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CAR MAKE AND MODEL RECOGNITION UNDER LIMITED LIGHTING 

CONDITIONS AT NIGHT 

Noppakun  Boonsim 

ABSTRACT 

 

Car make and model recognition (CMMR) has become an important part of 

intelligent transport systems. Information provided by CMMR can be utilized 

when licence plate numbers cannot be identified or fake number plates are used. 

CMMR can also be used when automatic identification of a certain model of a 

vehicle by camera is required. The majority of existing CMMR methods are 

designed to be used only in daytime when most car features can be easily seen. 

Few methods have been developed to cope with limited lighting conditions at 

night where many vehicle features cannot be detected. This work identifies car 

make and model at night by using available rear view features. A binary classifier 

ensemble is presented, designed to identify a particular car model of interest from 

other models. The combination of salient geographical and shape features of 

taillights and licence plates from the rear view are extracted and used in the 

recognition process. The majority vote of individual classifiers, support vector 

machine, decision tree, and k-nearest neighbours is applied to verify a target 

model in the classification process. The experiments on 100 car makes and 

models captured under limited lighting conditions at night against about 400 other 

car models show average high classification accuracy about 93%. The 

classification accuracy of the presented technique, 93%, is a bit lower than the 

daytime technique, as reported at 98 % tested on 21 CMMs (Zhang, 2013). 

However, with the limitation of car appearances at night, the classification 

accuracy of the car appearances gained from the technique used in this study is 

satisfied. 
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CHAPTER 1  

INTRODUCTION 

 
This chapter presents the introduction to and motivations of this project. Several 

topics are also indicated: aim and objectives, scope, research methodology, 

contributions of the research and structure of the report. 

 

1.1 Introduction  

 

According to Interpol’s analytical overview report on vehicle crime in a global 

perspective (Interpol, 2014), there were about 7.2 million records are reported of 

stolen vehicles worldwide at the end of 2013. Interpol indicates that vehicles are 

not only stolen for their intrinsic benefits, but are also traded to support other 

crimes. They can also be used as bomb carriers or in the perpetration of other 

crimes. There are some indications of economic damage from vehicle crime in 

2011. Furthermore, the United Kingdom reported economic damage to vehicle 

crime totalling about €355 million. In addition, reports from insurance companies 

in Germany and Australia presented that about €260 million and €422 million, 

respectively, were lost in vehicle theft.   

 

Car manufacturers have made efforts to increase car security with devices such as 

infrared locking, vehicle tracking, keyless access, biometric fingerprint car 

security and immobilisers. Many systems have been proposed in order to protect 

and assist police to reduce the numbers of vehicle crime. The most popular system 

which has already been commonly used by the police and law enforcement 

agencies to identify vehicles is the Automatic Number Plate Recognition (ANPR) 

system (Anagnostopoulos et al., 2008, Wen et al., 2011, Du et al., 2013). ANPR 

has been introduced in the previous two decades by using Optical Character 

Recognition (OCR) techniques and other related works, for example, image 
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enhancement, licence plate localization, character segmentation and character 

recognition to classify alphanumeric characters on licence plates. The system has 

been used to identify suspected stolen cars and then retrieve other information 

such as insurance, taxation and owner details. Furthermore, ANPR has been 

implemented in many applications such as red-light enforcement, speed limit 

enforcement, toll systems and parking lot systems.  

 

In the literature, existing ANPR algorithms or systems work well under some 

controlled conditions for example fixed vehicle position and good illumination. 

Having analysed previous works on ANPR, there have been a few studies on 

recognising number plates in low lighting conditions at night. Wanli et al. (2010) 

used colour based method, HSV colour space, to detect and recognise licence 

plate.  

 

Although, the reported detection and recognition accuracies are very high but the 

method is greatly sensitive to light intensities and uneven lighting conditions. 

Another technique, wavelet transform and edge based method, were introduced by 

Qi-Chang et al. (2010) to deal with licence plate localization in low light 

environment. They applied wavelet transform to remove noise and enhance edge 

pixels. Then, an edge detection method was employed to extract edge lines of 

licence plate. Licence plate localization rate was reported at about 98%. However, 

this technique work well in low light conditions only. It cannot not effectively 

cope with extremely dark images or images captured at night. To solve the 

problem of varying illumination throughout day and night-time, infrared units 

have been used. Chen et al. (2012) proposed to use Infrared illuminator to detect 

position of number plate at night. Then, the number plate detection accuracy was 

reported at about 98%, tested on 64 night-time images. Infrared cameras are also 

implemented in some car parking systems. Omnypark (2016) company 

implements infrared camera in car parking system and system is claimed that can 

recognise licence plate and robust throughout 24 hours. In addition, images 

captured from the infrared cameras provide clear and shape images with no 

different in day and night-time. Moreover, Yanli (2010) presented a 
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semiconductor laser night vision system to recognise licence plate. The system is 

claimed to work well in real word ANPR applications. 

 

However, ANPR systems cannot accurately identify a car which has had its 

number plate removed, faked, cloned or covered by dirt. Therefore to prevent 

crimes where the vehicle licence plate could be false and not recognizable, many 

researchers have been proposed additional information methods to identify 

vehicles such as car logo recognition and car make (manufacturer) and model 

recognition (CMMR). Car logo recognition has been presented in the work of 

Psyllos et al. (2008). But there is a problem for this method when the logo cannot 

be detected or is removed by the criminal. For this reason, the vehicle 

identification system is unreliable. Therefore, a CMMR system could be the 

robust method to significantly improve the accuracy and reliability of car 

identification. More information can be drawn from a CMMR system in terms of 

manufacturers, models, shapes and colours, etc. to help specify cars. This leads to 

more confidence and accurate results, rather than using only a licence plate (Zafar 

et al., 2007). Moreover, the method will also be very useful in identifying or 

recognising and tracking a suspected vehicle across different CCTV cameras. For 

example, if a suspected vehicle’s make and model is reported, the method can be 

used to identify the same type of vehicle in different CCTV cameras to track the 

vehicle, instead of using a large number of human operators to check all the 

CCTVs, which is very time consuming. 

 

1.2 Research motivations 

 

CMMR techniques have been studied as a part of intelligent transport systems in 

the past decade. Variety of car appearances, for example car body shape, headlight 

shape, taillight shape, logo, and key points (texture) were implemented in 

literature (Dlagnekov, 2005, Santos and Correia, 2009, Psyllos et al., 2011). Many 

classifiers and classification techniques were also used in previous CMMR works, 

such as k-nearest neighbours (k-NN), decision tree (DT), support vector machine 

(SVM), neural networks, Naïve Bayes and ensemble methods.  
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As analysed of previous algorithms and studies, most of them were implemented 

in daytime where lighting conditions are good and without occlusions (Petrovic 

and Coote, 2004a, Dlagnekov, 2005, Kazemi et al., 2007, Psyllos et al., 2011, 

Kafai and Bhanu, 2012). In addition, experimental results in these works were 

reported with high classification accuracy, more than 90%. However, there are a 

few published works dedicating to analyse vehicle at night but they do not directly 

solve a problem of CMMR, for example, driver assistance systems (Wang et al., 

2005) and vehicle type classification (Gritsch et al., 2009).  

 

There are many challenges to be overcome to make CMMR techniques work at 

night. This research is aimed to solve the followings: 

 1) Limited features: due to low lighting conditions, vehicles’ appearances 

are reduced to only a small number of features, e.g. headlights, taillights, licence 

plate shapes and positions, are available. 

 2) Classification technique: there are a large number of existing 

classification methods. What is the most suitable one for such application.  

 

Car’s appearances used in daytime techniques are being reduced to headlight, 

taillight and licence plate because of low lighting levels or uneven lighting at 

night. In addition, another problem in image capture at night is reflections which 

can occur from many light-sources, e.g. street lamps, head-lights, tail-lights and 

brake-lights of other cars. Light reflections can fade or blur car appearances. 

However, existing techniques are not suitable for night-time conditions. 

Therefore, CMMR technique at night is then worth of investigation. This research 

develops technique to recognise car make and model which consists of 

determining features from available appearances of car images at night and 

developing classification technique. In addition, CMMR strategy to be used in 

real world is also investigated and presented.  

 

To date, CMMR in limited lighting still remains challenging and requires more 

research to determine good solutions. At night, image recognition is a difficult 

task due to the image’s appearances being faded. However, there are a few 
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published works dedicating to recognizing CMM at night. In the past, various 

approaches have been presented to solve vehicle recognition at night, but they do 

not directly solve CMMR problems, for example, driver assistance systems 

(Wang et al., 2005) and vehicle type classification (Gritsch et al., 2009). This 

research, therefore, will present the CMMR method at night.  

 

The technique is based on a state-of-the-art of pattern recognition system applied 

to recognise car make and model in an image. The system begins with image pre-

processing which manipulates image characteristics to make them suitable for the 

next process. Then, car feature extraction is performed in order to obtain features 

to classify car models. Last, the classification process uses the obtained features to 

train the classifier and the classifier then can predict an unknown car’s model with 

car-trained models. 

 

In the feature extraction process, the presented method is challenged by the 

limited features at night. Available data in a car’s image at night are headlight, 

taillight and licence plate. Other appearances might be seen, for example, logo, 

grill, colour and car shape. However, there is another problem in image capture at 

night, reflections. Reflections can occur from many light-sources, such as street 

lamps, head-lights, tail-lights and brake-lights of other cars. Light reflections can 

fade or blur car appearances. Therefore, the method is carefully considered to 

choose available data and distinguishable features in order to gain high prediction 

performance. 

 

In real world images, design features might be missed by the detection that would 

lead to decreased performance of the proposed method. The presented method, 

thus, deals with this situation. To solve this problem, the technique finds and uses 

the possible or available features to classify car make and model and the 

classification accuracy is satisfied. 
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Last, the classification method is presented to classify features obtained. The 

classification accuracy should be as high as possible. The difficult of this stage is 

how to find the optimum parameters which are to be appropriated to the selected 

classifier. In addition, classification strategy is concerned with respect to the most 

suitable approach to the problem.  

 

1.3 Aim and objectives 

 

This research aims to develop a new CMMR method in low-lighting conditions at 

night by using new pattern recognition and computer vision techniques. The 

presented technique not only classifies car make and model but also should 

increase recognition accuracy compared to existing methods. In addition, this 

research is dedicated to work at night, so the work should robustly handle missing 

data used in real-world applications.  

 

The objectives of this research are: 

1) To investigate and present distinguished car features to classify car make 

and model. 

2) To develop a technique for handling missing features. The method will 

make this research robust in real-world implementations. 

3) To develop a classification technique. The technique will present 

classification strategy and classifiers used in order to have high 

classification accuracy. 

4) To develop a new CMMR method which uses real-world data. 

 

The proposed method could be used in many systems: parking lots, tolls, traffic 

surveillance and intelligence transport. Especially, the study focuses on the law 

enforcement systems which are used to assist the authorities to automatically 

identify vehicles of interest from images or videos acquired from cameras. 

Furthermore, this method can support additional information to traditional ANPR 

systems when the licence plate is unable to identify the vehicle from many 

reasons, such as dirty, fake and distorted licence plates. 
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1.4 Scope of the research 

 

CMMR work is classified into two main light conditions: day and night-time. A 

variety of available features can be obtained in daytime, such as edge features, 

contour features, texture features and other features. Unlike CMMR in daytime, 

CMMR at night have a difficult task when many features are faded. 

 

At night, light intensity can be roughly divided by two areas: urban (medium 

dark) and rural (extreme dark). In urban areas, there are many light sources, such 

as street lamps, head-lights, tail-lights and brake-lights of other cars. Therefore, it 

is not too dark in these areas and light intensity is more than in rural areas. 

Furthermore, there are many nuisance lights in urban areas, more so than rural 

areas. This study focuses on CMMR in the urban area and aims to solve the 

problem of CMMR at night. The images used are captured in fixed view and 

distance because the proposed work focuses only how to recognise a car’s body. 

The research finds salient obtainable appearances for CMMR. In addition, suitable 

classification technique is also studied in order to have high classification 

accuracy. 

 

1.5 Research methodology 

 

The research methodology starts with the literature review; published papers were 

selected from related areas: image processing, computer vision, pattern 

recognition, ANPR and CMMR. 

Second, the CMMR framework is defined based on a pattern recognition system 

consisting of image pre-processing, feature extraction and classification process.  

Third, distinguished features are selected from available appearances in order to 

classify CMM with high classification performance. In addition, the missing 

feature handling method is presented, which is designed to make the research 

technique more robust.  
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Last, the best classification method is presented from a variety of classifiers and 

classification techniques. In addition, experiments are conducted to evaluate the 

proposed method. Then the discussion of results is provided with respect to 

supported advantages and disadvantages of the presented method. 

 

The main contributions of this research are: 

1) To the author’s knowledge, this study is the first work that presents a 

method to classify car make and models under limited lighting conditions 

at night.  

2) Distinguished features and missing features handling strategy are 

presented for CMMR at night.  

3) Binary class classification strategy is introduced to recognise car make 

and model of interest, which can be applied in real-world applications, 

such as traffic law enforcement and intelligence transport systems. 

 
1.6 Thesis structure 

 

The remainder chapters of this report are structured as follows. 

 

Chapter 2 provides the literature review starting with pattern recognition systems, 

image processing and computer vision techniques. Algorithms of recognition 

processes, classifiers, feature selection techniques and classification performance 

evaluations are presented. In addition, a variety of techniques in image and 

computer vision, such as image contrast enhancement, edge detection, corner 

detection, texture extractors and object representation are reviewed.  

 

Chapter 3 reviews previous CMMR techniques. The chapter consists of many 

sections such as a general CMMR system, image pre-processing techniques, 

feature extraction, classification process. This chapter also presents taillight 

detection and licence plate detection techniques which might be used in the 

research. 
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Chapter 4 gives the proposed CMMR method focusing on the details of the 

process and algorithms. The presented method has three main processes: feature 

extraction process, optimum feature selection and classification process. First, the 

feature extraction is the process to detect key points and select distinguished 

features, including several steps, image enhancement, taillight detection and 

licence plate localization processes. Then, optimum features are selected by 

applying a feature selection method. Last, the classification method is presented in 

a classification process to predict car make and model.  

 

Chapter 5 provides experimental results including system implementation details, 

machine specifications, software tools, dataset creation and the evaluation of 

results. Various classifiers are also implemented on creation database for 

comparison with the proposed method.    

 

Chapter 6 summarises what has been achieved in the project. The conclusions and 

the possible directions for future works are described. 
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CHAPTER 2 

LITERATURE REVIEW 

 
Car make and model recognition in an image applies knowledge from several 

fields to solve this problem: pattern recognition, image processing and computer 

vision. This chapter explores knowledge of pattern recognition, which is an 

important technique in the proposed research. In the proposed classification 

process, a pattern recognition method is employed to train a machine, and then it 

can predict an unknown car’s model to the most similar class by its pattern. The 

pattern recognition system and techniques are provided and related topics; 

classifiers, classifier combination, feature selection and classification performance 

evaluation are also introduced. 

 

2.1 Pattern recognition techniques 

 

It is easy for humans to recognise the difference between objects such as fruits, 

characters and human faces. Humans might use colour, texture, and shape to 

classify kinds of fruit (such as classifying apple from orange). In character 

recognition, people can correctly classify a letter in a variety of conditions, for 

example, small, large, handwritten, rotated and machine printed. In addition, 

parents might recognise their children in a crowd of students and furthermore they 

could remember the differences between their twin children. However, it is 

difficult to teach a machine how to do the same. Pattern recognition is the method 

that humans have employed to get machines to learn and make decisions through 

the knowledge of a designer for a specific problem. For more than half century, a 

variety of pattern recognition approaches have been studied and proposed to solve 

problems in several engineering and science fields, such as machine vision, data 

mining, biometrics, marketing, medical imaging, speech recognition, remote 

sensing, artificial intelligence and psychology (Jain et al., 2000). 
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Pattern is “as an opposite of a chaos; it is an entity, vaguely defined” (Watanabe, 

1985). Pattern is a description of an object or something of interest which is 

similar for the objects in the same class (Dougherty, 2013). In my understanding, 

patterns are the characteristic properties of an object to which objects in the same 

class should have similar but not identical patterns. Pattern recognition is the 

method or process of how a machine can learn from example characteristic 

parameters to distinguish a test subject into a predefined class. Pattern recognition 

approaches are divided into four main methods: 1) template matching, 2) 

statistical pattern recognition, 3) syntactic or structural matching, and 4) neural 

networks. 

 

1) Template matching 

 

Template matching is the technique to recognise an unknown object by comparing 

it with predefined templates. The most similar template is assigned to be the class 

of the test object. 

 

2) Statistical approach 

 

In a statistical pattern recognition method, object patterns are measured as 

numerical values. Then the classifier learns from example pattern values and 

defines class boundaries by a statistical method. After assigned class decision 

edges, the test object can be predicted to an appropriate class. 

 

3) Syntactic approach 

 

Unlike a statistical approach, a syntactic or structural method uses pattern 

structural information for classification and description. Each pattern is 

represented in a structural string of a formal language. To classify a test object, 

the structural similarity of the pattern is measured and the nearest structure is 

assigned as the class of the test object. 
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4) Neural networks 

 

Neural networks can be viewed as massively parallel computing systems 

consisting of an extremely large number of processors with many connections. 

Neural network models typically consist of nodes simulating a human nerve 

system connecting with weighted direct edges. With the model, neural networks 

can learn in the training process, adapt to data and deal with complex nonlinear 

problems (Jain et al., 2000).  

 

This research aims to recognise car makes and models as object recognition in 

images by using a feature-based method. In addition, the research requires high 

prediction accuracy of CMMs. Statistical pattern recognition seems to be 

appropriate and therefore this research applies a statistical pattern recognition 

method.  

 

In a statistical technique, each pattern is measured in a set of scalar values which 

are the characteristic properties of the object. These values can be called features 

which are plotted as points in a feature space. In the training process, the objective 

of classification is to establish decision boundaries in the feature space which 

separate features belonging to difference classes. In the statistical decision 

theoretic approach, the decision boundaries are determined by the probability 

distributions of the features belonging to each class (Jain et al., 2000). The 

statistical pattern recognition system is operated in two modes: training (learning) 

and classification (testing). A typical statistical pattern recognition system, shown 

in figure 2.1, contains pre-processing, feature extraction or selection, and 

classification. 

 

1) Pre-processing is used to manipulate input data in order to adjust, improve 

and prepare the data before sending it to the next process. Acquired data or 

patterns can be affected by the surrounding environment, such as a complex 

background and noise. The pre-processing methods, amplifying patterns of 
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interest, removing noise, normalizing the pattern and data transformation, are 

implemented.  

 

  

 

 

 

 

 

Figure 2.1: Statistical pattern recognition system (Dougherty, 2013). 

2) The feature extraction stage aims to obtain sufficient data (patterns, features) 

that can distinguish an object from other classes. In addition, relevant feature 

selection may be implemented in order to increase classification accuracy and 

reduce computation times. 

 

3) Classification is the process to assign an unknown object to a certain class 

based on the feature information. In the training process, a classifier learns or 

trains from obtained features and then decision boundaries are determined for 

each class. In the classification process, the classifier predicts the test object by 

comparing it to the trained model and then assigns a class to the test object. 

 

2.2 Supervised and unsupervised methods 

 

The recognition technique can be divided into two types: supervised classification 

and unsupervised classification. A supervised method is a classification technique 

making decisions from training examples. In a supervised learning training 

process, a classifier is trained by using pattern values of examples associated with 

class labels. A classifier learns parameters from a training set and then defines 

decision boundaries of the classes. Last the in classification process, the unknown 
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object with its features is assigned to the most similar class based on the classifier 

technique used. Unlike a supervised classification method, an unsupervised 

classification technique does not require training data and predefined classes. 

Many applications find it difficult, expensive or impossible to label a training 

sample with its true category (Dougherty, 2013). Instead, this method classifies an 

object to an appropriate group based on the similarities among their patterns. In 

this research, a supervised classification method is used due to the aim of the 

study to recognise each CMM, not grouping car models. 

 

 

 

 

 

 

 

 

Figure 2.2: One class classification diagram. 

 

2.3 Multi-class and one-class classification  

 

Multi-class classification is the technique to classify a test object to a class of 

more than two classes, for example character recognition, bioinformatics 

recognition and object recognition. In this method, the classifier learns with 

enough available dataset for all classes and then defines decision boundaries of 

each class. Unlike a multi-class classification problem, a one-class classification 

problem is a special case of the binary classification method where only data from 

one class is of interest or available (Khan and Madden, 2014). This class is called 

the target class, shown in figure 2.2. The other class, which is called the outlier 
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Feature 1 

Target class 
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class, can be sampled very sparsely, or can be totally absent. It might be the 

outlier class is very hard to measure. The technique of one-class classification is 

to define a decision boundary around the positive (target) class. The boundary 

minimizes the error of misclassification as much as possible (Khan and Madden, 

2014). 

 

2.4 Feature selection 

 

Feature selection is the process to select only potential or relevant features as the 

feature subset in order to increase the classification rate and reduce the process’s 

computation times. Figure 2.3 shows a feature selection scheme. Basically, this 

process is done in an off-line operation and the optimum feature subset is used 

when implemented in real applications. Most feature selection methods use 

classification error of a feature subset to evaluate its effectiveness (Jain et al., 

2000). A feature subset with the smallest prediction error is selected for use in the 

system. In the study by Chadrashekar et al. (2014), feature selection methods are 

analysed and can be divided into three categories: filter, wrapper and embedded 

methods. 

 

 

Figure 2.3: Feature selection scheme. 

 

First, a filter technique selects relevant features by ranking score. A ranking 

function is applied to all features in order to give ranking score values. Then, the 

scores are used to filter out less relevant (lower scored) features. There are a 

number of ranking methods, such as Chi square (Liu and Setiono, 1995), 
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Information gain, Relief algorithm (Kira and Rendell, 1992) and Soap algorithm 

(Ruiz et al., 2003). The advantages of a filter technique are less computation time 

and avoiding the over-fitting problem. The problems of this method are that a 

redundant subset might be obtained and the feature subset may not enable global 

optimization.  

 

Second, unlike a filter method, a wrapper method attempts to find the best feature 

subset by a search algorithm. There are many different search algorithms, 

including sequence feature selection, heuristic search algorithm and exhaustive 

search algorithm, used to find the best feature subset. Firstly, the sequence feature 

searches – sequential forward selection, sequential backward selection, sequential 

floating forward selection, sequential floating backward selection – will either 

grow or shrink features to define several feature subsets. Then, a classification 

error criteria function is evaluated to search for the optimum feature subset. 

Secondly, a heuristic algorithm, such as a genetic algorithm (GA) or particle 

swarm optimisation is the technique to find the optimum feature subset by applied 

population search. This method defines a termination condition to stop the 

iteration of operations that can reduce the computation time of evaluating all 

possible feature subsets. After termination, the result might be a near optimum or 

the optimum result. Lastly, an exhaustive search method is the technique that 

guarantees obtaining the optimum subset. However, this method is reported with 

very large computational times.  

 

Last, an ensemble method combines feature ranking and classifier in order to 

reduce computation time of the wrapper method. For example, Setiono and Liu 

(1997) presented a combination of feature weighting and neural network which 

reported high prediction accuracy and reduced a large number of features. In 

addition, an ensemble of a ranking method and support vector machine (SVM), 

called SVM-recursive feature elimination, is used to select optimum features of 

gene classification (Mundra and Rajapakse, 2010). 
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2.5 Classifiers 

 

A classifier is an important method in a classification process. In the training 

process, a classifier technique learns from a dataset (training data) associated with 

class labels in order to create trained models. In the classification process, the 

classifier assigns test data against the trained data to a predesigned class. A variety 

of classifier techniques has been presented in many classification problems, such 

as Logical based techniques (decision tree, rule based), Perceptron-based 

techniques (neural networks, radial basis function), statistical based techniques 

(Naïve Bayes classifier, Bayesian networks), instance based techniques (k-nearest 

neighbours) and support vector machine (Kotsiantis, 2007).  

 

Figure 2.4: Support vector machine. 

 

1) Support vector machine  

 

Support vector machine (SVM) is a classifier based on creating decision 

boundaries (hyper-plane, linear cutting edge) in vector space in order to classify 

data into two classes, proposed by Vapnik (1995). Then, the method creates a 

margin (edge) both sides of the hyper-plane and maximizes the distance between 

the margins to reduce the upper bound on the expected generalization error 

(Kotsiantis, 2007). The closet vectors of each class are called support vectors. 
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Figure 2.4 shows an SVM image and its support vectors. The unclassified data is 

assigned to a predefined class by measuring with the support vectors. However, in 

many real-world problems, a linear hyper-plane cannot clearly separate data due 

to data containing misclassified instances. The solution to this problem is to map 

data into a high dimensional space by applying a kernel function. Some basic 

kernel functions are the following:  

 

1) Polynomial: K(x,y) = (x.y+1)P 

2) Radial basis function: K(x,y) = exp(-γ||x-y||2), γ=1/2σ2 

3) Sigmoid: K(x,y) = tanh (kx.y-δ)P 

 

It has been proven that the classification accuracy of SVM will improve when 

optimized parameters are used. Therefore, to increase the performance of an SVM 

classifier, it will need to train the SVM by optimized parameters. The advantage 

of this method is providing high prediction accuracy. However, the technique’s 

computation time will be very large for tuning optimum parameters.  

 

 

Figure 2.5: Decision tree for the concept ‘going out for tennis’. 

 

2) Decision tree 

 

A decision tree (DT) classifier is the logical based technique classifier. A decision 

tree consists of a root node, internal nodes and leaves. The most discriminant 
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feature is considered as the root node. Each internal node represents an attribute or 

feature of the training set and leaves are shown as a class label. Many techniques 

have been used to measure the best feature, such as entropy, information gain, 

Gini impurity and ReliefF algorithm. Decision tree learning is a method to learn 

from a training set and choose the best parameter or value to separate classes in 

every node (features). There are many learning methods, for example, ID3, C4.5, 

CART and CHAID. Figure 2.5 is an example of a decision tree. A decision tree 

structure might be complex or not generalize from training data, known as over-

fitting. Pruning is a technique used to avoid over-fitting. Decision tree over-fitting 

may lead to prediction error. The advantages of decision trees are that they are 

able to handle both numerical and nominal features and have an easy to 

understand structure. The problems of decision trees are that they are unsuitable to 

predict a continuous feature and expensive and time consuming to build in 

complex classification.  

 

 

Figure 2.6: K-nearest neighbours. 

 

3) Nearest neighbour 

 

The k-nearest neighbours (kNNs) method is the most simple classification 

algorithm. The k-NN algorithm is the instance–based technique classifying an 
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unknown object to a class of closest neighbours, shown in figure 2.6. In a one-

nearest neighbour (1-NN) classifier, a class where feature vectors are nearest to 

the test instance is determined. In a system with k more than 1, the classes of the 

closest k are extracted. Then, the majority vote of those extracted classes is 

applied to verify the final class (answer). The disadvantage of this method is that 

it requires high computation time in the classification process and is sensitive to 

irrelevant features. 

 

4) Naïve Bayes 

  

A naïve Bayes classifier is a statistical learning approach by applying Bayes’s 

rule. The classifier technique first calculates a prior probability of each class from 

their features, given in equation 2.1 where C is a class, P(C) is a probability of 

class C and f1, f2, f3, ..fn are features.  

 

( | , , , . . ) =
( )· ( , , ,.. | )

( , , ,.. )
 (2.1) 

 

Then to classify unknown data, a likelihood method is employed and the 

maximum of a posterior probability class is assigned to be a class of unknown 

data. Naïve Bayes prediction can be calculated as defined in equation 2.2 where k 

is the number of classes and n is the number of likelihood.  

 

= max
 ∈{ ,.. }

( ) ∏ ( | ) (2.2) 

 

5) Artificial Neural Networks 

 

An artificial neural network (ANN) classifier is inspired by the human brain 

system. Each node of an ANN simulates a neuron in the brain system. The 

neurons connect to other neurons with a numerical weight. An ANN learns or 

trains from the weights of node connections by a learning method. Back 

propagation is a typical learning algorithm applying to an ANN. The back 
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propagation technique computes input data, weights and error in the designed 

ANN. Then, back propagation learns and adjusts weights in order to minimize 

error. Figure 2.7 illustrates an example of a two-layer ANN. 

 

Input

Output

Input layer Hidden layer Output layer

X1

X2

X3

X4

 

Figure 2.7: A simple two-layer ANN. 

 

2.6 Ensemble of classifiers 

 

A classifier performs the best learning in some local area of a feature space. They 

may classify the same test data with different results depending on their technique 

and decision making. An ensemble of classifiers is implemented to deal with 

several data distributions (high variance) in order to improve classification 

accuracy. Figure 2.8 displays an overview of a classifier ensemble system. An 

ensemble technique typically consists of training data and a classifier. The 

classifier learns from the training set and then defines a decision edge which 

minimizes prediction error for unknown data. There are a number of ensemble 

learning methods, such as Bagging, Boosting, Adaboost, Stack generalization and 

Mixture of experts. In the Bagging technique, a classifier learns from a random 

training subset, generating several trained models for each random dataset. After 

that, all models are aggregated by a voting method with equal weight to decide the 

final prediction. The aim of this method is to reduce the variance of data by 



 

22 
 

randomly using a training subset with a number of ensembles. A Boosting method 

is an iterative learning technique in order to improve classification performance in 

repetitive processes. The technique learns from misclassified data in the previous 

step. It has been proven that the boosting technique improves the classification 

performance and outperforms Bagging performance, but it may lead to over-

fitting. In addition, an improved version of the boosting technique is Adaboost 

(adaptive boosting). In a stack generalization ensemble, the technique uses two 

level of a hierarchy scheme to reduce variance of data.  

 

 

Figure 2.8: Combining an ensemble of classifiers (Polikar, 2006). 
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In the first level, several classifiers train with the dataset and then they are 

combined with a combiner to make the final prediction. Cross-validation is a 

typical method used to evaluate the prediction performance. Misclassified data 

from the first level is verified again in the second level. Last, the mixture of 

experts is the combination of variety of classifiers to make prediction together. An 

ensemble combination is the method to combine results of each ensemble to make 

the final prediction. There are a number of combination techniques, such as 

voting, weighted voting, Borda count, averaging, minimum and maximum.  

 

2.7 Class imbalance problem 

 

Class imbalance is a common problem in many real-world classification works. 

The problem arises when one class’s examples, positive class or minority class, 

are less than another class, known as the negative or majority class. Class 

imbalance makes it difficult for to classifiers to learn on the given dataset 

(Japkowicz and Stephen, 2002). For example, having a dataset with ratio 1:100, a 

classifier will maximize classification accuracy. Then, the accuracy will be 

obtained 99% except by the minority 1% class. Several techniques have been 

presented to solve the problem of class imbalance including data sampling, 

algorithm approaches and cost sensitivity (Galar et al., 2012). First, the data 

sampling method aims to balance the class distribution at the data level by 

applying either random under-sampling of the majority class or over-sampling 

examples of the minority class method. Second, algorithm approaches modify the 

existing classifier and techniques to classify the imbalanced dataset. Last, cost-

sensitive methods try different misclassification cost to minimize error of both 

classes. 

 

2.8 Classification performance evaluation 

 

Classification performance can be measured in two ways, classification accuracy 

and speed time of training and testing. This section gives detailed classification 

performance evaluation. Generally, classification error is used to measure 
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classification performance. Cross-validation is a general method for evaluating a 

classifier, in which the method separates the dataset into two subsets, the training 

set and the test set, while the available dataset or instances are limited. A classifier 

is learnt from the training data and then the classification performance is obtained 

on the test data results. Cross-validation is divided into three categories, hold out, 

k-folds and leave one out methods. 

 

 

Figure 2.9: Hold out method. 

 

1) Hold out method 

 

Hold out is the simplest method of cross-validation, which divides the dataset into 

training and testing data, shown in figure 2.9. The proportion of training data can 

be either one-half or one-third. A classifier learns parameters from the training set. 

The classification error is measured with the test set. The disadvantage of this 

method is that both training and testing data are not independent; thus that its 

evaluation will have a high bias. 

 

 

Figure 2.10: K-fold cross validation method, with k=4. 
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2) K-fold cross validation 

 

In this method, the dataset is separated into k equal-sized subsets and then the 

experiment is performed k times, shown in figure 2.10. The k-1 subsamples are 

provided for training data and the rest is used for testing. The error rate can be 

obtained by averaging over all experiments. The method can reduce the bias of the 

hold out method and the variance of the resulting estimate is reduced as the subset 

is increased. The disadvantage of this method is that it is time consuming, 

depending on the value of k. A common choice for k-fold cross validation is k = 10. 

 

3) Leave one out 

 

Leave one out is a special case of k-fold cross-validation where k is equal to the 

size of samples. This method uses one sample to test in each experiment and 

trains with the remaining data. This approach is popular for a problem with small 

dataset. The problem with this method is that computational time will be very 

large. Figure 2.11 shows an example of the leave one out method. 

 

 

Figure 2.11: Leave one out cross validation. 
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There are other measures that can be used to evaluate the performance of a 

classification system, for example, confusion matrix, precision and recall, and 

receiver operating characteristic (Bradley, 1997).  

 

Computer vision is another field related to this study. The research applies many 

computer vision methods, such as image processing techniques, region of interest 

detection, and region representation and description in order to extract features of 

interest for the recognition process. 

 

2.9 Image processing 

 

This section provides basic knowledge of images such as image element, image 

representation, colour image model and image histogram.  

 

  
(a) (b) 

Figure 2.12: Image representation. (a) Image element. (b) Matrix representing 

image.  

 

2.9.1 Image representation 

 

An image can be represented by an N × M matrix. Each element of the matrix can 

be called pixel p(i,j) which is mapped to an element of image (x,y). The pixels 

contain a numerical value, for example, 0 or 1 in a binary image. However, the 

origin in an image and the associated matrix are different. The origin coordinate 

of an image is located at the lower left corner, whereas the origin point of the 
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matrix is located at the top left corner of matrix. Figure 2.12 shows the 

relationship between image element and pixel matrix. 

 

As stated earlier, an image element can be identified by pixel coordinates. Figure 

2.13 shows pixel indexing associated with an image element.  

 

 

p(0,0) p(0,1) p(0,2) p(0,3) .. p(0,m) 

p(1,0) p(1,1) p(1,2) p(1,3)   

p(2,0) p(2,1) p(2,2) p(2,3)   

p(3,0) p(3,1) p(3,2) p(3,3)   

..      

p(n,0)     p(n,m) 
 

 
Figure 2.13: Example of pixel indexing.  

 

Each pixel at location p(i,j) has a numerical value corresponding to a brightness or 

intensity value. The intensity value is an integer in the interval [0, L-1] where L is 

2m. The common values of m are 1 and 8, where 1 provides a binary image and 8 

provides 256 grey levels. Figures 2.14 and 2.15 illustrate binary and grey scale 

images, respectively, and some region values. 

 

 

Figure 2.14: Binary image and intensity values. 
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Figure 2.15: Grey scale image and intensity values. 

 

2.9.2 Histogram 

 

A histogram is simple, useful information about an image characteristic. The 

histogram technique counts the number of pixels at particular grey levels. Figure 

2.16(b) shows a histogram graph of the image in 2.16(a). This attribute can be 

used in many applications such as contrast improvement, object and background 

segmentation.  

 

 
 

Figure 2.16: Histogram. (a) Grey scale image. (b) Histogram. 

 

2.9.3 Colour image 

 

A colour image is often represented by three or four colour values associated with 

a pixel. In three-colour channel system, a colour in each pixel is combined by 

three component colours. There are many three-colour systems used in computer 

vision systems, such as RGB, YCbCr, L*a*b* and HSV. A four-colour system, 

for example, CMYK, presents a colour image by combining four colours; cyan, 
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magenta, yellow and black, which is commonly used in the printing industry. 

Figure 2.17 illustrates RGB and CMYK colour models. 

 

  

(a) (b) 

Figure 2.17: Colour models. (a) RGB model. (b) CMYK model. 

 

RGB colour space is the most commonly used in many applications. The system 

represents a colour with three components: red, green and blue. If each component 

uses 8 bits which have integer values from 0 to 255, this makes a total of 

16,777,216 possible colours. Figure 2.18 shows an example of an RBG image and 

each colour value. However, a grey scale image is usually the preferred format for 

image processing. In cases requiring a grey image, an RGB colour image can be 

converted to a grey image.  

 

 

Figure 2.18: RGB colour image and intensity values. 
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2.9.4 Image geometric transformation 

 

A video camera can be set up in various unfixed views, for example, on left or right 

sides of roads and on buildings to capture images. Furthermore, several camera 

distances can be installed and the camera can be zoomed in or out to obtain images. 

Geometric transforms might be used in real-world applications, which depend on 

environmental conditions to adjust image properties suitable for predefined 

parameters.  

 

A geometric transform basically consists of two steps: point transformation and 

interpolation process. Point transformation is the process to map coordinates of an 

input image to an output image. Interpolation aims to estimate within original 

points to a new location. Interpolation methods can be divided into three 

categories: nearest neighbourhood, linear and bi-cubic interpolation. The most 

typically used coordinate transformation is the affine transform (Wolberg, 1998), 

which has the general form as: 

 

[ ′ ′ 1] = [   1] = [   1]
0
0
1

 (2.3) 

The affine transforms, rotate, resize, translate and shear, can be expressed as the 

following five equations:  

 

 Rotation by angle Ɵ 

= Ɵ + Ɵ 

= − sin Ɵ + cos Ɵ (2.4) 

 Resizing  

=  

=  (2.5) 
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 Translation 

= +   

= +   (2.6) 

 Shear (vertical) 

= +   

=   (2.7) 

 Shear (horizontal)  

=   

= +   (2.8) 

 

As mentioned earlier, images can be taken in several views and distances. Then, 

some transformations are used in the research. 

 

2.9.5 Contrast enhancement 

 

The objective of this research is implementation in low-light conditions at night, 

where textures, edges or other appearances of captured images cannot be clearly 

achieved. Image contrast improvement is an important process in this research to 

enhance contrast in an image. There are two main techniques to improve contrast 

in an image: 1) intensity transform, and 2) histogram processing. An intensity 

transform is the simplest method to modify image contrast, such as image 

negatives, log transformations, or gamma transformations. The intensity transform 

technique takes a pixel value of an image and transforms it to a new intensity 

value by applying a transform function of the form s = T(r), where T is a 

transformation that converts pixel value r into s intensity. In histogram 

processing, the method manipulates histogram values in an image in order to 

improve visual appearances of the image. The traditional histogram processing for 

contrast enhancement is histogram equalization (HE) which increasingly contrasts 

on whole image (global enhancement) appearances, shown in figure 2.19. The HE 
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technique begins by calculating the histogram of an image and then computes the 

probability distribution on each histogram level. Next, all histogram levels are 

computed a cumulative distribution value. Lastly, pixel values in the original 

image are mapped to the new value by applying a predefined cumulative 

distribution function. In addition, HE is applied on separated regions of an image 

in order to improve local region contrast, called adaptive histogram equalization 

(Zuiderveld, 1994). 

 

  

 

Figure 2.19: Histogram equalization. (a) Original image. (b) Equalized image. 

 

Furthermore, there are many modified histogram equalization techniques which 

not only enhances contrast of an image but also preserves brightness in some 

areas of the original image. The brightness preserving method was first presented 

by Kim (1997), called Bi-Histogram Equalization (BHE). The BHE technique 

separates histogram levels into two groups by a mean value. Then, HE is applied 

separately on the groups. Similar to BHE, Dual Sub-Image Histogram 

Equalization (DSIHE) uses median value to divide histogram levels into two sub-

histograms (Wan et al., 1999). The recursive methods, Recursive Mean Separate 

Histogram Equalization (Chen and Ramli, 2003) and Recursive Sub-image 

Histogram Equalization (Sim et al., 2007), have been proposed to generalize BHE 

and DSIHE, respectively. The method generalizes the image histogram by 

recursively implementing HE on all sub-histograms (more than two). Last, the 

Recursively Separated Weighting Histogram Equalization (Kim and Chung, 2008) 

has been presented by applying a weighting function on each sub-histogram 
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separately. The technique consists of three modules: histogram segmentation, 

histogram weighting and histogram equalization. The method has been claimed to 

preserve brightness and improve contrast of images better than previous 

techniques.   

 

2.9.6 Morphological operations 

 

Morphological operations are the methods to alter region boundaries, used for 

many purposes for instant object structure enhancement (thickening, thinning), 

region of interest extraction and noise suppression. In this study, many 

morphological operations are used to process subject images in order to extract 

regions of interest such as licence plate and taillight positions. In addition, the 

methods can be used to remove unwanted regions (noise and reflections) which 

occur in images captured at night. The primary morphological operations are 

dilation and erosion, which are commonly applied to binary images.  

 

Basically, morphological operations take two pieces of data as input. First is the 

image which is to be operated on. The second is a structuring element. Then the 

structuring element is applied (addition or subtraction) to the first image, called a 

morphological operation. 

 

Dilation is the method to expand the boundaries of regions (white pixels) by an 

addition operation of image and structure element. Equation 2.7 shows dilation of 

image I with structure element S. Figure 2.20 shows an example of A images 

dilated by the structuring element B.  

 

=  ⊕   (2.9) 
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Figure 2.20: Image dilation (Gonzalez and Woods, 2007). 

 

Unlike the dilation method, erosion is the method to gradually reduce the shape of 

regions. The erosion operator takes two pieces of data as inputs. The first is the 

image which is to be eroded. The second is a set of coordinate points known as a 

structuring element. It is this structuring element that determines the precise effect 

of the erosion on the input image. Figure 2.21 shows an example of A images 

eroded by the structuring element B. The erosion of an image I by structuring 

element S is defined as:  

 

= ⊖  (2.10) 



 

35 
 

 

Figure 2.21: Image erosion (Gonzalez and Woods, 2007). 

 

Furthermore, more complex operations are opening and closing operations. A 

opening technique is the dilation of the erosion image. In contrast, a closing 

operation is the erosion of the dilation image. 

 

2.10 Feature detection 

 

In this section, feature detection techniques are explored, including edge detection 

methods and corner detection techniques. 

 

2.10.1 Edge detection 

 

Edges are the primary data of an image which can be utilized in image processing, 

computer vision and image understanding fields. Important features can be gained 

from edges such as corners, curves and object shape. In addition, objects or 

regions of interest and feature extraction can be obtained after edge detection. 
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This research uses edge information in order to detect objects of interest, such as 

car, licence plate and taillight positions and feature extraction.  

 

Edges are the significant local changes in image intensity and commonly occur on 

the boundary of two different regions (Gonzalez and Woods, 2007). There are 

four fundamental steps of edge detection: 1) edge smoothing, 2) enhancement, 3) 

detection, and 4) localization. There are many edge detectors and most of them are 

based on first and second derivatives of the image to find sharp changes of local 

intensity. There are Roberts, Prewitt, Sobel and Canny edge detectors which is the 

most popular edge detector. Figure 2.22 shows an example of Sobel vertical edge 

detection applied to a car image.  

 

  

(a) (b) 

Figure 2.22: Edge detection. (a) Original image. (b) Edge extraction image 

 

2.10.2 Corner detection 

 

Similar to edge information, corners are other appearances used in computer 

vision that might be implemented in many applications, such as object 

recognition, image recognition, object tracking and 3D object reconstruction. A 

corner can be defined as the intersection of two edges or the significant change in 

terms of intensity in local neighbours. A variety of corner detectors have been 

presented in previous decades. The first work was proposed by Moravec (1977). 

The sum of squared differences (SSD) technique is used to measure the local 

intensity change of each pixel. Then, real corner points are verified by comparing 

with a predefined threshold. Similar to Moravec’s work, Harris and Stephen 
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(1988) proposed a SSD operation on any directions of a pixel, called a Harris 

corner detector. A Harris corner detector technique is based on the first derivative 

to measure the local autocorrelation. The method has reported high performance 

to detect “L” corners and is invariant to image translation and rotation. Another 

corner detector, Small Univalve Segment Assimilating Nucleus (SUSAN), was 

presented by Smith and Brady (1995). The SUSAN technique defines a circle 

mask (nucleus) and then places an image’s pixels in order to verify a corner pixel. 

At a corner, the SUSAN area is less than half of a circle mask. SUSAN can be 

used to both detect edges and corners and was reported insensitive to noise. 

 

2.10.3 Feature description 

 

Feature description is the method to represent and describe feature characteristics 

in an image. A region or object is represented by a variety of techniques, such as 

shape and contour (boundary) description. In addition, texture descriptor 

techniques, SIFT, SURF and HOG, are also reviewed. 

 

Shape representation and description are the processes to describe characteristics 

of an object or region shape. The descriptions are measured to features and then 

can be used in object recognition systems and image retrieval applications. 

Several shape representation and description methods have been presented in the 

past decade. Zhang and Lu (2004) provided a review of shape representation and 

description techniques. The techniques can be divided into two main types: 

contour-based and region-based, shown in figure 2.23. First, the contour-based 

method aims to represent an object or region of interest by describing its object 

boundaries. There are many object contour representation methods, such as chain 

code, polygon, perimeter, wavelet description and contourlet description. Second, 

a region-based method is the common description of a region such as area, 

eccentricity, rectangularity and compactness. In the present study, some methods, 

region area, region aspect ratio and grid description, are used to measure license 

plate and taillight size, shape and distance in order to obtain features of car make 

and models.  
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Figure 2.23: Classification of shape representation and description techniques 

(Zhang and Lu, 2004). 

 

A region area is a basic property of a region which is obtained by counting the 

number of pixels in a region. However, the property is sensitive to the distance of 

the image capture. 

 

Region aspect ratio is a proportion of region width and height. This value is used 

to solve the problem of various image-capture distances. Furthermore, aspect ratio 

can be used to normalize other features. 

 

Grid description is a method to present the region shape, first proposed by Lu and 

Sajjanhar (1997) in the area of content-based image retrieval. Basically, in a grid 

technique, a given shape is overlaid by a grid which consists of fixed size square 

cells. The grid space should completely cover the shape, as shown in figure 3.13. 

The grid is then scanned from left to right and top to bottom. The grid cells are 

assigned the value 1 where the cells are covered by shape and assigned the value 0 

for the other cells. For example, the shape in figure 2.24 is represented by the 

binary sequence 11100000 11111000 01111110 01111111.   
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Figure 2.24: Grid method description for region shape (Lu et al., 1997). 

 

2.10.4 Texture description 

 

Texture information is a popular image appearance that is used in image retrieval, 

understanding, recognition and classification. Image or object patterns may be 

obtained by applied texture detection. Many texture extraction algorithms are 

presented by several published works. The reputation method is scale invariant 

feature transform (SIFT), presented by Lowe (2004). The technique was reported 

invariant to translation, rotation, scale and other imaging parameters. Another 

texture descriptor, histogram of gradient (HOG), was proposed by Dalal et al. 

(2005). The technique was first used to detect pedestrians, and then to detect 

humans and moving objects, such as animals and vehicles. Some years later, other 

authors proposed the speed up robust feature (SURF) detector (Bay et al., 2008) 

which is faster than SIFT and has an acceptable accuracy rate.  
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CHAPTER 3 

CAR MAKE AND MODLE 

RECOGNITION TECHNIQUES 

 
This chapter gives details of previous CMMR works, techniques and systems. 

CMMR has been studied over several years with a variety of conditions and 

parameters. Much research show that it can work well in specific conditions. In 

addition, the chapter also provides an overview of vehicle recognition systems 

including the traditional system (automatic number plate recognition) and vehicle 

class recognition. Furthermore, licence plate and taillight detection techniques, 

which are the important sub-process of this research, are also reviewed. 

 

3.1 Vehicle recognition 

 

Vehicle recognition (VR) is used as an important process for many intelligent 

transport systems (ITS), such as traffic law enforcement systems, traffic 

monitoring systems, traffic management systems, access control systems and toll 

systems. VR systems can be divided to three recognition system types: 1) 

automatic number plate recognition, 2) vehicle class recognition, and 3) car make 

and model recognition. First, a VR process is implemented in a car identification 

system by using optical character recognition (OCR) to recognise the characters 

within the licence plate, which can be called automatic number plate recognition 

(ANPR) or licence plate recognition (LPR).  

 

A recent review of ANPR works and techniques can be seen in the work of Du et 

al. (2013). The applications of ANPR are widely deployed in a number of 

systems: parking lot systems, access control systems and law enforcement 
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systems. Figure 3.1 shows an application of an ANPR method for a parking lot 

system.  

 

 

Figure 3.1: LPR application in parking lot system (Moviva, 2013). 

 

Second, vehicle class recognition (VCR) is a method used to classify vehicle 

types, such as van, car, bus, motorcycle and truck, by applying computer vision 

techniques, such as feature-based, model-based and measurement-based (Chen et 

al., 2009). Vehicle classification systems are essential for effective transport 

systems, for example, traffic management and toll systems, and parking lot 

systems. Figure 3.2 shows a VCR application. 

 

 

Figure 3.2: VCR application (Procomwave, 2013). 
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Final, a CMMR system is an essential addition method to significantly improve 

the accuracy and reliability of car identification systems. More information can be 

drawn from a CMMR system in terms of manufacturers, models, colours, brand 

logos, etc. to help specify a car. This leads to more confidence and accurate 

results, rather than using only on a LPR identification. CMMR is useful in many 

applications of intelligent transport systems, such as traffic surveillance systems, 

traffic monitoring systems and traffic law enforcement systems. Figure 3.3 

illustrates a CMMR implementation. 

 

 

Figure 3.3: CMMR application (Procomwave, 2013). 

 

3.2 CMMR techniques 

 

CMMR techniques have been widely studied for intelligent transport systems 

during the past decade. Generally, a CMMR system consists of three steps: image 

pre-processing, feature extraction and classification process, illustrated in figure 3.4.  

 

 

Figure 3.4: General CMMR system. 

 

First, image pre-processing aims to modify, improve or adjust image 

characteristics before extracting features. Various methods are used in the process, 

for example, contrast improvement, image resizing, image rotating, image 
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transform, background subtraction, region of interest (ROI) extraction and key 

point detection. Second, feature extraction is staged to obtain values, parameters 

or patterns of CMMs which could be used to distinguish car classes. Car features 

obtained in both front and rear view are car body shape, headlight shape, taillight 

shape, colour, logo and other appearances. A variety of features has been 

implemented in CMMR works, for example, geographical feature, edge feature 

and texture feature. To obtain these features, feature detectors and simple 

computer vision techniques are applied, such as edge detectors, corner detectors, 

contour detectors and texture extractors. In addition, some works have presented 

combined features in order to gain good results, for instance, integrating wavelet 

and contourlet features (Arzani and Jamzad, 2010) and Pyramid Histogram of 

Gradient (PHOG) and Gabor features (Zhang, 2013). Lastly, classification is the 

process to predict a test object with models trained by classifier. This process 

contains training and testing steps. For the training step, a classifier is trained or 

learns from obtained features and then defines a decision boundary for those 

features in order to separate classes. In the testing step, the classifier predicts 

features of the test object with trained models and then shows a classified result. 

Many classifiers were used in previous CMMR methods, such as k-NN, decision 

tree, SVM, neural networks and Naïve Bayes. Furthermore, classification 

ensemble methods and frameworks are also presented in order to increase 

classification accuracy and robustness in specific environments. 

 

From the analysed CMMR works, feature-based methods are the majority of 

CMMR techniques. Several features are presented in order to distinguish CMMs 

as much as possible. Feature types can be roughly divided into four categories: 

geographical-based feature, edge-based feature, transform domain-based feature 

and texture feature.  

 

3.2.1 Geographical-based feature  

 

A geographical feature is a feature which is measured from the object of interest’s 

shape, size, distance and angle to numerical values. This feature has been 
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presented in several CMMR works. Daya et al. (2010) measured geographical 

features, width, height of ROI in car front view and distance between headlights 

and a licence plate. Figure 3.5 shows images of ROI and parameter measurement. 

Nine CMM classes were tested and they reported the prediction accuracy at about 

95%. 

 

  

Figure 3.5: ROI and geographical features measurement (Daya et al., 2010). 

 

The feature was also studied by Santos et al. (2009) to recognise CMM in the rear 

view. They combined geographical features of car body shape, taillight shape and 

colour feature. The similarities of each feature were calculated by designed 

formulas used to classify CMMs. The classification accuracy was reported at 

89%, and were experimented on 18 CMMs. Figure 3.6 illustrates an image of car 

shape extraction and feature measurement. 

 

  

Figure 3.6: Car shape image and its binary shape extraction (Santos et al., 2009). 
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In addition, Kafai and Bhanu (2012) proposed this feature type to predict vehicle 

classes such as sedan, pickup truck, SUV/minivan and unknown. The method 

started with detecting vehicle position. Then, they localised licence plate position 

in order to obtain its size and location, which were used to normalise image size 

and dimension. Next, taillights were segmented out and then features extracted 

such as taillight size, vehicle mask dimensions, distance and angle between 

licence plate and taillights. Sequential floating forward selection was used to 

choose the discriminant features of each vehicle class. In addition, feature 

selection not only improved classification accuracy but also decreased feature 

measurement cost. Last, they used dynamic Bayesian networks to predict vehicle 

classes and the experimental results reported the classification rate better than k-

NN, linear discriminant analysis and SVM. Figure 3.7 displays ROI localization. 

 

  

Figure 3.7: ROI extraction and its measurement (Kafai and Bhanu, 2012). 

 

3.2.2 Edge-based feature  

 

Edge-based feature is a simple characteristic that can be used to recognise objects. 

A variety of method, such as Sobel edge detector, Canny edge detector, 

Histogram of Gradients (HOG) and Square mapped gradients (SMG), are utilized 

to capture car edges, shape and appearances. Petrovic and Cootes (2004) proposed 

SMG to extract car shape and edge appearances. Experimentally, several features 

such as raw image, Sobel edge, edge orientation, direct normalised gradients, 

locally normalised gradients, SMG, Harris corner and spectrum phase have been 

implemented in order to compare classification performance. They applied 
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Euclidean distance to find the minimum distance to predict the test object against 

registered classes. On analysis of many features, the highest CMMR accuracy was 

93.3% by using SMG feature. They also presented the matching refinement 

technique to improve the recognition accuracy. The technique was utilised to 

translate, rotate and re-scale the ROI area. After refining the image, the 

classification accuracy improved from 93.3% to 94.4% (Petrovic and Cootes, 

2004). In addition, Pearce and Pears (2011) presented a CMMR technique based 

on Harris corner strength features. The technique first manually marked up three 

corners of the licence plate in order to obtain its size and position. Then, from the 

detected licence plate, it can be used to normalise an image by scaling, rotating 

and skewing. Next, a number of feature extraction methods such as Canny edges, 

Square mapped gradients (SMG), Harris corners, improved SMG and Locally 

normalised Harris strengths (LNHS) were applied to obtain features of ROI. Last, 

two classifiers, k-NN and Naïve Bayes, were implemented to classify make and 

model of a car in order to compare classification performance. The experimental 

results showed that Naïve Bayes outperforms k-NN on all features. In addition, 

both improved SMG and LNHS features with Naïve Bayes were shown to have 

the best classification accuracy with about 96%. Moreover, Chen et al. (2015) 

proposed HOG feature and a distance function to classify CMMs. The method 

first used symmetrical measurement of SURF points to localize vehicle position. 

Then, the obtained vehicle was divided into 3 × 6 grid blocks, and each grid block 

had a HOG detector applied to obtain HOG features. Last, the Hamming distance 

method was used to classify CMMs; the classification recognition accuracy was 

reported at 92%. Furthermore, the HOG feature was also used for recognition of 

CMMs in Lee et al.’s (2013) work. They also presented an algorithm to 

automatically rotate an image by employing a symmetric technique of key points. 

This study reported that it can improve the accuracy of a system when testing 

images are rotated by 0 to 15 degrees. 
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3.2.3 Transform domain-based feature  

 

A transform domain method is a technique to transform image appearance to high 

dimensions, which might easily extract salient features in order to increase 

classification performance. Kazami et al. (2007) presented a curvelet transform to 

extract CMM shape. They measured different scales of curvelet in order to obtain 

many feature vectors. The obtained features, they classified CMMs by using three 

classifiers; SVM (one versus one), k-NN and SVM (one versus all). Classification 

accuracy was reported at 99%, tested on five CMM classes. With the same 

algorithm and dataset, Rahati et al. (2008) proposed a contourlet feature replacing 

the curvelet. The prediction accuracy illustrated equivalence to the previous work. 

Furthermore, another transform domain method, a Haar-like feature combining 

Adaboost, was presented for CMMR by Sivaraman and Trivedi (2010). They also 

introduced an active-learning framework for recognition and tracking of vehicles. 

The method showed detection rate higher than passive-training vehicle 

recognition. 

 

3.2.4 Texture based feature  

 

Texture feature is another popular feature used in many recognition works and 

image retrieval researches. On analyse of CMMR works, the majority of texture 

extractors are SIFT and SURF. First, SIFT was introduced to classify CMM by 

Dlagnekov (2005). He experimentally compared the SIFT feature with Eigencar 

and shape context features. Classification accuracy of SIFT features was better 

than both features and was reported at about 89%. In addition, SIFT was also 

proposed to recognise car logos in Psyllos et al.’s (2011) study. The study 

presented a method to recognise vehicle manufacturer and model by using the 

combination of vehicle colour, shape and logo. The technique first used a sliding 

concentric window to detect licence plate position. Then, vehicle mask was 

extracted by referencing to licence plate position, size and dimensions. The 

recognition system was divided into three parts: colour, manufacturer and model 

recognition. Neural networks were applied in the recognition process and reported 



 

48 
 

85% prediction accuracy for manufacturer and 54% for model recognition. 

However, the approach depended on logo recognition. If the logo cannot be 

detected, it will decrease the whole CMMR performance.  

 

 

Figure 3.8: Framework of real-time CMMR approach (Baran et al., 2013). 

 

Another texture extractor, SURF, is reported faster than SIFT. The SURF feature 

is presented in Baran et al.’s (2013) work on CMM recognition in both non-real 

time and real time. For the real-time approach, they utilised a SURF descriptor to 

extract SURF features of CMM in the front view. Then, detected features were 

stored in an XML file and SVM was implemented to predict CMM in the real-

time condition. The accuracy rate of recognition was reported at 91.7 %. Figure 

3.8 shows the real time CMMR framework.  

 

For non-real time condition, they used the combination of edge histogram, SIFT, 

and SURF features in order to have as high classification accuracy as possible, 

called visual content classification. Next, all features were calculated into 

numerical values and then stored as binary vectors in an XML file. Last, to classify 

CMM, the shortest distance of trained CMMs and query image (test image) was 

measured to predict the CMM class. Figure 3.9 illustrates the CMMR framework for 

non-real time. They reported the accuracy rate of recognition at 97.2%. 
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Figure 3.9: Framework of non-real time CMMR approach (Baran et al., 2013). 

 

Furthermore, to improve classification accuracy, Zhang (2013) presented a 

reliable system for CMM classification that presented the cascade classifier 

ensembles with reject option. The system consists of two ensemble methods. The 

first is the ensemble of four classifiers, SVM, k-NN, Random Forest and multiple-

layer perceptrons accepting PHOG and Gabor features. The outputs of the first state 

are accepted class and rejected class. The first ensemble is given in figure 3.10. 
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Figure 3.10: Classifier ensemble framework stage 1 (Zhang, 2013). 

 

The rejected class from the first process is sent for verification again in the second 

ensemble. The second stage is implemented by rotation forest of multiple-layer 

perceptrons as components to predict the unclassified subject, shown in figure 

3.11. This method was reported with 98% accuracy rate among 21 models. 

 

 

Figure 3.11: Classifier ensemble framework stage 2 (Zhang, 2013). 

 

Another cooperation feature was implemented in Arzani and Jamzad’s work 

(2010). They combined wavelet and contourlet features for CMMR and reported 

the prediction accuracy tested on 14 CMMs at about 97%. 
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3.3 CMMR at night 

 

As mentioned in chapter 1, CMMR offers valuable enhancement to support 

additional information to car identification systems. Even though the recognition 

rates of existing methods are impressive with more than 90% accuracy, there are 

some serious drawbacks as most algorithms work well under good lighting 

conditions and without occlusions. As stated in Raty (2010), most CMMR 

systems have difficulties at night where many appearances are reduced to 

headlights, taillights and a few appearances. There are some vehicle recognition 

works at night, for example, vehicle detection, driver assistance system and 

vehicle type classification. First, Wang et al. (2005) proposed algorithms to detect 

street lane and vehicle to assist drivers at night. The method started by detecting 

lane boundaries by using salient features of lane markers. Then, they extracted 

taillight spots by adaptive taillight colour thresholds. Finally, they verified the pair 

of taillights in order to recognise the vehicle. Figure 3.12 shows an example of 

lane detection and vehicle recognition. Kim et al. (2010) presented a method to 

detect cars in front by using headlight (HL) and taillight (TL) detection. The 

method first detected light blobs in a captured image by employing multi-level 

histogram thresholds. Next, obtained blobs were grouped by a projection-based 

spatial clustering process. Then, distance and angle of light-blob pairs were 

estimated to numeric values, as features. Last, in the classification stage, SVM 

was applied to classify all blob pairs to vehicle HL and TL in order to find car in 

front positions.  
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(a) Lane detection (b) Vehicle recognition 

Figure 3.12: Lane detection and vehicle recognition (Wang et al., 2005). 

 

Second, Görmer et al. (2009) presented a technique to estimate time before car 

crash after recognizing in-front vehicles, as driver assistance systems. The 

technique can be called time to collision (TTC) and figure 3.13 shows the results 

of a TTC application.  

 

   

Figure 3.13: TTC application (Görmer et al., 2009). 

 

In addition, rear lamp detection and tracking employing a standard low-cost 

camera was proposed in O’Malley et al.’s (2010) work. This work optimized the 

camera configuration for taillight detection and used Kalman filtering to track the 

rear lamp pair.  

 

Last, vehicle recognition at night is used to classify vehicle type. Gritsch et al. 

(2009) proposed a vehicle classification system to count car-like and truck-like 

objects on highways at night by using smart eye traffic data sensor. The algorithm 

implemented histogram of y-direction of bright spots to detect HL positions. 

Generally, there are two distinct peak histograms presenting HLs. Then, the 
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distance parameter of HL was used to categorize either car or truck. The results 

showed that classification error rate at night were less than 6%. In work proposed 

by Robert (2009), the work aimed to detect, classify and track vehicle in a traffic 

surveillance system. The algorithm began to locate the vehicle by detecting the 

headlight pair. Then, headlight and windscreen features were measured and used 

to distinguish the vehicle class: car or heavy vehicle (bus, truck, coach). Figure 

4.14 illustrates an example of a vehicle classification application. 

 

 

Figure 3.14: Vehicle classification and tracking (Robert, 2009). 

 

3.4 Taillight detection 

 

The current research is dedicated to implementation in limited light or at night. As 

discussed in chapter 1, at night the straightforward appearances are TL, HL, 

licence plate and brake lights which can be utilized for CMMR. This section gives 

an overview, and knowledge and techniques of TL detection processes. Some of 

them are implemented in this research. 

 

TL detection approaches are presented in many systems in the last decade, such as 

vehicle detection systems, driver assistance systems (DAS) and vehicle 

classification systems. First, vehicle detection systems use different kinds of 

appearances to locate vehicles. Vehicle appearances, for example, colour, shape 

contour, edges, HL and TL have been proposed to localize vehicles on scenes. TL 

detection is the popular method used to detect vehicles at night, due to it showing 
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the most salient appearance. Vehicle detection can be implemented in many 

applications of systems, for instance, monitoring systems, traffic enforcement and 

management systems. Second, DAS detects HL or TL by front-mounted camera 

in order to locate the in-front vehicle position. While driving, in-front vehicle 

detection can help the driver to avoid any vehicle collisions. Last, another 

advantage of TL detection is to classify the vehicle class, such as sedan, van, bus 

and truck, by using distance between TLs. This method has been implemented in 

toll systems and traffic management systems.  

 

 

Figure 3.15: TL detection algorithm. 

 

Basically, a TL detection process is comprised of three processes: image pre-

processing, TL candidate extraction and TL verification, shown in figure 3.15. 

First, image pre-processing is the stage to modify image characteristics. Several 

techniques are applied in this stage, for example, image colour conversion, noise 

removal and background subtraction. Second, the objective of TL candidate 

extraction is to segment out potential regions which might include the real TLs. 

The majority of this technique is a colour-based method (O’Malley et al., 2008). 

Various colour spaces are used in this step, such as binary, grey levels, RGB and 

HSV. Last, the verification process aims to choose the real TLs. Salient 

appearances of TL are used to confirm TL locations, for example, symmetry of TL 

shape and size (O’Malley et al., 2008) and colour correlation (O’Malley et al., 2010). 
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Figure 3.16: TL detection. (a) Original image. (b) TL detection (Wang et al., 2005). 

 

The image pre-processing step aims to adjust image properties for a specific 

problem. Many techniques, for instance, image colour converting, image rotating 

and image resizing, are used to alter image properties.  

 

Next, TL candidate extraction is the process to extract potential regions from 

many light sources, such as streetlamps, oncoming HLs and reflections. There are 

a number of techniques used to extract TL candidates, such as TL shape and 

colour. Wang et al. (2005) proposed circular shape and aspect ratio to extract TL 

for a DAS system, shown in figure 3.16. They also combined lane and TL 

detection processes in order to localize vehicles. The correction of vehicle 

recognition was reported at about 91%. Another TL candidate extraction method 

is colour-based. A variety of colour spaces, such as grey, RGB and HSV with 

various parameters, were used to filter light spots within an image. 

 

First, grey scale colour was proposed to segment bright spots in the work of Chen 

(2009) and Zhou et al. (2013). However, this method demanded high 

computational time to localize TLs because sometimes there are many bright 

spots in a captured image from light sources on roads, for example, streetlamps, 

signal lights and reflections. 
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(a) (b) 

  

(c) (d) 

Figure 3.17: TL candidate extraction steps. 

 

Second, RGB colour space is the most commonly used in TL detection (O’Malley 

et al., 2008). However, with red, green and blue channels, it is difficult to define 

the threshold values for TL colours which display a white colour spot surrounded 

by red colour pixels. A more suitable, natural and practical approach for this 

problem is Hue-Saturation-Value (HSV) colour space (O’Malley et al., 2008, Li et 

al., 2012). Figure 3.17 shows examples of TL candidate extraction by applied 

HSV colour-based method. 

 

Last, TL verification is the process to justify the real TL. The TL verification 

techniques can be divided into two main methods: rule-based and learning-based. 

Although learning-based reports a higher detection rate than rule-based, the 

method requires a training dataset and training time (Ming and Jo, 2011). Another 

rule-based verification method uses TL physical characteristics to consider final 

TL position. The majority of rule-based methods are symmetry analysis. TLs are 
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basically placed as a pair and symmetrical with size, shape and position within a 

vehicle. In Wang et al.’s (2005) study, a vertical position and similar area of 

bright spots were applied as pairing verification. O’Malley et al. (2008) proposed 

the symmetry of bright spot alignment, area and aspect ratio. In addition, aspect 

ratio of bounding box is applied to discard candidate pairs which are too close 

(near blobs) and too far (other light sources) in rural areas or dark scenes. Another 

work of O’Malley et al. (2010) implemented colour cross-correlation to verify the 

TL pair. Symmetry cross-correlation of left and right vehicle parts was evaluated 

and implemented to localize rear lamps in Li and Yao’s (2012) study. In addition, 

perspective correction was proposed by O’Malley et al. (2011) to solve the 

symmetry problem of yaw angle of camera, blend road and land change.  

 

3.5 Licence plate detection 

 

Another appearance, licence plate, can be seen or detected at night. This section, 

therefore, is given to the studies of LP detection which is used in this study’s 

CMMR system. LP detection has been studied as a part of ANPR systems. It is 

also considered as a crucial process of ANPR systems. If the position of LP has 

not been localized, it can make a crucial impact on the whole ANPR recognition 

accuracy. Generally, an LP detection process consists of three processes: image 

pre-processing, LP candidate extraction and LP verification, shown in figure 3.18.  

 

 

Figure 3.18: LP detection framework. 

 

First, image pre-processing is the process to improve image quality or modify 

image properties before sending on to the next process. Several methods are used 

in this step, such as image resizing, rotating, transforming, contrast improving and 

gray scale converting that are applied to the image depending on the image’s 

problems.  
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Second, the aim of LP candidate extraction step is to detect the potential regions 

which might have the real LP. In fact, the salient appearances of a licence plate 

are colour and characters within the LP having similarity of size. Therefore, 

colour and edge-based methods are the popular methods to extract a candidate LP. 

In a colour-based method, LP colour thresholds that depend on the specific 

country are employed. Figure 3.19(b) shows a binary image filtered by green 

colour values from original image in figure 3.19(a). 

 

  
(a) (b) 

  
(c) (d) 

Figure 3.19: LP Candidate extraction. (a, b) Colour detection method (Deb et al., 

2009). (c, d) Edge detection method (Mendes et al., 2011).   

 

In edge-based detection, various edge detectors, for example, Canny, Sobel and 

Prewitt, are used to detect edges and then mathematics morphological operations 

are applied to connect edge pixels to create regions. Figure 3.19(d) shows a binary 

image after use vertical edge detection on the image in figure 3.19(c).  

 



 

59 
 

Lastly, many LP characteristics are presented to verify the real LP, as follows. 

 

1) LP’s rectangular shape is the salient appearance of LP and the characters 

can be used to localize LP position (Zhang et al., 2005). This technique is the 

simplest, and a fast and straightforward method, but a problem occurs when the 

technique is employed in complex scenes having many noise edges.  

 

2) LP’s colour is another dominant appearance of LP. Some countries have 

specific colours and there are common LP colours, such as yellow, white, black 

and blue. The advantages of this method are the ability to detect inclined and 

deformed LPs (Chang et al., 2004). Illumination conditions and having LP colour 

similar to the vehicle body’s colour are limitations of this method.  

 

3) Texture of LP is used to locate LP in Anagnostopoulos et al. (2006). This 

method is reported robust, detecting LP even though the LP boundary is 

deformed. However, the method has issues when many edges are shown in the 

object image, which consumes much computation time. 

 

4) LP dimension, width and height, can be utilized to find LP position (Wu et 

al., 2006). The method is reported straightforward and independent of LP 

position. The problem of this method is the object image having many regions 

which have similar LP dimensions. 

 

5) Combining features technique uses two or more features to localize LP 

position. The method is reported high localization accuracy but time consumed is 

the limit of this method (Xu et al., 2004). 

 

6) The alphanumeric characteristics within an LP are the appearances having 

high similarity of size and shape. These features can be used to detect the LP and 

are reported robust to rotation, as proposed in Matas et al. (2005). The difficulty 

of this method is when the image has other texts. 
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CHAPTER 4  

PROPOSED CMMR TECHNIQUE 

 
A variety of CMMR techniques are reviewed and discussed in the previous 

chapter. This chapter presents the proposed CMMR technique under limited 

lighting conditions at night. The technique is aimed to robustly recognise CMM at 

night where many appearance features are reduced. Based on CMMR methods in 

chapter 3, this chapter proposes and describes the algorithm and technique for this 

CMMR. The proposed method consists of several steps: feature extraction, feature 

selection and classification process. In the feature extraction process, discriminant 

features from available appearances of a car image at night are presented in order 

to have high classification accuracy. Next, the features selected technique is 

implemented to find dominant features of each car model. The classification 

process is a step to train the classifier from the features obtained, and then predict 

new data to predefined classes. Last, predefined features are separated into sub-

features depending on the feature detection process. This step aims to simulate if 

features are missing, as the proposed method should be robust to deal with 

missing features in real-world situations. 

 

4.1 Proposed CMMR technique 

 

As discussed in previous chapter, CMMR provides more details of a subject car 

and can improve more confident to the car identification system, as law 

enforcement system. Most of CMMR works were presented in daytime condition 

where variety car appearances can be used. At night, car appearances are greatly 

reduced making existing CMMR techniques do not fully satisfy in this condition 

because available appearances are limited or different. Therefore, this research 

aims to solve problem of CMMR at night. The proposed CMMR technique is 
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based- on state-of- the-art of pattern recognition system which consists of image 

processing, feature extraction and classification. 

 

Traditionally, there are two categories of classification technique. First, multi-

class classification is the method to classify new data into one of more than two 

classes. The second classification method is single class classification classifying 

instance into one of two classes which can be called binary classification. The 

proposed research aims to classify car make and model of interest as a target out 

of other models, as shown in figure 4.1. This classification strategy can be used in 

real world application. For example, if a scene from a CCTV camera consists of 

four different types of vehicle, 2011 Kia Sportage, 2012 Skoda Yeti, 2016 Volvo 

XC90 and 2015 Audi Q7. If a suspected car is a 2011 Kia Sportage, the proposed 

method aims to detect only that particular make and model, classifying the 

vehicles in the scene as a 2011 Kia Sportage and ‘non’ 2011 Kia Sportage. Since 

only the Kia (target class) is the car of interest, there is no need to classify or 

detect the rest of the makes and models. Therefore, a binary classification 

technique is required to identify a target class, instead of a multi-class 

classification which unnecessarily involves more complex algorithms, data base 

and computational workload. 

 

 

Figure 4.1: Binary classification diagram for target car model recognition. 

Feature 2 

Feature 1 

Target class Other class 

Decision boundary 
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The classification technique has three sub-processes, image processing, features 

extraction and classification process. First, image processing is a method to adjust 

or improve image characteristics in order to incorporate to the next process and 

defined parameters. The research detects taillight positions and licence plate in 

order to have car’s features. In taillight detection, the process is based on colour 

method which uses HSV colour space to detect candidate taillights and decides 

the real taillights by the most symmetry score of taillight candidate pairs. In 

addition, licence plate, technique, is detected by applying edge-based algorithm 

and licence plate dimension thresholds. Grey level colour is the most suitable 

colour for edge detection technique. Therefore, image manipulation is needed to 

adjust image and improve image characteristics in order to suitable to designed 

algorithm. There are four image manipulation techniques such as image rotation, 

image resizing, colour conversion and contrast enhancement. This particular 

research is focused only on solving the problem of CMMR at night. The technique 

defines car’s appearances and then develops the most suitable classification 

technique to be used for this condition. Therefore, at this stage, the image 

manipulation part of the process is manually conducted. It is intended to be the 

proof-of-concept stage for the proposed CMMR method. The full automatic 

process can be implemented in the future. 

 

As mentioned, image manipulations are manually implemented on original image 

which consist of image resizing, rotating, colour conversion and contrast 

enhancement techniques. Image resizing, colour conversion and contrast 

enhancement are not making any impact on overall performance by users because 

the algorithms are applied using pre-defined parameters (fixed parameters), for 

example, image is resized to the fixed dimension of 800×600 pixels and image is 

converted to HSV colour space, in the taillight detection step. However, manual 

image rotation is affected by users.  For example, inexperienced users may 

perform manually image rotation that might lead to image (TL positions) 

asymmetry affecting classification accuracy. 

 

 



 

63 
 

  

(a) (b) 

Figure 4.2: Example images of car front and rear view 

 

Second, feature extraction is a process to determine distinguishable features from 

car image to classify car make and model. Car features can be either obtained in 

front and rear views. At night, headlights tend to be on and if images are taken in 

the front of car or against headlight, the obtained car images are blurred and 

glared which can be seen in figure 4.2(a). On the other hand, there is less blur and 

glare when capturing image in rear view, as shown in figure 4.2(b). In rear view, 

it can be seen that the dominant appearances are taillight shape and licence plate 

position that can be utilised, as car features, to recognise car make and model. 

Therefore, this research decides to use car rear view to classify car make and 

model.  

 

Last, classification process is the method to classify new data into a predefined 

class. In the literature, many classifiers and classification techniques have been 

presented to classify car makes and models. For example, support vector machine 

(SVM), decision tree (DT) and k-nearest neighbour (kNN), Naïve Bayes, variety 

of neural networks techniques and ensemble methods were used in previous 

CMMR works. From initial experiments, given the types and characteristics of the 

features of interest in this particular project, SVM, k-NN and DT are shown to be 

the most suitable classifiers under the circumstances. The majority vote method is 

then applied to finally decide the final classification result. In the experiments, 

SVM produced high classification accuracy with the trained dataset. Figure 4.3 
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shows an example of car’s feature space classified by SVM classifier. It can be 

seen that SVM produced a good classification, separating the data into two 

groups. In addition, SVM was reported the highest classification accuracy on 

artificial dataset if optimum parameters are implemented (Amancio et al., 2014). 

Moreover, it commonly classifies data into two classes that is suitable to the 

proposed classification strategy. Secondly, K-NN was shown the second highest 

classification accuracy from the study of Amancio et al. (2014) and k-NN has 

only one parameter, number of neighbour, which will consume a few computation 

times and easy to implement in real world applications. Last, DT which is the 

most popular method in data mining researches (Kotsiantis, 2008) and mostly 

used in binary classification problems is selected. Furthermore, DT can reduce the 

classification error by apply pruning technique. Other techniques were not 

considered because of many parameters used such as neural networks techniques 

and worst classification performance, Naïve Bayes. 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Example feature space applied by SVM classifier 

 

The “no free lunch” theorem of Wolpert and Macready (1997) states that there is 

no best single classifier in any classification problem (domain). Each classifier 

may have its own region in the feature space where it performs the best (Jain et 

al., 2000). It has been proven that the classification accuracy can be improved by 
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using an ensemble of classifiers (Dougherty, 2013). In this research, therefore, 

classifier ensemble (majority vote) is employed in the classification stage. The 

ensemble contains with various individual classifiers: support vector machine 

(SVM), decision tree (DT) and k-nearest neighbour (kNN). They are different in 

their decision making and can complement the weaknesses of each other in order 

to increase classification accuracy and will generalise on future data.   

 

The proposed CMMR system is shown in figure 4.4. The system consists of two 

processes: training and identification (classification) and both processes operate in 

similar steps: image pre-processing, feature extraction and classification. As given 

in figure 4.4, in the training process, target car images are input to the pre-

processing stage which will adjust image characteristics to be suitable for the next 

process. Then, design features are extracted from the object image. The feature 

extraction process includes several steps: Licence Plate (LP) detection, Taillights 

(TL) detection and feature extraction. After that, feature subset selection is applied 

in order to find dominant features for the most distinguishable features of a 

particular target model. Last, the target car model is trained by the classifier and 

then stored in a database. In the classification process, which is done in real time, 

a stream of images from CCTV containing different car models is considered. The 

optimal feature set and the trained classifier for the particular target car model are 

applied to these images to identify that particular CMM. In following sections 

give more details of each process. 
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Figure 4.4: Overview of proposed CMMR system. 

 

4.2 Image pre-processing 

 

In real-world applications, captured images might not be suitable for the technique 

designed. The images will be affected by illumination variations, occlusions and 

complex backgrounds. Therefore, image pre-processing techniques have to be 

applied to adjust image properties to approximate the research’s predefined 

parameters and algorithms. Various techniques are implemented in this step, for 

example, image rotation, resizing, colour conversion and contrast enhancement. 

 

4.2.1 Image rotation 

 

Car images can be captured from different views in real applications. The system 

presented uses an un-skewed image of the car rear view to recognise CMMs and 

furthermore, symmetric measurement is utilized to verify TL pair position in the 

TL detection process. Therefore, the image needs to undergo image rotation in 
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order to have a symmetrical car image. In the proposed system, manual rotation is 

utilised until the image is symmetrical. The image is rotated clockwise if it was 

captured on the left-side of the road, otherwise counter-clockwise if captured on 

the right-side. In the experiments, images taken on the left-side of a street were 

manually rotated clockwise by 1 degree until symmetrical, up to a total of five 

degrees. Figure 4.5(b) shows an example of a clockwise-rotated image of the 

original image in 4.5(a). 

 

  

(a) (b) 

Figure 4.5: Example car image rotation. (a) Original image. (b) Rotated image. 

 

4.2.2 Image colour conversion 

 

As mentioned in the previous section, LP and TL positions are detected in order to 

have features of the CMM in the rear view. In the LP detection process, an edge-

based method is employed and a grey-level image is reported more appropriate 

than RBG in edge extraction (Mendes et al., 2011). Thus, grey colour conversion 

is implemented in the work to convert the RGB to grey colour image, as shown 

figure 4.6(a) and (b), respectively. For the TL detection process, TL colour is 

basically white (bright) in the centre and surrounded by red colour. HSV colour 

space seems to be more suitable than RGB, as it can better define parameters for 

those TL colours (O’Malley et al., 2008). In the TL detection stage, the image is 

converted to HSV colour space. Figure 4.6(c) shows the HSV colour image 

converted from the RGB image.  
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(a) (b) (c) 

Figure 4.6: Image colour conversion a) Original image. b) Grey image.  

c) HSV colour image. 

 

4.2.3 Image resizing 

 

Image resizing is aimed to re-scale the image to work with the designed 

parameters (thresholds) of the presented technique. In the LP detection step, the 

proposed technique uses an edge-based technique that defines many threshold 

values (LP dimensions) to create LP candidate regions. Then, image resizing is 

applied on the object image. Furthermore, the large image dimensions might lead 

to slow execution times. In the technique, images are resized to 800×600 pixels, 

which are associated with the predefined parameters.   

 

4.2.4 Contrast enhancement 

 

This research aims for implementation under limited lighting conditions at night 

when many appearances, such as car texture, edge and shape contour might be 

faded. Moreover, there is some interference from other light sources which will 

make regions of interest appearances too bright causing its low contrast. Then, to 

improve the detection rate, a contrast enhancement method is employed if a 

subject image has low contrast. The contrast improvement techniques, histogram 

equalization and adaptive histogram equalization, are implemented in the LP 

detection process. Figure 4.7(b) shows the edge image of original image figure 

4.7(a). Figure 4.5(d) gives the edge image of the contrast improvement image of 

figure 4.7(c). Obviously, many more edges can be seen in figure 4.7(d) than in 

figure 4.7(b). 
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(a) (b) 

  

(c) (d) 

Figure 4.7: Contrast enhancement images and edge images. 

 

4.3 Feature extraction 

 

The goal of this process is to obtain CMM characteristic properties or parameters. 

Then, these parameters are measured to numeric values and then used to learn and 

classify CMMs. The majority of previous works recognise CMM in front view in 

daytime, when many kinds of features can be used. However, at night or under 

limited lighting conditions, car front headlights tend to be on. Due to brightness 

and glare of headlights, most important features captured using the front view are, 

therefore, blurred or incomplete resulting in serious recognition inaccuracy. 

Figure 4.2(a) shows an example image captured in front view and many 

appearances, such as texture, corners and edges, are darkened. Furthermore, there 

are reflections occurring from other light sources. Figure 4.2(b) shows a car image 

in rear view; and obviously salient features, such as taillight shape, distance and 

angle between taillight and licence plate, can be obtained. Rear view appearances 
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have been used to classify vehicle type such as sedan, truck, van and unknown 

model and reported high classification accuracy (Kafai and Bhanu, 2012). Then, 

the proposed method designs to use these appearances as measured features to 

classify CMM. From observation, a car model has unique taillight shape, size and 

distance between taillight and licence plate. In addition, the relative angle of TL 

and LP is generally distinctive for each CMM. In order to obtain these features, 

there are three sub steps: LP localization, TL detection and feature extraction.  

 

4.3.1 LP localization 

 

The aim of this stage is to detect LP position in order to have its size and shape so 

that can be used to normalize the features. LP localization techniques have been 

studied in many researches. In fact, dominant appearances of LP are colour, 

texture, rectangular boundary and containing alphanumeric characters. Therefore, 

previous researches have used these appearances to localize LP position. During 

daytime, texture and colour feature based methods produce high detection rates 

because most features are clearly presented in the scene. At night, a number of 

features are greatly reduced due to low illumination. Moreover, colour feature is 

interfered with and changed due to the lighting conditions in the area and 

reflections from other vehicles’ lights. 

 

The method proposed in this work employs the LP detection technique developed 

by Mendes et al. (2011), shown in figure 4.8. The technique detects an LP by 

using an edge-based feature which is reported to be a simple, fast and 

straightforward algorithm. From the experimental results using a database of 722 

images, a high detection rate of 95.43% has been achieved. Moreover, the 

technique demonstrates robustness in coping with various illumination conditions. 

The algorithm has two main stages: LP candidate extraction and LP verification. 
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Figure 4.8: Licence plate localization algorithm (Mendes et al., 2011). 

 

1) LP candidate extraction 

 

This process aims to obtain LP candidate regions through these steps: image pre-

processing, edge detection, filter functions applied, mathematical morphological 

operations, and binary image conversion.  

 

A. Image pre-processing 

 

The first task is to reduce the object image size to 640×480 pixels. Image resizing 

is applied to adjust image resolution to an appropriate size suitable to the 

predefined thresholds. In addition, the original size of images, 1920×1080 pixels, 

is large and might require expensive computational time.  
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B. Edge detection  

 

Generally, an LP contains alphanumeric characters which can be utilized to locate 

the LP position. To find the characters within the image in order to detect the LP, 

edge detection is implemented and a region with high edge density is considered 

as the LP position. The algorithm first converts the image to grey scale in order to 

support the edge-based method and contrast enhancement technique. Then, Sobel 

vertical edge detection is applied to extract vertical edges.  

 

From the study of Bai and Liu (2004), vertical edge detection obtains less noise 

than horizontal edge detection. Furthermore, vertical edges can be merged to build 

the LP region. Figure 4.9 shows an example of vertical and horizontal edge 

detection. 

 

  

(a) (b) 

Figure 4.9: Edge detection of car image. (a) Vertical edge detection.  

(b) Horizontal edge detection. 

 

C. Morphological operations 

 

The goal of morphological operations is to manipulate the edge image in order to 

create the LP region. First, a mean filter is applied to the image to emphasise the 

LP region and to build the LP region. The filter dimension is a w × h rectangle 

where w and h are the expected LP width and height, respectively. Figure 4.10(a) 
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illustrates an image with mean filtering applied. Then, noise and small regions are 

removed by applying a morphology opening operation with structure element 

(SE) size equal to minimum character height (Mendes et al., 2011), given in figure 

4.10(b). After that, large regions are eliminated by implementing an opening 

operation with a column SE size of the maximum character height to gain 

effective regions (Mendes et al., 2011) which can be seen in figure 4.10(c). Last, 

the filtered image is converted to a binary image (Mendes et al., 2011), to which 

the threshold value is automatically given by applying Otsu’s method (Otsu, 

1979), figure 4.10(d).  

 

  

(a) (b) 

  

(c) (d) 

Figure 4.10: LP candidate extraction steps. 
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2) LP Verification 

 

The aim of this step is to verify the real LP among the candidate regions. The 

potential candidates are preserved by following these characteristics: 1) its width is 

greater than its height, 2) its width and height are larger than the thresholds, and 3) 

the LP cannot touch the image boundary (Mendes et al., 2011). Table 4.1 shows 

candidate filter constraints. Figure 4.11(a) illustrates the potential candidate regions.  

 

As explained in the beginning of the section, an LP contains alphanumeric 

characters whose colour is different from the background. This property can be 

used to localize the LP by implementing probability distribution of intensity 

value. 

 

Table 4.1: Candidate region constraints 

No. Constraint Description 

1 w > h The standard licence plate has a width larger 

than its height. 

2 w > threshold 

h > threshold 

Licence plate dimensions should greater than 

defined thresholds, such as w=120 and h=25 

pixels. 

3 LP ≠ image boundary Licence plate should not be located on an 

image boundary. 

 

The research uses the coefficient of variation to measure the candidate’s grey 

scale distribution. The largest grey scale distribution is considered as the LP. The 

coefficient variation (CV) is defined as: 

 

CV=  (4.1) 

 

where µ and σ stand for mean and standard deviation of pixel values within the 

candidate region. Figure 4.11(b) shows an image of LP localization. 
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(a) (b) 

Figure 4.11: (a) Potential candidate regions. (b) LP localization. 

 

4.3.2 TL detection 

 

The objective of this stage is to detect taillights in order to have their size, shape 

and position measured as features. TL detection approaches have been presented 

in many studies in the last decade, such as vehicle detection, driver assistance 

system (DAS) and vehicle classification (Gritsch et al., 2009). In this paper, the 

algorithm presented by Boonsim and Simant (2014), with accuracy of 95.35%, is 

used to localize TL positions. The algorithm has two main steps candidate 

extraction and TL verification. Figure 4.12 shows the taillight detection algorithm. 
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Figure 4.12: Algorithm of taillight detection (Boonsim and Simant, 2014). 

 

1) TL candidate extraction 

 

TL candidate extraction is the process to gain TL candidate regions consisting of 

these steps: TL colour filtering, image intersection, noise or small regions removal 

and candidate extraction. 

 

A. TL colour filtering 

 

A colour-based method is commonly used to extract taillight candidate regions. 

Basically, taillight colour is white in the centre and surrounded by red colour 
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(O’Malley et al., 2008). In a colour-based technique, TL colour thresholds are 

implemented in order to filter out TL colour pixels. With the TL colour, HSV 

colour space, which is reported more appropriate to TL colour than RGB colour, 

is used in this research (O’Malley et al., 2008).  

 

Table 4.2: TL Colour thresholds (O’Malley et al., 2008) 

 Hue Saturation Value 

Red 340˚–30˚ 0–30 80–100 

White All 0–20 99–100 

 

First, the RGB image is converted to HSV colour space, which is illustrated in 

figure 4.13(b), converting the original RGB image in figure 4.13(a). Red and 

white colour thresholds, shown in table 4.2, are employed to detect TL colours. 

Figures 4.13(c) and 4.13(d) show the binary image from filtering red and white 

colour pixels, respectively, of the HSV image in figure 4.13(b). 

  
(a) (b) 

  
(c) (d) 

Figure 4.13: TL colour filtering steps. 
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B. Candidate extraction 

 

From the previous step, binary images of red and white pixels are obtained. To 

create the TL candidate regions, first, morphological operations are implemented 

on each binary image to merge closed pixels in order to have regions, which are 

shown in figures 4.14(a, b). Then, TL candidates are extracted from red regions 

containing white regions by applying image intersection, illustrated in figure 

4.14(c). Last, small regions under the threshold (50 pixels) are removed as 

filtering potential regions, displayed in figure 4.14(d). 

 

  
(a) (b) 

  
(c) (d) 

Figure 4.14: Images of mathematical morphological operations. 

 

2) TL verification 

 

Basically, TLs are similar in size, shape and position on a vehicle. Therefore, to 

confirm the TL positions, symmetry evaluation of those properties is applied. A 

number of steps are employed in this stage. First, each candidate region is multi-
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paired to other candidates as a TL couple and then symmetry analysis of position, 

size and shape are calculated for each pair. Last, the highest symmetry score is 

used to verify the TL positions. 

 

A. Candidate pairing 

 

Connected component analysis (CCA) is firstly applied to label each candidate in 

order to have their characteristic parameters. Then, candidates are named as Ci 

where i=1, 2, 3..n, which is shown in figure 4.15(a). After that, each candidate is 

multi-paired with the others as shown in figure 4.15(b). Last, a number of pairs Pk 

are obtained after pairing in equation 4.2: 

 

Pk = (Ci, Cj)  (4.2) 

 

where k represents a number of pairs and i, j are defined as the number of 

candidates C where i is not equal to j (i ≠ j). For Pk = (Ci, Cj) and pair Pk+1 

=(Cj,Ci), these pairs are defined as the same pair which can be denoted by Pk = 

(Ci, Cj) =(Cj,Ci). 

 

  

(a) (b) 

Figure 4.15: Candidate pairing. (a) Candidate naming. (b) Multi-candidate 

pairing. 
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B. Symmetry analysis 

 

The symmetry scores of size (area), shape (aspect ratio) and position (y-axis 

distance) are calculated to check the similarity of each pair. First, the symmetry of 

position is considered by estimating y-direction distance of each pair. Y-axis 

direction distance is the length between border and centre of candidates in Y-axis 

and the direction symmetry score of the pair can be computed by equation 4.3 

where DS is Y-axis distance symmetry score of pair Pk. Hi and Hj are the Y-axis 

distance between border and centre of Ci and Cj, respectively. 

 

( ) = 1 − × 100 (4.3)  

 

Next, size symmetry is checked by using equation 4.4 to justify area characteristic 

equality where AS is defined as area (size) symmetry score of pair Pk. Ai and Aj are 

the areas of candidates Ci and Cj, respectively. 

 

( ) = 1 − × 100 (4.4) 

 

Then, the symmetry of shape is examined by analysing aspect ratio of candidate 

width and height is implemented by equation 4.5 where ARS is the aspect ratio 

symmetry score of pair Pk. ARSi and ARSj represent the aspect ratios of candidates 

Ci and Cj, respectively. 

 

( ) = 1 − × 100 (4.5) 

 

Last, the pair aspect ratio is checked. The aspect ratio of TL pair should have 

more than 3 and less than 8 (O’Malley et al. 2008) as threshold values. If the 

aspect ratio of the candidate pairs is not within the thresholds, it is discarded. A 

pair aspect ratio can be computed by equation 4.6. 
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   ( ) =
( , )

     
  (4.6) 

 

C. TL Verification 

 

The highest symmetry score is used to decide the final positions of the TLs. The 

total symmetry score is calculated by the symmetry score equation in equation 4.7 

with associated weight values. Due to some complex scenes, there are many 

candidates having the high symmetry size and shape that could produce incorrect 

TL detection. Thus, position symmetry score is experimentally defined as the 

most significant value followed by size and shape symmetry. The research sets 

weight values as 0.8, 0.1 and 0.1 for DS, AS and ARS, respectively. 

 

Symmetry Score (SS)k = 0.8*DSk + 0.1*ASk +0.1*ARSk  (4.7) 

 

Finally, the maximum symmetry score is considered to confirm the position of 

TLs. Figure 4.16 illustrates an example image of TL detection. The symmetry 

score of TL should be more than 80, as in equation 4.8. If the score is less than the 

threshold value, the test images are discarded.  

 

TL pair = Maximum (Symmetry Score (Pk)) > 80   (4.8) 

 

 

Figure 4.16: TL detection image. 
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4.3.3 Feature extraction 

 

Once a vehicle’s LP and TLs are identified, a number of important features, such 

as dimensions, distances and angles between LP and TLs, can be derived, as 

shown in figure 4.17. In the figure, H, W and C are expected TL and LP heights, 

width and centre point, respectively, and the numbers 1, 2 and 3 indicate left-TL, 

right-TL and LP, respectively.  

 

 

Figure 4.17: TL and LP detection and geographical measurement. 

 

Those features are divided into two types: geographical features, given in table 

4.3, and TL shape features. The aspect ratio features are used because they are 

normalized features and do not depend on the vehicle’s size in the image. The 

features are extracted from the car rear view, which contains features of left and 

right taillights because the licence plate is not located in the centre of the car in 

some CMMs. Thus, the features of left and right taillights to licence plate are 

different.  
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Table 4.3: List of geographical features. 

1) Aspect ratio of left-TL 

2) Aspect ratio of right-TL 

3) Aspect ratio of left-TL width and LP width 

4) Aspect ratio of left-TL height and LP height 

5) Aspect ratio of right-TL width and LP width 

6) Aspect ratio of right-TL height and LP height 

7) Angle of left-TL and LP 

8) Angle of right-TL and LP 

9) Distance between TLs per LP width 

10) Distance between left-TL and LP per LP height 

11) Distance between right-TL and LP per LP height 

12) Distance between TLs per average of TL width 

 

1) Aspect ratio of TL shape  

 

The aspect ratio of TL shape (AR_TL) is the proportion of TL width to TL height 

that can be calculated according to equation 4.9. For example, the aspect ratio of 

taillight in figure 4.18 is calculated as W1/H1. 

 

AR_TL =
 

 
 (4.9) 

 

 

Figure 4.18: TL dimensions 



 

84 
 

2) Aspect ratio of TL and LP width  

 

The aspect ratio of TL and LP width (AR_TL-LP_W) is the ratio of TL width to 

LP width, which can be computed by equation 4.10. For example, this value in 

figure 4.17 is computed as W1/W3 or W2/W3. 

 

AR_TL-LP_W =
 

  
   (4.10) 

 

3) Aspect ratio of TL and LP height  

 

The aspect ratio of TL and LP height (AR_TL-LP_H) is the proportion of TL 

height to LP height, which can be measured according to equation .11. For 

example, the feature in figure 4.17 is calculated as H1/H3 or H2/H3. 

 

AR_TL-LP_H =
 

  
 (4.11) 

 

4) Angle of TL and LP  

 

The angle of TL and LP can be measured by the LP centre point to the centre of a 

TL. The angle of LP and TL is defined by equation 4.12. Figure 4.19 shows how 

to find the angle between the LP and left TL. 

 

Cos  = 
| || |

   

Cos  = 
∙

   

 =acos( 
∙

  )  (4.12) 
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Figure 4.19: Measurement of angle of TL and LP. 

 

5) Aspect ratio of distance between TLs with LP width  

 

The aspect ratio of the distance between taillights with LP width (AR_Dist-TL-

LP-W) can be calculated according to equation 4.13. For example, this value in 

figure 4.20 is computed as Dist. (C1, C2)/ W3. 

 

AR_Dist-TL-LP-W =
.( , )

  
   (4.13) 

 

 

Figure 4.20: Distance between taillights measurement.  

 

6) Aspect ratio of distance between TLs with TL width  

 

This feature is the ratio of the distance between taillights with the average of TL 

width (AR_Dist-TL-TL-W), which can be estimated by equation 4.14. For 

example, the value in figure 4.20 is calculated as Dist.(C1, C2) / Avg.(W1,W2). 
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AR_Dist_TLs_TL_W = 
.( , )

.( , )
   (4.14) 

 

 

Figure 4.21: Distance between taillight and LP. 

 

7) Distance between TL and LP with LP height  

 

This feature can be calculated according to equation 4.15. For example, the aspect 

ratio of distance between taillight and LP with LP-height in figure 4.21 is 

calculated as (D2/H3) or (D3/H3). 

 

AR_Dist-TL-LP-H = 
    

 
  (4.15) 

 

8) TL shape features  

 

Another feature, TL shape, is used to recognise CMMs. Several shape description 

techniques are provided in work of Lu et al. (2004). This work implements a grid 

method to capture the TL shape. The grid technique used was presented by Lu and 

Sajjanhar (1999) and the technique was reported invariant for shape scale 

changing, translation, rotation and mirror operation. Furthermore, this grid 

method is shown to be more accurate than curvature, significant edges and point 

techniques, and robust on slight noise (Lu and Sajjanhar, 1997). Experimentally, 

several grid blocks, such as 5×5 (25 features), 6×6 (36 features) and 8×8 (64 

features), are applied to extract TL shape features. Empirically, the 8×8 grid 
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provides the best classification accuracy. However, the bigger the grid is, the 

more computational time required.  

 

TL shape feature extraction begins with converting the image, figure 4.22(a), to 

grey scale, figure 4.22(b). Then the grey colour image is changed to a binary 

image by applying Otsu’s method for automatic threshold selection. Last, grid 

blocks are set to 1 with at least 15% of pixels covered by the shape while others 

are set to 0 (Lu and Sajjanhar, 1997). Figure 4.22(d) illustrates the grid description 

for the taillight shape in figure 4.22(c) binary image. 

 

    

(a) (b) (c) (d) 

Figure 4.22: Grid feature description of left taillight shape. 

 

Table 4.4 shows examples of 7 geographical features and grid representation of 

taillight shape. 
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Table 4.4: Example of CMMs and features 

Car model 

Features 

Vauxhall 

Astra mk4 

Vauxhall  

Astra mk6 

Vauxhall 

Corsa D 

Image 

   

AR_TL 3.1 2.8 1.2 

Angle-TL-LP 181.3˚ 147.2˚ 150.2˚ 

AR_TL-LP-W 0.3 0.7 0.4 

AR_TL-LP-H 0.6 0.9 1.2 

AR_Dist-TL-LP-W 2.7 2.7 2.6 

AR_Dist-TL-TL-W 6.1 3.6 7.2 

AR_Dist-TL-LP-H 0.4 4.2 3.6 

Left taillight image    

8×8 grid  

for left taillight 

01111000 

11111111 

11111111 

11111111 

11111111 

11111111 

11111111 

01111100 

11101110 

11111111 

11111111 

11111111 

11111110 

11100110 

11100110 

01100110 

11111000 

11111000 

11001110 

11001110 

01100111 

01111111 

00111110 

00011100 

 

4.3.4 Feature sets 

 

In real video images, TL and LP detection can be affected by many factors, for 

example, a reflection on LP, or TL and LP are obscured by other objects in the 

scene. Thus not all features can always be detected. Therefore, to make the 

method robust enough to deal with missing features, different training sets 

containing different features affected by different factors are studied. To do this, 
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features are divided into four different cases or sets depending on TL and LP 

detection: 1) All features detection, 2) One TL and LP detection, 3) Both TLs 

detection, and 4) One TL detection, as shown in figure 4.23. 

 

  

(a) (b) 

  

(c) (d) 

Figure 4.23: Images of incomplete feature detection sets. 

 

1) First set (All features detected) 

 

The first set represents the case when all features are detected, as shown in figure 

4.23(a). In this case, two taillights and a licence plate are found and the entire 140 

features (12 geographical features shown in table 4.3 and 128 taillight grid 

features) can be determined. This type of set should provide the best classification 

accuracy. 
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2) Second set (One TL and LP features detected) 

 

In the second set, apart from the LP, only one TL is detected. The features found 

therefore are 5 geographical features and 64 taillight shape features. Figure 

4.23(b) illustrates an image of TL and LP detection. Table 4.5 shows features of 

this case and the features with difference of TL side detected. 

 

Table 4.5: Features of TL and LP detected set 

No. Left TL detected Right TL detected 

1. Aspect ratio of left-TL  Aspect ratio of right-TL 

2. Aspect ratio of left-TL width 

and LP width  

Aspect ratio of right-TL width 

and LP width  

3. Aspect ratio of left-TL height 

and LP height 

Aspect ratio of right-TL 

height and LP height 

4. Angle of left-TL and LP Angle of right-TL and LP 

5. Aspect ratio of distance left-

TL to LP and LP height 

Aspect ratio of distance right-

TL to LP and LP height 

 

3) Third set (Both TLs features detected) 

 

In this case, only TLs are detected, as shown in figure 4.23(c). The features are 

reduced to 3 geographical features (aspect ratio of TLs and aspect ratio of distance 

between TLs and average of TL width) and 128 TL shape features.  

 

4) Fourth set (One TL features detected) 

 

In the last set, only one TL is detected. It has a TL aspect ratio value and TL shape 

features totalling 65 features. Figure 4.23(d) shows an image of the case where 

only one TL is detected.  
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4.3.4 Feature selection 

 

A vehicle may have a certain group of prominent features derived from TLs and 

LP that make it clearly distinguishable from others. Therefore, to improve 

classification accuracy, a feature selection method is applied to find the best 

(optimized) feature subset for each car model. Not only can feature selection 

enhance the predictor performance, but also it can reduce computation time and 

enable us to understand data in machine learning (Chandrashekar and Sahin, 

2014). Many feature subset selection techniques are available, such as principle 

component analysis (PCA), particle swarm optimization (PSO) and genetic 

algorithm (GA). In this work, GA is used to select the best feature subset for each 

car model. The GA technique, the heuristic search, is likely to offer the optimum 

or near optimum results that are acceptable for time consumed, or use less 

computation time than an exhaustive search. The GA method randomly selects 

some features from all features to a feature subset and then the subset is evaluated 

by a defined fitness function to obtain the best classification accuracy. The best 

feature subset is obtained after the highest accuracy has been reached. A binary 

GA has been used in this work to select features which seem to be more suitable 

than integers and floating point representation. The corresponding feature is 

selected if a bit string of the chromosome is a 1. The corresponding feature is not 

selected if its value is 0. 

 

The basic technique of GA is designed to mimic the process in natural evolution 

strategies of species for survival, which follows the Charles Darwin’s principle of 

“survival of the fittest”. GA simulates this principle mechanism by targeting at 

optimal solutions in complex search space. The new populations of each 

generation are iteratively created by GA though genetic operations such as 

selection, crossover, and mutation. Two parents with high relative fitness in the 

initial generation are chosen in the selection process. Crossover is performed by 

randomly exchanging parts of selected chromosomes and mutation presents rare 

changing of chromosomes. Each population can be called chromosomes that are 

usually encoded by binary, integer, or real number types. The length of a 
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chromosome is equal to the dimension of features. For the binary chromosome 

employed in this work, each binary value in a chromosome represents one 

corresponding to the same indexed feature in the feature set. Features are selected 

if the chromosome value is ‘1’. Otherwise, the features are not selected, if it is ‘0’. 

For example, if a generated chromosome equals {1 0 1 0 1 0 1 1}, which is 8-bit 

length, the feature subset consists of features {f1, f3, f5, f7, f8}. 

 

A fitness function of GA is the objective function of the optimization problem. In 

this case, a fitness function is defined to increase the classification accuracy by 

finding a feature subset that generates less classification error. In this work, the 

fitness function is defined as equation 4.16. 

 

Class_labeltest,c = Predict (modeltrain,c , datatest,c) 

Fitness(c*) =  min
 ∈ 

 Err (class_labeltrain,c ≠ class_labeltest,c)  (4.16) 

 

where c is a chromosome and c* is the optimum chromosome by GA operations. P is 

the entire population. Datatest,c and modeltrain,c are the test and trained model of the 

feature subset indexing by chromosome c. Class_labeltest,c and class_labeltrain,c are 

the prediction label of the test and trained data, respectively. Err is the error rate of the 

selected subset testing.  

 

Figure 4.24 shows a system overview of the implemented genetic algorithm to 

find the optimum feature subset. The algorithm starts with the GA creating the 

first generation, which includes a number of the entire population. Each unit of 

the population can be called an individual or chromosome. A chromosome is 

represented in bit-string ‘1’ and ‘0’ and maps to features set. As described earlier, 

features are selected when the chromosome value is 1. Then selected features are 

trained and then sent to the fitness function evaluation process. If the termination 

condition is reached, the optimized feature subset is obtained. The optimum 

subset will be used for a specific CMM, where these features show high 

confidence or prediction accuracy. On the other hand, if the termination condition 

is not satisfied, it will build on this population for the next generation. 
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 Population 

 0 1 0 1 0 1 0 1 0 1 

1 1 0 1 0 1 0 1 0 1 

0 1 0 1 0 1 0 1 0 0 

1 1 0 1 0 1 0 1 0 0 

. 

. . 

. 

 

Figure 4.24: Optimized feature selection base on GA algorithm. 

 

4.4 Classification 

 

The objective of this process is to predict a subject car model to the predefined 

classes, target car model and other class. The process contains two processes, 

training and testing processes. In the training phrase, samples of the CMM of 

interest and other model images are learned and trained by classifier. After that, a 

trained model is obtained that can then be used to classify test data in the 

classification process. 

 

As mentioned earlier, binary class classification is employed in this research to 

recognise target or CMM of interest in images. Three classifiers, SVM, DT, and 

kNN, are used together to predict test data. Majority vote is used to verify the 

final decision of classification. Figure 4.25 shows the proposed classification 

method.  
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Figure 4.25: Proposed classification methodology. 

 

From the study of Amancio et al. (2014), the classification accuracy of the SVM 

technique can be improved by using appropriate parameters. Therefore, this 

research uses radial basis function (RBF) kernel and optimized parameters are 

selected for the SVM. For RBF, the model parameters consist of Gaussian width, 

σ, and the regularization parameter, C. The variation of any of them affects the 

classification performance (Li et al., 2008). As reported in Valentini and Dietteich 

(2004), the classification performance of RBF kernel largely depends on the σ 

value more than C. Therefore, the research is designed to tune only the Gaussian 

sigma value in order to find the optimized leaning of SVM. Figure 4.26 illustrates 

the algorithm to find the best parameter for RBF-SVM. 

 

 

 

Pruned decision tree 

Optimized SVM 

3-NN 

5-NN 

7-NN 

Majority 
voting 

Majority 
voting 

Trained 
model 

Other car images 

Target car images 

 

New car model Classification Target model 

Other model 

Training process 

Testing process 
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Figure 4.26: Algorithm to find optimum parameter of SVM. 

 

The technique tests various sigma values between 0 and 1 to obtain the highest 

classification rate and five-fold cross-validation is used to evaluate each sigma 

value testing. To classify the test data, SVM score function is applied and 

calculates Xtest features with all feature points m in the feature space. The highest 

score is considered to be the prediction class. SVM score function can be 

calculated as defined in equation 4.17 where c are the predesigned classes.  
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SVMpred = max
 ∈ ,

∑ X , +  (4.17) 

 

A decision tree classifier predicts instances by sorting them based on feature 

values. Each node in a decision tree represents a feature in an instance to be 

classified, and each branch represents a value that node can assume. Instances are 

classified starting at the root node and sorted based on their feature values 

(Kotsiantis, 2007).  

 

The aim of pruning a decision tree is to prevent the risk of over-fitting and poorly 

generalizing to new sample. When the tree is over-fitting it might be lead to error 

in classification. Thus, decision tree pruning is used in this research. The 

maximum probability of testing features with trained class features is applied to 

classify test data as equation 4.18. 

 

DTpred = max
 ∈ ,

( | ) (4.18) 

 

where p(Xc|t) is feature probability value to predefined class c at node t. 

 

K-nearest neighbours (kNNs) is the instance base learning which classifies the test 

data by comparing to the k nearest training data based on a distance function 

(Kotsiantis, 2007). In this work, a Euclidian function is used to measure distance. 

Majority vote of three, five and seven nearest neighbours is used to crop the 

variance data and to emphasise the final prediction. Predicting the class of the test 

data is defined as in equation 4.19, where c are the predesigned classes and k is 

the number of neighbours.  

 

NNpred = min
 ∈ ,

( (X − X ) ) (4.19) 

kNNpred =  kNNpred  

 

where Xc and Xtest mean predefined classes and test features. Minimum distance 

between test data and predefined classes data is used to verify prediction of this 
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method. Majority vote is employed to predict the final decision of the three 

classifiers. Prediction of those classifiers is calculated to have final vote as 

equations 4.21 and 4.22. 

 

Φ = ( ( + + )) (4.21) 

Final prediction =
−1, < 0.5
+1, ≥ 0.5 (4.22) 

 

where Φ is a numerical value which is calculated from the three classifier 

predictions. 

 

4.5 Training over-fit handling  

 

Basically, classification process consists of two processes: training and 

classification. In training process, classifier techniques try to fit model or 

minimize classification error to a set of training data in order to have good model 

and high classification accuracy. Therefore, it leads to over-fitting or overtraining 

model. 

 

Over-fitting occurs when the trained model provides good or perfect result in 

some dataset but it does not generalize the good classifying to new or unseen data. 

Generally, over-fitting will emerge when a model is excessively complex, such as 

having too many parameters relative to number of observations and the 

incompatible of model structure with data shape (Domingos, 2012). 

 

Many techniques have been presented in order to avoid over-fitting for example, 

cross validation, regularization, early stopping, pruning, Bayesian prior and 

feature selection (Domingos, 2012). 

 

The proposed method uses various techniques such as feature selection, cross 

validation, pruning technique and as much as a few parameters used strategy. 

First, feature selection is implemented to select distinguishable features of each 
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car model and in order to reduce a number of features. With a smaller number of 

features than observations (data training), it could be avoid the over-fitting. Next, 

cross validation is used in feature selection and training steps to reduce the bias 

and variance of data and then it may reduce the opportunity of over-fitting. Third, 

the research implements decision tree with pruning method and k-NN classifier 

which has only one (k) parameter to classify car model that could be avoid the 

over-fitting(Domingos, 2012). 

 

4.6 Class imbalance problem handling  

 

In the proposed classification method, binary classification is applied to predict 

between target car model and other model. This strategy raises the class imbalance 

problem where the target model is greatly underrepresented compared to 

examples of the other model class. Several techniques have been used to solve the 

problem of class imbalance (Galar et al., 2012). This research uses a data 

sampling technique, synthetic minority oversampling technique (SMOTE), 

implemented at data level and there is no modification to the proposed 

classification method. The sampling technique adds new samples to the minority 

(target) class by randomly choosing from k nearest neighbours (Chawla et al., 

2002). After applying the technique, the target model will increase the balance of 

class distribution. The target class is designed to oversample to 10% of other class 

samples. Then the dataset can be classified by the designed classification process. 
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CHAPTER 5  

EXPERIMENT RESULTS 

 
This chapter provides the research project evaluation. The performance of the 

proposed technique is measured its accuracy. The experiments were separately 

tested on each feature subset, given in section 4.3.4. Several classifiers were also 

tested on the same dataset in order to compare against the proposed technique. In 

addition, system implementation details, dataset and analysis of experimental 

results are explored. 

 

5.1 System implementation 

 

This covers system implementation including machine specification, operating 

system, software, application file format and programming language. Moreover, 

data collection and image pre-processing are introduced. 

 

5.1.1 Platform 

 

The proposed technique is implemented on a computer with 2.1 GHz Pentium 

Dual-core CPU and 4GB RAM. The operating system installed on the computer is 

Windows 7 Enterprise 32-bit. 

 

5.1.2 Software and Programming language 

 

Image processing software AVS video convertor was used to extract image 

frames from the video stream file. In addition, the programming language 

MATLAB version R2013a was used to implement the proposed method. In the 

image pre-processing step, image processing toolbox including image 
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manipulating functions – histogram equalization, image transformation, 

morphological operations and edge detection – was employed. A statistical 

toolbox was utilized in classification process. The toolbox consists of classifiers, 

training functions, prediction functions and classification performance evaluation 

functions. Furthermore, CSV file format was used to store all features of the 

dataset, which can be easily imported into MATLAB. 

 

5.2 Data set 

 

The research data set, the images, were collected in a city area at night by video 

digital camera, as shown in figure 5.1. The video data were taken of passing cars 

in rear view with the distance from camera within 50 metres. After that, images 

were extracted from the obtained video data and were manually labelled with their 

makes and models. Figure 5.2 shows examples of captured car images.  

 

 

Figure 5.1: Camera view setup.  

 

  

Figure 5.2: Samples of captured car rear view image. 
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The data set contains 421 car models with a total of 766 images. This data set 

consists of two types of car models: target car model and other model. There are 

100 target car models used to train and then classify against other models. Each 

target car model contains at least 4 images (samples) and there is one image per 

other-car model. Figure 5.3 and figure 5.4 show sample images of target car 

models and other-car models, respectively.  

 

 

  

 

 

 

Figure 5.3: Example target car model images. 
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Figure 5.4: Example other-car model images. 

 

The car model can be organised into a hierarchy structure with three layers, 

namely, car make, car model and generation from top to bottom, as shown in 

figure 5.5. In figure 5.5, for example, the Toyota Company produced the Yaris car 
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model in three generations, and each generation contains at least one model. Car 

models were assigned by model code, for instance, XP150. 

 

              

 

 

 

 

 

 

 

   

 

 

Figure 5.5: Car make and model structure hierarchy. 

 

As mentioned in the previous chapter, images were resized to associate with 

designed thresholds and reduce implementation times. All image frames were 

resized from 1920 × 1080 to 640 ×480 pixels. Next, videos were experimentally 

taken on the left side of a road. Then images were rotated in the clockwise direction 

by 5˚ with the fixed angle of camera. Last, car features of all models were manually 

extracted and then used in the experiment process. 

 

This research has been followed with University of Bedfordshire ethical guideline 

about using real data (images). Therefore, all images used have been covered or 

blanked on licence plate in order to no specific car can be identified in this 

research. 

 

 

 

Make 

Model 

Generation 

Prius Yaris Corolla 

2nd Gen 3rd Gen 

Aygo … 

XP10 XP90 XP130 XP150 

1st Gen 
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5.3 Experiment setup 

 

The objective of experiments is to evaluate the performance of the proposed 

technique. To achieve this, the experiments need to be carefully conducted. An 

experimental dataset was created and discussed in the previous section and 

separated into four sets depending on taillight and licence plate detection as 

follows. 

 

1) First set (All features detected) 

2) Second set (One TL and LP features detected) 

3) Third set (Both TLs features detected) 

4) Fourth set (One TL features detected) 

 

The experiments were separately conducted on each feature set. Various 

classifiers, for example, linear SVM, kernel SVM, decision tree, nearest 

neighbour, were evaluated on the dataset in order to compare with the proposed 

method. Classification accuracy performances were evaluated by cross-validation 

on the obtained dataset. The cross-validation technique is randomly separated into 

training set and testing set. The research uses ten-fold cross-validation and 

algorithm is shown in figure 5.6. 
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Figure 5.6: Ten-fold cross-validation algorithm for accuracy evaluation. 

 

The accuracy evaluation of cross-validation is calculated from the average value 

of all experiments as indicated in equation 5.1.  

 

 Classification accuracy = 100 −
∑

 (5.1) 

where k is the number of folds used to validate the dataset. 

 

5.4 Experimental results 

 

This section provides all experiment results including feature detection processes 

(LP detection and LP detection) and CMMR classification accuracy. First, the LP 
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and TL detection accuracies, as shown in table 5.1, were reported 96.52% and 

95.37 %, respectively. Last, the classification accuracies of 100 target models of 

the proposed method are shown in table 5.2. Each target model was tested against 

420 other models by using ten-fold cross-validation; four feature sets were 

evaluated separately.   

 

Table 5.1: feature detection performances. 

Feature detection Accuracy (%) 

Licence plate detection (Mendes et al., 2011) 96.52 

Taillight detection (Boonsim et al., 2014) 95.37 

 

Table 5.2: Classification accuracy (%) results. 

No Car models 
False 

positive 

False 

Negative 
Precision Recall Accuracy 

1 VAUXHALL ASTRA MK4 4.1 2.1 59.1 74.3 92.4 

2 VAUXHALL ASTRA MK5 4.6 1.7 61.2 80.8 92.0 

3 VAUXHALL ASTRA MK6 4.4 1.8 62.0 79.5 92.6 

4 VAUXHALL CORSA C 4.7 1.5 58.2 81.4 93.2 

5 VAUXHALL CORSA D 5.0 0.1 71.1 99.1 93.6 

6 FORD FIETA MK6 4.5 0.2 67.7 97.7 93.8 

7 FORD FOCUS MK2 5.0 0.8 70.3 94.0 93.4 

8 NISSAN MICRA K12 4.6 1.7 63.4 82.6 91.4 

9 NISSAN QASHQAI J10 3.5 0.4 74.8 95.8 93.4 

10 SKODA OCTAVIA 1U 5.2 1.7 57.4 80.5 93.4 

11 TOYOTA AVENSIS T250 3.4 0.0 76.6 100.0 93.2 

12 LONDON TAXI TX4 5.4 1.1 59.0 87.3 95.0 

13 VAUXHALL ADAM 3.1 0.3 77.6 97.0 95.2 

14 VOLKSWAGEN PASSAT B6 4.5 0.8 68.0 92.4 92.6 

15 VAUXHALL ZAFIRA 2.9 0.3 79.2 97.1 93.2 

16 VAUXHALL VECTRA 2.7 0.4 80.5 96.1 93.6 
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No Car models 
False 

positive 

False 

Negative 
Precision Recall Accuracy 

17 VAUXHALL ASTRA GTC 2.6 0.1 81.7 99.0 94.2 

18 AUDI A3 8V 2.6 0.1 81.9 99.0 94.8 

19 AUDI A4 B7 2.5 0.0 82.8 100.0 94.0 

20 AUDI A1 5.4 0.6 60.0 93.5 95.4 

21 AUDI A3 8P 4.5 0.6 67.5 94.3 95.6 

22 AUDI Q7 3.3 0.1 77.2 99.0 95.0 

23 AUDI S5 4.5 1.0 66.4 89.8 92.4 

24 BMW 1S E87 4.2 0.8 69.4 92.3 95.2 

25 BMW 3S E92 3.8 1.0 70.9 90.2 93.2 

26 BMW 5S F10 3.9 0.8 71.1 92.5 93.8 

27 CITROEN C3 1ST GEN 4.7 0.8 65.3 91.9 94.4 

28 AUDI A4 B6 3.7 0.4 73.4 95.8 94.2 

29 CITROEN XSARA PICASSO 3.8 0.3 72.8 96.8 93.8 

30 CITROEN C3 PICASSO 3.5 0.2 75.4 97.9 95.6 

31 CITROEN C5 DC 4.5 1.0 66.7 89.9 94.8 

32 VAUXHALL CORSA B 5.5 0.4 60.5 94.9 95.4 

33 FIAT GRADE PUNTO 5.3 1.3 59.1 85.0 95.2 

34 FIAT 500 5.1 0.8 62.2 91.4 95.0 

35 FORD C-MAX MK1 4.6 1.2 63.4 86.6 93.8 

36 FORD FIETA ST 4.7 1.9 61.1 79.5 94.4 

37 FORD FIESTA MK5 3.9 1.5 67.0 84.5 93.6 

38 FORD FOCUS MK1 4.8 1.7 62.3 82.6 93.8 

39 FORD FOCUS ST 4.5 1.6 64.3 83.7 93.8 

40 FORD KA 4.5 1.5 64.9 85.1 92.8 

41 FORD MONDEO MK3 4.4 0.2 68.8 97.7 93.4 

42 FORD TRANSIT CONNECT 4.4 0.7 68.0 93.3 91.8 

43 HONDA CRV RD4 4.4 0.4 68.8 95.6 93.2 
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No Car models 
False 

positive 

False 

Negative 
Precision Recall Accuracy 

44 HONDA CRV RM1 4.2 1.1 68.6 89.0 93.0 

45 HONDA JAZZ 1ST GEN 3.9 0.7 71.1 93.5 94.6 

46 HONDA CIVIC MK8 3.9 0.4 71.8 95.7 92.0 

47 
LAND ROVER RANGE 

ROVER 
3.8 0.1 73.2 98.9 91.8 

48 MERCEDES A140 3.9 0.3 72.4 96.8 91.4 

49 MERCEDES C-CLASS W202 3.7 0.2 74.0 97.9 92.0 

50 MERCEDES C-CLASS W203 3.5 0.1 75.6 99.0 92.8 

51 MERCEDES C-CLASS W204 4.8 1.8 59.0 79.5 93.4 

52 
MERCEDES E-CLASS 

COUPE 
5.2 2.5 55.3 72.2 92.2 

53 MINI COUNTRYMAN 5.2 0.9 61.0 90.0 97.2 

54 NISSAN JUKE 5.2 1.0 61.0 88.9 94.6 

55 NISSSAN MICRA TEMPEST 4.9 1.1 62.1 87.8 96.8 

56 PEUGEOT 206 4.5 1.7 63.0 81.9 96.6 

57 PEUGEOT 206 GTI 4.3 1.2 65.8 86.9 96.4 

58 PEUGEOT 207 GT 4.6 1.6 63.4 83.5 95.4 

59 
RENAULT SCENIC 

CONQUEST 
4.6 1.9 62.7 80.2 95.4 

60 RENAULT CLIO2 4.4 1.2 66.4 87.5 95.6 

61 RENAULT CLIO4 5.1 1.1 60.2 87.2 95.4 

62 
RENAULT MEGANE 

COUPE CABRIO 
5.3 1.1 59.5 87.3 97.2 

63 RENAULT MEGANE MK2 4.9 0.9 62.1 90.0 97.2 

64 SEAT IBIZA MK2 5.1 0.7 62.5 92.6 96.8 

65 SEAT IBIZA MK3 4.8 1.5 61.6 84.1 96.8 

66 SEAT IBIZA MK4 4.9 2.9 56.4 68.7 90.8 

67 SEAT IBIZA MK4 ST 4.6 0.3 66.4 96.4 89.8 
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No Car models 
False 

positive 

False 

Negative 
Precision Recall Accuracy 

68 SKODA OCTAVIA COMBI 4.3 1.3 65.8 85.9 90.2 

69 TOYOTA ECHO 1ST GEN 4.4 1.1 66.1 88.4 91.6 

70 
TOYOTA PRIUS 3TH GEN 

XP30 
4.7 0.2 66.9 97.7 91.0 

71 TOYOTA YARIS XP90 4.6 1.5 64.7 85.2 91.8 

72 TOYOTA YARIS XP130 5.5 1.7 56.6 81.0 92.0 

73 VAUXHALL INSIGNA 4.2 0.9 68.9 91.1 90.4 

74 VAUXHALL MOKKA 4.9 2.4 57.7 74.1 91.6 

75 VAUXAHLL TIGRA 3.9 0.9 70.6 91.3 92.2 

76 VAUXHALL CASCADA 4.7 1.0 63.8 89.2 94.2 

77 VOLKSWAGEN GOLF MK4 3.8 0.7 71.7 93.5 94.0 

78 VOLKSWAGEN GOLF MK5 4.2 1.5 66.1 84.7 94.0 

79 VOLKSWAGEN GOLF MK6 3.7 0.6 73.4 94.8 93.2 

80 
VOLKSWAGEN NEW 

BEETLE 
4.6 0.3 67.2 96.6 93.0 

81 VOLKSWAGEN PASSAT B5 3.4 0.7 75.4 93.9 95.6 

82 VOLKSWAGEN PASSAT B7 4.3 1.2 67.2 87.6 91.4 

83 
VOLKSWAGEN PASSAT 

CC 
3.1 0.0 78.1 100.0 93.1 

84 
VOLKSWAGEN POLO GTI 

MK4 
4.0 0.6 70.5 94.5 93.0 

85 
VOLKSWAGEN POLO GTI 

MK6 
2.9 0.6 78.9 95.1 93.4 

86 VOLKSWAGEN POLO MK4 3.9 0.3 72.0 96.8 94.6 

87 FORD GALAXY 3.1 0.0 78.1 100.0 94.4 

88 VOLKSWAGEN TOURAN 3.7 0.2 73.8 97.9 93.6 

89 VOLKSWAGEN UP 3.6 0.2 74.6 97.9 93.4 



 

110 
 

No Car models 
False 

positive 

False 

Negative 
Precision Recall Accuracy 

90 
VOLKSWAGEN 

TRANSPORT T5 
3.4 0.1 76.2 99.0 93.4 

91 AUDI S6 3.4 0.6 75.6 94.9 92.6 

92 AUDI A3 3RD GEN 3.3 0.3 76.8 97.0 95.4 

93 BMW M5 F10 3.1 0.1 78.0 99.0 95.2 

94 BMW 5S E60 2.9 0.6 78.7 95.0 95.0 

95 PEUGEOT 207 2.8 0.3 79.8 97.1 94.8 

96 
TOYOTA COROLLA 9TH 

GEN 
2.8 0.0 80.5 100.0 94.6 

97 FIAT PUNTO 2.7 0.1 81.1 99.0 93.6 

98 TOYOTA VENZA V6 2.5 0.2 82.4 98.1 94.2 

99 ALFA ROMEO MITO QV 2.5 0.0 82.8 100.0 93.8 

100 AUDI A2 2.4 0.0 83.6 100.0 93.6 

 Average (%) 4.1 0.8 69.0 91.3 93.78 

 

In table 5.2, the average classification accuracy on 100 target car models is 93.78 

% and the average false positive (false alarm) is 4.1%. In addition, the average of 

false negative, precision and recall are 0.8%, 69.0% and 91.3%, respectively. 

From the experiments using a number of car makes and models the proposed 

technique shows promising classification results with more than 90% accuracy. In 

addition, the false positive and false negative rates are less than 5 % and 1% 

respectively.  

 

As discussed in the literature, there are no published works specifically dealing 

with the problem of CMMR at night. Also, this research evaluated variety of other 

classifiers with default parameters on the same data set in order to compare the 

results with those produced by the proposed technique. Table 5.4 shows the 

experimental results from each of the classifiers. It can be seen that the proposed 

technique performs better than the other methods. Furthermore, it is shown that 
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particular features of some car models affect the classification accuracy. For 

example, the first highest classification accuracy was Mini Countryman, figure 

5.7(a), which has the classification accuracy of 97.20%, and the second was 

Renault Megane MK2, figure 5.7(b), with the classification accuracy of 97.05 %. 

From the observation, those car models have very unique taillight shapes, sizes 

and angles between taillight and licence plate position, easier for the classifier to 

distinguish them. 

 

  

(a) (b) 

Figure 5.7: Target car model images of the highest classification accuracy.  

 

Table 5.3: Classification accuracy (%) results of each set. 

No Car models 1st set 2nd set 3rd set 4st set 
Average  

by model  

1 VAUXHALL ASTRA MK4 92.4 93.0 90.6 91.0 91.8 

2 VAUXHALL ASTRA MK5 92.0 93.2 92.0 91.8 92.3 

3 VAUXHALL ASTRA MK6 92.6 93.4 93.2 92.8 93.0 

4 VAUXHALL CORSA C 93.2 91.6 92.4 91.8 92.3 

5 VAUXHALL CORSA D 93.6 93.2 93.2 93.2 93.3 

6 FORD FIETA MK6 93.8 93.6 93.2 93.4 93.5 

7 FORD FOCUS MK2 93.4 93.2 93.4 93.2 93.3 
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No Car models 1st set 2nd set 3rd set 4st set 
Average  

by model  

8 NISSAN MICRA K12 91.4 91.8 93.0 92.4 92.2 

9 NISSAN QASHQAI J10 93.4 93.2 93.6 93.8 93.5 

10 SKODA OCTAVIA 1U 93.4 93.2 93.8 92.8 93.3 

11 TOYOTA AVENSIS T250 93.2 93.8 93.4 93.8 93.6 

12 LONDON TAXI TX4 95.0 95.2 95.2 94.4 94.9 

13 VAUXHALL ADAM 95.2 95.2 95.2 95 95.2 

14 VOLKSWAGEN PASSAT B6 92.6 93.6 92.4 93.4 93.0 

15 VAUXHALL ZAFIRA 93.2 93.4 93.4 92.6 93.2 

16 VAUXHALL VECTRA 93.6 93.6 93.6 92.8 93.4 

17 VAUXHALL ASTRA GTC 94.2 94.4 94.4 94.4 94.4 

18 AUDI A3 8V 94.8 94.0 94.4 93.8 94.3 

19 AUDI A4 B7 94.0 94.2 94.4 93.6 94.1 

20 AUDI A1 95.4 94.8 95.8 95.8 95.5 

21 AUDI A3 8P 95.6 95.4 95.0 95.2 95.3 

22 AUDI Q7 95.0 94.6 94.8 95.0 94.9 

23 AUDI S5 92.4 93.4 92.6 93.4 93.0 

24 BMW 1S E87 95.2 95.6 94.4 94.4 94.9 

25 BMW 3S E92 93.2 93.6 93.6 93.2 93.4 

26 BMW 5S F10 93.8 94.6 94.4 94.2 94.3 

27 CITROEN C3 1ST GEN 94.4 93.0 93.6 94.4 93.9 

28 AUDI A4 B6 94.2 94.0 92.8 92.8 93.5 

29 CITROEN XSARA PICASSO 93.8 93.8 92.8 93.4 93.5 

30 CITROEN C3 PICASSO 95.6 95.6 95.6 95.6 95.6 
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No Car models 1st set 2nd set 3rd set 4st set 
Average  

by model  

31 CITROEN C5 DC 94.8 94.6 94.8 93.8 94.5 

32 VAUXHALL CORSA B 95.4 95.4 95.4 95.2 95.4 

33 FIAT GRADE PUNTO 95.2 95.0 95.0 94.6 95.0 

34 FIAT 500 95.0 94.8 95.0 94.8 94.9 

35 FORD C-MAX MK1 93.8 95.0 84.2 94 91.8 

36 FORD FIETA ST 94.4 94.2 93.8 92.6 93.8 

37 FORD FIESTA MK5 93.6 94.0 94.4 94.4 94.1 

38 FORD FOCUS MK1 93.8 93.4 92.8 92.4 93.1 

39 FORD FOCUS ST 93.8 92.6 93.8 93.8 93.5 

40 FORD KA 92.8 92.6 93.0 93.4 93.0 

41 FORD MONDEO MK3 93.4 93.4 93.0 93.0 93.2 

42 FORD TRANSIT CONNECT 91.8 93.2 93.0 93.0 92.8 

43 HONDA CRV RD4 93.2 92.8 93.2 93.2 93.1 

44 HONDA CRV RM1 93.0 93.4 94.6 94.2 93.8 

45 HONDA JAZZ 1ST GEN 94.6 94.2 94.8 94.8 94.6 

46 HONDA CIVIC MK8 92.0 92.0 91.4 92.2 91.9 

47 LAND ROVER RANGE ROVER 91.8 91.8 91.8 92.0 91.9 

48 MERCEDES A140 91.4 90.4 91.2 90.0 90.8 

49 MERCEDES C-CLASS W202 92.0 91.0 92.0 92.0 91.8 

50 MERCEDES C-CLASS W203 92.8 93.0 93.6 93.6 93.3 

51 MERCEDES C-CLASS W204 93.4 93.2 93.6 93.6 93.5 

52 MERCEDES E-CLASS Coupe 92.2 92.6 93.2 93 92.8 

53 MINI COUNTRYMAN 97.2 97.2 97.2 97.2 97.2 
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No Car models 1st set 2nd set 3rd set 4st set 
Average  

by model  

54 NISSAN JUKE 94.6 94.2 94.6 94.6 94.5 

55 NISSSAN MICRA TEMPEST 96.8 96.8 96.8 96.8 96.8 

56 PEUGEOT 206 96.6 96.2 96.6 96.4 96.5 

57 PEUGEOT 206 GTI 96.4 96.4 96.4 96.2 96.4 

58 PEUGEOT 207 GT 95.4 94.8 95.8 96.2 95.6 

59 
RENAULT SCENIC 

CONQUEST 
95.4 96.0 95.0 95.6 95.5 

60 RENAULT CLIO2 95.6 95.4 94.8 95 95.2 

61 RENAULT CLIO4 95.4 95.2 95.6 95.6 95.5 

62 
RENAULT MEGANE COUPE 

CABRIO 
97.2 97.0 97.0 96.6 97.0 

63 RENAULT MEGANE MK2 97.2 97.0 97.0 97.0 97.1 

64 SEAT IBIZA MK2 96.8 97.0 96.6 96.6 96.8 

65 SEAT IBIZA MK3 96.8 96.8 96.8 96.8 96.8 

66 SEAT IBIZA MK4 90.8 91.2 91.0 92.6 91.4 

67 SEAT IBIZA MK4 ST 89.8 89.6 89.6 90.6 89.9 

68 SKODA OCTAVIA COMBI 90.2 91.2 91.0 92.2 91.2 

69 TOYOTA ECHO 1ST GEN 91.6 91.8 92.4 91.8 91.9 

70 TOYOTA PRIUS 3TH GEN XP30 91.0 90.0 90.8 90.4 90.6 

71 TOYOTA YARIS XP90 91.8 93.2 91.2 92.4 92.2 

72 TOYOTA YARIS XP130 92.0 93.0 92.2 93.4 92.7 

73 VAUXHALL INSIGNA 90.4 92.0 92.0 92.6 91.8 

74 VAUXHALL MOKKA 91.6 92.2 91.2 92.4 91.9 
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No Car models 1st set 2nd set 3rd set 4st set 
Average  

by model  

75 VAUXAHLL TIGRA 92.2 91.8 92.4 92.4 92.2 

76 VAUXHALL CASCADA 94.2 93.6 94.0 92.0 93.5 

77 VOLKSWAGEN GOLF MK4 94.0 93.8 94.0 92.6 93.6 

78 VOLKSWAGEN GOLF MK5 94.0 94.0 93.4 93.8 93.8 

79 VOLKSWAGEN GOLF MK6 93.2 93.2 94.0 94.0 93.6 

80 VOLKSWAGEN NEW BEETLE 93.0 93.0 93.8 93.8 93.4 

81 VOLKSWAGEN PASSAT B5 95.6 95.6 94.8 95.4 95.4 

82 VOLKSWAGEN PASSAT B7 91.4 92.6 92.4 93.4 92.5 

83 VOLKSWAGEN PASSAT CC 93.1 93.0 93.0 93.2 93.1 

84 
VOLKSWAGEN POLO GTI 

MK4 
93.0 92.8 92.8 93.2 93.0 

85 
VOLKSWAGEN POLO GTI 

MK6 
93.4 94.2 94.4 94.8 94.2 

86 VOLKSWAGEN POLO MK4 94.6 93.8 94.6 94.2 94.3 

87 FORD GALAXY 94.4 94.4 94.4 94.4 94.4 

88 VOLKSWAGEN TOURAN 93.6 94.2 93 92.8 93.4 

89 VOLKSWAGEN UP 93.4 93.8 92.8 93.8 93.5 

90 
VOLKSWAGEN TRANSPORT 

T5 
93.4 93.8 93.6 93.4 93.6 

91 AUDI S6 92.6 93.4 92.6 92.8 92.9 

92 AUDI A3 3RD GEN 95.4 95.2 95.2 95.4 95.3 

93 BMW M5 F10 95.2 95.0 94.8 94.8 94.5 

94 BMW 5S E60 95.0 95.0 94.8 94.6 94.4 
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No Car models 1st set 2nd set 3rd set 4st set 
Average  

by model  

95 PEUGEOT 207 94.8 94.2 94.8 94.8 94.2 

96 TOYOTA COROLLA 9TH GEN 94.6 94.0 93.2 94.2 94.0 

97 FIAT PUNTO 93.6 92.4 93.2 94.2 94.2 

98 TOYOTA VENZA V6 94.2 93.8 93.0 94.2 94.3 

99 ALFA ROMEO MITO QV 93.8 94.0 93.6 94.0 93.9 

100 AUDI A2 93.6 93.6 93.6 93.8 93.7 

 Average by feature set (%) 93.77 93.97 93.56 93.83 93.78 

 

From table 5.3, the classification accuracy on the second set outperforms other 

feature sets. The average accuracy is accounted at 93.97% following by the fourth, 

first and third feature sets, respectively. However, the experiments are tested on 

100 CMMs. It is possible that prediction accuracy could be changed by increasing 

the number of CMMs in dataset. In section 4.3.4, the number of features in each 

feature subset was discussed. The first set has 140 features, which is the largest 

feature number of all feature subsets. Although the first set has the highest number 

of features, the prediction rate of the set was not reported with the highest 

classification accuracy. From observation, the classification accuracy depends on 

the discriminant features used rather than a number of features. Moreover, using 

many features may have redundant features that lead to decrease accuracy and 

increase time consumed. 

 

From the experiments, it can be noted from table 5.4 that the proposed method 

reported the highest average classification accuracy at about 93.78%, which 

outperforms other methods including linear SVM, radial basis function SVM 

(RBFSVM), decision tree nearest neighbour and no applied feature selection. 

Although the proposed technique illustrated high prediction accuracy, 

computational times to seek optimum features were very large.  
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Table 5.4: Comparison with other classification methods. 

Classification methods 1st set 2nd set 3rd set 4st set 
Average 

accuracy (%) 

Linear SVM 88.76 88.71 88.34 88.21 88.50 

RBF SVM (sigma = 0.5) 86.68 87.88 86.82 87.81 87.30 

Decision tree 91.37 91.46 91.24 91.31 91.34 

Nearest neighbour 92.17 92.26 91.86 91.83 92.03 

No applied feature selection 93.22 93.76 93.19 93.58 93.43 

Proposed method 93.77 93.97 93.56 93.83 93.78 

 

In the training process, the no applied feature selection method consumed about a 

minute to train classifiers. On the other hand, GA was computationally expensive. 

It was about 70 times that of no applied features selection. Figure 5.8 shows 

CMM training time of the two methods. 

 

 

Figure 5.8: Comparison of training time of GA method with no applied feature 

selection. 
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Even though GA training was reported as highly time-consuming, the training 

work is basically implemented in an offline process. Thus, the large computation 

time can be accepted. In addition, the system was implemented using MATLAB. 

If the algorithm employed other technologies, the computation times may be 

decreased. 
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CHAPTER 6 

CONCLUSION  
 

This chapter presents the conclusions of the research and future works. The aim of 

this research is to present a car make and model recognition (CMMR) technique 

to work under limited lighting at night. The technique should not only recognise 

car make and model but also classification performance should be satisfied.  

 

The majority of previous CMMR works presented are for daytime where visual 

appearances are clearly obtained. Several techniques, for example, edge-based 

feature and texture-based feature, are proposed in daytime and classification 

accuracy rates of these techniques were reported at more than 90%. Unlike 

daytime, at night, there are few appearances, head-lights, tail-lights, and licence 

plate, which can be used to recognition car models. In addition, capturing images 

at night poses light reflection problems. Reflections might occur from many light 

sources at night, such as street-lamps, headlights, taillights and brake-lights of 

other cars which will interfere with car appearances. Therefore, CMMR 

techniques in the night-time condition are very challenging. 

 

A CMMR technique is proposed in this research in order to solve the problem of 

CMMR at night. The technique presents discriminant features from available 

appearances. To classify the defined features, a classification strategy is also 

presented to recognise CMM and could possibly be used in real-world 

applications, such as intelligent transport, traffic law enforcement and monitoring 

systems. 
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6.1 Conclusions 

 

The conclusions are provided as follows.  

 

1) As shown in section 4.3.3, distinguishable features of a car rear view are 

introduced to recognise CMM under limited lighting conditions at night. The 

features of taillight and licence plate are used in the proposed method. The 

experimental results show that the presented features can be used to classify 

CMM and moreover, the average classification accuracy results are reported at 

more than 90%. In addition, some car models having very unique appearances are 

reported with high recognition accuracy with the proposed features.  

 

2) In real video images, predefined features could be undetected due to many 

factors, as given in section 4.3.4. To solve this problem, the technique separates 

features into four feature sets depending on appearance – taillights and licence 

plate – detection. The numbers of each feature set are 140, 69, 131 and 65, 

respectively. All sets were tested in order to evaluate the robustness of the 

proposed technique and features used. The experimental results of each set were 

93.77, 93.97, 93.56 and 93.83, respectively. The results were reported that the 

highest classification accuracy was the second set with 93.97%. Even though, the 

second set has only 69 features which is less than the first and third feature sets. 

From the observation, the classification accuracy does not depend on the number 

of features but it is greatly affected by distinguishable features used. Furthermore, 

using many features might lead to a number of redundant features resulting in 

classification error and a longer computation time. Although to classify car 

appearances at night has limitation, the classification accuracy of car models 

grained from the technique used in the present study is high, more than 90%. To 

consider the daytime technique, which various appearances can be used, the 

classification accuracy is 98% (Zhang, 2013). The classification accuracy of the 

car appearances at night technique is a bit lower than the daytime technique. 

However, with the limitation of car appearances at night, the classification 
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accuracy of the car appearances gained from the technique used in this study is 

satisfied. 

 

3) In the research, a genetic algorithm feature subset selection technique is 

employed in order to find optimum (discriminant) features of each car model. As 

discussed in section 4.3.5, a vehicle may have a certain group of dominant 

features and therefore an optimum feature selection is required for application. 

With the implemented genetic algorithm feature selection technique, the 

prediction accuracy improves compared to no applied feature selection. 

 

4) In the classification process, a binary class classification technique is applied in 

order to recognise the CMM of interest in an image from other models. The 

classification technique implements a classifier ensemble of three classifiers: 

Support Vector Machine, Decision Tree and k-Nearest Neighbours. Each 

classifier predicts test data into two classes: target and other. The final prediction 

is obtained by a majority vote method of the three classifiers. It has been proven 

elsewhere that an ensemble method can improve classification accuracy and 

furthermore the method can reduce data distribution (high variance) of untrained 

data. The proposed technique could be applied in real-world systems, for example, 

intelligent transport, traffic law enforcement and monitoring systems to find 

suspected or black-listed cars in CCTV images. 

 

6.2 Contributions 

 

6.2.1 CMMR technique at night 

 

In the literature, most of previous researches present CMMR technique to be used 

in daytime condition that many car appearances can be easily obtained from 

image. This research, on the other hand, presents the first CMMR technique to 

solve the problem of recognition under limited light at night. Although, car 

appearances in image captured at night is limited, the classification accuracy of 
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the proposed method is acceptable, more than 90% accuracy tested on 100 target 

car models against 400 other models.  

 

6.2.2 Distinguishable feature used 

 

The accuracy of CMMR relies on the discriminant car appearances or features 

used in image. In previous research, most of them dedicate to solve the problem of 

CMMR in daytime image. Variety features, for example edge feature, transform 

feature, texture feature, SIFT feature and SURF feature, are used as the data to 

recognise car make and model. At night, car appearances, texture, grill, headlight 

shape etc., are faded or reduced to headlight, taillight and licence plate. The 

daytime features and feature detection techniques used lead to incorrect CMMR in 

this condition. This research defined distinguishable features from available 

appearances to classify CMM. The accuracy from the defined features is satisfied 

to CMMR system implementation at night. 

 

6.3.2 Classification strategy 

 

In addition, the classification accuracy is depended on the classification technique. 

In previous studies, many classifiers and classification techniques are 

implemented. The research applies many classification techniques such as 

classification ensemble, feature selection, optimized technique and pruning 

method in order to have high classification accuracy as much as possible. First, 

classifier ensemble is employed in the research which uses more than one 

classifier to decide the final classification result together in order to obtain high 

classification accuracy. Next, feature selection is applied to select feature subset 

for each car model which improves the classification accuracy and can reduce 

computation time of classification process. Then, optimization technique is used 

in SVM to obtain optimum parameters in order to get high classification accuracy 

and last pruning technique is employed to decision tree to avoid the possibility of 

over-fitting in order to reduce classification error. Majority of published CMMR 

techniques is implemented based on multi-class classification strategy. This 
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research presents single-class classification to classify car make and model in 

order to be used in real world application (traffic law enforcement) to detect car 

model of interest when a suspicious car model is reported. 

 

6.3 Future works 

 

As mentioned in chapter 4, the proposed method uses taillight shape and licence 

plate size and position measuring as features to classify CMMs. Therefore, the 

limitation of this method is when those appearances are similar in many car 

models. This might lead to a decrease in the classification performance. First, 

some CMMs from the same company have similar design of visual appearances. 

Figure 6.1 shows car rear view of two models; Vauxhall Astra GTC and Vauxhall 

Astra MK6. It can be seen that their taillight shape and licence plate position are 

very similar.  

 

Another problem is non-unique taillight shape, such as circular. The problem will 

occur when only one taillight is detected. Figure 6.2 shows example images of 

four cars from different companies having similar circular taillight shape. To 

solve this problem, increasing distinguishable features, especially taillight shape 

features, could present more detail of the CMM which would improve 

classification accuracy. 

 

  

(a) (b) 

Figure 6.1: Example car models with similar taillight shape from the same 

company. (a) Vauxhall Astra GTC. (b) Vauxhall Astra MK6.  

 



 

124 
 

  

(a) (b) 

  

(c) (d) 

Figure 6.2: Example car models with similar, circular, taillight shape. 

(a) Volkswagen Passat B6. (b) Volvo bus. (c) Fiat 500. (d) Peugeot 107. 

 

Furthermore, the proposed method only considers CMMR technique under limited 

lighting at night where there are some lights within an image making the image 

not too dark. In this circumstance, the presented features can be extracted from the 

image that can be used to classify CMMs. However, extremely dark scenes are 

not mentioned in this work. In dark images, such as images captured in rural 

areas, few appearances may be detected such as taillights. Future work will 

attempt to find available dominant features to recognise CMM in this condition. 

 

One of limitations of the current study is to rotate subject image manually until it 

has symmetrical view. The angles used are varied and depend on camera positions 

and views. Future work will attempt to find technique to rotate subject image 

automatically.  
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The study recognises car make and models only symmetrical car rear view. 

Therefore, images have to be rotated to the defined view before sending to the 

classification process. In future work, method will be able to classify car make 

and models from various views, for example, left side, right side and front views. 

 

The current study can recognise only one car model at a time. Future work will 

improve to recognise more than one car in an image in order to use with high way 

or multi lanes streets. 

 

The study uses traditional classification methods: SVM, DT, kNN and Majority 

voting method. Future work will attempt to implement with sophisticated or 

complex classification techniques, for example, convolution neural network and 

dynamic Bayesian network which might be able to increase classification 

accuracy. 

 

The video images tested in this study were captured cars in the city area where car 

speed is limited (not over 50 mph). Future work will improve technique to 

recognise CMMs to use with unlimited car speeds.   

 

In feature selection process, the study uses binary GA which is limited when used 

to select the feature subset. In order to further development, complex GA or other 

feature selection techniques will be used for evaluation and analysis. 

 

The study aims to differentiate and classify targeted car model from other model. 

One-class classification method can be solved this problem. Future work will 

implement one-class classification further on this problem.  

 

The proposed research is applied to the dataset of Chen et al. (2015). This dataset 

includes variety of image light conditions in daytime, various image captured 

angle and both front and rear view images. The results showed that the research 

technique cannot work well on Chen et al.(2015)'s data set because the techniques 

is designed to detection taillight and licence plate at night which all associative 
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parameters are defined for specific light condition as night-time. The future work 

will find a technique to cope various image light conditions in both day and night- 

time. 
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APPENDIX A 

IMAGES OF TARGET CAR 
MODELS 
 

  

VAUXHALL ASTRA MK4 VAUXHALL ASTRA MK5 VAUXHALL ASTRA MK6 

 
 

VAUXHALL CORSA C VAUXHALL CORSA D FORD FIESTA MK6 

  

FORD FOCUS MK2 NISSAN MICRA K12 NISSAN QASHQAI J10 

  

SKODA OCTAVIA 1U TOYOTA AVENSIS T250 LONDON TAXI TX4 
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VAUXHALL ADAM VOLKSWAGAN PASSAT B6 VAUXHALL ZAFIRA 

 
 

VAUXAHLL VECTRA VAUXHALL ASTRA GTC AUDI A3 8V 

  

AUDI A4 B7 AUDI A1 AUDI A3 8P 

  

AUDI Q7 AUDI S5 BMW 1S E87 

  

BMW 3S E92 BMW 5S F10 CITROEN C3 1ST GEN 
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AUDI A4 B6 CITROEN XSARA PICASSO CITROEN C3 PICASSO 

  

CITROEN C5 DC VAUXHALL CORSA B FIAT GRADE PUNTO 

  

FIAT 500 FORD C-MAX MK1 FORD FIETA ST 

  

FORD FIESTA MK5 FORD FOCUS MK1 FORD FOCUS ST 

  

FORD KA FORD MONDEO MK3 FORD TRANSIT CONNECT 
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HONDA CRV RD4 HONDA CRV RM1 HONDA JAZZ 1ST GEN 

  

HONDA CIVIC MK8 LAND ROVER MERCEDES A140 

  

MERCEDES C-CLASS W202 MERCEDES C-CLASS W203 MERCEDES C-CLASS W204 

 
 

MERCEDES E-CLASS_Coupe MINI COUNTRYMAN NISSAN JUKE 

  

NISSSAN MICRA TEMPEST PEUGEOT 206 PEUGEOT 206 GTI 
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PEUGEOT 207 GT RENAULT SCENIC CONQUEST RENAULT CLIO2 

   

RENAULT CLIO4 RENAULT MEGANE COUPE 

CABRIO 

RENAULT MEGANE MK2 

  

SEAT IBIZA MK2 SEAT IBIZA MK3 SEAT IBIZA MK4 

  

SEAT IBIZA MK4 ST SKODA OCTAVIA COMBI TOYOTA ECHO 1ST GEN 

  

TOYOTA PRIUS 3GEN XP30 TOYOTA YARIS XP90 TOYOTA YARIS XP130 
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VAUXHALL INSIGNA VAUXHALL MOKKA VAUXAHLL TIGRA 

 
 

VAUXHALL CASCADA VOLKSWAGEN GOLF MK4 VOLKSWAGEN GOLF MK5 

  

VOLKSWAGEN GOLF MK6 VOLKSWAGEN NEW BEETLE VOLKSWAGEN PASSAT B5 

  

VOLKSWAGEN PASSAT B7 VOLKSWAGEN PASSAT CC VOLKSWAGEN POLO GTI 

MK4 

  

VOLKSWAGEN POLO GTI 

MK6 

VOLKSWAGEN POLO MK4 FORD GALAXY 
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VOLKSWAGEN TOURAN VOLKSWAGEN UP VOLKSWAGEN  

TRANSPORT T5 

  

AUDI S6 AUDI A3 3RD GEN BMW M5 F10 

  

BMW 5S E60 PEUGEOT 207 TOYOTA COROLLA 9TH GEN 

  

FIAT PUNTO TOYOTA VENZA V6 ALFA ROMEO MITO QV 

 

  

AUDI A2   
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APPENDIX B 

LIST OF CAR MODEL OPTIMUM 
FEATURE SUBSET 

  

Car models Optimum feature index 
Number of 

features 

VAUXHALL ASTRA 

MK4 

4 5 7 8 9 10 11 14 15 16 19 22 26 28 30 31 32 36 38 40 
44 45 47 56 57 61 62 63 65 67 71 72 74 78 81 82 84 88 
93 94 97 101 103 108 110 111 112 113 117 118 119 120 
124 125 126 134 135 136 137 

59 

VAUXHALL ASTRA 

MK5 

1 2 3 5 6 8 12 13 16 20 22 24 25 27 29 30 32 34 35 37 38 
41 42 43 44 45 47 51 52 55 57 58 59 66 67 71 72 73 75 
79 82 88 90 92 94 95 96 100 101 102 103 104 107 113 
116 117 118 120 122 125 128 130 131 133 135 136 138 
140 

68 

VAUXHALL ASTRA 

MK6 

2 5 7 8 10 13 17 24 26 27 28 29 30 31 37 38 39 41 46 47 
54 55 57 62 64 65 68 69 71 72 74 77 79 80 83 88 90 91 
92 93 94 96 104 113 114 116 118 120 121 125 130 131 
135 139 

54 

VAUXHALL  

CORSA C 

2 3 4 7 10 11 19 20 25 29 31 36 37 39 43 44 45 46 47 48 
50 56 58 59 60 63 69 70 75 76 78 79 82 83 84 88 90 94 
95 96 97 98 100 101 102 104 107 110 111 113 117 118 
120 122 124 126 129 

57 

VAUXHALL  

CORSA D 

4 5 6 7 8 9 11 17 18 20 22 23 24 25 26 31 32 34 37 38 39 
42 44 49 50 51 55 56 57 59 62 64 65 67 68 69 70 73 74 
77 78 79 84 86 88 91 93 94 95 98 99 100 101 103 104 
105 107 108 109 110 114 117 118 120 122 123 125 127 
128 129 131 132 133 134 136 140 

76 

FORD FIETA MK6 

2 3 4 5 6 7 8 11 14 15 17 20 21 23 25 26 30 32 35 36 37 
38 39 41 44 45 46 48 49 50 52 55 57 59 61 62 63 65 67 
69 71 72 74 76 81 83 87 88 90 94 95 98 104 105 106 109 
111 112 113 116 117 120 123 124 127 129 130 132 134 
138 

70 

FORD FOCUS MK2 

2 5 7 8 9 11 13 17 20 21 22 24 25 26 29 31 32 33 35 37 
40 41 44 48 57 58 60 62 63 68 70 71 72 74 75 81 83 84 
86 89 91 92 93 97 98 99 100 102 103 105 106 108 109 
111 116 117 118 119 120 123 124 128 130 131 133 136 
138 140 

68 



 

149 
 

NISSAN MICRA K12 

3 4 5 6 7 8 10 11 12 13 15 16 18 20 25 26 27 28 32 43 44 
49 52 53 55 59 60 61 64 74 78 83 88 95 99 100 101 103 
104 105 107 108 111 113 115 116 117 118 119 121 125 
126 131 138 139 140 

56 

NISSAN QASHQAI 

J10 

3 4 8 9 12 16 22 23 25 26 27 29 31 33 34 35 36 38 39 42 
44 47 49 52 53 55 56 57 58 60 61 63 71 72 73 76 77 78 
80 81 83 84 85 87 88 91 96 103 104 106 109 114 118 
119 120 122 123 125 128 129 132 133 137 138 139 

65 

SKODA OCTAVIA 

1U 

1 2 5 6 10 11 13 15 17 19 20 22 24 28 31 32 34 37 38 39 
40 41 43 44 46 47 48 49 51 53 56 58 61 62 63 65 67 69 
70 76 77 79 84 85 88 89 91 94 97 99 103 107 110 112 
114 116 117 118 121 122 127 134 135 136 139 

65 

TOYOTA AVENSIS 

T250 

1 2 5 6 10 11 12 13 14 17 19 20 21 22 24 25 28 33 36 38 
39 40 42 43 54 55 57 58 59 60 61 62 63 64 65 67 71 74 
75 77 80 81 83 87 88 90 91 95 100 101 102 103 105 106 
107 108 110 111 112 114 115 116 117 120 122 123 124 
126 127 128 134 137 140 

73 

LONDON TAXI TX4 

5 7 9 12 14 15 16 17 19 24 26 28 30 31 33 34 35 37 38 
39 41 42 43 44 45 46 47 49 51 52 53 55 57 58 59 61 62 
63 66 67 72 73 75 76 79 85 87 89 92 93 95 96 99 101 
104 107 109 112 113 114 115 116 118 119 120 121 123 
124 125 126 128 130 131 132 133 134 136 137 138 

79 

VAUXHALL ADAM 

1 2 3 4 5 6 9 12 13 16 17 20 23 25 27 28 29 32 34 36 37 
38 41 46 51 53 54 57 58 59 60 61 62 65 67 69 74 75 76 
81 82 83 89 91 92 93 95 96 97 99 101 103 108 113 114 
115 118 119 123 125 126 128 129 130 131 133 134 136 
137 139 

70 

VOLKSWAGEN 

PASSAT B6 

3 6 8 9 11 15 16 17 18 20 21 23 27 28 29 32 33 37 39 40 
46 47 48 52 53 54 55 56 59 60 62 63 64 65 67 69 71 72 
73 75 78 80 81 82 84 90 91 92 93 98 99 100 101 109 110 
111 112 113 115 116 117 123 125 126 128 130 132 134 
135 136 139 

71 

VAUXHALL 

ZAFIRA 

1 2 4 6 7 8 9 10 11 16 19 20 21 22 23 26 27 28 30 32 34 
36 38 41 43 44 45 50 53 55 56 59 61 63 65 66 68 71 72 
73 74 75 77 81 84 86 87 89 91 92 93 97 101 103 106 108 
110 111 112 114 115 119 123 124 125 127 135 137 138 
140 

70 

VAUXHALL 

VECTRA 

1 6 7 11 13 14 16 17 18 19 21 22 23 24 25 28 33 34 37 
38 39 41 44 46 48 49 50 51 52 53 54 55 56 57 59 64 69 
75 76 79 80 81 82 84 85 87 88 91 94 96 98 102 103 104 
105 107 108 110 111 112 114 116 120 121 124 126 127 
128 130 134 135 137 140 

73 

VAUXHALL ASTRA 

GTC 

4 5 11 14 17 20 21 25 27 28 29 32 34 36 38 39 42 44 45 
51 55 56 57 60 64 65 66 69 71 72 73 74 76 77 78 79 81 
83 85 88 89 90 97 101 102 103 104 106 107 110 116 117 
118 120 121 122 127 128 129 130 131 132 134 137 139 

65 



 

150 
 

AUDI A3 8V 

2 3 4 5 6 8 11 13 14 15 17 18 21 22 23 24 26 28 32 35 42 
43 46 48 50 57 58 65 66 71 72 73 74 76 84 85 86 88 89 
90 92 95 96 97 98 99 103 108 110 111 112 113 114 115 
119 121 125 127 133 134 135 136 137 138 

64 

AUDI A4 B7 

1 2 3 4 5 6 9 12 13 16 17 20 23 25 27 28 29 32 34 36 37 
38 41 46 51 53 54 57 58 59 60 61 62 65 67 69 74 75 76 
81 82 83 89 91 92 93 95 96 97 99 101 103 108 113 114 
115 118 119 123 125 126 128 129 130 131 133 134 136 
137 139 

70 

AUDI A1 

1 6 9 10 12 13 15 16 18 22 23 24 25 26 30 32 34 35 36 
38 39 42 43 45 46 49 51 53 54 55 60 61 62 63 64 66 67 
69 71 73 74 77 78 79 82 83 84 85 91 92 93 96 101 105 
108 110 115 120 121 122 123 125 127 129 132 133 135 
136 137 138 139 

71 

AUDI A3 8P 

1 2 3 5 6 8 9 10 11 12 14 16 19 23 26 27 33 34 36 40 45 
48 49 50 51 54 55 58 64 65 66 68 70 71 75 78 79 80 88 
90 93 96 98 99 102 103 105 106 107 109 110 112 116 
117 118 119 120 121 122 128 129 130 131 135 136 137 
139 

67 

AUDI Q7 

1 2 3 5 6 10 11 15 16 18 19 21 22 23 27 29 30 31 32 34 
37 38 40 41 43 44 45 49 50 53 54 55 62 66 67 69 70 71 
73 74 75 76 81 83 85 86 93 98 100 101 102 103 104 105 
114 115 116 117 119 124 129 138 139 140 

64 

AUDI S5 

3 5 9 11 12 14 15 18 20 21 22 23 24 27 28 30 34 35 36 
39 43 44 46 47 52 55 57 60 63 65 66 69 71 72 74 75 76 
77 79 85 89 91 92 94 98 99 102 105 106 107 111 114 
115 119 123 124 127 128 131 133 137 

61 

BMW 1S E87 

1 3 6 7 10 16 25 27 33 35 39 43 44 45 46 47 48 49 51 52 
57 58 60 62 64 65 66 69 71 72 74 77 79 80 82 84 85 88 
89 90 92 93 96 99 103 104 105 108 109 111 117 118 119 
121 123 134 139 

57 

BMW 3S E92 

3 4 5 9 10 11 14 18 23 29 31 32 33 35 39 40 41 42 43 45 
46 49 50 52 57 62 63 64 66 67 73 75 78 82 86 89 96 102 
104 106 109 111 112 115 118 122 126 129 131 136 137 
138 139 140 

54 

BMW 5S F10 

1 4 6 8 10 11 13 14 17 19 21 31 32 33 34 38 44 47 49 53 
55 57 65 67 70 71 73 74 75 76 79 81 85 86 87 91 94 95 
99 102 107 110 114 116 119 122 123 124 125 127 128 
129 130 131 134 136 138 140 

58 

CITROEN C3 1ST 

GEN 

1 2 6 8 10 11 17 18 19 22 23 25 27 28 29 30 32 33 37 38 
39 40 42 43 44 45 47 48 50 53 54 55 58 60 61 64 66 68 
71 75 77 79 81 82 83 85 87 88 91 94 95 97 100 101 103 
104 105 107 108 110 115 119 120 121 124 125 134 136 
 
 

68 
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AUDI A4 B6 

4 5 6 7 10 15 18 19 22 25 30 31 32 33 35 37 39 46 48 51 
53 55 57 58 59 62 64 65 66 67 70 72 73 74 77 82 83 85 
87 90 91 92 93 97 98 99 100 103 104 109 111 117 118 
119 120 123 124 126 127 131 135 136 137 139 140 

65 

CITROEN XSARA 

PICASSO 

1 2 7 8 10 12 13 14 15 16 20 22 23 25 28 29 31 33 34 37 
38 40 42 43 45 49 58 59 64 65 66 70 73 77 79 83 85 86 
89 91 93 94 95 96 98 99 100 103 106 110 115 116 117 
118 121 122 125 126 129 130 132 134 135 137 139 

65 

CITROEN C3 

PICASSO 

1 2 4 5 8 9 13 16 17 19 22 23 25 29 30 32 34 36 38 40 41 
46 48 49 50 51 52 54 55 56 57 58 60 62 63 65 69 73 78 
82 83 86 87 89 92 93 94 97 98 100 101 103 105 106 109 
113 115 117 118 119 120 121 125 127 128 130 131 133 
134 140 

70 

CITROEN C5 DC 

1 2 3 5 9 12 14 15 16 23 24 25 26 27 29 31 33 37 40 43 
45 47 49 50 52 55 62 65 66 67 68 69 73 76 77 78 80 81 
85 86 87 88 92 93 94 97 99 101 104 106 109 110 111 
115 116 118 121 123 125 126 127 132 134 135 136 138 

66 

VAUXHALL  

CORSA B 

2 3 4 6 9 10 11 13 16 17 18 23 25 26 27 28 29 32 34 38 
39 41 42 47 54 55 57 58 61 63 64 65 66 69 70 77 78 79 
80 81 82 87 90 95 96 97 98 102 105 106 110 112 114 
118 119 121 123 129 130 132 133 135 136 137 138 139 

66 

FIAT GRADE 

PUNTO 

1 3 9 11 12 13 20 22 23 25 26 27 28 32 33 34 35 36 37 
39 40 41 42 45 48 50 51 53 57 59 61 62 64 69 72 73 76 
82 86 89 90 92 93 95 96 100 101 102 105 110 111 113 
115 120 121 123 126 128 130 132 133 134 135 136 139 
140 

66 

FIAT 500 

3 7 9 12 13 15 18 19 21 23 24 26 27 28 29 30 33 37 38 
40 41 42 43 47 50 51 58 59 60 61 63 67 68 70 71 73 76 
77 78 80 82 88 92 98 100 103 107 111 112 113 114 116 
117 123 125 126 127 128 130 132 133 134 135 137 140 

65 

FORD C-MAX MK1 
1 2 3 10 12 13 16 18 20 25 26 28 32 33 40 41 48 58 62 
64 65 69 70 76 77 78 83 85 86 89 91 93 94 97 98 104 
105 107 111 115 120 121 123 133 135 136 137 139 140 

49 

FORD FIETA ST 

1 4 5 6 7 9 10 11 12 13 16 19 20 21 23 26 28 29 30 31 33 
34 35 37 38 40 41 42 44 45 46 51 52 56 58 60 63 71 73 
74 75 78 83 87 88 91 94 96 97 98 99 100 102 103 105 
107 113 116 120 123 124 125 126 127 128 129 130 131 
133 138 140 

71 

FORD FIESTA MK5 

2 11 12 13 16 17 21 24 25 26 28 30 33 37 38 41 44 47 49 
50 51 54 55 56 58 60 61 63 64 67 71 74 78 79 81 88 89 
94 96 97 98 102 105 106 107 109 111 114 117 118 121 
122 127 128 131 133 135 137 138 140 
 
 
 

60 



 

152 
 

FORD FOCUS MK1 

1 2 3 5 6 9 11 12 13 16 17 25 26 27 28 31 32 33 38 41 43 
44 45 46 48 49 51 52 55 56 58 62 64 67 70 71 72 73 76 
78 79 82 85 87 94 95 97 98 100 102 103 105 106 112 
113 114 115 116 120 123 125 126 127 129 130 132 136 
137 138 140 

70 

FORD FOCUS ST 

2 3 4 6 11 12 14 16 18 19 21 23 24 27 28 29 32 34 36 39 
40 45 48 49 50 51 54 55 56 57 59 60 61 62 65 66 69 72 
76 77 78 79 83 84 85 86 87 91 92 93 94 95 96 97 99 101 
104 107 109 110 112 113 114 115 117 119 123 125 126 
128 129 130 138 140 

74 

FORD KA 

2 4 15 21 22 27 30 31 33 35 36 37 39 42 44 45 46 47 48 
49 50 52 57 65 66 70 72 74 75 76 81 85 87 88 89 94 96 
97 99 101 106 107 109 110 111 112 113 115 116 117 
118 119 120 121 123 124 126 133 140 

59 

FORD MONDEO 

MK3 

4 5 6 7 9 15 16 17 19 23 24 27 28 32 34 46 47 48 49 50 
52 53 54 57 59 60 61 64 66 67 68 70 74 75 77 78 79 84 
85 86 88 90 92 94 98 99 101 105 106 107 108 109 110 
113 114 116 118 119 121 125 126 128 129 131 132 134 
135 137 138 140 

70 

FORD TRANSIT 

CONNECT 

2 3 7 8 11 16 20 21 22 23 24 25 28 30 32 33 34 40 47 49 
51 56 57 61 62 64 68 69 71 73 74 76 77 79 80 82 85 94 
96 97 99 102 108 109 110 111 113 115 122 123 124 125 
126 127 130 133 136 137 138 139 140 
 

61 

HONDA CRV RD4 

1 2 3 4 6 9 11 12 15 17 20 22 23 24 25 26 28 30 31 32 33 
34 35 36 37 38 39 41 42 43 44 45 47 48 49 50 52 54 55 
56 57 58 59 61 62 63 65 69 72 74 76 78 80 82 83 84 85 
86 88 89 91 92 93 94 97 98 99 101 102 103 104 105 106 
108 111 112 114 120 121 122 123 125 129 132 134 137 
139 

87 

HONDA CRV RM1 

1 2 3 8 10 15 16 21 26 28 29 31 33 34 35 36 38 39 41 45 
46 49 51 54 55 56 58 59 62 64 66 70 71 73 74 77 79 80 
85 88 90 94 95 96 101 102 104 107 109 111 112 114 115 
116 119 122 124 126 129 131 133 136 137 139 

64 

HONDA JAZZ 1ST 

GEN 

2 7 9 10 12 13 14 15 16 17 21 23 25 31 33 34 35 36 37 
39 43 45 46 47 48 54 55 56 58 60 61 65 67 70 81 82 83 
84 85 88 91 95 96 97 98 99 101 102 107 108 110 113 
117 118 119 120 123 126 128 131 133 135 140 

63 

HONDA CIVIC MK8 
1 2 3 4 6 10 11 15 23 24 32 33 44 46 50 51 54 55 59 60 
65 67 69 70 71 74 75 76 77 78 79 81 83 87 88 89 91 94 
96 100 102 104 107 117 120 122 125 130 131 138 139 

51 

LAND ROVER 

RANGE ROVER 

1 3 6 7 8 10 12 17 20 21 22 23 26 28 29 30 31 32 34 37 
39 40 46 48 49 50 51 54 56 57 60 61 62 65 66 68 70 73 
74 75 82 86 87 92 94 96 97 99 100 101 104 107 110 111 
112 113 115 118 120 125 130 132 133 134 135 137 139 
140 

68 
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MERCEDES A140 

1 2 3 5 6 7 9 14 15 18 21 22 23 24 36 37 39 41 42 43 45 
46 48 51 52 54 55 57 59 61 62 63 69 74 76 78 82 86 89 
90 92 94 96 97 98 101 102 103 104 105 106 108 109 110 
112 113 116 117 118 120 122 123 126 128 129 131 133 
134 

68 

MERCEDES C-

CLASS W202 

3 6 11 13 14 15 18 19 21 22 23 24 25 27 30 31 32 34 37 
39 40 41 43 46 49 50 54 55 57 58 62 64 66 68 70 71 75 
78 79 89 91 92 94 95 96 97 100 104 105 106 108 109 
112 114 115 117 119 120 121 123 125 129 131 133 138 
139 

66 

MERCEDES C-

CLASS W203 

2 3 4 6 13 14 15 17 19 21 26 29 33 34 38 39 44 46 47 48 
49 50 52 54 59 62 63 67 69 73 75 76 83 84 85 86 90 91 
92 93 96 97 99 100 102 103 105 106 107 109 111 113 
121 122 123 124 127 131 133 135 136 137 

62 

MERCEDES C-

CLASS W204 

7 9 11 17 19 21 22 23 25 28 30 33 35 37 40 42 43 44 45 
46 55 56 59 62 64 65 66 67 68 69 70 77 78 79 82 84 89 
90 92 95 96 98 100 104 107 111 116 117 118 119 120 
121 122 124 128 131 138 139 140 

59 

MERCEDES E-

CLASS COUPE 

2 4 6 8 10 11 16 21 22 23 26 27 30 33 35 42 46 50 53 55 
56 62 63 66 67 68 70 75 82 83 86 91 93 100 101 107 111 
112 114 117 118 120 121 125 129 132 134 136 140 

49 

MINI 

COUNTRYMAN 

1 3 9 10 13 18 19 21 23 24 26 30 33 36 39 41 42 45 47 
48 49 50 53 55 57 59 60 63 71 73 75 77 81 82 84 87 89 
90 99 102 103 106 108 112 113 115 116 118 119 120 
122 123 124 

53 

NISSAN JUKE 

2 4 5 6 7 10 13 16 17 19 20 26 29 32 33 34 36 38 39 41 
49 52 55 56 57 58 59 65 66 69 71 74 76 78 82 84 88 89 
93 94 95 96 99 100 102 105 109 110 112 113 114 116 
117 

53 

NISSSAN MICRA 

TEMPEST 

1 6 7 9 10 15 16 18 19 20 23 24 25 26 30 31 33 38 43 45 
46 47 51 52 53 56 57 58 61 70 73 74 78 80 83 85 92 93 
97 99 100 104 106 107 112 115 117 119 120 121 122 
125 129 

53 

PEUGEOT 206 
2 3 4 5 6 7 9 14 15 17 19 21 23 28 29 31 35 36 37 38 40 
44 47 48 49 51 53 54 55 58 60 61 62 64 66 67 68 70 72 
78 79 86 88 89 94 95 96 99 102 103 104 106 107 

53 

PEUGEOT 206 GTI 
3 9 10 11 12 13 14 16 17 19 20 26 28 29 32 34 35 37 39 
40 41 42 44 45 46 47 50 55 56 57 58 61 63 66 67 68 69 
72 74 77 78 81 82 83 86 87 88 90 91 93 95 96 101 

53 

PEUGEOT 207 GT 

1 2 7 8 9 16 17 18 21 22 26 28 32 33 39 41 45 47 48 54 
56 60 63 64 67 70 74 77 81 82 87 88 89 91 92 93 94 95 
97 101 102 103 104 106 108 110 112 118 128 129 131 
137 
 

52 



 

154 
 

RENAULT SCENIC 

CONQUEST 

2 4 9 11 12 13 15 16 17 18 19 22 23 26 27 30 32 33 35 
36 39 40 41 43 44 46 49 56 57 58 60 62 64 65 68 70 72 
77 81 83 95 97 98 99 102 103 104 108 111 112 113 119 
120 122 124 127 128 129 136 137 139 

61 

RENAULT CLIO2 

2 3 5 6 7 8 15 17 18 19 21 25 27 28 29 36 39 41 42 43 47 
50 51 52 54 55 56 60 63 64 66 67 73 75 77 82 87 89 90 
91 93 94 95 96 97 99 103 104 108 113 114 118 119 120 
121 123 125 127 129 134 137 138 139 140 

64 

RENAULT CLIO4 

1 6 9 13 18 19 20 21 23 24 26 27 28 31 32 36 40 41 42 
44 47 48 54 55 56 57 59 62 64 65 67 69 70 73 74 76 77 
78 82 83 85 86 87 89 90 91 92 93 96 97 99 100 101 102 
103 104 106 107 109 111 114 115 116 118 119 

65 

RENAULT MEGANE 

COUPE CABRIO 

3 5 7 10 14 15 16 18 20 22 26 28 29 30 31 35 36 37 39 
41 42 44 45 46 47 48 50 52 53 54 55 57 59 60 65 68 70 
71 76 78 79 84 88 91 92 94 95 96 97 98 106 107 108 115 
117 119 120 121 122 124 126 129 131 132 133 136 140 

67 

RENAULT MEGANE 

MK2 

2 4 6 8 9 10 12 13 16 17 20 25 26 28 32 34 36 37 38 40 
44 46 48 50 51 52 54 55 56 57 58 60 61 63 64 65 66 67 
72 73 76 78 81 84 85 92 100 101 102 104 105 108 109 
110 111 112 114 115 116 118 119 120 122 129 135 137 
138 139 140 

69 

SEAT IBIZA MK2 

1 5 7 8 9 11 17 18 24 25 27 29 30 31 34 36 40 43 44 46 
49 50 51 53 55 56 64 67 68 69 72 73 74 75 76 78 82 90 
94 96 99 101 102 103 104 105 106 109 110 113 117 118 
121 122 124 127 128 130 131 132 133 134 135 136 137 
138 139 

67 

SEAT IBIZA MK3 

4 7 9 12 14 16 18 22 23 24 30 31 34 35 36 38 39 40 42 
43 44 48 52 54 55 56 58 59 60 65 67 68 70 71 72 74 77 
78 81 82 84 85 87 88 89 90 92 93 97 98 102 105 108 111 
112 115 116 119 121 123 128 129 130 134 135 138 

66 

SEAT IBIZA MK4 

2 4 8 15 17 20 21 22 23 25 28 30 32 34 35 36 39 40 42 
50 57 58 59 68 71 72 73 75 76 79 80 82 87 94 95 96 99 
100 105 106 107 108 109 111 113 115 119 121 123 124 
125 128 129 133 134 135 

56 

SEAT IBIZA MK4 ST 

1 2 3 5 8 11 13 16 17 18 19 20 21 22 24 26 28 30 31 32 
35 36 37 39 45 46 49 50 57 58 59 62 63 65 66 68 69 70 
72 73 74 75 76 78 79 82 83 84 85 86 89 91 94 97 98 100 
105 106 108 109 114 115 116 117 118 119 120 123 125 
127 129 134 138 

73 

SKODA OCTAVIA 

COMBI 

2 4 5 6 8 14 15 16 19 22 23 25 29 32 35 36 44 46 50 52 
53 54 55 61 66 67 75 82 83 84 86 88 90 93 100 101 102 
103 110 115 118 119 121 126 128 129 131 133 138 139 
 
 
 

50 
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TOYOTA ECHO 1ST 

GEN 

1 2 6 8 9 10 17 20 24 25 26 28 30 31 32 34 35 38 39 42 
43 44 45 46 48 49 52 53 54 55 61 64 65 71 76 77 79 80 
83 85 89 91 94 95 96 99 100 101 104 109 111 112 114 
117 118 119 121 123 128 130 131 132 135 

63 

TOYOTA PRIUS 3TH 

GEN XP30 

2 3 4 7 8 9 11 12 14 18 19 23 24 25 31 34 35 36 37 40 42 
43 46 47 48 53 54 55 57 58 61 62 64 66 67 73 74 75 78 
79 81 82 85 87 88 97 98 100 102 103 107 110 112 115 
119 121 123 126 129 131 132 134 135 137 138 139 140 

67 

TOYOTA YARIS 

XP90 

3 6 7 8 11 12 13 15 18 19 20 22 23 26 28 30 31 32 38 39 
40 41 44 45 49 51 53 58 59 66 69 72 79 83 85 87 88 91 
93 96 97 98 99 101 105 106 107 110 112 117 118 120 
123 124 125 130 131 132 133 135 139 

61 

TOYOTA YARIS 

XP130 

1 2 9 10 12 14 16 19 20 21 22 26 28 31 32 35 36 37 38 
39 41 45 47 49 50 51 52 53 55 56 57 62 65 66 72 74 75 
76 78 79 80 82 83 84 87 88 89 92 98 99 100 101 102 103 
104 105 106 116 118 119 122 123 126 127 129 130 131 
132 137 

69 

VAUXHALL 

INSIGNA 

2 3 5 15 16 22 24 25 27 29 30 31 33 38 39 40 46 47 51 
52 55 62 66 67 68 71 72 75 76 77 79 82 84 86 88 89 90 
92 94 98 100 102 103 106 107 111 117 119 120 121 126 
127 128 131 138 139 140 

57 

VAUXHALL 

MOKKA 

2 3 4 6 10 12 16 18 20 23 25 26 30 32 33 37 38 39 41 43 
44 45 46 48 56 57 59 60 61 64 67 69 74 75 79 84 85 86 
93 94 97 102 103 105 106 107 109 112 114 115 121 123 
124 126 127 130 135 138 140 

59 

VAUXAHLL TIGRA 

2 3 5 6 7 8 11 12 14 15 18 19 24 26 27 28 30 35 37 42 44 
45 47 49 51 54 58 59 60 61 63 64 65 72 73 74 79 81 85 
86 88 89 90 91 93 95 96 97 98 103 105 107 108 109 111 
112 116 118 123 124 126 127 129 130 131 136 137 140 

68 

VAUXHALL 

CASCADA 

1 2 3 5 7 11 15 16 22 28 29 30 34 40 41 43 45 46 48 53 
55 59 68 70 71 74 82 83 85 88 90 92 95 96 103 104 106 
108 110 111 112 113 114 118 119 120 123 126 127 128 
129 133 135 136 138 

55 

VOLKSWAGEN 

GOLF MK4 

2 4 6 8 9 10 11 14 16 18 22 24 25 27 28 30 31 32 33 35 
36 38 39 42 43 47 49 50 51 53 60 61 63 64 65 66 74 75 
80 81 82 86 88 91 92 93 95 96 99 102 104 105 106 107 
109 110 114 115 119 121 122 124 125 127 130 136 

66 

VOLKSWAGEN 

GOLF MK5 

3 4 6 8 11 13 14 15 16 17 22 23 24 25 27 28 29 30 31 32 
34 38 40 41 47 48 49 51 52 54 55 60 62 63 64 65 66 67 
72 73 76 77 79 80 82 87 88 89 90 94 99 102 105 110 112 
113 115 122 123 124 127 129 130 132 135 

65 

VOLKSWAGEN 

GOLF MK6 

1 6 7 9 11 13 15 16 17 20 23 31 32 39 40 41 42 46 47 49 
53 55 56 64 66 67 68 69 73 76 79 82 87 88 89 91 92 93 
95 98 99 100 101 102 106 112 113 114 116 117 118 126 
127 129 130 133 139 

57 
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VOLKSWAGEN 

NEW BEETLE 

1 2 3 5 6 10 11 12 14 15 19 20 24 26 29 33 34 37 38 39 
40 41 42 46 47 49 52 53 55 56 59 60 63 64 66 67 70 72 
75 76 79 80 83 87 88 89 91 93 95 96 99 101 104 105 106 
108 109 112 113 115 116 117 118 119 120 121 122 125 
126 128 

70 

VOLKSWAGEN 

PASSAT B5 

1 3 5 7 9 10 20 21 23 24 31 32 33 34 40 43 44 45 48 53 
59 60 63 64 65 67 76 79 80 82 83 85 87 90 94 96 97 99 
102 105 106 108 110 111 114 115 117 119 120 124 125 
126 131 137 139 

55 

VOLKSWAGEN 

PASSAT B7 

1 3 4 6 9 11 13 15 16 19 20 24 25 27 35 36 39 44 48 49 
51 54 55 56 59 61 65 67 71 75 77 79 82 83 84 86 87 88 
90 94 96 97 99 100 107 108 115 117 118 119 120 124 
125 127 136 137 139 140 

58 

VOLKSWAGEN 

PASSAT CC 

2 3 5 6 8 9 10 14 15 16 17 19 22 23 24 25 27 30 33 34 36 
37 39 48 49 51 52 54 56 58 60 61 62 63 65 67 72 73 75 
76 80 81 83 86 87 89 92 93 94 96 100 101 103 106 108 
110 114 118 119 123 124 127 130 131 133 134 136 137 
140 

69 

VOLKSWAGEN 

POLO GTI MK4 

1 4 5 8 9 10 14 17 18 21 22 26 27 31 38 47 49 50 51 54 
56 60 61 62 66 67 72 73 74 75 77 82 84 87 88 91 92 93 
95 97 98 101 102 103 106 107 108 109 111 114 115 119 
121 123 124 125 126 127 128 129 130 131 133 134 135 
136 138 139 140 

69 

VOLKSWAGEN 

POLO GTI MK6 

1 2 4 8 9 10 12 14 16 17 18 21 23 24 25 26 27 28 29 30 
31 33 38 41 42 44 45 51 54 57 59 62 64 73 75 77 85 94 
95 100 108 109 115 118 122 123 125 127 129 130 131 
132 133 135 137 138 139 140 

58 

VOLKSWAGEN 

POLO MK4 

5 11 12 15 16 17 25 29 31 33 36 37 41 45 46 47 49 52 53 
54 57 58 59 63 64 66 68 69 71 75 77 78 79 80 83 84 85 
88 90 92 93 94 98 99 103 104 105 106 109 111 114 115 
120 121 122 124 126 129 134 135 136 138 140 

63 

FORD GALAXY 

3 5 8 9 10 13 15 21 22 25 28 30 32 33 34 37 39 46 47 48 
50 51 53 54 57 58 61 62 63 64 68 69 70 72 74 78 79 80 
81 88 89 90 91 96 98 99 108 109 110 111 112 117 118 
119 122 123 128 129 131 132 135 138 

62 

VOLKSWAGEN 

TOURAN 

1 3 4 5 6 7 9 10 14 15 17 18 19 24 25 26 29 35 36 37 39 
41 42 43 45 46 47 49 50 51 52 54 58 64 66 70 71 73 82 
92 95 98 103 106 109 110 111 114 116 121 123 125 126 
131 132 133 135 136 137 138 139 140 

62 

VOLKSWAGEN UP 

3 6 9 13 14 16 17 19 22 27 28 29 35 38 40 42 43 44 46 
47 48 50 51 52 58 59 63 64 65 67 70 72 73 74 75 78 81 
82 86 91 94 97 98 99 100 101 102 103 105 109 113 114 
116 117 125 126 128 129 131 132 133 134 135 136 138 
139 140 
 

67 
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VOLKSWAGEN 

TRANSPORT T5 

1 2 4 5 6 8 12 15 21 26 27 28 29 31 34 38 39 40 41 45 46 
47 48 51 52 53 55 56 57 59 60 65 66 67 77 78 79 81 84 
85 89 91 95 96 97 98 104 108 112 113 115 117 118 121 
124 125 127 131 132 139 

60 

AUDI S6 

2 4 5 6 12 14 15 16 17 19 20 22 23 24 26 27 34 37 38 39 
41 42 46 47 49 50 51 52 56 58 62 63 64 66 73 74 77 83 
88 89 90 91 95 96 98 99 100 101 102 103 110 113 116 
118 120 122 124 128 129 131 135 136 140 

63 

AUDI A3 3RD GEN 

5 7 10 11 12 18 19 20 26 32 33 34 36 37 41 42 43 47 48 
49 51 55 57 58 59 61 62 64 65 68 71 73 76 80 82 83 84 
90 93 94 96 97 98 99 100 101 102 103 105 107 109 112 
113 114 117 118 119 123 129 130 133 134 135 136 139 
140 

66 

BMW M5 F10 

2 4 7 8 10 12 13 14 16 17 19 23 24 25 26 27 28 29 30 31 
33 36 37 39 40 41 44 46 48 49 51 56 58 60 61 62 64 66 
69 73 76 78 85 88 89 90 91 97 99 101 111 113 114 117 
119 122 126 127 129 131 135 136 139 

63 

BMW 5S E60 

2 4 5 7 8 9 10 15 18 21 23 24 26 27 28 30 31 32 36 38 39 
40 41 42 43 44 47 48 49 51 53 55 57 59 60 67 68 69 72 
73 74 78 79 83 87 90 91 92 93 95 96 98 99 100 106 107 
111 112 115 116 118 120 123 124 125 128 129 131 135 
136 137 139 

72 

PEUGEOT 207 

2 5 10 11 12 15 17 19 20 21 25 27 28 29 31 35 37 41 44 
45 46 47 49 52 53 54 55 56 57 59 60 62 63 65 67 70 74 
76 78 80 87 90 92 95 99 104 105 109 110 112 114 118 
119 120 124 127 128 129 134 135 136 137 138 139 

64 

TOYOTA COROLLA 

9TH GEN 

1 2 7 8 11 13 14 15 16 18 24 26 27 28 29 32 33 34 35 36 
42 47 48 49 51 54 55 56 57 59 61 63 65 66 67 69 70 72 
73 74 77 78 79 80 83 88 89 90 91 92 94 96 97 99 103 
105 106 107 108 110 111 115 116 119 120 123 124 125 
126 130 137 140 
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FIAT PUNTO 

1 2 4 6 8 10 14 17 20 22 25 26 29 31 33 34 35 36 40 41 
47 49 51 52 53 54 55 56 57 58 59 60 61 62 63 64 66 67 
71 74 84 85 86 89 90 95 97 99 100 104 106 107 108 111 
116 120 121 126 129 133 138 139 140 
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TOYOTA VENZA V6 

1 2 3 4 5 6 8 9 10 11 12 13 19 20 21 25 27 28 29 30 31 
35 37 39 40 44 48 52 53 59 61 62 63 64 65 66 67 69 74 
75 76 79 81 82 83 87 88 89 90 91 92 94 95 96 98 100 
101 103 104 106 111 113 114 115 116 117 119 122 123 
129 132 134 135 137 138 139 

76 

ALFA ROMEO  

MITO QV 

3 5 7 12 13 15 17 19 20 21 22 24 26 28 29 30 31 32 33 
34 35 37 41 42 43 44 46 48 49 52 55 56 61 62 64 66 68 
69 72 74 77 78 83 84 85 86 87 88 90 91 92 96 98 99 101 
104 105 110 111 114 116 118 119 122 123 125 127 130 
133 134 135 136 139 

73 

AUDI A2 

2 3 6 7 9 12 13 16 17 19 22 23 24 25 26 28 29 30 31 32 
35 37 38 42 47 55 56 57 58 60 61 64 65 67 70 71 73 74 
76 77 78 79 80 84 86 87 90 91 92 93 95 98 99 100 101 
102 105 106 113 115 116 117 119 121 125 127 128 132 
134 135 136 137 139 

73 
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