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Abstract  
 

Study 1 examined the reliability of a photographic food diary (with additional 

written details) on free-living energy intake (EI) in 13 healthy males. Daily average 

EI did not differ significantly between two, 7-day periods (p = 0.116) but a large 

systematic bias (143 ± 715 kcal.day-1) and wide limits of agreement (LoA) (-1258 

to 1545 kcal.day-1) were found. Study 2 examined the influence of imposed exercise 

(7 days) on energy balance and the acylated ghrelin and total PYY response to a 

meal. Five healthy males completed two, 7-day trials in a crossover randomised 

design: no exercise (N-EX) and exercise (EX; ~69% VO2peak expending an average 

815 kcal.day-1). EI and EE were assessed throughout each trial. Blood and appetite 

ratings (visual analogue scales; VAS) were collected the day prior to and 70 hours 

post each trial (fasting and for 3 hours postprandial; a final VAS after an ad libitum 

meal). Exercise significantly increased EI by 27% (p = 0.005), although participants 

remained in an energy deficit. Appetite regulating hormones and appetite ratings 

did not alter from pre- to 70 hours post-intervention. Thus, 7-days of imposed 

exercise induced a partial compensation through EI, without changes in appetite 

hormones or appetite ratings. 
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1.0 Introduction 
 

The obesity epidemic represents a global health issue with worldwide obesity 

having doubled between 1980 and 2014 (World Health Organisation, 2015). In 

2014 alone, 1.9 billion adults (18 years or older) were classified as overweight, with 

600 million deemed obese. In the UK, prevalence of obesity in adults (16 years or 

older) has continued to rise from 13% to 24% in males and 16% to 24% in females 

between 1993 and 2006 as identified by the Health Survey for England (HSE) 

(Scantlebury and Moody, 2015). The HSE further classified 27% of women and 

24% of men as obese in 2014 with an additional 31% of women and 41% of men 

being classed as overweight. Being obese and overweight is a consequence of 

sustained periods of positive energy balance, where energy intake (EI) exceeds 

energy expenditure (EE) (Guan et al., 1997) and is associated with diseases such as 

diabetes, cardiovascular disease and certain cancers (World Health Organisation, 

2015). Strategies aimed at increasing EE or reducing EI to attenuate obesity are 

therefore required.  

A promising strategy for the prevention and management of obesity is increasing 

EE through exercise in order to induce an energy deficit. Nevertheless, prescribed 

exercise programmes often produce weight loss that is less than expected 

theoretically (Thomas et al., 2012). This indicates resistance over the long term 

between the prescribed ‘exercise energy expenditure’ (ExEE; the energy expended 

during prescribed exercise only) and compensatory mechanisms, comprising of 

increased EI and/or decreased ‘non-exercise energy expenditure’ (NexEE; the 

energy expended outside of prescribed exercise which includes rest and all other 

physical activities) (Melanson et al., 2013). Thus, prescribing exercise in the 

management of weight could be more difficult than anticipated.  

Evidence has largely shown that a single bout of prescribed aerobic exercise does 

not lead to an increase in EI or hunger in the short-term, for energy balance to be 

restored (Donnelly et al., 2014, Schubert et al., 2013). Furthermore, acute bouts of 

high-intensity exercise (~70% maximal oxygen uptake (V̇O2max)) often produce 

transient (during and up to 60 min post-exercise) declines in hunger (Broom et al., 
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2009). The potential mechanisms regulating the transient declines in hunger are 

suggested to be through a suppression and elevation of the gut hormones acylated 

ghrelin and peptide tyrosine-tyrosine (PYY), respectively (Broom et al., 2009, King 

et al., 2010). In contrast, a single bout of prolonged (90 min) treadmill running (70% 

VO ) does not lead to alterations in gut hormones acylated ghrelin and PYY, 

when measured 20-24 hours succeeding the exercise bout (King et al., 2010, King 

et al., 2015). An energy deficit, however, was still apparent 24 hours post the acute 

exercise bout (King et al., 2010, King et al., 2015). This is somewhat paradoxical 

since prescribed exercise interventions tend to produce less than expected weight 

loss. This might suggest that compensation, through increased EI and decreased 

NexEE, of the energy deficit induced by the prescribed ExEE may be observed after 

24 hours following the commencement of an exercise regimen. However, few acute 

or long-term studies have examined the role of NexEE as well as EI, in opposing 

the negative energy balance induced by imposed exercise.  

To date, studies examining the chronic (greater than one day) effect of prescribed 

exercise on energy balance are limited. It is documented that 9-14 days of chronic 

exercise produces modest compensation in free-living EI and NexEE, revealing the 

first stages of compensation to restore energy balance (Stubbs et al., 2002b, 

Whybrow et al., 2008). Unfortunately, these 9-14 day studies have typically not 

assessed appetite-regulating hormones to provide an objective indication of the 

mechanisms responsible for potential compensatory changes in EI. 

The assessment of free-living EI endures many complexities which can lead to 

misleading conclusions in studies measuring the compensatory responses to chronic 

exercise. Self-reporting EI relies on the ability of an individual to accurately recall 

and record all foods consumed (Williamson et al., 2003) which can lead to 

underestimating and/or overestimating food intake. Photographing food consumed 

provides a valid estimate of EI when compared with weighed food and double 

labelled water (DLW) assessments (Martin et al., 2012, Williamson et al., 2003). 

Martin et al. (2012) reported that a photographic method using camera smartphones 

to collect EI data (referred to as Remote Food Photography Method (RFPM)) is a 

valid and reliable method for the assessment of free-living EI over a 6 day period. 
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The photographic food diary has been documented to underestimate free-living EI 

over a 3 day (by 6.6%) (Martin et al., 2009a) and a 6 day (3.7%) period (Martin et 

al., 2012) when compared to weighed foods and DLW measurement, respectively. 

However, the photographic method has been documented to overestimate meal 

portion size, although of small magnitude (~6g), over a single day (Williamson et 

al., 2003). The assessment of free-living EI also places a burden on individuals to 

record all food and beverages consumed and could therefore result in alterations in 

EI. Wang et al. (2006) reported that weighed food records were considered most 

burdensome, by 86% of the 28 female participants, and on average took the longest 

to record (37 min) when compared with a digital photographic diary (16 min) and 

24 hour recall (24HR) (22 min), over 1 day. Therefore, the use of digital 

photographs of food to estimate EI allows for quick data acquisition and is a 

convenient method for both participants and researchers. However, the reliability 

of a photographic food diary to assess free-living EI across seven days has not been 

examined to date. 

Despite the significance of regular exercise in maintaining a healthy body weight, 

few well-controlled studies have investigated the chronic (more than a single 

session) effects of imposed exercise on free-living EI and NexEE. Furthermore, the 

reliability of the methods employed to assess energy intake has not always been 

clear. In addition, alterations in fasting and postprandial appetite-regulating 

hormones have not been assessed within these studies (Stubbs et al., 2002b, 

Whybrow et al., 2008), which may aid in the explanation of any compensatory 

changes in habitual EI.  
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2.0 Literature review 
 

This chapter will review and describe the current literature on methods used for 

measuring EI, as well as the effects of acute and chronic exercise doses on energy 

balance and gut hormone responses. The first section will describe the methods used 

for measuring EI and will summarise which is the most appropriate for measuring 

free-living EI. Energy balance and the influence of acute and chronic exercise on 

energy balance will then be examined. The importance of gut hormones in energy 

balance and the signalling pathways will be discussed and will lead onto the final 

section, which will describe the effects of acute and chronic exercise on appetite 

and gut hormone responses.  

 

2.1 Methods of measuring EI and EE 

 

The majority of research investigating free-living dietary intake often relies on the 

use of self-report methods. Self-report methods assessing EI are renowned for 

producing measurement error of two types; systematic and random error. 

Systematic error occurs through inaccurate reporting of food intake, which could 

lead to a bias in intake estimates (Rutishauser, 2005). Random error could arise 

from mistakes in writing or data processing and consequently lead to false-

negatives being concluded (Trabulsi and Schoeller, 2001).  

The most commonly used methods of free-living EI measurement are weighed food 

records, 24HR and food frequency questionnaires (FFQ) (Williamson et al., 2003). 

Weighed food records are regarded as a prospective recording method, where all 

foods and fluids must be recorded before consumption, whereas retrospective 

methods, such as the 24HR and FFQ, require individuals to recall foods previously 

consumed (Trabulsi and Schoeller, 2001). Accurately collecting and measuring 

free-living EI through self-report measures, however, is abundant with problems. 

Prospective methods, like the weighed food records, are burdensome to participants 

(Wang et al., 2006) and have been shown to influence an individual’s food 

selections, subsequently altering EI (Trabulsi and Schoeller, 2001). Retrospective 
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methods could lead to problems of random and systematic error due to poor recall 

of foods previously consumed and underreporting EI (Trabulsi and Schoeller, 

2001). Evidence suggests that an underestimation in EI can occur when weight 

reduction through calorie count is being assessed or an overestimation in EI when 

exercise is assessed (Purnell, 2006). Since accurately estimating free-living 

macronutrient and EI is essential to researchers investigating the role of 

interventions on body weight and EI, there is a need for an accurate method to assess 

free-living EI that does not place a large burden on the participant.  

 

2.1.1 Doubly labelled water (DLW) 

 

DLW is considered the gold standard measure of EI (Martin et al., 2009a, Martin et 

al., 2009b) and EE (Livingstone and Black, 2003) under free-living conditions. EE 

is calculated by giving individuals a quantity of water which is enriched with 

oxygen (18O) and deuterium (2H), stable isotopes (Livingstone and Black, 2003). 

Urine is collected prior to and following the assessment period (typically between 

7 and 21 days) to determine both isotopes disappearance rates (Livingstone and 

Black, 2003). Production of carbon dioxide is then calculated for the equations of 

indirect calorimetric for estimation of EE (Livingstone and Black, 2003). The 

precision and accuracy of DLW is reported to be of 2-8% and 1-3%, respectively, 

in well controlled conditions (Livingstone and Black, 2003). During a period of 

energy balance, where EI equals EE and where body weight remains stable, total 

EE (TEE) is reflective of actual EI (Livingstone and Black, 2003). Therefore, it is 

possible for the DLW method to act as the criterion measure for EI during periods 

of energy balance. Nevertheless, short-term EI cannot accurately be assessed by 

DLW during periods of negative energy balance, even when changes in energy 

stores are considered (de Jonge et al., 2007). DLW, therefore, cannot accurately 

assess EI during periods of dieting. Furthermore, the DLW method is seldom used 

due to its high costs, inability to provide information on the compositions of foods 

ingested, and the need for highly skilled individuals and facilities for data analysis. 
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More cost effective and appropriate methods are required for the assessment of free-

living EI. 

 

2.1.2 Weighed food records 

 

Weighed food records are another accurate method of measuring EI (Small et al., 

2009) and have been used as a criterion measure to assess the validity of other 

dietary intake methods (Trabulsi and Schoeller, 2001). All beverages and foods 

consumed are weighed prior to and after consumption and are recorded daily, 

commonly over a 3-14 day timescale. 

Several studies have examined the relationship between EI, as measured by 

weighed food records, against DLW. It is generally seen that weighed food records 

underreport EI when validated against DLW (Goran and Poehlman, 1992, Seale 

and Rumpler, 1997). For example, Seale and Rumpler (1997) showed average EI 

to be underreported by 23% in 24 healthy males and females aged 40-65 years who 

completed a 7 day weighed food record, when compared against DLW. Consistent 

with these results, Goran and Poehlman (1992) found an underestimation of 21% 

in older adults aged 56-78 years, when measured against DLW. These results were 

not explained by an energy imbalance since body weight did not significantly alter 

throughout the study period (Goran and Poehlman, 1992) which indicates an 

underestimation of EI when assessed using the weighed food diary.  

One of the main limitations of weighed food records is that they are burdensome 

and time consuming for participants to complete accurately (Wang et al., 2006). 

Wang et al. (2006) found that weighed food records, on average, took the longest 

to record (37 minutes) when compared to the 24HR method (22 minutes) and digital 

photographic diary (16 minutes) during 1 day of EI assessment. In further 

agreement, the weighed food record was regarded most burdensome by 86% of 

participants. The 24HR was deemed somewhat burdensome by 50% of participants 

and 57% of participants considered the digital photographic diary as least 

burdensome, of the 3 methods. Therefore, new methods of assessing EI, such as the 
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digital photographic diary, are needed in order to reduce participant burden and 

associated changes in dietary intakes, for free-living EI to be measured.  

 

2.1.3 Digital photography food diary 
 

As the literature currently shows, there is a need for more appropriate measures of 

free-living EI. The digital photography method is regarded as a valid and reliable 

method for measuring free-living EI (Lassen et al., 2010, Martin et al., 2012, 

Williamson et al., 2003). This method allows photographs of participant’s food 

selections and plate waste to be captured in real-time. The photographs can then be 

analysed by researchers to estimate portions sizes and further estimate EI.  

Williamson et al. (2003) tested the validity of direct visual estimations and digital 

photography in measuring portion sizes against weighed foods. The digital 

photograph method yielded small overestimations (~6 g) across all meals in 

comparison to weighed foods, except for plate waste (Williamson et al., 2003). 

Portion sizes (g) of food intake, plate waste and food selections estimated through 

digital photography correlated highly with weighed food diaries. Overall grams 

revealed a correlation of 0.89 for digital photography, although visual estimation 

had a higher correlation of 0.97, when compared against weighed foods. These 

findings support the validity of the photographic food diary for measuring EI. 

However, this study was confined to a university cafeteria and therefore additional 

research is required on the use of the photographic food diary in free-living 

conditions.  

In a paediatric population, 36% of participants reported EI accurately (within ± 5% 

of actual EI) following a 3-day photographic food diary, when validated against a 

weighed food diary (Higgins et al., 2009). However, 29% of participants 

underreported EI (by 16% (449 ± 22 kcal.day-1)) with 35% over-reporting EI (by 

31% (663 ± 103 kcal.day-1)). Higgins et al. (2009) further reported that fat intake 

was overestimated by 72% of participants in comparison to 18% who 

underreported. Carbohydrate intake was underestimated by 57% of participants and 
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overestimated by 32% of participants. As fat contains more calories per gram (9 

kcal.gram-1) than carbohydrate (4 kcal.gram-1) (Smith et al., 2000) it has a greater 

influence on the agreement with EI if estimates of fat intake are inaccurate. 

Therefore, the greater magnitude of over-reporting in comparison to underreporting 

by Higgins et al. (2009) could be explained by an inaccurate reporting of fat and 

carbohydrate intake. These results however cannot be generalised to other 

populations; therefore, future research is required in an adult population. 

A similar method to that of the photographic food diary is the remote food 

photography method (RFPM) in which photographs of foods are sent via a wireless 

network to researchers. Martin et al. (2009a) examined the validity and reliability 

of the RFPM in 50 adults over a 3 day period, under free-living and laboratory 

conditions. Within free-living conditions, a cooler containing pre-weighed foods 

was provided to participants for their evening meals. The cooler was returned the 

next morning for post-weight to be obtained, and EI to be calculated. All lunch 

meals were consumed under laboratory conditions. Under free-living conditions, 

the RFPM underestimated EI significantly by 6.6% (97 kcal) whereas laboratory 

conditions showed no significant underestimation of EI (5.5%; 36 kcal). Estimated 

EI through the RFPM produced a high correlation with weighed EI under free-

living conditions (r = 0.95) and laboratory conditions (r = 0.93) implying the RFPM 

is a valid method. In a follow-up study, Martin et al. (2012) conducted two studies 

investigating the validity and reliability of 6 days free-living EI assessment using 

the RFPM. Study 1 employed two different types of prompts to remind participants 

to capture images of foods before and after consumption. One group received 

standard prompts 2-3 times each day around normal meal times whereas the other 

group received customised prompts 3 to 4 times each day near individual’s meal 

times. Additionally, the customised group received feedback quicker (within 24 

hours vs. 1-2 days) if any data issues occurred. Customised prompts underestimated 

mean EI by 8.8% (270 ± 748 kcal.day-1) compared to standard prompts which 

underreported mean EI by 34.3% (895 ± 770 kcal.day-1), when measured against 

DLW. The findings by Martin et al. (2012) reveal that the more prompts received 

the greater the accuracy of the RFPM in measuring free-living EI. Study 2 

investigated the validity and reliability of the RFPM, using customised prompts, 
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against DLW in 42 participants (Martin et al., 2012). Measurement of EI by the 

RFPM showed no significant difference when compared against DLW, although 

did reveal an underestimation of 3.7% (152 ± 694 kcal.day-1). Additionally, the 

RFPM produced an intraclass correlation coefficient (ICC) of 0.74, which showed 

good reliability. These findings indicate that, the RFPM, with the use of customised 

prompts, could provide a valid and reliable method for measuring EI under free-

living conditions. However, this finding is based on limited data and further 

research needs to assess the reliability and validity of the digital photographic 

method (with and without prompts) over 7 days or more under free-living 

conditions.  

 

2.2 Energy balance 
 

Fluctuations in body weight are associated with energy imbalances where EI does 

not equal EE. Weight loss, for example, results from a negative energy balance 

where EE exceeds EI, and vice versa for weight gain. The most commonly 

prescribed exercise intervention for inducing weight loss and attenuating weight 

gain is aerobic exercise. However, most exercise programmes produce less than 

expected weight loss (Melanson et al., 2013). The attenuated magnitude of weight 

loss in response to increased ExEE, may be due to the stimulation of physiological 

and behavioural compensatory responses of energy balance that oppose the 

exercise-induced energy deficit (Figure 2.1).  

Energy imbalances however, are further affected through social and psychological 

influences on EI. Within a social context, individuals tend to consume foods in the 

presence of others, which may impact an individual’s decision on food 

consumption. A mechanism for social contexts effects on eating behaviour may be 

through social norms which provide an appropriate guide of action (Higgs, 2015) 

to inform individuals of their food preferences (Higgs and Thomas, 2016). Further, 

research suggests that individuals tend to eat similarly to others as the emotional 

experience created is positive (Higgs and Thomas, 2016).  Psychological factors, 

such as stress or depression, further influences EI and subsequently energy balance. 
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Literature tends to suggest an association between elevated levels of stress and an 

increased desire for more energy dense foods (Torres and Nowson, 2007). This 

could then lead to an overconsumption of EI and may consequently result in weight 

gain through a positive energy balance.  

 

Compensatory responses 

Physiological Behavioural 

Resting metabolic rate  Non-exercise energy expenditure  

Non-exercise energy expenditure  Hunger 

Exercise energy expenditure  Fullness 

Fat mass Energy intake  

Fat free mass Alterations in macronutrient content 

Alterations in appetite-related 
hormones 

 

 

2.2.1 Acute effects of exercise on energy balance 
 

The majority of literature examining the acute effects of a single exercise bout on 

energy balance has established that individuals do not compensate through an 

increase in EI; although due to differing protocols, results are inconsistent. In a 

meta-analysis, Schubert et al. (2013) concluded that absolute EI is unaffected by an 

acute bout of exercise, resulting in a subsequent energy deficit. A recent review by 

Donnelly et al. (2014) is in agreement with Schubert et al. (2013) and additionally 

states that any post-exercise increase in EI is a partial compensation. 

Figure 2.1 Compensatory responses to increased exercise energy expenditure

(ExEE). Adapted from Hopkins et al. (2014). 
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The intensity of an exercise bout shows differing effects on energy balance and 

ratings of appetite. King et al. (1994) investigated the effects of low intensity (30% 

VO2max ~60 mins; EE 359 ± 42 kcal) cycling compared with high intensity (70% 

VO2max ~30 mins; EE 340 ± 28 kcal) cycling (performed 120 min postprandial) in 

12 healthy males aged 21-27 years. Macronutrient content and absolute EI were not 

significantly influenced by either intensity following an ad libitum test meal, 15 

min post exercise. Hunger however, was significantly suppressed during and 

immediately following the high intensity bout of exercise, returning to levels 

comparable to that of the control group immediately before the meal (15 min post-

exercise). EI was further assessed, via a weighed food record, and did not differ 

significantly 48 hours after the intervention. Similarly, Imbeault et al. (1997) found 

no significant difference in absolute ad libitum EI (15 min post-exercise) when 

comparing a low intensity treadmill walk at 35% VO2max (72 ± 14 mins; ExEE 491 

± 11 kcal) and a high intensity treadmill run at 75% VO2max (34 ± 6 mins; ExEE 

483 ± 9 kcal) in healthy males. Furthermore, no significant differences were found 

between conditions for fullness or hunger. High intensity treadmill running, 

however, significantly reduced relative EI (REI; EI minus the ExEE) in comparison 

to the control and low intensity groups. EE was matched for during the high and 

low intensity exercise bouts, suggesting that the results on REI were an independent 

effect of exercise intensity. Thus, REI is lower following high intensity exercise 

(75% VO2max) compared with lower intensity exercise (35% VO2max), although 

without any suppression of hunger. Accordingly, high intensity exercise bouts (≥ 

70% VO2max) appear to reduce REI, without any influence on absolute EI on the 

day and 48 hours post the exercise bout. Moreover, hunger reveals contrasting 

results following either low or high intensity exercise bouts.   

Exercise duration is another variable which can impact energy balance. King et al. 

(1994) investigated two high intensity trials (75% VO2max), one of long duration 

(average 52 min; EE 541 ± 52.2 kcal) and the other of short duration (average 26 

min; EE 296 ± 38.4 kcal) in 12 male participants (22 – 31 years). Absolute EI in an 

ad libitum test meal (15 min post-exercise) was not significantly different following 

the exercise interventions. However, due to the larger ExEE, the longer duration 
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trial revealed a significantly lower REI during the ad libitum test meal and the 

remainder of the day when compared to the shorter duration and resting control 

trials. A more recent study found that high intensity (70% VO2peak; ExEE men, 975 

± 195 kcal; women, 713 ± 86 kcal), long duration (82 min men; 84 min women) 

cycling does not significantly influence EI compared to rest, in males and females 

(Hagobian et al., 2012). REI produced significantly lower results in the ad libitum 

meal 40 min post-exercise in both the males and females, in comparison to the 

control trial. Vatansever-Ozen et al. (2011) observed similar findings on REI and 

absolute EI following 120 min treadmill running (105 min at 50% VO2max and 15 

min at 70% VO2max) on ad libitum EI, 60 min post-exercise intervention. Absolute 

EI did not significantly differ between conditions in healthy elite males (n = 10). 

REI, as seen in other studies, was significantly reduced following exercise than rest 

showing that participants were in an acute state of energy deficit. A significantly 

reduced hunger rating immediately and 60 min post-exercise was also revealed. In 

another study examining the effects of exercise duration on EI, Erdmann et al. 

(2007) found that 120 min of cycling at 50 W (EE 342 kcal) significantly increased 

EI (15 min post-exercise) in healthy males (n = 4) and females (n = 3), compared 

to 30 min (EE 86 kcal) and 60 min (EE 171 kcal) cycling at 50 W. Satiety and 

hunger ratings however did not change over time following each exercise duration. 

The significant increase in absolute EI is in contrast to previous studies (Hagobian 

et al., 2012, King et al., 1994), which are of shorter  duration (52-82 min). 

Nevertheless, Vatansever-Ozen et al. (2011) reported no change in absolute EI 

following the same exercise duration of 120 min. The type and intensity of exercise 

however was different between studies, thus potentially leading to the contradicting 

results. Regardless of this, most studies are in agreement that REI is significantly 

reduced following an exercise bout of duration ≥ 52 min.  

Participant activity levels play a further role on the effects of an acute exercise bout 

on EI. For example, active male participants (n = 10) showed a compensatory effect 

(22.7%) on EI 60 min post-exercise (45 min cycle at 65-75% age-predicted 

maximum heart rate to expend 450 kcal) in comparison to a negative compensation 

(-35.4%) in inactive participants (n = 10) (Jokisch et al., 2012). Overall, active 

males compensated by 36% when including self-report intake throughout the day 



13 
 

and at the ad libitum lunch meal, whereas the inactive group demonstrated a 3% 

overall compensation. Interestingly, perceived hunger was significantly greater in 

the active males control trial, compared to the exercise trial in the inactive males at 

80, 90, 100 and 110 min (after baseline measures), although no differences were 

noted within active and inactive conditions. Rocha et al. (2013) found similar 

results of EI compensation on the day of an acute bout of exercise. Fifteen active 

males, following an acute bout of exercise (60 min cycling at 50% VO2max), 

significantly increased their EI on the day of the exercise trial compared to a resting 

control trial. This compensatory increase, however, was seen during the remainder 

of the exercise day, and not at the 60 min post-exercise ad libitum meal. The 

inactive group (n = 15) had a delayed response, which only saw a significant 

increase in EI 3 days following the acute exercise bout compared to control. 

Consequently, active individuals may be more sensitive to changes in energy 

balance following an acute exercise bout, and, in response, compensate to a larger 

degree than inactive individuals.  

An acute bout of moderate to high intensity (50% - 70% VO2max) exercise of long 

duration (>60 min) results in an unaltered absolute EI, reduced REI, and, therefore, 

an acute negative energy balance. Compensatory increases in EI are more often 

seen in active compared with inactive populations on the day of exercise; however 

additional research is required on the chronic (more than a single bout of exercise) 

effects of exercise on free-living EI, and in free-living conditions.  

 

2.2.2 Chronic effects of exercise on energy balance  
 

Chronic exercise training (5-14 days) generally produces modest increases in EI in 

an attempt to restore energy balance. The majority of studies, however, show that 

these increases in EI are the first stages of compensation and do not compensate 

enough to restore energy balance from the energy deficit induced during the study 

(Staten, 1991, Stubbs et al., 2002b, Whybrow et al., 2008). Staten (1991) reported 

that 5 days of 60 min treadmill running (~70% VO2max) per day significantly 
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increased EI in males (n = 10) (208 ± 64 kcal.day-1) compared to a 5 day non-

exercise control period, whereas the female group (n = 10) did not significantly alter 

EI between conditions. Irrespective of this, both males and females remained in a 

state of energy deficit due to the exercise induced increases in EE (ExEE 596 

kcal.day-1 and 382 kcal.day-1 in the males and females, respectively). Results of a 

greater magnitude were found by Stubbs et al. (2002b) in which an energy deficit, 

on average, of 1194 kcal.day-1 was recorded in males, following high exercise (Hex) 

(ExEE 764 kcal.day-1; 120 min cycling) and 262 kcal.day-1 following moderate 

exercise (Mex) (ExEE 382 kcal.day-1; 80 min cycling) over 9 days. EI did not 

significantly differ between conditions, although EI in the Mex declined during the 

later stages of the intervention, from day 3. Interestingly, TEE declined throughout 

the duration of the study in all groups with a further decline in NexEE following 

Hex and Mex throughout the study. This could be regarded as a compensatory 

mechanism to limit TEE and restore energy balance, although the authors attributed 

the decline of TEE to fatigue. Nevertheless, a measure of fatigue was not collected 

in this study and therefore this possible explanation is only speculative.  

A study of longer duration (14 days) found that both Mex (2 x 40 min bouts.day-1) 

and Hex (3 x 40 min bouts.day-1) exercise (on a cycle ergometer or treadmill) 

significantly increases daily EI, however only in males and not females (Whybrow 

et al., 2008). Additionally, a 30% partial compensation of the exercise induced EE 

was reported in participants (6 males, 6 females). Nevertheless, the Hex group 

(ExEE males 1170 kcal; females 907 kcal) and the Mex group (ExEE males 668 

kcal; females 477 kcal) remained in an energy deficit. Thus, a partial compensation 

in EI (~30%) of the exercise induced EE is observed over a longer duration (> 7 

days), although without energy balance being restored. However, further research 

would be required to confirm this finding as other studies have not drawn the same 

conclusions in males and females, respectively (Staten, 1991, Stubbs et al., 2002b). 

Intensity of exercise was not stated by Stubbs et al. (2002b) or Whybrow et al. 

(2008) and could explain the unaltered EI and lack of compensation observed in 

these studies, respectively. As a result, future research using well-controlled study 

designs is required to investigate the effects of high-intensity exercise over ≥ 7 days 

on energy balance.  
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2.3 The role of gut hormones on appetite regulation 
 

The hypothalamus is a key component in the regulation of appetite (Suzuki et al., 

2010), which communicates with adipose tissue and gastrointestinal organs (King 

et al., 2010). Anticipation of or in response to a meal stimulates the release of short 

term signalling gut hormones, which are known as episodic hormones (Howe et al., 

2014). These hormones include PYY, glucagon-like peptide 1 (GLP-1) and 

cholecystokinin (CCK) which all suppress appetite (King et al., 2010). These are 

satiation (anorexigenic) hormones. Ghrelin is the only known episodic hormone to 

stimulate appetite (orexigenic hormone) (Suzuki et al., 2010). Conversely, leptin 

and insulin are tonic hormones that indicate energy status over the long term and 

further supress appetite (Howe et al., 2014). Table 2.1 summarises the key adiposity 

signal and gut hormones that are associated with EI.  
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Table 2.1 Summary of predominate adiposity signals and gut hormones in 

appetite control (Adapted from Suzuki et al. (2010)) 

 Feeding Receptor Major 

secretion site 

Other actions 

Gut 

hormones 
 

   

PYY3-36  Y2 L cells in gut 
Delays gastric 

emptying 

GLP-1  GLP-1 L cells in gut 

Incretin, decreases 
blood glucose, 
delays gastric 

emptying, 
neurotrophic effect 

CCK 

 

CCK 1, 2 I cell of small 
intestine 

Gall bladder 
contraction, 
relaxation of 

sphincter of Oddi, 
pancreatic enzyme 

secretion 

Ghrelin  GHS Stomach Growth hormone 
secretion 

Adiposity 

signals 
    

Insulin   Insulin 
Pancreatic β 

cell 

Decreases blood 
glucose levels, 

stimulates glycogen 
synthesis 

Leptin  Leptin (Ob-
R) 

Adipocyte Regulation of 
energy metabolism 

PYY = peptide YY; GLP-1 = glucagon-like peptide-1; CCK = cholecystokinin 
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2.3.1 Peptide tyrosine-tyrosine (PYY) 
 

PYY is from the neuropeptide Y (NPY) family and released by endocrine L cells 

in the large and small bowel, following food intake (Neary et al., 2004). The 

mechanisms linking the increased levels of PYY, following food ingestion, are 

thought to be either hormonal or neural (Karra and Batterham, 2010). PYY1-36 and 

PYY3-36 are the 2 forms of PYY with the latter being the more active form (Zwirska-

Korczala et al., 2007). Postprandially, circulating PYY3-36 is the predominant form 

(Zwirska-Korczala et al., 2007) and supresses food intake (Neary et al., 2004). 

These effects are mediated via the Y2 receptors, located in the hypothalamus to 

which PYY binds (Neary et al., 2004) and exhibits gastrointestinal motility 

suppression and inhibition of pancreatic enzyme and gastric acid secretion 

(Zwirska-Korczala et al., 2007). Although the active form of PYY, PYY3-36, is seen 

to be of greater concentration in the circulation (Zwirska-Korczala et al., 2007), 

total PYY produces similar plasma patterns following a meal (Batterham et al., 

2006).  

 

2.3.2 Ghrelin 
 

Ghrelin is a 28 amino acid peptide (Andrews, 2011) which is a result of the 

proteolytic process of preproghrelin (precursor peptide) (Gahete et al., 2014). 

Ghrelin’s physiological functions include appetite stimulation, modulation of 

gastric functions (motility and acid secretion), exocrine and endocrine pancreatic 

secretions and growth hormone secretion (Delporte, 2013). A decrease in 

circulating ghrelin levels following chronic overfeeding are seen, with increases in 

circulating ghrelin levels following a chronic energy deficit (Neary et al., 2004). 

Ghrelin is predominately synthesised by endocrine X/A-like cells within the 

oxyntic glands of the stomach (Kishimoto et al., 2012) and in plasma exists in two 

forms; des-acylated ghrelin and acylated ghrelin (Andrews, 2011). Acylation of 

ghrelin occurs post-translationally by the ghrelin O-acyltransferase (GOAT) 

enzyme (Sato et al., 2012), in which an octonoic acid (eight chain carbon-fatty acid) 
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attaches at the serine 3 residue of ghrelin (Lim et al., 2011). Acylated ghrelin, which 

is ~10% of the total ghrelin concentration (Patterson et al., 2005), causes it’s action 

by activating growth hormone secretagogue receptor 1a (GHSR1a) (Andrews, 

2011). The orexigenic effects of acylated ghrelin are exerted in the hypothalamus 

(Gahete et al., 2014), which is crucial in the regulation of appetite (Suzuki et al., 

2010). Growth hormone secretagogue receptor (GHS-R) mRNA is expressed 

highly within the arcuate nucleus (ARC) of the hypothalamus (Guan et al., 1997) 

in which food stimulating neurons (Suzuki et al., 2010), are activated (Nakazato et 

al., 2001). Additionally, circulating ghrelin levels within the blood stimulates food 

intake via the vagus nerve of the central nervous system (CNS) (Sato et al., 2012). 

Figure 2.2 shows the pathways of ghrelin along the gut-brain axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 The gut-brain axis showing the pathways of ghrelin. Adapted
from Inui et al. (2004). 
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2.3.3 The acute effects of exercise on total PYY and acylated ghrelin 
 

It is predominately seen that PYY increases during and for up to 60 minutes after  

an acute bout of aerobic exercise (~ 60 min) (Martins et al., 2007, Broom et al., 

2009), whereas acylated ghrelin is suppressed following acute exercise (Broom et 

al., 2007, Broom et al., 2009, Deighton et al., 2013, King et al., 2010).  

Various studies have investigated the effects of moderate and high intensity (> 65% 

VO2max), long duration (60 min) exercise on both total PYY and acylated ghrelin 

concentrations (Broom et al., 2009, Deighton et al., 2013, King et al., 2015). 

Deighton et al. (2013) examined the responses of PYY and acylated ghrelin 

following a 60 min cycling bout (65% VO2max) compared to a 30 min interval sprint 

training (6 x 30s sprints against 7.5% body mass) session in healthy males (n = 12), 

following a standardised meal. Acylated ghrelin was significantly suppressed 

following both exercise sessions compared with a resting control trial. PYY was 

only elevated on completion of the 60 min cycle bout relative to the control. Similar 

results were found by Broom et al. (2009) in healthy fasted males (n = 11) in which 

60 min treadmill running (70% VO2max) elevated PYY concentrations in 

comparison to rest and a resistance exercise session. This elevation in PYY 

concentrations was confirmed by a PYY AUC that was higher in the pre-prandial 

(0 – 2 h), postprandial (2-5 h) and the full 8 hour trial periods compared to control 

and the resistance session. A suppression of acylated ghrelin was observed at 0.75 

hours in the 60 min exercise bout and 90 min resistance training session, and further 

at the end of the resistance training bout. The difference in the PYY response during 

the aerobic condition could be due to the greater ExEE (3,832 ± 97 kJ vs. 1,473 ± 

114 kJ) or disturbance in the gut compared to that in the resistance training 

condition. Thus, aerobic exercise of ~ 60 min in duration, at an intensity of at least 

65% VO2max significantly reduces acylated ghrelin and further results in an elevated 

PYY concentration. 

Individual assessment of total PYY and acylated ghrelin have provided  further 

evidence of increased and reduced concentrations, respectively, following high 

intensity exercise bouts (Broom et al., 2007, Martins et al., 2007). Intermittent 
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cycling (65% max heart rate) of 60 min duration significantly increases PYY 

concentration, during exercise, in healthy males (n = 6) and females (n = 6), 60 min 

after a standardised meal (Martins et al., 2007). Decreases in hunger ratings were 

also noted; however, both increases in PYY concentrations and decreases in hunger 

ratings were diminished on completion of the exercise bout. In contrast to the 

majority of the literature (Schubert et al., 2013), ad libitum EI 2 hours following the 

exercise bout significantly increased in comparison to the control condition, without 

subsequent changes in hunger or PYY concentration. This implies that PYY may 

not always provide a direct indication of food intake, although other factors 

(physiological, social and psychological factors) can further affect food intake (Hall 

et al., 2012). Unlike PYY, an acute bout of exercise suppresses acylated ghrelin. 

High intensity (75% VO2max) treadmill running shows a significant decrease in 

acylated ghrelin during a 60 min exercise bout compared to rest in 9 fasted healthy 

males (Broom et al., 2007). Specifically, acylated ghrelin was reduced during the 

first 30 min of exercise and AUC additionally showed that acylated ghrelin was 

lower during the first 3 hours of the 9 hour trial (38% lower) and during the entire 

trial (0 - 9 hours) (35% lower) compared to a resting control trial. Ratings of hunger 

decreased during the exercise bout whereas during the control trial, hunger 

increased. Furthermore, AUC for hunger was significantly lower during the first 3 

hours of the exercise trial (24 vs. 32 mm) although was significantly greater (50 vs. 

44 mm) for the 6 hours postprandial against the rest condition. The increase in 

hunger 6 hours postprandial during the exercise condition could be explained by a 

possible delayed effect of the exercise induced energy deficit, despite the low 

concentrations of acylated ghrelin during the exercise trial, which would suggest 

that hunger would remained suppressed in comparison with the control condition. 

King et al. (2010), however, reported concentrations of acylated ghrelin to be 

significantly suppressed during and immediately following a 90 min treadmill run 

(70% VO2max) with a non-significant suppression of hunger during the exercise 

compared to control condition, in healthy males. A significantly lower AUC for 

acylated ghrelin was reported during the exercise condition, for the initial 2.5 hours 

(40%) and the full 10 hour condition (25%), although did not significantly differ 

between conditions following the meal after 2.5 hours. EI did not differ between 
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trials for the three ad libitum buffet meals (at 2.5, 5.5 and 9 hours) or 22.5 hours 

post the exercise bout, providing evidence that the potential compensatory effects 

of exercise on EI are still not seen the day after exercise. King et al. (2010) further 

reported a non-significant suppression of hunger only during the exercise compared 

to control condition. Accordingly, acylated ghrelin and total PYY are significantly 

altered following a high intensity (> 65% VO2max) exercise bout, however the 

results imply that these alterations in gut hormone concentrations may not always 

provide a direct indication on hunger and EI responses. 

Implementation of a prolonged exercise bout (90 min at 70% VO2max) the day 

before appetite and gut hormone assessment shows no significant differences in 

appetite ratings (satisfaction, prospective food consumption (PFC), hunger and 

fullness), fasting acylated ghrelin or fasting total PYY concentrations (King et al., 

2015). Acylated ghrelin and total PYY concentration did not differ throughout the 

7 hour testing day between conditions. However, a significantly lower AUC for 

acylated ghrelin (14%) was noted in the exercise condition after the meal provided 

at the 4 hour time point. Contrasting results were reported by Heden et al. (2013) 

who reported lower (18%) fasting concentrations of acylated ghrelin in normal 

weight males and females (n = 8; n = 6, respectively) on the day after a 60 min 

moderate intensity bout of exercise (55-60% VO2peak). Incremental AUC during the 

4 hours postprandial was lower (39%) in the rest condition in comparison to the 

exercise condition, which is in contrast to King et al. (2015) and King et al. (2010). 

Although the mechanisms behind the contradicting results are unknown, it could be 

attributed to the differences in studies; intensity and duration and subsequently 

ExEE, gender differences (males and females in Heden et al. (2013) vs. only males 

in King et al. (2015)) and sampling time after exercise/rest condition (12 hours in 

Heden et al. (2013) compared to 20 hours post exercise in King et al. (2015)). 

The literature on total PYY and acylated ghrelin tends to suggest that continuous 

exercise at ≥ 65% VO2max of long duration (≥ 60 min) significantly increases PYY 

and decreases acylated ghrelin concentrations during and immediately after the 

exercise bout. However, these alterations are removed 20 hours post-exercise. Thus, 

additional research is required on the days succeeding an exercise bout as a potential 
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delayed response could be seen. Further research is also warranted on the effects of 

more than a single bout of exercise on total PYY and acylated ghrelin concentration, 

appetite ratings and additionally ad libitum EI for objective measures of appetite. 

Indeed, the potential compensatory effects of exercise on EI do not appear to be 

shown following just a single session. 

 

2.3.4 The chronic effects of exercise on total PYY, acylated ghrelin concentration 

 

The available literature on the chronic (greater than one day) effects of exercise on 

acylated ghrelin and total PYY are limited. To the current knowledge of the author, 

only a few studies have investigated the chronic effects of exercise on acylated 

ghrelin and total PYY in response to a meal (> 24 hours post the final exercise bout) 

(Martins et al., 2010, Kanaley et al., 2014).  

Martins et al. (2010) conducted a 12-week exercise intervention, consisting of 

running or walking (75% of maximal heart rate) 5 days a week (expending 500 kcal 

per session) in 15 obese and overweight individuals. Body fat and body mass 

significantly reduced on completion of the exercise intervention, without any 

alterations on habitual EI, as measured by food diaries over 3 days. Fasting acylated 

ghrelin increased significantly from pre-intervention to 48 hours post the final 

exercise bout (post-intervention), with unaltered fasting PYY concentrations. The 

increase in fasting acylated ghrelin may be viewed as a compensatory response to 

promote EI following the exercise intervention. In response to a standardised meal, 

however, both acylated ghrelin and total PYY concentrations did not significantly 

differ from pre-intervention to post-intervention. Fasting and postprandial ratings 

of hunger significantly increased post-intervention in comparison to pre-

intervention ratings, implying participants were perceived as more hungry post-

intervention. A more recent study of shorter duration found similar findings for 

fasting total PYY concentrations in obese males and females, with no significant 

changes in fasting PYY concentrations post a 15 day exercise intervention (60 min 

walking at 70% VO2peak per day) from baseline (Kanaley et al. (2014). Total PYY 
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concentrations and total area under the curve (tAUC) from pre- to post-intervention 

did not differ significantly. Across all meals (6 meals each separated by 2 hours), 

PYY concentration was significantly higher, 40 min post meals 2 and 3 (160 and 

280 min, respectively) in comparison to the first and final meal (0 and 600 min, 

respectively). Reported fullness and hunger were not significantly altered from pre- 

to post- the exercise intervention. Post-exercise examination of PYY concentrations 

were completed 24-36 hours post the final bout in order to reduce the acute effects 

of exercise on the PYY response to a meal, similar to that by Martins et al. (2010). 

These studies, however, did not examine the results against a control condition and 

therefore only a within condition effect can be noted and it is not possible to directly 

attribute the reported effects to the exercise intervention.  

Exercise interventions of shorter duration (4 days) report differing results on fasting 

and postprandial acylated ghrelin (Hagobian et al., 2009). Four days of moderate 

intensity (50 – 65% VO2peak) exercise (expending 30% of daily EE), in an energy 

deficit or with a restored energy balance, did not significantly change fasting 

acylated ghrelin concentration in previously obese or overweight men and women, 

compared to a control condition. Appetite ratings in response to the standardised 

meal, however, were significantly reduced when energy balance was restored, 

compared to the energy deficit condition in men. Conversely, females displayed a 

significantly greater acylated ghrelin concentration following the standardised 

meal, in comparison to the men, in the exercise conditions compared to control, 

without any change in appetite ratings between conditions. The increase in acylated 

ghrelin suggests a possible compensatory effect in females, but not in males; thus, 

it may be important to examine males and females separately in future research. 

AUC showed a 32% and 25% increase of acylated ghrelin in the energy deficit and 

energy balance condition, respectively, relative to control. These findings however 

are in contradiction to that of Martins et al. (2010). The increased fasting acylated 

ghrelin concentrations noted by Martins et al. (2010) in comparison to unaltered 

concentrations in Hagobian et al. (2009), could be explained by the study duration; 

12 week vs. 4 days, respectively. Moreover, the greater acylated ghrelin 

concentration following a meal in females could be partly due to the acute effects 

of exercise (measured 24 hours post final exercise bout) whereas as Martins et al. 
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(2010) examined the chronic effects of exercise on the acylated ghrelin in response 

to a meal (48 hours post final exercise bout), and further did not examine sex 

differences.  

Fasting total PYY concentrations produce contradicting results following longer 

term exercise interventions (> 12 weeks) (Jones et al., 2009, Gueugnon et al., 2012). 

Jones et al. (2009) examined the effects of an 8 month aerobic exercise programme 

containing 3 x 45 min exercise bouts per week (60-85% VO2peak) on fasting PYY 

concentrations in 12 overweight adolescents. A reduction in body fat percentage 

(2.2%) was noted with an increased fasting PYY concentration (23%) following the 

8 month exercise programme. This suggests that fasting appetite is reduced 

following the 8 month training programme in overweight adolescents, which is in 

contrast to short-term interventions in adults (Martins et al., 2010), although free-

living EI was not recorded throughout the duration of the study. Therefore, the 

reduced body fat percentage may not completely be attributed to the impact of 

raised fasting PYY concentrations on EI. In contrast, Gueugnon et al. (2012) found 

concentrations of PYY in a fasted state did not significantly alter, although tended 

to increase following 9 months of 45-60 min of exercise (5 times.week-1) in obese 

adolescents than normal weight adolescents. Gueugnon et al. (2012) controlled total 

EI at around 2300 – 2500 kcal.day-1 during the 9 month training programme 

suggesting that the combined training and controlled EI programme tended towards 

an increase in fasting PYY concentration. Body fat percentage and body mass 

significantly reduced over the 9 month training period (31.4% and 10.9%, 

respectively) which is of a greater magnitude than that found by Jones et al. (2009). 

The difference noted in body mass and fat could be attributed to a greater exercise-

induced energy deficit and restricted EI, created by predominately more exercise 

completed each week. These observations, however, were only examined in obese 

adolescent populations and may not relate to normal weight healthy adults where 

the prevention of weight gain is important. Additionally, neither Jones et al. (2009) 

nor Gueugnon et al. (2012) examined the effects of long term exercise training on 

total PYY concentrations in response to a meal.  
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Current literature, albeit confined to a small number of studies, has found that 

longer exercise interventions increase fasting acylated ghrelin in comparison to 

shorter interventions (12 weeks vs. 4 days, respectively). Fasting total PYY does 

not significantly alter following exercise interventions of ≤ 12 weeks. In response 

to a meal, total PYY and acylated ghrelin tended not to significantly increase from 

pre- to post-interventions. Hagobian et al. (2009) however was the only study to 

examine a between condition effect, which resulted in a significantly greater 

acylated ghrelin concentration in response to a meal, in females, although this effect 

may be confounded by the acute effects of exercise (24 hours post final exercise 

bout). Thus, additional research on fasting and postprandial acylated ghrelin and 

total PYY concentrations is warranted. Evidence tends to suggest that compensation 

is more sensitive in active individuals (Jokisch et al., 2012, Rocha et al., 2013), 

therefore research in normal weight individuals and investigating the chronic 

effects of exercise in response to a meal (>36 hours post final exercise bout) is 

required.  

 

2.4 Summary  
 

The methods used to assess free-living EI and the acute and chronic effects of 

exercise on energy balance and gut hormones response (acylated ghrelin and total 

PYY) were examined in this chapter. This review showed that commonly used 

methods to assess free-living EI, such as the weighed food diary, are burdensome 

and time consuming for participants. This suggests that participants may alter EI in 

response to the EI method, rather than through an intervention. Furthermore, this 

review tended to reveal that chronic exercise interventions (≥ 7 days) produced 

partial compensations in EI of the exercise induced energy deficit. Nevertheless, 

few studies have examined the chronic effects of exercise on free-living EI in 

conjunction with gut hormones and ratings of appetite in response to a meal (> 24 

hours post final exercise bout). Therefore, the aims of the studies presented in this 

thesis study are: 
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- To assess the reliability of a 7-day photographic food diary (with additional 

written details) in free-living men. 

- To examine the effect of 7-days of imposed exercise compared to a no exercise 

control on daily EI and EE in habitually active men. 

- To examine the effect of 7-days of imposed exercise compared to a no exercise 

control on perceived appetite and appetite-regulating hormones (acylated ghrelin 

and PYY) in habitually active men. 
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3.0 General methods 
 

This section details methods that were used in both studies 1 and 2. Methods 

specific to individual studies are detailed separately in studies 1 and 2 (Chapters 4 

and 5, respectively). 

 

3.1 Ethical approval 
 

Both of the studies completed in this thesis gained ethical approval from the 

University of Bedfordshire’s Institute of Sport and Physical Activity Research 

Ethics Committee before any testing commenced. All testing was completed in the 

Sport Science Laboratories and Aspire gym on the Polhill Campus, University of 

Bedfordshire.  

In total, each participant completed five visits to the laboratory during study 1, 

which consisted of one preliminary visit, two visits for combined HR/accelerometer 

(Actiheart) set up and 2 for Actiheart, camera and food diary collection. In study 2, 

each participant completed 12 visits to the laboratory. Participants had one 

preliminary assessment visit, two visits for the non-exercise condition (testing day 

visits) and nine for the exercise condition (2 testing day visits and 7 visits to 

complete the exercise training bouts).  

 

3.2 Preliminary assessment 
 

On the first visit to the laboratory the participants completed preliminary 

assessments to provide data required for Actiheart calibration. These preliminary 

assessments consisted of a resting metabolic rate (RMR) measure and a submaximal 

and maximal oxygen uptake (V̇O2max) test. Participants arrived at the laboratories 

at 09:00 in a fasted state (following a 12 hour fast) having refrained from any 

alcohol, caffeine or strenuous physical activity for 24 hours pre-visit. 

Anthropometric measures (including stature using a stadiometer (Holtain Ltd, 



28 
 

Crymych, Dyfed, UK) (cm) and body mass using TANITA scales (Hoogoorddreef 

56E, Amsterdam, Netherlands) (kg)) were collected on arrival followed 

immediately by a RMR measure.  

 

3.2.1 Resting metabolic rate (RMR) 
 

Following a 10 min supine rest period, participants lay for an additional 10 min 

period in which expired air was sampled using an online gas analyser (Metalyzer 

3b, Leipzeg, Germany). The first 5 min of gas analysis was discarded to allow the 

participant to reach steady-state. The final 5 min was then used to average oxygen 

uptake (VO2) and carbon dioxide production (VCO2). RMR was then calculated 

using the Weir equation [(3.941)(VO2) + (1.106)(VCO2)] to calculate human 

energy requirements (kcal.min-1) (Weir, 1949). Heart rate (HR) was recorded using 

short-range radio telemetry (Polar, FS1, Warwick, England) throughout the testing 

period to obtain a resting HR for Actiheart calibration.  

 

3.2.2 Submaximal exercise test 
 

In addition to providing individual data required for Actiheart calibration, the 

submaximal exercise test was conducted to choose the starting speed for the V̇O2max 

test and also to predict the treadmill running speed corresponding to 70% V̇O2max 

for the exercise intervention in study 2. The submaximal exercise test was 

completed on a motorised treadmill (Woodway, PPS55 Med-i, D-79576 Weil am 

Rhein, Germany) and consisted of 4 x 4 min stages. The stages were completed at 

speeds of 4.5 km.h-1 (stage 1), 5.8 km.h-1 (stage 2) and from 7 – 11 km.h-1 (stages 

3 & 4) (similar to Brage et al. (2005)). The range of running speeds in the final 2 

stages were to insure a HR of 150 beats.min-1 or rating of perceived exertion (RPE) 

of 12 (using the 6-20 Borg scale) and further to insure an RPE of 12 was not 

exceeded during the submaximal exercise test. Each test was completed at a 1% 

gradient to reflect the outdoor energy cost of running (Jones and Doust, 1996) and 
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expired gas was continuously sampled throughout the treadmill test by breath-by-

breath cardiopulmonary exercise testing system (MetaLyzer 3B, Cortex, Leipzig, 

Germany). HR and RPE were monitored continuously throughout the exercise test. 

RPE was collected every min and HR every 10 s. A maximal exercise test was then 

completed after a 15 min rest period. 

 

 Maximal gradient exercise test (V̇O2max) 

 

At the start of the V̇O2max test the treadmill was set at a 1% incline and the gradient 

was increased by 1% every min until volitional exhaustion. The initial speed was 

set corresponding to a HR of approximately 150 beats.min-1 or a RPE of 12 on the 

submaximal exercise test and remained constant throughout. Expired gas was 

sampled during the entire test using a breath-by-breath cardiopulmonary exercise 

testing system (MetaLyzer 3B, Cortex, Leipzig, Germany) and VO2 and VCO2 

values were recorded. HR and respiratory exchange ratio (RER) were collected 

every 10 s and RPE was collected 15 s before the end of each stage. When VO2max 

was not reached as a plateau or levelling of VO2 (l.min-1), two of the following 

three criteria were used to determine whether a true VO2peak was achieved: 1. RER 

≥ 1.15, 2. HR within ± 10 bpm of age-predicted maximum, 3. RPE ≥ 18. VO2peak 

was taken as the maximum 30s rolling average VO2 (L.min-1) from the final 4 stages 

of the protocol. 

 

3.3 Assessment of free-living energy expenditure  
 

On completion of all preliminary measures, participants were fitted with a 

combined HR/accelerometer (Actiheart, CamNtech, Cambridge, UK) which was 

fitted on day 0 and removed on day 8 for both study 1 and study 2. The skin was 

prepared using a wet paper towel and alcohol wipe to remove the top layer of skin 

(stratum corneum) to reduce noise levels and allow for appropriate R wave signals. 

Two ECG electrode pads (Bio Protech ECG electrode E5 Tele815) were then placed 
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on the participant’s chest with the medial electrode been attached on the skin at the 

base of the sternum (positioned below and between V1 and V2 (4th intercostal 

space, either side of sternum)) and the lateral electrode horizontally to the left side 

(positioned at V4 (5th intercostal space in line of mid-clavicular) or V5 (5th 

intercostal space in line with anterior axillary line)). The Actiheart wire was straight 

but not taut. A signal test was performed to check for appropriate R wave signals 

before participants were setup for any long-term recordings.  

At the point when the monitor was fitted, participants were provided with the 

following message verbally to ensure that only genuinely meaningful behavioural 

responses are recorded: “Your lifestyle choices during this free-living monitoring 

period are central to this study. We are interested in any natural changes in your 

diet and/or physical activity habits, which you may or may not make in response to 

the intervention. This monitoring period has been carefully scheduled to avoid any 

pre-planned changes in these habits, such as a holiday or diet/exercise plan. You 

should inform us immediately if unforeseen factors external to the study may 

influence your lifestyle.” 

Participants in study 1 and 2 wore the Actihearts for 2 x 7-day periods separated by 

a 7 day washout period. Participants could remove the Actiheart for a maximum of 

20 min each day during a shower period. All recordings began at midnight and 

finished at midnight of the final day. The Actiheart was set to record HR in the 

‘Advanced Energy Expenditure’ recording mode continuously over 15 s epochs 

(recording resolution). The Actiheart measures activity energy expenditure (AEE) 

and TEE. Individual calibration was performed by inserting the following values 

from preliminary testing into the software: RMR, the energy expenditure values 

(calculated from VO2 and VCO2) corresponding to the four different exercise 

intensities (expressed as HR) performed during the submaximal treadmill test, and 

the VO2peak. Data was downloaded after each trial using a reader interface unit and 

analysed using Actiheart software (Version 2.132, Cambridge Neurotechnology 

Ltd, Cambridge, UK).  

 



31 
 

3.4 Photographic food diary 
 

Participants completed 2 x 7-day periods with a 7-day washout between, for both 

studies 1 and 2. Throughout each 7-day condition, participants were provided with 

a digital camera (Vivitar, ViviCam 46, China) and instructed to photograph all 

foods and beverages before and after consumption. Briefly, each participant was 

instructed to take photographs of their food diagonally down (65-75 degrees) before 

and after their meals, and to include a knife/fork/spoon to the side of the plate/bowl 

to confirm the size of the plate or bowl. A written food diary was also completed in 

conjunction with the photographic diary where participants were asked to report the 

day and time of all foods and drink consumed, brand of the food, description of the 

food - including preparation method, portion size (an estimate, e.g. a bowl, a 

handful) and any leftovers (Appendix A). During the preliminary testing, 

participants received a tutorial on the written food diaries and digital cameras. 

Additionally, instructions were provided for participants to accompany the tutorial 

(Appendix B).  

Amounts (g) of each food and beverage consumed were estimated by comparing 

the digital photographs taken by the participants’ with the Young Person’s Food 

Atlas (Foster et al., 2010) (Appendix C). The Young Person’s Food Atlas allowed 

researchers to estimate the food portion size both before and after the participant 

has eaten. Subsequently, the 7-day food diaries were analysed using Dietplan 6.70 

(Forestfield Software, Horsham, UK) to estimate EI (kcal.day-1) during each 

condition (Appendix D).  
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4.0 Study 1 

The reliability of a 7-day food diary combined with digital photography to 
assess free-living EI 

 

4.1 Introduction 

 

Accurately collecting and measuring free-living dietary intake is abundant with 

problems (Purnell, 2006). Self-reporting dietary intake relies on the ability of an 

individual to accurately recall and record all foods consumed (Williamson et al., 

2003) whereas ‘gold standard’ measures through DLW or weighed food diaries 

require expert training for the experimenters. Furthermore ‘gold standard’ 

measures, such as weighed food diaries, are burdensome and time consuming for 

participants and may impact on free-living EI (Wang et al., 2006). New methods of 

measuring free-living EI are, therefore, required for the valid and reliable 

assessment of free-living EI.  

A valid and reliable method of measuring free-living food intake, over 3 to 6 days, 

is through digital photography (Martin et al., 2009a, Martin et al., 2012). The 

advantages of using digital photography are that it reduces the disruption of 

participants eating patterns (Ngo et al., 2009) and is more convenient for 

participants due to rapid data collection (Williamson et al., 2003). However, the 

reliability of using digital photography combined with descriptive food diaries to 

assess free-living EI, over 7 days, has not been examined and requires confirmation. 

The primary aim of this first study is: 

 To assess the reliability of a 7-day photographic food diary (with additional 

written details) in free-living men  

 

The findings obtained from this study will inform the second study within this thesis 

(Chapter 5), which will use digital photography combined with descriptive written 

food diaries to assess the effect of an exercise intervention on free-living EI. 

Specifically, it will be possible to determine whether any changes in free-living EI 
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are a meaningful effect of the intervention or could be due to natural variance in EI 

as assessed using this method.  

 

4.2 Methods 

 

4.2.1 Participants  

 

Thirteen healthy males volunteered to take part in this study. Table 4.1 outlines the 

participant’s characteristics. All participants were provided with information sheets 

(Appendix E) detailing the nature and purpose of the study. A consent form 

(Appendix F), Physical Activity Readiness Questionnaire (PAR-Q) (Appendix G) 

form and pre-test Medical Questionnaire (Appendix H) were read and signed by 

each participant before any testing commenced. 

 

Table 4.1 Participant’s anthropometric and physiological characteristics  

Variables n = 13 

Age (years) 23 ± 1 

Body mass (kg) 82.1 ± 15.1 

Height (cm) 176.5 ± 5.9 

RMR (joules/kg/min) 60.3 ± 8.1 

VO2max (ml/kg/min) 44.3 ± 6.9 

Values are means ± standard deviation (SD); RMR = resting metabolic rate; VO2max = 
maximal oxygen uptake 
 

 

4.2.2 Preliminary measures  

 

On arrival (09:00 in a 12 hour fasted state), anthropometric measures and a 10 min 

RMR measure was collected, as outlined in Chapter 3.2. Participants then 

consumed a snack, and a submaximal treadmill test and graded treadmill V̇O2max 
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test followed, as described in Chapter 3.2. The Actiheart was calibrated from the 

values collected and attached to participants for the subsequent main trials (as 

explained in Chapter 3.3). A tutorial, as detailed in Chapter 3.4, of the photographic 

and written food diary was provided to all participants before each 7-day period.  

 

4.2.3 Main trial 

 

Participants completed 2 x 7-day trials separated by a 7-day washout period (Figure 

4.1). An Actiheart monitor was worn throughout (see Chapter 3.3) and a 

photographic and written food diary were completed (as detailed in Chapter 3.4). 

During each 7-day period, participants were under free-living conditions and could 

participate in any forms of exercise and could consume any foods or fluids.  

 

 

 

 

 

Figure 4.1 Schematic of study 1 
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Statistical analysis  

 

Data was analysed using IBM SPSS statistics 22 (SPSS Inc., Chicago, USA) and 

Microsoft Excel (Microsoft, United Kingdom) (to calculate limits of agreement 

(LoA)). Normality of data for EI and EE were checked using Q-Q plots. EE and EI 

were deemed non-normally distributed and log transformed before rechecking for 

normality. Log transformed data was deemed normally distributed and was used for 

analysis. Raw data is reported in text and tables for a meaningful representation of 

data. All data is reported as mean ± standard deviation (SD). 

Linear mixed models analysed for any differences in daily average (average over 

the 7-day period for each participant) EE, EI and energy balance between weeks. 

Day (each individual day of the 7-day periods) and week x day interactions were 

further assessed using linear mixed models. The model most suitable for the 

analysis was chosen by the smallest Hurvich and Tsai’s criterion (AICC). 

Normality of residuals using Q-Q plots further confirmed the fit of the model.  

For individual-level analyses, LoA were used to compare the daily average EI 

(individual average over the 7 days) values between week 1 and week 2 and the 

daily average EE values between week 1 and week 2 (Bland and Altman, 1986). 

Systematic error (bias) was calculated using the mean difference between weeks 1 

and 2 and random error was determined by the standard deviation of the bias (bias 

± (1.96 × RE)).  
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4.3 Results 

 

4.3.1 EI 

 

Daily EI did not differ between week 1 (2236 ± 462 kcal) and week 2 (2380 ± 383 

kcal) (F = 2.505; p = 0.116) or between days (F = 1.127; p = 0.349) and no week x 

day interaction was found (F = 1.763; p = 0.110). A systematic bias ± random error 

of 143 ± 715 kcal.day-1 resulted in a 95% LoA of -1258 to 1545 kcal.day-1 between 

the daily average EI of weeks 1 and 2 (Figure 4.2).  

 

4.3.2 EE 

 

Daily TEE revealed no significant effect of week (F = 0.017; p = 0.897; week 1, 

4383 ± 1548 kcal; week 2, 4368 ± 1503 kcal) or day (F = 0.341; p = 0.914) and no 

week x day interaction (F = 0.753; p = 0.608). Systematic bias ± random error of -

15 ± 455 kcal.day-1 resulted in a 95% LoA of -907 to 876 kcal.day-1 for average 

daily EE between the 2 weeks (Figure 4.3).  

Figure 4.2 Bland-Altman plot of energy intake for week 1 and week 2 
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4.3.3 Energy balance	

 

Energy balance revealed no significant effect of week (F = 0.174; p = 0.677; week 

1, -2148 ± 2051 kcal.day-1; week 2, -2074 ± 1709 kcal.day-1), day (F = 1.000; p = 

0.427) or week x day interaction (F = 1.670; p = 0.132).  

 
4.4 Discussion 

 

This study investigated the reliability of a photographic food diary, in conjunction 

with a written diary, on free-living EI over a 7-day period. The primary finding of 

the present study was that estimated free-living EI produced a systematic bias of 

143 kcal.day-1 and wide LoA over a 7-day period. Furthermore, EE produced a wide 

LoA over 7-days, although with a small systematic bias of -15 kcal.day-1. Daily 

average EI, EE and energy balance, however, did not significantly differ between 

the 2 weeks when compared at the group level. 

These findings are in contrast with previous research which found the photographic 

food diary a reliable method for measuring free-living EI over 3 (Martin et al., 

2009a) and 6 days (Martin et al., 2012). In comparison to the present study, Martin 

Figure 4.3 Bland-Altman plot of total energy expenditure for week 1 and week 2
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et al. (2009a) and Martin et al. (2012) evaluated the reliability of the photographic 

food diary using ICC, thus suggesting that the inconsistent results produced may be 

due to the types of analysis used. These studies further assessed the validity of the 

photographic food diary against weighed food records and DLW, respectively, and 

deemed the photographic food diary a valid method. Although the present study 

revealed that daily average EI did not significantly alter between the two, 7-day 

testing periods when compared at the group level, the Bland-Altman plot showed a 

bias of 143 kcal.day-1 and wide LoA of -1258 to 1545 kcal.day-1. This indicates that 

a large intervention effect would be required to deem whether the impact of an 

exercise intervention on free-living EI was meaningful and not due normal short-

term variation in EI when using this method. Similar results were found for EE, 

with a small bias of -15 ± 455 kcal.day-1, but wide LoA -907 to 876 kcal.day-1, as 

determined using combined HR-accelerometry. It may be recommended that a 

prescribed exercise intervention alters EI to a large magnitude to confirm that the 

intervention has produced a meaningful effect. Therefore, these results illustrate 

that caution should be used when using the photographic food diary for measuring 

changes in free-living EI within an individual.  

Energy balance further confirms that at the group level, there were no significant 

differences noted between the 2 weeks. A negative energy balance however, was 

observed during both weeks (week 1, -2148 ± 2051 kcal.day-1; week 2, -2074 ± 

1709 kcal.day-1), although cannot be confirmed through changes in body fat and 

body mass as measures were not completed pre to post-weeks. Therefore, it could 

be speculated that free-living EI may have been underestimated using the 

photographic diary and or that EE was overestimated by the Actiheart. The 

photographic food diary, as well as other free-living EI assessments (food diaries) 

have previously been shown to underestimate free-living EI (Martin et al., 2009a, 

Martin et al., 2012, Seale and Rumpler, 1997), thus speculating that EI was 

underestimated in the present study. EE however, as measured by the Actiheart, 

tends not to show any discrepancies in the assessment of EE (Brage et al., 2005, 

Villars et al., 2012). The present study further individually calibrated the Actiheart 

from preliminary data to improve validity of the measure and therefore, the 

potential overestimation observed in the present study is unclear.  
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In an attempt to explain the discrepancies in the findings of this current study in 

comparison to previous literature, the use of prompts needs to be highlighted. 

Martin et al. (2012) used frequent prompts to ensure participants remembered to 

photograph all foods, compared to the current study which used no prompts. More 

frequent prompts had already been observed to produce greater estimations of free-

living EI than less frequent prompts with an error of 625 ± 762 kcal.day-1 (Martin 

et al., 2012). Therefore, it may be speculated that more prompts could mean that 

participants are less likely to forget to photographs all foods and drinks consumed. 

Nevertheless, neither Martin et al. (2012) or the current study logged the amount of 

missing images, but used a written food diary in conjunction with the photographic 

diary in order to record food intake if any photos of foods consumed were missed. 

The current study, however, used no prompts in comparison to Martin et al. (2012), 

which could attribute to the wide LoA, although Martin et al. (2012) did not use 

LoA to determine intra-individual variability, making direct comparisons difficult. 

The benefits of using the photographic food diary method is that participant’s do 

not need to estimate portion sizes, which is associated with inaccurate estimations 

(Beasley et al., 2005). Furthermore, photographing foods consumed is less 

burdensome and time-consuming than a weighed food diary (Wang et al., 2006). 

This study, however, did present some limitations. Firstly, the quality of some 

pictures were poor, making it difficult to identify individual foods for analysis. 

Although the written food diary identified individual’s food consumed, poor picture 

quality further made it difficult to estimate individual weights of food items. 

Secondly, prompts were not used within this study and therefore images of some 

foods were not captured by participants. This resulted in the inability to accurately 

assess weights of foods and fluids consumed.  

In conclusion, the use of a photographic food diary, in conjunction with a written 

diary, appears to be a convenient tool for the assessment of free-living EI in healthy 

men. However, this method may not be sensitive enough to detect small 

intervention effects within an individual, although group level comparisons 

revealed no difference between two 7-day periods. Caution should, therefore, be 
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taken when using this method to determine differences in free-living EI between 

different conditions or examine changes over time, in healthy men.  

Future research should further examine the validity of the photographic food diary 

against a ‘gold standard’, such as DLW. Additionally, the use of prompts should 

also be investigated on the reliability and validity of the photographic food diary on 

free-living EI. 
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5.0  Study 2 

Independent effects of 7-days imposed exercise on free-living energy balance 

and appetite hormones in males 

 

5.1 Introduction 
 

Obesity is a global health issue, with the 2014 Health Survey for England (HSE) 

classifying 27% of women and 24% of men as obese (Scantlebury and Moody, 

2015). Obesity is the result of sustained periods of positive energy balance in which 

EI exceeds EE. Aerobic exercise has become a common method prescribed to 

induce weight loss and attenuate weight gain. However, most exercise programmes 

produce less than expected weight loss (Melanson et al., 2013). Thus, weight 

management through prescribed exercise may be more complex than expected.  

A bout of acute aerobic exercise has largely been shown to have no influence on 

EI, subsequently resulting in an acute energy deficit (Donnelly et al., 2014). 

Furthermore, an acute bout of high-intensity exercise (~70% VO2max) results in a 

brief decline in hunger, during and 60 min post-exercise (Broom et al., 2009). 

Appetite regulating hormones, PYY and acylated ghrelin have been identified to 

suppress and stimulate hunger, respectively (Schubert et al., 2013). Thus, possible 

mechanisms regulating the suppression of hunger are suggested to be through an 

elevation in PYY and suppression of acylated ghrelin (Broom et al., 2009). EI 

however, does not increase, eliciting an energy deficit which lasts up to 22.5 hours 

post an acute exercise bout (King et al., 2010). This lack of compensation in 

response to acute exercise is somewhat contradictory to chronic exercise 

interventions which produce weight loss that is less than expected. Thus, 

compensation of the exercise induced energy deficit may be observed through a 

combination of increased EI and decrease NexEE at some point 22.5 hours 

following the start of an exercise intervention and in response to more than just a 

single exercise session. Nevertheless, limited acute or long term studies have 

examined the role of NexEE, in conjunction with EI, in opposing the exercise 

induced energy deficit.  
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Literature on chronic (greater than one day) exercise interventions on energy 

balance is limited. Present research reveals that chronic exercise interventions of 9-

14 days in duration result in partial compensate (~30%) for the exercise induced 

energy deficit through increasing EI and reducing NexEE (Stubbs et al., 2002a, 

Whybrow et al., 2008). Unfortunately, appetite regulating hormones have not been 

assessed within these studies, but could provide much-needed information on the 

possible mechanisms responsible compensatory responses.  

Previous investigations have yet to ascertain the chronic effects of imposed exercise 

on free-living EI and NexEE, in combination with appetite regulating hormones. 

The assessment of fasting and postprandial appetite regulating hormones may 

provide a possible mechanism to any compensatory changes in free-living EI 

specifically. Therefore, the aims of the present study are: 

 To examine the effect of 7-days of imposed exercise compared with a no 

exercise control on daily EI and EE in habitually active men 

 To examine the effect of 7-days of imposed exercise compared to a control 

on perceived appetite and appetite-regulating hormones (acylated ghrelin 

and PYY) in response to a meal 70 hours post the final exercise bout in 

habitually active men 

 

5.2 Methods 

 

5.2.1 Participants 

 

Seven healthy physically active males were recruited to complete the study. All 

participants confirmed verbally that they had sufficient running experience in order 

to participate within the study (running training of ≥ 3 h/week and could manage 

60 min continuous running). Two participants completed one 7-day trial and were 

unable to complete the remainder of the study due to illness. Five healthy, 
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physically active males completed the study duration. Participant characteristics are 

shown in Table 5.1.  

Information’s sheets were given to participants (Appendix I) detailing the nature 

and purpose of the study. A consent form (Appendix J), PAR-Q form, Pre-test 

Medical Questionnaire and a blood screening form (Appendix K) were completed 

and signed by each participant before any testing commenced. This ensured that all 

participants had no underlying health concerns or issues that would put them or the 

experimenter at risk (e.g. blood borne diseases).  

Table 5.1 Participant anthropometric and physiological characteristics 

Variables n = 5 

Age (Years) 23 ± 1 

Height (cm) 179 ± 7 

RMR (Joules/kg/min) 69.9 ± 14.0 

VO2max (ml/kg/min) 48.9 ± 4.4 

Values are means ± standard deviation (SD); RMR = resting metabolic rate; VO2max = 
maximal oxygen uptake 
 

 

5.2.2 Preliminary measurements  

 

Participants arrived at the laboratories at 09:00 in a fasted state (no food or drink 

for at least 12 hours). Anthropometric measures were collected as described in 

Chapter 3.2. RMR was then measured as detailed in Chapter 3.2. Following a light 

snack, a submaximal exercise test and VO2max test described in 3.2.2 and 3.2.3, 

respectively, were then completed to calibrate the Actiheart and to calculate the 

treadmill speed and duration for the participants running exercise intervention. 
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5.2.3 Study design  
 

Using a randomised repeated measures design, participants completed 2 x 7 day 

trials (imposed exercise (EX) and no exercise control (N-EX)). The 7 day trials 

were separated by a 7-day washout period: (Figure 5.1). Every day in the EX 

condition participants completed a treadmill run at a speed eliciting 70% VO2peak 

to expend 800 kcal, under supervision. The 800 kcal exercise bout was split into 2 

x 400 kcal exercise sessions, to ensure participants would compete the full 800 kcal 

bout each day. Expired air was collected during the initial 10 min and final 5 min 

of each stage to ensure participants were running at the correct intensity. Analyses 

of expired air revealed that participants exercised at an intensity of 69% VO2peak 

and ExEE was on average 815 kcal.day-1. A 20 min resting recovery period 

separated each session. Body mass was collected before and after the completion 

of the 800 kcal exercise bout. Water was consumed ad libitum and was weighed 

before and after the completion of the 800 kcal bout. These measures were used to 

calculate fluid loss and participants were then instructed to consume 150% of sweat 

lost during the exercise bout to aid the participant’s return to a euhydrated state for 

the next day’s exercise session. During the N-EX 7 day period, participants were 

instructed not to complete any exercise session to ensure an exercise thermogenesis 

of 0 kcal·day-1.  

On the day prior to and 70 h after each 7 day trial (i.e. days 0 and 10), perceived 

appetite and gut hormone responses to a fixed meal were assessed, followed by an 

ad libitum test meal. A photographic food diary of all food and drinks consumed 24 

hours preceding the initial testing day (i.e. day 0) was recorded. Participants were 

instructed to replicate their dietary intakes on the day prior to testing days 0 and 10 

for both conditions. 
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5.2.4 Assessment of free-living energy intake 
 

Throughout each 7-day condition, participants were provided with a digital camera 

(Vivitar, ViviCam 46, China) and instructed to photograph all foods and beverages 

consumed, in conjunction with a written food diary (see Chapter 3.4). Food diaries 

were dated and did not indicate which condition participants were in as to partially 

blind researchers to allow for a more subjective nature of food diary analysis.  

 

5.2.5 Assessment of free-living energy expenditure 
 

Participants were fitted with a combined heart-rate/accelerometer (Actiheart, 

CamNtech) in order to accurately record total and physical activity EE for the 

duration of each 7 day trial, as explained in Chapter 3.3. The Actiheart monitor was 

fitted on day 0 and removed on day 8 of each trial; further details are provided in 

Chapter 3.3. 

 

 

Figure 5.1 Study schematic of the 7-day trials and testing days. Dotted arrows 

represent the pre- and post- intervention testing days. EI = Energy intake; EE = 

energy expenditure. 
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5.2.6 Appetite response to a test meal  
 

On day 0 and day 10 of each condition, participants arrived to the laboratory at 

08:30 in the fasted state (at least a 12 hour fast) for the assessment of appetite in 

relation to a test meal (Figure 5.2). Participants were instructed to consume 500 ml 

of water at least 1 hour before arriving, to help to ensure participants were in a 

euhydrated state at the beginning of the trial. Hydration status was not measured 

via urine osmolality. Body fat percentage was measured immediately on arrival via 

the Bod pod (Bod pod, 2000A, Surrey, UK), and participants were asked to empty 

bladder prior to entering the Bod pod. Participants consumed a standard breakfast 

(consisting of bread, orange juice, milk, cheese, and jam: 8 kcal.kg-1 of body mass, 

17% protein, 35% fat, 48% carbohydrate) within 15 min. Participants consumed the 

same amount of food within the same time for all test days. After the 3 hour 

postprandial period an ad libitum buffet meal was consumed (consisting of 500g 

penne pasta (Tesco, everyday value, UK) with a 500g vegetable sauce (Tesco, 

everyday value, UK)) in isolation, as to reduce social influences. The pasta was 

boiled for approximately 12 min, then drained and weighed, and was further cooked 

with a vegetable pasta sauce for 4 minutes and again weighed. Participants were 

instructed to dish up their food into a separate bowl and then provided with this 

statement ‘We ask that you continue eating until you have satisfied your hunger’ 

(Betts et al., 2011). The ad libitum meal was weighed before and after to determine 

the quantity (grams) of the ad libitum meal consumed. Participants were also timed 

from their first mouthful to their final mouthful. Participants were not allowed to 

consume any water from the time of arrival (08:30 am) until completion of the ad 

libitum pasta meal.  

Perceptions of hunger, satisfaction, fullness and PFC were assessed using the 100-

mm visual analogue scales (VAS) at baseline (fasted) and every 30 min post-meal, 

for 3 hours. On completion of the ad libitum meal, participants completed a final 

VAS measure.  

 



47 
 

 

 

 

 

 

 

 

 

 

5.2.7 Blood sampling 
 

On each test day (days 0 and 10), an iv cannula (B. Braun, Sheffield, UK) was 

inserted into an antecubital vein after body fat measures were collected. Two fasting 

baseline blood samples were collected 5 min after the cannula was inserted and 

before the standardised meal was consumed. On completion of the standardised 

breakfast meal, 2 blood samples were collected every 30 min for a period of 3 hours. 

Blood samples were collected into 2 x 5 ml pre-chilled EDTA tubes (Greiner Bio-

One, Stonehouse, UK) for the assessment of acylated ghrelin and PYY. In order to 

prepare the samples for the assessment of acylated ghrelin, 50 µL of solution 

containing 10 M sodium hydroxide (NaOH), 0.1 M potassium phosphate buffer 

(PBS) and 100 mM P-hydroxymercribenzoic acid (PHMB) was added to 1 EDTA 

tube for the analysis of acylated ghrelin. The EDTA tube then spun for 10 minutes 

at 1500 g in a refrigerated centrifuge (4oC) (Thermo-Fisher Scientific, 

Leicestershire, UK). Two ml of plasma supernatant from the acylated ghrelin tube 

was pipetted into a universal tube containing 200 µL of 1M hydrochloric acid 

(HCL). The sample then spun for a further 5 minutes at 1500 g at 4°C before 

storage. Plasma supernatant was aliquoted into 2 separate cryovials of ~1 ml. The 

Figure 5.2 Schematic of testing day
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second EDTA tube for PYY analysis spun for 10 minutes at 1500 g in a refrigerated 

centrifuge (4°C). Two ml of the plasma supernatant was then aliquoted into separate 

2 ml cryovials. All samples were stored at -80°C until later analysis. All samples 

were analysed within 4 months of collection. 

 

5.2.8 Biochemical analysis  

 

Commercially available, pre-standardised, enzyme linked immunosorbant assays 

(ELISA) were used to analyse acylated ghrelin (Bertin Pharma, France), and total 

PYY (Millipore, Germany, Darmstadt) concentrations. Good clinical practise was 

adhered to through following ELISA kit instructions and demonstrating 

reproducibility through pipette practice. Only one participant had samples 

measured in duplicate, due to funding constraints, revealing an intra-assay 

coefficient of variation (CV) of 12%. Completing acylated ghrelin and PYY 

analysis in singles is not unusual in this field. All standards were completed in 

duplicate. The within batch inter-assay CV for PYY was 7% and was 5% for 

acylated ghrelin.  

 

5.2.9 Statistical analysis  

 

IBM SPSS statistics 22 was used to analyse all data (SPSS Inc., Chicago, USA). 

Normality of data was checked using Q-Q plots.  

Linear mixed models analysed any differences in the gut hormone responses 

between each condition (EX and N-EX), between test days (pre-intervention to 

post-intervention (day 10)), time (across all time points in each test day) and any 

interactions. Daily average EE, EI and energy balance was analysed between the 

two conditions and seven days (i.e., across the 7 day intervention). Quantity of food 

consumed during the ad libitum meal and time to consume this meal, body mass 

and body fat were analysed between the two conditions and two test days (i.e., pre-
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intervention to post-intervention). Area under the curve (tAUC) was calculated 

using the trapezoidal method for all gut hormones analysed and VAS measures 

collected across each test day. Bonferroni post-hoc pairwise comparisons were 

calculated for significant interactions. The model most suitable for the analysis was 

chosen by the smallest Hurvich and Tsai’s criterion (AICC). Normality of residuals 

using Q-Q plots further confirmed the fit of the model.  

Body mass was deemed non-normally distributed and log transformation did not 

alter normality of data; therefore, Freidman’s non-parametric test was used to 

analyse the raw data. Raw data is reported in text and tables for a meaningful 

representation of data. All data in text and tables is represented as mean ± SD and 

as mean ± standard error (SE) in figures. EE during 1 week was missing for 1 

participant and therefore that participants EE data was discarded (n = 4).   

 

5.3 Results  

 

5.3.1 Body mass and body fat 

 

No significant main effect across the study duration (χ2(3) = 3.490; p = 0.322) was 

noted for body mass in either condition (Table 5.2). Additionally, there was no 

significant main effect of condition (F = 0.035; p = 0.856) or pre- to post- 

intervention test day (F = 0.022; p = 0.884) for body fat (Table 5.2). 

Table 5.2 Body mass and body fat 

 N-EX EX 

 Pre-

intervention 

Post-

intervention 

Pre-

intervention 

Post-

intervention 

Body mass (kg) 79.28 ± 14.54 79.01 ± 14.51 80.39 ± 15.50 79.51 ± 15.80 

Body fat (%) 15.16 ± 2.80 15.86 ± 3.64 16.04 ± 4.37 15.18 ± 4.57 

Values are means ± standard deviation (SD)
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5.3.2 Energy balance 
 

A significant effect of condition (F = 28.405; p ˂  0.0005; EX -2828 ± 1236 kcal.day-

1; N-EX -993 ± 1420 kcal.day-1) for energy balance was noted. No significant effect 

of day (F = 0.965; p = 0.462) or condition x day interaction (F = 1.527; p = 0.195) 

occurred. 

 

5.3.3 Free-living EI  

 

There was a significant effect of condition (F = 8.595; p = 0.005; EX, 2471 ± 346 

kcal.day-1; N-EX, 1959 ± 289 kcal.day-1) for free-living EI. No significant effect of 

day (F = 0.195; p = 0.977) or interaction of condition x day (F = 0.271; p = 0.948) 

occurred. Figure 5.3 shows individual daily average EI between the N-EX condition 

and EX condition.  

 

 

 

 

 

  

 

 

 

Figure 5.3 Individual daily average energy intake (EI) in the N-EX and EX

conditions. A significantly higher EI was found in EX compared with N-

EX. * = Significant difference between conditions.
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5.3.4 EE 

 

There was a significant main effect of condition on TEE (F = 216.963; p < 0.0005; 

EX, 5250 ± 994 kcal.day-1; N-EX, 3450 ± 954 kcal.day-1), with no main effect of 

day (F = 1.575; p = 0.183). There was a condition x day interaction found (F = 

2.748; p = 0.027) with post-hoc comparisons revealing TEE, during the exercise 

condition, to be lower (p = 0.034) on day 7 (4540 ± 1180 kcal) than day 1 (5608 ± 

444 kcal).   

A significant main effect of condition (F = 282.185; p ˂ 0.0005; EX, 2681 ± 392 

kcal.day-1; N-EX, 1103 ± 456 kcal.day-1) was also observed for AEE, but no 

significant main effect of day (F = 1.857; p = 0.113). A significant condition x day 

interaction was also noted (F = 2.923; p = 0.019). Further inspection through post-

hoc comparisons revealed a significantly greater AEE on day 1 (3002 ± 205 kcal), 

2 (2878 ± 727 kcal) and 3 (2866 ± 522 kcal) compared to day 7 (2041 ± 570 kcal) 

in the exercise condition (all p ≤ 0.023).  

Furthermore, physical activity EE outside of prescribed exercise (PAEE; AEE 

minus imposed exercise) revealed a significant main effect of condition (F = 

38.574; p = 0.0005) but no significant main effect of day (F = 1.809; p = 0.125). A 

significant condition x day interaction occurred (F = 2.545; p = 0.037) with post-

hoc comparisons showing a significantly lower PAEE on day 7 (1226 ± 570 kcal) 

compared to day 1 (2187 ± 205 kcal) in the EX condition.  

 

5.3.5 Ad libitum meal  

 

No main effect of condition (F = 0.090; p = 0.770) or test day (F = 3.485; p = 0.087) 

was observed for the total quantity of food consumed during the ad libitum meal 

(Table 5.3). Time to consume the ad libitum meal showed no significant main effect 

of condition (F = 0.112; p = 0.744) or test day (F = 0.522; p = 0.484) (Table 5.3).  
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Table 5.3 Quantity consumed and time to consume ad libitum meal  

 N-EX condition EX condition 

 Pre-intervention Post-intervention Pre-intervention Post-intervention 

Total quantity 
consumed (g) 

 

569.50 ± 168.61 711.20 ± 211.36 602.50 ± 202.91 648.14 ± 219.12 

Time to 
consumption 

(s) 

499 ± 190 548 ± 175 490 ± 156 521 ± 232 

Values are means ± standard deviation (SD); g = grams; s = seconds

 

5.3.6 Gut hormone concentrations 

 

The resting concentrations and gut hormone responses in the test days pre and post 

the 7-day intervention period (N-EX and EX) are reported in Table 5.4. Fasting 

acylated ghrelin and total PYY concentrations did not significantly differ between 

conditions (all p ≥ 0.879) or reveal a main effect of pre- to post- intervention test 

day (all p ≥ 0.164). 

 
Table 5.4 Pre and post-intervention gut hormone concentrations for fasting concentrations and 
tAUC 

 N-EX condition EX condition 

 Pre-intervention Post-intervention Pre-intervention Post-intervention 

Fasting total 
PYY (pg.ml-1) 

122.3 ± 60.8 71.1 ± 45.8 104.2 ± 48.1 95.7 ± 53.3 

Total PYY tAUC  23213 ± 5887 23574 ± 5488 21389 ± 4829 24737 ± 5228 

Fasting acylated 
ghrelin (pg.ml-1) 

47.0 ± 24.5 58.2 ± 32.6 57.4 ± 21.0 50.6 ± 24.5 

Acylated ghrelin 

tAUC 
6786 ± 4007 9457 ± 5455 8230 ± 4514 6227 ± 3564 

Values are means ± standard deviation (SD); tAUC, total area under the curve 
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No significant main effect of condition (F = 2.103; p = 0.150) or test day (F = 0.297; 

p = 0.587) was observed for acylated ghrelin concentrations (Figure 5.4). A 

significant main effect of time was observed (F = 6.419; p = 0.0005) between 

baseline (53.3 ± 24.3 pg.ml-1) 30 min (31.0 ± 18.4 pg.ml-1) and 60 min (31.9 ± 20.8 

pg.ml-1) postprandial (p ≤ 0.009), and also between 180 min (58.4 ± 36.8 pg.ml-1) 

and 30, 60, 90, 120 min (31.0 ± 18.4, 31.9 ± 20.8, 36.0 ± 20.9, 39.5 ± 27.8 pg.ml-1, 

respectively) postprandial (p ≤ 0.028) following post hoc analysis. There were no 

significant main effects of condition (F = 0.551; p = 0.472) or test day (F = 0.077; 

p = 0.786) for acylated ghrelin when analysed as tAUC (Table 5.4).  

Total PYY concentrations did not show any significant main effects of condition (F 

= 0.409; p = 0.524), test day (F = 1.217; p = 0.273) or time (F = 1.759; p = 0.115) 

(Figure 5.4). In addition, when tAUC for PYY was analysed no significant 

condition (F = 0.021; p = 0.888) or test day (F = 0.656; p = 0.434) effect was 

observed (Table 5.4).  
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5.3.7 VAS response 

 

A significant main effect of time (all p ≤ 0.0005) was observed for each appetite 

perception (hunger, fullness, satisfaction, PFC), indicating a response to the test 

meals over time (see Figure 5.5). Hunger revealed a significant main effect of day 

(F = 6.183; p = 0.014; pre-intervention, 45 ± 13 mm; post-intervention, 51 ± 15 

mm); nevertheless, no condition x day interaction occurred (F = 1.180; p = 0.280). 

There were no significant main effects of condition (all p ≥ 0.379) or day (all p ≥ 

0.212) for hunger, fullness, satisfaction or PFC tAUC. 

 

Figure 5.4 Pre-intervention acylated ghrelin (a), post-intervention acylated ghrelin (b), pre-

intervention total PYY (c) and post-intervention total PYY (d) responses to N-EX (●) and EX 

(■) conditions. Black square indicates standardised breakfast, diagonally shaded rectangle

indicates ad libitum pasta meal.  
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Figure 5.5 Appetite perceptions of pre-intervention hunger (a), post-intervention hunger (b), pre-intervention prospective food
consumption (c), post-intervention prospective food consumption (d), pre-intervention fullness (e), post-intervention fullness (f),
pre-intervention satisfaction (g) and post-intervention satisfaction (h) in N-EX condition (●) and EX condition (■). Black square
indicates standardised breakfast, diagonally shaded rectangle indicates ad libitum pasta meal. * = significant effect of time.  
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Figure 5.6 Continued. 
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5.4 Discussion 
 

The primary purpose of this investigation was to examine the effect of 7 days of 

imposed aerobic exercise on energy balance. Importantly, this novel investigation 

is the first to examine the accumulative effects of 7 days of imposed exercise on 

acylated ghrelin, total PYY and appetite perceptions in response to a meal (70 hours 

post the final imposed aerobic exercise bout). The primary finding was that free-

living EI was significantly greater in the EX condition when compared with the N-

EX control condition, as was energy balance, TEE and PAEE. Secondly, the 

acylated ghrelin, total PYY and perceived appetite response to a meal measured 70 

hours post the final exercise bout was unaffected by either intervention.      

Free-living EI increased by 27% (~500 kcal) when comparing the N-EX condition 

to the EX condition, which is a partial compensation of ~65% of the prescribed 

exercise-induced EE (815 kcal.day-1). This is in accordance with previous research, 

which on average saw a 30% compensation of the exercise induced EE over 7-14 

days (Stubbs et al., 2002a, Whybrow et al., 2008). Furthermore, the ~500 kcal 

increase in EI in the present study is greater than that seen in 50% of short term 

studies (~200-335 kcal.day-1) over 2-14 days, in response to prescribed exercise 

(Donnelly et al., 2014). The partial compensation observed in the current and 

previous studies could be attributed to the macronutrient content ingested, 

specifically, consumption of high fat, energy dense foods. Tremblay et al. (1994) 

reported that consumption of high fat foods following an acute bout of exercise (60 

min) significantly increased EI to restore energy balance whereas low fat or mixed 

diets did not increase EI to restore energy balance. Moreover, chronic exercise 

interventions also reveal a significant increase in fat intake in combination with a 

partial increase in EI in women (Stubbs et al., 2002a) and men (Whybrow et al., 

2008). Although an increase in carbohydrate and carbohydrate and protein (Stubbs 

et al., 2002a, Whybrow et al., 2008), respectively,  was reported, fat has a higher 

density (fat, 9 kcal.g-1) than carbohydrate and protein (carbohydrate and protein, 4 

kcal.g-1) (Smith et al., 2000), thus the influence of fat on EI is greater than 

carbohydrate and protein. Nevertheless, the current study did not examine 

macronutrient content and therefore the increase in EI can only be speculated to be 
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through a greater fat intake. Furthermore, caution should be taken when interpreting 

these findings on EI as the photographic food diary produced wide LoA (-1258 to 

1545 kcal.day-1) in study 1 (Chapter 4). These findings suggest that a large intra-

individual variability exists in this measure of EI. The difference in EI reported in 

study two (518 kcal) across both conditions (N-EX and EX) lay inside of the LoA, 

but, more encouragingly, are greater than the systematic bias (143 ± 715 kcal.day-

1) reported in study 1. This suggests that it may not be possible to directly attribute 

the higher free-living EI to the exercise intervention and that the possibility of short-

term variation in the assessment of EI contributing to the effect should not be 

discounted. However, more encouraging, examination of individual data showed 

that all of the participants demonstrated a higher EI during EX compared with N-

EX (Figure 5.3). 

Compensatory responses to restore energy balance have further been observed 

through a reduction in NexEE (Stubbs et al., 2002a, Stubbs et al., 2002b). 

Prescribed exercise interventions, however, tend not to influence NexEE, apart 

from elderly populations (Westerterp, 1998). In agreement, Whybrow et al. (2008) 

reported no significant effect of prescribed ExEE on NexEE. Thus, the reduction in 

NexEE reported in Stubbs et al. (2002a) and Stubbs et al. (2002b) may be due to 

fatigue, rather than a compensatory mechanism to restore energy balance. The 

present study however found contrasting results, as observed by a higher TEE and 

PAEE in the EX compared with N-EX condition; even when accounting for the 

ExEE, PAEE was still 763 kcal.day-1 higher in EX. The increase in PAEE may be 

due to an increase in motivation to engage in further activities, produced by the 

imposed exercise training (Thompson and Blanton, 1987). Thompson and Blanton 

(1987) proposed that this response could be attributed to an increase in sympathetic 

arousal. Nevertheless, further inspection of the EX condition revealed a tendency 

for PAEE to decrease throughout the 7-day period of the present study. On day 7, 

PAEE was significantly lower in comparison to day 1, suggesting that the imposed 

exercise intervention began to affect PAEE during the final days of the 7-day 

intervention. This result may further be attributed as compensatory mechanism to 

restore energy balance or through fatigue; although the present study did not 

measure fatigue. Extending the imposed exercise intervention over more than 7-
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days may lead to further reductions in PAEE. Nevertheless, an increase in PAEE 

from the N-EX to EX condition is a novel finding as the majority of literature 

reports no significant alterations (Westerterp, 1998, Whybrow et al., 2008).  

Investigation of energy balance is imperative in the assessment of weight 

management. The present study revealed a greater energy deficit (negative energy 

balance; EX -2828 ± 1236 kcal.day-1; N-EX -993 ± 1420 kcal.day-1) produced in 

the EX condition compared to the N-EX condition, further confirming the resulted 

partial compensation seen through EI. Nevertheless, in comparison to previous 

research (Stubbs et al., 2002b, Whybrow et al., 2008), body mass and body fat did 

not significantly alter following 7-days imposed exercise, which is less than 

expected. Thus, the discrepancies in results could be due to either an overestimation 

in EE through the combined HR-accelerometer (Actiheart) and or an 

underestimation of free-living EI through the photographic food diary. Although 

the validity of the combined photographic written food diary was not directly 

measured in the present study, a similar photographic food diary has previously 

been shown to underestimate free-living EI when measured against DLW (Martin 

et al., 2009a, Martin et al., 2012), suggesting the current study may have potentially 

underestimated free-living EI. The underestimation of free-living EI is also 

common in other measures of EI, such as weighed food diaries (Seale and Rumpler, 

1997). Assessment of EE however, as measured by the Actiheart, has been shown 

not overestimate EE when assessed against indirect calorimetry and DLW (Brage 

et al., 2005, Villars et al., 2012). Furthermore, the present study individually 

calibrated Actihearts with preliminary measured data as to increase the validity of 

EE measurements. Therefore, it is unclear why EE appeared to be overestimated in 

the present study.  

Acute exercise bouts (~70% V̇O2max) have been shown to cause a transient (during 

and up to 60 min post-exercise) decline in hunger ratings (Broom et al., 2009). The 

potential mechanisms for the hunger rating decline has been suggested to be 

through a suppression and elevation of the gut hormones acylated ghrelin and total 

PYY, respectively (Broom et al., 2009, King et al., 2010). Despite these reports, 

longer duration exercise interventions (of 4-15 days in duration) often report no 
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significant change in appetite perception and fasting or postprandial gut hormone 

(acylated ghrelin and PYY) responses when compared to resting control trials 

(Hagobian et al., 2009, Kanaley et al., 2014). Our findings are in similarity with 

studies examining chronic exercise interventions on ratings of appetite. The high 

intensity (~69% VO2peak) chronic exercise (7 days) intervention revealed no 

changes in ratings of appetite in response to the imposed exercise or control 

condition. Thus, the findings of the present study are consistent with previous 

chronic exercise interventions, as further confirmed by no change in acylated 

ghrelin and total PYY concentrations between conditions.  

The novelty of the design of this current study was the examination of appetite 

perception and gut hormone (acylated ghrelin and PYY) responses following a 

period of imposed exercise while allowing for an appropriate recovery period (70 

hours) between the final exercise session and the test day. Thus, the potential 

confounding effects of the final exercise session were negated and dietary intakes 

were controlled prior to all appetite assessments. Studies similar in duration to this 

study (i.e. exposing an exercise training period of ~7 days) have examined the acute 

effects of exercise on gut hormone concentrations and appetite perceptions in 

response to a meal ≤ 24 hours post the final exercise bout (Gueugnon et al., 2012, 

Hagobian et al., 2009, Jones et al., 2009). Moreover, studies investigating the 

chronic effects of exercise on gut hormones and appetite perceptions in response to 

a meal (24-48 hours post the final exercise bout) have been longer term 

interventions (12 weeks) (Martins et al., 2010) or only examined total PYY, and not 

in conjunction with acylated ghrelin (Kanaley et al., 2014). Thus, the present study 

is novel in that it examined total PYY and acylated ghrelin simultaneously, 70 hours 

post the final exercise bout, following a 7 day exercise intervention. Moreover, the 

present study included a control condition, unlike previous research (Kanaley et al., 

2014, Martins et al., 2010). Martins et al. (2010) reported a significantly increased 

fasting acylated ghrelin, but not PYY, 48 hours post the final exercise bout, in 

addition to a significantly reduced body fat and body weight following the 12 week 

intervention. The duration of the intervention, however, was greater than the present 

study and further placed restraints on participant’s food intake, potentially 

contributing to the observed differences in results. Nevertheless, as expected, 
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acylated ghrelin significantly increased before the ad libitum meal with a fasting 

acylated ghrelin significantly greater up to 60 min post the standardised breakfast 

meal, in the present study. A shorter exercise intervention (15 days) found similar 

results on fasting and postprandial total PYY (24-36 hours post the final exercise 

bout), although no change in body fat and body weight was noted (Kanaley et al., 

2014). The unaltered total PYY concentrations found during fasting and 

postprandially in the present study and fasting in previous studies (Kanaley et al., 

2014, Martins et al., 2010) could be due to the assessment of total PYY, instead of 

its more active form PYY3-36 (Zwirska-Korczala et al., 2007). Furthermore, 

Zwirska-Korczala et al. (2007) stated that PYY3-36 is the predominant form of total 

PYY in postprandial circulation, thus suggesting that PYY3-36 may be more 

sensitive to the effects of the imposed exercise intervention. The findings reported 

here suggest that extending the investigation duration of gut hormones response to 

a meal 70 hours after the final exercise bout has no added benefit on acylated ghrelin 

and total PYY concentrations, thus any effects of exercise on these gut hormones 

appear to be acute and there is no independent effect of exercise training performed 

over seven days on appetite control.   

Several limitations were evident in the present study. Firstly, the power to find any 

significant relationships within the study was limited, due to a small sample size. 

Additionally, due to the small sample size, any significant relationships found may 

just be indicating a tendency of significance. An increase in sample size would 

allow for a more appropriate indication of any significant relationships. The limited 

number of participants recruited were primarily due to the duration of the study and 

further time constraints of the MSc by Research. Secondly, the photographic food 

diary used to assess free-living EI was previously shown (study 1) to produce wide 

LoA, concluding that any effect of EI should be interpreted with caution. The 

present study may have produced smaller LoA through greater participant 

commitment and thus better reliability however, due to the differing conditions, 

LoA could not be analysed. Further, incorporation of standardised cutlery and plates 

may allow for a more accurate analyses of plate weight and plate waste. Thirdly, 

gut hormones response to a meal was only assessed 70 hours post the final exercise 

bout. An assessment 24-48 hours post the final exercise bout, or during the 
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intervention, may reveal an effect of the exercise intervention. An extended 

intervention duration may have shown energy balance to be restored or a greater 

compensatory increase in EI. Conversely, reducing the intervention duration to < 7 

days would allow for the inclusion of another condition (i.e. rest (no physical 

activity), control (habitual physical activity), exercise (habitual physical activity)). 

Finally, assessment of individual’s normal physical activity levels during both the 

N-EX and EX condition would reveal whether the imposed exercise altered 

individual’s normal activity levels. Additionally, inclusion of a 7 day control 

condition (normal physical activity levels), as well as the EX condition, would 

allow for an independent assessment of the imposed exercise.   

In conclusion, high intensity exercise over 7 days produces a partial compensation 

of EI. However, this partial compensation should be interpreted with caution due to 

the individual variability in free-living EI measures. PAEE remained increased 

during the EX condition, suggesting no compensation through EE for the exercise 

induced energy deficit; although tended to decline throughout the 7-day period. 

Additionally, fasting and postprandial acylated ghrelin and total PYY 

concentrations, and the perceived appetite response to a meal, were not affected 

when assessed 70 hours post the final exercise bout.  

6.0  Conclusions 
 

The main conclusions from this thesis are: 

 The photographic method for measuring free-living EI produces wide LoA, 

indicating that further research would be valuable in establishing and 

improving the reliability of free-living EI assessment using this method. 

 Prescribing high intensity exercise bouts (~69% VO2peak; ExEE, 815 

kcal.day-1) for 7 days produces a partial compensation of the exercise 

induced EE through EI. 
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 Fasting and postprandial acylated ghrelin and total PYY concentration do 

not alter following 7 days imposed exercise, as assessed 70 hours following 

the final exercise bout. 

 Furthermore, ratings of appetite in response to a meal do not alter 

significantly in response to 7 days imposed exercise.  

7.0 Recommendations for future research 

To extend the findings of the present study to further understand the effects of 7-

days imposed exercise on energy balance and appetite-regulating hormones, future 

research is warranted. Firstly, further assessment of a more reliable and valid 

method for the assessment of free-living EI is required, to establish any significant 

exercise intervention effects. 

Further research examining a larger sample size is also required to further 

understand the mechanisms involved in the partial compensation of EI found in the 

present study. This study investigated the chronic effects of exercise (70 hours post 

final exercise bout) revealing the independent effects of the exercise intervention. 

Further assessment of the acute effects (≤ 24 hours post the final exercise bout) of 

exercise on appetite regulating hormones further needs to be investigated in 

conjunction with the chronic effects. This would be valuable in establishing the 

acute and chronic effects of an imposed exercise intervention. Furthermore, 

investigating the more active form of PYY, PYY3-36, may result in an alteration and 

would allow for further insight into the mechanisms of the exercise intervention. 

Additionally, only males were investigated in the current study; thus, further 

research is warranted on the differences between males and females, as females and 

males have both been shown to compensate for an exercise induced EE (Stubbs et 

al., 2002a, Whybrow et al., 2008).  

Assessment of exercise interventions greater than 7-days on free-living EI and 

PAEE is also required. The findings of the present study displayed signs of restoring 
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energy balance through EI and EE. It is possible that continuation of the imposed 

exercise intervention (> 7-days) may have resulted in a restoration of energy 

balance, but additional research is required to investigate this speculation. The daily 

exercise bouts and mode of exercise (treadmill) used within the present study may 

be impractical for certain individuals (i.e. obese/overweight, elderly) when 

completing ≥ 7-days imposed exercise. Thus, investigating different modes of 

exercise (rowing, resistance, cycling) to create an exercise induced energy deficit 

on energy balance would allow a greater understanding on the role of different 

exercise modes and allow for investigation into other populations (i.e. 

obese/overweight, elderly). Furthermore, extending the daily exercise bouts to 

greater than 7-days may result in fatigue within participants. Therefore, research on 

the different doses of imposed exercise is further required for investigation (i.e. 5 

days imposed exercise a week). This will allow for further investigation into other 

populations (obese/overweight) and further inform health care professionals.  
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8.0 Appendices 
 

8.1 Appendix A 
 

 

Food diary 
 
 
 
 
 
 

Participant ID: ____________ 
 

Start date of food diary: __________________ 
 

Finish date of food diary: __________________ 
 
 
 
 
 

Contacts:  
 

Paul Mackie (paul.mackie@study.beds.ac.uk – Main 
researcher) 
 
Chris Esh (christopher.esh@study.beds.ac.uk – Main 
researcher) 

 

John Hough (john.hough@beds.ac.uk – 1st supervisor) 

 

Julia Zakrzewski (Julia.zakrzewski@beds.ac.uk – 2nd 
supervisor) 
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FOOD DIARY INSTRUCTIONS 
 

 Everything that you eat and drink over the course of the testing should be 
recorded in this diary and photographed.  
 

 In the evening, you can look through the photos you took that day and 
use them to help you complete your food diary.  

 

 If you forgot to take a photo of something you ate or drank in the day, 
you should still add this to the diary.  

 

 Please make sure you fill in all the columns for each food/drink item:  
 

1. Date and time of day – the date and time you had the food/drink 
(you only need to write the date at the beginning of each day).  

2. Description – as much detail as possible. Please tell us the 
manufacturer’s name (e.g. Kelloggs, Heniz) and cooking 
method (e.g. grilled, roast, boiled).  

3. Amount – approximate portion or weight, most snack foods will 
have the weight of the food on the packet so you can write this in 
your diary (e.g. full packet of crisps).  

4. Leftovers – the amount that you did not eat or drink (e.g. apple 
cores, crusts of bread). Make sure that all left over food is also 
photographed.  

 
 This information is important for understanding our results from the study, 

so it is very important that you avoid missing things out or making it up! 
Thank you!  
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Day 1 

Date and 
time of 

day 

Brand name 
(e.g. Heinz, Tesco, Kel-logs) 

Detailed description of food/drink and cooking method 
(e.g. boiled potatoes, canned sweetcorn, bacon fried in 

sunflower oil) 

Amount served 
(grams/ approx. 

portion) 

Did you leave any? 
How much did you 

leave? 
(Photographed) 
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Day 2 

Date and 
time of 
day 

Brand name 
(e.g. Heinz, Tesco, Kel‐logs) 

Detailed description of food/drink and cooking method 
(e.g. boiled potatoes, canned sweetcorn, bacon fried in 

sunflower oil) 

Amount served (grams/ 
approx. portion) 

Did you leave any? 
How much did you 

leave? 
(Photographed) 
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Day 3 

Date and 
time of 
day 

Brand name 
(e.g. Heinz, Tesco, Kel‐logs) 

Detailed description of food/drink and cooking method 
(e.g. boiled potatoes, canned sweetcorn, bacon fried in 

sunflower oil) 

Amount served (grams/ 
approx. portion) 

Did you leave any? 
How much did you 

leave? 
(Photographed) 

         

         

         

         



76 
 

         

         

         

Day 4 

Date and 
time of 
day 

Brand name 
(e.g. Heinz, Tesco, Kel‐logs) 

Detailed description of food/drink and cooking method 
(e.g. boiled potatoes, canned sweetcorn, bacon fried in 

sunflower oil) 

Amount served (grams/ 
approx. portion) 

Did you leave any? 
How much did you 

leave? 
(Photographed) 
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Day 5 

Date and 
time of 
day 

Brand name 
(e.g. Heinz, Tesco, Kel‐logs) 

Detailed description of food/drink and cooking method 
(e.g. boiled potatoes, canned sweetcorn, bacon fried in 

sunflower oil) 

Amount served (grams/ 
approx. portion) 

Did you leave any? 
How much did you 

leave? 
(Photographed) 
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Day 6 

Date and 
time of 
day 

Brand name 
(e.g. Heinz, Tesco, Kel‐logs) 

Detailed description of food/drink and cooking method 
(e.g. boiled potatoes, canned sweetcorn, bacon fried in 

sunflower oil) 

Amount served (grams/ 
approx. portion) 

Did you leave any? 
How much did you 

leave? 
(Photographed) 
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Day 7 

Date and 
time of 
day 

Brand name 
(e.g. Heinz, Tesco, Kel‐logs) 

Detailed description of food/drink and cooking method 
(e.g. boiled potatoes, canned sweetcorn, bacon fried in 

sunflower oil) 

Amount served (grams/ 
approx. portion) 

Did you leave any? 
How much did you 

leave? 
(Photographed) 
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Day  
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Date and 
time of day

Brand name 
(e.g. Heinz, Tesco, Kel‐logs) 

Detailed description of food/drink and cooking method 
(e.g. boiled potatoes, canned sweetcorn, bacon fried in 

sunflower oil) 

Amount served (grams/ 
approx. portion) 

Did you leave any? 
How much did you 

leave? (Photographed) 
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8.2 Appendix B 
 

Instructions for taking photographs 

 

What do you need to photograph? 

 Everything you eat and drink from when you wake up until to when you go 
to bed – WE ONLY WANT PHOTOS OF FOOD AND DRINK! 

 Remember to take the photos when eating out, eating snacks and for 
all drinks. 

 Angle the camera diagonally down (65-75º) at the food (see below for 
‘good examples’). 

How will we know how much you actually ate? 

 Take the photographs before and after meals, so we can see your 
leftovers. 

o Include a knife/fork/spoon in the photos on the side of the 
plate/bowl, so we can work out the size of the plate or bowl. 

o Take a photo of the whole plate with some space around it (no 
close-ups!).  

o If you have a drink with your meal or snack, you can include the 
drink in the same photo as the food. 

 

Good examples: 

 

 

 

 

 

 

 

Before After 
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Bad examples 

 

 

 

 

 

 

 

Before After 

  Photo not taken at correct angle. 
  Knife and fork not by the side of   the plate. 
  Some of the meal has been eaten already. 
  No ‘after’ picture. 

  No knife or fork. 
  No ‘after’ picture. 

 

What is this meal? 
It is not possible to know! This is why we need you 
to complete your food diary… 
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8.3 Appendix C 
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8.4 Appendix D 
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8.5 Appendix E 
 

 

 

 

 

 

 

INFORMATION SHEET 

 

Title: The reliability of a 7 day photographic food diary to measure free-living 
energy intake 

 

Dear Participant, 

 

Thank you for showing an interest in participating in the study. Please read this 
information sheet carefully before deciding whether to participate. If you decide to 
volunteer we thank you for your participation. If you decide not to take part there 
will be no disadvantage to you of any kind and we thank you for considering our 
request. 

 

What is the aim of the project? 

The purpose of the study is to examine the reliability of a 7 day photographic food 
diary. This study is being undertaken as part of the requirements of MSc by 
Research (MRes) degree at the University of Bedfordshire. 

 

What type of participant is needed? 

The study requires 19-30 year old males who are physically active. It is possible 
that individuals with certain medical conditions may be excluded from the study 
but this will be decided at the first meeting. 

 

Department of Sports Science and 
Physical Activity (SSPA) 

 

Bedford Campus 

Polhill Avenue 

Bedford
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What will participants be asked to do? 

As a participant, you will be required to participate in two 7-day trials. During each 
7-day trial, free-living energy intake (EI) will be measured through a food diary 
(with photographic evidence) and energy expenditure (EE) through wearing an 
Actiheart. You will be required to attend the University of Bedfordshire 
laboratories on 4 separate occasions.  

 

Visit 1:  Resting Metabolic Rate (RMR), a submaximal exercise treadmill 
test (6 x 4 minute stages of increasing speed) and a maximal 
exercise treadmill test (Increasing gradient until volitional 
exhaustion) will all be completed for Actiheart calibration. You will 
be familiarised with the food diary, as well as the Actiheart 
equipment and fitted with the Actiheart.  

 

0-6 d:  A food diary with digital photographs will be completed every day 
during trial 1. An Actiheart will also need to be worn for EE 
measurements.  

 

Visit 2:  Actiheart will be removed and all data will be collected 

 

7- 13 d:  No measurements will need to be taken (7 day washout period) 

 

Visit 3:  Actiheart will be fitted 

 

14 – 20 d:  Identical to trial 1: A food diary with digital photographs will be 
completed every day during trial 2. An Actiheart will also need to 
be worn for EE measurements. 

 

Visit 4:  Actiheart will be removed and all data will be collected 

  

What are the possible risks of taking part in the study? 
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Due to the nature of the study, participants will not be place under any 
unnecessary physical or mental stress throughout the duration of the reliability 
study. 

 

- Participants – Participants will be informed of the study aims of methods; a 
consent form will be completed before test measurements commence. Data 
collected will be either locked in a filing cabinet by a University member of staff or 
either in a password protected folder on a computer.  

- Anonymity – The data collected would not in any way be linked to specific 
participants. 

- Discomfort - The Actiheart may cause some discomfort from the strap 
positioned around the chest needed to hold the Actiheart in place. To minimise 
discomfort, participants will undergo a familiarisation session to get used to the 
initial discomfort caused by the Actiheart. 

- Electrodes - Participants will be asked for any known allergies before skin 
preparation or wearing of the Actiheart. If any soreness or skin irritation develops 
then participants will stop using the Actiheart. Electrodes will be disposed of in 
accordance to the ‘Collection and Disposal of Clinical Waste’ guidelines and will 
not be re-used. 

- Physical stress during exercise - Participants will be informed of the exercise 
protocol and all safety procedures will be explained before testing commences. A 
safety mat will always be present behind the treadmill and clear of any equipment, 
in order to minimise the risk of injury. A first aider will be present at all times within 
the laboratories so that if an incident occurs, a first aid will be immediately provided. 
A researcher will be present at all times during exercise to insure participants are 
not in any discomfort. Exercise will be stopped if participants feel ill or are in 
discomfort or pain and will be monitored. 

 

What if you decide you want to withdraw from the project? 

If, at any stage you wish to leave the project, then you can. There is no problem 
should you wish to stop taking part and it is entirely up to you. There will be no 
disadvantage to yourself should you wish to withdraw. 

 

What will happen to the data and information collected? 

Everyone that takes part in the study will receive their own results for the tests 
that they complete. All information and results collected will be held securely at 
the University of Bedfordshire and will only be accessible to related University 
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staff. Results of this project may be published, but any data included will in no 
way be linked to any specific participant. Your anonymity will be preserved. 

 

What if I have any questions? 

Questions are always welcome and you should feel free to ask myself Paul 
Mackie, my colleague, Chris Esh or supervisor John Hough any questions at any 
time. See details below for specific contact details. 

 

Should you want to participate in this study then please complete the attached 
assent form, which needs to be returned before commencing the study. 

 

This project has been reviewed and approved by the Ethics Committee of the 
Department of Sport and Exercise Sciences. 

 

Many Thanks,  

 

Paul Mackie (email: paul.mackie@study.beds.ac.uk) 

Chris Esh (email: Christopher.esh@study.beds.ac.uk)   

John Hough (email: John.hough@beds.ac.uk)  

     

Department of Sport and Exercise Sciences,     

University of Bedfordshire 

Bedford Campus,  

Polhill Avenue, 

Bedford 
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8.6 Appendix F 
 

SUBJECT CONSENT FORM 

 

UNIVERSITY of BEDFORDSHIRE 

 

Consent form 

 

The reliability of a 7 day photographic food diary to measure free-living 
energy intake 

 

Date and approximate time: ________________________ 

 

I confirm that I understand the nature of the study above and what is involved 
in the protocol outlined.  I further confirm that my health is normal and the 
information given on the health/medical questionnaire is accurate and 
complete. 

My agreement to participate in the experiment is made of my own free will, 
and not in response to financial or other inducements (e.g. peer pressure).  I 
confirm that I am not currently participating in another experimental trial. I 
confirm that I understand the risks involved in the protocol outlined and that all 
information and data collected will be held securely at the University of 
Bedfordshire. 

The attention of volunteers is drawn to the fact that in the case of injury to 
persons or damage to property no claim for damages can succeed against 
University of Bedfordshire or against its employees unless legal liability 
resulting from negligence can be proved. 

 

Name: __________________________________________________ 

Signed:__________________________________________________ 

Witness: __________________________________________________ 

Signed:__________________________________________________ 

Date: __________________________________________________ 
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8.7 Appendix G 
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8.8 Appendix H 
 

Sport & Exercise Science Laboratories 

Polhill Avenue 

Bedford MK41 9EA 

 

 

PRE-TEST MEDICAL QUESTIONNAIRE 
 

To be completed by all subjects before participating in practical sessions. 

 

 

Name: ………………………………………………….  

 

Age:……………   Gender:  M    /    F 

 

1 Are you in good health?       Yes    /    
No 

If no, please explain:      

 

2 Are you pregnant or have you given birth in the last 6 months?  Yes    /    
No 

 

3 How would you  describe  your present level  of  moderate activity? 
 < once per month 
     once per month 
     2-3 times per week 
     4-5  times per week 
  > 5 times per week 

 

4 Have you suffered from a serious illness or accident?    Yes    /    
No 

If yes, please give particulars: 
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5 Are you recovering from an illness or operation?    Yes    /    
No 

If yes, please give particulars: 

 

6 Do you suffer, or have you ever suffered from: 
Respiratory conditions (asthma, bronchitis, tuberculosis, other)?   Yes    /    
No 

Diabetes?      Yes    /    
No 
Epilepsy?      Yes    /    
No 
High blood pressure?      Yes    /    
No 

Heart conditions or circulation problems: 

(angina, high blood pressure, varicose vein, aneurysm, embolism, heart attack, 
other)?  

Do you have chest pains at any time?      Yes    /    
No 
Do you suffer from fainting/blackouts/dizziness?          Yes    /    
No 
Is there any history of heart disease in your family?    Yes    /    No 
 

7 Are you currently taking medication ?    Yes    /    
No 

If yes, please give particulars: 

 

8 Are you currently attending your GP for any condition or have you consulted 
your doctor in the last three months? If yes, please give particulars: 
 Yes    /    No  

    

 

9 Have you had to consult your doctor, or had hospital treatment within the 
last six months?        
 Yes    /    No 

 

 

10 Have you, or are you presently taking part in any other laboratory        Yes    /    
No 
 experiment? 
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11 Are you currently fitted with a pacemaker                                               Yes    /    
No 
 

12 Do you have any food allergies or intolerances     Yes    /    
No 
 

 

 

 

PLEASE READ THE FOLLOWING CAREFULLY 

 

Persons will be considered unfit to do the experimental exercise task if they: 

 

have a fever, suffer from fainting spells or dizziness; 

have suspended training due to a joint or muscle injury; 

have a known history of medical disorders, i.e. high blood pressure, heart 
or lung disease;  

have had hyper/hypothermia, heat exhaustion, or any other heat or cold 
disorder; 

have anaphylactic shock symptoms to needles, probes or other medical-
type equipment.  

have chronic or acute symptoms of gastrointestinal bacterial infections (e.g. 
Dysentery, Salmonella) 

have a history of infectious diseases (e.g. HIV, Hepatitis B); and, if 
appropriate to the study design, have a known history of rectal bleeding, 
anal fissures, haemorrhoids, or any other condition of the rectum; 

 

DECLARATION 

I hereby volunteer to he a subject in experiments/investigations during the period 
of  20___. 

 

My replies to the above questions are correct to the best of my belief and I 
understand that they will be treated with the strictest confidence. The experimenter 
has explained to my satisfaction the purpose of the experiment and possible risks 
involved. 
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I understand that I may withdraw from the experiment at any time and that I am 
under no obligation to give reasons for withdrawal or to attend again for 
experimentation. 

 

Furthermore, if I am a student, I am aware that taking part or not taking part in this 
experiment, will neither be detrimental to, or further my position as a student. 

 

I undertake to obey the laboratory/study regulations and the instructions of the 
experimenter regarding safety, subject only to my right to withdraw declared above. 

 

Name of subject (please print) 
________________________________________________ 

 

Signature of Subject __________________________________              

Date: ___________ 

 

Name of Experimenter (please 
print)____________________________________________ 

 

Signature of Experimenter  _____________________________               

Date: __________  
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8.9 Appendix I 
 

 

 

 

 

 

 

 

 

INFORMATION SHEET 

 

Title: The effect of a 7 day imposed intensified exercise on energy balance and 
appetite-regulating hormones in young, healthy, physically active men  

 

Dear Participant, 

 

Thank you for showing an interest in participating in the study. Please read this 
information sheet carefully before deciding whether to participate. If you decide to 
volunteer we thank you for your participation. If you decide not to take part there 
will be no disadvantage to you of any kind and we thank you for considering our 
request. 

 

What is the aim of the project? 

The purpose of the study is to examine the effect of a 7 day imposed exercise 
training on energy balance, appetite and appetite regulating hormone responses 
to a meal. This study is being completed for an MSc by Research degree.  

 

What type of participant is needed? 

DEPARTMENT OF SPORT & 
EXERCISE SCIENCES 

 

Bedford Campus 

Polhill Avenue 

Bedford 
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The study requires 19-30 year old males who are physically active. It is possible 
that individuals with certain medical conditions may be excluded from the study 
but this will be decided at the first meeting. 

 

What will participants be asked to do? 

As a participant, you will be required to participate in two 7-day trials. During one 
trial, you will be asked to complete 7 days of exercise, and for the other you will 
be asked not to complete any exercise. During each 7-day trial, free-living energy 
intake (EI) will be measured through a food diary (with photographic evidence) 
and energy expenditure (EE) through wearing an Actiheart. The day before, the 
day after and two days after each trial, you will be asked to come to the 
University to complete a meal tolerance test, which will involve a series of blood 
samples.  

 

In total you will be required to attend the University of Bedfordshire laboratories 
on 14 separate occasions: 

 

Visit 1:  

 

Resting Metabolic Rate (RMR), a submaximal exercise treadmill test (6 x 4 
minute 

stages of increasing speed) and a maximal exercise treadmill test (Increasing 

gradient until volitional exhaustion) will all be completed for Actiheart calibration. 
You 

will be familiarised with the food and exercise diary. 

 

Visits 2, 10, 11, 12, 13 & 14:  

You will be asked to fast for 12 h (i.e. overnight) before arriving at the lab. You 
will arrive at the lab for a 09:00 start. During this session we collect 7 blood 
samples via cannulation during each of these visits.  You will be provided with a 
meal to consume during this visit and we will ask you about your appetite during 
this each trial. Each visit will last ~3 h (i.e. leaving at 12 noon).  

 

Visits 3-9 (inclusive):  



99 
 

 

You will complete 7 days of imposed exercise during these visits. During each 
visit 

you will run on a treadmill at 70% V̇O2peak for a duration to utilise 800 kcal (~1 h). 
A 

food diary with digital photographs and exercise diary will be completed every 
day 

during trial this period. An Actiheart will also need to be worn for EE 
measurements. 

 

What are the possible risks of taking part in the study? 

Due to the nature of the study, participants will not be place under any 
unnecessary physical or mental stress throughout the duration of the reliability 
study. 

 

- Participants – Participants will be informed of the study and what they can do. 
A consent form will be completed before test measurements commence. Data 
collected will be either locked in a filing cabinet by a University member of staff or 
either in a password protected folder on a computer.  

- Anonymity – The data collected would not in any way be linked to specific 
participants. 

- Discomfort - The Actiheart may cause some discomfort from the strap 
positioned around the chest needed to hold the Actiheart in place. To minimise 
discomfort, participants will undergo a familiarisation session to get used to the 
initial discomfort caused by the Actiheart. 

- Electrodes - Participants will be asked for any known allergies before skin 
preparation or wearing of the Actiheart. If any soreness or skin irritation develops 
then participants will stop using the Actiheart. Electrodes will be disposed of in 
accordance to the ‘Collection and Disposal of Clinical Waste’ guidelines and will 
not be re-used. 

- Physical stress during exercise - Participants will be informed of the exercise 
protocol and all safety procedures will be explained before testing commences. A 
safety mat will always be present behind the treadmill and clear of any equipment, 
in order to minimise the risk of injury. A first aider will be present at all times within 
the laboratories so that if an incident occurs, a first aid will be immediately provided. 
A researcher will be present at all times during exercise to insure participants are 
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not in any discomfort. Exercise will be stopped if participants feel ill or are in 
discomfort or pain and will be monitored. 

- Blood sampling - A certified first aider will be on-site whilst blood sampling occurs and 
all procedures will be given special care. Samples will be collected in a clean and sterile 
environment to avoid the chance of infection and all wounds will be treated until bleeding 
has stopped and then covered to reduce the risk of infection. 

 

What if you decide you want to withdraw from the project? 

If, at any stage you wish to leave the project, then you can. There is no problem 
should you wish to stop taking part and it is entirely up to you. There will be no 
disadvantage to yourself should you wish to withdraw. 

 

What will happen to the data and information collected? 

Everyone that takes part in the study will receive their own results for the tests 
that they complete. All information and results collected will be held securely at 
the University of Bedfordshire and will only be accessible to related University 
staff. Results of this project may be published, but any data included will in no 
way be linked to any specific participant. Your anonymity will be preserved. 

 

What if I have any questions? 

Questions are always welcome and you should feel free to ask Paul Mackie, 
Chris Esh (both experimenters), Dr.John Hough (supervisor) or Dr. Julia 
Zakrzewski (supervisor) any questions at any time (contact details below). See 
details below for specific contact details. 

 

Should you want to participate in this study then please complete the attached 
assent form, which needs to be returned before commencing the study. 

 

This project has been reviewed and approved by the Ethics Committee of the 
Department of Sport and Exercise Sciences. 

 

Many Thanks,  

 

Paul Mackie (email: paul.mackie@study.beds.ac.uk) 
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Chris Esh (email: Christopher.esh@study.beds.ac.uk)   

John Hough (email: John.hough@beds.ac.uk)  

Julia Zakrzewski (email: Julia.Zakrzewski@beds.ac.uk) 

     

Department of Sport and Exercise Sciences,     

University of Bedfordshire 

Bedford Campus,  

Polhill Avenue, 

Bedford 
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8.10 Appendix J 
 

SUBJECT CONSENT FORM 

 

UNIVERSITY of BEDFORDSHIRE 

Consent form 

The effect of a 7 day imposed intensified exercise on energy balance and 
appetite-regulating hormones in young, healthy, physically active men  

 

Date and approximate time: ________________________ 

 

I confirm that I understand the nature of the study above and what is involved 
in the protocol outlined. I further confirm that my health is normal and the 
information given on the health/medical questionnaire is accurate and 
complete. 

My agreement to participate in the experiment is made of my own free will, 
and not in response to financial or other inducements (e.g. peer pressure).  I 
confirm that I am not currently participating in another experimental trial. I 
confirm that I understand the risks involved in the protocol outlined and that all 
information and data collected will be held securely at the University of 
Bedfordshire. 

The attention of volunteers is drawn to the fact that in the case of injury to 
persons or damage to property no claim for damages can succeed against 
University of Bedfordshire or against its employees unless legal liability 
resulting from negligence can be proved. 

 

Name: __________________________________________________ 

Signed:__________________________________________________ 

Witness: __________________________________________________ 

Signed:__________________________________________________ 

Date: __________________________________________________ 
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8.11 Appendix K 
 

BLOOD ANALYSIS – Participant Screening Form 
 
 
Please read the following: 
 

a. Are you suffering from any known active, serious infection? 

b. Have you had jaundice within the previous year? 

c. Have you ever had any form of hepatitis?  

d. Have you any reason to think you are HIV positive? 

e. Have you ever been involved in intravenous drug use? 

f. Are you a haemophiliac? 

g. Is there any other reason you are aware of why taking blood might be  

    hazardous to your health?  

h. Is there any other reason you are aware of why taking your blood might 
be  

    hazardous to the health of the technician? 

 

 
Can you answer Yes to any of questions a-g?    Please tick your response.

       
Yes   No  

 

 

 

Small samples of your blood (from finger or earlobe) will be taken in the manner 
outlined to you by the qualified laboratory technician. All relevant safety 
procedures will be strictly adhered to during all testing procedures (as specified in 
the Risk Assessment document available for inspection in the laboratory). 
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  I declare that this information is correct, and is for the sole purpose of giving the  

  tester guidance as to my suitability for the test.  

 

 

   Signed  ………………………………………  

      

   Date  ……………………………………… 

 

  If there is any change in the circumstances outlined above, it is your 
responsibility to 

  tell the person administering the test immediately. 

 

 

The completed Medical Questionnaire (Par Q) and this Blood Sampling Form will 
be held in a locked filing cabinet in the School of PE and Sport Sciences 
laboratories at the University for a period of one-three years. After that time all 
documentation will be destroyed by shredding. 

 

If you wish to have a photocopy of any of the completed documents, please ask 
for one. 
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