two temporal features of
the hand movements, variation in velocity and variation in angle. Velocity was
calculated as described in (2) and angle was calculated based on (4) using the
X-Y coordinates of each hand relative to the centre of the hip.

Figure 4(a) provides a typical plot of the velocity profile for a single partici-
pant’s right and left hands, over an eight second window. It shows a high degree
of synchrony in the timing of the movements of the left hand and the move-
ments of the right hand. Figure 4(b) shows the angle of each hand over the same
time window. It reveals that although the movement timing was synchronous,
the relative hand positions are either in phase or out of phase, corresponding to
symmetrical and non-symmetrical movement.
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Fig. 4. Plots of right and left hand velocity (a) and angle (b) profiles for a single
participant over an eight second window

We were also interested in exploring potential links between participants’
behaviour and the content style they were interacting with. We separated the
data according to which content style was active when it was recorded, then
we compared averaged spatial, kinematic and physiological features of the data
sets. The results for hand height (Y position), velocity and average heart rate are
shown in Table 2. The hand data sample sizes were 104, 133 and 111 participants
for the Wave, Spectrum, and Fire content styles respectively. This is less than the
total number of participants because we only selected participants with at least
one minute of data, using the first minute (1500 samples) for our analysis. The
heart rate data sample sizes were 29, 42 and 34 due to discarding participants
with intermittent readings.

These results suggest that participants interacting with the Spectrum con-
tent behaved more energetically, indicated by their higher average heart rate
and hand velocity. However participants interacting with the Fire content had
the highest average hand position. The latter result concurs with our selection
criteria, which used hand height as a positive bias towards selection of the Fire
content style.



Table 2. Average right hand (RH) motion and heart rate values separated by content
style (standard deviation shown in parenthesis)

Content Style RH height (m) RH Velocity (m/s) Heart Rate (bpm)

Wave -0.09 (0.45) 1.49 (1.67) 94 (13)

Spectrum -0.08 (0.42) 1.85 (1.83) 102 (13)

Fire 0.01 (0.43) 1.52 (1.50) 97 (17)

4.3 Gestural Analysis

In contrast to the numerically oriented analysis above, we also manually anal-
ysed the gestures which participants on the Mood Conductor performed. The
intention in doing this was to create a descriptive library of the most common
gestures. We achieved this by watching and annotating animated replays of the
motion capture data. We gave names to ten of the most commonly observed
gestures, these are described below and depicted visually in Fig. 5. The ges-
tures are short in duration with a maximum of two movement phases - these
are annotated by light/yellow arrows (first phase) and dark/red arrows (second
phase).

1. Propellers: Both arms perform circular motions, either simultaneously or
alternately. The direction of rotation is usually opposite for each arm, how-
ever this may be changeable.

2. Sway: Both arms perform a simultaneous left-right/right-left swaying mo-
tion above the head.

3. Flag: One extended arm performs an up/down flagging motion whilst the
other arm is stationary at the participants side. This may also be performed
as a single slow movement from the low to high position or vice versa.

4. Seesaw: Extended left and right hands move up and down simultaneously
but in opposite directions.

5. Hands Together: Both hands are held together and circular motions are
performed with extended arms.

6. Angel: Both extended arms move slowly up and down in synchrony.
7. 270◦: One arm moves through 270◦ in a circular path from the participants

side to a horizontal position across the body. The other arm is stationary.
8. Traffic Control: One arm is extended vertically above the head and the

other horizontally out to one side. Only one arm moves at a time, either
the horizontal arm moves upwards to a vertical position or the vertical arm
moves to a horizontal position.

9. Wave: Both arms perform a synchronous waving motion above the head,
symmetrical about the sagittal plane.

10. Wheel: One arm moves in an extended and continuous circular motion,
either clockwise or anticlockwise.



Fig. 5. Catalogue of ten of the most commonly observed gestures. Light/yellow and
dark/red arrows indicate initial and secondary movement phases respectively

5 Discussion

How do people formulate an understanding of how to interact, and what ges-
tures do they choose given the unfamiliarity of an interface? From his studies
of interactive installations Wei [20] observed that the absence of rules often en-
courages participants to experiment and invent new meaningful gestures that
are given significance by the corresponding changes in the experienced output -
a process he termed neosemy. Our study attempted a detailed and data-driven
investigation of how humans behave when confronted with such novel gesture-
based interaction opportunities. By employing various methods of analysis we
were able to describe and quantify this behaviour from different perspectives.

The spatial analysis showed that the majority of hand movements occurred
along a circular pathway centred on the participants’ torsos. It may seem triv-
ial to conclude that this was related to the circular shape of the London Eye.
However, it leads us to question the extent to which more complex shapes might
influence the perceived interaction space in situations where the gestural inter-
face allows free movement.

By plotting velocity and angle profiles for individual participants we were
able to reveal and quantify certain kinematic features of the interaction. In par-
ticular we observed highly coordinated phase/anti-phase relationships between
participants’ left and right hands. This synchronised coupling of hand motion
has been observed in previous studies [21]. It also relates to the notion of move-
ment qualities - the characterisation of movements according to their temporal
features (dynamics), independent of spatial trajectories and shapes [22]. There
is certainly scope for further analysis in this area.

When coupling the kinematic results with the heart rate data, our findings
suggested that people’s average behaviour differed according to the content style
they were interacting with. We found that participants interacting with the
Spectrum content behaved differently to those interacting with the other two
content styles. It is not possible to draw any definite conclusions as to why this
was, however the Spectrum content did exhibit more colour variation than the



other two content styles. Due to the limitations of collecting data in the wild,
we were unable to obtain detailed and in-depth insight into this data, as we did
not have access to subjective reports of mood from the participants.

In our analysis of common gestures we were surprised by the frequency at
which gestures re-occurred between nights and participants, especially in the
absence of any instruction as to how to interact with the installation. There are
a number of features that are common to most of these gestures: (i) they tend
to be performed in the coronal plane, potentially due to the fact that the main
interaction control was also based upon movement in this plane, (ii) they are
predominantly performed with extended arms and do not involve much move-
ment of the body, and (iii) each gesture comprises relatively short and repeatable
movements that exhibit high degrees of rhythm, synchrony and symmetry.

6 Conclusion

The London Eye Mood Conductor project allowed us to practically explore the
intersection of human nonverbal behaviour research and new media art while
providing the opportunity to collaborate with artists and design a novel instal-
lation which facilitated the collection of data in the wild. Consequently, we were
able to demonstrate how a varied and quantitative analysis of such data can re-
veal potentially interesting aspects of human behaviour and affective expression
in the context of interactions with new media art. The premise of the installation
- to let people represent their mood by controlling the lights on the London Eye
- meant that it was particularly amenable to such an investigation. Having said
this, it could be argued that a desire to invoke nonverbal behaviour and affective
engagement is inherent in the majority of interactive and new media artworks.
Given the increasing prevalence of such works, there is a great opportunity for
researchers and artists to engage in collaborative studies. For the artist, affec-
tive behaviour analysis techniques can facilitate the creation of artworks that are
human-centred, where our reaction to the work is juxtaposed with the work’s
reaction to us. For the researcher, one of main advantages of these studies is
the availability of large amounts of naturalistic data, which would be difficult
to obtain in laboratory-based experiments. The results of our analysis showed
that such data presents new challenges when it comes to the analysis and ex-
traction of meaningful results. Tackling these challenges will be a necessary and
important step in affective behaviour understanding in the wild for new media
art applications.
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