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Abstract 

This study investigated the effect that adapting Rainbow trout to black 

or white backgrounds has on their stress and immune responses. 

Experiments in vivo showed that stressed fish, adapted to black 

backgrounds, had higher plasma cortisol levels and a suppressed 

immune system compared to white-adapted fish. Thus, stress reduced 

antibody production, induced lymphocytopenia and inhibited the ability 

of lymphocytes to grow in vitro. These effects were always more 

pronounced in black-adapted trout. It is argued that white-adapted fish 

are less susceptible to the effects of stress because of the 

neuromodulatory influence of the neuropeptide, melanin-concentrating 

hormone (MCH). 

In fish reared from eggs on dark- or light-coloured backgrounds, 

differences between black and white groups were not so evident. In 

some cases, the effects seen in adapted fish became reversed when 

reared fish were used. It is suggested that homeostatic mechanisms 

counteract the modulatory actions of MCR in reared fish. 

In experiments using radiolabelled thymidine to monitor lymphocyte 

growth in vitro, MCH enhanced both T and B cell-like proliferation. 

The peptides also modulated the action of corticosteroids on lymphocyte 



growth and was found to reduce, but not prevent, the inhibitory 

influence of cortisol. Melanocyte stimulating hormone, an antagonist of 

MeR, had no effect on lymphocyte growth at concentrations normally 

found in fish plasma. 

The major reproductive steroids of trout were tested for their ability to 

influence lymphocyte growth in vitro. The results were variable, some 

steroids were predominantly stimulatory (e.g. oestradiol), some 

inhibitory (e.g. ketotestosterone), while others had mixed actions (e.g. 

17a-hydroxy 20b-dihydroxyprogesterone). These observations are 

discussed in relation to the normal plasma levels of reproductive 

steroids found at different stages in the life cycle of trout and the 

possible effects these steroids have on fish immunity. 
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1. The Endocrinology Of Stress 

1.1. Introduction 

The biological concept of "stress" in vertebrate animals is notoriously 

difficult to define precisely. Almost all physical and physiological 

disturbances may be stressful, but the intensity of response varies 

widely between different vertebrate classes and even between 

individuals of the same species. Seyle (1950; 1973; 1976) attempted to 

explain stress in terms of the General Adaptation Syndrome (GAS). 

This concept, modified by Wedemeyer and McLeay (1981), encompasses 

all the responses that occur to stabilise or reverse the effects of 

potentially harmful stimuli. Responses to stress are viewed as 

modifications to biological systems that allow independence from 

environmental perturbation and therefore help organisms maintain 

homeostasis. 

In general terms, the "stress response" can be divided into three distinct 

phases. Each involves biochemical and/or immunological changes that 

are ultimately controlled by the nervous and endocrine systems. The 

primary phase involves alarm responses involving the activation of 

neuronal pathways that result in the secretion of catecholamines, 

glucocorticoids and neuropeptides (Seyle, 1950). 

Plasma levels of catecholamines can rise dramatically within seconds of 

an acute stress, normally returning to base levels within minutes or a 

few hours (Mazeaud et al., 1977; Mazeaud and Mazeaud, 1981; Barton 

and Iwama, 1991). The rise in glucocorticoid titres however, has a time 

course that is measured in minutes or hours and recovery to basal 
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levels can take several days (Pickering et aZ., 1982; Pickering and 

Pottinger, 1989). Catecholamines have powerful effects on muscle 

contraction and are known to influence glucocorticoid secretion (White 

and Fletcher, 1985) while the glucocorticoids have prominent energy 

mobilising properties (Storer, 1967; Lidman et aZ., 1979). These actions, 

amongst others, enhance the capacity of animals to escape a source of 

stress or overcome its effects (Pickering, 1989). 

The secondary phase involves the physiological, biochemical and 

immunological consequences of the primary stress response, i.e. due to 

the effects of glucocorticoids and catecholamines (Mazeaud et aZ., 1977). 

The organism adapts or compensates for the altered conditions caused 

by the stress in order to regain homeostatic balance, even if this means 

altering the previous resting state. The number and activity of 

circulating leukocytes is decreased (Weinreb, 1958; Mcleay, 1975) and 

there are many changes in blood chemistry and tissue metabolism. 

Tertiary stress responses include behavioural changes (Wedemeyer and 

McLeay,1981) as well as decreased growth (Barton et al., 1987; 

Pickering, 1990), reproductive capacity (Carragher et aZ., 1989) and 

further immunological effects (Mazea.ud et aZ., 1977; Wedemeyer and 

McLeay,1981). If the stress is severe or long-lasting, the organism 

enters the fmal phase of exhaustion and may be unable to maintain 

homeostasis with potentially fatal results. 

Not all vertebrates always conform to the GAS pattern of response 

(Wedemeyer et aZ., 1990). Schreck (1981) suggest that in fish for 

example, the GAS response is only evident when stressors cause fright, 

pain or discomfort. Other workers have questioned the adaptive role 
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suggested for glucocorticoids. Munck et aZ., (1984) believe the 

suppressive effects of these steroids serve to protect the body from over­

activity of the defence mechanisms that are the primary response to 

stressful stimuli. 

Generally, the pattern of response that is observed as a result of 

infection, physical disturbance or detrimental changes in environmental 

conditions follows a similar pattern, and comes under the heading of 

'stress response'. The magnitude of this response can be estimated by 

measuring the hormonal changes that form part of the primary 

response. For example, catecholamine secretion (Iwama et az', 1989) 

has been used to measure stress, but quantification is difficult, since 

titres in the blood rapidly return to pre-stress levels (Mazeaud and 

Mazeaud, 1981). Advances in assay techniques now allow ACTH levels 

to be measured, but the rapid release of ACTH from the pituitary gland 

and its short half-life in the circulation present serious practical 

difficulties (Sumpter and Donaldson, 1986). By far the most commonly 

used hormonal indicator of stress is the measurement of plasma 

corticosteroids, a technique that is discussed in more detail in Section 

1.3. 

Measurement of secondary responses typically involve determination of 

changes in blood metabolites, often the result of the action of 

glucocorticoids. Plasma lactic acid and glucose both increase following 

stress and have been used to quantify the stress response. Other 

secondary responses include changes in haematocrit and leucocyte 

counts, but these parameters can be influenced by non stress factors 

such as nutritional status (Barton et aI., 1988). Tertiary stress 

responses that have been used include changes in growth and metabolic 
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rate. Although these allow stress to be measured at the level of the 

population, interpretation can be difficult. 

Thus the term 'stress response' covers a wide range of measurements 

and includes both short and long term effects. In this thesis, increases 

in plasma cortisol titres are used to measure the stress response that is 

observed following persistent chronic stress over a time period of days 

or weeks. 

1.2. The Hypothalamo-Pituitary-Interrenal Axis of Fish 

Almost all environmental and physiological stress in fish results in a 

cascade of hormone release. Although the intensity of this response 

depends on the nature of the stress and the species of fish (Pickering 

and Pottinger, 1989), and is dependent on age, strain and sex (Sumpter 

et al., 1987), the sequence of events is invariably the same. Activation 

of neuronal pathways within the hypothalamus releases corticotrophin­

releasing-factor (CRF;Hawkins et al., 1970) from the hypothalamus 

which in turn stimulates the production of adrenocorticotrophic 

hormone (ACTH) from the pituitary gland (Sage and Purrot, 1969). 

ACTH reaches the interrenal via the blood, where it promotes the 

synthesis and release of corticosteroids (Donaldson et al., 1968a; b). A 

negative feedback mechanism by corticosteroids regulates the secretion 

of CRF and ACTH (Sage, 1968; Sage and Purrot, 1969; Fryer and Peter, 

1977b; c; Figure 1.1). This pattern of hormone secretion is often 

referred to as the hypothalamo-pituitary-interrenal (HPI) response 

(Donaldson, 1981). 
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FIGURE 1.1. Diagram illustrating the main features of the 

hypothalamo-pituitary-interrenal response in fish. 

Environmental stress leads to a cascade of hormonal release (-Ii") 

ending in the release of cortisol. Cortisol inhibits (-e) a wide 

range of cellular functions. Several feedback mechanisms are 

known to operate within the HPI axis. 

! 
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1.2.1. The Hypothalamus and CRF 

Hypothalamic control of ACTH release was first demonstrated in fish by 

Sage and Purrot (1969) who found that ACTH is released from goldfish 

(Carassius auratus) pituitary glands when they are incubated with a 

hypothalamic extract. Other work on betamethasone-blocked goldfish 

has shown that extracts of the hypothalamus and telecephalon injected 

in vivo raise plasma cortisol levels (Fryer and Peter, 1977 a). 

Although CRF was originally thought to be a single compound (Saffan 

and SchaUy, 1955; Saffan et al; 1955), work on mammals has suggested 

that CRF is a multifactorial complex and several other compounds also 

have ACTH-releasing activity (Figure 1.2). The structure of ovine CRF­

41 was elucidated by Vale and co-workers (1981). Gillies et al. (1982) 

suggested that the CRF complex also contained another factor thought 

to be arginine vasopressin and two small synergising factors. Arginine 

vasopressin is replaced in pigs by lysine vasopressin. In rats, both 

arginine and lysine vasopressin (Junnilia and Sayers, 1977) can 

stimulate ACTH release for a short period. Rat hypothalamic extract 

causes prolonged ACTH release, as does vasotocin in teleosts 

(Buckingham and Hodges, 1977). 

Evidence presently available for teleosts suggests that two related CRF 

peptides occur in the fish brain in addition to the neurohypophysial 

peptides vasotocin and isotocin. In fish, the nonapeptides vasotocin 

and isotocin, are produced in the nucleus lateralis tuberis (NLT) and 

have been shown to cause ACTH release from the pituitary gland either 

by stimulating CRF release, or by potentiating the effect of CRF on 
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FIGURE 1.2. Amino acid sequence for hormones with corticotrophic releasing properties. Amino acid 

sequence taken from Vale et al., 1981 (1) , Lederis et al., 1982 (2) and Heller, 1974 (3). Identical amino acids 

common to all forms are typed in bold. 

Ovine CRF-41(1) 

SQEPP I SLDL TFH LL REVLEMT KADQ LAQQAHSNRKLL D IA 

Teleost Urotensin I (2) 

ND D P PIS I D L T F H L L R N M I E MAR lEN ERE Q A G L N R K Y L D E V 

Arginine Vasopressin (3) 

CY F Q B CPR G 

Lysine Vasopressin (3) 

CY F Q B C P K G 

Isotocin (3) 

CY I S B C PIG 

Vasotocin (3) 

CY I Q B CPR G 
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ACTH release (Fryer and Peter, 1977c). The other teleost peptides with 

CRF activity are urotensin I and a related peptide (Fryer et aZ., 1983). 

Urotensin I, an important peptide for osmoregulation and smooth 

muscle contraction, has been found to be structurally similar to ovine 

CRF and cause cortisol-releasing activity in fish and mammals (Lederis 

et aZ., 1982). 

1.2.2. The Pituitary Gland and ACTH 

The fish pituitary gland differs from its mammalian counterpart in two 

important respects. Firstly, the different types of secretory cell are 

arranged in discreet groups and are not scattered throughout the 

adenohypophysis and secondly, the CRF neurosecretory cells of the 

hypothalamus penetrate the pituitary gland to terminate near the 

corticotrophs. There is no median eminence as in mammals (Figure 

1.3). 

The activity of ACTH in the fish pituitary was first demonstrated by Ito 

et al., (1952) and ACTH synthesis was later identified with "epsilon" 

cells in the adenohypophysis (Olivereaue and Ball, 1963; Olivereaue, 

1964). Although fish ACTH had been widely known to cause 

corticosteroidogenesis in other animals, it was not demonstrated in fish 

until 1968 (Donaldson et aZ., 1968a; b). 

In vertebrates, ACTH is derived from a much larger precursor molecule, 

pro-opiomelanocortin (POMe; Mains and Eipper, 1976) which is 

produced by several types of cell including the corticotrophes of the pars 

distalis (Scott et aZ., 1974). In all gnathostomes the prohormone consists 
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FIGURE 1.3. Diagrammatic representation of the pituitary gland of 
a teleost, midsagittal section. Note unlike the mammalian gland, 
there is no portal blood supply from the hypothalamus and the 
hypothalmic neurones penetrate the pituitary gland and terminate 
within it. (Mter Bentley, 1976). 
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of 260 amino acid residues, and contains within its structure the 

sequences of many hormones, each individual peptide being produced 

by cleavage from the parent molecule (Roberts and Herbert, 1977). 

Donaldson (1981) compared the structures offish and human ACTH, 

and found strong sequence homology. Of the 39 amino acid residues in 

mammalian ACTH, the sequence of the first 24 residues are similar in 

all mammals, the dogfish differs by only three, and the salmon by just 

one amino acid from the mammalian form (Figure 1.4). 

1.2.3. The Interrenal Tissue and Corticosteroids 

The corticosteroid-secreting cells of teleost fish are located within a 

specialised area of head-kidney called the interrenal tissue (Nandi and 

Bern, 1960; 1965) other cell types such as chromaffin cells are also 

found within the pronephros or head kidney. When stimulated, the 

nuclear diameters of the interrenal cells increase markedly and they 

become hypertrophic and hyperplasic (Hanke and Chester Jones, 1966). 

The most abundant corticosteroids found in teleost fish are cortisol and 

cortisone (Idler and Truscott, 1972). Cortisol is a 21-carbon steroid 

hormone derived from the hydroxylation of cholesterol to progesterone 

which is in turn hydroxylated to cortisol (Figure 1.5) and is the major 

corticosteroid found in Rainbow trout (Oncorhynchus mykiss; Hane and 

Robertson, 1959). Cortisone is produced from cortisol by I1-b­

hydroxysteroid dehydrogenation within the interrenal cells (Donaldson 

and Fungerland, 1972). There are also small amounts of other cortisol 

derivatives present in the plasma. 
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FIGURE 1.4. Amino acid sequence for adrenocorticotrophic hormone in mammals, teleosts and 
elasmobranchs. Amino acid sequences for ACTH from Riniker et al., 1972 (1) Kawauchi, 1979 (2) and 
Lowry et at, 1974 (3). Identical amino acids common to all forms are typed in bold. 

Human ACTH (1) 

SYSMEHFRWGKPVGKKRRPVKVYPNGAEDESAEAFPLEF 

Salmonid ACTH ( 2) 


SYSMEHFRWGKPV RPVKVYTNGVEEESSESFPSEM 


Dogfish ACTH ( 3) 


SYSMEHFRWGKPMGRKRPIKVYPNSFEDESVENMGPEL 


·-~---·-_·_·~·_··~-c_ ,~i--_ ~"'~-_.~~<L:'__ ~-¥+"-,_,,,.,;:,___~. '::~"~'-~-',:~~~;trma.::~""_=:m:-_-_;~ 
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1.3. Endocrine Regulation of the HPI Axis in Fish. 

Plasma levels of corticosteroids are the most commonly used method of 

assessing the activity of the HPI axis and thus measuring the stress 

response, partly because steroids such as cortisol are easy to measure, 

originally by fluorometry (Donaldson et al., 1968b) and now by 

radioimmunoassay (Hargreaves and Ball, 1977; Peter et al., 1978; 

Rance and Baker, 1981) and partly because of their significance in 

processes affecting fish health (Barton and Iwama, 1991). Basallevels 

of plasma corticosteroids in teleosts are usually less than 30 ng ml- l 

and may even fall below 5 ng ml- l under ideal conditions (Pickering, 

1989; Pickering and Pottinger, 1989; Wedemeyer et al., 1990). In 

general, the magnitude of the corticosteroid response usually reflects 

the severity of the stress (Barton et al., 1980; Pickering, 1989) and 

plasma cortisol titres of between 40 and 200 ng ml- l post-stress are 

typical (Pickering and Pottinger, 1989), although even higher values are 

not unusual (Barton and Iwama, 1991). 

Our present understanding of the mechanisms that control and regulate 

the HPI axis in fish is based mainly on experiments involving 

hypophysectomy and/or the administration of corticosteroids, their 

agonists and antagonists or of biochemical inhibitors of steroidiogenic 

pathways. 

Early work on Rainbow trout has shown that hypophysectomy results 

in interrenal cell atrophy and a marked reduction in plasma cortisol 

levels which do not increase following stress (Donaldson and McBride, 

1967). The interrenal cells of hypophysectomised Cyprinid (Couesius 
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plumbeus) can however be stimulated by pituitary extracts of Chinook 

salmon (Oncorhynchus tshawytscha; Van Overbeeke and Ahsan, 1966). 

In intact fish, the stress response can be prevented by using the long­

acting cortisol analogue, dexamethasone, a steroid which is believed to 

suppress both CRF and ACTH (Sumpter and Donaldson, 1986). This 

view is supported by the fact that dexamethasone-treated Rainbow 

trout are still capable of responding to injections of ACTH (Fagerlund, 

1970). These, and many other experiments, strongly suggest that 

feedback by cortisol inhibits CRF and ACTH synthesis and release 

(Figure 1.1). The low levels of cortisol found in dexamethasone-treated 

salmon indicate that the feedback mechanism does not completely 

inhibit corticosteroid release, although when stressed, these fish show 

no significant increase in their plasma cortisol (Fagerlund and McBride, 

1969). If diseased fish are treated with dexamethasone however, the 

plasma cortisol levels fall but a stress response still occurs indicating 

that the feedback mechanism can be impaired by disease. (Fagerlund 

and McBride, 1969). 

Another approach to investigating the regulation of the HPI axis 

involves the use of metyrapone, an inhibitor of I1-b hydroxylation 

which therefore blocks the synthesis of cortisol (Figure 1.5). At low 

doses metyrapone is stressful and causes an increase in plasma cortisol. 

This is surprising since there is evidence that metyrapone is also toxic 

to corticotrophs, causing them to degenerate (Fagerlund et aZ., 1968) 

and thus reducing the pituitary content of ACTH (Van Kemenode et aZ., 

1980). At higher doses however, given over a two, day period, cortisol 

production decreases (Fagerlund et aZ., 1968). 
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1.4. Factors Affecting the Stress Response. 

The pattern of peptide and steroid hormone secretion elicited by 

stressful events depends not only on the intensity of the stress but also 

on the species involved, the nature of the stress and its duration. 

It is now widely accepted that Rainbow trout are less susceptible to 


stress than Brown trout (Pickering et al., 1989). In a series of 

~, 

1 
experiments Wedemeyer (1971; 1972; 1973; 1976) investigated the 

effects of a wide range of stressors on fish which included handling, 

crowding, temperature change and formalin treatment. Differences in 

the sensitivity of the two species were reflected by differences in the 

circulating cortisol levels (VIedemeyer and Yasutake, 1974). The 

magnitude of the stress response can even differ between strains of the 

same species (Pickering and Pottinger, 1989) and in general, wild fish 

strains are more sensitive than domesticated varieties (VIoodward and 

Strange, 1987). 

Many common procedures employed in aquaculture induce a stress 

response. Thus handling (pickering and Pottinger, 1989), netting 

(Wedemeyer, 1969), anaesthesia (Fagerlund,1967) and transfer from 

tanks to a bucket (Strange and Schreck, 1978) all induce a stress 

response. Other factors are confinement (Pickering and Pottinger, 

1989), captivity (Miller and Tripp, 1982), temperature changes (Barton 

and Schreck, 1987), overcrowding (Pickering and Steward, 1984), 

transport (Barton and Peter, 1982), as well as more obvious stressors 

such as injection (Green et aZ., 1991) and noxious chemicals (Pickering 

and Pottinger, 1984; 1985). 
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Stress is said to be acute if the time required for a fish to recover is 

much greater than the length of time the stress is applied. Examples of 

acute stress include short periods of handling or netting, predator 

avoidance and territorial disputes. 

The time needed for recovery from acute stress also depends on the 

severity of the stressor (Pickering et aZ., 1982). There is invariably a 

rapid increase in plasma levels of catecholamines followed by a 

corticosteroid increase which peaks approximately two hours after the 

stress and returns to basal levels within 24-48 hours (Pickering, 1984; 

Pickering and Pottinger, 1987d; Pickering and Pottinger, 1989). Other 

disturbances include increased epidermal mucification (Pickering and 

Macey, 1977), reduced glycogen synthesis in the liver, disturbed 

carbohydrate metabolism and depletion of lipids (especially steroids) 

and vitamin C from the adrenal cortex (Wedemeyer et aZ., 1990). 

Feeding often stops until three days post-stress (Pickering et aZ., 1982) 

although this effect varies between species (Wedemeyer, 1976). 

The affects of stress are usually monitored by measuring cortisol and or 

blood glucose titres (Donaldson, 1981; Schreck, 1981). If the stress is 

short lived, e.g. handling for 5 seconds, fish may not evoke a response, 

but if the same stress is increased to 2 minutes a moderate response is 

evoked (Thomas and Robertson, 1991). Increasing the period of time 

fish are subjected to stress causes further increases in glucose and 

cortisol levels. Acute stress may also have long term effects on the 

metabolic and osmo~regulatory systems (Mazeaud and Mazeaud, 1981). 

The corticosteroid response to handling can be eliminated by 

anaesthetising the fish beforehand (Iwama et al., 1989). This 

17 




presumably eliminates the awareness of the stressor and therefore 

prevents any "fright" reaction (Schreck, 1981). 

In contrast to acute stress, chronic stress generally lasts for days or 

weeks. Examples include overcrowding, low oxygen levels or poor water 

quality due to the accumulation of waste products of metabolism, or 

sub-lethal concentrations of pollutants. Stressors such as these tend to 

be persistent and inescapable, but in most cases, acclimation occurs 

over an extended period (Pickering and Steward, 1984; Pickering and 

Pottinger, 1989) with the time required depending on the species and 

life cycle stage (VVedemeyer, 1976). Blood cortisolleveles may be high 

initially, but these eventually return to normal levels by means of 

homeostatic mechanisms, even though the stress persists (Schreck, 

1981). 

Danielson and Stallcup (1984) have suggested that the sensitivity of 

cells to corticosteroids is controlled by varying the number of receptors 

present. There is a reduction in the number of cortisol binding sites in 

Rainbow trout liver cells (pottinger, 1990) and Brook trout gill tissue 

(\Veisbart et al., 1987) following chronic stress and this reduction is 

believed to prevent the target tissues from over-responding (Pottinger, 

1990). 

Under some circumstances, plasma cortisol levels may not increase in 

response to stress (Schreck and Lorz, 1978; Pickering and Pottinger, 

1987b; c;). For example, although a high stocking density is stressful, 

cortisol titres may either vary inversely with the number of fish per 

unit volume (Leatherland and Cho, 1985) or the fish may acclimatise 

(Pickering and Steward, 1984). These observations can be partly 
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explained by the increased metabolic clearance rate of the hormone that 

occurs under crowded conditions (Schreck et aZ., 1985) or by changes in 

the number of interrenal ACTH receptors that make the steriodogenic 

tissue less responsive (Patino et aZ., 1980). High stocking density is a 

good example of how an apparently straight forward explanation of 

observed cortisol titres is complicated by the fact that several stressors 

may be operating at the same time (Leatherland and Sonstegard, 1984). 

Fish held at high densities for prolonged periods experience both 

chronic stimulation and suppression of the HPI axis. 

While acclimation to the stimulation of overcrowding occurs gradually 

over days or weeks (Schreck, 1981; Pickering and Steward, 1984), other 

inhibitory effects are caused by changes in water chemistry that are 

associated with high stocking densities (Pickering and Steward, 1984; 

Pickering and Pottinger, 1987c). Thus, a decrease in oxygen level 

causes mild suppression of the stress response and increases the 

toxicity of ammonia and carbon dioxide (Lloyd, 1961; Saunders, 1962). 

Ammonia decreases the oxygen carrying capacity of the blood but 

increases oxygen consumption (Brockway, 1950). Carbon dioxide 

decreases the oxygen carrying capacity of fish blood through the Root 

effect (Saunders, 1962). These combined chemical effects act 

synergistically to cause an overall suppression of the HPI axis so the 

chronic activation is effectively masked. Detoriating water quality may 

depress a fish's ability to trigger a HPI response (Schreck, 1981) and 

there is evidence that the level of consciousness of the fish may become 

impaired during conflllement (Pickering and Pottinger, 1987 c). 

The fact that plasma cortisol and cortisone titres are higher in 

gonadectomised fish indicates that the HPI axis is influenced by the 
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reproductive system (Donaldson and McBride, 1974) and can also be 

modulated by gonadotrophins (Schreck et aZ., 1989). 

Several other factors are known to influence blood corticosteroids 

including smoltification (Barton et aZ., 1985; Patino and Schreck, 1986), 

temperature (Barton and Schreck, 1987), and nutritional status (Barton 

et aZ., 1988). There is also clear evidence for diurnal and seasonal cycles 

in corticosteroid synthesis and secretion (Van Kemenade et aZ., 1980; 

Rance et aZ., 1982). 
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2. Melanin-Concentrating Hormone 

2.1. MCH and Colour Change in Fish. 

The idea that two antagonistic hormones are involved in the control of 

skin colour in fish was first suggested by Hogben and Slome, (1931). 

These workers believed that the darkening effect of a melanocyte­

stimulating hormone (a.MSH) was opposed by a 'paling hormone' that 

we now know to be melanin-concentrating hormone (MCR). The 

assumptions supporting this hypothesis at the time however, were later 

shown to be invalid (Bradshaw and Waring, 1968). 

For many years it had been known that the injection of teleost pituitary 

gland extract causes skin pallor in bony fish (Hewer, 1926). A 

substance that induces melanin concentration was found in the ethanol 

soluble fraction of pituitary gland extracts of the catfish (Parasilurus; 

Enami, 1955), but in the ethanol insoluble fraction of killifish (Fundus 

sp.; Pickford and Atz, 1957). Apart from these observations, little 

progress was made until, almost 20 years later, interest in MCR 

revived when Baker and Ball (1975) noted that colour changes in the 

Guppy (Poecilia sp.) could only be explained by the existence of dual 

hormonal control. In this species the skin melanophores are controlled 

by both nerves and pituitary hormones. After hypophysectomy, the 

melanophores are still capable of background adaptation because of 

direct innervation. If the skin melanophores are denervated, then 

melanin concentration or dispersion only occurs if the pituitary gland is 

still present. While full melanin dispersion requires both nerves and 

pituitary hormones, full melanin concentration, only occurs following 

denervation. Thus, the denervation of melanophores causes initial 

21 



melanin dispersion, but if fish are transferred to a pale background, 

melanin dispersion is delayed. This indicates the existence of a factor 

released only when fish are placed on a white background. 

Black-adapted fish are very dark and have fully dispersed melanin 

granules within their skin melanophores, while in white-adapted 

teleosts, the melanin granules are concentrated into the centre of the 

melanophores and the fish appear pale in colour. The melanophore 

index (MI) is used to quantify the degree of melanin dispersion on a 

scale from 1 (full concentration) to 5 (full dispersion) (Hogben and 

Slome, 1931; Figure 2.1). Melanophores settle at an intermediate MI 

value after hypophysectomy, and when black-adapted fish are 

hypophysectomized, the MI falls from 3.9 to 2.3, but in 

hypophysectomized white-adapted fish, the MI rises from 1.0 to 2.3. 

These results suggest that two hormones are responsible for melanin 

dispersion and concentration, both emanating from the pituitary gland 

(Baker and Ball, 1975). 

Teleost pituitary hormones can be separated by polyacrylamide gel 

electrophoresis (PAGE). In the Rainbow trout, while melanin 

dispersing activity is found in three bands, with rivalues of 0.55-0.65, 

0.70-0.80 and 0.95-1.00, melanin-concentrating activity is located only 

between riO.SO and 0.70, thus indicating that melanin dispersing and 

concentrating factors are two distinct molecules, (Baker and Ball, 1975). 

Rance and Baker (1979) examined the PAGE bands from several teleost 

species. They found that, for all species, clear band separations were 

generally obtained with only one band exhibiting MCR activity and at 

least two bands showing MSR activity. The pituitary MSRIMCH ratio 

22 


http:0.95-1.00
http:0.70-0.80
http:0.55-0.65


• • 

FIGURE 2.1. Diagrammatic representation of the appearance of 

skin melanophores of Rainbow trout and the factors that 

influence the movement of melanin granules within them. The 

melanophore index ranges from 1 to 5 where full aggregation is 

scored as MI 1 and full dispersion as MI 5 

Adrenalin MeH MSH 

~ ~ 
~ .. 

MIl MI5 

varies widely between species and is more marked for MSH than for 

MCR (Rance and Baker, 1979). 

2.2. The Site of MCH Production 

It was initially proposed that MCH was a neurointermediate lobe 

hormone because of its abundance at this site in minnow (Phoxinus 

phoxinus) pituitary glands (Kent 1959). Removal of this lobe however, 

failed to prevent paling when fish were transferred to pale-coloured 

backgrounds and this led Healey (1948) to suggest that MCH was an 

anterior lobe hormone. 
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Enamis (1955) demonstrated that a melanin-concentrating substance 

was active in the hypothalamus of catfish (Siluridae sp.) and concluded 

it was a neurohypophysial hormone. Other workers could not repeat 

these observations, so they were dismissed until the hypothalamic 

location of MCR neurones was established by Rance and Baker (1979). 

When antibodies to MCR became available, immunocytochemical 

studies confirmed that the precursor to MeR is produced by 

magnocellular neurones in the basal hypothalamus, and showed that 

axons from these perikarya project into the neurohypophysial lobe 

where the active hormone is stored before being released into the blood 

stream (Natio et al., 1985; Bird et al., 1989; Batten and Baker, 1988). 

Kent's (1959) inability to find MCH activity in the minnow was 

probably because the fish were adapted to a pale coloured background 

and under these conditions MCR is being actively released and levels in 

the hypothalamus will be consequently low. 

Ultrastructural studies have shown that MeR is contained within 

membrane bound electron opaque secretory granules (Powell and 

Baker, 1987; 1988). In eels (Anguilla anguilla) adapted to a pale 

coloured background, there is increased secretory activity ofMCH 

neurones and a decrease in the abundance of granules in the nerve 

terminals (Powell and Baker, 1988). 

I 
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2.3. The Chemical Structure of MCH and its Precursor 

The chemical structure of MCH was first determined from a purified 

extract of Chum salmon (Oncorhynchus keta) pituitary glands 

(Kawauchi et al., 1983). The neurohormone is a cyclic heptadecapeptide 

with a disulphide bond between the two cysteine residues at positions 

five and 14 (Figure 2.2). The active site for melanin concentration is 

contained within the ring of the MeH molecule and most amino acid 

residues that form the ring are needed for full potency. The disulphide 

bond and tryptophan residue at position 15 are essential for MCH 

activity in eel (Synbranchus marmoratus; Matunaga et al., 1989), 

however this differs in other species (Baker et al., 1990, Hadley et al., 

1987). The side arms potentiate this activity and are important in the 

positioning and binding of the molecule to its receptor (Paul et aI., 

1990). 

FIGURE 2.2. The primary structure of salmonid MeR. After 

Eberle, 1988. 
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The structure of rat and human MCR are identical, and consist of 19 

amino acid residues, differing from fish MCR by two extra amino acids 

at the N-terminal and four substitutions (Nahon et aZ., 1989b; Vaughan 

et al., 1989; Presse et aZ., 1990). 

The nature of the MCR precursor within the hypothalamus was 

established by work on Rainbow trout by Bird and co-workers (1990). 

They measured immunoreactivity and bioactivity following gel flitration 

of hypothalamic and pituitary extracts, and found only 10% of the 

immuno-reactive (ir) MCB was due to the large molecular weight form 

in the hypothalamus but less than 1% of immunoreactive material in 

the neurointermediate lobe. 

In salmonids, which are believed to be tetraploid, two MeB genes are 

expressed in the hypothalamus. The structural organisation of the 

MCB genes in fish and mammals show several differences. In fish 

there is one exon (Takayama et aZ., 1989) but in mammals there are 

three, with the sequence for MCR being dissected by the second intron 

(Thompson and Watson, 1990). The splitting of the MCR sequence by 

an intron is found throughout the mammalian orders that have been 

investigated. 

In salmonids, the MCR mRNAs derived from each gene both code for a 

pre-prohormone 132 amino acids long (Figure 2.3). Cleavage of the 

signal peptide at alanine 24 gives rise to 108 amino acid prohormone in 

chum salmon (Oncorhynchus heta; Ono et aZ., 1988; Minth et aZ., 1989; 

Takayama et aZ., 1989). In higher vertebrates, the prohormone contains 

165 amino acid residues (Nahon et aZ., 1989b). The MCH neuropeptide 

is located at the C-terminal in all vertebrates, cleavage of the region 

..,.•,
~ 
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between proMCH and the MCR neuropeptide generates a second 13 

amino acid peptide in fish named MCH Gene Related Peptide (NIGRP; 

Bird et aZ., 1990) or NEV (Nahon et aZ., 1991). In higher vertebrates, a 

13 amino acid and a 19 amino acid peptide are released by cleavage, 

these are called NEI and NGE respectively (Parkes and Vale, 1992). A 

comparison of the structure ofproMCH in different mammals reveals a '.:~..1 
sequence homology of 80-90% but between salmonid and mammalian 

proMCH less than 20% of the amino acid sequence are identical (Nahon 

et aZ., 1989a; b). 

FIGURE 2.3. The structural organisation of the pre-pro MeR in 
salmonids and the rat. After Nahon et al., 1989a; h. 

Salmon MCH mRNA 
NEVMCH 

signal ""--1------" D­
--I I , 

~------------------------------------~ 
101 115 13224 


RatMCHmRNA 

NGENEIMCH 


signal ...---,--------., D­
--I I, ' 

22 110 131 147 165 

The process by which MCR is derived from its precursor was studied in 

vivo in Rainbow trout hypothalami using radioisotope labelling (Bird et 

aZ., 1990). The prohormone generates an unstable intermediate 

complex of NEV-MCH, and this is converted by several small steps to 

produce mature MCR. 
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2.4. MCH Synthesis and Secretion 

2.4.1. Hormonal Aspects 

MCR release from the pituitary gland occurs most actively when fish 

are kept on a white background. (Baker and Ball, 1975;Rance and 

Baker, 1979; Barber et aI., 1987). Circulating MCR titres are raised in 

white-adapted fish (>50 pmol P) and fall when they are transferred to 

black tanks or to darkness (5-10 pmoll-]) (Kishida et aZ., 1989). In the 

blood, the level of circulating MCR is at a lower concentration than its 

antagonist uMSH (150-300 pmol P). In white-adapted fish, the molar 

concentration of uMSR is 3 fold higher than that of MCH but in black­

adapted fish the molar concentration of uMSH is 80 fold higher than 

that ofMCR (Kishida et aZ., 1989). 

The plasma levels of MCR observed in trout are inadequate to achieve 

maximum pallor in this species (Baker et aZ., 1986; Green and Baker, 

1989) yet in other fish such as the Grass carp (Ctenopharyngodon 

idellus) , circulating hormones are high enough to cause colour change 

after denervation (Baker and Ball, 1975; Pickfold and Atz, 1957). Trout 

depend on the synergy between the action of the autonomic nervous 

system and MCR to produce maximum pallor. Further evidence for 

direct innervation of the melanophores comes from the speed with 

which fish can change colour when transferred between black and white 

tanks (Rodrigues and Sumpter, 1984). Thus MCH does not act alone, 

noradrenalin markedly potentiates the affect ofMCH on trout 

melanophores. This explains why denervated trout caudal fins remain 

dispersed despite high MCR titres since noradrenalin is no longer able 
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to enhance the melanin concentrating properties of MCR (Baker et aZ., 

I
1986). Noradrenalin causes melanin aggregation by inhibiting 

adenylcyclase (Eberle, 1988) whereas MCR acts via the phosphoinositol I 
pathway and diacylgycerol (Abrao et aZ., 1991). ,I 
It is also believed that MCR may indirectly suppress the release of I 
aMSR from the pars intermedia (Baker et aZ., 1986) since aMSH 

release from cultured trout neural intermediate lobes is enhanced when 

MeH is removed by immunoabsorbtion (Barber et aZ., 1987). 

MeR titres can change rapidly compared to the relatively slow change 

in blood MSH titres (Rodrigues and Sumpter, 1984; Baker 1988) The 

intermediate colour that trout exhibit when kept in the dark cannot be 

explained by plasma MSHIMCH titres alone, because dark adapted fish 

have lower MeR titres than are found in black-adapted. This effect 

could be due to a change in the neural input to the melanophores 

(Kishida et aZ., 1989) or to the effects of another circulating melanin 

aggregating factor such as melatonin (Hafeez, 1970). 

All teleost melanophores respond to MCB but species sensitivity to the 

hormone varies in vitro (Hadley et aZ., 1987). MeR can cause melanin 

dispersion in amphibians and reptiles, and high concentrations will 

have the same effect in fish (Wilkes et aZ., 1984; Baker et aZ., 1985b; Ide 

et aZ., 1985). The aMSH -like activity of MCH is due to sequences 

outside the ring structure which are able to bind to the aMSH receptor 

(Matsunaga et az', 1989). Other factors apart from MSH and MeH play 

a role in adaptation to colour change. Neurotransmitters from the 

autonomic nervous system induce pigment aggregation as discussed 

earlier, and ATP can also induce melanin dispersion (Fujii and Oshima, 
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1986; Figure 2.1). Second messenger system activators are potent 

stimulators of MCR and its precursors in hypothalamic cell culture. 

Both cAMP and cGMP pathways regulate MCR peptides (Parkes and 

Vale, 1992). 

As well as causing the concentration of pigment granules in skin 

melanophores (Rance and Baker, 1979; Baker, 1988) MeR will also 

elicit pigmentary effects on other skin chromatophores (Oshima et al., 

1986). 

In summary, in all teleosts MSH and MCR have antagonistic effects on 

melanin aggregation and the combined effect depends on the relative 

concentrations of both hormones. Different species have different 

sensitivities to each hormone and their mode of action also varies 

between species. Thus in trout, melanin concentration is caused by 

MeH overriding the effect ofMSR, but in Grass carp melanin 

concentration is caused by the withdrawal ofMSH (Baker, 1991). 

2.4.2. Anatomical Aspects 

The background conditions fish are exposed to influences the structure I 
and activity of the MCR neurones. When Grass carp are kept on .. 
illuminated black backgrounds the synthetic activity is depressed, 

secretory granules are sparse in the cell bodies and the nuclei are small 

with indiscernible nucleoli and the production of irMCH is reduced. By 

contrast, Grass carp kept on white backgrounds for 6 months show 

enhanced synthetic activity, with enlarged strongly granulated 

neuronal cell bodies and nuclei and distinct nucleoli indicating 

increased production of MeR (Bird and Baker, 1989). 
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Immunohistochemical studies have shown that MCH neurones do not 

form a homogeneous population (Bird and Baker 1989). The secretory 

granules of some neurones contain only MCR while others apparently 

contain MeR and its antagonist aMSH (Powell and Baker, 1987). The 

highest concentration of ir aMSH co-localised with irMCH is found in 

the basal hypothalamus (Kishida et aZ., 1988). When fish are moved 

from pale to dark backgrounds the hypothalamic ir aMSH content 

remains unchanged unlike the irMCR content which increases 

(Kishida et aZ., 1988). This difference suggests that either the two 

products are independently regulated in the same neurone or that the 

MSH-like activity in the MCR neurones may not be authentic but due 

to antibody cross reactivity (Kishida et aZ., 1988). Recent evidence in 

rat shows that irMCH coexists with unrelated peptides such as growth 

hormone-releasing factor (GRF), CRF and aMSH in neurones within 

the hypothalamus. It has been suggested that the product ofMCH 

precursors i.e. NEI and NGE are the peptides responsible for 

immunoreactivity previously attributed to aMSH, GRF and CRF 

(JVatson and Akil, 19"80; Fellman et aZ., 1986; Merchenthaler et aZ., 

1986; Naito et aZ., 1986; Cardot et aZ., 1994). 

MCR neurones also have different axonal projections. Some axons 

extend into the brain while others project only into the pituitary gland 

(Kishida et aZ., 1988). There is also evidence that some neurones are 

much more responsive to background colour than others" Whether the 

degree of responsiveness is due to functional differences between the 

neurones or to different granular structures within the neuron is 

unclear (Bird and Baker, 1989). 
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2.5. MCH and the Stress Response 


The idea that the hypothalamo-pituitary-interrenal axis might be 

influenced by MeR was first suggested in the early 1980s (Figure 2.4). 

Trout adapted to black tanks are more responsive to moderate stress 

and show higher plasma ACTR and cortisol concentrations than fish 

kept in white tanks (Baker and Rance, 1981; Gilham and Baker, 1985). 

Cortisol secretion was originally thought to be stimulated by 

melanotrophic cells from the pars intermedia and in Rainbow trout and 

eels the melanotrophic cells are very active in black-adapted fish, but 

this is not true of other teleosts (Scott and Baker, 1975). In view of the 

fact that MSH and ACTH are both derived from the same precursor 

molecule, the possibility that MSH could stimulate cortisol secretion 

was considered, but eliminated since isolated trout interrenal tissue 

cannot be stimulated by MSH to release cortisol. (Rance and Baker, 

1981). 

The ACTH released spontaneously from cultured partes distales of 

stressed trout is significantly higher when they are taken from black­

rather than white-adapted fish (Baker et aZ., 1985a). The enhanced 

secretion ofMCH in white-adapted fish inhibits ACTH release and when 

MCR is added to cultured black-adapted pituitaries, ACTH release is 

inhibited. These initial results suggested that MCR could 

act as a corticotrophin-release inhibiting factor in trout, preventing the 

stress-elevated release of ACTR and resulting in the lower plasma 

cortisol titres observed in white-adapted fish (Baker et aZ., 1985a). Later 

work by this author suggested MCR did not effect ACTH secretion, but 

the MCB preparations used in earlier experiments were altered in such 
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FIGURE 2.4. Diagram illustrating how MCH effects the HPI axis. 

The secretion ofMCH ( .... ) and its inhibitory effects on the HPI 

axis ( --« ). Environmental stress leads to a cascade of hormonal 

release (-+). Cortisol inhibits ( .... )a wide range of cellular 

functions. Several negative feedback mechanisms are known to 

operate within the HPI axis. 
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a way as to endow them with corticotrophin inhibiting properties (Baker, 

1994). 

Other work on rats failed to demonstrate that MCR inhibits the release 

of ACTR. Navarra (1990) and Jezova et al. (1992) have shown that the 

introduction of rat MCR into rat brain stimulates the release of ACTR. 

Clearly, the effect of MCR on the secretion of ACTR and cortisol still 

needs to be clarified. 

CRF stimulates the release of ACTR from cultured pituitary glands 

taken from stressed fish, but the addition of MCR blocks this effect or 

renders the corticotropes less sensitive to CRF (Green and Baker, 1991). 

Whether MCR acts via the general circulation or by direct innervation 

of the corticotrophs is unclear. MCR probably also acts by blocking the 

release of CRF from the CRF neurones. The idea of neuronal centres 

inhibiting ACTR secretion is common to other teleosts. For example 

when the habenular nuclei are destroyed in goldfish, corticosteroid 

secretion is increased (Fryer and Peter, 1977b). 

Plasma levels ofMCR increase following repeated stress of white­

adapted fish, and this response is antagonised by negative feedback of 

corticosteroids (Green and Baker, 1991). There is an inverse 

relationship between plasma MCR and cortisol titres. Green and Baker 

(1991) investigated the affect of MeR directly on interrenal cells and 

found that MeR had no affect on cortisol release but could inhibit CRF 

release from the hypothalamus. 
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Using Rainbow trout that had been reared from eggs on black or white 

backgrounds, Green et al. (1991) attempted to produce fish with marked 

differences in MCH synthesis and secretion. However, cortisol release 

was found to be similar for black- and white-reared fish after 

stimulation with synthetic ACTH and the release of CRF was found to 

be the same for both groups. If the fish were slightly stressed, there 

was a slight increase in the CRF release, particularly from black-reared 

fish hypothalami. When endogenous MeR was removed by 

immunoabsorbtion, CRF release was found to be significantly raised in 

the white-reared fish. This indicates that the hypothalami of white­

reared fish contain more releasable CRF than black-reared fish (Green 

et al., 1991) and implies that under stressful rearing conditions, white­

reared fish have reduced cortisol negative feedback, causing an 

accumulation of CRF. Thus MeH does not inhibit CRF synthesis, only 

its release (Green et al., 1991). Although it is still unclear whether the 

BPI axis is affected by the circulating or centrally released MCR when 

under stressful conditions, it is clear that MCR depresses the release of 

CRF and not its synthesis. Which CRF is affected by MCR has not been 

established. 

Since MeR has been indicated in the control of cortisol secretion in fish, 

Nahon and co-workers (1991) examined the effect of adrenalectomy on 

the production of MCH mRNA in rats using the northern blotting 

technique. They found there was a 2.5 fold decrease in the production 

of MeR mRNA in adrenalectomised rats, but treatment with 

dexamethasone fully restored the MCR mRNA levels. Further support 

for the idea that glucocorticoids may positively control the expression of 

MCR in vivo has been suggested recently by Presse et al. (1992). In rat 

hypothalamic cell culture, NEI and MeR content are both enhanced by 
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treatment with dexamethasone. A 60% reduction in MCR mRNA levels 

was evoked after one day of chronic stress in rats, but by seven days the 

levels ofMCR mRNA were the same for control and stressed groups. 

Presse and co-workers explained these results in terms of a positive 

glucocorticoid feedback mechanism counteracting the inhibitory effect of 

a neurogenic shock on MCR gene activity. CRF was also found to 

suppress the secretion of NEI and NGE in hypothalamic cells, further 

support for the theory that the stress response reflects the interactions 

between CRF and MCR neuronal networks, with a feedback loop of 

glucocorticoids inducing opposite effects on synthesis and secretion of 

MCR and CRF. 
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3. Fish Immunology 

3.1. Introduction 

Compared with mammals, the fish immune system is poorly 

understood. For example, the presence of immunoglobulins (rg) on the 

surface membranes of fish lymphocytes has been the subject of much 

controversy (Etlinger et aZ., 1977; Chilmonczyk, 1982; Clem et aZ., 1985). 

Distinct T and B cell populations have not been convincingly 

demonstrated, due to the difficulty in thymectomizing young fish and 

the lack of inbred strains, and only an analogy can be drawn with the 

mammalian immune system. The separation of two functionally distinct 

cell types on nylon wool columns has suggested the possibility of two 

discreet lymphoid cell populations (Ruben et aZ., 1977). Monoclonal 

antibodies to serum IgM have been raised, but these only react with 

about 30-40% of blood lymphocytes. (Deluca et aZ., 1983), presumably 

recognising B cell-like lymphocytes which also respond to 

lipopolysaccharide (LPS). Presumptive T cells lack surface 

immunoglobulins but respond to concanavalin A (Con A) and also 

slightly to LPS (Sizemore et aZ., 1984; Clem et aZ., 1985). 

3.2. The Lymphatic System 

3.2.1. The Haematopoietic Organs 

Lymphoid organs are classified as either primary or secondary, 

depending on whether they are major sites of lymphopoiesis. In 

mammals, T cells mature in the thymus, B cells in the fetal liver and 

bone marrow. In birds, where the bursa of Fabricius is a specialised 
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region for B cell maturation (Lydyard and Grossi, 1993). In these 

primary lymphoid organs, stem cells are present as well as 

differentiated lymphocytes and other mature white blood cells (WBC). 

After maturation mammalian lymphocytes circulate to secondary 

lymphoid organs (Brahim and Osmond, 1970). In fish there is tentative 

evidence that T cells mature in the thymus and B cells in the head 

kidney (Etlinger et al., 1976). In mammals it is believed that the 

lymphocytes acquire their specific antigen receptors in the primary 

lymphoid organs, but, there is no equivalent information available for 

fish. 

Secondary lymphoid tissues in mammals include the spleen, lymph 

nodes and tonsils where lymphocytes interact with each other and with 

antigens (Lydyard and Grossi, 1993). The corresponding organs in fish 

are the spleen and head kidney. 

In fish the importance of the various lymphoid organs is influenced by 

the age of the fish. The kidney and blood are both important in fry and 

adults but in the spleen and thymus the number of lymphoid cells 

gradually declines with age. Blood leucocyte levels vary enormously 

between fish, an observation thought to be due to a range of genetic, 

physiological and immunological factors (Chilmonczyk, 1982). 
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3.2.2. Primary Lymphoid Organs 

The Thymus Gland 

Whereas the thymus gland in mammals is located in the thorax, in fish 

it is a bilateral gland that lies in the gill chamber in the angle between 

the operculum and the head wall (Chilmonczyk, 1982). The mammalian 

gland is bilobed and within each lobe, the thymocytes are arranged into 

a inner medulla, containing mature cells, and an outer cortex of mainly 

immature cells. The fish thymus is enclosed in a thin epithelial 

capsule, which is perforated in Rainbow trout, a feature that allows 

intimate contact between the thymus and the outside environment 

(Chilmonczyk, 1985). It has been postulated that the exposed position 

of the thymus in fish means that it is always exposed to pathogens 

(Grace and Manning, 1980) and can therefore rapidly activate defence 

mechanisms (Tatner and Manning, 1982). Beneath the epithelial 

capsule is an outer zone of small lymphocytes with poorly developed 

epithelial support and a inner zone of lymphocytes with a developed 

framework of epithelial celis, although neither zone is clearly delineated 

(Chilmonczyk, 1985). No definitive conclusions can be drawn as to 

whether the inner and outer zones of the fish thymus are equivalent to 

the cortex and medulla of the mammalian gland (Zapata, 1981). 

There is some debate as to whether the thymus is a site for development 

of both T and B cells. Ellis and Parkhouse (1975) found up to 80% of 

lymphocytes in the skate (Raja naevus) thymus bear M~type 

immunoglobulins, a feature of mammalian B cells. Other workers have 

also noted the B cell·like nature of some teleost thymic cells, such as 

their ability to form plaques (Sailendri and Muthukkaruppan, 1975; 
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Kaattari and Irwin, 1985) and the presence of plasma cells (Zapata, 

1981). 

The mammalian thymus degenerates with age, beginning at puberty in 

man and continuing throughout life. Chilmonczyk (1985) observed no 

marked degeneration of the thymus in Rainbow trout even after 5 

years, but observed it was better developed in young rather than adult 

trout. As a proportion of total body weight, the thymus gland reaches 

its maximum size in fish at 2-3 months but its maximum absolute 

weight is achieved at 5-12 months (Tatner, 1985). Thymocyte numbers 

decrease steadily with age, but the proportion of epithelial tissue 

increases so that the weight of the thymus remains more or less 

constant in adult fish. 

The Head Kidney 

Many stem cells as well as immature and mature erythrocytes and 

leucocytes are present within the head kidney, supported by a reticular 

cell stroma <Yasutake and Wales, 1983). Of the leukocytes in the head 

kidney about 50% are lymphocytes, 35% neutrophils and 11% 

macrophages (Congelton et al., 1990). Blast cells, large undifferated 

cells, characterised by prominent euchromatic nuclei with distinct 

nucleoli, have also been reported in the head kidney (Cenini, 1984) 

although no clear lineage between these blast cells and mature 

leukocytes has been suggested. Macrophages are more numerous in the 

head kidney tha.n in the circulation or in other organs, and they usually 

occur in aggregates with other lymphoid cells (Ellis and de Sousa, 

1974). Meianomacrophages, cells that contain melanin granules within 
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their cytoplasm, can also be identified within the head kidney 

(Anderson, 1974). 

The anterior kidney is considered the most important lymphoid organ in 

fish and has the largest lymphoid population (Chilmonczyk, 1982). 

There is evidence that the anterior kidney is the primary site of B cell 

development (Chiller et aZ., 1969b; Etlinger et aZ., 1976; Kaattari and 

Irwin, 1985; Irwin and Kaattari, 1986) and it is also important in 

producing erythroid, lymphoid and myeloid cells (Temmink and Bayne, 

1987). 

In mammals, in addition to being the site of B cell differentiation, the 

adult bone marrow is also an important secondary lymphoid organ 

containing mature T cells and numerous plasma cells. Based on 

ultrastructural (Zapata, 1979) and histoenzymic similarities (Castillo et 

aZ., 1990) there is growing evidence that the anterior kidney is 

homologous to the bone marrow of higher vertebrates. Chilmonczky 

(1982) has shown that 60% of spleen and kidney lymphocytes in trout 

are of thymic origin, thus supporting the theory that the anterior 

kidney also acts as a secondary lymphoid organ. Temmink and Bayne 

(1987) reported ultrastructural observations suggesting fish T cell-like 

and B cell-like populations are present in the head kidney. Razquin 

and co-workers (1990) reported IgM-negative cells in the kidney of 

trout, and similar results have been reported for carp (Secombes et aZ., 

1983). The presence of IgM-negative cells could be due to the early 

development of cellular immunity in teleosts (Botham et aZ., 1980; 

Tatner and Manning, 1983) or to the presence of pre-B cells that do not 

stain for the immunoglobulin marker. 
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3.2.3. Secondary Lymphoid Organs 

During their life lymphocytes migrate from the primary lymphoid 

organs to the secondary peripheral tissues. In mammals, the secondary 

sites are of two forms, well ordered encapsulated organs such as the 

spleen and lymph nodes and non-encapsulated accumulations 

associated with mucosal surfaces (Lydyard and Grossi, 1993). In fish, 

the homologous structures of mammalian lymph nodes have not been 

identified (Corbel, 1975), although the spleen and head kidney offish 

are considered secondary lymphoid organs. 

The Spleen 

The mammalian spleen consists of a collagenous capsule which, 

together with a reticular framework, aids cell support. There are two 

types of tissue within the mammalian spleen, the red pulp which is 

mainly concerned with red blood cell (RBC) destruction, as well as being 

a reservoir of RBCs, platlets and granulocytes. The white pulp consists 

of discreet lymphoid areas arranged around a central artery were 

antigen presentation to B cells occurs (Lydyard and Grossi, 1993) The 

fish spleen serves as an accessory haematopoietic organ and, as in 

mammals, a site for blood cell destruction and erythrocyte storage. It 

differs from the mammalian spleen because the red and white pulps are 

not markedly distinct from one another (Anderson, 1974). The 

connective tissue framework is poorly organised (Robertson and Wexler, 

1960) and the spleen capsule is made up of only a thin connective tissue 

layer, which is not as thick or as prominent as in the mammalian organ. 
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Spleen imprints reveal the presence of lymphocytes, neutrophils, 

granulocytes as well as erythrocytes at various stages of development. 

The fish spleen contains both T and B cell-like lymphocytes (Razquin et 

al., 1990) and is the last organ where B cell-like lymphocytes appear 

during the development of the Rainbow trout, suggesting the spleen is 

not important during the development of the immune system (Ellis, 

1977; Rijkers and Muiswinkel, 1977; Grace and Manning, 1980). 

In order to correlate with mammalian terminology, the criteria used in 

fish for the identification of blood cells tends to be morphological, 

ontogenic and functional (Ellis, 1976). 

3.2.4. Erythrocytes 

The majority of cells in vertebrate blood are erythrocytes. The number 

of circulating RBCs in fish usually ranges between 0.77 and 1.58x106 

cells mP (McCarthy et al., 1973; Wedemeyer and Yatasuke, 1977) and 

this is low compared with mammals (Matt, 1957) which have from 3.9 to 

6.5x106 cells ml· l (Richmond and Parker, 1985). Their morphological 

characteristics are shown in Plate 3.1. 

The phenomenon of increased erythrocyte counts have been reported 

previously. In freshwater fish raised haematocrit values following 

stress are common (Housten et al., 1971). 
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3.2.5. Leucocytes 

The white blood cell population in fish lies between 7.8 and 80 x103 cells 

ml· l The actual number is influenced by factors such as, sex, age, diet, 

temperature, season, health and water quality (Ellis, 1976; Pickering, 

1986; Pickering and Pottinger, 19S7c; Congelton et aZ., 1990). The 

leucocyte count in fish is considerably higher than that of man and most 

other vertebrates (4 to 11 x103 ml-I; Andrews, 1965; Richmond and 

Parker, 1985). 

Lymphocytes. 

As a proportion of leucocytes, fish blood contains a far higher percentage 

of lymphocytes (70-98%; Weinreb and Weinreb, 1969; Yatasuke and 

Wales, 1983) than mammalian blood, where the lymphocytes only 

account for 20-40% (Richmond and Parker, 1985). 

Fish lymphocytes are mostly relatively small cells 7-10Jlm in diameter 

(see Plate3.1) but large lymphocytes 10-15Jlm are occasionally seen in 

blood smears, and are obvious in kidney and spleen imprints. These 

large cells are thought to be immature lymphocytes \iasatake and 

Wales, 1983). Some workers have also reported the presence of plasma 

cells, that is B cells that have developed into antibody producing cells 

(Ellis, 1976). 
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PLATE 3.1. Rainbow trout (Oncorhynchus mykiss) peripheral 

blood smears, cells stained with the Leishman-Giemsa stain. 

Figure scale 20Jlm. Photomicrographs were taken by Olympus 

microscope X 1000. 

Fig 1 Arrows show erythrocytes in various stages of 

degeneration. 

Fig 2 Arrow highlights an immature erythrocyte. 

Fig 3 Arrow indicates a thrombocyte. 

Fig 4 Large arrow shows a lymphocyte and small arrow a 

neutrophil. 

Fig 5 Arrow points to a lymphocyte with pseudopia. 

Fig 6 Large arrow indicates a possible monocyte and the 

smaller arrow a neutrophil. 

Fig 7 Arrow points to an erythrocyte undergoing mitosis. 
Fig 8 Arrow indicates a neutrophil. 
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Polymorphonucleocytes 

In Rainbow trout blood neutrophils are the only polymorphonuclear 

(PMN) cells present (Klontz, 1972; Yasutake and Wales, 1983) although 

other workers disagree with this conclusion (Chiller et aZ., 1969b; Ellis, 

1977). In other species of fish eosinophils and basophils have been 

reported in blood (Weinreb, 1963a; b). Neutrophils account for between 

1 and 9% of total Ieucocyte s in juvenile Rainbow trout (Yasutake and 

Wales, 1983), much lower than in mammals where PMNs account for 

40-75% of the WBe population. Numerous factors affect PMN cells, 

including age and health of the fish (Pickering, 1986). 

Neutrophils are important in the inflammatory response to microbial 

agents. They have phagocytic ability (Finn, 1970; Finn and 

Nielson,1971) although this may not be their primary function (Ellis et 

aZ., 1976). 

Other granulocytes, apart from the neutrophils, are evident in the 

anterior kidney and spleen, including basophils and occasional 

eosinophils (Temmink and Bayne, 1987; Yatasuke and Wales, 1983). 

Monocytes / Macrophages 

Monocytes account for between 2 and 10% of the leukocyte population in 

mammals, but only for 0.1 to 0.2% offish WBCs (Weinreb, 1963b). 

Macrophages are not usually seen in the circulation but develop from 

monocyte precursors following migration into tissues including the 

anterior kidney, spleen and gut lining. In fish, it is well documented 

that macrophages have phagocytic ability (Anderson, 1974; Ellis, 1976; 
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1977) as well as being necessary as accessory cells for mitogenic 

responses of T cells and for antibody responses (Clem et al., 1985). In 

higher vertebrates the role of macrophages as accessory cells is also well 

established (Dnanve et al., 1984). 

Thrombocytes 

Thrombocytes account for between 1 to 6% of the total leukocyte 

population (Wedemeyer and Yasutake, 1977). They are believed to play 

a role in blood clotting (Srivastava, 1969; Wardle, 1971) and there is 

some debate over their phagocytic ability (Fange, 1968; Ellis, 1977). 

Strong debate surrounds the fish thrombocyte, its structure, function 

and ontogeny have been the subject of much contention. 

3.3. Factors Influencing the Immune System 

3.3.1. Biological Rhythms 

The immune system of mammals is influenced by their circadian 

rhythms (Haus et aZ., 1983) and other biological and seasonal rhythms 

(Laerum and Aardal, 1981; Shifrine et aZ., 1982). Careful consideration 

needs to be given to the time of day at which immuno-active substances 

are administered (Hrushesky, 1984) as well as other conditions such as 

the lighting regime and length of time animals have been acclimatised. 

The light-dark cycle can influence the resultant humoral and cell­

mediated immune responses (Hayashi and Kikuchi, 1982) and the time 

of day that antigenic exposure occurs can significantly influence the 

magnitude of the resulting immune response (Pownall et aZ., 1979). 
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Fish are also influenced by similar rhythms (Schwassmann, 1971; 

Thorpe, 1978) that affect the immune system (Lehmann, 1976; Matty, 

1978) and there are seasonal variations in the relative weights of the 

kidney and spleen (White and Fletcher, 1985). 

3.3.2. Glucocorticoids 

Glucocorticoids usually cause depression of the immune response 

whether applied in vivo or in vitro. However, glucocorticoid treatment 

may enhance the immune response depending on the steroid 

concentration, the physical state of the animal (Cupps et al., 1982), the 

timing of treatment and the immune assay employed (Cupps and Fauci, 

1982). 

In mammals, glucocorticoids generally have suppressive effects and are 

believed to interact with a single population of glucocorticoid receptors 

(Munck and Leung, 1977), although the receptors in different organs 

have different sensitivities to cortisol in fish (Maule et al., 1993). In 

humans, treatment with cortisol causes the redistribution of 

lymphocytes, T -cells are most sensitive, from the blood to the bone 

marrow (Cupps and Fauci, 1982). In mice and rabbits corticosteroids 

induce lysis of lymphocytes (Dougherty and White, 1945). 

The suppressive effects of corticosteroids on the immune system of 

teleosts are well established. Stress causes the release of 

glucocorticoids that reduce the number of white blood cells, particularly 

lymphocytes in fish (Mcleay, 1973a; b; Pickering, 1984; Pickering and 

Pottinger, 1987a; d; Maule et al., 1987) and suppresses their activity 
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(Ellsaesser and Clem, 1986). Cortisol treatment also reduces 

thrombocyte numbers (Wiik et aZ., 1989) but its affect on neutrophils is 

unclear. Some workers have observed neutrophil degeneration 

(Ellsaesser and Clem, 1986) but others have found no effect (Pickering 

et aZ., 1982; Pickering, 1984). 

Effects of Glucocorticoids on T cells 

In recent years mammalian T cells have been shown to secrete a wide 

range of chemical messengers generally referred to as cytokines which 

modulate and control the activity of the immune system. 

Glucocorticoids have far reaching effects on the activity of these and 

other cells and some relevant examples of their action are shown in 

Table 3.1. 

Compared with mammals information on fish immune cells is very 

limited but it is well established that fish lymphocytes can secrete 

interferon molecules (De Sena and Rio, 1975; Okamoto et al., 1983; 

Graham and Secombes, 1988; 1990). Moreover, Carp (Cyprinus carpio 

L.) and Atlantic salmon (Salmo salar) leucocytes have been shown to 

produce and release growth factors in response to mitogen stimulation 

that are believed to be analogous with mammalian interleukins 

(Grondel and Harmsen, 1984; 1985; Smith and Braun-Nesje, 1982). 

Two actions of mammalian lymphokines have also been demonstrated 

in fish; (1) the inhibition ofleukocyte migration by migration-inhibition 

factor and (2) mixed leucocyte reactions mediated by a mitogenic factor 

(Ellis, 1986). 
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TABLE 3.1. Some effects of glucocorticoids on immune cell types and on cytokine production in mammals 

Cytokine 

Macrophage 
activating factor 

Gamma 
Interferons 

Interleukin 1 

Interleukin 2 

Colony 
Stimulating 
Factor 

Abbreviation 

MAF 

BIFN 

IL-1 
(LAF) 

IL-2 
(TCGF) 

CSF 
including IL-3 

Site of 
production 

T-cells 

T cells 
Natural Killer 
cells 

many cell 
types 

T-cells 

T-cells 

Main Actions 

activates 
macrophages 

activates 
macrophages, 
stimulates natural 
killer cells, regulates 
IgG receptors 

regulates T-cell 
pfoliferation, 
stimulates Il-2 
production 

stimulates T and B-
cells, natural killer 
cells, macrophages 
and monocytes. 

stimulates 
maturation of 
macrophages and 
granul ocytes 

Effect of References 
Glucocorticoids 

suppresses action Kelso & Munck (1984) 
and production of Schultz et al. (1979) 
MAF 

suppresses action 
and production of 

Stebbing & Weck (1983) 
Guyre et aI. (1981) 

BIFN and blocks Rytel & Kilbourne(1966). 
macrophage IgG 
receptors 

inhibits production of Snyder & Unanue (1982) 

IL 1 and therefore 

suppresses synthesis 

of IL-2 


inhibits production of Gillis et al. (1979 a,b) 

Il-2 Oppenheim et ai., (1982) 


inhibits development Kelso & Munck (1984) 

of cells, and 

production of CSF. 




Effects of Glucocorticoids on B cells 

The actions of glucocorticoids on B cells in mammals is variable and 

depends on the species involved, mice being particularly sensitive 

(Clamen, 1972). There is also evidence that different B cells show 

different sensitivities (Clamen, 1972; Roess et aZ., 1982). Virgin and 

immature B cells are steroid sensitive before exposure to antigens 

(Clamen, 1972) but once they develop into memory or plasma cells they 

become unresponsive (Clamen, 1972). 

Antibody production is diminished by high doses of glucocorticoids, yet 

after primary immunisation, IgG production is enhanced (Tuchindaa et 

aZ., 1972; Rusu and Cooper, 1975). Cupps et ai., (1984) postulated that 

this increase in antibody production is due to altered T cell function 

rather than to a direct action on B cell function, other workers 

suggested similar mechanisms (Saxon et aZ., 1977). 

The mechanism that causes cortisol-induced suppression of the fish 

immune system is not yet clearly understood, but there is some 

evidence to suggest that cortisol acts by suppressing the production or 

activity ofinterleukin-like factors necessary for the differentiation of 

lymphocytes from their precursors (Tripp et al., 1987; Kaattari and 

Tripp, 1987; Table 3.2). Thus, inhibition by cortisol can be reversed by 

the addition of supernatant from antigen-stimulated cultures (Tripp et 

aZ., 1987) or by the addition ofinterleukin 1 (IL-l; Kaattari and Tripp, 

1987). 
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TABLE 3.2. Effect of Glucocorticoids on the Immune Systems of 

Fish. 

Function Action Reference 

macrophage secretion of unaffected Ellsaesser & Clem, 1986 
IL-1 (LAF) 

T cell-like proliferation suppressed Grimm, 1985 

Circulating antibody suppressed Anderson et aZ., 1982 

titres 

Plaque formation suppressed Tripp et aZ., 1987 

Bennett & Wolke, 1987 

B cell-like proliferation suppressed Ellsaesser & Clem, 1986 

Recent work has revealed the presence of high-affinity, low capacity 

glucocorticoid receptors on pronephric and spleen leukocytes (Maule and 

Schreck, 1990; 1991), but their distribution on different types of 

lymphocytes is not established. 

3.3.3. Stress 

Following stress there is a increase in the levels of glucocorticoids, 

catecholamines and neuropeptides, as previously discussed (see 1. The 

Endocrinology of Stress). These hormones have wide-ranging effects 

and can impair immune function and lead to decreased disease 

resistance (Monjan and Collector, 1977; Riley, 1981; Yu and Clements, 

1976; Munck et aZ., 1984; Spangelo et aZ., 1985). Leucocytes seem 

particularly sensitive to stress (Mcleay, 1973; Pickford et aZ., 1971) and 

increases in plasma cortisol titres are associated with leucopenia 

(Pickering, 1981). Maule et aZ. (1989) working on Chinook salmon 

(Oncorhynchus tshawytscha) have shown that one day after stress, 
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disease resistance is actually enhanced due to non specific immune 

mechanisms and even seven days later, disease resistance may not 

necessarily be affected even though antibody production by lymphocytes 

has been reduced. 

Dupont and co workers (1983) believe T suppresser cells are resistant to 

cortisol and T helper cells are glucocorticoid sensitive (Bradley and 

Mishell, 1982; Dupont et aZ., 1983). Okimura et aZ. (1986a,b) suggested 

that stress-induced increases in the levels of corticosteroids and 

catecholamines act to suppress the function of T helper and T 

suppresser cells, thus reducing the response of T-dependent (TD) B 

cells whereas T-independent (TI) B cells were augmented by stress 

(Okimura et aZ., 1986b). 

In fish although T and B cells have not been confirmed, Tripp et aZ. 

(1987) has demonstrated that cortisol suppression of B-like cells in 

Chinook salmon is due to the inhibition of an interleukin-like substance 

necessary for activating antigen specific B-like cell precursors. 

Ellsaesser and Clem (1986) found that stress acts directly on circulating 

lymphocytes but does not affect the ability of macrophages to secrete 

lymphocyte growth factors. 
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3.3.4. Reproductive Hormones 

It has been suggested that gonadal steroids may play an important role 

in the immune response of mammals. This view is based on evidence of 

sexual dimorphism in the immune response, changes in immunity 

during pregnancy (Anderson and Monroe, 1962; Finn et al., 1972), 

changes following gonadectomy and sex hormone replacement (Sthoeger 

et aZ., 1988; Castro et al., 1973) and the presence of gonadal hormone 

receptors in lymphoid organs (Cohen et aZ., 1983). 

Oestrogens are natural modulators of the immune system (Calzolari, 

1898) and females of many mammalian species produce higher antibody 

titres (Batchelor and Chapman, 1965; Eidinger and Garrett, 1972; 

Krzych et aZ.,1981), but have a less responsive cellular immune system 

than males (Santoni et al., 1976; Inman, 1978; Kalland, 1980). 

Progesterone has also been shown to inhibit cellular immunity (Hulk a 

et aZ., 1965). 

Sex steroids are believed to enter the target cells, where they bind to a 

specific receptor which then interacts with specific regions of DNA 

(Ringold, 1985; Barrack, 1987). Oestrogen receptors have been found in 

the mammalian thymus (Grossman and Natham, 1977; Grossman et aZ., 

1979) and spleen (Detlefsen et al., 1979; Danel et al., 1983), but 

testosterone receptors have not been observed (Rife et al., 1990; Cohen 

et aZ., 1983). 

Androgens and oestrogens have been reported to induce atrophy of the 

thymus and peripheral immune organs (Dougherty, 1952) and to effect 

the number and function ofthymocytes (Luster et al., 1984; Ahmed et 
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aZ., 1985) and thymic factors (Stimson and Crilly, 1981; Grossman et aZ., 

1982). The mechanisms involved are unclear, but are thought to be due 

to the direct effect of ostrogen on thymocytes (Barr et aZ., 1982) or by 

action on the hypothalamo-pituitary-gonadal-thymic (HPGT) axis 

(Beredovsky and Solkin, 1977). Receptors for other androgens and 

corticosteroids are present in thymic medullary tissue (Brodie et aZ., 

1980) and thymic factors can be regulated by oestrogens, androgens and 

corticosteroids (Stimson and Crilly, 1981). 

Oestradiol exerts stimulatory effects principally on IgM production 

without increasing the number of antibody producing cells, possibly by a 

direct action on B cells (M:yers and Petersen, 1985). Oestradiol only 

affects IgM antibodies, and it is believed that different steroids control 

the synthesis of different immunoglobulin classes (Borgatze and Katz, 

1980). It is well documented that oestradiol increases protein synthesis 

(Jensen and De Sombre, 1972) and the increase in the plaque area seen 

after oestradiol is added in vitro, supports the idea that this steroid has 

the ability to enhance protein (antibody) synthesis by B cells (Sthoeger 

et aZ., 1988). 

Testosterone causes a marked reduction in the number of PFCs (Fujii et 

aZ., 1975; Sthoeger et al., 1988) in the spleen, probably by causing the 

inhibition of the differentiation of certain B lymphocyte stem cells. 

In mammals the relationship between gonadal steroids and the immune 

system has been well documented (Table 3.3), however possible immune 

gonadal interactions in fish have not been widely investigated although 

seasonal changes in the immune function offish have been related to 

reproductive cycles (Fletcher, 1986; Pickering, 1986; Pickering and 
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Table 3.3. Some effects of sex steroids on the immune system of mammals and fish 

Effect of steroid 

Oestradiol on antibody 

production 

Oestradiol on T cell number and 

activity 

Oestradiol on IL-1 production 

Testosterone on antibody 

production 

Testosterone on T-cellproliferation 

Progesterone on T-cell 

proliferation 

Progesterone on IL-1 production 

Mammals 

enhances 

no effect 

stimulates 

suppresses 

suppresses 

suppresses! 

stimulates 

stimulates 

Fish 

no effect 

unknown 

unknown 

suppresses 

unknown 

unknown 

unknown 
-- -----_ .. __ .. -_ .. - ­

Reference 

Erbach & Bahr, (1988) 

Slater &Schreck, (1993) 

Myers et al. (1986) 

Holdstock et al. (1982) 

Hu et al., (1988) 


Fujii et al., (1975) 


Slater & Schreck, (1993) 


Wyle & Kent, (1977) 

Holdstock, (1982) 

Wyle & Kent, (1977) 

Polan et al., (1988) 



Pottinger, 1987a). Slater and Schreck (1993) demonstrated the 

inhibitory effect of testosterone in vitro, the immunosuppressive effect 

was comparable to an equivalent dose of cortisol, but the effect of 

cortisol and testosterone together was greater than either alone. The 

authors believe the additive effect was due to each steroid acting on 

different cells. In Chinook salmon, testosterone causes 

immunosuppression of B-like cells (Slater and Schreck, 1993) but 

oestrogen has no significant inhibitory effect on antibody secretion 

(Slater and Schreck, 1993). 

3.3.5. Temperature 

Low environmental temperatures can be immunosuppressive in 

ectothermic vertebrates including fish (Avtalion, 1981). Temperatures 

of less than 17°C impairs T cell-like function, but other populations of 

lymphocytes are insensitive to temperature (Clem et aZ., 1984, Miller 

and Clem, 1984; Miller et aZ., 1986; Ellsaesser et aZ., 1988). Changing 

the water temperature from 23 to 11°C over a 24 hour period however, 

suppresses both T and B cell responses (Bly and Clem, 1991). 

3.3.6. Genetic Differences 

The increased responsiveness to stress means that Brown trout have a 

greater predisposition to disease (Pickering and Pottinger, 1989; 

Pickering et aZ., 1989). The mortality rates of Brown trout were 

increased more than 15 times compared to Rainbow trout subjected to 

similar stress, and it may be relevant that Brown trout lymphocytes are 

more responsive to cortisol than those of Rainbow trout. 
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The differences in stress susceptibility and disease resistance in 

different strains are genetically based and affect survival (Pickering et 

aZ., 1989; Fevolden et aZ., 1991). Recent work has suggested that 

genetic manipulation of sensitivity to stress may be feasible (Pottinger 

et aZ., 1994). 

3.3.7. Dominance hierarchy 

When exposed to the pathogen Aeromonas hydrophilia, subordinate fish 

are more frequently infected with the bacteria than dominant fish 

(Peters et aZ., 1988). Only dominant fish within a single population 

produce antibodies to infection (Barrow, 1955) and subordinate fish 

have more active interrenals (Scott and Currie, 1980) and produce more 

cortisol, so reducing their immune response. 

3.4. Aims of this Investigation 

In view of the well established links between the HPI axis and the 

immune system and the emerging role ofMCH as a modulator of the 

stress response, the primary aim of this study was to explore the 

possibility that MCR could also modulate the immune system of 

Rainbow trout (Oncorhynchus mykiss). 

Plasma levels of MCH can be manipulated by adapting fish to black or 

white backgrounds. By measuring plasma cortisol levels in these fish 

and by monitoring the number of leucocytes in the blood and major 

lymphatic organs, any action ofMCH in modulating the stress response 

and lor immune function would become apparent. The results of these 

experiments could be further investigated by using fish reared on black 
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or white backgrounds, conditions that might be expected to produce 

maximum differences between experimental groups. 

It was believed that this in vivo approach, while demonstrating MCH 

might, under certain circumstances, modulate the stress and/or immune 

response, interpretation of how this was achieved would require more 

detailed experiments under controlled conditions. Thus, a second aim of 

this work was to develop a culture system for spleen and kidney 

lymphocytes that would enable the effects of cortisol and MCR to be 

studied in vitro. The uptake of radioisotopes would provide simple 

methods of measuring cell division and protein synthesis while the 

development of assays to measure key immune responses would 

provide additional information about the possible involvement of MCH 

as a modulating hormone. 

While cortisol is the primary steroid hormone involved in the stress 

response in fish, all glucocorticoids including cortisol, are known to have 

a powerful immunosuppressive actions. A review of the literature 

revealed strong circumstantial evidence that the structurally related 

reproductive steroids can also have immunological actions. A third aim 

of this work was to use lymphocyte culture to investigate the role of 

reproductive steroids on immunological function. 
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4. Materials and Methods 

4.1. Experimental Rationale 

Two approaches were made to assess the effects ofMCH and stress on 

the immune system. Whole animal were used to study the effects of 

black and white backgrounds on stress responses and immunological 

functions. Studies in vitro were also developed to try and elucidate the 

actions of these hormones without the interactions that occur in intact 

animals which complicate interpretation of in vivo results. Cultured 

lymphocytes were stimulated with both T and B-ceU mitogens to 

investigate whether MCH and steroid hormones had different actions 

on these two populations. 

To assess the effects of background colour in vivo, Rainbow trout 

(Oncorhynchus mykiss) were adapted to black and white tanks for a 10 

and 14 day period. Some parameters known to be influenced by stress 

(e.g. cortisol levels, erythrocyte and leucocyte counts) were studied to 

see if adaptation to different backgrounds had any effect on the stress 

response. As a control for this experiment, fish were killed at a local 

fish farm, and these were used as a baseline to compare with the results 

obtained in adapted fish. 

In the second experiment, the effects of injection stress on black and 

white-adapted fish were examined. Although a fish farm group would 

have provided useful controls for this and later experiments the number 

of fish required would have made the experimental protocol too 

demanding and could not be carried out quickly enough to prevent the 
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experiment itself affecting plasma cortisol levels. Six fish were used in 

each experimental group, and because of the time involved in processing 

the fish spleen and kidney lymphocyte counts were not performed on 

black- and white-adapted controls. The results from Experiment 1 

however, provide a useful reference for comparison with the results from 

a later experiment. 

In Experiment 3, two assays were employed to assess the immunological 

status of white-adapted fish. This experiment used only white fish as a 

trial to verify the effectiveness of the haemagglutination and haemolytic 

plaque assays. Uninjected fish were the controls for both the saline­

injected group (exposed to the stress of injection, but without antigenic 

stimulation) and SRBC-injected fish (exposed to injection stress and 

antigenic challenge). The next logical step was to assess the effect of 

background colour on the result of immunological stimulation with 

SRBC. The number of fish, and number of assays required in this 

experiment (Experiment 4). precluded the use of uninjected fish as 

controls. 

The results of these experiments revealed that the differences between 

black- and white-adapted groups were not as marked as had been 

expected. It is possibly that the white colour of the tanks was not 

sufficient to produce maximal stimulation ofMCH release and when 

fish that had been reared all their lives on black and white backgrounds 

became available a further series of experiments were carried out using 

these reared-fish, to try and maximize the action that MCH could have 

on stress and immune responses. 

In the next series of experiments the effect of T-cell stimulated 

lymphocytes taken from black- and white-adapted (Experiment 6) and 
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reared fish (Experiments 7 and 8) and cultured in vitro were examined. 

This approach revealed how previous background exposure, and 

therefore differences in plasma MCR titres, could affect the cellular 

responses offish lymphocytes. In the early experiments, the uptake of 

two radioisotopes was used to monitor cell growth, 3H-thymidine was 

used to measure cell division and 14C-leucine to assess protein 

synthesis. In later experiments, only 3R-thymidine was used to 

measure cell division, since 14C-leucine uptake gave less consistent 

results and the additional work required to set up parallel cultures for 

each isotope limited the scope and number of factors that could be 

investigated in each experiment. 

Once the cell culture technique had been developed and refined and had 

shown that background colour could indeed affect lymphocyte growth, it 

was used to explore the influence that a range of steroid and colour 

change hormones have on T-cell stimulated lymphocyte division. The 

decision to expand the scope of the work to look at the effects of 

reproductive steroids on T-cell proliferation was prompted by the 

findings of Slater and Schreck (1993) that reproductive steroids could 

influence B-cell responses in culture. In retrospect it might have been 

wiser to consolidate the data on MCR, but at the time, it was difficult 

not to become interested in how reproductive hormones would influence 

cell growth using the culture system that had been developed. 

Since the response to MCR using T-cell mitogens caused enhanced 

lymphocyte growth, the effects ofMCR on B cell lymphocyte growth was 

also assessed, and although these results opened up possibilities for 

many further experiments, it was decided that enough experimental 

evidence was now available to draw conclusions about the role of MCR 

in immunological function in trout. 
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4.2. General Techniques 

4.2.1. Experimental Animals 

Rainbow trout (Oncorhynchus mykiss) obtained from Weirhouse Trout 

Farm, Chesham, Buckinghamshire, The Berkshire Trout Farm Ltd, 

Hungerford, Berkshire or Gade Water Nurseries, Hemel Hemstead, 

Hertfordshire were held in black or white tanks for a minimum period 

of two weeks before use. All fish used in adapted experiments were 

fingerling trout to try and minimise the differences between different 

batches of fish. A few Brown trout (Salmo trutta) were also obtained 

from The Berkshire Trout Farm Ltd. The fish were maintained in as 

near stress-free conditions as possible, in 230 litre tanks interlinked to 

allow a slow flow of tap water (250ml min· l ) that replaced the aquarium 

water every 2-3 days. Two biological/charcoal fliters (Ehiem Ltd, 

Berlin, Germany), were used to maintain the water quality. 

The fish were held under a lighting regime of 12 hours lightJ12 hours 

dark at a temperature of 12 ± 2 °C and fed on alternate days on 

commercial trout pellets. Up to thirty 250g fish could be held in each 

tank. Some experimental work was carried out on fish reared from eggs 

on black or white backgrounds and held in similar aquaria at Bath 

University, Bath, Avon. 

4.2.2. Collection of Blood Samples 

Fish were caught quickly using a net and rapidly anaesthetised in 

benzocaine (Sigma; 5 ml P of a stock solution of 109 1-1 benzocaine 

dissolved in ethanol). This procedure minimised stress-induced 

increases in plasma cortisol (Strange and Schreck, 1978). After the fish 
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became unconscious, blood was obtained from the severed caudal vein 

and collected into ice-cold 4ml polypropylene tubes containing 3mg of 

disodium ethylenediamintetra-acetate (EDTA; BDH, Poole, Dorset). 

Sub samples of blood were used to prepare blood smears (2~1) and blood 

cell counts (10 ~l). 

4.2.3. Blood Cell Counts 

The number of red and white blood cells per ml of blood were calculated 

using an improved Neubauer haemocytometer. For each fish, 10~1 of 

blood were diluted 250 fold with Dacies fluid for total WBC counts and 

700 fold for total RBC counts. For each fish a minimum of 2 counts per 

sample were made. The possibility of using a Coulter counter for the 

blood cell counts was investigated, but this gave unreliable results due 

to the nuclear debris that remains when fish RBCs are haemolysed. 

4.2.4. Identification of Cells in Blood Smears 

Blood smears were air-dried then fixed with methanol for 5 minutes and 

stained with Leishman-Giemsa Stain. The filtered Leishman stain 

(BDH) was applied to the slides for 2 minutes, then gently flooded-off 

with a solution of the Giemsa stain (BDH), made from one part filtered 

Giemsa stain and seven parts sodium phosphate buffer (O.IM, pH 6.0). 

This solution was left on the slides for 9 minutes then washed off, first 

with phosphate buffer and then with tap water. The slides were then 

gently heat dried overnight in the dark. Five hundred blood cells were 

counted from each smear in randomly selected areas of the slide and for 

each fish two slides were counted. Cell identification was made by 

reference to an atlas of salmonid microscopic anatomy (Yasutake and 

Wales, 1983) and the relative proportions of each cell type calculated. 
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4.2.5. Identification of Cells from Spleen and Kidney 

Whole spleens and the kidney were dissected from the body cavity. The 

spleen weights were expressed as a percentage of the wet body weight. 

Identification of cells from wax sections of the head kidney and spleen 

proved difficult, greater clarity was obtained using whole tissue 

imprints and smears of lymphoid organ preparations which enabled 

individual cell types to be identified. Although several staining 

techniques were investigated the best results were obtained using 

Haematoxylin and Eosin, Leishman-Giemsa or Periodic Acid Schiffs. 

4.2.6. Cortisol Radioimmunoassay 

Plasma was separated from whole blood samples by microfugation at 

8800g for 5 minutes, and aliquots of plasma were stored at -20°C before 

being assayed. Duplicate 10111 aliquots of plasma were used for each 

determination. 

The concentration of cortisol in plasma samples was measured using 

the method described by Rance and Baker (1981). Briefly, 100~1 of 

100% ethanol were added to 10111 plasma samples, to precipitate plasma 

proteins. The ethanol was then evaporated from the samples and from 

a set of cortisol standards (Sigma Chemicals Ltd, Poole, Dorset) in a 

centrifugal freeze drier. Neat serum containing a polyclonal antibody 

raised in rabbits to cortisol (Sigma)(courtesy of Dr. B. Baker, Bath 

University) was diluted 10 fold with phosphate buffered saline (O.IM, 

0.85% NaCl, pH 7.4). This antiserum also cross reactions with 11­

deoxycortisol (3.3%), corticosterone (2.1%), 17 a-hydroxyprogesterone 

(1.3%). 
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Two hundred and fifty microlitres of 9.25Bq ml· l , of 3H-cortisol with an 

activity of 3.0TBq mmol· l (Amersham International, Aylesbury, 

Buckinghamshire) was diluted to 100ml with 100% ethanol and stored 

at -20°C. To assay up to 100 plasma samples, 100)!1 of the tritiated 

cortisol solution were dried down with gentle heat, then resuspended in 

20ml of phosphate buffered saline gelatine (PBSG, O.lM, pH7.4) and 

mixed with 100 ).11 of stock cortisol antibody. Two hundred microlitres of 

this working solution were added to each sample and thoroughly mixed 

to resuspend the dried plasma before being left overnight at 4 °e. 

Unbound cortisol was absorbed onto dextran-coated charcoal which was 

separated from antibody-bound cortisol by centrifugation at 3000rpm 

(1500g). The supernatant was mixed with 5ml of scintillation fluid 

(Emulsifier Safe, Packard Ltd., Cambridge, Cambridgeshire) and 

counted on an LKB liquid scintillation counter. The standard curve was 

linearon a semilog dose/response plot (Figure 4.1). 

Using 10).11 of plasma, the assay detected 5ng cortisol/ml plasma. 

Intraassay variation was 2.5% (n=9) and interassay variation, 9.6% 

(n=7). 

4.3. Immunological Techniques 

In addition to assessing the numbers and types of immune cells, 

immunological assays were developed to monitor the functional activity 

of the immune system. 

68 




100 

90 

80 

b1l 
~ ...... 70 

'"d 
~ ...... 

..0 

.g 60 
0 

..0...... 
+> 50 
~ 
ro 
(J) 
bJl 40 ro 

+> 
~ 
(l) 
u 30l-< 
(J) 

P.. 

20 

10 

0 

10000100 100010 

cortisol (ng mll) 

FIGURE 4.1. Standard curve for the radioimmunoassay of plasma cortisol. 



4.3.1. Immunisation Regime. 

Fish were anaesthetised in benzocaine, (4ml-1 of a stock solution of 109 

1-1 of benzocaine dissolved in ethanol) and injected with sheep red blood 

cells (SRBCs). The SRBCs were supplied suspended in Alsever's 

solution (Unipath Ltd, Basingstoke, Hampshire) and remained usable 

for up to four weeks when stored at 4°C. Before use the cells were 

washed three times by centrifugation (3000rpm, lOOOg) in sterile 

phosphate buffered saline (PBS, O.lM, pH 7.1), and re-suspended in 

PBS. Fish were injected interperitoneally with 200 ~l of washed 10% 

SRBC or 200J-ll of PBS. Upto three experimental groups were used; 

SRBC-injected, PBS-injected and uninjected controls. The fish were 

injected three times on alternate days, and killed ten or eleven days 

after the final injection. 

4.3.2. Lymphocyte Cell Isolation. 

The head kidney and spleen were removed aseptically from recently 

killed fish under a lamina flow hood and held on ice in Leibovitz-15 

medium (L-15; Gibco Ltd, Paisley, Strathclyde). The tissue was 

transferred to fresh medium supplemented with 10% foetal calf serum 

(FCS; Gibco Ltd) and single cell suspensions obtained by repeated 

aspiration and expulsion of the tissue through a 1ml syringe fitted with 

a 21 gauge needle. This suspension was then allowed to stand in a 4 ml 

polypropylene tube on ice for 10-20 minutes until the larger cell 

fragments had settled. The supernatant was removed and centrifuged 

at 3000rpm (1500g) for 15 minutes. The supernatant was discarded 

and the cell pellet resuspended in 1ml of FCS-supplemented medium. 

One hundred microlitres of this single cell solution were added to 
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20011lof filtered 0.4% trypan blue (BDH) and, after gentle mixing, the 

solution was loaded onto a haemocytometer and viable and non-viable 

leucocytes were counted to give total lymphocytes present in the kidney 

and spleen respectively, duplicate counts were made for each sample. 

4.3.3. Passive haemagglutination test. 

This procedure was used to assess the amount of specific antibody 

present in fish serum. (Ruglys, 1985). Blood collected by caudal 

puncture was left overnight to coagulate. The coagulated blood was 

then microfuged (8800g) for 5 minutes to obtain the blood serum. One 

hundred microlitres of serum was serially diluted with L-15 medium 

using doubling dilution's in a microtitre plate and 25111 of 20% washed 

SRBCs were added to each well. After a two hour incubation at 4°C, the 

weakest dilution at which the SRBCs showed agglutination was 

recorded as a arbitrary score. While SRBCs in wells which contained 

antibodies are held in suspension to form a 'carpet', those in wells 

without sufficient antibody, collect on the bottom of the wells as tight 

'buttons' 

4.3.4. Passive Haemolytic Plaque Assays 

Passive haemolytic plaque assays are used to measure the number of 

antibody producing cells in lymphoid tissue. After immunisation 

against SRBCs, the number of cells secreting SRBCs antibodies can 

provide an estimate of immunological competence. Two types of plaque 

assays techniques were employed. 
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Cunningham Plaque Assay. 

Following the technique developed by Cunningham and Szenberg 

(1968), 100)11 of lymphocyte suspension was added to 10)11 of FCS 

supplemented L-15 and 10)11 Brown trout serum (to provide a source of 

complement) on ice. Thirty microlitres of a 20% solution of washed 

SRBCs in PBS were added to the suspended lymphocyte solution which 

was agitated gently before being loaded into a Cunningham plaque 

chamber. Cunningham plaque chambers are constructed from two 

clean microscope slides held together with double sided tape to 

sandwich cells in a monolayer. The sides of the chambers are sealed 

with wax and incubated for 8 hours at 14°C in a humid environment. 

Mter incubation, the number of antibody producing cells were identified 

by the holes or plaques that form in the lawn of SRBCs due to cell lysis . 

The assay failed to give distinct plaques however, due to movement of 

the cells within the monolayer. 

Jerne Passive Haemolytic Plaque Assay 

An alternative technique, the Jerne passive haemolytic plaque assay 

(Jerne and Nordin, 1968; Chiller et al., 1968) was found to give superior 

results and was easier to carry out on a large scale. In 4.5cm diameter 

petri dishes, a 1mllayer of 1.4% w/v technical grade agar solution (Difco 

Ltd, West Mosley, Surrey) was prepared in L-15 medium. When 

solidified, 250)11 of lymphocyte suspension was layered onto the agar. 

Finally, 1ml of a 0.7% w/v solution of technical grade agar in L-15 at 

45°C mixed with 200)11 of washed 20% SRBCs was poured onto the set 

agar in each petri dish. The agar was allowed to solidify, before the 

addition of 1.5ml of 20% rainbow trout complement solution in L-15. 
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Duplicate plates were prepared for each sample, before incubation 

overnight at 22°C. The number of plaques formed was recorded the 

following day. 

Since plaque size varied enormously, plaques greater than 3mm in 

diameter were counted as large (L) and all others as small (8). 

4.3.5. Rosette Assay 

The rosette assay (Zaalberg, 1964) was also investigated as a means of 

assessing the immunocompetence of kidney and spleen lymphocytes by 

measuring their ability to bind antigens. 

A mixture of 200jll of lymphocyte suspension and 200jll of 1 % washed 

SRBCs were added to a test tube, mixed gently then incubated 

overnight at 4°C. The following day, after diluting the suspension in 

Dacies fluid, the number of rosettes (lymphocytes clustered around 

SRBCs) were counted. To be scored as a rosette a minimum of three 

lymphocytes clustered around a 8RBC was necessary. 
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4.4. In Vitro Methods 

4.4.1. Cell culture Development 

The ability of lymphocytes to pl'oliferate in vitro from the anterior head 

kidney and spleen was assessed using a mitogen stimulation assay 

(Etlinger et aZ., 1976; Spitsberg et al., 1986). 

Two media, Leibovitz 15 (L-15) and RMPI-1640, (Gibco Ltd), both 

routinely used in fish cell culture, were tested to see which best 

supported lymphocyte cell growth. Leibovitz 15 was chosen because it 

did not require gasing with 10% carbon dioxide. The Leibovitz 15 

medium, which already contained L-glutamine, was supplemented with 

10mg 1-1 each of adenosine, cytosine, guanosine and uracil (Sigma 

Chemicals Ltd) and is subsequently referred to as "tissue culture 

medium". Initially, cultured cells were counted after four days of 

growth using a haemocytometer. Trial experiments were also carried 

out with lymphocytes grown on 70% methanol-washed circular 

coverslips. After fixation, the cells were stained and counted on the 

coverslip, but with this technique cell growth was often uneven. The 

uptake of isotopes by the cells was developed as a method of estimating 

cell growth. The incorporation of the radioactive labels was low when 

cells were grown on cover slips. More consistent results were obtained 

by growing the cells directly on the bottom of the culture well plates. In 

early experiments the tissue culture medium was further supplemented 

with FCS, but this was later replaced with the synthetic serum Ultroser 

(Gibeo Ltd) which had a longer shelf life and was more cost effective. 
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4.4.2. Final Cell Culture Technique 

The final method used for all in vitro experiments was as follows: 

Organs were dissected from the body and placed in ice-cold tissue 

culture medium supplemented with 0.5% Dltroser solution. The organs 

were disrupted into a test tube by being forced through a 1ml syringe 

fitted with a 21 gauge needle. The resulting solution was then allowed 

to settle on ice for 30 minutes and the supernatant was then centrifuged 

at 3000rpm (1000g) for 10-15 minutes at 4°C. The resulting pellet of 

cells was resuspended in 1ml of Ultroser-supplemented tissue culture 

medium, with the addition of an antibiotic mixture (100mg ml- l of 

streptomycin-penicillin, tissue culture grade; Sigma). Cell density and 

viability were determined using 0.4% trypan blue. Single cell 

lymphocyte suspensions were diluted to within the range 0.5-5.0 x 106 

cells ml-I using antibiotic supplemented medium. Using Nuncon 24-well 

tissue culture plates (Philip Harris Scientific, Lichfield, Staffordshire), 

100ml of cell suspension and lOOml of the growth lectin were added to 

each well. 

In experiments investigating T like-cell growth, the T cell stimulator 

Concanavalin A (Con A; from Canavalia ensiformis type IV-S; tissue 

culture grade; Sigma) was the growth mitogen selected. The 

concentration of Con A, added to the cultures, was optimised in 

preliminary experiments (see Section 6.1). In experiments investigating 

B cell mitogenesis, the mitogen used was Lipopolysaccharide (LPS; from 

E. coli 026:B6; tissue culture grade; Sigma). One hundred microlitres of 

steroid or peptide hormones of predetermined concentration were added 

at this point bringing the final volume in each well to 300m!. If a 
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second steroid was also being investigated it was added with the 

mitogen. 

The plates were then incubated sealed in a plastic bags at 20°C for two 

or three days (see Section 4.3.3 for exact timing of each experiment). 

The cells were then pulsed with 18.5kBq of 3H-thymidine (185GBq 

mmoP; Sigma) to estimate cell division or 7.4kBq of 14C-leucine (llGBq 

mmoP, Sigma) to monitor protein synthesis during cell growth. After 

up to four days of growth, the cells were scraped from the wells using a 

spatula, and washed twice by centrifugation (8800g) in 0.85% w/v 

physiological saline. The washed cells were added to 1ml of scintillation 

fluid (Emulsifier Safe, Packard Ltd, Cambridge, Cambridgeshire) and 

the radiolabel incorporated into the cells determined in a LKB-Wallace 

RackBeta Scintillation counter. The results were expressed as the 

percentage change from the control values. In this way, the degree of 

inhibition or stimulation by various test substances was assessed. All 

treatments were carried out in triplicate for each organ of each fish. 

4.4.3. Hormones Investigated in Culture 

Cortisol 

Cortisol (tissue culture grade; Sigma) was initially dissolved in 100% 

ethanol then dried down and resuspended to the appropriate 

concentration using tissue culture medium. One hundred microlitres of 

this solution was added to each well to give a final concentration of 10, 

30, 100 and 300ng mI·l of cortisol. The wells were then incubated for 

seven days. 
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MeH 

The MeR (Novabiochem UK Ltd, Nottingham, Nottinghamshire) was 

made up to 0.5mg ml- l in 1% Bovine Serum Albumin (BSA) in L-15 

medium (Baker et aZ., 1985a). A lOOml aliquot of this solution was then 

diluted in tissue culture medium to give final concentrations of 10, 100, 

1000 or 10,OOOpg ml-! in the wells. The wells were then incubated for 

seven days, with the addition of 3H-thymidine on day three. 

Cortisol and MCH 

In an experiment to assess whether MeR could influence the action of 

cortisol on lymphocytes in culture, MeR used at a flxed final 

concentration of 50pg mPwas tested on lymphocytes exposed to cortisol 

concentrations of 0, 10 and 300 ng mP. A control group of wells 

containing the same range of cortisol but without MeR were incubated 

in parallel. 

Cortisol and aMSH 

Alpha-MSH ([Nle4, D-Phe7]aMSH; Sigma) dissolved in O.lM Hel to give 

a stock concentration ofO.lmg ml- l was serially diluted with L-15 

medium, to give a final concentration of 495 pg ml- l in the culture wells. 

This concentration was chosen to reflect the typical concentration of 

aMSR found in the blood of trout (Baker et aZ., 1986). A similar protocol 

to that used for MeR was adopted in this experiment for cortisol and 

aMSR. The cells were incubated for two days before the addition of 3R­

thymidine, and then for a further five days before being harvested_ 
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Reproductive Steroids 

Five teleost reproductive steroid hormones obtained from Sigma 

(*defines tissue culture grade) were individually tested on spleen and 

kidney lymphocyte cell cultures in vitro namely: 

11~ ketotestosterone 


17a hydroxy, 20~ dihydroxyprogesterone * 


17 a hydroxyprogesterone 


androstenedione 


17~-oestradiol.* 

Each hormone was dissolved in 100% ethanol and a calculated amount 

of this solution was dried down and resuspended in tissue culture 

medium to give final concentrations in the culture wells of 10, 30, 100 

and 300ng ml-1 of each steroid. The cells were incubated for two days 

before the addition of 3H-thymidine, and then for a further five days 

before being harvested. 
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5. 	 Results: In Vivo 

5.1. 	 Experiment 1: 

Effects of adaptation to black and white backgrounds 

on plasma cortisol and immune cell numbers. 

To assess whether background colour can influence the immune system, 

fingerling Rainbow trout were adapted to black and white tanks for 

periods of 10 and 24 days to observe the effects on plasma cortisol titres 

and the numbers of lymphocytes in the blood, spleen and kidney. 

Blood collected from claudal vessels was used for measurement of 

plasma cortisol titres, circulating blood cell numbers and for the 

preparation of blood smears for histological assessment of blood cell 

types. Spleen and kidney smears were prepared for the estimation of 

lymphocyte numbers in these tissues. Additional samples were 

collected from fish killed at the fish farm immediately after capture. 

The results are shown in Table 5.1. 

5.1.1. Cortisol 

Plasma cortisol titres were consistently higher in black- compared with 

corresponding white-adapted fish, although the differences were not 

significant. Fish killed at the farm had significantly lower plasma 

cortisol than most groups of adapted fish. These results suggest that in 

the aquarium, the fish were under greater stress than at the fish farm. 

Factors such as the additional noise and disturbanc, lower water 

volume and poorer water quality are the most likely cause. 
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TABLE 5.1. Experiment 1. The effects of background adaptation 

on plasma cortisol, red and white blood cell counts and blood, 

spleen and kidney lymphocyte numbers. Values are means ± 1 

standard error, n=6. Bracketed values are significantly different 

where *=p <0.05, **=p <0.01 and ***=p <0.001. 
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Body weight 

(~) 

Plasma cortisol 

(ng/ml) 

Erythrocytes 
(xl06/1l1 blood) 

Leucocytes 
(xl03/lll blood) 

Lymphocytes 

Blood 
(/1000 cells) 

Spleen 
(xl06/g body wt) 

Kidney 
(xl06/g b()9.'y wt) 

Farm 

42.6±5.0 

I I 

8.3±1.1 
I 

* 

I I 
2.8±0.9 

*** 

I r--- ** 
31.9± 10.8

I \ 

30.4±122 
I L-- * 

349±23 

184±43 

AdaEtation conditions 


Black White Black 

10d 10d 24d 


332±6.3 34.0±522 29.9±4.4 

* 
I 

l3.4±2.6 1O.0±1.7 20.4±72 

* 
~~iTi 

I 
2.5±0.5 1.5±02 15.0±2.0 

1_*** *** 
** 

51.9± 12.0 6O.4±15.7 231±28 

*** 
I 

*** 
r-*** I I 

12.0± 1.3 38.0±2.5 15.0±2.9 
I 

* 

310±51 232±29 257±56 

191±38 143±9 207± 16 


White 

24d 

38.8±7.3 

15.0±32 

I 
14.8±22 

248±43 

***----, 
47.6±42 

211±36 

163±34 



5.1.2. Blood Cell Counts 

Erythrocyte counts were increased significantly in both black- and 

white-adapted fish after 24d compared to farm values. A even more 

marked effect was observed for leucocyte numbers which were 

significantly raised at 10d and dramatically increased by 24d. When 

lymphocyte numbers were expressed per 1000 cells counted from blood 

smears, significantly higher numbers of cells were seen in white­

compared to black-adapted fish. 

5.1.3. Spleen and Kidney Cell Counts. 

The highest numbers of spleen lymphocytes were found in fish killed at 

the farm, but adaptation to different backgrounds did not reveal any 

obvious trends. No clear pattern was evident for kidney lymphocytes 

although white-adapted fish had the lowest numbers of cells per gram 

in this tissue. 

5.1.4. Summary 

The fish used in this experiment had raised cortisol titres and blood 

lymphocyte numbers compared to farm controls, these parameters 

increased with the adaption period. 

It is worth noting that, while the classical immunological response seen 

in this experiment was less marked in black- than white-adapted fish, 

the stress response, as assessed from cortisol values, was greater in 

black- than white-adapted fish. 
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5.2. 	 Experiment 2: 

Effects of injection stress and immunological 

challenge on plasma cortisol and immune cell numbers 

in black- and white-adapted trout. 

The aim of this experiment was three fold. Firstly, it examined the 

responses that occur when a moderately severe stress is repeated over 

several days. Secondly, it established an immunisation technique that 

would be necessary for further investigations of immune function. 

Thirdly, it revealed differences in the responses to repeated stress and 

immunisation in fish adapted to black or white backgrounds. 

Trout were adapted to black or white backgrounds for two weeks. Three 

experimental groups were used: uninjected controls, saline-injected and 

SRBC-injected. Full details of the immunisation regime are given in 

Section 4.2.1. The results are shown in Table 5.2. 

5.2.1. Cortisol 

Plasma cortisol levels were lowest in uninjected fish and highest in both 

injected groups. The differences were not significant however, with the 

exception of the black saline-injected group whose value was unusually 

high (15.5ng ml-I). The stressful effects of injection were not obvious in 

this experiment nor were there any clear differences between saline­

and SRBC-injected fish. 
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TABLE 5.2. Experiment 2. The effects of repeated injections of 

saline or sheep red blood cells on plasma cortisol and immune 

cell numbers in black- and white-adapted trout. Values are 

means ± 1 standard error, n=6. Bracketed values are 

significantly different where *=p <0.05, **=p <0.01 and ***=p 

<0.001. 
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Body weight 

(8:) 

Plasma cortisol 
(ng/ml) 

Erythrocytes 
(x106/~1 blood) 

Leucocytes 
(x103/~1 blood) 

Lymphocytes 

Blood 

(11000 cells) 

Spleen 

(x106/g body wt) 

Kidney 

(xl06/gJ?()c:!Y wt) 

Uninjected 

Black White 


17.8±1.7 14.7± 2.0 

4.5±0.5 3.1±0.4 
I 

* 
0.5±O.1 O.4±0.1 

r---' * 
17.3±2.6 31.8±6.3 

***----, 
15.0±2.5 41.0±2.8 

AdaEtation Conditions 


Saline injected 

Black White 


18.9±2.1 20.3±2.1 

r* I 

15.5±4.5 5.6±O.9 
I I * 

2.0±0.5 l.9±O.3 

* 
29.5±7.7 41.1±8.1 

I 

* 

***~ 

12.0±22 50.0±9.4 

*** 

r- * 


481±50 1125 ± 208 

r-** 
479±49. 2007±327 

SRBC injected 

Black White 


19.5± 2.4 20.6±2.9 

6.9±2.3 5.0±1.3 
I 

1.6±0.2 2.4±0.1 

. I ***-r 
45.3±4.6 87.4±6.9 

*** 
I 

r-- *** 
26.5±2.4 73.7±5.8 

847 ± 225 1147±236 

* 

871±231 1698±321 

.~"i. 
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5.2.2. Blood Cell Counts 

The number of erythrocytes was 3.2-6.0 times greater in injected 

compared to uninjected fish, but these increases were not significant. 

By contrast, white blood cell counts were higher in saline-injected fish 

than in the uninjected controls and increased further when fish were 

immunised with SRBCs. Comparisons between black- and white­

adapted trout showed that significantly higher numbers ofleucocytes 

were always present in white-adapted groups, especially in immunised 

fish. Very similar trends were seen when lymphocyte numbers were 

estimated from blood smears. Thus, lymphocyte counts were much 

higher in the SRBC-injected trout and there was a significantly greater 

number of cells in the blood of all white-adapted groups. 

5.2.3. Spleen and Kidney Cell Counts 

Spleen and kidney lymphocyte numbers were significantly higher in 

w hite- than in black-adapted fish for both injected groups. Values for 

uninjected fish were not obtained. 

5.2.4. Summary 

This treatment succeeded in raising the number of lymphocytes in the 

blood and major lymphoid organs following immunising injections of 

SRBCs. Cortisol values for all categories were relatively low at the time 

the fish were killed, but would presumably have been much higher 

shortly after injection. Particularly evident were the much higher 

lymphocyte numbers observed in white-adapted fish in all three 

experimental groups. 
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5.3. 	 Experiments 3 & 4: 

Effects of injection stress and imm.unisation on plasma 

cortisol and immunological response in black- and 

white-adapted trout. 

To confirm the results obtained in Experiment 2 and in order to 

measure antibody production in response to immunisation, two similar 

experiments were carried out using black- andlor white-adapted trout. 

Following immunisation, fish were killed 14 to 16 days after the last 

antigen injection. The Jerne Passive Haemolytic Plaque Assay was 

performed on spleen and kidney lymphocytes to assess antibody 

production, and the Passive Haemagglutination Test used to assay 

circulating antibody titres. The protocol for these techniques is given in 

Section 4.2 and the results are shown in Tables 5.3 and 5.4. 

5.3.1. 	Cortisol 

The uninjected fish in Experiment 3 had significantly lower cortisol 

values than either injected group. In Experiment 4 however, cortisol 

titres were similar in all groups. 

5.3.2. 	Blood Cell Counts 

No clear pattern of change was evident in the numbers of circulating 

erythrocytes in these experiments. Leucocyte counts however, showed 

the same significant increases as before and were always highest in 

immunised fish (both experiments). Leucocyte numbers were also 

higher in white-adapted injected fish than in the corresponding groups 

of black-adapted injected fish (Experiment 4). 

87 



TABLE 5.3. Experiment 3. Immune response to saline injection and 

immunisation with sheep red blood cells in white-adapted trout. 

Values are means ± 1 standard error, n=6. Bracketed values are 

significantly different where *=p <0.05, **=p <0.01 and ***=p <o.oo~ 

AdaEtation Conditions 

Uninjected Saline-injected SRBC-injected 

White White White 

Body weight 22.9 ± 1.5 24.6 ± 1.8 22.7 ± 2.7 
(g) 

Spleen weight 50.0 ± 6.0 37.0 ± 7.0 31.0 ± 5.0 
(mg) 

* i 

Spleenwtbody\Vt 1.9 ± 0.2 1.2 ± 0.1 1.4 ±0.1 
I 

(xl03) 
! 

* 
* r i 

Plasma cortisol 3.3 ± 1.5 16.5 ± 3.3 15.8 ± 3.8 , 
iii 

1 

(ng/rnl ) 

Erythrocytes 1.5±0.1 1.4 ± 0.1 1.6 ± 0.1 

(x10 6/rnl blood) 
****** df 

Leucocytes 50.6 ± 3.3 52.1±3.7 92.8 ± 5.6 

(xl03/rnl blood) 

continued..................................... . 




Table 5.3. continued 

Uninjected Saline-injected 
White White 

Lymphocytes 

r- *** 
Blood 22.5 ± 2.4 21.4 ± 2.5 
(11000 cells) *** 

I * 
Spleen 245± 24 269± 79 
(xl06/mg spleen) 

Kidney 532± 38 597 ±63 
(xl06/g bodl wt) 

*** 

Haern.aW.utination 1.9±O.6 2.5±O.2 
I , 

score * 


Haemolytic plaqUES (/I051ymphocytes) 

Spleen 0.0 1.7±O.3 

a~>3mmdiam.) 

* 
Spleen 0.0 9.0±2.9 

(small,<ammdiam.) 

* 
Kidney 0.7± 0.7 1.0 ±0.1 

a~>3mmdiam.) 

I 
Kidney 0.0 11.3 ± 3.5 
(small,<ammdiam) 

SRBC-injected 

White 

49.7 ± 4.2 
I 

I 
625 ± 133 

* 
617±117 

***---, 1 
4.3 ±O.2 

'>.&l;"lflti 

2.3±0.5 

I 
56.8 ± 15.8 

I 
2.3±O.5 

* I 
27.5 ± 5.1 
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TABLE 5.4. Experiment 4. Immune response to saline injection and 

immunisation with sheep red blood cells in black and white­

adapted trout. Values are means ± 1 standard error, n=6. 

Bracketed values are significantly different where *=p <0.05, **=p 

<0.01 and ***=p <0.001. 

Adaptation conditions 


Saline-inj ected SRBC-injected 


Black White Black White 


Body weight 53.4 ± 7.7 46.4 ± 2.4 52.2 ± 11.8 41.4± 4.6 
(g) 

Spleen weight 78.0 ± 2.0 52.0 ± 7.0 75.0 ± 2.2 81.0 ± 1.7 
(mg) 

SpleenwtJbodywt 1.5 ± 0.2 1.6 ± 0.2 1.4 ± 0.1 2.1 ± 0.5 
(x103 ) 

Plasma cortisol 29.5 ± 3.4 31.1 ± 2.0 30.8 ± 6.4 21.9 ± 6.9 

(ng/ml) 

Erythrocytes 2.3 ± 0.2 2.6± 0.3 3.4± 0.5 2.9± 0.5 

(xl0 6/ml blood) 

* ***---, 
Leucocytes 26.9 ± 4.05 38.7 ± 5.8 28.2 ±3.1 67.3 ±4.3 

(xl0 3/ml blood) 

*** 
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Table 5.4. continued 

Lymphocytes 

Saline-inj ected 
Black White 

* 

SRBC-injected 
Black White 

-*** 

Blood 

(11000 cells) 

Spleen 

(xl06/mgspleen) 

11.0 ± 1.3 

L-.. *** 

373 ± 63 

28.3 ± 1.4 
I I 

625 ± 105 

17.7 ± 2.2 

** 
~* 

211 ± 33 

60.3 ± 5.3 

615 ±lOB 

Kidney 
(xl06/gbociywt) 

Haemaggiutination 

smre 

354 ± 69 

3.0 ± 0.4 

504± 93 

lie 

2.7±0.5 

581 ± 46 

4.5 ±0.3 

* 

632 ± 60 

5.0±0.1 

Haemolytic plaques Cl105 lymphocytes) 

Spleen 

~,>3mmdiamJ 

Spleen 
(small, <3mm diam.) 

0.2± 0.1 

2.8 ± 1.0 

0.3 ± 0.2 

2.3±0.3 

0.6±O.3 

** 
3.7 ± 1.2 

1.2 ± 0.8 

8.3 ± 1.8 

Kidney 0.3 ± 0.2 
(large, >3rnm diam.) 

Kidney 2.5 ± 0.5 
(small, <3mm diam.) 

* 

0.6±0.3 

5.7 ± 1.4 

* 

0.7 ±O.3 

8.3±3.3 

1.8±0.5 

8.4 ± 1.4 



5.3.3. Spleen and Kidney Cell Counts 

In Experiments 3, spleen lymphocyte numbers increased significantly 

when fish were injected with SRECs. In Experiment 4, spleen 

lymphocyte numbers were significantly higher in white compared to 

black-adapted fish. Kidney lymphocyte numbers also increased in 

response to either saline (Experiment 3) or SRBes (Experiments 3 and 

4) but not significantly. 

5.3.4.Passive Haemagglutination Test 

The scores recorded in Experiments 3 and 4 show that the amount of 

specific antibody present in the blood increased significantly when trout 

were injected with SRBCs. Saline injection also caused a rise in the 

haemagglutination score (Experiment 3). There were no significant 

differences in the haemagglutination scores between white- and black­

adapted fish for either saline or SRBC injected groups (Experiment 4). 

5.3.5. Jerne Plaque Assay 

Although the number of small plaques « 3mm diameter) recorded in 

both experiments was always approximately 10 fold greater than the 

number of large plaques (> 3mm diameter), the trends seen in the 

number of both types correspond well in the majority of cases. Thus, in 

Experiment 3, the highest number of plaques were seen, for both spleen 

and kidney lymphocytes, in immunised fish. In Experiment 4, except in 

one case, the number of plaques was always greater in white- than in 

black-adapted fish and this increase was statistically significant for the 

counts of small plaques produced by kidney lymphocytes. 
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5.3.6. 	Summary 

The most important observation from the results of these two similar 

experiments is that white-adapted fish are more responsive to 

immunisation with SRBCs than black-adapted fish and produce higher 

titres of circulating antibodies and a larger number of plaque-forming 

lymphocytes. 

5.4. 	 Experiment 5: 

Effects of injection and immunisation on plasma 

cortisol and immunological responses in trout reared 

on black or white backgrounds. 

In view of the difference in the stress and immune responses observed 

in fish adapted for several weeks to black or white backgrounds, the 

conditions used in Experiment 4 were repeated using Rainbow trout 

that had been reared from eggs on black or white backgrounds at Bath 

University. The aim of this experiment was to establish how 

permanent exposure to different backgrounds affects stress and 

immune responses. The immunisation procedure was identical to that 

employed in Experiment 4. The data obtained for plasma cortisol 

titres, cell counts and immunological assays are given in Table 5.5. 
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5.4.1. Spleen and Body Weight 

The mean body weight for all the trout used in this experiment was 

176.1 ± 7.5g with a range of 124 to 298g, and the mean spleen 

weightlbody weight ratio lay between 1.1 for black-reared saline­

injected and 1.5 for black-reared SRBC injected fish. Earlier 

experiments had used much smaller trout (approximately 20 to 69g 

body weight) and the spleen weight !body weight ratios for these 

smaller fish were generally slightly higher (1.2 to 1.9). 

5.4.2. Cortisol 

In contrast to previous observations on adapted fish, cortisol titres were 

higher in white-reared than in corresponding black-reared groups. In 

black- and white-reared fish immunised with SRBCs, the difference 

was significant. 

5.4.3. Blood Cell Counts 

No significant differences were found between circulating erythrocytes 

for any group. Total leucocyte counts and lymphocyte numbers 

increased, significantly in most cases, in response to immunisation but 

the highest counts were seen in immunised black-reared fish rather 

than in immunised white-reared groups. This is in marked contrast to 

previous results using adapted fish, in which the highest counts were 

always seen in White-adapted animals. 
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TABLE 5.5. Experiment 5. Immune response to saline injection and 

immunisation with sheep red blood cells in trout reared on black or 

white backgrounds. Values are means ± 1 standard error, n=6. 

Bracketed values are significantly different where *=p <0.05, **=p 

<0.01 and ***=p <0.001. 

Adaptation conditions 


Saline-inj ected SRBC-injected 


Black VVhite Black White 


Body weight 181.0 ± 9.7 199.8 ± 0.0 176.3 ± 12.5 146.5 ±8.6 
(g) 

Spleen weight 20.5 ± 2.0 23.0±2.0 23.3 ± 5.0 17.7±2.0 
(mg) 

SpleenwtJbodywt 1.1 ± 0.1 1.1±0.1 1.5 ± 0.2 1.2±O.1 

(xl03 ) 

r-- * 
Plasma cortisol 15.1 ± 5.7 21.7 ± 2.9 17.7±4.2 29.1 ± 6.2 

(ng/ml·1) 

Erythrocytes 4.9 ± 0.4 6.7 ± 0.6 5.3 ± 0.6 5.7±OA 

(xl0 6/ml blood) 

** 
Leucocytes 17.9±4.1 22.6 ± 4.8 51.3±3.7 30.7 ± 4.3 

(xl03/ml blood) *** 

continued ...................... . 
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Table 5.5. continued 

Saline-injected SREC-injected 

Black White Black VV1Ute 
L)'mphocytes 

** 
Blood 10.0 ± 0.9 10.7 ± 0.8 18.4 ± 1.7 17.3±1.1 
(/1000 cells) '--- *** ---------' 

....--- ** -------......, 
Spleen 8.9 ± 1.5 10.1 ± 2.9 31.2 ± 6.6 32.6 ± 5.2'--__ ** _______--l 

(x10 6/mg spleen) 

Kidney 20.3 ±2.1 30.8 ± 4.1 27.8 ± 10.1 44.7 ±6.4 

(xl061<£txxlnvt1 

I *** I 
Ha~utination 2.5 ::!: 0.3 1.7±0.3 4.8 ± 0.2 4.3 ± 0.3 

~---***------------~score 

Haemo(vtic plaques (1105 lymphocytes) 

Spleen 18.7 ± 13.2 15.6±3.7 36.0 ± 9.5 23.8 ± 7.4 

(small. <.:3mm diam) 

* 
Kidney 3.5 ± 0.9 4.3 ± 1.9 24.0 ± 0.9 15.2 ± 5.7 

(smull. <3mm diam.) 



5.4.4. Spleen and Kidney Cell Counts 

A significant increase in spleen lymphocyte numbers was observed in 

response to immunisation. A higher number of kidney lymphocytes 

were present in white- than in black-reared fish for both saline- and 

SRBC- injected groups, but no obvious response to immunisation was 

apparent for either group. 

5.4.5. Passive Haemagglutination Test 

Immunisation resulted in a significant increase in the 

haemagglutination score for both black- and white-reared fish, but no 

clear differences were apparent between fish reared on different 

backgrounds. 

5.4.6. Jerne Plaque Assay 

Although immunisation increased the number of plaque-forming cells 

in both spleen and kidney derived lymphocytes, the increases were not 

statistically significant. Lymphocytes taken from the kidney of 

immunised black-reared fish however, produced a significantly higher 

number of plaques than those from immunised white-reared fish. This 

is in contrast to the results of Experiment 4, in which white-adapted 

fish gave higher numbers of plaques than black-adapted fish. 

5.4.7. Summary 

Fish reared on black and white backgrounds show stress and immune 

responses that are opposite to those seen in fish merely adapted to 
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similar conditions for a few weeks. In this experiment, it is the animals 

kept all their lives on black backgrounds that have the lowest plasma 

cortisol titres but who show the largest immunological responses to 

immunisation as measured by the haemagglutination test and Jerne 

plaque assay. The variable responses shown by individual fish and the 

resulting large standard errors however, make statistical validity 

difficult to establish although the trend reversal is quite clear. 
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6. Results In Vitro 

6.1. Preliminary T cell experiments 

In a series of preliminary experiments on black-adapted fish, the 

conditions for in vitro cell growth and the incorporation and recovery of 

radioisotopes were optimised. 

6.1.1. Concanavalin A Concentration 

Spleen cells were labelled with 3H-thymidine to measure DNA 

synthesis and pronephric kidney cells with 14C-Ieucine to estimate the 

rate of protein synthesis. The T-cell mitogen, Con A, was added to the 

cell cultures on day one to give final concentrations in the wells of 

between 0 and lOOmg ml-I. The radiolabels were added to the cell 

cultures on day three and the cells were harvested and counted for 

radioactivity on day seven. An assumption was made that the spleen 

and kidney cells would respond in similar ways to varying 

concentrations of the mitogen and therefore only one isotope was tested 

on each cell type. The results presented in Figure 6.1 show that protein 

synthesis by kidney cells peaked with a dose of 25mg mP Con A, while 

maximum incorporation of 3H-thymidine by spleen lymphocytes 

occurred with lOmg ml- j Con A. These concentrations were used for all 

subsequent experiments. 
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6.1.2. Culture Period 

The optimum number of days cells should be cultured to produce a high 

level of incorporation of radioisotopes was investigated using spleen 

lymphocytes. It was important for future experiments to ensure that 

cells were growing exponentially at the time they were harvested, so 

that any differences in growth response would be maximised and not 

complicated by any decrease in division rate that occurs as cultured 

cells become confluent. Splenic lymphocytes were cultured for up to 

seven days and sample wells were harvested daily from day four. The 

radioactivity incorporated for each culture period is recorded in Figure 

6.2. This shows that radioactivity increased dramatically by day seven. 

A seven day culture period was used in subsequent experiments since it 

offered a convenient time scale and gave good levels of incorporation. 

6.1.3 Washing Procedure 

Separation of the cells from the culture medium involved repeated 

cycles of centrifugation and removal of the supernatent containing 

unincorporated radioisotopes. For 3H-thymidine, the radioactivity 

count stabilised after two washing cycles and for 14C-leucine, after 

three (Figure 6.3). Further washes did not significantly lower the 

radioactivity present in the cellular pellet for either isotope and 

therefore two washes were adopted in the final standard procedure. 
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FIGURE 6.1. Incorporation of 3H-thymidine by spleen (e) and 14C_ 

leucine by kidney (0) lymphocytes cultured with different 

concentrations of the T-cell mitogen, concanavalin A 

Concanavalin A was added to the cultures on day 1, radiolabels on 

day 3 and the cells were harvested on day 7. Values are means ± 1 

standard error, n=5. ***: significantly different (p<O.OOl) from 

spleen cells cultured with 25 or 50~g ml·1 . * : significantly different 

(P <0.001) from all other kidney cell cultures 
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FIGURE 6.2. Incorporation of 3H-thymidine and 14C-Ieucine by 

spleen lymphocytes cultured for up to 7 days. 10llg mI-l 

concanavalinA was added on day 1, and the radiolabels on day 3. 

Values are means ± 1 standard error, n=5. Significantly greater 

incorporation compared with shorter periods of culture are shown 

by the asterisks where *=p <0.05 and ***=p<O.OOl. 
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FIGURE 6.3. Effect of repeated washes on radioactivity counts of 

kidney lymphocytes cultured for seven days with 3H-thymidine or 

14C-leucine. Values are means ± 1 standard error, n=5. Asterisks 

indicate values significantly different from second or subsequent 

washes where *=P<O.05 and **=p<O.OOl. 
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6.2. Background to in vitro experiments 6 to 8. 


In the following experiments, lymphocytes taken from trout adapted or 

reared under different conditions were cultured with Con A and 

radiosotopes to establish whether their growth in vitro was affected by 

the conditions the fish had been kept under beforehand. As well as 

measuring the incorporation of radiolabelled thymidine and leucine, 

other cytological data was collected at the time the fish were killed to 

allow comparisons with the results of the earlier in vivo experiments. 

6. 3. Experiment 6: 

The lymphocyte population in fish adapted to black 

and white backgrounds and their growth responses 

in culture. 

Spleen and kidney lymphocytes were isolated, counted and cultured 

from fingerling trout adapted for two months to black and white 

backgrounds. 

6.3.1. Spleen and Kidney Lymphocyte Counts 

The number of spleen and kidney lymphocytes, expressed per gram 

body weight, tended to be higher in black- than white-adapted fish but 

the values were not significantly different (Table 6.1). 
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6.3.2. Radioisotope Incorporation 

Cell division of Con A stimulated spleen and kidney lymphocytes, as 

measured by 3H-thymidine uptake, was significantly higher in white­

adapted fish. The incorporation of 14C-leucine was also significantly 

higher for spleen lymphocytes from white-adapted fish but not 

significant for kidney lymphocytes (Figure 6.4). 

TABLE 6.1. Experiment 6. The effects of background adaptation 

on spleen and kidney lymphocyte numbers. Values are means ± 

1 standard error, n=6. 

Black-adapted White-adapted 

Body weight 10.5 ± 1.4 10.3 ± 1.5 

(g) 

Lymphocytes 

Spleen 190 ± 80 170 ± 30 

(x106/g body wt.) 

Kidney 210 ± 40 160 ± 50 

(x106/g body wt.) 
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FIGURE 6.4. Experiment 6. The incorporation of (a) SH-thymidine 

and (b) 14C-leucine by lymphocytes cultured from the spleen and 

kidney of fish adapted to black (II) or white (0) backgrounds for 2 

months. Values are means ±1 standard error, n=6. Asterisks 

indicate values are significantly different from black-adapted fish 

where * =P<O.05 and ** =p<O.Ol. 
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6.4. 	 Experiments 7 & 8: 

Effects of rearing fish on black or white backgrounds 

under different conditions of stress on blood cell 

numbers and on the growth responses of cultured 

lymphocytes. 

In two related experiments, adult Rainbow trout that had been reared 

for 18 months on black or white backgrounds were used. In 

Experiment 7, the fish were taken directly from the aquarium at Bath 

University where they had been reared from eggs under as stress-free 

conditions as possible. Water quality was maintained to a high 

standard, and the noise, temperature fluctuations, density per tank and 

general disturbance kept to a minimum. For Experiment 8, a group of 

Bath-reared fish were transported to tanks at Luton University and 

held for 12 days in a relatively noisy aquarium. They were also 

subjected to additional stress by daily netting. The plasma cortisol, red 

and white blood cell counts, and spleen and kidney lymphocyte 

numbers obtained in each experiment are shown in Table 6.2. 

Estimates of the numbers of different blood cells in the circulation were 

calculated from blood smears taken at the time the fish were killed and 

are shown in Table 6.3. Con A stimulated lymphocytes isolated from 

the spleens and kidneys of these fish were cultured with radioisotopes 

as before and the level of incorporation observed is presented in Figures 

6.5. and 6.6. 

6.4.1. 	Body and Spleen Weights 

The body weights of white-reared fish tended to be larger (range 503­

717g) than those of black-reared fish (range 363-697g) and in the 
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TABLE 6.2. Experiments 7 & 8. Effects of low and moderate stress 

on spleen size, plasma cortisol, red and white blood cell counts, and 

spleen and kidney lymphocyte numbers in fish reared on black or 

white backgrounds. Values are means ±1 standard error, n=7. 
Bracketed values are significantly different were *=p <0.05, **=p 

<0.01 and ***=p <0.001. 

Expt. 7: Low Stress Expt. 8: Moderate Stress 
Black-reared White-reared Black-reared White-reared 

Body weight 557.9 ± 32.1 611.9 ± 23.3 512.4 ± 42.7 640.1 ± 21.8 , 

(g) '" 

Spleenweight 736 ± 74 863 ±112 1200 ± 27 950 ± 80 
(mg) 

Spleenwtbody 1.3 ± 0.1 1.5 ± 0.2 3.4 ± 0.8 1.5 ± 0.1 
wt(xlO 3 ) * ! L- * 

*** 1 

Plasmacmtisol <1.2 <1.0 30.6 ± 4.4 26.7 ± 7.6 
(ng mJ-l) *** 

Erythrocytes 0.7 ± 0.1 0.8 ± 0.1 0.9 ± 0.1 1.0 ± 0.1 
(xl06ml-l blood) 

Leucocytes 32.0 ± 4.6 24.0 ± 1.9 28.9 ± 3.3 29.8 ± 1.4 

(x1.()3 ml-l blood) 

Lymphocytes 

Spleen(xl06/mg 35.7 ± 3.7 14.3 ± 2.5 42.2 ± 8.0 48.3 ± 10.8 
'--_____---01 1-----­1 * ------' spleen wt) 

** 
Kidney(xl06j 53.6 ± 12.6 33.8 ± 5.2 66.9 ± 10.8 66.5 ± 10.3 

~* ____~IL-!_________*~________~! 
gbody wt) 
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TABLE 6.3. Experiments 7& 8. The numbers of immature, mature 
and degenerating erythrocytes and of the most abundant types of 
leucocyte counted from blood smears taken from low- and 
moderately-stressed trout reared on black or white backgrounds. 
Values are means ± 1 standard error, n=7. Bracketed values are 
significantly different where *=p <0.05, **=p <0.01 and ***=p <0.001. 

EXEt. 7: Low Stress EXEt. 8: Moderate Stress 

Black-reared Whi te-reared Black-reared White-reared 

Erythrocytes (xl03/ml blood) 

immature 12 ± 10 13 ± 5 14 ±20 37 ±30 

mature 6l6± 90 730±30 91l± 80 922± BO 

degenerate 31 ±50 44 ±20 46 ±80 59 ±40 

Leucocytes (x103/ml blood) 

I I * --"lI ** 
lymphocytes 26.7± 0.4 20.2± 1.0 22.1± 0.6 21.7± 1.2 

neutrophils 2.8 ± 0.4 1.4± 0.6 2.1 ± 0.5 3.2 ± 0.8 

thromhocytes 2.B ± 0.2 2.0 ± 0.5 4.6 ± O.B 4.B± 0.6 
I ...l* *** 



moderately-stressed groups this difference was sign.ificant. The spleen 

weightlbody weight ratios of moderately-stressed fish were significantly 

higher in the black-reared group. The moderately stressed black-reared 

ratio was also higher than the value obtained for low-stressed black­

reared fish. 

6.4.2. Cortisol 

Plasma cortisol titres of low-stressed fish were all less than 1.2ng mP 

and moderate stress increased values more than 25 times (Table 6.2). 

In contrast to the trends seen in earlier experiments using adapted fish, 

(see Table 5.5), no differences were apparent between fish reared on 

different backgrounds. 

6.4.3. Spleen and Kidney Cell Counts 

A clear trend was apparent from the results of lymphocyte numbers in 

spleen and kidney tissue (Table 6.2). In low-stressed fish, the black­

reared group had significantly higher numbers of lymphocytes in both 

tissues than the white-reared group, an observation that agrees with 

the high numbers of these cells observed in the blood (see 6.4.4.). 

6.4.4. Blood Cell Counts 

When the number of different types of blood cell were counted from 

blood smears (Table 6.3), it was apparent that the number of 

lymphocytes in low-stressed fish reared on black backgrounds was 

significantly higher than counts from the corresponding white-reared 
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FIGURE 6.5. Experiment 7. The incorporation of 3H-thymidine and 

14C-leucine by lymphocytes cultured from the spleen and kidney of 

fish reared on black (.) or white (0) backgrounds under conditions 

of low stress. Values are means ± 1 standard error, n=7. Asterisk 

indicates value is significantly different from corresponding white­

adapted group (* =p<O.O 5). 
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FIGURE 6.6. Experiment 8. The incorporation of 3H-thymidine and 

14C-Ieucine by lymphocytes cultured from the spleen and kidney of 

fish reared on black (a) or white backgrounds (0) under conditions 

of moderate stress for 12 days. Values are means ±1 standard error, 

n=7. 
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group and from moderately-stressed black-reared fish. The number of 

thrombocytes was increased significantly with the level of stress, but 

black and white differences were not apparent. 

6.4.5. Radioisotope Incorporation 

The incorporation of both radiolabelled leucine and thymidine by black­

reared and corresponding groups of white-reared fish were usually 

similar, irrespective of the tissue source of the lymphocytes or the level 

of stress to which the fish had been subjected (Figure 6.5 & 6.6). 

However, in black-reared low-stressed fish the incorporation of leucine 

into the kidney lymphocytes was significantly higher compared to their 

white-reared counterparts (Figure 6.5). This was in marked contrast 

to the difference between the levels of uptake seen when fish were 

adapted to different backgrounds, where black-adapted fish consistently 

showed lower levels of isotope incorporation (see Figure 6.4). 

6.4.6. Summary 

In these experiments, the reason for using reared, rather than adapted 

fish, was to enhance the possible influence that MCH might have on 

stress and immune responses. While some significant differences were 

observed, in many cases these were opposite to those seen when 

adapted fish were used. For other data the results were inconclusive. 

Thus, black-reared fish had increased numbers of lymphocytes in the 

blood and spleen compared to white-reared fish but the uptake of 

radioisotopes in Can A stimulated culture was similar and did not show 

the differences seen in adapted fish. 
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6.5. Background to in vitro experiments 9 to 20. 

In this Section, the effects of adding various hormones to spleen and 

kidney lymphocytes cultured in vitro in the presence of Con A or LPS 

are presented. Full details of the hormones investigated and the 

culture conditions employed are described in Section 4.3. The rate of 

cell division was measured using 3H-thymidine using the method 

previously described. 

In the results that follow, the effects of adding various concentrations of 

hormones to lymphocyte cultures are expressed as the percentage 

change in 3H-thymidine uptake compared to that measured in control 

cell cultures. In this way positive values indicate a stimulatory effect, 

and negative values an inhibitory effect. 

In a few experiments, where both black- and white-adapted fish have 

been used, two sets of control cultures were necessary, one for each type 

of background. In such cases, the actual amount of 3H-thymidine taken 

up has been given in one figure and the percentage uptake, compared to 

the corresponding control cultures, given separately in another. This 

was necessary to allow comparisons to be made between black- and 

white-adapted fish for each treatment. 

The fish used for this series of experiments were adapted to black or 

white backgrounds for 14-21 days before use. The pooled body weights, 

spleen weights and spleen to body weight ratios are shown in Table 6.4. 

Although black-adapted fish tended to be larger and have bigger spleens 

than white-adapted, the differences were not significant. The spleen 

weight to body weight ratios were also similar. 
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TABLE S.4. Experiments 9 to 20. Pooled total body weight, spleen 

weight and body to spleen weight ratios for trout adapted to black or 

white backgrounds for 14-21 days. Values are means ± 1 standard 

error. 

Black-adapted White-adapted 

(n=48) (n=17) 

Body weight 120.8± 10.2 96.4 ±12.8 

(g) 


Spleen weight 0.22 ± 0.03 O.15± 0.02 


(g) 


Spleenlbody 1.62 ± 0.15 1.49± 0.07 


weight ratio (xI03) 
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6.S. 	 Experhnent 9: 

Effect of cortisol on lymphocyte proliferation in vitro. 

The tritiated thymidine incorporated by Con a stimulated splenic 

lymphocytes taken from black- compared to white-adapted fish for any 

given dose of cortisol was generally very similar (Figure 6.7a). In Con 

A stimulated kidney cultures however, white-adapted cells consistently 

took up more radioisotope than black-adapted cells exposed to the same 

dose of cortisol, although this difference was not significant (Figure 

6.7.b). 

Cortisol depressed 3H-thymidine uptake in both types of lymphocyte 

culture in a dose dependent manner. In general, when cortisol 

concentrations were 30ng mP or above, uptake was significantly lower 

than control cultures for both black- and white-adapted fish (Figure 

6.7.). 	When expressed as the percentage difference from control 

cultures however, the percentage inhibition of cell growth was only 

significant in white-adapted fish (Figure 6.8). The effect was most 

marked in cultures of white-adapted kidney lymphocytes where a low 

dose of cortisol (lOng mJ-l) depressed uptake by 19.4% and the highest 

concentration (300ng ml· l ) by 37.6%. The corresponding values for 

spleen lymphocytes were 15.2 and 43.8%. 
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FIGURE 6.7. Experiment 9. Effect of cortisol on 3H-thymidine 

uptake by (a) spleen and (b) kidney lymphocytes isolated from 

black- (a) or white-adapted (0) trout and cultured in vitro. Values 

are mean dpm ± 1 standard error, n=6. Asterisks indicate values are 

significantly different from corresponding control cultures where * 

=p<0.05 and **=P <0.01. 
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FIGURE 6.8. Experiment 9. Effect ofcortisol on 8H-thymidine 

uptake by (a) spleen and (b) kidney lymphocytes isolated from 

black- (.) or white-adapted (. ) trout and cultured in vitro. Values 

are expressed as mean % difference from control ±1 standard error, 

n=6. Asterisks indicate values are significantly different from 

corresponding cultures exposed to lOng mI-l cortisol where * 

=p<O.05 and **=P'<O.Ol. 
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6.7. 	 Experiments 10 & 11: 

Effects of MeR on lymphocyte proliferation in vitro. 

In two similar experiments, melanin-concentrating hormone was found 

to enhance Con A stimulated lymphocyte division at all doses 

investigated (Figure 6.9). To minimise interference by any endogenous 

MCR, the lymphocytes were taken from black-adapted fish in which 

circulating titres of the hormone would be low. 

In cultures of spleen cells, a 29.8 and 33.7% stimulation of 3R­

thymidine incorporation was observed in Experiment 10 and 

Experiment 11 respectively with a dose of O.lng ml-l. This 

concentration produced significantly greater stimulation than all other 

doses tested (Figure 6.9a). 

Kidney cell cultures showed maximum enhancement with O.Dlng ml- l 

MeR in both experiments, and at this dose there was significantly 

greater uptake than at all other concentrations. With higher doses the 

positive effects ofMCH decreased from 18.3 to 1.7% in Experiment 10 

and from 53.6 to 11.7% in Experiment 11 (Figure 6.9b). 
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FIGURE 6.9. Experiments 10 & 11. Effect of melanin-concentrating 

hormone on the 3H-thymidine uptake by (a) spleen and (b) kidney 

lymphocytes isolated from black-adapted trout and cultured in vitro. 

Values are expressed as mean % difference from control ± 1 standard 

error, n=6. Asterisks indicate values are significantly different from 

corresponding cultures exposed to O.OIng ml-1 MCH where *=p<O.05 

and **=p<O.O 1. 
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6.8. 	 Experiment 12: 

Effects of melanin-concentrating hormone on cortisol­

suppressed lymphocyte proliferation in vitro. 

In view of the response seen in experiments 10 and 11 by spleen and 

kidney cell cultures and the opposing effects of cortisol and MCH on cell 

division already observed, MCR was added to cortisol-suppressed 

lymphocyte cultures in order to establish the combined effects of these 

hormones when both were present at the same time. Based on the 

results of Experiment 9 (see Figure 6.7), cells were cultured with 0, 10 

or 300ng ml· l cortisol with or without the addition of 0.05ng ml-! MeR. 

In complete agreement with the results from Experiment 9, cortisol 

inhibited 3H-thymidine uptake by Con A stimulated spleen and kidney 

lymphocytes whether or not MeR was also present (Figure 6.10). In 

the absence of additional MeR, cortisol suppression was similar in 

black and white-adapted trout but became more marked in white­

adapted fish at high doses of cortisol (300ng mI-l). The addition of 

MCR did not change the pattern of response, but in kidney lymphocyte 

cultures, black-adapted cells now showed significantly greater cortisol 

inhibition than the equivalent white-adapted cells (Figure 6.10a & b). 

The same data are expressed in terms of the percentage difference from 

their respective controls in Figure 6.11 and these may be compared 

with the earlier results for Experiment 9 shown in Figure 6.8. In the 

absence of additional MeR, cortisol suppression increased significantly 

with the dose and was always greater in white-adapted fish. In kidney 

cell cultures for example, suppression increased from 26.3% with lOng 

ml- l cortisol to 51.8% with 300ng mI-l. These data can be compared 

with the black-adapted values which, for kidney celis, ranged from 
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17.2% with lOng ml-1 cortisol to 37.6% with 300ngml-1 • The addition 

of MCR to the cultures tended to reduce the percentage inhibition 

especially with the highest concentration of cortisol and in cells from 

white-adapted fish. When cultured with MCH, spleen cells showed a 

reduction from 42.3 to 26.2 % inhibition and kidney cells a reduction 

from 51.8 to 29.3% inhibition_ In other words, the addition of MCR 

flattened the cortisol dose response curve and reduced the inhibition 

caused by cortisol. This difference between cultures with and without 

MCR, was statistically significant in white-adapted lymphocytes at 

most doses (Figure 6.11 a & b). 
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hormone on 3H-thymidine uptake response to cortisol by (a) spleen 

and (b) kidney lymphocytes isolated from black- (a) or white-adapted 

(0) trout and cultured in vitro. Values are expressed as mean dpm ± 1 

standard error, n=6. Asterisks indicate values are significantly 

different from corresponding cultures not exposed to cortisol where 

*=p<O.05 and **=p<O.Ol. =1:: significantly different (p<O.05) from black-

adapted cells exposed to the same conditions 
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FIGURE 6.11. Experiment 12. Effect of melanin-concentrating 

hormone on the response to cortisol by (a) spleen and (b) kidney 

lymphocytes isolated from black- (.) or white-adapted (l~!) trout and 

cultured in vitro. Values are expressed as mean % difference from 

control ± 1 standard error, n=6. Asterisks indicate values are 

significantly different from corresponding cultures exposed to lOng 

ml-l cortisol where *=p<O.05 and **=p<O.OI. ~: symbols indicate 

values are significantly different from corresponding cultures not 

exposed to MeR where 3:€ =p<O.05 and ~3:€=p<O.Ol. 
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6.9. 	 Experiment 13 : 

Effects of melanocyte stimulating hormone on cortisol­

suppressed lymphocyte proliferation in vitro. 

Since melanin-concentrating hormone (MCH) and melanocyte­

stimulating hormone (aMSH) have many antagonistic physiological 

actions, the possibility that aMSH may also be involved in the ability of 

lymphocytes to proliferate in the presence of cortisol was investigated. 

The experimental protocol was identical to Experiment 12 except that 

cultures were grown with or without the addition of 495pg ml-1 aMSH. 

The results show that, as before, cortisol suppressed Con A stimulated 

lymphocyte division by cells from both black- and white-adapted fish. 

There were some significant differences between black and white 

groups at lOng ml-1 cortisol. The addition of 495pg ml-1 aMSH did not 

have 	any significant effect on cell growth (Figure 6.12 a & b). When the 

data are expressed in terms of the percentage difference from control 

cultures, lymphocytes from white-adapted fish showed maximum 

inhibition with the highest dose of cortisol and this was significant for 

spleen cells (Figure 6.13 a & b). Smaller changes in inhibition with 

increased cortisol were noted for cells cultured from black-adapted fish 

but the differences were less clear cut. None of the cells cultured with 

495pg mP aMSH showed any significant changes in inhibition 

compared with cultures without aMSH. 
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FIGURE 6.12. Experiment 13. Effect of melanin-stimulating hormone 

on 3H-thymidine uptake response to cortisol by (a) spleen and (b) 

kidney lymphocytes isolated from black- (a) or white-adapted (el) 

trout and cultured in vitro. Values are expressed as mean dpm ± 1 

standard error, n=6. Asterisks indicate values are significantly 

different from corresponding cultures not exposed to cortisol where 

*=p<0.05 and **=p<O.Ol. :::: significantly different (p<0.05) from black­

adapted cells exposed to the same conditions 
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FIGURE 6.13. Experiment 13. Effect of melanin-stimulating hormone 


on the response to cortisol by (a) spleen and (b) kidney lymphocytes 


isolated from black- (.) or white-adapted (0) trout and cultured in 


vitro. Values are expressed as mean % difference from control ±1 


standard error, n=6. Asterisks indicate values are significantly 


different from corresponding cultures exposed to lOng ml-1 cortisol 


where *=p<O.05 and **=p<O.Ol. 
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6.10. Experiments 14-18: 

Effects of reproductive steroids on lymphocyte 

proliferation in vitro. 

In a series of similar experiments, five different teleost reproductive 

steroid hormones were added to Con A stimulated spleen and kidney 

lymphocyte cultures. Their effect on 3H-thymidine uptake was 

measured at four concentrations of each hormone and the results 

recorded as the % difference compared to control cultures without 

steroid (Figure 6.14). While some steroids tended to be either primarily 

stimulatory or inhibitory, others gave mixed responses depending on 

the dose and on whether spleen- or kidney-derived lymphocytes were 

tested. 

6.lal. lIP ketotestosterone 

When added to cultures of spleen lymphocytes, this androgen inhibited 

uptake by -28.5% at a concentration of lOng ml-1. The inhibitory effect 

increased to -47.7% at a concentration of lOOngmP. At 300ng mI·! 

however, the inhibition was only -23.5%. In kidney lymphocyte 

cultures 11P ketotestosterone showed a significant dose dependent 

inhibition of isotope incorporation from -18.3% at lOng ml-! to -2.6% at 

300ngmP. 

6.10.2. 17a hydroxyprogesterone 

In kidney lymphocyte cultures, this steroid showed a dose dependent 

inhibition of 3H-thymidine uptake reaching ·27.4% with 300ng mP. 

The inhibition was less marked in spleen cell cultures at the highest 
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dose (-13.2%) while at 30ng mI·} or less, the hormone became slightly 

stimulatory. 

6.1Q3. Androstenedione 

In spleen cell cultures, this steroid tended to be more or less inhibitory 

with a maximum inhibition of -35.7% with 300ng mI·} By contrast, 

when added to kidney lymphocytes the hormone was a powerful 

stimulant and lymphocytes showed a clear dose dependant increase in 

3H-thymidine uptake from +14.8% at lOng mI·} to +114% at 300ng ml-I. 

6.1U4.17a hydroxy, 2013 dihydroxyprogesterone 

The pattern of response seen in spleen lymphocyte cultures was 

variable. Whereas concentrations between 10 and 100ng mI·} all 

inhibited uptake by between -19.6 and -32.1%, the highest 

concentration had little effect. In kidney lymphocytes the response was 

more obvious. Low concentrations between 10 and 30ng mP inhibited 

cell division by approximately -14% but higher concentrations 

stimulated growth by as much as +54.2% at 300ng ml· r 

6.1U5. 1713 oestradiol 

Oestradiol consistently stimulated uptake of labelled thymidine by both 

spleen- and kidney-derived lymphocytes. In spleen cell cultures, the 

effect was more or less dose dependent, with significant increases in 

stimulation as the dose increased. Uptake was greatest at 300ng ml-1 

when incorporation increased by +55.5%. In kidney cell cultures, the 
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FIGURE 6.14. Experiments 14-18. Effects of reproductive steroids on 

3H-thymidine uptake by (a) spleen and (b) kidney lymphocytes 

isolated from black-adapted trout and cultured in in vitro with Con A. 

Values are expressed as mean % difference from controls. Standard 

errors are shown for 17b estradiol on spleen lymphocytes and are 

typical of those for all other means which have been omitted for 

clarity. Asterisks indicate values significantly different from cells 

exposed to lOng ml-1 in each case, where *=p <0.05 and **=p <0.01. 
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relationship was not linear, with stimulation ranging from +18.9% at 

lOng ml·1 to +41.8% at 30ng mI-l (Figure 6.14). 

6.11. Experiment 19: 

Preliminary B cell experiments. 

In a preliminary experiment, the concentration of lipopolysaccharide 

required in vitro for optimum cell growth and incorporation of 

radioisotopes was assessed. 

Spleen and kidney cells were labelled with 3H-thymidine to measure 

DNA synthesis. The B cell mitogen lipopolysaccharide (LPS) was added 

to the cell cultures on day one to give final concentrations in the wells 

of between aand 200mg ml- 1. Radiolabelled thymidine was added to 

the wells on day three and the cells were harvested and counted for 

radioactivity on day five. The results presented in Figure 6.15, show 

that 3H-thymidine incorporation by spleen and kidney cells was 

maximal at 200 and 100 mg ml- 1 respectively. The culture period and 

number of washes used in subsequent experiments was the same as 

adopted for T cell cultures using Con A. 
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FIGURE 6.15. Experiment 19. Incorporation of3H-thymidine by 

spleen and kidney lymphocytes cultured wih different 


concentrations of the B cell mitogen lipopolysaccharide (LPS). 


LPS was added on day 3 and the cells were harvested 


on day 5. Values are expressed as mean dpm ± 1 standard error, 


n=6. Asterisk indicates value is significantly different (p<O.05) 


from spleen cells cultured with O.05jl.g mI-l LPS. 
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6.12. Experiment 20: 

Effects of MCH on B cell lymphocyte proliferation in 

vitro. 

To minimise interference by any endogenous MCR, lymphocytes were 

taken from black-adapted fish in which circulating titres of the 

hormone would be low. Melanin-concentrating hormone was found to 

stimulate B cell lymphocyte division at all doses investigated (Figure 

6.16). 

A maximum stimulation of95% compared to cultures without MeR 

was obtained for kidney cells at a dose of O.lng ml-1 MCR. Higher 

doses ofMCH were significantly less effective. Spleen cell cultures 

showed an even more marked response to O.lng mP MeR and 

thymidine uptake increased by 155%. With higher doses, the 

stimulatory effect on spleen cells decreased significantly in a dose 

dependent manner to only 34% of the untreated control cultures with a 

dose of lOng ml-1 (Figure 6.16). 
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FIGURE 6.16. Experiment 20. Effect of melanin-concentrating 

hormone on 3H-thymidine uptake by (a) kidney and (b) spleen 

lymphocytes isolated from black-adapted trout and cultured in vitro 

with lipopolysaccharide (LPS). Values are expressed as mean % 

difference from controls ± 1 standard error, n=6. Asterisks indicate 

values are significantly different from cells exposed to O.lng ml-1 

where * =p <0.0.5 and **=p <0.01. 
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7. Discussion 

This thesis has described an investigation on the interactions of 

melanin-concentrating hormone with the hypothalamo-pituitary­

interrenal axis of Rainbow trout and the cellular actions of this 

neuropeptide and thus examined how this neuropeptide may be 

involved in modifying the immune response. The results have 

confirmed previous findings that trout adapted to white backgrounds 

have lower cortisol levels than black-adapted fish. They have further 

shown that circulating lymphocytes are more numerous and more active 

in white-adapted fish and when these fish are immunised with BRBes, 

the rise in antibody titre is greater than in fish adapted to black tanks. 

When fish are reared, rather than adapted, to black and white tanks 

however, the black and white differences are either no longer evident, 

or are reversed compared to the results obtained with adapted fish. 

The main findings of these experiments are summarised in Tables 7.1 

and 7.2 and possible mechanisms of how these observations can be 

explained are discussed in the following pages. Although the inhibitory 

effect of corticosteroids on the immune system are well known, other 

steroids have not received the same attention. This study has also 

obtained preliminary data on the effect of reproductive steroids on 

lymphocyte responses to T-cell mitogens. 
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7.1. Stress and cortisol 

When fish were held under conditions of mild chronic stress, the plasma 

cortisol titres were higher in black- than in white-adapted fish, and 

these differences were generally significant (Table 7.1). Baker and 

Rance (1981) and Gilham and Baker (1985) have reported similar 

results and concluded they were due to the ability ofMCR to inhibit 

hypothalamo-pituitary-interrenal axis activity. MCH has been shown 

to act as a CRF-inhibiting factor, either by depressing the release of 

CRF from the hypothalamus or by rendering the corticotrophs less 

sensitive to CRF (Baker et al., 1985a). Thus, when black-adapted fish, 

in which MCR titres are much lower, are exposed to stress, inhibition of 

the HPI axis is not so evident. 

In fish reared on different backgrounds, no obvious differences were 

found between plasma cortisol titres of black- and white-reared fish, 

even after exposure to the chronic stress of regular disturbance. 

Moreover, white-reared fish had significantly higher plasma cortisol 

titres than black-reared fish after exposure to the stress of injection 

(Table 7.2). Thus, rearing fish on black or white backgrounds 

eliminates or reverses the trend seen in adapted fish. In contrast to 

these results, Green et al. (1991) found that black-reared fish secreted 

more plasma cortisol than white-reared fish when undisturbed and, 

also, when subjected to daily disturbance, or the stress of injection. 

However, they found no difference in the release of ACTR and CRF in 

black and white-reared fish, even when these fish were stressed. The 

hypothalamic content of bioactive CRF was greater in white- than in 

black-reared fish. One possible explanation for the results obtained 
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here is that, because white-reared fish are exposed throughout their 

lives to very high levels of MCH, the CRF and ACTH cells are 

desensitised to the inhibitory influence of MCR and so respond in a 

similar way to black-reared fish. The MCR receptors on these cells may 

become less sensitive to MCR, the receptor numbers may decline as the 

concentration of MCH increases or the receptors may fail to develop. 

Down regulation of receptor number is well established for peptide 

hormones (Archer et al., 1994). Significantly higher levels ofbioactive 

CRF are released from the hypothalami of white-reared fish when 

endogenous MCR is removed by immunoabsorbtion (Green et al., 1991). 

Since these fish contain more releasable CRF than black-reared fish 

they may become more responsive to stress once MCR inhibition is 

removed. 

Although plasma MeR titres were not measured in these experiments, 

it has already been established that fish adapted to white tanks have a 

five fold greater plasma MCH titre than fish adapted to black-tanks 

(Kishida et al., 1989). It is perhaps surprising that plasma MCR titres 

in white- and black-reared fish are very similar to those found in 

adapted fish (Kishida et al., 1989; Green & Baker, 1991; Green et al., 

1991). The hypothalamic content ofMCH however, is 10 fold higher in 

white-reared than in white-adapted fish, and 10 fold lower in black­

reared compared with black-adapted fish (Baker, 1991). Similar 

differences in the MCR content of the pituitary gland of reared and 

adapted fish is also evident (Baker, 1991). 

Although any stress that threatens homeostasis will stimulate a rapid 

secretion of glucocorticoids, the results of experiments that use the rise 

in plasma cortisol as a measure of stress must be interpreted with 

139 




.... e 

caution. In general, the magnitude and extent of corticosteroid 

secretion usually reflects the severity and duration of the stressor 

(Barton et al., 1980; Pickering and Pottinger, 1989; Pickering, 1989). 

Low plasma cortisol titres however, may not necessarily mean the 

absence of stress, certain toxicants and parasitic infections fail to elicit 

an increase in corticosteroid levels (Schreck and Lorz, 1978; Laidley et 

al., 1988). Low doses of anaesthetic can cause increases in cortisol 

titres to the level found in acutely stressed fish, but when higher doses 

are given that result in rapid immobilisation, corticosteroid titres 

remain low (Strange and Schreck, 1978). 

An increase in the number of lymphocytes in the kidney and spleen was 

noted as the degree of stress increased from low to moderate (Table 7.2). 

This increase in organ lymphocyte numbers and concomitant fall in 

circulating lymphocyte titres may be due to the effect of stress. In 

mammals, stress causes the redistribution of lymphocytes from the 

blood into the bone marrow and to a lesser degree into the spleen (Fauci 

and Dale, 1975a; b). In fish the interrenal gland is a homologue of the 

bone marrow, so the increase in the number of spleen and kidney 

lymphocytes following stress could represent a comparable 

redistribution oflymphocytes from the circulation. 

In all experiments, plasma cortisol titres were in the range of 1 to 30ng 

ml-l. These values fall well within the range reported for Rainbow 

trout in the literature (Barton et al., 1980; Barton and Peter, 1982; 

Pickering and Pottinger, 1989). The upper end of this range scale is 

indicative of mild chronic stress (Pickering and Pottinger, 1989). 
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TABLE 7.1. A summary of the results of the experiments on 

black- and white-adapted fish highlighting the predominant 
trends. Bold arrows indicate significant (p ~ 0.05) increases or 

decreases, and small arrows statistically non significant trends 

in plasma cortisol titres, leucocyte numbers and the results for 

immunological assays and radioisotope incorporation. A dash 

indicates experiments where no clear differences were 

apparent. The relevant experiment numbers are shown as 

superscripts. 
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TABLE 7.2. A summary of the results of the experiments on 

black- and white-reared fish highlighting the predominant 
trends. Bold arrows indicate significant (p ~ 0.05) increases or 

decreases, and small arrows statistically non significant trends 

in plasma cortisol titres, leucocyte numbers and the results for 

immunological assays and radioisotope incorporation. A dash 

indicates experiments where no clear differences were 

apparent. The relevant experiment numbers are shown as 

superscripts. 
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In Experiment 2, cortisol titres were low for all fish except the black­

adapted saline-injected group, these being the last to be sampled. It is 

likely that the removal of the other fish had disturbed those that 

remained, sufficiently to raise their cortisol levels. Pickering and co­

workers (1982) reported that the sampling order was correlated with 

increases in plasma cortisol in Brown trout. It is worth noting that 

when working with fish it is very difficult to control and standardise 

procedures because even the mildest disturbance can greatly increase 

cortisol titres. Uncontrollable disturbances such as fire alarms, noisy 

cooling systems etc. can also upset the fish and interfere with any 

differences between experimental groups. 

Another factor to consider is the diurnal variation in plasma cortisol 

that has been reported for several species. Rance et al. (1982) found the 

highest cortisol titres in Rainbow trout held in outdoor ponds occurred 

during the hours of darkness, in the summer months, with an 

additional second peak occurring in aquaria-held fish early in the 

morning. Several factors are believed to influence this second peak, 

including the light-dark cycle, the feeding regime and the lunar cycle. 

During the winter months, titres in aquaria-held fish were low 

throughout the 24 hour period, even when the fish were exposed to an 

extended light phase. Similar results have been reported for the Brown 

trout (Pickering and Pottinger, 1983). By contrast, Barton et al. (1980) 

failed to find any rhythm in fingerling Rainbow trout. In Experiment 5, 

diurnal variation may have been partly responsible for the raised 

cortisol titres, although since Experiments 1-3 and 7-8 were carried out 

during the winter months, and in Experiments 1·4 fingerling trout were 

used, any circadian or seasonal interference is likely to be minimaL 
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The position of a fish within a dominance hierarchy is another 

important consideration, because it can affect plasma cortisol titres as 

well as interrenal activity (Noakes and Leatherland, 1977), lymphocyte 

numbers (Peters and Schwarzer, 1985), growth (Li and Brocksen, 1977) 

and even lead to increased mortality (Laidley and Leatherland, 1988). 

Pottinger and Pickering (1992) have shown that the dominance 

hierarchy was most pronounced in fish held in pairs, its importance ill .. 
declining as the number of fish increased. They suggested, that in fish 

confined in groups of ten, social interaction was not an important 

consideration. In our experiments, the minimum number of fish per 

group was seven and therefore only minimal disturbance can be 

attributed to social dominance in these experiments. 

Finally, the stress response of fish is also determined by genetic factors, 

with differences both within and between species (Gjedrem and 

Aulstad, 1974; Refstie,1986; Fevolden et aZ., 1991). Rainbow trout are 

relatively insensitive to stress when compared to Brown trout 

(Pickering et aZ., 1989) and Atlantic salmon (Fevolden et aZ., 1991). 

7.2. Blood cell numbers 

The interpretation of the data for blood cell densities is difficult, 

because these values can be affected by changes in blood cell volume 

that follow stress (Soivio et aZ., 1977; Pickering et aZ., 1982). 

Wedemeyer (1970) has reported an altered osmotic balance post stress 

which changes the blood cell volume and causes spleen contraction that 

releases additional RBCs into the circulation. This may explain the 
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increase in the number of erythrocytes and leucocytes observed as the 

adaptation period increased (Experiment 1). Other factors, such as 

testosterone in mature males (Slicher, 1958; Mirand et aZ., 1965) and 

seasonal changes (Lehman et aZ., 1976) have been claimed to stimulate 

erythropoesis. 

The raised leucocyte counts observed in Experiment 1 may be due to 

blood volume changes, or neutrophilia resulting from infection andlor 

stress. Lymphocytopenia and simultaneous neutrophilia following 

stress have been demonstrated by Johensson-Sjobeck et aZ., 1978 and 

Ellsaesser and Clem, 1986. Other workers have failed to demonstrate 

any effect of acute or chronic administration of cortisol on neutrophils in 

Brown or Rainbow trout (pickering et aZ., 1982; Pickering, 1984). 

Neutrophilia usually indicates infection, ryvatson et aZ., 1956; Manhjan 

et aZ., 1979; Pickering, 1986), although neutropenia has been reported 

following bacterial infections (Amend and Smith, 1975; Lester and 

Budd, 1979). In Experiment 1, the ten fold difference in the total 

leucocyte count seen between fish adapted for 10 and 24 days is not 

reflected by a similar increase in the number of lymphocytes. This 

suggests that the differences seen in the leucocyte counts are due to 

volume changes or changes in another subset of the leucocyte 

population. The results imply that counting blood smears and 

assessing the number of each cell type per 1000 cells, gives a more 

accurate picture than leucocyte counts alone, although the procedure is 

very time consuming. 
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7.3. Stress and the response to immunisation 

It has been well established for over forty years that stress and cortisol 

inhibit the immune response (Weinreb, 1958). The leucocyte counts of 

black-adapted fish were depressed compared with those of white­

adapted fish (Table 7.1). The lymphocyte counts per 1000 cells were 

also significantly depressed in black-adapted fish. Both these 

parameters vary inversely with the plasma cortisol concentrations and 

this suggests that MCB probably affects the leucocyte population 

indirectly, by lowering plasma cortisol concentrations in white-adapted 

fish, although a direct affect of MCB on the immune system cannot be 

ruled out (see Section 7.6). These results, and those of others, show 

that raised plasma cortisol concentrations, due to stress and/or 

administered glucocorticoids, are associated with an reduction in the 

number of circulating WBCs (McLeay, 1975; Pickering et al., 1982; 

Pickering, 1984; Ellsaesser and Clem, 1986; Pickering and Pottinger, 

1987a; b; Wiik et al., 1989). Specifically, it is the change in the number 

oflymphocytes that affects the overall leucocyte count (Weinreb, 1958; 

Pickering, 1986; Pickering and Pottinger, 1987a). The number of 

thrombocytes and neutrophils showed no clear correlation to cortisol 

and this data has not been included in the results. Pickering and 

coworkers (1982; Pickering, 1984) have also reported that cortisol does 

not affect the levels of circulating thrombocytes or neutrophils. Fish 

reared on black backgrounds had greater or equal numbers of 

leucocytes and lymphocytes than their white-reared counterparts (Table 

7.2), a finding that may be correlated with the similar cortisol levels in 

these reared fish. In Experiments 7 and 8, a marked increase in 

thrombocyte numbers was recorded in fish exposed to moderate but not 

148 




to low stress. This observation may be due to thrombocyte clustering, a 

phenomenon seen by other workers in stressed and in glucocorticoid­

treated fish (Wiik et al., 1989). 

Immunisation with SRBCs caused a significant increase in the number 

of circulating lymphocytes compared to saline and uninjected controls 

(Table 7.1). The magnitude of this response was related to the original 

number of lymphocytes, i.e. black-adapted fish showed a smaller 

increase in lymphocyte numbers than white-adapted fish, even after 

immunisation, and the maximum immune response always occurred in 

white-adapted fish. These findings are in keeping with previous work 

on fish, which has shown that immunosuppression reduces the increase 

in the number of lymphocytes that follows immunisation (Anderson et 

aZ., 1982). 

In reared fish, a similar pattern of stimulation was seen, immunisation 

causing a significant increase in the numbers of circulating 

lymphocytes. Once again, this increase was proportional to the number 

of lymphocytes in the controls. It is noteworthy that irrespective of the 

adaptation or rearing conditions, the response to SRBC immunisation 

was always stimulatory. 

The density of spleen lymphocytes was significantly lower in black 

compared to white-adapted fish (Table 7.1), presumably because of the 

lower plasma cortisol titres in the latter group. A similar trend was 

evident for the kidney, with lower lymphocyte populations in the 

pronephros of black- compared to white-adapted fish. Chilmonczyk 

(1982) has previously shown that corticosteroid treatment reduces the 

lymphocyte populations in the spleen, kidney and thymus. 
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These differences in lymphocyte numbers in the spleen and kidney of 

black- and white-adapted fish persist even when fish are immunised. 

Antigenic challenge induces cell mitosis and increases the number of 

lymphocytes in both organs (Du Pasquier, 1976; Etlinger et aZ., 1978). 

In reared fish, there was a significant increase in the number of spleen 

lymphocytes, but no obvious difference in the kidney following 

immunisation. Ingram and Alexander's (1981), data on organ to body 

weight ratios in Brown trout, revealed an increase in the spleen !body 

weight ratio after SRBC injection, and a slight but insignificant 

decrease in the kidney !body weight ratio. The difficulty of extracting 

the whole interrenal gland in comparison to the relative ease of 

removing the discreet structure of the spleen may explain the lack of 

response recorded for the kidney of reared fish. It is also possible that 

since interrenal tissue is a major site of steroid synthesis, the local 

levels of corticosteroids in this organ may limit the antigenic response 

of kidney lymphocytes. The great variation in the number of 

lymphocytes in the blood and lymphoid organs reported here, has also 

been described by others (Chilmonczky, 1982; Ingram and Alexander, 

1981). The cause of the differences in lymphocyte number between fish 

are still unclear, but genetic, physiological and immunological 

parameters must play an important role. 

In addition to changes in cell numbers, antibody responses depended on 

a fish's hormonal balance. Immunisation with SRBCs always produced 

an increase in the number of plaque forming cells, irrespective of the 

nature of the background, and this increase was most marked in white­

adapted fish. 
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In general, fish that were more sensitive to stress, i.e. black-adapted or 

white-reared, produced lower plaque numbers. Others have shown that 

various types of stress, for example, toxic chemicals such as phenol 

(Gonchoarov and Mikryakov, 1970), heavy metals such as zinc, copper 

and mercury (Sarot and Perlmutter, 1976) and cortisol (Tripp et al., 

1987) can inhibit the production of antibodies. Miller and Tripp (1982) 

found that increasing periods of captivity could also inhibit immune 

responses. 

In the present experiments, plaque numbers were always counted after 

24 hours incubation. Anderson et al., (1979) found that further plaques 

develop if counts are carried out a day later, as cells secreting small 

amounts of antibodies, only produce visible plaques after an extended 

period. 

Although it is surprising that saline-injected fish produced some 

plaques, this is unlikely to be due to contamination of the syringe with 

antigenic material. Other authors have reported the production of 

plaques in saline-injected trout (Ingram and Alexander, 1981), 

especially by spleen rather than kidney lymphocytes (Chiller et al., 

1969b; Anderson et a1.,1979). No explanation as to the cause of non­

specific plaque formation has been proposed although they may be 

heterophilic antibodies against microbial antigens 

In immunised fish, the number of plaques produced was higher for 

spleen than for kidney lymphocytes, an observation that has reported 

for other poikilotherms (Chiller et az', 1969b; Ambrosius and Hanstein, 

1971). Cortisol production by the interrenal gland in vivo may be 

responsible for the decrease in the antibody production of lymphocytes 
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in vitro. The fact that glucocorticoids are known to reduce the 

proliferative response of lymphocytes to antigens supports this 

hypothesis (Cupps and Fauci, 1982). The quality of plaque forming 

cells is also known to vary with age and season (Pontius and 

Ambrosius, 1972). 

The occurrence of small and large diameter plaques has been reported 

for fish (Chiller et al., 1969a; Sailendri and Muthukkaruppan, 1975) 

and other vertebrates (Jerne and Nordin, 1963). This phenomenon may 

be due to the presence of two distinct populations of cells with different 

antibody producing properties (Chiller et al., 1969a), or to the pouring 

temperature of the overlaying medium (Ingram and Alexander, 1981). 

In Experiment 5, using reared fish, only small plaques were recorded 

and the latter explanation for the lack oflarge plaques in this 

experiment, seems the more likely explanation. 

The haemagglutination assays showed that immunisation with SRBCs 

increases the antibody titres in the circulation 1.5 to 2.5 fold, but no 

significant differences emerged for fish adapted or reared on black or 

white backgrounds (Table 7.1 and 7.2). The haemagglutination score 

tended to vary inversely with the plasma cortisol level, the higher the 

cortisol titre the lower the antibody titre. In these experiments a series 

of doubling dilution's were carried out, with the failure of SRBCs to 

agglutinate being used as the end point of the assay. A finer series of 

graded dilutions may have revealed small differences in plasma 

antibody titres between groups of fish. 

It is worth noting that mammalian lymphocytes are capable of secreting 

immunoreactive ACTH (Smith and Blalock, 1981). Mitogenic 
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stimulation of human T cells produces raised levels of POMe mRNA, by 

causing rapid transcription of the POMe gene. Farrar et al., 1987 found 

that lymphocytes activated by PHA lectin released IL-2 that could also 

modulate POMC expression in mammalian cell lines. Thus, at least in 

mammals, lymphocytes exert an effect on the HPA axis, but whether 

this is true for fish is unknown. 

7.4. Factors affecting lymphocyte response in vitro 

Spleen and kidney lymphocytes taken from white-adapted fish always 

responded better in culture than lymphocytes from black-adapted fish. 

How could the previous exposure of fish to different backgrounds 

influence lymphocyte proliferation in vitro? One possible explanation 

is that in vivo, black-adapted fish are exposed to greater levels of 

plasma cortisol than white-adapted. Manser (1992) reported that 

lymphocytes cultured from stressed mammals multiply at a lower rate 

than those from unstressed animals. Ellsaesser and Clem (1986) also 

found that lymphocytes from fish exposed to transport stress had 

dramatically reduced responses to Concanavalin A. 

In contrast to the results for adapted fish, lymphocytes isolated and 

cultured from black-reared fish exposed, either to moderate or low 

stress, generally responded equally well, or better than white-reared. 

One possible explanation for this reversal may be related to the 

environment to which the lymphocytes have been previously exposed. 

Thus in white-reared fish, CRF cells become desensitised to the 

inhibitory influence ofMCH which no longer effectively modulates the 

release of corticosteroids. In consequence, the lymphocytes from black­
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and white-reared fish are exposed to similar levels of circulating 

corticosteroids and respond in a similar manner when cultured in vitro. 

In some experiments there was considerable variation in the 

proliferative response to Con A of individual fish that resulted in large 

standard errors associated with the mean incorporation values. Other 

workers have reported significant variation in mitogen-induced 

stimulation of individual fish (Tillitt et aZ., 1988; Ellsaesser and Clem, 

1986). 

The mitogens used here to stimulate lymphocyte growth in culture are 

those originally selected for mammalian cells and it is worth reviewing 

the evidence that fish lymphocytes respond to mammalian mitogens in 

the same way. In the in vitro experiments described in Chapter 6, 

kidney lymphocytes responded well to the T-cell mitogen Con A. This 

agrees with work on Rainbow trout by Warr and Simon (1983) who 

found that lymphocytes from the kidney, thymus, spleen and peripheral 

blood were responsive to both LPS and Con A. Cuchens and Clem 

(1977) found similar results with bluegill (Lepomis macrochirus). On 

the other hand, Etlinger et aZ. (1976) found Rainbow trout kidney cells 

unresponsive to Con A and thymus cells unresponsive to LPS, although 

lymphocytes from the spleen and blood responded to both mitogens. 

Different responses to the same mitogen can be due to many factors, 

including the serum source and concentration of the mitogen which are 

critical factors in tissue culture. It remains unresolved just how specific 

these mitogens are in stimulating specific fish cell populations. Even in 

mammalian lymphocyte culture responses are not always straight 

forward, a report by Raffel and Sell (1981) suggested that in rabbits, Ig­
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positive lymphocyte cells (presumptive B cells) can also respond to the 

T cell mitogen Con A. 

7.5. Corticosteroids and cell proliferation in vitro. 

The results of the in vitro experiments demonstrate the powerful 

inhibitory actions of cortisol on lymphocyte proliferation in culture that 

overrides any effect that might be due to background colour. Grimm 

(1985) has also shown that cortisol suppresses division of mitogen­

stimulated lymphocytes in plaice (Pleuonectes platessa L.). Similar 

responses have been observed in mammals. For example, cortisol 

greatly reduces the response of mammalian splenocytes stimulated 

with T-cell mitogens (Westly and Kelley, 1984; Okimura et aZ., 1986a). 

The inhibitory effects of corticosteroids on fish lymphocyte growth are 

not clearly understood. In this context, a brief review of the events 

occurring in mammalian systems may be helpful. In mammals, 

glucocorticoids cause a generalised suppression of cellular metabolism, 

but more specifically act by inhibiting the mitogen-induced production 

of the T-cell growth factor IL-2 (Munck et al., 1984). In mammals, the 

stimulatory properties of lectins and antigens are due to their ability to 

cause lymphocytes to secrete IL-2. Growth in vitro is dependent on the 

continued production of IL-2 and by inhibiting IL-2, glucocorticoids are 

capable of completely preventing the clonal expansion of activated 

lymphocytes (Gillis et aZ., 1979b). The fact that these effects can be 

reversed with the addition ofIL-2 suggests that corticosteroids do not 

directly interfere with the action ofIL-2 (Gillis et al, 1979a; b). 
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The ability offish to secrete and respond to interleukin-like substances 

has been widely reported (Caspi and Avtalion, 1984; Grondel and 

Harmsen, 1984; 1985; Sigel et al., 1986 and Kaattari and Tripp, 1987; 

Tripp et al., 1987). Caspi and Avtalion, (1984) reported an IL-21ike 

substance in carp that promoted T-cell like proliferation. There is also 

evidence to suggest that cortisol may inhibit IL-like factors necessary 

for the differentiation of B-like lymphocytes in salmonids (Kattaari and 

Tripp, 1987). 

Glucocorticoids have been reported to cause a reduction in glucocorticoid 

receptor numbers on mammalian lymphocytes (Crabtree et al., 1980; 

Shipman et al., 1983), taking approximately three weeks to recover to 

pre-treatment levels (Shipman et al., 1983). Glucocorticoid receptors 

have been identified on fish lymphocytes from the spleen and head 

kidney (1vIaule and Schreck, 1991). The fact that lymphocytes from 

white-adapted fish show greater suppression by cortisol than black­

adapted fish (see Figure 6.8) can be explained by the differences in 

sensitivity to glucocorticoids. Since black-adapted fish are exposed to 

higher cortisol titres than white-adapted, down regulation in the 

receptor affinity in black-adapted lymphocytes would explain their 

reduced mitogenic response. Maule and Schreck (1991) reported that 

chronic stress causes an increase in receptor number but a decrease in 

the affinity of the receptor. 

Another factor to consider when examining the results are the relevance 

of the in vitro model to the in vivo system. Some cells appear 

corticosteroid resistant in the whole animal but become sensitive when 

grown in culture (Cohen, 1989). 
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7.6. MCH and the immune system. 


Perhaps the most exciting result to emerge from this work is that MCB 

enhances the division of both spleen and kidney lymphocytes when 

added to the culture medium in vitro (see Figures 6.9 & 6.16). 

Concentrations between lOpg ml-1 or lOOpg ml-1MCB were the most 

effective, especially when LPS was used. These two concentrations are 

very similar to the plasma levels ofMCB in black- and white-adapted 

fish respectively (Kishida et al., 1989) and suggest that MCB may 

regulate lymphocyte proliferation in vivo. An important point 

overlooked in this thesis, is the possibility that MCR could stimulate T 

and B cell prolifferation in the absence of other mitogenic agents. It 

seems likely, but not proven that MCR could have direct stimulatory 

effect on cultured lymphocytes and have a similar action in intact fish_ 

Although lO-lOOpg ml-I MCH is within the normal range for plasma 

titres, the situation in vivo is complicated by the fact that local 

concentrations ofMCH could be considerably higher. Although 

maximum enhancement occurred at a dose of lOpg ml- l in vitro this 

does not mean a direct correlation can be drawn between in vivo and in 

vitro results. In this context, the fact that mRNA for MCR has been 

detected in the mammalian spleen, may indicate that paracrine release 

ofMCH by spleen cells could influence lymphocyte function (Nahon et 

al., 1993). 

The interaction of other hormones and neurotransmitters which 

potentiate the effects ofMCH on lymphocytes may also be important in 

vivo. For example, noradrenalin is known to potentiate the action of 

MCR on melanophores (Baker et al., 1986). 
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One interaction investigated here was the effect of adding both MCR 

and cortisol to lymphocyte cultures. The inhibitory effect of cortisol on 

cell proliferation is still evident, but less marked, in cultures to which 

MCR has been added. These findings emphasise the fact that, within 

the normal physiological range of plasma titres ofMCR in black- and 

white-adapted fish, this neuropeptide modulates the primary effects of 

corticosteroids, but cannot override them. 

Thus, it appears that as well as reducing plasma cortisol levels by 

inhibiting the release of CRF and possibly ACTR, MCR also has a 

direct action on lymphocyte susceptibility to corticosteroids and may 

therefore protect the fish from the damaging effects of long term 

corticosteroid immunosuppression. 

The findings in vitro that MCR has a positive effect on lymphocyte 

proliferation can now be considered in relation to the in vivo 

experiments using black- and white-adapted. The plasma MCH levels 

of black-adapted fish are five fold lower than the levels in white­

adapted fish (Kishida et aI., 1989), thus part of the improved immune 

status seen in white-adapted fish may be due to the stimulatory effect 

of MeR on T andlor B lymphocytes. 

Furthermore, in white-adapted fish, MCR is blocking the secretion of 

CRF and possibly ACTR thus reducing the secretion of cortisol. Overall, 

these combined actions offer fish with raised titres of plasma MeR a 

distinct advantage over their counterparts adapted to black tanks. 

Figure 7.1. summarises the possible effects ofMCR on the HPI and 

immune system in the light of these experiments. 
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FIGURE 7.1 A development of Figures 1.1 and 2.4 showing 

additional mechanisms of MCH action on the immune system, 

based on the results of the present work. Other regulatory 

pathways for future investigation are also shown (??). 
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7.7. MSH and the immune system 

In many biological systems, the actions of MSH and MCH are 

antagonistic. As well as their opposing effects on colour change in fish 

(Baker and Ball, 1975), they have also been shown to have opposing 

actions in rats, affecting grooming behaviour (Eberleet al., 1989), the 

response to auditory stimulation (Miller et ai., 1993) and passive 

avoidance (McBride et al., 1994). In view of these antagonistic actions, 

it was surprising to find that when MSH was added to lymphocyte 

cultures at concentrations comparable to those levels found circulating 

in the blood of black-adapted trout, no clear effect on cortisol inhibition 

of lymphocyte growth was observed. The lack of response to MSH could 

be due to a lack of MSH receptors on lymphocytes. Cannon and co­

workers (1986) also found that MSH had no affect on mitogen or IL-2 

stimulated mammalian T cell lines. However they did find that murine 

T-cell proliferation in vitro induced with IL-1 was inhibited, in a dose 

dependent manner, by the addition of aMSH, and thus implied that 

a11SH interferes with the binding of IL-l with its target receptors. By 

inhibiting the release of IL-1, aMSH could also inhibit the release of IL­

2 and thereby prevent T and B cell clonal proliferation in vivo. Alpha 

MSH also prevents the stimulatory effects ofIL-I, on corticotrophin­

releasing hormone (CRH) in rats (Calogero et aI., 1988). 
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7.8. 	 Reproductive steroids and lymphocyte proliferation in 

vitro 

The link between reproductive and immune functions has been known 

for many years in vertebrates, but most investigations have centred on 

the overall effects in vivo. The possibility that steroid hormones, other 

than the corticosteroids, could influence the immune system has 

recently received renewed attention (Slater and Schreck, 1993). 

The immune deficiencies known to occur in sexually mature salmonids 

include lowered bacteriacidal actions of normal serum (Iida et aZ., 

1989), increased bacterial and fungal infections (Pickering and Duston, 

1983), and a reduced ability to produce antibodies (Ridgeway, 1962). 

Sexually mature trout have high levels of many steroid hormones 

including ketotestosterone, 17~-oestradiol and 17a hydroxy 20~ 

dihydroxyprogesterone. It is well known that cortisol inhibits the 

immune system, however the effects of the other steroids have not been 

fully investigated in fish. Preliminary results in Section 6.10 suggest 

that these reproductive steroids do indeed have marked effects on 

lymphocyte growth, and these can be either stimulatory or inhibitory. 

7.8.1. 	Androgens 

In the plasma of mature male Rainbow trout ketotestosterone is the 

major androgenic steroid present which reaches a maximum 

concentration of approximately 250ng ml-1 in January-February (Scott 

et aZ., 	1980b; Matty, 1985), Ketotestosterone is also present in female 

fish, but at much lower titres ('""lOng ml'I). In other teleosts, such as 

plaice, 	ketotestosterone is unimportant and testosterone is the major 
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Many of the effects discussed in this thesis are likely t' 1 
o lnVO ve 

changes in the number and/or affinity ofMCH 
receptors on the 

surface of lymphocytes and othetr cell types. To date, attempts to 

assess MeR receptors numbers and distribution have met with little 

success, but improved techniques may make this possible in the 

future. 

Although Our knowledge of pep tides and hormones that are involved 

in fish reproduction has advanced considerably in recent years, 

compared with what is known about mammalian systems, the role 

of steroids in fish immunity is still in its infancy, and deserves 

further study. 

IvIelanin -concentrating hormone is now well established as an 

important neuromodulatory peptide in all vertebrates, affecting a wide 

variety of systems in a subtle but significant ways. It is no longer 

viewed as a hormone of peripheral interest to fish endocrinologists 

concerned with skin pigmentation, but has been found to be closely 

linked to some of the most important systems in all vertebrates, 

influencing stress and immune functions that are crucial to the survival 

of individuals, systems that underpin the evolutionary success of the 

vertebrates. 
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Appendix 

Dacies Fluid 

Formaldehyde 

Fonnalin lOrrli 

Distilled Water 90ml 

Mix the water and fomalin together to make a stock solution of 

fonnaldehyde. 

Fonnaldehyde lOml 

Trisodium citrate 3l.3g 

Brilliant cresyl blue l.Og 

Distilled water 1 litre 

Place the stain and trisodium citrate into a beaker mix in the formaldehyde 

and water. Filter the solution before use. 
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Phosphate Buffered Saline with Gelatine 

Disodium hydrogen orthophosphate - 8l0mI 

sodium chloride 9.0g 

Thimersal O.lg 

Gelatine 1.0g 

Sodium dihydrogen orthophosphate -l90ml 

Prepare 0.1 molar solutions of disodium hydrogen orthophosphate and 

sodium dihydrogen orthophosphate at pH 7.4-7.6 at 4°C. Into a beaker add 

the thimersal, sodium chloride and gelatine, then add appropriate amounts 

of sodium dihydrogen orthophosphate and disodium hydrogen 

orthophosphate to maintain the pH at 7.4-7.6. Heat gently, stirring 

continuously, until gelatine has dissolved. When cooled to 4°C adjust pH to 

7.4-7.6 with appropriate buffers. 
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Leishman-Giemsa Stain 

Leishman stain 

Leishman O.15g 

Absolute methanol 100ml 

Dissolve stain in a small drop of alcohol in a pestle and mortar, pour into a 

bottle and add fresh alcohol to the pestle and start again. Proceed until all 
powder is used. Place in incubator at 37°C overnight. Place a few drops of 

stain on the surface of a slide dilute with water, ifa metallic scum forms 

stain is usable. 

Giemsa Stain 

Stock solution 

Giemsa powder 19 

Glycerin 66ml 

Absolute methanol 66m1 

Mix together the glycerin and Giemsa powder and then place in an oven at 

approximately 60a C for 1 hour. After the solution has cooled add methanol. 

Phosphate buffer 

Sodium clihydrogen orthophosphate 35g 

Disodium hydrogen orthophosphate 4.84g 

Distilled water 3960ml 

Prepare a 1% solution at pH 6.0. 
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Working Giemsa solution 

Stock Giemsa 14m! 

Phosphate buffer 200ml 

Prepare freshly each day. 

Staining method 

1 Cover dry unfixed sample with 5-6 drops ofabsolute methanol. 

Leave for 5-6 minutes. 

2 Stain with Lieshmans stain for 3 minutes. 

3 Stain with Giemsa stain for 9 minutes. 

4 Flood off stain with phosphate buffer W.1M; pH 6.0)and differentiate 

if necessary for 1-2 minutes. Sections should appear just pink. 

5 Rinse well in tap water to remove residual stains. 

6 Air dry overnight, keeping slides in darkness and mount 
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Period Acid Schiff Technique 

Periodic Acid 

Periodic acid 19 

Distilled water 200ml 

Schiffs reagent 

Basic fuchsin Ig 

Distilled water 200ml 

Potassium metabisulphite 2g 

Concentrated hydrochloric acid 2m1 

Activated charcoal 2g 

Boil the distilled water remove then dissolve basic fuchsin into the water. 
Allow the solution to cool to 50°C, and add the potassium metabisulphite, 

mixing continuously. When cooled to room temperature add the 

hydrochloric acid and mix before adding the charcoal. Leave overnight in 
the dark then filter. The solution should be pale yellow, store in a dark 
container at 4°C 

Staining method 

1 Place sections in distilled water. 

2 Treat with periodic acid for 5 minutes 

3 Wash well in distilled water 

4 Cover with schiffs reagent and leave for 15 minutes 

5 Wash in running tap water for 5-15 minutes 

6 Counterstain with Harris's haematoxylin 1~2 minutes 

7 Differentiate with 1% acid-alcohol and blue with tap water 

8 Wash in water then allow to dry then mount. 
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Haemotoxylin and Eosin 

Harris's Haematoxylin 

Haematoxylin 2.5g 

Absolute alcohol 25ml 

Potassium alum 50g 

Distilled water 500ml 

Mercuric oxide 1.25g 

Glacial acetic acid 20ml 

Dissolve haematoxylin in alcohol, add this to alum that has been dissolved 
in warm distilled water. Boil mixture, add mercuric oxide then cool rapidly. 
When the solution is cold add acetic acid and stain is usable. 

Eosin 

Eosin Y 5g 

Distilled water 500ml 

Thymol one crystal 

Staining method 

1 Fix section in methanol 

2 Wash section in water 

3 Stain in Harris's haematoxylin for 10 minutes 

4 Wash well in tap water until sections blue 

5 Differentiate in 1% acid-alcohol 5-10 seconds 

6 Wash well in water until section blues 

7 Stain in 1% eosin for 10 minutes 

8 Wash in running water for 10 minutes, then dry and mount. 
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