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THE RELATIONSHIP BETWEEN STIFFNESS, ASYMMETRIES AND CHANGE 

OF DIRECTION SPEED 

SEAN MALONEY 

ABSTRACT 

Change of direction speed (CODS) is an important determinant of performance in 

many sports. Greater stiffness of the lower limb should be beneficial to CODS, but 

this had not been well investigated. The purpose of this thesis was to establish the 

relationship between vertical stiffness, vertical stiffness asymmetries and CODS, 

with a view to augmenting CODS performance. 

The pilot study and studies 1-2 sought to determine the most reliable and 

ecologically valid method to assess stiffness in athletes required to perform 

changes of direction. The pilot study reported that the use of ultrasonography to 

determine Achilles tendon stiffness did not demonstrate appropriate reliability for 

inclusion in subsequent studies. Coefficients of variation (CVs) in excess of 27% 

were reported during an isometric plantar flexion task. Study 1 reported that CVs 

for vertical stiffness were lower when assessed during unilateral drop jumping 

(~7%) than during bilateral drop jumping (~12%) or bilateral hopping (~14%). Study 

2 reported that the expression of vertical stiffness (P = 0.033) and vertical stiffness 

symmetry angle (P = 0.006) was significantly different across three performance 

tasks: unilateral drop jumping, bilateral drop jumping and bilateral hopping. 

Asymmetry percentages between compliant and stiff limbs were 5.6% (P < 0.001; 

d: 0.22), 23.3% (P = 0.001; d = 0.86) and 12.4% (P = 0.001; d = 0.39), respectively. 

Given the findings of studies 1 and 2, this thesis demonstrated the reliability and 

validity of a novel method by which to assess vertical stiffness - the unilateral drop 

jump. This task was used in subsequent studies to measure vertical stiffness. 
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Study 3 sought to determine if vertical stiffness and vertical stiffness asymmetries 

influenced CODS performance determined during a 90o cutting task. Multiple 

regression analyses reported that mean vertical stiffness and asymmetry in jump 

height explained 63% (r2 = 0.63; P = 0.001) of CODS performance. Study 3 was 

the first investigation to demonstrate the importance of vertical stiffness to CODS 

performance. 

Study 4 sought to determine if acute exercise interventions designed to augment 

vertical stiffness would improve CODS. Unilateral and bilateral ‘stiffness’ 

interventions were evaluated against a control condition. CODS performances 

following the unilateral intervention were significantly faster than control (1.7%; P 

= 0.011; d = -1.08), but not significantly faster than the bilateral intervention (1.0% 

faster; P = 0.14; d = -0.59). Versus control, vertical stiffness was 14% greater (P = 

0.049; d = 0.39) following the unilateral intervention. Study 4 demonstrated that a 

novel unilateral ‘stiffness’ intervention improved vertical stiffness and CODS 

performance. This highlights that the potential applicability of unilateral stiffness 

interventions in the pre-performance preparation of athletes. 
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Operational Definitions 

To aid the clarity, the following terminology and their operational definitions will be 

used throughout the entirety of the thesis: 

 Stiffness 

A general term used to describe the notion of a displacement of the human body, 

or parts thereof, in response to the application of forces or moments (Serpell et al., 

2012). 

 Vertical stiffness 

Specifically describes the vertical displacement of the centre of mass in response 

to vertical ground reaction force during a task performed in the sagittal plane 

(Latash & Zatsiorsky, 1993). 

 Leg stiffness 

Specifically describes the displacement of the leg spring in response to force in 

any plane or direction (McMahon & Cheng, 1990). 

 Joint stiffness 

Specifically describes the angular displacement of a joint in response to the 

moment at the joint (Farley et al., 1998). 

 Asymmetry 

A general term used to describe a functional imbalance between limbs (Zifchock 

et al., 2008). 
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 Asymmetry percentage  

Specifically describes the difference between two sides using the larger value as 

a reference value (Vagenas & Hoshizaki, 1991). 

 Symmetry index 

Specifically describes the difference between two sides using the sum of larger 

and smaller sides as a reference value (Robinson et al., 1987). 

 Symmetry angle 

Specifically describes the difference between two sides using a vector of symmetry 

as a reference point (Zifchock et al., 2008). 

 Change of direction speed 

The speed at which an individual can perform a pre-planned movement, or 

sequence or movements, involving changes of direction (Brughelli et al., 2008).



1 
 

Chapter 1 - Introduction 

1.1 Change of direction speed 

Change of direction speed (CODS) underpins performance in a wide range of 

sports. Young et al. (2002) reported that reactive strength, a quality closely linked 

to stiffness, may be the strongest physical predictor of CODS. Theoretically, 

greater stiffness should facilitate a more rapid release of elastic energy under 

circumstances where minimal tissue, segmental or body displacement is desired, 

such as during a change of direction (Bret et al., 2002). To this author’s knowledge, 

only Pruyn, Watsford, and Murphy (2014) have examined the effect of stiffness on 

CODS; Pruyn et al. (2014) reported that medial gastrocnemius stiffness, but not 

vertical stiffness, was related to CODS performance in elite netball players. 

Inter-limb asymmetries in CODS between dominant and non-dominant limbs have 

been reported in a number of investigations (Young et al., 2002; Henry et al., 2013; 

Hart et al., 2014a), and is hypothesised to be a consequence of greater reactive 

strength in the dominant limb (Young et al., 2002; Henry et al., 2013). Whilst it may 

seem reasonable to hypothesise that asymmetries would be detrimental to overall 

CODS performance given the body of evidence introduced in Section 1.3, such 

propositions need to be examined directly. 

Pre-conditioning interventions have been independently shown to improve CODS 

(Maloney et al., 2014b) and to increase vertical stiffness (Barnes et al., 2015). It is 

hypothesised that increased stiffness may contribute to such performance 

enhancements (Maloney et al., 2014b) but this has not been examined directly. 

Moreover, the acute effects of a plyometric intervention on parameters of stiffness 

has not been determined. 
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1.2 Stiffness 

Stiffness describes the deformation of an object in response to a given force and 

is a concept which can be used to characterise human movement (Latash & 

Zatsiorsky, 1993; Butler et al., 2003; Pearson & McMahon, 2012). Stiffness can be 

modelled with increasing levels of determinism, for example, the summative 

stiffness of the entire lower limb down to the stiffness of a single collagen fibre. 

Typically, research has sought to use measures of summative lower limb stiffness 

(Hobara et al., 2008; 2010), individual joint stiffness (Kuitunen et al., 2011) or 

tendon stiffness (Kubo et al., 2007) to examine relationships with athletic 

performance.  

Greater vertical stiffness has been reported in sprint-trained versus endurance-

trained runners (Hobara et al., 2008) and in endurance-trained runners versus 

untrained controls (Hobara et al., 2010). Within a single sport, athletes exhibiting 

greater stiffness of the gastrocnemius and soleus may perform better in CODS, 

jump and short sprint tests (Pruyn et al., 2014). As increased stiffness would 

appear beneficial to short-duration maximal performance measures, interventions 

designed to augment stiffness may be hypothesised to improve CODS. 

It has been demonstrated that stiffness can be modified in response to both acute 

(Comyns et al., 2007; Moir et al., 2011) and chronic (Pearson & McMahon, 2012) 

resistance exercise interventions. The results of any assessment can therefore 

directly inform the training process of athletes. 
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1.3 Asymmetry 

Quantification of asymmetry is useful if seeking to determine the magnitude of a 

functional imbalance within the body. Asymmetry in force/power qualities has been 

linked to impaired performance in several investigations (Bailey et al., 2013; 

Bazyler et al., 2014; Bell et al., 2014; Hart et al., 2014b; Bailey et al., 2015) and 

asymmetry in vertical stiffness specifically has been linked to increased injury 

incidence in Australian Rules footballers (Pruyn et al., 2012). 

Research has commonly used the symmetry index to characterise asymmetries, 

however, the symmetry angle devised by Zifchock et al. (2008) may provide a more 

suitable alternative. In addition to reporting a clear direction of asymmetry, the 

symmetry angle provides a standard scale for interpretation and reduces the 

likelihood of artificially inflated values. 

The expression of asymmetry is highly task dependant. For example, Flanagan 

and Harrison (2007) reported that no asymmetries were demonstrated during 

cyclic, repeated sledge hops but a significant asymmetry in reactive strength index 

during acyclic hops. Also, Benjanuvatra et al. (2013) observed that inter-limb 

impulse asymmetries observed during bilateral jumping were not necessarily 

indicative of the asymmetries observed during unilateral jumping. These studies 

highlight the importance of selecting the most appropriate test by which to assess 

stiffness asymmetries. To date, the literature has not examined the effects of 

stiffness asymmetries or explored how CODS may be affected. 
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1.4 Thesis aims 

This thesis will seek to: 

1. Determine the most reliable and ecologically valid method to assess 

vertical stiffness in athletes required to perform changes of direction. 

2. Determine if vertical stiffness and vertical stiffness asymmetries influence 

CODS. 

3. Determine if acute ‘stiffness’ interventions can positively influence CODS 

and if augmentations are linked to the modulation of vertical stiffness and 

vertical stiffness asymmetries. 

 

1.5 Thesis rationale 

 CODS is an important determinant of performance in many sports.  

 Greater stiffness is likely to be beneficial to CODS but this relationship has 

not been well explored. 

 Asymmetries in force-related properties have been linked to impaired 

performance in a variety of tasks but not considered CODS. 

 Stiffness asymmetries have been linked to increased injury incidence but 

the relationship with performance is yet to be explored. 

 Pre-conditioning interventions have been shown to augment CODS but not 

considered the reasons for these enhancements. 

 Resistance exercise interventions have been shown to acutely augment 

stiffness but plyometric interventions have not been similarly evaluated.  
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1.6 Intended impact 

Studies 1 and 2 will determine the most reliable and ecologically valid method to 

assess vertical stiffness. This will provide athletes, coaches and applied 

practitioners with the most appropriate assessment tool for vertical stiffness. Study 

3 will determine if vertical stiffness and/or vertical stiffness asymmetries influence 

CODS. Were these factors found to influence CODS, this would carry two 

important consequences. Firstly, this would highlight the importance of testing for 

these variables. Secondly, this would influence how interventions to improve 

CODS may be devised and structured. Study 4 will determine if acute ‘stiffness’ 

interventions positively influence CODS. Were these interventions found to be 

effective, this would influence the performance preparation strategies of athletes. 

 

1.7 Organisation of the project 

 

Figure 1.1 -  A flow diagram representing the organisation of the project. 
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Chapter 2 - Literature Review 

2.1 An introduction to stiffness 

Stiffness is a physical concept that describes the deformation of an object in 

response to a given force (Latash & Zatsiorsky, 1993; Butler et al., 2003; Pearson 

& McMahon, 2012). It is based on the Hookean premise that the force required to 

deform a material is related to a proportionality constant and the distance the 

material is deformed (Latash & Zatsiorsky, 1993; Butler et al., 2003) (Equation 2.1); 

it is this proportionality constant that represents the stiffness of the object. 

Equation 2.1:   (Latash & Zatsiorsky, 1993; Butler et al., 2003)  

Where F = force, k = the proportionality constant and x = the distance the 
material is deformed. 

In order to calculate the proportionality constant, Equation 2.1 can be rearranged 

to form Equation 2.2 (Latash & Zatsiorsky, 1993). 

  Equation 2.2:  (Latash & Zatsiorsky, 1993) 

Where k = the proportionality constant, ∆F = change in force and ∆x = 
change in length. 

Therefore, theoretically, stiffness can be modelled where both a length change and 

force output change can be approximated. 

 

2.2 The spring-mass model 

In regards to human movement, stiffness describes the ability of the body, or 

individual joints within the body, to resist displacement in response to the 

application of ground reaction force or individual joint moments (Serpell et al., 
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2012). The stiffness of the body is commonly approximated using a spring-mass 

model (Blickhan, 1989; McMahon & Cheng, 1990; Farley et al., 1991; Seyfarth et 

al., 2000; Kuitunen et al., 2002; Butler et al., 2003; Cavagna, 2006; Hobara et al., 

2007). In this model, the lower limb is represented as a simple ‘leg-spring’ 

supporting the mass of the body (Butler et al., 2003). The spring-mass model can 

be applied as shown in Figure 2.1a to tasks such as hopping (Hobara et al., 2007) 

or vertical jumping (Arampatzis et al., 2001b), and as shown in Figure 2.1b to tasks 

such as walking/running gait (Cavagna, 2006) or horizontal jumping (Seyfarth et 

al., 2000), to provide a global approximation of leg-spring stiffness. 

 

Figure 2.1a - A representation of the spring mass-model applied to hopping and 
vertical jumping. 

 

Figure 2.1b - A representation of the spring-mass model applied to 
walking/running gait and horizontal jumping. 

In a physical context, an ideal spring has the mass of the system concentrated at 

the end of the spring whilst the spring itself is massless, moves solely in one 
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direction and has a stiffness that is independent of how the force is applied (Butler 

et al., 2003). The notion of applying a simple spring-mass, or leg-spring, model to 

describe the mechanical properties of the human body is therefore flawed given 

the complex interaction of many individual components and numerous degrees of 

freedom (Latash & Zatsiorsky, 1993). However, as noted by Blickhan (1989), the 

spring-mass model does not imply that hopping and running is just ‘elastic 

bounding’ and states that “even in the case of actively supplied forces, a bouncing 

system behaves similarly to a spring-mass system” (Blickhan 1989, p. 1227).  It is 

general features of the spring-mass model, most notably the conservation of 

momentum during instances of ground contact, that make the model successful in 

describing mechanical features of human movement (Blickhan, 1989); such 

features are not dependent on the assumption of a linear, massless leg-spring 

(Blickhan, 1989).  

Whilst the leg-spring may not represent a true physical spring (Morin et al., 2005; 

Morin et al., 2006), the ability to approximate deformation of the lower limb in 

response to force is of important practical relevance to athletes and coaches. 

Lower limb stiffness, as approximated using simple spring-mass modelling, has 

been widely demonstrated to influence athletic performance (Pearson & McMahon, 

2012) and will be discussed in greater detail in Section 2.4. 

 

2.3 Modelling stiffness in human movement 

Stiffness can be modelled at various physiologic levels, contextualised in Figure 

2.2. 
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Figure 2.2 - An inverted pyramid representing the different physiologic levels at 
which parameters of stiffness may be determined. 

Limb stiffness, at the top of the inverted pyramid, is a summative representation of 

all the underlying layers. For example, the stiffness of individual collagen fibres 

within the Achilles tendon, at the bottom of the pyramid, will influence leg-spring 

stiffness at the top of the pyramid. Whilst it is possible to approximate stiffness at 

each level of the pyramid, two key factors should be considered. Firstly, whilst a 

deterministic approach can elucidate important information pertaining to the 

summative limb stiffness, it is critical that the complex interaction of these various 

components is considered (Chow & Knudson, 2011). During human movement in 

vivo the lower limb is required to function as an integrated unit (Butler et al., 2003; 

Pearson & McMahon, 2012). Secondly, it is important to consider the practicality 

of the methodology required to assess a given stiffness. Typically, the more 

reductionist the approach, the greater the monetary cost, prerequisite skill level of 

the investigator and time taken for the assessment. For example, the determination 

of Achilles tendon stiffness in vivo requires the integration of force dynamometry, 

electromyography and motion capture analysis (Pearson & McMahon, 2012) and 

may be contraindicated within athletic training centres. 
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2.3.1 Vertical stiffness 

Vertical stiffness is a representative measure of the summative musculoskeletal 

stiffness of the lower limb, approximating how the leg-spring deforms in response 

to force during a vertical movement task such as a hop or a vertical jump (Butler et 

al., 2003). Specifically, vertical stiffness considers the extent to which the body’s 

centre of mass is displaced in response to vertical ground reaction force (McMahon 

& Cheng, 1990), as shown in Equation 2.3, and is based on the Hookean premise 

of the lower limb functioning as a simple leg-spring. 

Equation 2.3:  (Latash & Zatsiorsky, 1993) 

Where Kvert = vertical stiffness, Fmax = maximum vertical force and ∆y = 
maximum vertical displacement of the centre of mass. 

Relative to other approximations of stiffness, vertical stiffness is a quick and easy 

method by which to assess the viscoelastic properties of the lower limb (Butler et 

al., 2003). Ground reaction forces can be obtained using a force plate, a tool 

becoming increasingly common within the athletic training environment, and centre 

of mass displacement can be determined from the force trace using principles of 

inverse mechanics (Cavagna, 1975).  

Vertical stiffness is most commonly assessed during the performance of a bilateral 

‘hopping’ task (Joseph et al., 2013; Hobara et al., 2014). As well as offering the 

most simple spring-mass model with which to assess vertical stiffness (Farley et 

al., 1991), bilateral hopping is established to be more efficient in energetic 

consumption in comparison to other types of gait (Cavagna et al., 1964). Hopping 

should therefore provide a strong representation of musculoskeletal stiffness given 

the limited requirement for subsequent active force generation after the initiation of 

the hopping sequence (Farley et al., 1991). During hopping tasks, individuals are 
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required to perform a number of repeated bilateral hops on a force plate whilst 

vertical ground reaction force is recorded. Centre of mass displacement is then 

calculated from the force trace using principles of inverse dynamics. The centre of 

mass displacement is deemed representative of how much the leg-spring deforms 

in response to the ground reaction force (Butler et al., 2003). Vertical stiffness is 

subsequently calculated as the ratio of peak ground reaction force to peak centre 

of mass displacement as outlined in Equation 2.3 (Joseph et al., 2013; Hobara et 

al., 2014). 

One potential issue with hopping tasks is that they are typically performed at set 

hopping frequencies and are inherently submaximal in nature (Joseph et al., 2013; 

Hobara et al., 2014). As such, bilateral hopping tasks may demonstrate greater 

correspondence to sub-maximal cyclic performances, such as endurance running, 

rather than short-term maximal performances, such as jumping. Whilst vertical 

stiffness may be determined during a squat jump or countermovement jump (i.e. 

Witmer et al., 2010), these tasks do not incur impact forces and do not represent 

how the leg-spring is typically loaded during sporting activities. Tasks such as 

running and changes of direction are dependent upon a flight phase and an initial 

impact during ground contact. For this reason, it may be desirable to assess 

vertical leg stiffness during a drop jump. The drop jump is an acyclic action 

performed with the intent to maximise jump height whilst minimising ground contact 

time (Marshall & Moran, 2013). It may therefore carry greater ecological validity as 

an assessment tool for vertical stiffness when compared to hopping tasks and be 

more representative of single maximal jumping effort (Flanagan & Harrison, 2007). 

Whilst vertical stiffness has been modelled during drop jumping by Arampatzis et 

al. (2001b), this task has not been used to examine relationships with performance 

or to examine inter-group differences in the same way as bilateral hopping tasks. 
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2.3.2 Leg stiffness 

Whilst vertical stiffness does aim to approximate stiffness of the leg, the terms 

vertical stiffness and leg stiffness should not be used interchangeably. Leg 

stiffness is a separate measure which examines the extent to which the leg-spring 

compresses in response to ground reaction forces as opposed to assessing the 

displacement of the body’s centre of mass (McMahon & Cheng, 1990), as shown 

in Equation 2.4. The change in leg length is calculated using greater number of 

factors in comparison to vertical stiffness. This method accounts for resting leg 

length, ground contact time and horizontal velocity in addition to vertical ground 

reaction force and calculated centre of mass displacement (McMahon & Cheng, 

1990). The detailed equation for leg stiffness is presented in Appendix A2. 

Equation 2.4:  (McMahon & Cheng, 1990) 

Where Kleg = leg stiffness, Fmax = maximum vertical force and ∆L = change 
in leg length. 

If seeking to describe stiffness using a simple spring-mass model, the calculation 

of leg stiffness may be preferable to vertical stiffness during performance tasks in 

which the lower limb contacts the ground in a non-vertical position such as during 

running gait or a change of direction. During tasks such as hops or vertical jumps, 

which are performed strictly in the vertical direction, leg stiffness and vertical 

stiffness formulae should provide the same value as the change in leg length is a 

function of the angle at which the leg-spring contacts the ground (McMahon & 

Cheng, 1990; Butler et al., 2003). 

2.3.3 Joint stiffness 

Given that calculations of vertical stiffness and leg stiffness are based on the 

premise that the lower limbs function as a global spring-mass system (Butler et al., 
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2003), they do not take into consideration the various joints that contribute to 

summative stiffness (Pearson & McMahon, 2012). In order to elucidate the 

potential determinants of vertical stiffness properties, it is important to consider the 

respective contribution of the stiffness of individual joints.  

Two-dimensional computer simulation models created by Farley et al. (1998) and 

Farley and Morgenroth (1999) demonstrated that vertical stiffness during bilateral 

hopping was modulated as a consequence of changes in ankle stiffness and were 

relatively unaffected by changes in knee stiffness. Farley et al. (1998) collected 

data reporting significant increases in ankle stiffness (173%; P = 0.023), but not 

knee stiffness (P = 0.18), between stiff and compliant surfaces. In the subsequent 

simulation model, a 175% increase in ankle stiffness resulted in a 170% increase 

in vertical stiffness whereas a 200% increase in knee stiffness increased vertical 

stiffness by just 8% (Farley et al., 1998).  

This proposition has been subsequently supported in hopping investigations by 

Kuitunen et al. (2011) and Kim et al. (2013), and in drop jumping by Arampatzis et 

al. (2001). Kuitunen et al. (2011) reported strong correlations between vertical 

stiffness and ankle stiffness (r = 0.72-0.92; P = 0.05-0.01), but not knee stiffness, 

in eight ‘physically active’ males. Kim et al. (2013) demonstrated that modulation 

of ankle stiffness had the highest correlation to hopping frequency (r2 = 0.83; P < 

0.01) in a ‘well-trained’ mixed-sex cohort (males: 7, females: 4). In a population of 

fifteen decathletes, Arampatzis et al. (2001) reported that vertical and ankle 

stiffness both increased in a linear manner with shorter ground contact times, whilst 

knee stiffness did not. However, Arampatzis et al. (2001) did not specifically 

examine the vertical versus ankle stiffness relationship. 
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In contrast, Hobara et al. (2009) reported that knee stiffness, but not ankle stiffness, 

explained variance in vertical stiffness during maximal bilateral hopping in ten ‘well-

trained’ male athletes. Multiple regression analysis accounted for 84% (P = 0.003) 

of the variance in vertical stiffness with a significant correlation reported for knee 

stiffness (r = 0.64; P = 0.03) but not ankle stiffness (r = 0.37; P = 0.17). Whilst 

Kuitunen et al. (2011) demonstrated that knee stiffness did not influence global 

stiffness, the investigators reported that knee stiffness modulated mechanical 

output and overall performance; knee stiffness significantly correlated to take-off 

velocity during bilateral hopping (r = 0.56; P < 0.001) and was increased in 

response to greater hopping intensities. Horita et al. (2002) also highlight the role 

of the knee in determining performance, correlating knee moment (r = 0.84; P < 

0.01), although not knee stiffness (r = 0.42), to take-off velocity in drop jumping in 

nine ‘healthy’ males.  

The contributions of ankle and knee stiffness are of particular importance if seeking 

to ascertain the determinants of global stiffness measures. On balance of the 

evidence, it appears that ankle stiffness is more closely related to the modulation 

of vertical stiffness but that knee stiffness is linked to mechanical output and overall 

performance. It may be reasonable to suggest that knee stiffness becomes more 

important as the intensity of the task increases, during a drop jump for instance, as 

performers will attempt to utilise the stronger knee extensors (Alexander & Ker, 

1990) to a greater extent. However, such analyses have not been well considered 

outside of hopping and running gaits, and require further investigation. In addition, 

the potential contribution of respective joints to asymmetries in vertical stiffness (to 

be discussed in Section 2.8) has not been explored. 
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2.3.4 Muscle-tendon unit stiffness 

It is perhaps best to consider lower limb and joint stiffness as a product of 

musculotendinous stiffness (Pearson & McMahon, 2012) as acute or chronic 

training adaptations will seek to induce specific adaptations within the muscle-

tendon unit in order to modulate stiffness. As the ankle may be the most pertinent 

joint to consider during hopping (Kuitunen et al., 2011; Kim et al., 2013), drop 

jumping (Arampatzis et al., 2001b) and changes of direction (Pruyn et al., 2014), 

the Achilles tendon - medial gastrocnemius complex may be the most pertinent 

muscle-tendon unit to consider.  

Following the principle outlined in Equation 2.2, stiffness of the Achilles tendon - 

medial gastrocnemius muscle-tendon unit can be calculated by using 

ultrasonography to track displacement of the tendon-aponeurosis complex during 

contraction whilst synchronistically monitoring force output of the talocrural joint 

(Magnusson et al., 2001). Muscle-tendon unit stiffness may be determined 

passively, utilising tasks such as passive lengthening (Muraoka et al., 2002) or free 

oscillation (Walshe & Wilson, 1997) of the joint. However, it is more important to 

determine how the tendon stiffens in an active, quasi-isometric fashion as this is 

how it is required to function in vivo (Fukashiro et al., 2006; Magnusson et al., 

2008). Whilst Achilles tendon-medial gastrocnemius stiffness may be calculated 

during global performance tasks such as jumping (Arampatzis et al., 2001b) and 

gait (Fukunaga et al., 2001), the most common task utilised is an isometric plantar 

flexion (Magnusson et al., 2001). Chapter 3 will consider the calculation of 

gastrocnemius muscle-tendon unit stiffness in greater detail. 
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2.4 Stiffness and athletic performance 

The ability to generate greater stiffness is likely to be beneficial to activities where 

the ability to produce and express a given impulse more quickly would be beneficial 

to performance. For example, greater vertical stiffness has been linked to greater 

running velocity (Bret et al., 2002), hopping height (Kuitunen et al., 2011) and take-

off velocity during jumping (Arampatzis et al., 2001b). A stiffer leg-spring should 

facilitate a more rapid release of elastic energy under circumstances were minimal 

joint or centre of mass displacement is desired, such as during a drop jump or 

change of direction (Bret et al., 2002). 

Hopping tasks have been shown to differentiate between certain athletic groups. 

Hobara et al. (2008) demonstrated that power-trained (sprint-trained for >9 years) 

athletes exhibit greater vertical stiffness (> 15% based upon graphical data) than 

endurance-trained (distance running trained for > 7 years) athletes. Similarly, 

endurance-trained (club-level 5 or 10 km runners) athletes have been shown to 

exhibit greater vertical stiffness (> 25% based upon graphical data) than untrained 

individuals (Hobara et al., 2010). Harrison et al. (2004) employed 

countermovement and drop jumps performed on a sledge apparatus (a custom 

built chair sliding on a fixed track on an inclination of 30o to the horizontal) as 

opposed to hopping. Harrison et al. (2004) reported greater vertical stiffness in 

sprinters (100 m personal best: 10.45 - 11.20 s) versus endurance runners 

(national league 1500 m - 10,000 m runners) in both countermovement (~75% 

based upon graphical data) and drop jumps (73%). However, it is important to 

consider the limitations of the sledge apparatus. The vector at which the force is 

applied to the leg-spring is not representative of typical locomotion. This is likely to 

reduce the reaction forces experienced by the leg-spring and increase the 

associated contact times. 
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The relationship between stiffness and performance appears to hold true within 

homogenous athletic populations. Bourdin et al. (2010) reported that vertical 

stiffness, determined during ‘maximal’ bilateral hopping, correlated (r = 0.66; P = 

0.001) with season’s best performances in thirty-eight national male throwers 

(discus, hammer and shot). Pruyn et al. (2014) split a cohort of female Netball 

athletes (training experience: 15 ± 3 years) into high-stiffness (202 ± 30 N.m-1.kg-

1) and low-stiffness (150 ± 14 N.m-1.kg-1) groups following a unilateral hopping test 

performed at 2.2 Hz. Whilst inter-group differences were not significant, 

performances in a number of speed and power tests (10 m sprint, squat jump, drop 

jump, etc.) were superior in the ‘high stiffness’ group and were reported with 

‘moderate-to-large’ effect sizes (d > 0.7).  

Taken together, it would appear that individuals with greater stiffness are likely to 

perform better in short-duration maximal activities such as jumps, throws and 

sprints. For this reason, the quantification of vertical stiffness would appear of 

clinical relevance to athletes, coaches and applied practitioners. The role of 

stiffness in specific relation to change of direction speed (CODS) will be examined 

in Section 2.11. 

 

2.5 Quantifying asymmetry 

Using a single discrete measure to describe the difference between two sides is 

useful if seeking to characterise a functional imbalance for a given parameter 

(Zifchock et al., 2008), for instance, a difference in vertical stiffness between the 

left and right limbs. To calculate an index of asymmetry, the difference between 

the two sides is typically divided by a reference value and then expressed as a 

percentage thereof (Zifchock et al., 2008).  
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How indices of asymmetry are reported in the literature is highly inconsistent. For 

this reason, it is important to understand not only the terminology used by 

investigators in the presentation of results, but also the equations from which 

asymmetries are derived. Indeed, a number of investigations from the same 

research group (Sato & Heise, 2012; Bailey et al., 2013; Bazyler et al., 2014; Bailey 

et al., 2015) report using the symmetry index (Equation 2.6a), citing Shorter et al. 

(2008), although do not employ the correct formula as was cited in the manuscript 

of Shorter et al. (2008). Instead, these investigations determine asymmetry using 

Equation 2.7 (Page 19). 

At its most simple an index of asymmetry can be quantified as a percentage using 

the dominant or maximal side as the reference value (Equation 2.5). Whilst termed 

as the ‘index of asymmetry’ in some investigations (Vagenas & Hoshizaki, 1991; 

Benjanuvatra et al., 2013), this method will be termed an asymmetry percentage 

for the remainder of this thesis to avoid confusion with alternative equations. 

Equation 2.5:   (Vagenas & Hoshizaki, 1991) 

Where ASYM% = asymmetry percentage, Max = larger side value, Min = 
smaller side value. 

A simple asymmetry percentage provides an effective means of communicating to 

the athlete, coach or applied practitioner. For example, “knee extensor strength of 

the left limb is 14% less than the right limb.” However, in the literature asymmetries 

are typically reported using different formulae.  

The symmetry index (Equation 2.6a) was first used by Robinson et al. (1987) to 

quantify gait asymmetries in individuals with back pain, although subsequent 

investigations have used the ‘symmetry index’ in both healthy (Shorter et al., 2008; 
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Gouwanda & Senanayake, 2011) and athletic (Bell et al., 2014; Hart et al., 2014b) 

populations. 

Equation 2.6a:  (Robinson et al., 1987) 

Where SI% = symmetry index, Max = larger side value, Min = smaller side 
value. 

The formula for the symmetry index can also be reported as shown in Equation 

2.6b (Becker et al., 1995), both formulae providing the same resulting value. This 

thesis will not differentiate between the specific variations of the equation used, 

terming the results of either solely as the symmetry index. 

Equation 2.6b:  (Becker et al., 1995) 

Where SI% = symmetry index, Max = larger side value, Min = smaller side 
value. 

Another index of asymmetry (Equation 2.7), has been used in a wide number of 

investigations by a single research group (Sato & Heise, 2012; Bailey et al., 2013; 

Bazyler et al., 2014; Bailey et al., 2015), incorrectly citing this formula as the 

symmetry index. As this formula represents differences as a percentage of both 

values without further transformation, any asymmetry calculated will be halved in 

comparison to the symmetry index. However, the application of this equation would 

not influence the statistical differences calculated in these investigations. For this 

reason, this thesis will term this as the deflated symmetry index. 

Equation 2.7:   (Sato & Heise, 2012) 

Where DSI% = inflated symmetry index, Max = larger side value, Min = 
smaller side value. 
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The symmetry angle (Equation 2.8) was proposed by Zifchock et al. (2008) as an 

alternative to the symmetry index. The symmetry angle formula employs left and 

right side values, expressing them as a vector, and it can therefore highlight a 

direction of asymmetry (negative values indicate a greater left side value whilst 

positive values indicate a greater right side value) (Zifchock et al., 2008). The 

symmetry index also treats positive and negative values as equal and opposite in 

magnitude (Zifchock et al., 2008). 

Equation 2.8:   

(Zifchock et al., 2008) 

Where SYMα% = symmetry angle, X left = left side value, X right side value. 

The symmetry angle is able to identify inter-limb differences in a similar manner to 

other asymmetry indices, such as the symmetry index (Robinson et al., 1987), but 

because of the standardised reference point, provides a standard scale for 

interpretation and reduces the likelihood of artificially inflated values (Zifchock et 

al., 2008). 

Table 2.1 - An example of how four equations for the quantification of asymmetry 
provide different asymmetry scores. 

Athlete 

Vertical ground 
reaction force 
(N) 

Asymmetry 
percentage 

Symmetry 
index 

Deflated 
symmetry 
index 

Symmetry 
angle 

Left 
Limb 

Right 
Limb 

1 1430 1674 14.54% 15.72% 7.86% 4.48% 

2 1989 1642 17.45% 19.11% 9.56% -5.46% 

Given that asymmetry values may vary greatly dependant on how the data has 

been analysed, it is important that the equation used to quantify asymmetry is 
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clearly reported by investigators. Whilst the symmetry index is the most widely 

used formula to assess asymmetry (Shorter et al., 2008; Gouwanda & 

Senanayake, 2011; Bell et al., 2014; Hart et al., 2014b) - highlighted in Section 2.7 

- this thesis will use the symmetry angle as the primary formula to determine and 

quantify asymmetry due to its ability to demonstrate a lateral dominance with a 

standardised scale of interpretation. This thesis will also use the asymmetry 

percentage as an adjunct to the symmetry angle in order to aid the reporting and 

dissemination of research findings to applied practitioners. 

 

2.6 Expression of asymmetries 

The expression of asymmetry is highly specific. For example, Flanagan and 

Harrison (2007) compared asymmetries of eight individuals (five male, three 

female) from various sporting backgrounds (disciplines included basketball, Gaelic 

games, weightlifting, athletics, recreational running, soccer, and golf); the 

investigators stated that participants were of varying activity profiles to allow for a 

generalised application of the experimental findings. To assess asymmetries, 

participants performed unilateral drop jumps and repeated drop jumps on a sledge 

apparatus - described in Section 2.4. The investigators reported that no 

asymmetries were apparent during the cyclic, repeated jumps, however, significant 

asymmetry in reactive strength index was evident during the acyclic drop jump 

task. Reactive strength is a quality which may be closely linked to stiffness. Ground 

contact time is the denominator in the reactive strength index calculation (Newton 

& Dugan, 2002) and shorter ground contact times during drop jumping are 

associated with greater vertical stiffness (Arampatzis et al., 2001b). However, 

given that reactive strength is also dependent upon flight time (or jump height), 
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changes in this index may not necessarily correspond to changes in contact time.  

Inferences based upon reactive strength index must therefore be interpreted with 

a note of caution. When presented as a symmetry angle, average differences in 

reactive strength index between limbs were -1.1% for drop jumping and 0.4% for 

repeated drop jumping (Flanagan & Harrison, 2007). Whilst the observations of 

Flanagan and Harrison (2007) demonstrate that the type of performance task 

chosen to assess stiffness carries the potential to modulate how asymmetries may 

be expressed, further research is necessary to elucidate this effect. Moreover, it 

must be established if these findings may be replicated in vivo as the loading 

experienced by the leg-spring during sledge hopping is not representative of how 

the leg-spring is loaded during human movement. 

As cyclic, submaximal versus acyclic, maximal performance tasks may differently 

express asymmetries, so too may bilateral versus unilateral performance tasks. 

Benjanuvatra et al. (2013) compared impulses of the left and right limbs during 

bilateral and unilateral countermovement jumping in 58 physically active, but not 

highly trained, individuals. The investigators noted that all participants were 

required to have inter-leg length differences of ≤ 2% to remove this as a potential 

confounding variable which may contribute to asymmetry (Perttunen et al., 2004). 

Benjanuvatra et al. (2013) reported that the asymmetries presented in the bilateral 

jump did not correspond to asymmetries in the unilateral jump. For example, 18 

participants expressed left-side dominance during the unilateral task but only six 

of these individuals expressed similar left-side dominance in the bilateral task. In 

total, only 46% of the participants demonstrated the same asymmetry/symmetry 

profile across the two jumps. Whilst the correlation between impulse asymmetries 

in unilateral versus bilateral jumping was significant, although weak, in females (n 

= 30; r = 0.45, P < 0.05) this relationship was not significant in males (n = 28; r = 
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0.06, P = 0.76). Also, it is important to note that these correlations do not assess 

agreements, only relationships (Bland & Altman, 1986). Significant correlations 

could therefore exist in the presence of limited agreement between the relative 

limb-dominance between the two jumps. 

Benjanuvatra et al. (2013) concluded that asymmetry in bilateral tasks is driven by 

neural factors as opposed to mechanical factors, a proposition supported by an 

earlier investigation conducted by Simon and Ferris (2008). Simon and Ferris 

(2008) examined inter-limb differences in the isometric force production of ten 

healthy, non-athletic participants performing a bilateral leg press at various 

contraction intensities (20, 40 and 60% of maximum). At all contraction intensities, 

participants produced significantly less force when normalised to their unilateral 

maximum voluntary contraction force (20%: P = 0.047, 40%: P = 0.001, 60%: P < 

0.001). In addition, a significant inter-limb difference in force was observed during 

a bilateral (symmetry angle: 7%; P < 0.001), but not unilateral (symmetry angle: 

1%; P = 0.38), maximal isometric contraction. As unilateral jumping tasks rely on 

the extension forces generated from a single limb, such tasks would appear to be 

a more suitable choice if seeking to quantify mechanical parameters of the limb 

such as vertical stiffness. However, such propositions are yet to have been 

evaluated by the literature and further research is required to explore this assertion. 

Data presented by Bailey et al. (2015) would appear to suggest that asymmetries 

in rate of force development may be greater than asymmetries in peak force in 129 

collegiate athletes, although differences were not examined statistically. Moreover, 

Bailey et al. (2015) also measured asymmetries in additional jump variables in a 

smaller sub-set of participants (n = 63). For each variable examined (peak force, 

peak power, peak velocity, net impulse, time to peak force and rate of force 

development), the deflated symmetry index value was greater during a 
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countermovment jump (i.e. a faster movement performed using the stretch-

shortening cycle) than during a squat jump (no stretch-shortening cycle) although 

these differences were not analysed statistically. The largest asymmetries of all 

(12.8% for males, 17.2% for females; both deflated symmetry indicies) were 

reported for peak power during a countermovement jump performed with 20 kg. As 

these interaction effects were also not examined by the investigators, future 

research would need to explore how asymmetries may be differently expressed 

dependent on the temporal nature of the variable. For example, the discrepancy 

between vertical ground reaction force asymmetries and vertical stiffness 

asymmetries.  

 

2.7 Force-related asymmetries and performance 

Several investigations have reported that asymmetries in force-related qualities 

may be detrimental to athletic performance (Bailey et al., 2013; Bazyler et al., 2014; 

Bell et al., 2014; Hart et al., 2014b; Bailey et al., 2015), as shown in Table 2.2. The 

literature does not provide a clear rationale as to why asymmetry may be 

detrimental as a standalone factor. Of the studies shown in Table 2.2, only Hart et 

al. (2014b) have attempted to explain this relationship. However, Hart et al. (2014b) 

do not move beyond the idea that the weaker leg is smaller, able to produce less 

force and may therefore limit performance. It is perhaps likely that where the body 

has identified a ‘weak link’ in the chain the neural system will act to inhibit the force 

production in other areas as a consequence. This contention would appear to fit 

with the conclusions of Simon and Ferris (2008) and Benjanuvatra et al. (2013), 

that asymmetry in bilateral tasks is driven by neural factors, but requires further 

investigation. 
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The results of the published investigations to date suggest that asymmetries in 

force qualities are detrimental to athletic performance, although the reasons behind 

this relationship are as yet unclear. Nonetheless, strength appears to be the most 

important modulating factor in this relationship (Bazyler et al., 2014). Bazyler et al. 

(2014) reported greater asymmetry in force production during an isometric squat 

in a ‘weak’ group (n = 9; one repetition maximum (1RM) back squat: 137.84 ± 19.10 

kg) compared to a ‘strong’ group (n = 9; 1RM back squat: 167.57 ± 26.44 kg) of 

recreationally trained males (inclusion criteria: 1RM back squat ≥1.3 x body mass), 

highlighting a potential role of strength and/or training background in the 

modulation of asymmetry. This proposition was supported by the finding that whilst 

both strong and weak groups increased strength following a seven-week training 

intervention, only the weak group reduced asymmetry (to be discussed in greater 

detail in Section 2.9).  
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Table 2.2 - A summary of the investigations examining the association of force related asymmetries and athletic performance tests.  

Authors Population Determination of 

asymmetry 

Symmetry 

index 

Magnitude of 

asymmetry 

Association with performance 

Bailey et al. 

(2013) 

36 collegiate 

athletes (male) 

Peak force in 

isometric mid-thigh 

pull 

Deflated 

symmetry index 

Group mean: 

6.6% (±5.1%) 

Asymmetry negatively correlated with squat 

jump and countermovement jump height (r = 

-0.39 to -0.52; P < 0.01) and peak power 

output (r = -0.28 to -0.43; P < 0.05) at 0kg and 

20kg loads. 

Bell et al. 

(2014) 

167 collegiate 

athletes 

(male: = 103, 

female = 64) 

Peak force in 

countermovement 

jump 

Symmetry index 95% of group:  

-11.8% - 16.8% 

Jump height was not statistically significant 

across different levels of force (P = 0.37) or 

power (P = 0.08) asymmetry. 

≥10% power asymmetry resulted in 

decreased jump height of ~0.09 m (d = 0.80) 

Peak power in 

countermovement 

jump 

95% of group: 

-9.9% - 11.5% 

Hart et al. 

(2014b) 

31 sub-elite 

Australian 

Rules 

footballers 

(male) 

Peak force in 

isometric squat (hip 

and knee flexion: 

140°) 

Symmetry index Accurate group: 

-1% (±1%) 

Inaccurate group: 

8% (±1%) 

Accurate (n = 15) and Inaccurate (n = 16) 

groups based on top and bottom in kicking 

accuracy test. 

The accurate group exhibited significantly 

lower asymmetries in peak force (P = 0.002; 

d = 0.9). 

Asymmetry negatively correlated with kicking 

accuracy (r = -0.52; P value not reported) 
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Table 2.2 (cont)- A summary of the investigations examining the association of force related asymmetries and athletic performance 
tests.  

Bazyler et al. 

(2014) 

18 

recreationally 

trained 

individuals 

(male) 

Peak force in 

isometric squat (knee 

flexion: 120°) 

Deflated 

symmetry index 

Strong group:  

1.9% (±1.1%)  

Weak group:  

3.9% (±1.8%) 

Strong (n = 9) and weak (n = 9) groups based 

on a median split of peak force output in 

isometric squat at 120° knee flexion. 

Asymmetries at 90° (P = 0.045) and 120° (P 

= 0.007) larger in the weak group versus 

strong group. 

Asymmetry at 120° negatively correlated with 

peak force output at 120° (r = -0.64; P = 

0.004). 

Peak force in 

isometric squat (knee 

flexion: 90°) 

Strong group:  

2.2% (±1.7%)  

Weak group:  

4.6% (±4.3%) 

Bailey et al. 

(2015) 

129 collegiate 

athletes  

(male: = 64, 

female = 65) 

Peak force in 

isometric mid-thigh 

pull 

Deflated 

symmetry index 

Strong group:  

4.7% (±0.1%)  

Weak group:  

9.4% (±0.1%) 

Strong (n = 13) and weak (n = 13) groups 

based on top and bottom 10% performers in 

mid-thigh pull force output. 

The stronger group exhibited significantly 

lower asymmetries in peak force (P = 0.03; d 

= 0.82) and rate of force development (P = 

0.02; d = 0.90). 

Rate of force 

development in 

isometric mid-thigh 

pull 

Strong group:  

5.5% (±0.5%)  

Weak group:  

12.9% (±0.7%) 
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Whilst sex would also appear to influence asymmetries and performance (Bailey 

et al., 2015), this is perhaps an indirect effect of greater strength levels in male 

participants. Bailey et al. (2015) measured asymmetries in additional jump 

variables (peak force, peak power, peak velocity, net impulse, time to peak force 

and rate of force development) in a smaller sub-set of participants (n = 63). 

Asymmetries in the majority of the variables examined were greater in females 

than in males, however, this trend was not observed in the larger sample (n = 129) 

when athletes were split based on isometric strength. It is therefore likely that the 

sex-related differences observed were more related to differences in strength as 

opposed to sex itself. 

Taken together, it is apparent that asymmetries are lower in stronger (versus 

weaker) athletes and that measures of force-related variables (i.e. performance 

measures) are also greater in stronger athletes. Research has not examined 

whether this relationship is still observed in non-athletic populations and should be 

considered in furture investigations. Were a modulating effect of strength to be 

similarly reported in a ‘weak’ participant population it would be important to 

determine whether the magnitude of this effect would remain the same. 

 

2.8 Stiffness asymmetries 

Literature investigating inter-limb asymmetries in stiffness measures is limited. It 

has been proposed that stiffness asymmetries may be detrimental to athletic  

performance given a likely imbalance in the application of force (Wilson et al., 

1994), however, this hypothesis has not been well explored. Bachman et al. (1999), 

Heise and Bachman (2000) and Divert et al. (2005) all observed no significant 

vertical or leg stiffness asymmetries during running, although the cyclic, 
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submaximal limb action and bilateral nature of locomotion may be expected to 

encourage symmetry. When the results of Bachman et al. (1999) are presented as 

a symmetry angle, average differences in vertical stiffness between the left and 

right limbs were -3.8% and -2.7% at running speeds of 3.5 m.s-1 and 5.3 m.s-1, 

respectively. Similarly, Hobara et al. (2013) did not report significant vertical 

stiffness asymmetries between non-dominant and dominant limbs during unilateral 

hopping; symmetry angles of -4.4%, 1.0% and -2.7% were observed at hopping 

frequencies of 1.5 Hz, 2.2 Hz and 3 Hz, respectively. 

Whilst the relationship between vertical stiffness asymmetry and performance has 

not been well investigated, the potential impact of stiffness asymmetry on the 

incidence of injury has been considered. Watsford et al. (2010) reported that pre-

season asymmetries in vertical stiffness between Australian Rules football players 

that went on to sustain (asymmetry percentage: 7.3 ± 6.1%) or not sustain (7.4 ± 

5.7%) hamstring injuries were not significantly different (P = 0.95). However, 

Watsford et al. (2010) did demonstrate that vertical stiffness of the affected limb in 

the injured group was significantly greater than the unaffected limb (5%; P = 0.02); 

no between-limb differences were observed in the non-injured group (P = 0.58). A 

subsequent investigation from the same research group (Pruyn et al., 2012) found 

that mean vertical stiffness asymmetries recorded during the in-season competitive 

period were higher in Australian Rules footballers that experienced lower body soft 

tissue injury (asymmetry percentage: 7.5 ± 3.0%) than those that did not (5.5 ± 1.3; 

P < 0.05). 

Given the association of force-related asymmetries with the potential for impaired 

athletic performance (Bailey et al., 2013; Bazyler et al., 2014; Bell et al., 2014; Hart 

et al., 2014b; Bailey et al., 2015) it may seem reasonable to suggest that stiffness 

asymmetries would be similarly detrimental to athletic performance, particularly if 



30 
 

the performance task requires high levels of stiffness. This hypothesis must be 

investigated directly before any conclusions may be drawn. Nonetheless, given a 

likely association between vertical stiffness asymmetry and increased injury 

incidence (Watsford et al., 2010; Pruyn et al., 2012), the determination of vertical 

stiffness asymmetry is certainly of important practical relevance to athletes, 

coaches and applied practitioners. 

 

2.9 The effect of exercise interventions on asymmetry 

Chronic exercise (i.e. training) interventions demonstrate the potential to modulate 

asymmetry. Bazyler et al. (2014) reported that as lower limb strength increases in 

response to a training intervention there is a concomitant decrease in asymmetry 

in weaker individuals (with a larger deflated symmetry index) but not in stronger 

individuals (with a smaller deflated symmetry index). After the initial identification 

of strong and weak groups in the investigation conducted by Bazyler et al. (2014), 

participants completed a seven-week periodised training programme consisting 

solely of dynamic bilateral back squats. Both strong and weak groups improved 

1RM back squat by a similar magnitude (strong: 5.0%, weak: 6.6%; both P < 0.05) 

with no significant difference in the improvements observed between groups. 

However, reductions in force production symmetry during the isometric squat were 

only reduced in the weak group (from 4.6 ± 4.3% to 4.0 ± 5.1% at 90o knee flexion 

and from 3.9 ± 1.8% to 1.9 ± 1.5% at 120o knee flexion; both P < 0.05). The large 

standard deviations observed in this investigation, in some instances larger than 

the associated mean values, could highlight a high degree of variability in the 

asymmetry responses to training. Inter-individual responses to a standardised 

training programme is a well acknowledged phenomenon - see  Mann et al. (2014) 
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for a review; future research should take into account the inter-individual variability 

in the training response and would be advised to present data in a manner that 

allows for individual or sub-group (i.e. ‘responders’ versus ‘non-responders’) 

analysis. 

The notion that strength training can reduce asymmetry is also supported by the 

findings of Impellizzeri et al. (2007), although in a population of seven athletes who 

had undergone anterior cruciate ligament surgery in the previous 8-12 weeks. The 

data of Impellizzeri et al. (2007) demonstrate an initial asymmetry angle of 7.3% in 

force output during a vertical jump test, this was reduced to 0.5% following 7-9 

weeks of rehabilitation training. As a trend for improvement in weak but not strong 

groups was observed by Bazyler et al. (2014), the improvements in force observed 

by Impellizzeri et al. (2007) were confined to the weak (35% increase; P = 0.02) 

but not strong (6% increase; P = 0.50) limb. Whilst these results further highlight 

the importance of pre-intervention strength levels in modulating asymmetries, the 

findings are limited by the specific nature of the participant population and require 

investigation in a healthy population. 

Golik-Peric et al. (2011) compared two, four-week resistance training interventions 

on the isokinetic strength ratios of the knee extensors and knee flexors among 38 

male athletes. Participants were selected from a sample of 196 national-level 

athletes chosen because they exhibited a notable strength asymmetry (inclusion 

criteria: concentric hamstring to quadriceps ratio of < 0.5). The investigators did 

not report examining left and right limb strength imbalances statistically, although 

the presentation of normative data allows for subsequent calculations to be made. 

A unilateral isokinetic training regimen reduced the asymmetry percentage for both 

the knee extensors (pre: -1.4%, post: 0.2%) and knee flexors (pre: 1.2%, post: -

0.2%). A bilateral half-squat regimen produced a larger reduction in knee flexor 
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asymmetry angle, although the initial asymmetry was substantially larger (pre: 

3.5%, post: 1.0%), and minimal change in knee extensor asymmetry (pre: 2.3%, 

post: 2.0%). Once more, this lends weight to the argument that reductions in 

asymmetry are likely to be more pronounced where pre-intervention levels of 

asymmetry are greater. The findings of Golik-Peric et al. (2011) suggest that 

unilateral versus bilateral training may differently affect inter-limb asymmetries but 

the discrepancy in training modalities makes it hard to compare these protocols. In 

addition, the specific selection of participants with large flexor/extensor 

asymmetries also limits the potential applicability of these findings. 

It should be noted that the previously discussed studies examine the chronic 

modulation of asymmetries and acute interventions have received very little 

attention. Indeed, the effects of an acute exercise intervention on asymmetry has 

been investigated only in a single study. Hodges et al. (2011) sought to determine 

the effects of a fatiguing back squat protocol (5 sets of 8 repetitions performance 

at 80% of 1RM) on the expression of vertical ground reaction forces in recreational 

athletes (n = 17; 8RM back squat: 113 ± 35% body mass), hypothesising that 

fatigue would exacerbate asymmetries. Part of the investigators’ selection criteria 

was that athletes with likely asymmetry (e.g. clinically diagnosed limb length 

discrepancy, known injury or highly trained in asymmetric skills) were excluded 

from participation. The investigators reported that average asymmetry percentages 

across the five sets were 4.3 ± 2.5% for the first and second repetitions of the set, 

and 3.6 ± 2.3% for the seventh and eighth. Analysed as a whole group, there was 

no effect of time on absolute (P = 0.60) or peak (P = 0.23) vertical ground reaction 

force asymmetry. However, when the investigators removed ‘highly symmetric’ 

participants (defined as an asymmetry percentage of < ± 1.7%, leaving n = 12) 

asymmetries in absolute (P = 0.044), but not peak (P = 0.27), vGRF was reduced 
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from reps 1-2 to 7-8. It is reasonable to suggest therefore, that the effects of acute 

exercise interventions designed to reduce stiffness asymmetries may be more 

pronounced in individuals with larger asymmetries, as has been observed in 

chronic interventions (Impellizzeri et al., 2007; Golik-Peric et al., 2011; Bazyler et 

al., 2014). Considering both acute and chronic exercise interventions, it is therefore 

apparent that asymmetries may be reduced following the application of an 

appropriate stimulus. However, no studies to date have examined how exercise 

interventions, acute or chronic, may affect stiffness asymmetries.  

 

2.10 Determinants of change of direction speed 

The ability to quickly and effectively change direction underpins performance in a 

wide range of sports. For example, change of direction speed (CODS) has been 

linked to performance in badminton (Sturgess & Newton, 2008), soccer (Reilly et 

al., 2000), field hockey (Keogh et al., 2003), rugby league (Meir et al., 2001) and 

basketball (McGill et al., 2012). Understanding the potential determinants of CODS 

will provide athletes, coaches and applied practitioners with important information 

which may better inform the training process. 

Young et al. (2002) proposed that the determinants of CODS may be broadly 

grouped into three categories: 1) leg muscle qualities, 2) technical components, 

and 3) linear sprinting speed. However, given the lack of a strong relationship 

between linear sprinting performance and CODS (typically r = 0.3 - 0.5; see 

Brughelli et al. (2008) for a review), it may be more appropriate to categorise 

potential determinants of CODS as either physical (i.e. ‘leg muscle qualities’ in the 

Young et al. (2002) model) or technical in nature. Subsequent models proposed 

by Sheppard and Young (2006) and Hewit et al. (2013) also categorise 
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determinants as physical and technical in this fashion, although still highlight the 

importance of linear sprint speed. 

Young et al. (2002) outlined three physical factors which may underpin CODS: 

strength (allied to maximal force production), power (allied to rate of force 

development) and reactive strength (allied to stiffness). This thesis acknowledges 

the contribution of these qualities in the proposition of a modified deterministic 

model of CODS as shown in Figure 2.3.  
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Figure 2.3 - A modified model highlighting the determinants of change of direction speed. Key: LPHC = lumbo-pelvic-hip complex.
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2.11 The role of stiffness in change of direction speed 

Young et al. (2002) reported that reactive strength index (a function of the flight 

time or jump height divided by ground contact time recorded during a drop jump 

(Newton & Dugan, 2002)) was the physical variable which demonstrated the 

strongest relationship with CODS test time (r = -0.54; P < 0.05). Similar 

relationships have also been observed by Young et al. (2015) (r = -0.65; P = 0.001) 

and Delaney et al. (2015) (dominant limb: r = -0.44; P < 0.05, non-dominant limb: 

r = -0.45; P < 0.05). As ground contact time is the denominator in the reactive 

strength index calculation, reactive strength is a quality which may be closely linked 

to stiffness. Arampatzis et al. (2001b) noted that greater vertical stiffness is 

associated with shorter ground contact times during drop jumping and, as 

previously stated, greater stiffness of the leg-spring should facilitate a quicker 

release of elastic energy (Bret et al., 2002). Whilst it has been reported that faster 

athletes exhibit shorter ground contact times than slower performers in CODS 

tasks (Sasaki et al., 2011; Marshall et al., 2014; Spiteri et al., 2015), which may be 

indicative of greater stiffness, the direct relationship between stiffness and CODS 

has not been well explored.  

To the authors’ knowledge, only one investigation has sought to directly examine 

the effect of stiffness on CODS. Pruyn et al. (2014) observed no significant 

relationship between vertical leg stiffness (determined during a unilateral hopping 

task) and 5-0-5 CODS test (examining a single 180o change of direction from a 15 

m linear acceleration) performance (r = 0.05), although they did report significant 

relationships between performance and stiffness of the musculature surrounding 

the ankle (medial gastrocnemius: r = -0.53, soleus: r = -0.47; both P < 0.05). It is 

important to not only consider the task in which vertical stiffness was assessed by 

Pruyn et al. (2014) (i.e. cyclic and submaximal) but also the homogeneity of 
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population sampled. All 18 participants in the investigation were trained netball 

players (15 ± 3 years of training experience) and exhibited minimal variance in 5-

0-5 performance (mean ± SD: 2.72 ± 0.18 sec). The potential relationship between 

stiffness and CODS would need to be examined in different, and possibly less 

homogenous, populations before any conclusions may be drawn as the external 

validity of these findings is limited to a very specific population. Also, given the 

likely demands to be placed upon the leg-spring during a change of direction 

(Glaister et al., 2008; Spiteri et al., 2013), it may be more pertinent to determine 

stiffness within acyclic, high-force activity if seeking to explore the relationship with 

CODS. 

 

2.12 Asymmetry in change of direction speed 

The deterministic models of CODS proposed by Sheppard and Young (2006) and 

Hewit et al. (2013) include, respectively, ‘left-right muscle imbalance’ and 

‘asymmetry’ as potential determinants of CODS. Hewit et al. (2013) do not cite any 

evidence for the inclusion of asymmetry in the model, although the manuscript in 

which this model was presented did not seek to evaluate this component. 

Sheppard and Young (2006) cite the investigation conducted by Young et al. 

(2002) as the primary reason for the inclusion of left-right imbalance within their 

model; this section will consider the Young et al. (2002) investigation in detail.  

Asymmetries in CODS when pushing off the dominant versus non-dominant limb 

have been reported in several investigations (Young et al., 2002; Henry et al., 

2013; Hart et al., 2014a). For example, Hart et al. (2014a) reported that 58 sub-

elite Australian Rules footballers demonstrated a typical performance deficit of 5 - 

10% between limbs (∼0.72 seconds; P ≤ 0.001) with all players exhibiting a 
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directional preference; Hart et al. (2014a) recruited players from all positions 

(forwards, midfielders and backs) to minimise the risk of positional bias. Given the 

deterministic model proposed by Young et al. (2002) and modified model propsed 

in Figure 2.3, such asymmetry could be a consequence of an asymmtery in 

physical qualities. Indeed, Young et al. (2002) noted that athletes who displayed a 

lateral dominance in CODS performance were likely to have a reactive strength 

dominance in the limb responsible for the push-off action. The notion of a 

relationship between asymmetries in physical qualities and lateral dominance is 

supported by an investigation conducted by Henry et al. (2013). In a population of 

trained males with a recent involvement (competed within the last 2 years) in 

Australian Rules football (no mention of playing level), the investigators reported 

that asymmetries in reactive agility performance (discounting decision making 

time: 5.6%; P = 0.04) mirrored asymmetries in reactive strength index (4.4%; P = 

0.03), although correlations between these variables were not reported. To date, 

investigations have not considered whether cognitive or technical factors (e.g. 

reaction time, foot placement, stride adjustment, etc.) may to contribute CODS 

asymmetries. 

Whether asymmetries in physical qualities, such as vertical stiffness, are 

detrimental to overall CODS performance has not been investigated. It may seem 

reasonable to hypothesise that asymmetries in vertical stiffness would be 

detrimental to overall CODS performance as asymmetries in isometric strength 

(Bailey et al., 2013; Bazyler et al., 2014; Hart et al., 2014b; Bailey et al., 2015) and 

vertical jump (Bell et al., 2014) measures have been linked to impaired 

performance. However, given the lack of empirical evidence pertaining to CODS, 

stiffness or any combination of these factors, such propositions need to be 
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examined directly. The exploration of these relationships will therefore form an 

integral part of this thesis. 

 

2.13 Acute interventions to improve change of direction speed 

Acute pre-conditioning interventions incorporating ballistic exercise have been 

demonstrated to potentiate subsequent short-duration maximal performance (see 

Maloney et al. (2014a) for a review). The concept of post-activation potentiation is 

beneficial within a wide range of sports, although it is important to note that these 

augmentations are transient in nature (up to fifteen minutes (Maloney et al., 

2014a)). Whilst this may appear to limit the application of pre-conditioning 

interventions within intermittent sports (e.g. rugby union or badminton), the creation 

of a potentiated state in which an athlete may begin their performance is certainly 

desirable. This may give the athlete an initial advantage in competition and could 

indeed prove to be the difference between winning and losing (Maloney et al., 

2014a). The psychological boost to performance (i.e. increased self-confidence) 

may last longer than fifteen minutes, however, this idea has not been explored. 

Considering ballistic exercise as the pre-conditioning stimulus, plyometric 

exercises emphasising the development of high levels of musculoskeletal stiffness 

may carry the greatest benefit to performance (Maloney et al., 2014a). Whilst 

explanations for the post-activation potentiation effect tend to focus on 

physiological (such as the phosphorylation of myosin regulatory light chains 

(Sweeney et al., 1993) and increases in pennation angle (Mahlfeld et al., 2004)) 

and neural (such as the recruitment of higher order motor units (Gullich & 

Schmidtbleicher, 1996)) factors, it is also important to consider the potential role of 

acute modulations in stiffness. Comyns et al. (2007) reported an increase in vertical 
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stiffness of 10.9% (P < 0.05) in twelve elite rugby union players (1RM back squat: 

192 ± 35 kg) following a set of three repetitions of the back squat with a 93% 1RM 

load. Squat loads of 65% and 80% 1RM did not significantly influence stiffness, 

suggesting that subjecting the leg-spring to sufficiently high compressive loading 

may be a pre-requisite for the acute modulation of vertical stiffness. Whilst the 

increase in vertical stiffness was associated with a 7.8% (P < 0.05) reduction in 

ground contact time during a single leg drop jump performed on a sledge apparatus 

(described in Section 2.4), despite the discrepancy in the vector of force 

application, flight time during the drop jump (i.e. performance) was reduced by 

3.4% (P < 0.01). Similarly, Moir et al. (2011) noted an increase in vertical stiffness 

of 16% (d: 0.52; P = 0.013) following high-load (three repetitions at 90% 1RM) but 

not high-volume (twelve repetitions at 37% 1RM) back squats in eleven female 

collegiate volleyball players. Also in agreement with the findings of Comyns et al. 

(2007), the augmentation in stiffness did not improve vertical jump performance by 

Moir et al. (2011), although no negative effect was reported in this instance. 

The lack of association between increased vertical stiffness and a beneficial 

performance impact in the aforementioned investigations is a likely consequence 

of the performance tasks utilised. The mean ground contact time (pre-intervention) 

of the sledge drop jump reported by Comyns et al. (2007) was 0.44 seconds and 

Moir et al. (2011) employed a standing countermovement jump. As the stretch-

shortening cycles associated with these movements would be towards the slower 

end of the stretch-shorting cycle speed continuum - for example, Schmidtbleicher 

(1992) defined a slow stretch-shortening cycle as anything greater than 0.25 

seconds - the performance of these tasks would be expected to be determined 

more by the production of force (active force) than by the redistribution of force 

(passive) (Komi, 2003). Arampatzis et al. (2001b) propose an inverted-U 
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relationship between leg-spring stiffness and power output during the propulsive 

phase of jumping. Theoretically, increases in vertical stiffness should enhance 

power output up until an ‘optimal’ value is reached and increases beyond this point, 

as may have been experienced by the participants in the investigations of Comyns 

et al. (2007) and Moir et al. (2011), would impair power output. Acute 

augmentations in stiffness are likely to carry greater benefit to faster (versus 

slower) stretch-shortening cycle activities, for example, Pruyn et al. (2014) report 

correlations between lateral gastrocnemius stiffness with bilateral drop jumping (r 

= 0.66; P < 0.05) but not squat jumping (r = 0.34). Whilst the ground contact time 

during changes of direction are likely to exceed the 250 ms threshold proposed by 

Schmidtbleicher (1992) - ground contact times of between 250 and 500 ms, 

dependent on the cutting angle, would be expected (DeWeese & Nimphius, 2016) 

- shorter ground contact times have been correlated (r = 0.48 - 0.65) to improved 

CODS on an inter-individual basis (Sasaki et al., 2011; Marshall et al., 2014). 

Whether the acute reduction of ground contact time would improve CODS has not 

been investigated and will be explored by this thesis. 

Another potential explanation for the lack of performance enhancement could lie 

within the short recovery periods between pre-conditioning intervention and 

performance (four and two minutes respectively) employed by Comyns et al. 

(2007) and Moir et al. (2011). It has been shown that fatigue is likely to mask any 

potentiative effect immediately following (i.e. ≤ four minutes) heavy resistance 

exercise and that recovery periods in excess of eight minutes may be required to 

observe performance enhancements (Gilbert & Lees, 2005; Kilduff et al., 2007; 

Kilduff et al., 2008). 

Pre-conditioning interventions employing both heavy resistance exercise (Zois et 

al., 2011) and loaded ballistic exercise (i.e. weight vest loaded warm-up) (Maloney 
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et al., 2014b; Nava, 2015) have been demonstrated to favourably affect CODS. A 

warm-up performed with additional resistance has also been demonstrated to 

acutely augment vertical stiffness by 20% (d: 0.76; 90% confidence intervals: ± 

4%) during a plyometric jumping task (Barnes et al., 2015). Given the importance 

of stiffness in maximising CODS, it is possible that the performance improvements 

observed following pre-conditioning interventions are related to augmentations in 

stiffness, however, such propositions must be examined directly. In addition to the 

exploration of asymmetries in stiffness and CODS, this thesis will investigate how 

these are modulated by acute exercise interventions.  
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2.14 Summary 

Vertical stiffness and joint stiffness are typically determined during bilateral 

hopping (Joseph et al., 2013; Hobara et al., 2014), however, this may not provide 

the greatest correspondence to athletes required to engage in short-duration 

maximal actions such as changes of direction. As asymmetries may be differently 

displayed in both cyclic versus acyclic (Flanagan & Harrison, 2007) and bilateral 

versus unilateral (Simon & Ferris, 2008; Benjanuvatra et al., 2013) performance 

tasks, the unilateral drop jump may provide the most ecologically valid assessment 

tool by which to assess parameters of stiffness. The reliability of this method has 

not been evaluated by the literature. 

Asymmetry in force-related (Bailey et al., 2013; Bazyler et al., 2014; Bell et al., 

2014; Hart et al., 2014b; Bailey et al., 2015) parameters have been associated with 

impaired athletic performance. Whilst asymmetry in vertical stiffness may be 

hypothesised to carry similar detriments, this is yet to be examined directly. As 

vertical stiffness and ankle stiffness are likely to be important determinants of 

CODS, the possibly deleterious effects of asymmetry in these variables warrant 

particular consideration. 

Ballistic exercise may carry a post-activation potentiation effect resulting in 

improvements to CODS (Maloney et al., 2014b; Nava, 2015). Whilst this is a 

possible consequence of acute augmentations in stiffness, this has not been 

evaluated by the literature. Whether acute exercise interventions can a) modulate 

stiffness and stiffness asymmetry, and b) if these modulations are then associated 

with performance, has not been previously investigated. 
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2.15 Thesis aims and objectives 

This thesis will seek to: 

1. Determine the most reliable and ecologically valid method to assess 

vertical stiffness in athletes required to perform changes of direction. 

2. Determine if vertical stiffness and vertical stiffness asymmetries influence 

CODS. 

3. Determine if acute ‘stiffness’ interventions can influence CODS and if 

augmentations are linked to the modulation of vertical stiffness and vertical 

stiffness asymmetries. 

To address these aims, this thesis will have the following objectives: 

1. Determine the reliability and validity of stiffness measures. Specifically: 

a. Determine the reliability of ultrasonography assessments of Achilles 

tendon stiffness. 

b. Determine the reliability of vertical stiffness during bilateral hopping, 

bilateral drop jumping and unilateral drop jumping. 

c. Determine how vertical stiffness and vertical stiffness asymmetries 

are expressed in bilateral hopping, bilateral drop jumping and 

unilateral drop jumping. 

2. Determine whether vertical stiffness and vertical stiffness asymmetries are 

associated with CODS performance. 

3. Determine whether acute unilateral and bilateral ‘stiffness’ interventions 

can influence CODS performance beyond a control intervention. 

Additionally, to determine if changes in CODS performance are linked to 

changes in stiffness or stiffness asymmetries. 
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2.16 Thesis hypotheses 

This thesis hypothesises that: 

1. A unilateral drop jump will be the most appropriate assessment tool to 

assess stiffness in athletes required to perform changes of direction. 

Specifically: 

a. Coefficients of variation (CVs) for vertical stiffness obtained during 

bilateral hopping, bilateral drop jumping and unilateral drop jumping 

tasks will be less than 10%. This would be in line with reliability 

figures previously reported for bilateral hopping (McLachlan et al., 

2006; Joseph et al., 2013).   

b. Vertical stiffness and vertical stiffness symmetry angles will be 

significantly different between the three performance tasks. 

2. CODS performance will demonstrate: 

a. A significant positive correlation with vertical stiffness.  

b. A significant negative correlation with vertical stiffness symmetry 

angle. 

3. The unilateral ‘stiffness’ intervention will significantly improve CODS 

performance versus the bilateral and control interventions. Additionally: 

a. Vertical and ankle stiffness will be significantly greater following the 

unilateral intervention than following bilateral and control 

interventions. 

b. Vertical and ankle stiffness asymmetries will be significantly lower 

following the unilateral intervention than following bilateral and 

control interventions. 
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Chapter 3 - Reliability of Stiffness Measures 

3.1 Overview 

The purpose of chapter 3 was to establish the reliability of measurements by which 

to assess the stiffness of the lower limb in subsequent investigations.  

This chapter will report the results of two investigations: 

Pilot study: The reliability of Achilles tendon stiffness derived from isometric 

dynamometry and ultrasonography 

Study 1: The reliability of vertical stiffness during bilateral hopping, bilateral 

drop jumping and unilateral drop jumping 

The pilot study sought to examine the reliability of Achilles tendon stiffness using 

ultrasonography. Were the reliability of this method found to be acceptable during 

pilot testing, this would justify the use of these techniques during subsequent 

investigations within this thesis. 

Study 1 sought to examine the reliability of vertical stiffness during bilateral 

hopping, bilateral drop jumping and unilateral drop jumping. Were appropriate 

reliability to be demonstrated for these methods this would justify their potential 

inclusion in subsequent investigations within this thesis. 
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3.2 Pilot Study - Reliability of Achilles tendon stiffness 

3.2.1 Introduction 

Tendon is responsible for transferring the forces developed during muscular 

contraction to the skeletal system and the resultant production of joint motion 

and/or joint stabilisation (Kvist, 1994). As the mechanical properties of tendon will 

directly determine how these forces are transferred, the calculation of such 

parameters is important in the understanding of human movement. In the field of 

sport and physical activity, the properties of tendon, most notably tendon stiffness, 

are a determining factor in several measures of both performance and injury risk 

(Butler et al., 2003; Pearson & McMahon, 2012) - see Section 2.4 for greater detail. 

Achilles tendon stiffness can be calculated by using ultrasonography to track 

displacement of the tendon-aponeurosis complex during contraction whilst 

synchronistically monitoring force output of the talocrural joint (Magnusson et al., 

2001). Achilles tendon stiffness may be determined passively, utilising tasks such 

as passive lengthening (Muraoka et al., 2002; Morse et al., 2008) or free oscillation 

(Walshe & Wilson, 1997) of the joint. However, it is more important to determine 

how the tendon stiffens in an active, quasi-isometric manner as this is how it is 

required to function in vivo (Fukashiro et al., 2006; Magnusson et al., 2008). Whilst 

Achilles tendon stiffness may be calculated during functional tasks such as jumping 

(Arampatzis et al., 2001a; 2001b) and gait (Fukunaga et al., 2001), the most 

common task utilised for assessing Achilles tendon mechanical properties is an 

isometric maximal voluntary contraction (MVC) of the plantar flexors (Kubo et al., 

1999; Magnusson et al., 2001; Maganaris & Paul, 2002; Rosager et al., 2002; 

Kongsgaard et al., 2011). 
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Despite the widespread use of ultrasonography to assess tendon properties, the 

literature has not systematically reviewed the reliability of these techniques and 

compared the results of different investigations. Reliability values have not been 

reported in a number of widely cited investigations (Rosager et al., 2002; 

Arampatzis et al., 2005a; Arampatzis et al., 2005b; Kubo, 2005) and where it has 

been reported in the literature there is a large degree of variability in the figures 

reported between investigations (Table 3.1). For example, coefficients of variation 

(CVs) from 5% (Kubo et al., 2001) to over 15% (Mahieu et al., 2004) have been 

reported. In addition, only Mahieu et al. (2004) have attempted to examine the 

reliability of variables across more than two testing sessions, examining the 

reliability over three sessions. It is important to ensure the reliability of 

ultrasonography techniques if seeking to use them to monitor changes in tendon 

properties, such as those that may be induced by exercise interventions.  
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Table 3.1 - Reliability values for key mechanical variables pertaining to Achilles tendon stiffness during isometric plantar flexion 
dynamometry and ultrasonography investigations. 

Authors 
Data Sets 

n =  

Measures 

n =  
Intra-session reliability Inter-session reliability Notes 

Plantar flexion torque 

Burgess et 
al. (2009) 

15 3 ICC = 0.92  3 minutes rest 

Joseph et al. 
(2012) 

10 Not stated 
ICC = 0.99 

SEM = 3.52 N.m 
 

No data provided for SEM as %, 

≥12 weeks between sessions 
10 2  

ICC = 0.95 

SEM = 7.77 N.m 

Achilles tendon force 

Mahieu et al. 
(2004) 

21 3  
ICC = 0.96 

CV = 9.2% 
Left leg 

21 3  
ICC = 0.95 

CV = 8.5% 
Right leg 

Kongsgaard 
et al. (2011) 

10 2  
ICC = 0.81 

TE = 5.6% 
 

Houghton et 
al. (2013) 

44 2 
ICC = 0.99 

CV = 2.1% 
  

Key: ICC = intra-class correlation coefficient, SEM = standard error of measurement, CV = coefficient of variation, TE = typical error, MG = medial 
gastrocnemius, AP = aponeurosis, ANOVA = analysis of variance. 
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Table 3.1 (cont.) - Reliability values for key mechanical variables pertaining to Achilles tendon stiffness during isometric plantar flexion 
dynamometry and ultrasonography investigations. 

Aponeurosis/tendon displacement 

Muramatsu 
et al. (2001) 

3 2  CV = 8.5% (P1), 5.3% (P2) 
and 5.7% (P3) P1 = MTJ of MG, P2 = central X of deep 

AP, P3 = proximal X of AP 
7 3 CV = 8.8% (P1), 2.5% (P2) 

and 4.7% (P3) 
 

Magnusson 
et al. (2001) 5 2 CV = 11.3%  1 minute between trials 

Maganaris 
and Paul 
(2002) 

6 2 
No difference in measurements within or between sessions 
(P > 0:05; two-way ANOVA). Following 1 familiarisation session 

Not stated 8 CV = 6.4%  2 minutes between trials 

Muramatsu 
et al. (2002) 

7 3 CV = 5.5% (P1) and 6.3% 
(P2) 

 P0 = Origin of MG, P1 = distal X of 
superficial AP and P2 = proximal X of 
superficial AP 7 2  CV = 6.3% (P0), 14.3% (P1) 

and 8.3% (P2) 

Mahieu et al. 
(2004) 

21 3  
ICC = 0.87 

CV = 10.2% 
Left leg 

21 3  
ICC = 0.78 

CV = 13.9% 
Right leg 

Burgess et 
al. (2009) 

15 3 ICC = 0.95  3 minutes rest 

Key: ICC = intra-class correlation coefficient, SEM = standard error of measurement, CV = coefficient of variation, TE = typical error, MG = medial 
gastrocnemius, AP = aponeurosis, ANOVA = analysis of variance. 
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Table 3.1 (cont.) - Reliability values for key mechanical variables pertaining to Achilles tendon stiffness during isometric plantar flexion 
dynamometry and ultrasonography investigations. 

Kongsgaard 
et al. (2011) 

10 2  
ICC = 0.85 

TE = 11.8% 
 

Joseph et al. 
(2012) 

10 Not stated 
ICC = 0.99 

SEM = 0.41 mm 
 

No data provided for SEM as %, 

≥12 weeks between sessions 
10 2  

ICC = 0.93 

SEM = 1.59 mm 

Houghton et 
al. (2013) 

44 2 
ICC = 0.81 

CV = 5.9% 
  

Time to max force 

Houghton et 
al. (2013) 

11 2  
ICC = 0.78 

CV = 6.7% 
From pre-exercise to post-exercise 

Tendon stiffness 

Kubo et al. 
(2001) 

19 2  
ICC = 0.90 

CV = 5% 
 

Kubo et al. 
(2002) 

6 2  
ICC = 0.89 

CV - 5.6% 
 

Mahieu et al. 
(2004) 

21 3  
ICC = 0.82 

CV = 15.8% 
Left leg 

21 3  
ICC = 0.80 

CV = 13.0% 
Right leg 

Key: ICC = intra-class correlation coefficient, SEM = standard error of measurement, CV = coefficient of variation, TE = typical error, MG = medial 
gastrocnemius, AP = aponeurosis, ANOVA = analysis of variance. 
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Table 3.1 (cont.) - Reliability values for key mechanical variables pertaining to Achilles tendon stiffness during isometric plantar flexion 
dynamometry and ultrasonography investigations. 

Kubo et al. 
(2007) 

24 2 CV = 6%  3 minutes between trials 

Kongsgaard 
et al. (2011) 10 2  

ICC = 0.84 

TE = 8.8% 
 

Houghton et 
al. (2013) 

44 2 
ICC = 0.90 

CV = 12.3% 
 Low-force stiffness 

44 2 
ICC = 0.89 

CV = 15.6% 
 High-force stiffness 

Key: ICC = intra-class correlation coefficient, SEM = standard error of measurement, CV = coefficient of variation, TE = typical error, MG = medial 
gastrocnemius, AP = aponeurosis, ANOVA = analysis of variance. 
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Joseph et al. (2013) propose that a CV of ≤ 10% and an intra-class correlation 

coefficient (ICC) ≥ 0.80 as two appropriate threshold values to assist in determining 

‘good’ reliability. Measurements of plantar flexion torque and Achilles tendon force 

would therefore appear to demonstrate good levels of inter-session reliability 

across multiple studies (Table 3.1). However, large discrepancies in the reported 

values for tendon force are apparent despite the fact that the majority of 

investigations report using a maximal contraction. Forces of between 300 N 

(Mahieu et al., 2004) and 5000 N (Houghton et al., 2013) have been reported in 

the literature with values in the low thousands more common (Magnusson et al., 

2001; Rosager et al., 2002; Kongsgaard et al., 2011). The larger values reported 

by Houghton et al. (2013) in comparison to Mahieu et al. (2004) could partially 

explain the difference in CV between the two investigations given that the CV is a 

direct function of the mean. 

Variance of tendon-aponeurosis displacement is greater than for force output. For 

example, the values reported by Kongsgaard et al. (2011) and Mahieu et al. (2004) 

would sit above the 10% CV threshold identified by Joseph et al. (2013). The lowest 

reported CVs have been observed by Muramatsu et al. (2001) and Houghton et al. 

(2013), reporting 5.3% and 5.9% respectively. As with tendon force, large 

discrepancies exist in tendon-aponeurosis displacement. Typical values range 

from ~5 mm (Mahieu et al., 2004) to ~15 mm (Rosager et al., 2002; Arampatzis et 

al., 2005b; Houghton et al., 2013), although Kongsgaard et al. (2011) reported 

displacement of just ~2 mm. 

Given the variance of force and displacement measurements observed in the 

aforementioned investigations by Kongsgaard et al. (2011) and Mahieu et al. 

(2004), it is unsurprising that calculations of Achilles tendon stiffness also 
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demonstrated high variance. The values reported by Kongsgaard et al. (2011) fall 

just below the 10% CV threshold whereas those of Mahieu et al. (2004) and 

Houghton et al. (2013) fall above this; in the case of the latter, this despite 

assessing intra-session reliability and reporting both force and elongation to be 

reliable measures (< 10% CV). Investigations conducted by Kubo et al. (2001; 

2002) have observed lower variance - reporting CVs of 5.0% and 5.6% 

respectively. Also, there is considerable variance in the reported stiffness of the 

Achilles tendon in the literature, ranging from as low as ~20 N.mm-1 in an 

investigation by Kubo et al. (2001) to in excess of 400 N.mm-1 reported by 

Houghton et al. (2013). 

It is difficult to explain why there is such discrepancy between investigations given 

the similarity in methodologies. Mahieu et al. (2004) employed the same 

contraction protocol (ramped five second MVC), probe location (mid-

gastrocnemius aponeurosis) and method of stiffness calculation (determined 

between 50-100% maximal force) as Kubo et al. (2001; 2002). Contraction 

durations of five seconds were also employed by Kongsgaard et al. (2011) and 

Houghton et al. (2013). Also in line with Kubo et al. (2001; 2002), Houghton et al. 

(2013) calculated stiffness between 50-90% of maximal force and participants 

were tested in the prone position.  

However, there are some differences between investigations. Participants in the 

Mahieu et al. (2004) and Kongsgaard et al. (2011) investigations performed MVCs 

seated and not prone as in Kubo et al. (2001; 2002), although the ankle joint angle 

was consistent between studies (0° dorsiflexion) and the hip joint angle is argued 

not to impact on properties of the Achilles tendon (Joseph et al., 2012). The probe 

location differed in the set-up of Houghton et al. (2013) and Kongsgaard et al. 

(2011), these investigations report placing the probe over the distal myotendinous 
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junction of the gastrocnemius and soleus respectively. Also, Kongsgaard et al. 

(2011) calculated stiffness between 80-100% of maximal force and Mahieu et al. 

(2004) prescibed recovery of 30 seconds between MVC as opposed to > 3 minutes 

in all other studies; it is established that both the rate of strain and any pre-

conditioning of the tendon are likely to impact on tendon properties (Theis et al., 

2012). These small differences in the methodologies between these investigations 

make it difficult to accurately assess the reliability of Achilles tendon stiffness 

measures. It is important for investigators to assess the reliability of the specific 

methodology which will be employed.  

Given the high degree of variability and methodological inconstancies reported in 

previous investigations, the purpose of the pilot study was to assess the inter-

session reliability of Achilles tendon stiffness obtained through MVC dynamometry 

and ultrasonography. Were the reliability of this method found to be acceptable 

during single-joint quasi-isometric activity, this would allow exploration of the 

reliability of these techniques during multi-joint tri-phasic movements such as 

jumps and changes of direction. However, it was hypothesised that the CV for 

Achilles tendon stiffness would be in excess of 15%. 
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3.2.2 Method 

3.2.2.1 Experimental overview 

The pilot study was a within-participant repeated measures investigation designed 

to assess the inter-session reliability of Achilles tendon stiffness. On four separate 

occasions (T1, T2, T3, and T4), participants performed plantar flexor MVCs against 

an immovable footplate during which data was acquired to determine the 

mechanical properties of the medial gastrocnemius muscle-tendon unit using 

ultrasonography. 

3.2.2.2 Participants 

Six active (≥ 2.5 hours of physical activity per week) males (age: 23 ± 2 years; 

height: 1.74 ± 0.04 m; body mass: 75.2 ± 6.9 kg) recruited from a university campus 

provided informed consent (Appendix A1) to participate in the study. Full ethical 

approval was granted by the review board of the Institute for Physical Activity 

Research, University of Bedfordshire (Appendix A1) and all procedures were 

conducted in accordance with the Declaration of Helsinki. All trials were conducted 

at the same time of day (between 10:00 and 13:00) to alleviate the effects of 

circadian rhythms and between seven to fourteen days apart to minimise the risk 

of the previous testing session carrying any residual effects on tendon stiffness 

(McLachlan et al., 2006). Participants were instructed to refrain from all forms of 

training involving the lower limbs during the 24 hour period preceding each testing 

session. 

3.2.2.3 Experimental set-up 

Participants were seated on an adjustable chair with hips flexed to 90o (hip flexion: 

88.8 ± 1.4o) and knee fully extended (knee extension: 176.1 ± 1.2o) (Muramatsu et 
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al., 2001; Mahieu et al., 2004; Arampatzis et al., 2010; Kongsgaard et al., 2011) 

(Figure 3.1).  

 

Figure 3.1 - The experimental set-up for the measurement of medial 
gastrocnemius aponeurosis displacement during an isometric plantar flexion 
performed against an immovable wall plate. 

The chair was positioned as close as possible to the wall plate in order to minimise 

potential changes in joint angles during the MVCs (Magnusson et al., 2001). The 

ankle was placed in an anatomically neutral position, the sole of the foot at 90o to 

the tibia (ankle dorsiflexion: 0.9 ± 0.2o) (Muramatsu et al., 2001; Arampatzis et al., 

2010; Kongsgaard et al., 2011). Joint angles were measured using a 6” universal 

goniometer (Physio Supplies, Spalding, United Kingdom). 

3.2.2.4 Measurement of plantar flexion torque 

Force output of participants’ dominant ankle joint during each of the MVCs was 

measured through a load cell (Kistler 9333A; Kistler Instruments, Winterthur, 

Switzerland) securely attached to a bolt in the wall and connected to a Powerlab 
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isolated amplifier (Powerlab AD Instruments 4/25T, AD Instruments, Australia). 

Limb dominance was self-reported by the participant prior to T1 and remained 

consistent for the remaining trials. A 0.3 x 0.6 m hinged wall plate (18 mm medium-

density fibreboard) was positioned in front of the dynamometer for participants to 

press against. Participants performed MVCs unshod and with the sole of the foot 

resting flat against the wall plate. In an effort to ensure that the sole of the foot 

remained flat against the wall plate throughout the MVC, participants were 

instructed to “keep your heel against the wall plate”.  

Participants were instructed to then “push your toes through the wall plate” in order 

to perform an attempted plantar flexion contraction and to exert a maximal force 

against the wall plate (Magnusson et al., 2001; Burgess et al., 2009; Arampatzis et 

al., 2010). Participants were instructed to gradually increase force up to a MVC 

over a period of five seconds (ramping period), hold the MVC for a period of two 

seconds (MVC period), and then to gradually decrease force back to resting over 

a period of five seconds (unloading period) (Kubo et al., 2001; Kubo et al., 2002; 

Maganaris & Paul, 2002; Burgess et al., 2009; Arampatzis et al., 2010). 

Participants were instructed to monitor real-time on-screen feedback from the 

dynamometer software (Lab Chart 7, AD Instruments, Australia) which enabled 

them to see a graph to monitor their force output as well as a timer display to 

determine the duration of the ramping, MVC and unloading periods (Maganaris & 

Paul, 2002). Participants were verbally prompted at the beginning of the ramping 

period to “start building up force”, at the beginning of the MVC period to “push as 

hard as you can - hold for two seconds”, and at the beginning of the unloading 

period to “slowly bring it back down”. Participants performed three MVCs prior to 

sampling (Muramatsu et al., 2001; Burgess et al., 2009; Arampatzis et al., 2010). 

Two further MVCs were sampled for data collection. A period of 180 seconds of 
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recovery was prescribed in-between each of these MVCs (Burgess et al., 2009); 

during this period, participants remained seated in the experimental position with 

their foot resting against the wall plate. 

3.2.2.5 Determination of Achilles tendon force 

Achilles tendon force was calculated using Equation 3.1 as outlined by Burgess et 

al. (2009). 

Equation 3.1:             (Burgess et al., 2009) 

Where Ftend = Achilles tendon force, P = observed torque output, Pantag = 
estimated antagonist co-contraction torque, and Tarm = tendon moment 
arm.  

Achilles tendon moment arm was defined as the perpendicular distance from the 

inferior tip of the malleolus (taken to be the centre of rotation of the ankle joint) to 

the tendon line of action. The length of the moment arm was estimated using the 

method outlined by Zhao et al. (2009) shown in Equation 3.2. 

Equation 3.2: 𝑇𝑎𝑟𝑚 = 𝑚𝑔 − 𝑚𝑡 (Zhao et al., 2009) 

Where Tarm = Achilles tendon moment arm, mg = the perpendicular 
distance between the surface of the skin and the inferior tip of the malleolus 
and mt = the surface of the skin and the Achilles tendon line of action. 

A representation of how the Achilles tendon moment arm was calculated is shown 

in Figure 3.2. The distance between the surface of the skin and inferior tip of the 

malleolus (Mg) was measured on the skin. The distance between the surface of 

the skin and the mid-point of the Achilles tendon line of action (Mt) was measured 

on an ultrasound image of the resting Achilles tendon (approximately 0° of 

dorsiflexion) taken along the longitudinal axis. 
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Figure 3.2 - A representation of how the Achilles moment arm was calculated.  

Key: Mg = the perpendicular distance between the surface of the skin and inferior 
tip of the malleolus. Mt = the distance between the surface of the skin and mid-
point of Achilles tendon line of action. 

3.2.2.6 Measurement of co-contraction torque 

To ascertain the level of antagonistic muscle co-contraction torque during plantar 

flexion MVC, electromyographic (EMG) activity of the tibialis anterior, deemed to 

be representative of the ankle dorsiflexors, was recorded during each of the MVCs. 

In accordance with SENIAM guidelines for sensor location (Freriks et al., 1999), 

40mm silver/silver chloride EMG electrodes (Cardiocare Limited, Romford, UK) 

were placed on shaved, cleaned and abraded skin. Electrodes were position 1/3 

of the distance between the head of the fibula and the tip of the medial malleolus 

with an inter electrode distance of 0.02 m and aligned parallel to the direction of 

the underlying fibres (Clarys & Cabri, 1993). The position of the electrodes for each 

participant was standardised by measuring the distance from the head of the fibula 

and the tip of the medial malleolus. This position was also marked on the skin using 

a non-permanent marker; participants were asked not to wash this off between 

trials. 
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EMG activity was recorded at a sampling frequency of 2000 Hz; the high pass filter 

was set at 20 Hz and the low pass filter 500 Hz, with a mains notch filter (50 Hz) 

also used. The EMG was recorded using a Powerlab isolated amplifier (Powerlab 

AD Instruments 4/25T, AD Instruments, Australia). This data was analysed using 

a computer program (Lab Chart 7, AD instruments, Australia). EMG values were 

smoothed using the root mean square over 50 ms. 

Following the plantar flexion trials, the hinged wall plate was removed from the 

experimental setup and a foot strap was attached to the load cell. The foot strap 

was subsequently looped over the participants’ dominant foot. Remaining in the 

same experimental position (hips flexed, knee extended and ankle neutral) 

subjects then performed four maximal dorsiflexion MVCs by attempting to pull the 

foot strap away from the dynamometer. The procedure for the dorsiflexion MVC 

was the same as for the plantar flexion MVC (5 second ramp, 2 second hold, 5 

second relaxation). A recovery period of 180 seconds was prescribed between 

each MVC. Data was captured using the Lab Chart software (Lab Chart 7, AD 

instruments, Australia) with dynamometer forces inverted to account for the inverse 

pulling action associated with the dorsiflexion MVC.  

To calculate the antagonist co-contraction torque value required for the Achilles 

tendon force equation, the EMG-torque relationship of the dorsiflexors acting as 

an agonist was reconstructed using subjects’ greatest MVC of the four performed. 

This was achieved by calculating dorsiflexors torque at the time points where 25, 

50, 75 and 100% of MVC were achieved and sampling the EMG values over the 

0.1 seconds immediately before and after this time point. These values were fitted 

with a 2nd order polynomial equation forced through 0. 
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3.2.2.7 Determination of tendon displacement 

The medial gastrocnemius - Achilles tendon complex was imaged during the MVCs 

using real-time B-mode ultrasonography (Vivid 7, GE Healthcare, Horton, Norway) 

with a 40 mm linear probe sampling at a rate of 16.8 Hz. The probe was placed 

over the myotendinous junction of the medial head of the gastrocnemius muscle in 

the sagittal plane (as shown in Figure 3.3) and sampled at a depth of 35 mm.  

 

Figure 3.3 - An example ultrasound scan of the myotendinous junction of the 
medial gastrocnemius and Achilles tendon. 

A 5 mm piece of stainless steel wire was used as an echo absorptive marker and 

served as a fixed reference from which measures of elongation could be made. 

The wire was placed on the skin in such a manner so that it could be clearly 

identified on the ultrasound image and secured to the skin with a covering of 10 

mm insulating tape to ensure that it remained in the same position during the 

MVCs.  
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Achilles tendon elongation during the MVC was calculated as the displacement of 

the distal myotendinous junction of the medial gastrocnemius relative to the 

absorptive marker (Maganaris & Paul, 2002; Burgess et al., 2009; Arampatzis et 

al., 2010). Tendon elongation was measured manually from still images acquired 

at 10% intervals of MVC force using ImageJ software (1.47t, National Institute of 

Health, Bethesda, USA) (Burgess et al., 2009). Force output, EMG and 

ultrasonography outputs were synchronised using a custom made trigger  

connected between the echocardiogram input of the ultrasound scanner and the 

PowerLab amplifier. The trigger would begin the sampling of force and EMG in the 

Lab Chart software and simultaneously place a spike on the ultrasound recording 

(Figure 3.4) to allow temporal alignment. 

 

Figure 3.4 - An example of the trigger-induced spike placed onto the ultrasound 
recording. 

3.2.2.8 Determination of tendon stiffness 

Achilles tendon stiffness was calculated as the slope of Achilles tendon force 

versus Achilles tendon elongation between 50% and 90% of the maximum force 

by means of linear regression (Arampatzis et al., 2010; Houghton et al., 2013). The 
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current study used 50-90% intervals as opposed to 50-100% intervals as pilot 

testing indicated that time to 90% force demonstrated less within-participant 

variance than time to 100% force and to reproduce the protocol employed by 

Houghton et al. (2013) the only investigators to have reported reliability figures for 

the force-time variable. 

3.2.2.9 Statistical analysis 

Shapiro-Wilks were performed to assess for normality; all variables were 

considered to be normally distributed given an alpha level of P > 0.05. A repeated-

measures analysis of variance (ANOVA) was used to test for possible systematic 

bias between trials. A 1 x 4 ANOVA with Sidak post-hoc pair-wise comparisons 

used to highlight significant pair-wise differences. Pair-wise effect sizes (d) (Cohen, 

1998) were calculated and interpreted using the thresholds defined by Hopkins 

(2003) where: <0.20 = trivial, 0.20-0.59 = small, 0.60-1.19 = moderate, 1.20-1.99 

= large, and ≥2 = very large. 

Reliability was assessed through the determination of the single (between 

individual sessions) and average (across all sessions) ICC and by the standard 

error of measurement (SEM) (Weir, 2005); these figures were calculated with 90% 

confidence intervals (90% CIs). SEMs were reported as CVs to best allow 

comparison with the current literature. Descriptive statistics, SEMs, CVs and 

90%CIs were computed using a pre-formatted spreadsheet in Microsoft Excel 

2007 (Hopkins, 2011). All repeated-measures ANOVAs and ICCs were conducted 

using the Statistical Package for the Social Sciences (SPSS) for Windows (v21.0; 

SPSS Inc., Chicago, USA) with P ≤ 0.05 considered statistically significant. 
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3.2.3 Results 

 
Figure 3.5 - Values for Achilles tendon stiffness calculated across four 
experimental trials. The solid black line represents average stiffness values, 
dotted lines represent the individual participants (n = 6). 

Peak values for Achilles tendon stiffness were observed in T2 (Figure 3.5) and 

coincided with the highest values for Achilles force and with the joint-lowest values 

for elongation (Table 3.2).  

Table 3.2 - Descriptive statistics (mean ± standard deviation) for Achilles tendon 
stiffness and associated variables across four experimental trials (T1 - T4). 

Variable T1 T2 T3 T4 

AT force (N) 187 ± 38 280 ± 86 235 ± 43 228 ± 31 

AT elongation (mm) 3.1 ± 0.9 2.2 ± 1.1 2.7 ± 1.1 2.2 ± 0.3 

50-90% force (secs) 0.8 ± 0.3 1.4 ± 0.8 2.3 ± 1.1 2.0 ± 0.8 

KAT (N.mm-1) 58 ± 24 181 ± 88 128 ± 51 122 ± 34 

Key: T = trial, AT = Achilles tendon, KAT = Achilles tendon stiffness. 
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The average CV for Achilles tendon stiffness across the four trials (T1-T4) was 55%, 

whilst the lowest between-session CV reported was 27%, observed between T3 

and T4 (Table 3.3). 

Table 3.3 - Reliability of Achilles tendon force, medial gastrocnemius aponeurosis 
elongation, time between 50-90% of maximal force output and Achilles tendon 
stiffness. 

 Mean (T1-T4) T1-T2 T2-T3 T3-T4 

Achilles tendon force (N) 

SEM  

(90%CI) 

53.0 

(40.9 - 84.8) 

74.9  

(50.3 - 156.4) 

51.8  

(34.8 - 108.1) 

12.4  

(8.3 - 25.9) 

CV (%) 23% 32% 22% 5% 

ICC  

(90%CI) 

0.25  

(-0.11 - 0.73) 

-0.08  

(-0.71 - 0.62) 

0.64  

(-0.05 - 0.92) 

0.96  

(0.82 - 0.99) 

Achilles tendon elongation (mm) 

SEM  

(90%CI) 

1.24  

(0.96 - 1.98) 

1.38  

(0.93 - 2.88) 

1.48  

(0.99 - 3.09) 

0.73  

(0.49 - 1.53) 

CV (%) 49% 54% 58% 29% 

ICC (90%CI) 
-0.64  

(-0.49 - -2.56) 

-0.70  

(-0.54 - 0.46) 

-0.54  

(-0.89 - -0.30) 

0.46  

(-0.30 - 0.86) 

Time between 50-90% max force (secs) 

SEM 

(90%CI) 

0.47  

(0.36 - 0.75) 

0.55  

(0.37 - 1.15) 

0.42  

(0.29 - 0.89) 

0.42  

(0.28 - 0.88) 

CV (%) 29% 33% 26% 26% 

ICC  

(90%CI) 

0.84  

(0.58 - 0.96) 

0.36  

(-0.41 - 0.83) 

0.92  

(0.65 - 0.98) 

0.93  

(0.68 - 0.99) 

Tendon stiffness (N.mm-1) 

SEM  

(90%CI) 

67.8  

(52.3 - 108.5) 

81.4  

(54.7 - 170.0) 

78.0  

(52.4 - 170.0) 

33.1  

(22.3 - 69.2) 

CV (%) 55% 67% 64% 27% 

ICC  

(90%CI) 

-0.36  

(-0.41 - -0.17) 

-0.43  

(-0.85 - 0.33) 

0.01  

(-0.66 - 0.68) 

0.64  

(-0.06 - 0.92) 

Key: T = trial, SEM = standard error of measurement, 90%CI = 90% confidence intervals, 
ICC = intra-class correlation coefficient. 
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Significant differences in Achilles tendon force (F(3,15) = 3.33; P = 0.048; η2 = 0.40), 

time between 50-90% maximal force (F(3,15) = 10.04; P ≤ 0.001; η2 = 0.67) and 

Achilles tendon stiffness (F(3,15) = 4.45; P = 0.020; η2 = 0.47) were observed over 

the four testing sessions. No significant differences in Achilles tendon elongation 

(F(3,15)  = 1.09; P = 0.38; η2 = 0.17) were reported.  

Table 3.4 - Pair-wise comparisons (presented as mean difference ± standard 
deviation) of Achilles tendon stiffness and associated variables across four 
experimental trials (T1 - T4). 

Variable T1-T2 T1-T3 T1-T4 T2-T3 T2-T4 T3-T4 

AT force (N) -92 ± 106 -47 ± 63 -40 ± 61 45 ± 73 52 ± 79 7 ± 18 

AT elongation 
(mm) 

0.9  

± 1.9 

0.4  

± 1.1 

0.9  

± 0.9* 

-0.5  

± 2.1 

0.03  

± 1.5 

0.5  

± 1.0 

50-90% force 

(secs) 

-0.6  

± 0.8 

-1.5  

± 1.0* 

-1.2  

± 0.7* 

-0.9  

± 0.6* 

-0.6  

± 0.6 

0.3  

± 0.6 

KAT (N.mm-1) 
-123  

± 115* 

-70  

± 67 

-63  

± 53* 

52  

± 110 

59  

± 77 

7  

± 47 

* indicates significant pair-wise difference (P < 0.05). 

Key: AT = Achilles tendon, KAT = Achilles tendon stiffness. 

Significant pair-wise differences for Achilles tendon stiffness were observed 

between two trials (Table 3.4). Achilles tendon stiffness was lower in T1 versus T2 

(P = 0.048; d = 2.04) and T4 (P = 0.033; d = 1.16). Achilles tendon elongation was 

greater in T1 versus T4 (P = 0.044; d = -0.94). Time between 50-90% of maximal 

force was shorter in T1 versus both T3 (P = 0.014; d = 1.69) and T4 (P = 0.008; d = 

1.34), and shorter in T2 versus T4 (P = 0.014; d = 1.01). 
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3.2.4 Discussion 

The aim of the pilot study was to assess the inter-session reliability of Achilles 

tendon stiffness obtained through MVC dynamometry and ultrasonography. Were 

the reliability of this method found to be acceptable during single-joint, quasi-

isometric activity it would allow exploration of the reliability of these techniques 

during more complex and dynamic movements. In spite of using an experimental 

protocol based upon previous investigations that have reported low CVs (< 6% 

(Kubo et al. 2001; 2002)), it was found that Achilles tendon stiffness demonstrates 

poor reliability over four testing sessions in participants previously unfamiliar with 

the MVC testing protocol given the CV > 10%, ICC < 0.80 classification proposed 

by Joseph et al. (2013). The lowest inter-session CV, of 27%, was found between 

T3 and T4. The hypothesis that the CV for tendon stiffness would be > 15% is 

therefore accepted. 

The lowest CV for Achilles tendon stiffness reported in the current study (27%) was 

higher than has been reported in previous investigations by Kubo et al. (2001; 

2002) using a similar experimental protocol. Inter-session CVs as low as 5% have 

been reported by Kubo et al. (2001) and as high as 15.8% by Mahieu et al. (2004), 

although CVs toward the upper end of this range appear to be more common 

(Kongsgaard et al., 2011; Houghton et al., 2013). In addition, significant pair-wise 

differences and large effect sizes were observed between a number of testing 

sessions, further questioning the repeatability of inter-session Achilles tendon 

stiffness measurements.  

Achilles tendon stiffness is a direct function of the force and elongation of the 

tendon (Magnusson et al., 2001). The current study demonstrated Achilles tendon 

force to be a repeatable measurement following familiarisation; a CV of 5% was 
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reported between T3 and T4. This figure is similar to those reported by Houghton 

et al. (2013), Kongsgaard et al. (2011) and Mahieu et al. (2004) who have also 

utilised a ramped, five second contraction, as have Kubo et al. (2001; 2002). Whilst 

AT force is a strong and repeatable measure, Achilles tendon elongation is highly 

variable. The variability observed in Achilles tendon stiffness in the current study 

is therefore a likely consequence of high variability in elongation 

Magnusson et al. (2001), Mahieu et al. (2004) and Kongsgaard et al. (2011) have 

all reported the inter-session CV of Achilles tendon elongation to be > 10%, 

although the 29% CV reported between T3 and T4 is higher than has been 

previously reported in the literature despite using a similar methodology. A 

potential explanation for the poor reliability of AT elongation measures could be 

due to the sampling rate of the ultrasonography. Magnusson et al. (2001) and 

Kongsgaard et al. (2011) reported sampling at rates of 50 Hz and 25 Hz, 

respectively. Burgess et al. (2009) also sampled at 25 Hz. The investigations 

conducted by Kubo et al. (2001; 2002) sampled at 30 Hz. Sampling with a lower 

frame rate (16.8 Hz in the current study) will have reduced the accuracy of 

elongation measures as measurements are unlikely to have been taken at the 

precise time-points that were identified in the higher sampling (1000 Hz) force 

trace. Moreover, the gap between frames when sampling at these frequencies is 

relatively large considering the short duration of the contraction and, in particular, 

the time intervals between 10% force increments. It is perhaps reasonable to 

suggest that the reliability of Achilles tendon elongation measures is unlikely to 

achieve comparable reliability to force measurements until higher sampling rates 

can be utilised. Conversely, the high sampling rate (2000 Hz) and low-pass filter 

(500 Hz) may also have acted to confound reliability issues. Whilst the contribution 

of co-contraction torque may be minimal, these frequencies exceed the likely firing 
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rate of muscle (Gandevia, 2001). This would have created additional noise within 

the sample and may have contributed to errors in interpreting muscle firing 

patterns. 

Another potential explanation for the poor reliability of Achilles tendon elongation 

could be the concomitant reliability of time between 50-90% maximal force as 

stiffness was calculated across this range. This procedure replicates the method 

of Houghton et al. (2013) whilst Kubo et al. (2001; 2002) plotted a similar slope 

from 50-100%. Data from the current study (Table 3.3) indicates that participants 

were not able to perform the contraction in a reproducible manner, a potential 

consequence of a low skill level and unfamiliarity within the isometric plantar flexion 

protocol, even after three previous sessions. Participants were instructed to 

gradually ramp to a maximal contraction over a period of 5 seconds, however, the 

mean time between 50-90% maximal force was 0.42 seconds (90%CI: 0.28 - 0.88). 

Only Houghton et al. (2013) have previously reported reliability values for this 

variable, the investigators observed a CV of 6.7% and ICC of 0.78. Whilst the ICC 

of 0.93 between T3 and T4 may appear relatively strong, this was reported with 

90%CI’s of 0.68 - 0.99 and a CV of 26%, the latter comparable to the CVs of 27% 

and 29% reported for Achilles tendon stiffness and elongation respectively. Theis 

et al. (2012) have demonstrated that tendon stiffness increases linearly with the 

rate of strain, emphasising the importance of the time component if seeking to 

measure stiffness. It is possible that better instruction and coaching of the 

participants during the contraction would enable them to lengthen the relative time 

between 50-90% maximal force, potentially offsetting some of the aforementioned 

problems inherent with low sampling rates, and also help them to perform the MVC 

with greater reproducibility.  
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The figures reported in the current study for Achilles tendon stiffness (mean: 122 

N.mm-1) are comparable to those of Kubo et al. (1999; 2007) and Maganaris and 

Paul (2002). These values are greater than have been reported in some 

investigations (< 65 N.mm-1) (Kubo et al., 2001; Mahieu et al., 2004; Burgess et 

al., 2009) but substantially lower than a number of other investigations (> 300 

N.mm-1) (Magnusson et al., 2001; Rosager et al., 2002; Kongsgaard et al., 2011; 

Houghton et al., 2013). The wide discrepancy in stiffness values (i.e. beyond 

expected inter-individual differences) highlight the variability in methodologies and 

the necessity for investigators to determine the reliability of their own specific 

method. 

The Achilles tendon elongation reported in this pilot study (mean: 2.6 mm), 

although comparable to the figures reported by Kongsgaard et al. (2011), is far 

lower than has been reported in the majority of investigations (5 - 18 mm) 

(Maganaris & Paul, 2002; Muramatsu et al., 2002; Rosager et al., 2002; Mahieu et 

al., 2004; Arampatzis et al., 2005b). Joseph et al. (2012) reported a strong ICC 

value for the inter-session reliability of Achilles tendon elongation measures (0.93), 

this is noted alongside a SEM of 1.59 mm. Whilst the current study reports a far 

weaker ICC (0.46; 90%CI: -0.30 - 0.86) between T3 and T4, the SEM observed was 

actually lower (0.73; 90%CI: 0.49 - 1.53). Were elongation measures in this pilot 

study to be more in-line with the values reported in the majority of the literature and 

a similar SEM observed, the CV would be markedly lower. Joseph et al. (2012) did 

not report any descriptive statistics to allow for calculation of their SEM as a CV, it 

is recommended that future investigations report such data to allow the reader to 

contextualise this information and make a more informed judgement as to the 

reliability of this method. 
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The reliability of all measures improved in a curvilinear fashion as the number of 

testing sessions increased; a factor highlighted not only in the reduction of the CVs 

between later trials, but also in the reduction of the mean differences and the 

associated effect sizes. For that reason, it is clear that participants unfamiliar with 

isometric plantar flexion testing require a number of familiarisation sessions to be 

performed. Whether the reliability of the isometric method can be further improved 

with additional sessions is a question which subsequent research may wish to 

explore, however, the clear necessity for multiple familiarisation sessions (no less 

than four sessions) may discourage researchers and practitioners from using this 

technique.  

If seeking to detect changes in Achilles tendon stiffness, for example in response 

to an acute or chronic exercise intervention, it is essential that investigators 

understand the magnitude of change that will be required to detect a statistically 

meaningful effect. If the current study is indicative of the general reliability of the 

integration of dynamometry and ultrasonography to approximate tendon stiffness 

within this participant group, any intervention would therefore need to induce a 

change in excess of 27%. A change of this magnitude would seem unlikely in a 

trained population. For example, Houghton et al. (2013) observed non-significant 

changes in Achilles tendon stiffness of -7.2% and 4.2% following two acute 

exercise interventions, these figures eclipsed by a CV of 15.6%. Kubo et al. (2001) 

observed a 10% reduction following a stretching stimulus, greater than their 

reported CV of 5%, whilst Arampatzis et al. (2010) observed changes of -5% and 

17% following two preconditioning interventions without reporting reliability values 

to contextualise these. If true changes in Achilles tendon stiffness following acute 

interventions do fall within a ± 10 - 15% range, the reliability values reported by the 

current study and a number of other investigations (Mahieu et al., 2004; 
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Kongsgaard et al., 2011; Houghton et al., 2013) suggest that the widely used MVC 

method may not be a suitable test for evaluating such changes.  

Changes in Achilles tendon stiffness in response to chronic interventions appear 

to be larger than in acute interventions. For instance, Kubo et al. (2002) reported 

increases of 15 - 19% following a three-week resistance training or stretching 

intervention and Mahieu et al. (2007) reported a 28% decrease following six weeks 

of ballistic stretching. The use of dynamometry and ultrasonography to assess 

changes in tendon stiffness may therefore be more suitable for evaluating the effect 

of chronic interventions. However, the CV of 27% reported in the current study 

would still suggest that the test may not be suitable for detecting a meaningful 

change. Regardless of the intended application, where investigators do choose to 

employ the isometric plantar flexion method to quantify Achilles tendon stiffness, it 

is strongly recommended that statistics for each of the reliability measures are 

calculated for the specific methodology, equipment and participant group to be 

utilised in the investigation. These figures should be clearly reported in the 

manuscript and included alongside descriptive statistics for each of the sampled 

parameters.  
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3.2.5 Conclusion 

This pilot study reports that the widely used measurement method of Achilles 

tendon stiffness using dynamometry and ultrasonography during a plantar flexion 

MVC demonstrates a high degree of inter-session variance (> 25%) after multiple 

familiarisation sessions in healthy male participants. This was larger than has been 

previously reported in the literature (Kubo et al., 2001; Kubo et al., 2002; Mahieu 

et al., 2004; Kongsgaard et al., 2011; Houghton et al., 2013) and questions the 

appropriateness of ultrasonography for detecting changes in Achilles tendon 

stiffness induced by acute or chronic exercise interventions. 

 

3.2.6 Implications for the thesis 

The potential use of ultrasonography to examine direct changes in Achilles tendon 

stiffness during hopping, drop jumping and changes of direction was not 

considered in subsequent investigations due to the high variability (CV > 25%) 

observed in this pilot study. 
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3.3 Study 1 - Reliability of vertical stiffness 

3.3.1 Introduction 

Vertical stiffness describes how the body’s centre of mass (COM) deforms in 

response to force during a linear, vertical movement task, such as a vertical hop 

or jump, and aims to provide a representative measure of musculoskeletal stiffness 

(Butler et al., 2003). Although the role of vertical stiffness in modulating injury risk 

and athletic performance may be well established (Butler et al., 2003; Pearson & 

McMahon, 2012), literature investigating bilateral asymmetry in vertical stiffness is 

limited. A strong relationship between vertical stiffness asymmetry and soft-tissue 

injury has been reported by Pruyn et al. (2012); elite Australian Rules Football 

players who experienced soft-tissue injuries had a greater bilateral difference in 

vertical stiffness than their non-injured counterparts.  Such asymmetry may also 

be expected to impair athletic performance given the potential for a resultant 

imbalance in the application of force (Wilson et al., 1994), however, the latter 

hypothesis has not been systematically explored. The measurement and 

quantification of vertical stiffness is therefore of important practical relevance to 

athletes and coaches. 

Vertical stiffness is most commonly assessed during the performance of a bilateral 

‘hopping’ task (Joseph et al., 2013; Hobara et al., 2014). As well as offering the 

simplest spring-mass model with which to assess vertical stiffness (Farley et al., 

1991), bilateral hopping has been established to be more efficient in energetic 

consumption compared to other types of gait (Cavagna et al., 1964) and should 

therefore provide a strong representation of musculoskeletal stiffness (Farley et 

al., 1991). Vertical stiffness derived from bilateral hopping has been shown to 

differentiate between sprint and endurance athletes (Hobara et al., 2008), and 
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between endurance athletes and untrained controls (Hobara et al., 2010). As such, 

bilateral hopping would appear to be a valid task by which to assess a determinant 

of athletic performance (vertical stiffness). During hopping tasks, individuals are 

required to perform a number of repeated bilateral jumps on a force plate whilst 

measurements of vertical ground reaction force (vGRF) and negative displacement 

of the COM are recorded. COM displacement is deemed representative of how 

much the leg spring deforms, assuming that both limbs function synchronistically, 

in response to the ground reaction force (Butler et al., 2003). Vertical stiffness is 

subsequently calculated as the ratio of peak vGRF to the negative COM 

displacement (Joseph et al., 2013; Hobara et al., 2014). 

Whilst bilateral hopping is established to provide a strong representation of 

musculoskeletal stiffness (Farley et al., 1991), it is important to note that these 

tasks are typically performed at set hopping frequencies and are submaximal in 

nature (Joseph et al., 2013; Hobara et al., 2014). The characteristics of bilateral 

hopping may therefore demonstrate a high degree of correspondence to sub-

maximal cyclic performances, such as endurance running (Kunimasa et al., 2014), 

but not to maximal acyclic performances, such as jumping (Bobbert & Casius, 

2005) and changes of direction (Young & Farrow, 2006). For this reason, the 

utilisation of different movement tasks should be considered if seeking to assess 

vertical stiffness in athletes required to perform short-duration maximal intensity 

actions. 

The drop jump is an exercise in which an athlete drops from a pre-determined 

height and attempts to jump immediately on landing (Marshall & Moran, 2013). 

Given that drop jumping is typically performed in training with a view to inducing 

chronic enhancements in parameters of neuromuscular force production and lower 

limb stiffness (Turner & Jeffreys, 2010; Marshall & Moran, 2013), it may therefore 
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be appropriate to suggest the use of the drop jump as a task by which to assess 

vertical stiffness. As the drop jump is a maximal, acyclic performance task 

(Marshall & Moran, 2013), it may be argued to carry greater ecological validity as 

an assessment tool for power-based athletes when compared to hopping tasks 

due to it representing a single maximal effort (Flanagan & Harrison, 2007).  

Whilst Arampatzis et al. (2001a; 2001b) have modelled vertical stiffness during 

drop jumping, this task has not been used to examine relationships between 

vertical stiffness and performance or to examine inter-group differences in vertical 

stiffness. Moreover, the reliability of drop jump derived stiffness measures has not 

been evaluated. Were it to be determined that bilateral and unilateral drop jump 

tasks exhibit comparable reliability to bilateral hopping tasks, drop jumping may 

provide an alternative assessment task by which to assess vertical stiffness in a 

manner that could be more representative of maximal intensity athletic 

performance.  

The reliability of vertical stiffness assessment during bilateral hopping tasks has 

been specifically evaluated in two investigations (McLachlan et al., 2006; Joseph 

et al., 2013). Study 1 considered the CV as the primary tool to assess reliability as 

this is a relative measure that allows for a direct comparison between 

investigations, irrespective of differences in participants’ stiffness, and can be 

easily interpreted by the practitioner (Hopkins, 2000). McLachlan et al. (2006) 

reported CVs of between 2.7% and 4.9% for vertical stiffness dependant on the 

frequency and height of hopping; a frequency of 3.2 Hz demonstrated higher 

reliability than 2.2 Hz and submaximal hopping demonstrated higher reliability than 

maximal hopping. Joseph et al. (2013) reported a CV of 5.5% for a hopping 

frequency of 2.2 Hz and 10.2% for a self-selected hopping frequency. Moreover, 

Joseph et al. (2013) demonstrated that stiff-leg hopping was a more reliable 
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assessment than bent-leg hopping where the hopping kinematics were self-

determined by the individual. For example, a CV of 6.9% was calculated for bent-

leg hopping at 2.2 Hz. Bent-leg hopping resulted in greater angular displacement 

of the knee and ankle, indicating a greater reliance on active force generation 

during the task. This may explain why the bent-leg technique appears less reliable; 

the emphasis on maintaining high stiffness in the lower limbs is likely to be reduced 

if the active component of muscular contraction is greater.  

Reliability figures have also been reported in investigations conducted by Moir et 

al. (2009) and by Brauner et al. (2014). Moir et al. (2009) reported a CV of 14.4% 

using a 2.0 Hz hopping test with participants asked to hop for maximal height. The 

CV observed by Moir et al. (2009) appears to be a consequence of variability in 

COM displacement (CV: 12.4%) and also may be expected given the findings of 

McLachlan et al. (2006) (i.e. maximal versus submaximal hopping). Brauner et al. 

(2014) reported a CV of 8.1% using a submaximal 2.2 Hz hopping test although 

did not provide CVs for COM displacement to allow for comparison.  

Moresi et al. (2015) evaluated the impact of data reduction methods (how hops are 

analysed) on reliability. The investigators’ reported CVs ranging from 6.5% to 

16.6% depending upon the reduction method used; employing inclusion criteria to 

sample hops within ± 5% of average contact time appeared to provide the most 

suitable trade-off between reliability and data exclusion, providing CVs in the 

region of 9%. Stricter criteria for sampling were set by McLachlan et al. (2006) and 

Joseph et al. (2013) with hops required to be within ± 2% of the set hopping 

frequency. Although Moresi et al. (2015) found such criteria to infer a marginal 

reduction in the CV (< 1%), using this sampling method resulted in the exclusion 

of a large number of trials and greatly reduced the overall sample size. Whilst the 

vertical stiffness values reported by Moresi et al. (2015) (between 16-21 kN.m-1) 
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were much lower than those reported by Joseph et al. (2013) (~57 kN.m-1), they 

were similar to those reported by McLachlan et al. (2006) for hopping at 2.2 Hz 

(16-20 kN.m-1). This discrepancy is a likely consequent of the participant population 

sampled; Joseph et al. (2013) tested active males whilst both Moresi et al. (2015) 

and McLachlan et al. (2006) both sampled females. 

Stiffness measures obtained from bilateral versus unilateral hopping tasks have 

been compared by Brauner et al. (2014). The investigators demonstrated that 

vertical stiffness values were 24% lower (P < 0.001) during unilateral versus 

bilateral hopping although observed no effect of leg dominance during the 

unilateral task. Inter-limb differences during bilateral hopping were not assessed 

by Brauner et al. (2014). Indeed, to this author’s knowledge, the potential presence 

of vertical stiffness asymmetry between the left and right limbs during bilateral 

hopping has not been investigated by the literature. It is important to understand 

how the individual limbs function during bilateral performance, where matched 

stiffness properties would be desired, as this may not be represented by how the 

individual limb functions in isolation during unilateral hopping. For example, 

Benjanuvatra et al. (2013) compared impulses generated by the left and right limbs 

during bilateral and unilateral jumping, observing that the limb producing the 

largest impulse during the unilateral task did not always produce largest impulse 

in the bilateral task.   

The purpose of Study 1 was to assess the inter-session reliability of left and right 

limb vertical stiffness during bilateral hopping, bilateral drop jumping and unilateral 

drop jumping. Were appropriate reliability to be demonstrated for these methods 

this would justify their potential inclusion in subsequent investigations within this 

thesis. It was hypothesised that all three performance tasks would demonstrate 

CVs of < 10%. 
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3.3.2 Method 

3.3.2.1 Experimental overview 

Study 1 was a randomised and counterbalanced repeated measures experiment 

designed to assess the inter-session reliability of independent left and right limb 

measures of vertical stiffness derived from bilateral hopping, bilateral drop jump 

and unilateral drop jumping. On four occasions, separated by six to ten days, 

participants performed two bilateral hopping trials, three bilateral drop jumps and 

six unilateral drop jumps (three each for the left and right limbs) on a dual force 

plate system. 

3.3.2.2 Participants 

Fourteen healthy males (age: 22 ± 2 years; height: 1.77 ± 0.08 m; body mass: 73.5 

± 8.0 kg) volunteered to participate in the study. Participants were recreationally 

active (≥ 2.5 hours of physical activity per week), reported no previous (within the 

last 12 months) or present lower limb injury and provided informed consent 

(Appendix A1) to participate in the study. A minimum sample size of eight 

participants was determined from an a priori power analysis (G*Power 3.1, 

Heinrich-Heine-Universität, Düsseldorf, Germany) based upon the ICC values 

reported in the literature for vertical stiffness derived from bilateral hopping (0.85) 

(Joseph et al., 2013) and a power of 0.80. Full ethical approval was granted by the 

review board of the Institute for Physical Activity Research, University of 

Bedfordshire (Appendix A1) and all procedures were conducted in accordance with 

the Declaration of Helsinki. 
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3.3.2.3 Experimental protocol 

All trials were conducted at the same time of day for each participant (09:30 - 

11:00), to alleviate the effects of circadian rhythms, and repeated between six to 

ten days apart to minimise the risk of the previous testing session carrying any 

residual effects on vertical stiffness. The testing laboratory was controlled at an 

ambient temperature of 25oC. Participants were instructed to prepare for testing as 

they would for training. Participants were asked to refrain from all forms of training 

for at least 24 hours prior to testing. 

Table 3.5 - The experimental warm up protocol completed in each trial. 

 Warm-up phase Exercise 
Prescription 
(sets x reps) 

Generic  

movement  

preparation 

Inchworm 1x6 

Quadruped thoracic rotation 1x6 each 

Push up to ‘T’ 1x6 each 

Supine glute bridge with abduction 1x12 

Mountain climber 1x6each 

Squat thrust to squat 1x6 

Squat to Stand 1x6 

Single leg, stiff-legged deadlift to reverse 
lunge 1x6 each 

Plyometric 

and stiffness  

preparation 

Lateral step down 1x8 each 

Single leg calf raise 1x8 each 

Alternate leg ankling drill 1x8 each 

Vertical countermovement jump 1x4 

Specific  

movement  

preparation 

Bilateral hopping 1x10 

Bilateral drop jump (from 0.18 m) 1x2 

Unilateral drop jump (from 0.18 m) 1x2 each 

Participants completed the same warm-up procedure in each experimental trial 

(Table 3.5). The warm-up procedure consisted of 15 dynamic exercises 

progressing from low to high intensities and from generic to specific movement 

patterns; the warm-up was designed to replicate a typical athletic warm-up that 
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would be undertaken prior to training or competition (Bishop, 2003). A rest period 

of 60 seconds was prescribed between each of the exercises from the specific 

movement preparation phase of the warm-up, all other exercises were not 

prescribed with rest periods. A rest period of 180 seconds was prescribed between 

the termination of the warm-up and commencement of the testing protocol. 

3.3.2.4 Bilateral hopping protocol 

During each session, participants performed 30 unshod bilateral hops on a dual 

force plate system (Kistler 9281, Kistler Instruments, Winterthur, Switzerland) with 

data recorded independently for the left and right limbs; 30 hop trials were chosen 

as this would allow for the greatest number of potential methods of data reduction 

(Moresi et al., 2015). The plates each measured 0.6 m x 0.4 m, were set flush into 

the laboratory floor as per manufacturer guidelines and spaced by a distance of 

0.05 m. Participants performed two hopping trials (two, 30 hop trials) in each 

experimental session; these were separated by a recovery period of 180 seconds. 

The execution of each hopping trial was monitored by a United Kingdom Strength 

and Conditioning Association and National Strength and Conditioning Association 

(United States of America) accredited strength and conditioning coach to ensure 

for consistency of technique. Hops were performed at a self-selected frequency as 

pilot testing indicated that participants were unable to satisfactorily perform the task 

at a set hopping frequency of 2.2 Hz. At a frequency of 2.2 Hz, the ground contact 

time of each hop did not always fall within the ± 5% recommendation outlined 

below. 

Five consecutive hops from 6th to the 10th hop were sampled for data collection 

(Hobara et al., 2014). For inclusion in the reliability analyses, the ground contact 

time of each of the 5 hops was required to fall within ± 5% of the average ground 
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contact time for the 5 hop sample (Moresi et al., 2015); this was assessed during 

the post-test data analysis and all hopping trials met these criteria.  

3.3.2.5 Drop jumping protocol 

Participants performed all nine drop jumps in each experimental trial from a drop 

height of 0.18 m onto a dual force plate system as outlined in Section 3.3.2.4. 

Bilateral, left leg and right leg drop jumps were performed in a randomised, 

crossover fashion in an attempt to alleviate any pre-conditioning or fatiguing effect 

of the previous jump.  

For the execution of each drop jump, participants were instructed to step, not jump, 

off a 0.18 m box. The box height of 0.18 m was chosen as participants were unable 

to minimise ground contact time effectively at additional height increments (0.30 m 

and 0.45 m) during pilot testing. For the bilateral drop jump, participants were 

instructed to step off with either foot and land with one foot on each force plate to 

allow for data to be recorded for the left and right limbs independently; each 

participant’s leading foot was established in the participants’ first trial by noting 

which foot they stepped off the box with and remained consistent thereafter. For 

the unilateral drop jump, participants were instructed to step off the box with the 

designated foot for that particular trial. Each drop jump repetition was separated 

by 60 seconds to facilitate full recovery between efforts (Read & Cisar, 2001). The 

execution of each jump was monitored for consistency of technique. Participants 

were instructed to spend as little time in contact with the floor as possible during 

each jump and cued to imagine the floor as “hot coals”. Trials would have been 

excluded if participants landed heel first and a distinctive double peak in the vertical 

force trace was observed. All trials met the required criteria. 
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3.3.2.6 Data analysis 

 
Figure 3.6a - An example of the vertical force trace associated with bilateral 
hopping and the identification of instants of initial foot contact, take-off and 
separation of individual hops. 

 
Figure 3.6b - An example of the vertical force trace associated with bilateral and 
unilateral drop jumping, and the identification of instants of initial foot contact, take-
off and landing. 
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Kinetic data was sampled at 1000 Hz and saved with the use of the manufacturer 

supplied software (BioWare 3.24, Kistler, Winterthur, Switzerland) for later offline 

analysis. Instants of initial foot contact, take-off and landing were identified from 

the vGRF trace (Figures 3.6a and 3.6b); this was determined as the time-point at 

which a clear change in force (≥ 10 N) was observed (Lloyd et al., 2009). For 

bilateral hopping and bilateral drop jumps, all values were calculated independently 

for the left and right limbs, assuming an equal distribution of mass between the left 

and right limbs. For the unilateral drop jumps it was assumed that the full body 

mass was supported by the limb.  

3.3.2.7 Determination of vertical stiffness 

Acceleration, velocity and COM displacement at time intervals of 0.001 sec were 

determined from the vertical force trace using the biomechanical principles 

described by Blazevich (2007) and Hall (2012), the inverse dynamics equations 

used to determine these variables are detailed in Appendix A2. The initial velocity 

value used for integration in bilateral hopping trials was calculated using the 

Equation 3.1 as previously described by Hobara et al. (2013). For the bilateral and 

unilateral drop jump trials an initial velocity of -1.88 m.s-1 was utilised. This would 

be the expected velocity of a mass falling from a height of 0.18 m using Equation 

3.1. 

Equation 3.1:  (Hobara et al., 2013) 

Where V0 = initial velocity, ta = aerial time. 

Vertical stiffness was calculated as the ratio of peak vGRF relative to the peak 

negative displacement of the COM during the initial ground contact phase (Farley 

& Morgenroth, 1999). In an effort to ensure the efficacy of the spring-mass model 
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during all tasks, the force-displacement correlation coefficient during the landing 

phase of each individual hop or drop jump was required to be ≥ 0.8 (Padua et al., 

2005); all trials met these criteria. For each bilateral hopping trial, vertical stiffness 

was averaged over the five sampled hops. As vertical stiffness is affected by body 

size, stiffness values were reported relative to body mass (Farley et al., 1993). 

3.3.2.8 Statistical analysis 

For bilateral hopping, inter-session reliability was calculated using each 

participant’s average values across the two hopping trials they performed within 

each testing session. For bilateral and unilateral drop jumping, the average values 

recorded across the three jumps performed within each testing session were used. 

Pilot studies undertaken within the same participant population (n = 8) indicated 

that inter-session reliability was improved by using average values.  

Reliability was assessed through determination of single (pair-wise) and average 

ICCs as well as the standard error of measurement (Weir, 2005); these figures 

were calculated with 90% confidence intervals (90% CI). Average values were 

determined across testing sessions 2-4 as it was deemed a familiarisation session 

was necessary to accustom participants to the experimental protocol; session 1 

was therefore classified as the familiarisation session. The standard error of 

measurement was reported as a CV to allow comparison with the current literature.  

Shapiro-Wilks tests were performed to assess for normality; all variables were 

considered to be normally distributed given an alpha level of P > 0.05. Separate 4 

x 2 (testing session x limb) repeated measures analyses of variance (ANOVAs) 

were performed for bilateral hopping, bilateral drop jumping and unilateral drop 

jumping. An additional one-way ANOVA was performed to examine differences in 

the average values for each variable between performance tasks; this used data 
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from testing sessions 2-4 (three trials) for both limbs (two limbs) and from all 

participants (a total of 84 data sets). For ANOVA procedures, the effect size was 

measured using the partial Eta-squared (η2) and Sidak post-hoc analyses were 

performed where appropriate 

Descriptive statistics, standard errors of measurement, CVs and 90%CIs were 

computed using a pre-formatted spreadsheet in Microsoft Excel 2007 (Hopkins, 

2011); while ICCs and ANOVA procedures were performed using the Statistical 

Package for the Social Sciences for Windows (v21.0; SPSS Inc., Chicago, USA). 

 



88 
 

3.3.3 Results 

3.3.3.1 Intra-session reliability 

For bilateral hopping, intra-session CVs for vertical stiffness were 8.1% (ICC: 0.87) 

and 7.1% (ICC: 0.91) for the left and right limbs respectively. For bilateral drop 

jumping, CVs for vertical stiffness were 11.7% (ICC: 0.88) and 13.4% (ICC: 0.85). 

For unilateral drop jumping, CVs were 7.3% (ICC: 0.95) and 7.5% (ICC: 0.93). 

3.3.3.2 Comparison of performance tasks 

Table 3.6 - Vertical ground reaction force, negative centre of mass displacement 
and vertical stiffness for bilateral hopping, bilateral drop jumping and unilateral 
jumping across testing sessions 2-4. Values are presented as mean ± standard 
deviation. 

Limb Bilateral hopping Bilateral drop Jump Unilateral drop jump 

Vertical group reaction force (N) 

Left 1377 ± 213 1671 ± 309 * 2370 ± 387 *†  

Right 1413 ± 221 1692 ± 298 * 2330 ± 359 *† 

Centre of mass displacement (m) 

Left 0.098 ± 0.031 0.172 ± 0.046 * 0.221 ± 0.055 *† 

Right 0.099 ± 0.034 0.160 ± 0.042 * 0.226 ± 0.061 *† 

Vertical leg stiffness (N.m-1.kg-1) 

Left 210.6 ± 52.2 150.5 ± 58.2 * 159.7 ± 61.6 * 

Right 217.5 ± 58.6 160.7 ± 52.0 * 151.1 ± 55.1 * 

Reactive strength index (flight time : contact time) 

Left 
 

1.83 ± 0.55 0.89 ± 0.25 † 

Right 1.80 ± 0.51 0.91 ± 0.24 † 

* indicates significantly different from bilateral hopping (P < 0.05) 

† indicates significantly different from bilateral drop jumping (P < 0.05) 

Vertical stiffness was statistically different between performance tasks (F(2,81) = 

8.26; P = 0.001). Vertical stiffness was greater in bilateral hopping than in bilateral 

drop jumping and unilateral drop jumping (both P = 0.02) whilst differences 
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between bilateral and unilateral drop jumping were not significant (P = 1.00) (Table 

3.6). 

Table 3.7 - Inter-session reliability for vertical ground reaction force, negative 
centre of mass displacement and vertical stiffness for bilateral hopping, bilateral 
drop jumping and unilateral jumping across testing sessions 2-4. Values are 
presented as mean (90% confidence intervals).  

 Limb Variable Bilateral hopping 
Bilateral drop 
Jump 

Unilateral drop 
jump 

Vertical group reaction force (N) 

Left 

SEM 37.8 (29.8 - 53.2) 92.1 (72.6 - 129.5) 58.4 (46.1 - 82.2) 

ICC 0.98 (0.94 - 0.99) 0.93 (0.84 - 0.97) 0.98 (0.96 - 0.99) 

CV 2.7% 5.5% 2.5% 

Right 

SEM 44.8 (35.4 - 63.1) 94.1 (74.2 - 132.3) 61.3 (48.3 - 86.2) 

ICC 0.97 (0.93 - 0.99) 0.92 (0.82 - 0.97) 0.98 (0.95 - 0.99) 

CV 3.1% 5.6% 2.6% 

Centre of mass displacement (m) 

Left 

SEM 
0.012  

(0.009 - 0.016) 

0.018  

(0.014 - 0.026) 

0.019  

(0.015 - 0.027) 

ICC 0.86 (0.71 - 0.95) 0.87 (0.72 - 0.95) 0.90 (0.78 - 0.96) 

CV 11.8% 10.6% 8.8% 

Right 

SEM 
0.011  

(0.009 - 0.015) 

0.020  

(0.015 - 0.028) 

0.021  

(0.016 - 0.029) 

ICC 0.91 (0.80 - 0.97) 0.81 (0.61 - 0.93) 0.90 (0.78 - 0.96) 

CV 10.9% 12.2% 9.1% 

Vertical stiffness (N.m-1.kg-1) 

Left 

SEM 29.9 (23.6 - 42.1) 19.4 (15.3 - 27.3) 10.6 (8.4 - 14.9) 

ICC 0.73 (0.48 - 0.89) 0.91 (0.80 - 0.97) 0.98 (0.85 - 0.99) 

CV 14.5% 12.9% 6.7% 

Right 

SEM 28.2 (22.2 - 39.7) 18.3 (14.4 - 25.7) 11.6 (9.1 - 16.3) 

ICC 0.81 (0.61 - 0.93) 0.90 (0.78 - 0.96) 0.96 (0.91 - 0.99) 

CV 13.2% 11.4% 7.6% 

Key: SEM = standard error of measurement, CV = coefficient of variation, ICC = average 
intra-class correlation coefficient (across sessions 2-4). 
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Table 3.7 (cont.) - Inter-session reliability for vertical ground reaction force, 
negative centre of mass displacement and vertical stiffness for bilateral hopping, 
bilateral drop jumping and unilateral jumping across testing sessions 2-4. Values 
are presented as mean (90% confidence intervals).  

Reactive strength index (flight time : contact time) 

Left 

SEM 

 

0.12 (0.09 - 0.16) 0.04 (0.03 - 0.05) 

CV 0.96 (0.92 - 0.99) 0.98 (0.96 - 0.99) 

ICC 6.4% 4.3% 

Right 

SEM 0.13 (0.10 - 0.19) 0.04 (0.03 - 0.05) 

CV 0.94 (0.87 - 0.98) 0.98 (0.96 - 0.99) 

ICC 7.4% 4.1% 

Key: SEM = standard error of measurement, CV = coefficient of variation, ICC = average 
intra-class correlation coefficient (across sessions 2-4). 

For vertical stiffness, CVs were lowest in unilateral drop jumping and highest in 

bilateral hopping (Table 3.7). 

3.3.3.3 Bilateral hopping 

Table 3.8 - Vertical ground reaction force, negative centre of mass displacement, 
vertical stiffness and hopping frequency across four bilateral hopping testing 
sessions. Values are presented as mean ± standard deviation. 

Variable Limb Session 1 Session 2 Session 3 Session 4 

Vertical ground 
reaction force 
(N) 

Left 1463 ± 214 1435 ± 199 1412 ± 213 1380 ± 211 

Right 1513 ± 194 1471 ± 201 1456 ± 229 1420 ± 223 

COM 
displacement 
(m) 

Left 
0.127 ± 
0.051 

0.102 ± 
0.030 

0.101 ± 
0.027 

0.094 ± 
0.029 

Right 
0.128 ± 
0.056 

0.104 ± 
0.033 

0.101 ± 
0.030 

0.096 ± 
0.032 

Vertical stiffness  

(N.m-1.kg-1) 

Left 176 ± 52 217 ± 59 198 ± 44 217 ± 51 

Right 186 ± 58 220 ± 63 208 ± 54 224 ± 55 

Hopping 
frequency (Hz) Both 2.57 ± 0.25 2.73 ± 0.32 * 2.78 ± 0.32 * 2.78 ± 0.36 * 

* indicates significantly different from Session 1. 

Key: COM = centre of mass. 
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VGRF (F(3,39) = 4.43; P = 0.010; η2 = 0.28), COM displacement (F(3,39) = 5.69; P = 

0.003; η2 = 0.34) and vertical stiffness (F(3,39) = 3.08; P = 0.041; η2 = 0.22) were 

statistically different between sessions (Table 3.8), although no significant pair-

wise differences were observed. Hopping frequency was statistically different 

between sessions (F(3,13) = 14.02; P < 0.001; η2 = 0.56) such that hopping 

frequency was lower in testing session 1 versus all other sessions (Table 3.8). 

Pair-wise inter-session comparisons for vertical stiffness revealed CVs in excess 

of 20% between testing session 1 and all other testing sessions. 

3.3.3.4 Drop jumping 

Table 3.9 - Vertical ground reaction force, negative centre of mass displacement, 
and vertical stiffness across four bilateral and unilateral drop jump testing sessions. 
Values are presented as mean ± standard deviation. 

Variable Limb Session 1 Session 2 Session 3 Session 4 

Bilateral drop jump 

Vertical ground 
reaction force 
(N) 

Left 1676 ± 264 1651 ± 262 1697 ± 328 1665 ± 294 

Right 1733 ± 369 1686 ± 277 1686 ± 317 1702 ± 260 

Centre of mass 
displacement 
(m) 

Left 
0.166 ± 
0.030 

0.169 ± 
0.045 

0.171 ± 
0.041 

0.176 ± 
0.045 

Right 
0.172 ± 
0.060 

0.152 ± 
0.038 

0.163 ± 
0.033  

0.165 ± 
0.047 

Vertical stiffness  

(N.m-1.kg-1) 

Left 155 ± 38 147 ± 51 155 ± 57 148 ± 58 

Right 171 ± 65  165 ± 51  153 ± 46 164 ± 52 

Unilateral drop jump 

Vertical ground 
reaction force 
(N) 

Left 2356 ± 303 2306 ± 343 2292 ± 355 2287 ± 313 

Right 2299 ± 421 2269 ± 350 2290 ± 342 2252 ± 300 

Centre of mass 
displacement 
(m) 

Left 0.241 ± 
0.053 

0.242 ± 
0.047 

0.241 ± 
0.049 

0.227 ± 
0.034 

Right 0.267 ± 
0.087 

0.228 ± 
0.051 

0.243 ± 
0.047 

0.246 ± 
0.060 

Vertical stiffness  

(N.m-1.kg-1) 

Left 143 ± 39  137 ± 44 136 ± 41 140 ± 34 

Right 128 ± 43  142 ± 42 135 ± 36 133 ± 42 
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For bilateral drop jumping, vGRF (F(3,39) = 0.14; P = 0.93; η2 = 0.01), COM 

displacement (F(3,39) = 0.57; P = 0.64; η2 = 0.05) and vertical stiffness (F(3,39) = 0.21; 

P = 0.89; η2 = 0.02) were not statistically different between sessions (Table 3.9). 

Likewise, for unilateral drop jumping, vGRF (F(3,39) = 0.23; P = 0.67; η2 =0.05), COM 

displacement (F(3,39) = 0.91; P = 0.45; η2 = 0.08) and vertical stiffness (F(3,39) = 0.17; 

P = 0.92; η2 = 0.02) were not statistically different between sessions (Table 3.9).  

Pair-wise reliability comparisons between testing session 1 and all other testing 

sessions revealed CVs for vertical stiffness in excess of 15% for bilateral drop 

jumping and 12% for unilateral drop jumping. 
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3.3.4 Discussion 

General discussion 

Study 1 examined the reliability of vertical stiffness when calculated independently 

for the left and right limbs during bilateral hopping, bilateral drop jumping and 

unilateral drop jumping. The hypothesis that all three tasks would report CVs < 

10% is rejected by the current study. During bilateral hopping, respective CVs of 

14.5% and 13.2% were reported for the left and right limbs across three testing 

sessions. CVs of 12.9% and 11.4% were reported for the left and right limbs during 

bilateral drop jumping and CVs of 6.7% and 7.6% were reported for the left and 

right limbs during unilateral drop jumping. These results suggest that unilateral 

drop jumping provides a more reliable measure of vertical stiffness when compared 

to bilateral drop jumping or bilateral hopping. This finding may appear 

counterintuitive given that the unilateral drop jump exposes the limbs to 

significantly greater vGRFs and may be classified as the highest intensity 

performance task. However, Jarvis et al. (2016) have previously reported lower 

CVs for vGRF in a unilateral drop jump task (CV: 4.0%) versus a bilateral drop 

jump task from 0.30 m (CV: 5.3%). 

The independent determination of vertical stiffness for the left and right limbs during 

a bilateral task is a technique that had not been previously evaluated by the 

literature. Determining unilateral vertical stiffness values may allow the coach to 

build a more complete profile of an individual’s stiffness profile, identifying any 

potential asymmetries between the left and right limbs which may be associated 

with an increased injury risk (Pruyn et al., 2012) or impaired performance (Wilson 

et al., 1994). This knowledge should better inform the training process. 
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The reliability of vertical stiffness derived from bilateral or unilateral drop jumping 

had also not been explored by the literature. Given the similarity between the CVs 

for vertical stiffness observed for bilateral drop jumping and bilateral hopping, the 

bilateral drop jump may serve as an alternative performance task by which to 

assess vertical stiffness. Although the unilateral drop jump is associated with lower 

CVs and greater vertical stiffness than bilateral drop jumping and bilateral hopping, 

when choosing the most appropriate task to assess stiffness the sporting profile of 

the individual athlete must be considered. Study 2 will consider the most 

appropriate performance task by which to assess vertical stiffness. 

Bilateral hopping 

The CVs of 14.5% and 13.2% reported for vertical stiffness in the current study is 

comparable to the figure of 14.4% reported by Moir et al. (2009) for bilateral 

hopping, however, is greater than other figures previously reported of 2.7% 

(McLachlan et al., 2006), 5.5% (Joseph et al., 2013), 8.1% (Brauner et al., 2014) 

and 9.8% (Moresi et al., 2015) where a set hopping frequency has been 

determined. Joseph et al. (2013) indicates that reliability is improved by hopping at 

a set versus a self-selected hopping frequency; the investigators reported a CV of 

10.2% for hopping at a self-selected frequency. However, pilot testing (n = 8) 

conducted prior to the current study indicated that a representative group of 

participants were unable to hop consistently at the frequency of 2.2 Hz 

recommended by Joseph et al. (2013) and would not have been able to fulfil the 

necessary sampling criteria for analysis of the hops (each hop within ± 5% of the 

average ground contact time). Whilst the representative participant group sampled 

in the pilot study were all physically active individuals, few were regularly engaging 

in plyometric activities and demonstrated the ability to successfully deviate from a 

self-selected hopping frequency when asked to do so. The current study observed 
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that participants were able to hop at a repeatable frequency following a single 

familiarisation session (CV: 1.9%). However, substantial inter-individual variance 

was observed in the hopping frequency employed (1.96 - 3.28 Hz). It is established 

that increased hopping frequency results in a reduction in COM displacement and 

resultant increase in vertical stiffness (Farley et al., 1991; Hobara et al., 2011), the 

observed discrepancy in hopping frequency may therefore explain the large inter-

participant variance in vertical stiffness observed in the current study. Whilst the 

maintenance of a set, pre-determined frequency where possible is likely to reduce 

inter-participant variation and improve the reliability of the method, it is important 

to state that a set frequency is likely to have little relationship to the frequencies 

used in sporting actions. It may therefore be questioned how useful this type of 

measurement may be in the exploration of human performance. Whilst it may be 

argued that the potential applicability of hopping tasks may be increased by 

employing maximal height hopping, the cyclic nature of the task is still not 

representative of typical sporting actions such as a change of direction. Moreover, 

it does not appear that substantial differences in vertical stiffness are observed 

between maximal and normal height hopping. Farley et al. (1991) reported values 

of 49.5 ± 1.8 and 45.7 ± 1.5 kN.m-1 for maximal and normal (self-selected by the 

participant) height hopping respectively. 

Given that low CVs for vGRF were reported in the current study (~3%), the 

observed variability of vertical stiffness measures in the current study is a 

consequence of variability in COM displacement. The current study observed CVs 

of 12 - 13% for COM displacement, suggesting that individuals were demonstrating 

some inconsistency in hopping strategy between trials despite maintaining a 

steady hopping frequency. Given both the significant effect reported for COM 

displacement and the linear decrease observed over the four trials (Table 3.8), it 
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may be interpreted that individuals were experiencing either a learning effect or a 

training effect over the testing period which affected their execution of the hopping 

task. As four trials were undertaken over a period approximately 28 days in 

recreationally-trained individuals, it is reasonable to suggest the occurrence of a 

small training effect.  

Study 1 observed an average COM displacement of ~0.10 m. It is important to note 

that the displacement observed in the population sampled by Joseph et al. (2013) 

was substantially lower - an average displacement of 0.05 m during 2.2 Hz hopping 

was reported.  This is surprising given that the frequency of hopping was faster in 

the current study; it would be predicted that faster frequencies should require a 

stiffer leg-spring system and demonstrate less COM displacement as a 

consequence (Hobara et al., 2011). Moir et al. (2009) and Brauner et al. (2014) are 

the only other investigators to present displacement figures, reporting values of 

0.12 m and 0.11 m respectively. The similarity of these investigators’ figures to 

those of the current study may explain why the CVs for vertical stiffness are also 

more comparable than those of Joseph et al. (2013). Demonstrating less 

displacement during the ground contact phase of hopping is likely to be indicative 

of participants with a greater capability to utilise the stretch-shortening cycle and 

who may be classified as more ‘skilled’ performers in plyometric activities; for 

example, Hobara et al. (2010) has reported greater displacement in untrained 

individuals in comparison to trained endurance runners (0.11 vs. 0.08 m; P < 

0.001).  

Drop jumping 

Whilst the reliability of vertical stiffness measures had not been previously 

evaluated during bilateral drop jumping, figures have been reported for related 
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parameters. Feldmann et al. (2012) have previously evaluated the reliability of 

reactive strength index during bilateral drop jumping, a variable which has been 

closely linked to stiffness (Turner & Jeffreys, 2010; Marshall & Moran, 2013), and 

reported a CV of 8.4%. The values of 6.4% and 7.4% observed for the reactive 

strength index of the left and right limbs during bilateral drop jumping in the current 

study are comparable to those reported by Feldmann et al. (2012). Reliability 

figures for vGRF during bilateral drop jumping from 0.40 m reported by Ortiz et al. 

(2007), when interpreted as a CV, yield a value of 8.6%. Jarvis et al. (2016) 

reported a value of 5.3% from a drop height of 0.30 m. The reliability of ground 

reaction forces, both vertical and horizontal, have also been measured during 

unilateral drop jumps performed with a horizontal emphasis by Stålbom et al. 

(2007), the investigators reported CVs between 5-6% although derived these 

values from the standard deviation and not the standard error of measurement. 

The current study reports CVs of 5.5% and 5.6% for the vGRF of the left and right 

limbs during bilateral drop jumping, reducing to 2.5% and 2.6%, respectively, 

during unilateral drop jumping. This further highlights that participants were able to 

execute the drop jumps in a reliable and repeated fashion. 

As with bilateral hopping, CVs for COM displacement in Study 1 were greater than 

for vGRF (bilateral drop jump: 10 - 12%, unilateral drop jump: ~9%) and therefore 

contribute more strongly to explaining the observed variance in vertical stiffness. 

This is perhaps to be expected given that related kinematic parameters, such as 

angular displacements of the hip, knee and ankle, have demonstrated greater 

variance during drop jumping than kinetic parameters (Ortiz et al., 2007). The 

observed displacements for both bilateral and unilateral drop jumping in the current 

study are greater than figures reported for bilateral hopping. This was not 

unexpected given the greater vGRF associated with drop jumping. It should be 
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noted that this study used an estimated velocity of falling (-1.88 m.s-1) from which 

subsequent integration was performed. The efficacy of this value is dependent 

upon the participant dropping from an exact height of 0.18 m. Were participants to 

partially step down from the box, effectively reducing the drop height, this would 

result in the overestimation of falling velocity. Such an overestimation would lead 

to the calculation of larger COM displacements. Although participants were not 

observed to step down during the current study, future studies will attempt to limit 

this confounding variable by estimating falling velocity using direct measurements 

of velocity obtained using two-dimensional motion capture. 

Vertical stiffness values have been reported in two bilateral drop jump (drop height: 

0.2 m) investigations (Arampatzis et al., 2001a; 2001b). Arampatzis et al. (2001b) 

report bilateral values ranging from 32.4 ± 7.7 kN.m-1 in the most compliant group 

up to 78.7 ± 15.3 kN.m-1 in the stiffest group. Hopping on a sprung surface, values 

reported by Arampatzis et al. (2001a) ranged from 27.7 ± 8.4 kN.m-1 in the 

compliant group to 80.9 ± 16.8 kN.m-1 in the stiff group. Data from the bilateral drop 

jumps performed in the current study report values slightly lower than observed in 

the aforementioned compliant groups, single limb stiffness values of 10.8 ± 3.9 and 

11.7 ± 4.2 kN.m-1 were observed for the left and right limbs respectively. 

Arampatzis et al. (2001a; 2001b) report an average COM displacement of 

approximately 0.13 - 0.14 m (estimated from figures) in the compliant groups. This 

is less than the 0.16 – 0.17 m observed in the current study. An overestimation of 

COM displacement may have been observed in the current study as a 

consequence of the estimated falling velocity, may contribute to the explanation of 

this disparity. 
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Experimental considerations 

For bilateral hopping, the current study reported notable differences in all 

measured parameters between the first testing session and all other testing 

sessions, particularly for hopping frequency. A marked reduction in the pair-wise 

CVs was also reported for bilateral and unilateral drop jumping following the first 

session. It may therefore be concluded that one familiarisation session was 

necessary to accustom participants to all three protocols; this should be of 

consideration to future investigations employing this method of vertical stiffness 

assessment. No obvious benefit of undertaking more than one familiarisation 

session was apparent in the population sampled.  

It is possible that the participant population sampled in Study 1 may exhibit greater 

variance in vertical stiffness as a consequence of being less skilled in performing 

stretch shortening cycle activities. Skilled performers would be expected to be able 

to reproduce these activities with greater consistency given a familiarity with the 

plyometric nature of the activity (Seifert et al., 2013) and a greater capacity to utilise 

the stretch-shortening cycle (Hobara et al., 2010). It is therefore possible that 

sampling plyometric-trained participants would further improve the reliability of the 

methodologies employed in Study 1 and mitigate any potential learning or training 

effects. Moreover, the sampling of such participants should also facilitate the 

utilisation of increased drop jump heights. This would allow the identification of an 

optimal drop height for each individual and may further enhance the validity of the 

bilateral drop jump test. However, such individualisation may be contraindicated in 

the athletic training environment given the time constraints commonly associated 

with testing procedures. It is also likely that any optimal height identified would be 

dependent upon fatigue and/or training status at the time of testing and therefore 

require frequent reassessment. 
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3.3.5 Conclusion 

Study 1 reported that unilateral drop jumping exhibits stronger reliability as an 

assessment task for vertical stiffness than bilateral hopping and bilateral drop 

jumping. Unilateral drop jumping was the only task to report CVs < 10%. Moreover, 

unilateral drop jumping exposes the limbs to greater vGRFs. 

 

3.3.6 Implications for the thesis 

Unilateral drop jumping was the only task to report CVs < 10% and therefore 

appears to be the most reliable measure of vertical stiffness of the three 

performance tasks. The most valid task by which to assess vertical stiffness 

asymmetries for an individual athlete now needed to be considered; this was 

evaluated in Study 2. 
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Chapter 4 - Determination of Stiffness Asymmetries 

4.1 Overview  

The purpose of chapter 4 was to establish the most ecologically valid performance 

task by which to assess vertical stiffness and vertical stiffness asymmetries in 

subsequent investigations. Determining the most valid task will provide athletes, 

coaches and applied practitioners with the most appropriate assessment tool to 

assess vertical stiffness and vertical stiffness asymmetries. 

Study 1 demonstrated that the unilateral drop jump provided a reliable assessment 

of vertical stiffness. This task may demonstrate greater correspondence to change 

of direction speed (CODS) in comparison than bilateral hopping or bilateral drop 

jumping. Whether the unilateral drop jump can effectively identify vertical stiffness 

asymmetry must now be determined. 

 

The chapter will report the results of the following investigation: 

Study 2: A comparison of methods to determine vertical stiffness 

asymmetries 
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4.2 Introduction  

Stiffness describes the resistance of an object to deformation (Brughelli & Cronin, 

2008). Specifically, vertical stiffness may be described by changes in the body’s 

centre of mass (COM) in response to force (Pearson & McMahon, 2012) - a 

concept described in Section 2.3.1. Although the role of vertical stiffness in 

modulating injury risk and athletic performance may be well established (Butler et 

al., 2003; Pearson & McMahon, 2012), literature investigating bilateral asymmetry 

in vertical stiffness is limited. A significant link between vertical stiffness asymmetry 

and soft-tissue injury has been reported in Australian rules footballers (Pruyn et al., 

2012) and such asymmetry may also be expected to impair athletic performance 

given a likely imbalance in the application of force (Wilson et al., 1994). Whilst it is 

important to note that the latter hypothesis has not been properly explored, it is 

clear that the measurement and quantification of vertical stiffness asymmetry is of 

important practical relevance to athletic performance. 

Vertical stiffness may be assessed during a variety of performance tasks, including 

running (Coleman et al., 2012) and drop jumping (Arampatzis et al., 2001b), but is 

most commonly assessed during the performance of a bilateral ‘hopping’ task 

(Joseph et al., 2013; Hobara et al., 2014). During hopping tasks, individuals are 

required to perform an uninterrupted sequence of repeated bilateral jumps on a 

force plate. Measurements of vertical ground reaction force (vGRF) and negative 

displacement of the COM are recorded, and vertical stiffness is subsequently 

calculated as the ratio between these two measures (Joseph et al., 2013; Hobara 

et al., 2014). Hopping tasks have been shown to differentiate between certain 

groups, for example, it has been demonstrated that power-trained athletes (≥ 9 

years of sprint training experience) exhibited greater vertical stiffness than 

endurance-trained athletes (≥ 7 years of endurance training) (Hobara et al., 2008), 
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and that endurance-trained athletes (varsity endurance athletes with ≥ 9 years of 

training experience) exhibited greater vertical stiffness than untrained individuals 

(Hobara et al., 2010). Pruyn et al. (2014) split a cohort of netball players into high- 

and low-stiffness groups based upon vertical stiffness; whilst inter-group 

differences were not significant, performances in a number of speed and power 

tests were superior in the high-stiffness group and were reported with ‘moderate’ 

effect sizes (d > 0.7). 

One potential problem with hopping tasks is that they are typically performed at set 

hopping frequencies and are inherently submaximal in nature (Joseph et al., 2013; 

Hobara et al., 2014). As such, bilateral hopping tasks may demonstrate greater 

correspondence to sub-maximal cyclic performances, such as endurance running, 

rather than short-term maximal performances, such as jumping. For this reason, it 

may be desirable to assess vertical stiffness during a maximal performance task 

such as a drop jump. Given that the drop jump is an acyclic action performed with 

the intent to maximise jump height whilst minimising ground contact time (Marshall 

& Moran, 2013), it may carry greater ecologically validity as an assessment tool for 

vertical stiffness when compared to hopping tasks and be more representative of 

a single maximal jumping effort (Flanagan & Harrison, 2007). Whilst vertical 

stiffness has been modelled during drop jumping by Arampatzis et al. (2001a; 

2001b), this task has not been used to examine relationships with performance or 

to examine inter-group differences in the same way as bilateral hopping tasks. 

Further research is required to determine if vertical stiffness values achieved 

during drop jumping demonstrate similar relationships with performance and 

training status as those achieved during bilateral hopping. 

As previously highlighted, literature investigating bilateral asymmetry in vertical 

stiffness is limited. Bachman et al. (1999), Heise and Bachman (2000) and Divert 
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et al. (2005) all observed no significant vertical stiffness asymmetries during 

running, although the cyclic, submaximal limb action and bilateral nature of 

locomotion may be expected to encourage symmetry. When the results of 

Bachman et al. (1999) are presented as a symmetry angle, a method used to 

quantify asymmetry (Zifchock et al., 2008), average differences between the left 

and right limbs were -3.8% and -2.7% at running speeds of 3.5 m.s-1 and 5.3  m.s-

1, respectively. Similarly, Hobara et al. (2013) did not report significant vertical 

stiffness asymmetries between non-dominant and dominant limbs during unilateral 

hopping; average differences of -4.9%, 1.1% and -3.0% were observed at hopping 

frequencies of 1.5 Hz, 2.2 Hz and 3 Hz, respectively. 

Flanagan and Harrison (2007) compared asymmetries during unilateral drop jumps 

and repeated drop jumps performed on a sledge apparatus. The investigators 

reported that no asymmetries were apparent during the cyclic, repeated jumps, 

however, significant asymmetry in reactive strength index - which may be closely 

linked to leg stiffness (discussed in Section 2.6) - was evident during the acyclic 

drop jump task. When presented as a symmetry angle, average differences in 

vertical stiffness between limbs were -1.1% for drop jumping and 0.4% for repeated 

drop jumping. Whilst the observations of Flanagan and Harrison (2007) 

demonstrate that the type of performance task chosen to assess stiffness carries 

the potential to modulate how asymmetries may be expressed, further research is 

necessary to elucidate this effect.   

As cyclic, submaximal versus acyclic, maximal performance tasks may differently 

express asymmetries, so too may bilateral versus unilateral performance tasks. 

Benjanuvatra et al. (2013) compared impulses of the left and right limbs during 

bilateral and unilateral countermovement jumping, finding that asymmetries 

presented in the bilateral jump did not correspond to asymmetries in the unilateral 
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jump. For example, individuals may express a right-side dominance during the 

bilateral task but a left-side dominance in the unilateral task. These observations 

led the investigators to conclude that asymmetry in bilateral tasks is driven by 

neural factors, a proposition supported by earlier investigations conducted by 

Simon and Ferris (2008). As unilateral jumping tasks rely on the extension forces 

generated from a single limb, such tasks would appear to be a more suitable choice 

if seeking to quantify functional parameters of the limb such as vertical stiffness. 

However, such propositions are yet to be evaluated by the literature and further 

research is required to explore this hypothesis. 

The purpose of Study 2 was to investigate the expression of bilateral asymmetry 

in vertical stiffness during three different performance tasks: a) bilateral hopping, 

b) bilateral drop jumping, and c) unilateral drop jumping. As the unilateral drop jump 

task demonstrates the greater correspondence to CODS, it must now be 

determined if this task is capable of detecting bilateral asymmetries in order to 

explore their relationship with CODS performance. It was hypothesised that the 

presentation of vertical stiffness and vertical stiffness asymmetries would be 

different between performance tasks. Specifically, it was hypothesised that: i) 

asymmetries would be significantly greater in the maximal drop jump tasks versus 

the submaximal hopping task, and ii) asymmetries would be significantly greater in 

the unilateral versus bilateral drop jump task. 
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4.3 Method 

4.3.1 Experimental overview 

Study 2 was a randomised and counterbalanced experiment designed to assess 

how the type of performance task affected the expression of vertical stiffness and 

vertical stiffness asymmetry. Following a familiarisation session, participants 

performed three different performance tasks during which vertical stiffness 

asymmetries were calculated using dual force plate data and an inverse dynamics 

model. The three performance tasks were: a) bilateral hopping, b) bilateral drop 

jumping, and c) unilateral drop jumping. 

4.3.2 Participants 

Thirteen healthy males (age: 22 ± 3 years; height: 1.78 ± 0.06 m; body mass: 72.9 

± 6.9 kg), recruited from a university campus, volunteered to participate in the 

study. A minimum sample size of twelve participants was determined from a priori 

power analysis (G*Power 3.1, Heinrich-Heine-Universität, Düsseldorf, Germany) 

based upon an estimated squared multiple correlation of 0.45 (Benjanuvatra et al., 

2013), single input variable (vertical stiffness asymmetry) and a power of 0.8 (Beck, 

2013). Participants were recreationally active (undertaking ≥ 2.5 hours of physical 

activity per week), reported no previous (within the last 12 months) or present lower 

limb injury and provided informed consent (Appendix A1) to participate in the study. 

Full ethical approval was granted by the review board of the Institute for Physical 

Activity Research, University of Bedfordshire (Appendix A1) and all procedures 

were conducted in accordance with the Declaration of Helsinki. 
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4.3.3 Experimental trials 

A familiarisation session was performed seven days prior to the experimental trial; 

Study 1 had previously indicated that a single familiarisation session was 

appropriate for all testing methods and experimental variables within the same 

participant population. The familiarisation session was a complete simulation of the 

experimental trial outlined below. 

All trials were conducted at the same time of day (09:30 - 11:00) for each 

participant, to alleviate the effects of circadian rhythms. The testing laboratory was 

controlled at an ambient temperature of 25oC. Participants were instructed to 

prepare for testing as they would for training. The execution of each experimental 

trial was monitored by a United Kingdom Strength and Conditioning Association 

accredited strength and conditioning coach to ensure for consistency of technique.  

4.3.4 Warm-up 

All participants completed the same warm-up procedure outlined in Study 1 

(Section 3.3.2.3; Table 3.5). The warm-up procedure consisted of 15 dynamic 

exercises progressing from low to high intensities and from generic to specific 

movement patterns. A recovery period of 180 seconds was prescribed between 

the termination of the warm-up and commencement of the testing protocol. 

4.3.5 Stiffness assessments 

All vertical stiffness assessments were performed on a dual force plate system 

(Kistler 9281, Kistler Instruments, Winterthur, Switzerland) as outlined in Study 1. 

The bilateral hopping protocol is outlined in Section 3.3.2.4. Unshod, participants 

performed a series of 30 consecutive bilateral hops. Participants performed two 

hopping trials in each experimental trial; these were separated by a recovery period 
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of 180 seconds. Hops were performed at a self-selected frequency (mean hopping 

frequency: 2.8 ± 0.3 Hz; mean ground contact time: 0.175 ± 0.023 sec) as pilot 

testing prior to Study 1 had indicated that participants were unable to satisfactorily 

perform the task at the recommended hopping frequency of 2.2 Hz. Participants 

were instructed to “hop on the balls of your feet at a constant rhythm.” Five 

consecutive hops from 6th to the 10th hop were sampled for data collection (Hobara 

et al., 2014). The ground contact time of each of the 5 hops was required to fall 

within ± 5% of the average ground contact time for the 5 hop sample (Moresi et al., 

2015); all hopping trials met these criteria. 

The drop jump protocols are outlined in Section 3.3.2.5.  Following a recovery 

period of 180 seconds, participants performed three unshod bilateral drop jumps 

and three unshod unilateral drop jumps for each limb from a drop height of 0.18 m. 

The box height of 0.18 m was chosen as participants were unable to minimise 

ground contact time effectively at additional height increments (0.30 m and 0.45 

m) during pilot testing. The order in which participants performed bilateral and 

unilateral drop jumps was randomised and counterbalanced.  

4.3.6 Data analysis 

Procedures for data analysis (Section 3.3.2.6) and the calculation of vertical 

stiffness (Section 3.3.2.7) have been previously described in detail. Inverse 

dynamics was used to express acceleration, velocity and COM displacement; this 

was determined from the vertical force trace using the equations described by 

Blazevich (2007) and Hall (2012) (detailed in Appendix A2). Vertical stiffness was 

calculated as the ratio of peak vGRF relative to the peak negative COM 

displacement during the initial ground contact phase (Farley & Morgenroth, 1999); 

this was averaged over the five sampled hops or the three recorded drop jumps in 
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each condition. In an effort to ensure the efficacy of the spring-mass model, the 

force-displacement correlation coefficient during landing of each trial was required 

to be ≥ 0.8 (Padua et al., 2005); all trials met these criteria. As vertical stiffness is 

affected by body size, vertical stiffness values were reported relative to body mass 

(Farley et al., 1993).  

4.3.7 Statistical analysis 

Limbs were independently categorised as either stiff or compliant based upon the 

vertical stiffness values achieved within each of the three testing methods. 

Asymmetries were quantified using the symmetry angle (ᶿSYM), calculated using the 

procedures outlined by Zifchock et al. (2008) detailed in Section 2.5.1 and shown 

in Equation 4.1. 

Equation 4.1:   

(Zifchock et al., 2008) 

Where SYMα% = symmetry angle, X left = left side value, X right side value. 

As ᶿSYM values may be negative or positive to reflect left or right side dominance, 

negative values were transformed to positive values prior to statistical analysis in 

order to evaluate differences solely in the magnitude of asymmetry. 

Shapiro-Wilks tests were performed to assess for normality; all variables were 

considered to be normally distributed given an alpha level of P > 0.05. A 2 x 3 (limb 

x method) repeated-measures analysis of variance (ANOVA) was used to test for 

differences between methods. ANOVA effect sizes were measured using the 

partial Eta-squared (η2) and Sidak post-hoc analyses were performed where 

appropriate. A 1 x 3 repeated measures ANOVA was performed to analyse for 
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differences in θ SYM between methods. Pair-wise effect sizes (d) (Cohen, 1998) were 

calculated and interpreted using the thresholds defined by Hopkins (2003) where: 

<0.20 = trivial, 0.20-0.59 = small, 0.60-1.19 = moderate, 1.20-1.99 = large, and ≥2 

= very large. All analyses of variance were conducted using the Statistical Package 

for the Social Sciences for Windows (v21.0; SPSS Inc., Chicago, USA) with an 

alpha level of P ≤ 0.05. 
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4.4 Results 

4.4.1 Vertical stiffness 

Table 4.1 - A comparison of force, displacement and stiffness between the stiff and 
compliant limb identified in the three types of performance task. Figures are 
presented as the mean ± standard deviation.  

Variable 

Bilateral hopping Bilateral drop jump Unilateral drop jump 

Stiff 

limb 

Compliant 

limb 

Stiff 

limb 

Compliant 

limb 

Stiff 

limb 

Compliant 

limb 

vGRF (N) 
1476 ± 

193 

1428 ± 

188 * 

1759 ± 
259 † 

1655 ±  

309 *† 

2423 ±  

380 †‡ 

2342 ±  

362 *†‡ 

∆COM (m) 
0.100 ±  

0.028 

0.104 ±  

0.032 * 

0.137 ±  

0.025 † 

0.178 ±  

0.047 *† 

0.207 ±  

0.050 †‡ 

0.226 ±  

0.054 *†‡ 

Kvert  

(N.m-1.kg-1) 

223 ±  

57 

211  

± 56 * 

184 ±  

49 

141 ±  

51 * 

175 ±  

61 

154 ±  

49 * 

* indicates significantly different from the stiff limb (P < 0.05), † significantly different from 
bilateral hopping (P < 0.01), ‡ significantly different from bilateral drop jump (P < 0.01). 

Key: vGRF = vertical ground reaction force, ∆COM = centre of mass displacement, Kvert = 
vertical stiffness. 

Vertical stiffness was significantly different between methods (F(2,24) = 3.96; P = 

0.033; η2 = 0.25) (Table 4.1), however, pairwise comparisons did not show 

significant differences. Vertical stiffness was not significantly higher in bilateral 

hopping than in bilateral drop jumping (25.2%; P = 0.11; d = 0.99) or unilateral drop 

jumping (24.2%; P = 0.16; d = 0.93), although effect sizes reported ‘moderate’ 

differences. Differences in vertical stiffness between bilateral drop jumping and 

unilateral drop jumping were also not significant (-2.2%; P = 1.00; d = -0.04). 

Vertical stiffness was significantly lower in the compliant limb than in the stiff limb 

(F(1,12) = 66.18; P < 0.001; η2 = 0.85) with a significant interaction effect between 

limb and method (F(2,24) = 5.26; P = 0.013; η2 = 0.31). Asymmetry percentages 

between compliant and stiff limbs were 5.6% (P < 0.001; d: 0.22), 23.3% (P = 



112 
 

0.001; d = 0.86) and 12.4% (P = 0.001; d = 0.39) for the bilateral hopping, bilateral 

drop jumping and unilateral drop jumping methods respectively. 

Table 4.2 - Quantification of individual participants’ asymmetries in vertical 
stiffness between the stiff and compliant limbs limb identified in three types of 
performance task. 

Vertical stiffness ᶿSYM was significantly different between methods (F(2,24) = 6.26; P 

= 0.006; η2 = 0.34) (Table 4.2). ‘Large’ differences were observed, such that 

vertical stiffness ᶿSYM was significantly greater in bilateral drop jumping than 

bilateral hopping (P = 0.036; d = 1.77) but this difference was not significant versus 

Participant 
Bilateral hopping Bilateral drop jump Unilateral drop jump 

ASYM % ᶿSYM ASYM % ᶿSYM ASYM % ᶿSYM 

1 6.4% 2.1% 46.0% 18.5% 28.1% 10.3 

2 10.3% -3.4% 14.2% 4.9% 2.7% -0.9% 

3 11.5% 3.9% 46.5% 18.7% 8.6% -2.9% 

4 6.2% -2.0% 1.2% 0.4% 19.9% -7.0% 

5 3.2% 1.0% 14.0% -4.8% 11.0% 3.7% 

6 3.7% -1.2% 18.6% 6.5% 6.1% -2.0% 

7 0.0% 0.0% 49.4% 20.2% 2.1% 0.7% 

8 2.6% -0.8% 55.6% -23.4% 9.6% -3.2% 

9 6.3% 2.1% 27.7% 10.1% 7.3% -2.4% 

10 5.6% 1.8% 20.1% -7.1% 10.5% 3.5% 

11 7.8% 2.6% 3.5% 1.1% 10.6% 3.6% 

12 3.3% 1.1% 2.9% -0.9% 10.5% -3.5% 

13 9.1% 3.0% 3.9% 1.3% 20.1% -7.1% 

Mean ± SD 
5.8 ±  

3.2% 

1.9 ±  

1.1% 

23.3 ± 

19.0% 

9.1 ± 

8.3% * 

11.3 ± 

7.1% 

3.9 ±  

2.7% * 

Negative ᶿSYM values indicate a more compliant right limb, positive values indicate a more 
compliant left limb.  

Mean values represent the ᶿSYM when the direction of asymmetry is discounted. 

* indicates significantly greater than bilateral hopping (P < 0.05). 

Key: ASYM % = asymmetry percentage, ᶿSYM = symmetry angle, SD = standard 
deviation. 
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unilateral drop jumping (P = 0.20; d = 1.28). A ‘small’ and significant difference 

between bilateral hopping and unilateral drop jumping was also observed (P = 

0.043; d = -0.49). Only four participants exhibited the same direction of asymmetry 

across all three tasks (Table 4.2). 

4.4.2 Vertical ground reaction force 

Landing vGRF was significantly different between methods (F(2,24) = 71.62; P < 

0.001; η2 = 0.86) (Table 4.1). vGRF was lower in bilateral hopping than in bilateral 

drop jumping (-17.6%; P = 0.015; d = 1.06) and unilateral drop jumping (-64.1%; P 

< 0.001; d = 3.29). vGRF was lower in bilateral drop jumping than in unilateral drop 

jumping (-39.6%; P < 0.001; d = 2.04). 

Landing vGRF was significantly different between the compliant and stiff limbs 

(F(1,12) = 18.11; P = 0.001; η2 = 0.60), there was no significant interaction effect 

between limb and method (F(2,24) = 1.41; P = 0.26; η2 = 0.11). In bilateral hopping, 

landing vGRF was 3.4% lower in the compliant limb versus the stiff limb (P = 0.001; 

d = 0.25). In bilateral drop jumping and unilateral drop jumping, vGRF was 6.3% 

(P = 0.006; d = 0.37) and 3.5% (P = 0.026; d = 0.22) lower in the compliant limb. 

vGRF ᶿSYM was significantly different between methods (F(2,24) = 5.64; P = 0.010; 

η2 = 0.32). vGRF θ SYM was greater in bilateral drop jumping than in bilateral hopping 

(P = 0.044; d = 1.13) but not unilateral drop jumping (P = 0.13; d = 0.90); there 

were no differences between bilateral hopping and unilateral drop jumping (P = 

0.80; d = -0.24). 

4.4.3 Centre of mass displacement 

COM displacement was significantly different between methods (F2,24 = 29.08; P < 

0.001; η2 = 0.71) (Table 4.1). In comparison to bilateral hopping, displacement was 
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greater in both bilateral drop jumping (35.1%; P = 0.002; d = 1.53) and unilateral 

drop jumping (52.8%; P < 0.001; d = 2.75). Displacement was also greater in 

unilateral drop jumping than bilateral drop jumping (27.2%; P = 0.004; d = 1.23). 

COM displacement was significantly different between compliant and stiff limbs 

(F(1,12) = 19.56; P = 0.001; η2 = 0.62), with a significant interaction effect between 

limb and method (F(2,24) = 5.58; P = 0.010; η2 = 0.32). Differences between 

compliant and stiff limbs were 3.9% (P = 0.033; d = 0.14), 22.6% (P = 0.006; d = 

1.12) and 8.5% (P = 0.008; d = 0.37) for the bilateral hopping, bilateral drop jumping 

and unilateral drop jumping methods respectively. 

COM displacement ᶿSYM was significantly different between methods (F(2,24) = 8.94; 

P = 0.001; η2 = 0.43). COM displacement ᶿSYM was greater in bilateral drop jumping 

than in bilateral hopping (P = 0.011; d = 1.87) but not unilateral drop jumping (P = 

0.061; d = 1.44); both effect sizes were large. There were no differences between 

bilateral hopping and unilateral drop jumping (P = 0.43; d = -0.43). 
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4.5 Discussion 

The purpose of Study 2 was to investigate the expression of vertical stiffness and 

vertical stiffness asymmetry during three different types of performance task: 

bilateral hopping, bilateral drop jumping and unilateral drop jumping. Study 2 was 

the first study to examine how the type of performance task may affect the 

expression of vertical stiffness and vertical stiffness asymmetry. It was 

hypothesised that asymmetries would be significantly greater in the maximal drop 

jumping tasks versus the submaximal hopping task. Asymmetries observed in the 

bilateral drop jump task were significantly greater than in the bilateral hopping task. 

Whilst differences between the unilateral drop jump and bilateral hopping tasks 

were not significant, a large effect size was indicative of greater asymmetry during 

unilateral drop jumping. The current study therefore accepts the first hypothesis. It 

was further hypothesised that asymmetries would be significantly greater in the 

unilateral versus bilateral drop jump. This hypothesis is rejected as asymmetries 

were not different between bilateral and unilateral drop jumping. 

The current study reported that all three performance tasks were able to detect 

significant asymmetries in vertical stiffness. As such, all three tasks could be used 

as a diagnostic tool to directly assess and quantify vertical stiffness asymmetry. 

Given that force-displacement correlations for all three methods were greater than 

0.8, it may also be determined that they all represent the simple spring-mass model 

effectively (Padua et al., 2005). It was shown that the two acyclic, maximal 

performance tasks (bilateral and unilateral drop jumps) detected larger vertical 

stiffness asymmetries than the cyclic, submaximal task (bilateral hopping), 

although this difference was not significant for the unilateral drop jump and the 

effect size was ‘small’ (d = 0.49). 
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Study 2 is the first study to report that vertical stiffness asymmetries present 

differently in acyclic versus cyclic performance tasks. Flanagan and Harrison 

(2007) reported no asymmetry in vertical stiffness to be evident during acyclic or 

cyclic single leg sledge jumps, although demonstrated an asymmetry in reactive 

strength index - a property closely linked to stiffness (Flanagan & Comyns, 2008) 

- to be expressed during the acyclic jump. When the investigators’ data is 

presented as a symmetry angle, average differences in reactive strength index 

were 1.1% for drop jumping and 0.4% for repeated drop jumping. The findings of 

the current study, in addition to the observations of Flanagan and Harrison (2007), 

suggest that asymmetries are differently expressed during acyclic, maximal 

performance tasks and cyclic, submaximal performance tasks. Importantly, the 

current study demonstrates this in a manner that is more indicative of human 

locomotion than the sledge ergometry testing protocols employed by Flanagan and 

Harrison (2007). Understanding the methodological factors which may contribute 

to the expression of asymmetry is of important practical relevance to athletes, 

coaches and applied practitioners seeking to quantify stiffness asymmetries.  

Whilst it may appear that acyclic, maximal performance tasks are superior for 

identifying vertical stiffness asymmetry within individual athletes, careful 

consideration should be given to how the limbs will be required to function during 

sporting performance. For example, cyclic, submaximal tests, such as bilateral 

hopping, would be expected to be a more representative assessment of vertical 

stiffness asymmetry in endurance runners given a greater correspondence of the 

test to the submaximal, cyclic action of locomotion. The potential impact of 

increasing bilateral drop jump intensity (i.e. increasing the height of the box and 

subsequent vGRF upon landing) was not examined in the current study due to the 

training/skill level of the participants and should be explored in future 
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investigations. Whilst intuitively it may seem that increasing intensity would result 

in larger vertical stiffness asymmetries, this relationship has not been observed 

during unilateral hopping; Hobara et al. (2013) reported that the number of 

participants with an asymmetry percentage of ≥ 10% was greater when hopping at 

1.5 Hz than at 2.2 or 3.0 Hz. Indeed, the current study reports smaller asymmetries 

during the more intense unilateral drop jump task (symmetry angle: 3.9 ± 2.7%) 

than during the bilateral drop (symmetry angle: 9.1 ± 8.3%).  

It is important to note that the limb identified as the stiff limb for an individual within 

each performance task was not always the same limb (Table 4.2). For example, 

an individual may demonstrate greater vertical stiffness in the right limb during the 

bilateral drop jump but greater vertical stiffness in the left limb during the unilateral 

drop jump. In the current study, only four participants exhibited the same direction 

of asymmetry across all three tasks. Benjanuvatra et al. (2013) reported similar 

findings for vGRF impulse asymmetries during bilateral and unilateral 

countermovement jumping with only 46% of the participants demonstrated the 

same asymmetry/symmetry profile across the two jumps. It was hypothesised by 

the investigators that asymmetries during bilateral performances were governed 

by a neural control mechanism, agreeing with previous conclusions drawn by 

Simon and Ferris (2008) who observed isokinetic force asymmetries in bilateral 

exercise but not in unilateral exercise. Ultimately, unilateral jumping performance 

is reliant solely on the forces transferred and generated through a single limb as 

opposed to an inter-limb ‘trade-off’ that is apparent during bilateral jumping. 

Moreover, as the current study demonstrated that the unilateral drop jump elicited 

the greatest absolute values of vGRF and vertical stiffness, it may be inferred that 

the unilateral drop jump imposes a greater mechanical load on the lower limb. As 

the current study has demonstrated the ability of this task to identify vertical 
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stiffness asymmetry, the unilateral drop jump is proposed as a superior tool for the 

assessment of asymmetries in maximal properties such as peak vertical stiffness. 

Vertical stiffness is a direct function of vGRF and COM displacement during the 

ground contact phase of the hop or jump (Joseph et al., 2013; Hobara et al., 2014). 

Asymmetries in vertical stiffness are therefore a consequence of asymmetries in 

vGRF and/or COM displacement. ‘Small’ but significant differences in vGRF were 

observed between the stiff and compliant limbs during bilateral hopping (3.4%; P 

= 0.001) and bilateral drop jumping (6.3%; P = 0.006), whilst the differences 

detected during unilateral drop jumping were ‘trivial’ (3.5%; P = 0.026). It is likely 

that vertical stiffness asymmetries observed during bilateral hopping and bilateral 

drop jumping may be partially dependant on vGRF asymmetry, whereas this was 

not the case during unilateral drop jumping. 

Significant between-limb differences for COM displacement were observed during 

all three performance tasks. For bilateral hopping, the difference in COM 

displacement (3.9%; P = 0.033) was only marginally greater than the difference in 

vGRF. During bilateral hopping it would therefore appear that vertical stiffness 

asymmetries are a consequence of asymmetries in both vGRF and COM 

displacement and that these asymmetries are of a similar magnitude. During the 

bilateral and unilateral drop jump tasks, between-limb differences in COM 

displacement were larger than differences in vGRF (22.6%; P = 0.006 and 8.5%; 

P = 0.008 respectively). Vertical stiffness asymmetries during these maximal drop 

jump tasks appear to be a consequence of the greater differences in COM 

displacement.  

The COM displacement observed during bilateral hopping in the current study 

(~0.10 m) is comparable to figures reported in other investigations (Joseph et al., 
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2013; Hobara et al., 2014). COM displacement was greater in bilateral drop 

jumping (0.13 and 0.18 m for the stiff and compliant limbs) and greater still in 

unilateral (0.21 and 0.23 m) drop jumping; this is a likely consequence of increased 

vGRF. As vGRF was greatest in unilateral drop jumping, this task placed the 

highest mechanical demand on the leg-spring. For this reason, the unilateral drop 

jump could be considered the most appropriate task to assess stiffness properties 

if seeking to explore relationships with maximal sporting performance. The ability 

of the leg-spring to function in the presence of high force is critical given the likely 

demands to be placed upon it during a change of direction (Glaister et al., 2008; 

Spiteri et al., 2013).  
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4.6 Conclusion 

In conclusion, all three types of performance task (bilateral hopping, bilateral drop 

jumping and unilateral drop jumping) demonstrate the potential to detect vertical 

stiffness asymmetry; such asymmetries may be greatest in bilateral drop jumping 

and lowest in bilateral hopping. Vertical stiffness asymmetry has been linked to an 

increased incidence of soft-tissue injury (Pruyn et al., 2012) and has been 

hypothesised to impair athletic performance as the application of force to each limb 

may be imbalanced (Wilson et al., 1994). Although further research is required to 

fully explore the impact of vertical stiffness asymmetry on both injury incidence and 

athletic performance, it would appear prudent to screen individuals for vertical 

stiffness asymmetry as this is a highly trainable and modifiable parameter. It is 

recommended that practitioners and researchers use the performance task that 

demonstrates the greatest correspondence to an individual’s sport. 

 

4.7 Implications for the thesis 

The results of Study 2 demonstrate that vertical stiffness asymmetry may be 

detected using all three of the performance tasks evaluated. However, asymmetry 

was expressed differently in cyclic versus acyclic and bilateral versus unilateral 

tasks. As this thesis sought to examine the influence of stiffness on CODS - acyclic 

and unilateral in its nature - the unilateral drop jump test may demonstrate a higher 

degree of correspondence than bilateral hopping or bilateral drop jumping. As 

Study 2 demonstrated this to be an appropriate tool for the identification of vertical 

stiffness asymmetry, the unilateral drop jump was used to evaluate vertical 

stiffness in subsequent studies.  
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Chapter 5 - Stiffness Asymmetries and Change of Direction Speed 

5.1 Overview 

The primary purpose of this chapter was to establish if vertical stiffness and vertical 

stiffness asymmetries influenced change of direction speed (CODS). Were it to be 

determined that vertical stiffness and/or vertical stiffness asymmetries influenced 

CODS, this would a) highlight the importance of testing for these variables, and b) 

influence how interventions to improve CODS may be devised and structured. 

The secondary purpose of this chapter was to establish the determinants of 

bilateral asymmetry in vertical stiffness. Specifically, this chapter sought to 

evaluate the relative importance of the ankle, knee and hip in modulating 

asymmetry.  

 

The chapter will report the result of the following investigation: 

Study 3: Do stiffness asymmetries predict change of direction speed? 
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5.2 Introduction 

The ability to quickly and effectively change direction underpins performance in a 

wide range of sports. For example, CODS has been linked to performance 

outcomes in sports such as badminton (Sturgess & Newton, 2008), soccer (Reilly 

et al., 2000), field hockey (Keogh et al., 2003), rugby league (Meir et al., 2001) and 

basketball (McGill et al., 2012). Ultimately, improving an athlete’s CODS has the 

potential to positively impact sporting performance. It is therefore important to 

understand the potential determinants of CODS in order to better inform the 

interventions devised to augment performance. 

Young et al. (2002) proposed three physical factors which may underpin CODS -   

strength, power and reactive strength. Of these factors, reactive strength (a 

function of the flight time divided by ground contact time recorded during a drop 

jump) demonstrated the strongest relationship with CODS test time (r = -0.54; P < 

0.05). Similar relationships have since been observed by Young et al. (2015) (r = -

0.65; P = 0.001) and by Delaney et al. (2015) in both dominant (r = -0.44; P < 0.05) 

and non-dominant limbs (r = -0.45; P < 0.05). Reactive strength is a quality which 

may be closely linked to vertical stiffness; a stiffer system should facilitate a more 

rapid release of elastic energy under circumstances where minimal joint or centre 

of mass displacement is desired, such as during a drop jump or change of direction 

(Bret et al., 2002). Indeed, Arampatzis et al. (2001b) noted that higher vertical 

stiffness is associated with shorter ground contact times during drop jumping and 

shorter ground contact times are associated with quicker CODS (Sasaki et al., 

2011; Marshall et al., 2014). Although multi-planar CODS performance does 

demonstrate kinematic differences to sagittal plane drop jumping, notably the 

lateral inclination of the whole body, the kinetic demands placed upon the leg-

spring are comparable. During changes of direction, a single limb is required to 
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resist deformation in the presence of substantial ground reaction forces (Glaister 

et al., 2008; Spiteri et al., 2013). As highlighted within this thesis, these are 

characteristics shared with the unilateral drop jump. Vertical stiffness derived 

during unilateral drop jumping provides an appropriate tool for the assessment of 

this quality (resistance to deformation in the presence of high force) and for athletes 

participating in sports where CODS is an important determinant performance.  

To this author’s knowledge, only one investigation has sought to examine the 

correlation between stiffness and CODS. Pruyn et al. (2014) observed no 

significant relationship between vertical stiffness and 5-0-5 CODS test 

performance (r = 0.05), although they did report significant relationships between 

performance and stiffness of the musculature surrounding the ankle (medial 

gastrocnemius: r = -0.53, soleus: r = -0.47; both P < 0.05). Pruyn et al. (2014) 

determined vertical stiffness during a cyclic, unilateral hopping task and it has been 

observed in Study 2 that the expression of vertical stiffness and associated 

asymmetries is highly task dependant. As a change of direction may be 

characterised as acyclic and ballistic in nature, the unilateral drop jump is likely to 

demonstrate a higher degree of correspondence to CODS tasks than unilateral 

hopping, and therefore carry greater validity as an assessment of vertical stiffness. 

In addition, it is important to consider the homogeneity of population sampled by 

Pruyn et al. (2014); all 18 participants were trained netball players (15.4 ± 3.0 years 

of training experience) and exhibited minimal variance in 5-0-5 performance 

(performance time: 2.72 ± 0.18 sec). The potential relationship between stiffness 

and CODS would need to be examined in different, possibly less homogenous, 

populations before conclusions may be drawn. 

Several investigations have reported that asymmetries in force/power qualities 

may be detrimental to athletic performance (Bailey et al., 2013; Bazyler et al., 2014; 
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Bell et al., 2014; Hart et al., 2014b; Bailey et al., 2015), however, this relationship 

is not clear in regards to CODS. Whilst eccentric strength asymmetry has been 

linked to impaired CODS in some investigations (Chaouachi et al., 2012; Lockie et 

al., 2012), Lockie et al. (2014) reported that athletes with ‘typical’ asymmetries in 

unilateral jump performance (vertical jump: ∼10%; horizontal jump: ∼3%; lateral 

jump: ∼5%) did not experience speed detriments. 

Asymmetries in CODS performance when pushing off the dominant versus non-

dominant limb have been reported in several investigations (Young et al., 2002; 

Henry et al., 2013; Hart et al., 2014a). For example, Hart et al. (2014a) reported 

that Australian Rules footballers demonstrated a performance deficit of 5 - 10% 

between limbs (∼0.72 seconds; P ≤ 0.001) with all players tested exhibiting a 

directional preference. Given the deterministic model proposed by Young et al. 

(2002) and modified model proposed in Section 2.10 (Figure 2.3), such asymmetry 

could be a consequence of an asymmtery in physical qualities. Indeed, Young et 

al. (2002) noted that athletes who displayed a lateral dominance in CODS tasks 

were likely to have a reactive strength dominance in the limb responsible for the 

push-off action. Such a relationship is supported by an investigation conducted by 

Henry et al. (2013) that reported asymmetries in reactive agility performance 

(discounting decision making time: 5.6%; P = 0.04) to mirror asymmetries in 

reactive strength index (4.4%; P = 0.03), although a direct correlation was not 

reported. Whether asymmetries in dominant versus non-dominant CODS are 

similarly detrimental to overall CODS performance has not been investigated. 

Whilst it may seem reasonable to hypothesise that asymmetries in CODS and/or 

stiffness parameters would be detrimental to overall CODS performance, given the 

current body of evidence, such propositions need to be examined directly.  
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Vertical stiffness is based on the premise that the legs function as a global spring-

mass system (Butler et al., 2003) and do not consider how the ankle, knee and hip 

joints contribute to the summative stiffness of the overall system (Pearson & 

McMahon, 2012). In order to elucidate the potential determinants of asymmetries 

in stiffness properties, it is important to consider the respective contribution of the 

stiffness of individual joints as well as vertical stiffness. Two-dimensional computer 

simulation models created by Farley et al. (1998) and Farley and Morgenroth 

(1999) demonstrated that vertical stiffness during bilateral hopping was modulated 

as a consequence of changes in ankle stiffness and was not affected by changes 

in knee stiffness. This proposition has been supported in hopping investigations by 

Kuitunen et al. (2011) and Kim et al. (2013), and in drop jumping by Arampatzis et 

al. (2001b). Such a relationship would suggest that asymmetries in ankle stiffness 

are likely to lead to asymmetries in vertical stiffness. In contrast, Hobara et al. 

(2009) reported that knee stiffness, but not ankle stiffness, explained variance in 

vertical stiffness during maximal bilateral hopping. In addition, Horita et al. (2002) 

and Kuitunen et al. (2011) demonstrate that knee stiffness, whilst not affecting 

vertical stiffness, plays an important role in modulating mechanical output and 

overall performance. For these reasons, the role of the knee joint in modulating 

vertical stiffness asymmetries should not be discounted. To this author’s 

knowledge, no investigations have examined how asymmetries in joint stiffness 

may affect asymmetries in vertical stiffness.  

Ankle stiffness contributes strongly to summative leg stiffness during tasks where 

minimal joint or centre of mass displacement is desired, for example, during cyclic 

bilateral hopping (Farley et al., 1998; Farley & Morgenroth, 1999; Kuitunen et al., 

2011; Kim et al., 2013) and drop jumping (Arampatzis et al., 2001b). It is likely that 

this relationship also holds true for CODS given the findings of Pruyn et al. (2014) 
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- previously discussed - and Marshall et al. (2014). Marshall et al. (2014) did not 

examine ankle stiffness directly, but correlated ankle power (r = 0.77; P < 0.01), 

plantar flexion moment (r = 0.65; P < 0.01) and ground contact time (r = -0.48; P = 

0.01) with faster CODS test performance. For this reason, stiffness and 

asymmetries surrounding the ankle joint may be of particular relevance to CODS. 

Sugiyama et al. (2014) has previously reported that asymmetries in jump 

performance were positively correlated with symmetry indices for angular velocity 

(r = 0.41; P < 0.05) and various parameters of angular displacement (r = 0.41 - 

0.52; P < 0.05) of the ankle. These findings suggest that asymmetries in ankle 

stiffness may negatively influence performance outcomes and further underline the 

importance of ankle kinematics during performance tasks which require an 

effective contribution from the stretch shortening cycle. 

In summary, variables pertaining to musculoskeletal stiffness have been linked to 

CODS performance. Force-related and kinematic asymmetries have been linked 

to impaired performance outcomes, but this has not been evaluated in regards to 

CODS. The primary aim of Study 3 was therefore to establish if vertical stiffness 

and vertical stiffness asymmetry influenced CODS. It was hypothesised that 

vertical stiffness would be significantly and positively correlated to CODS 

performance (i.e. greater stiffness would be associated with faster performances). 

It was also hypothesised that the symmetry angle of vertical stiffness would be 

significantly and negatively correlated to CODS performance (i.e. greater 

asymmetries would be associated with slower performances). 

The secondary aim of Study 3 was to establish the determinants of bilateral 

asymmetry in vertical stiffness. It was hypothesised that regression analyses would 

reveal ankle stiffness symmetry angle to be the strongest predictor of vertical 

stiffness symmetry angle.  
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5.3 Method 

5.3.1 Experimental overview 

Study 3 was a randomised and counterbalanced experiment designed to 

determine the influence of vertical stiffness and vertical stiffness asymmetry on 

CODS. Following a familiarisation session, participants performed a unilateral drop 

jump task to assess the vertical and joint stiffness of each limb. Participants then 

completed a CODS test consisting of two 90o cuts; this was performed in both 

clockwise and anti-clockwise directions to obtain CODS performance for each limb. 

5.3.2 Participants 

Eighteen healthy males (age: 22 ± 4 years; height: 1.80 ± 0.08 m; body mass: 81.7 

± 14.9 kg) volunteered to participate in the study. A minimum sample size of 

eighteen participants was determined from a priori power analysis (G*Power 3.1, 

Heinrich-Heine-Universität, Düsseldorf, Germany) based upon an estimated 

squared multiple correlation of 0.45 (Delaney et al., 2015), 12 likely predictor 

variables (jump height, ground contact time, vertical, ankle, knee and hip stiffness, 

together with the asymmetries for these variables) and a power of 0.8 (Beck, 2013). 

Participants were recreationally active (undertaking ≥ 2.5 hours of physical activity 

per week), reported no previous (within the last 12 months) or present lower limb 

injury and provided informed consent (Appendix A1) to participate in the study. Full 

ethical approval was granted by the review board of the Institute for Physical 

Activity Research, University of Bedfordshire (Appendix A1) and all procedures 

were conducted in accordance with the Declaration of Helsinki. 
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5.3.3 Experimental trials 

A familiarisation session - a complete simulation of the experimental trial outlined 

below - was performed seven days prior to the experimental trial. Study 1, which 

examined the reliability of the unilateral drop jump, was conducted within the same 

experimental cohort and had indicated that a single familiarisation session was 

appropriate for unilateral drop jump testing. Pilot testing indicated that this was also 

appropriate for the CODS test.  

All trials were conducted at the same time of day (10:00 - 12:00) for each 

participant, to alleviate the effects of circadian rhythms. The testing laboratory was 

controlled at an ambient temperature of 25oC. Participants were instructed to 

prepare for testing as they would for training. The execution of each experimental 

trial was monitored by a United Kingdom Strength and Conditioning Association 

accredited strength and conditioning coach to ensure for consistency of technique.   

5.3.4 Warm-up 

All participants completed the same warm-up procedure outlined in Study 1 

(Section 3.3.2.3; Table 3.5). The warm-up procedure consisted of 15 dynamic 

exercises progressing from low to high intensities and from generic to specific 

movement patterns. A recovery period of 180 seconds was prescribed between 

the termination of the warm-up and commencement of the testing protocol. 

5.3.5 Drop jump testing 

In a counterbalanced order, participants performed three, unshod unilateral drop 

jumps for each limb on a force plate system (Kistler 9281, Kistler Instruments, 

Winterthur, Switzerland). The procedure for the unilateral drop jumps has been 

described in detail in Chapter 3 (Section 3.3.2.5). Drop jumps were performed from 



129 
 

a height of 0.18 m and participants instructed to minimise ground contact time 

during the landing phase. Repetitions were separated by 60 seconds to facilitate 

recovery (Read & Cisar, 2001). 

5.3.6 Kinematic analysis 

Drop jumping trials were recorded in the sagittal plane using a high-speed video 

camera (Quintic High-Speed LIVE USB 2, Quintic Consultancy Ltd., Coventry, 

United Kingdom) recording at 100 Hz. Relative to the force plate, the camera was 

orientated perpendicular to the anterior-posterior axis, centralised and positioned 

at a distance of 3.3 m. The camera was mounted on a tripod and set at the height 

of the participants’ knee marker when standing on the box.  Reflective joint markers 

were placed on the distal head of the fifth metatarsal bone (toe), distal aspect of 

the lateral malleolus (ankle), lateral collateral ligament of the knee at the 

tibiofemoral gap (knee), greater trochanter (hip) and anterolateral point of 11th rib 

(torso) on both the left and right sides of the body; the distance between the ankle 

and hip was used to represent participant’s leg length and was used to calibrate 

each video recording. Unilateral drop jumps on the left limb were recorded with the 

participants’ left side of the body facing the camera; unilateral drop jumps on the 

right limb were recorded with the participants’ right side of the body facing the 

camera. Video recordings were automatically digitised using manufacturer 

provided software (Quintic Biomechanics v21, Quintic Consultancy Ltd., Coventry, 

United Kingdom). Kinematic data were filtered using a Butterworth fourth-order 

zero-lag filter (cut-off frequency 20 Hz). Cut-off frequency was determined by 

plotting the root-mean squared residuals of the raw data and fitting a linear 

regression line (Winter, 2009a). 
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5.3.7 Kinetic analysis 

Instants of initial foot contact, take-off and landing were identified from the vertical 

ground reaction force of each drop jump trial; this was determined as the time-point 

at which a clear change in force (≥ 10 N from zero) was observed (Lloyd et al., 

2009). Force traces were filtered with a low-pass Butterworth filter (cut-off 

frequency: 50 Hz). Cut-off frequency was determined by plotting the root-mean 

squared residuals of the raw data and fitting a linear regression line (Winter, 

2009a). Inverse dynamics was used to express acceleration, velocity and negative 

displacement of the centre of mass; this was determined from the vertical force 

trace as outlined in Section 3.3.2.7 and Appendix A2. In Study 3, the vertical 

velocity of the hip joint marker at the instant of ground contact was used as the 

initial value for integration. 

Net muscle moments were determined using a rigid linked segment model, 

anthropomorphic data, and an inverse dynamics analysis using the procedures 

outlined in Winter (2009b) and detailed in Appendix A2; the linked segment model 

was created using Dempster’s body segment parameter data (Dempster, 1955). 

Kinetic and kinematic data were synchronised to calculate joint moments at 100 

Hz. Synchronisation was achieved using a customised trigger to initiate force plate 

sampling and simultaneously activate a light-emitting diode (LED) clearly visible on 

the video recordings. 

5.3.8 Drop jump variables 

Vertical stiffness was calculated as the ratio of peak vertical ground reaction force 

(N) relative to the peak negative displacement of the centre of mass displacement 

(m) during the initial ground contact phase (Farley et al., 1998; Farley & 

Morgenroth, 1999); this was averaged over the three recorded drop jumps. The 
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force-displacement correlation coefficient of the landing phase of each trial was 

required to be ≥ 0.8 in an effort to ensure the efficacy of the spring-mass model 

(Padua et al., 2005). As vertical stiffness is affected by body size, vertical stiffness 

values were reported relative to body mass (Farley et al., 1993). 

Torsional stiffness of the ankle, knee and hip joints were calculated as the ratio of 

the change in net muscle moment (N) to joint angular displacement (rad) between 

the initial ground contact phase and instant of peak angular displacement (Farley 

et al., 1998; Farley & Morgenroth, 1999); these were averaged over the three 

recorded drop jumps. Pilot testing indicated that the timing of peak vertical ground 

reaction forces occurred at the instant of peak joint moments and maximum joint 

flexions as previously observed by Kuitunen et al. (2011) and that moment-

displacement correlation coefficients were ≥ 0.8. However, the phase shift for the 

moment displacement curve of the hip was > 10% (Figure 5.1). This has been 

previously specified as exclusion criteria in bilateral hopping trials (Farley et al., 

1998) and stiffness of the hip was therefore not calculated in the current study. 

 

Figure 5.1 - Example moment-displacement curves for the ankle, knee and hip of 
a single participant. 
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Jump height was determined using the flight-time method as outlined by Linthorne 

(2001). Reactive strength index was determined as the ratio of flight time to ground 

contact time (Newton & Dugan, 2002). Time to peak force was determined as the 

time difference between the identified instant of initial foot contact and the instant 

of peak vertical ground reaction force. Overall performance outcomes in the drop 

jump (vertical stiffness, joint stiffness, jump height, reactive strength index and time 

to peak force) were obtained by averaging values for the left and right limbs. 

5.3.9 Change of direction speed testing 

CODS was assessed using a double cut task highlighted in Figure 5.2 and 

performed in a shod condition using participant’s preferred footwear. 

 
Figure 5.2 - An example of the experimental set-up for the change of direction 
speed test set up to examine right leg cutting performance, the set-up would be 
mirrored to examine left leg performance. 

Participants were required to perform two 90o cuts in the same direction (clockwise 

for the left leg trials or anti-clockwise for the right leg trials) during each trial and 
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were instructed to complete the task “as quickly as possible.” Each cut was 

required to be a definitive power cut performed at a 90° angle and was observed 

by a United Kingdom Strength and Conditioning Association accredited strength 

and conditioning coach to ensure for consistency of technique (Figure 5.2). 

Participants were instructed of the requirements during the familiarisation process. 

Any deviation from these criteria (i.e. curved approach into the cut) would have 

resulted in the disqualification of the trial. A distance between the direction changes 

of 3 m (total distance covered: 9 m) was chosen as this is representative of typical 

sprint activity profiles in team-sports such as rugby league (Gabbett, 2012) and 

soccer (Andrzejewski et al., 2013). A cutting angle of 90° was chosen as this is 

representative of an attacking player attempting to create space and evade 

defenders in team-sports such as soccer (Bloomfield et al., 2007) and Gaelic 

games (Marshall et al., 2014).  

Performance time was recorded using two sets of timing gates (TC-Timing System, 

Brower Timings, Utah, USA) (one set to start the clock, one set to stop the clock) 

set at the height of the participants’ anterior superior iliac spine. Participants 

performed four consecutive trials in one direction before performing four trials in 

the other direction; the order in which directions were tested was randomised and 

counterbalanced. Participants’ fastest trial in each direction was subsequently 

analysed; pilot testing (n = 7) indicated that the inter-session coefficient of variation 

(CV; three sessions) for fastest overall CODS test time was 1.1% (SEM: 0.04 sec; 

ICC: 0.97). Overall CODS performance was the sum of participants’ fastest trials 

in both directions (best clockwise time + best anticlockwise time). Trials were 

separated by a recovery duration of 60 seconds. 

To obtain ground reaction force data during the CODS test, the first cut was 

performed with the push-off (outside) foot contacting entirely within the force plate 
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(Kistler 9281, Kistler Instruments, Winterthur, Switzerland). Data were sampled at 

1000 Hz and saved with the use of the manufacturer supplied software (BioWare 

3.24, Kistler, Winterthur, Switzerland) for later analysis. Trials were excluded if the 

participant landed outside the confines of the force plate, this was retrospectively 

checked using video analysis. Considering all trials, a total of seven were excluded, 

none of which were a participant’s fastest trial. 

5.3.10 Intra-session reliability 

Intra-session CVs (listed respectively for the stiff and compliant limbs): for vertical 

stiffness were 5.3% and 6.5%. CVs for centre of mass displacement were 7.2% 

and 4.3%. CVs for joint stiffness were 1.6% and 2.2% for the ankle, 2.6% and 4.7% 

for the knee, and 4.1% and 4.9% for the hip, CVs for joint angular displacement 

were 3.8% and 5.3% for the ankle, 5.5% and 7.0% for the knee, and 10.9% and 

11.0% for the hip. Intra-session CVs for the CODS test were 1.9% (SEM: 0.05 sec; 

ICC: 0.95) and 1.9% (SEM: 0.05 sec; ICC: 0.95) for the clockwise and anti-

clockwise directions respectively. 

5.3.11 Statistical analysis 

Asymmetries were quantified using the symmetry angle, calculated using the 

procedures outlined by Zifchock et al. (2008). Shapiro-Wilks tests were performed 

to assess for normality; all variables were considered to be normally distributed 

given an alpha level of P > 0.05. Pair-wise effect sizes (d) (Cohen, 1998) were 

calculated and interpreted using the thresholds defined by Hopkins (2003) where: 

<0.20 = trivial, 0.20-0.59 = small, 0.60-1.19 = moderate, 1.20-1.99 = large, and ≥2 

= very large. Statistical significance for all analyses was set at an alpha level of P 

≤ 0.05 and all statistical procedures were conducted using the Statistical Package 

for the Social Sciences for Windows (v21.0; SPSS Inc., Chicago, USA). 
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Change of direction speed 

For the presentation of results, independent variables were grouped into two 

categories (CODS test variables and drop jump variables) - a total of 32 variables. 

The dependant variable was overall CODS performance time. The correlation 

between each variable and overall CODS time was examined using Pearson’s r. A 

forward step-wise regression analysis was performed for overall CODS 

performance using all independent variables. Analysis of standard residuals 

showed that the data contained no outliers (std. residual min: -1.53, std. residual 

max: 1.79). Tests to see if the data met the assumption of collinearity indicated that 

multicollinearity was not a concern (minimum tolerance: 0.86, maximum VIF: 1.16). 

The data met the assumption of independent errors (Durbin-Watson value: 1.44). 

For further analysis, performers were median-split into ‘fast’ (n = 9) and ‘slow’ (n = 

9) groups based upon overall CODS time. One-way analysis of variance (ANOVA) 

tests were performed to analyse differences between fast and slow groups.  

Vertical stiffness asymmetry 

Two additional forward step-wise regression analyses were performed, the first to 

determine the influence of vertical ground reaction force, centre of mass 

displacement, joint stiffness, joint angular displacement and reactive strength index 

symmetry angles on the vertical stiffness symmetry angle. The second analysis 

excluded vertical ground reaction force and centre of mass displacement in an 

attempt to increase the level of determinism of the model. In regards to the second 

model, analysis of standard residuals showed that the data contained no outliers 

(std. residual min: -1.84, std. residual max: 1.24), multicollinearity was not a 

concern (minimum tolerance: 0.92, maximum VIF: 1.09) and that the data met the 

assumption of independent errors (Durbin-Watson value: 1.11). 
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5.4 Results 

5.4.1 Determinants of change of direction speed 

Table 5.1 - The step-wise regression model for the prediction of change of direction 
speed test time. 

Model b SE-b Beta t P 

2 (Constant) 6.028 0.247  24.398 <0.001 

Vertical stiffness (N.m-1.kg-1) -0.005 0.001 -0.561 -3.316 0.005 

Jump height α (%) 2.410 1.043 0.391 2.312 0.035 

Dependant variable was change of direction test performance time (sec).  

Model 2: r2 = 0.629, adjusted r2 = 0.580, P = 0.001. 

Key: SE-b = standard error of b, α = symmetry angle. 

A two-variable regression model explained 63% (r2 = 0.63; adjusted r2 = 0.58; F(2,15) 

= 12.73; P = 0.001) of CODS test performance (Table 5.1). The regression 

equation is shown in Equation 5.1. 

Equation 5.1: CODS test time = 6.028 - 0.005(Kvert) + 2.410(DJ α)  

Where CODS = change of direction speed, Kvert = vertical stiffness, DJ α = 
drop jump height symmetry angle. 

CODS time was predicted by vertical stiffness in the drop jump (Beta = -0.56; P = 

0.005) and by drop jump height asymmetry (Beta = 0.39; P = 0.035). 
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Table 5.2 - The association of drop jump test variables with change of direction speed test performance. 

Variable Fast group  

(n = 9) 

Slow group 

(n = 9) 

Effect size P Value Correlation 
with CODS 

P Value 

Jump height (m) 0.12 ± 0.05 0.11 ± 0.03  0.25 0.532 -0.319 0.197 

Jump height α (%) 2.4 ± 3.9 7.2 ± 3.8 -1.28 0.026* 0.598 0.009** 

RSI (flight time / contact time) 1.02 ± 0.22 1.00 ± 0.10 0.13 0.771 -0.337 0.172 

RSI α (%) 3.7 ± 3.2 5.0 ± 3.2 -0.41 0.443 0.214 0.395 

Ground contact time (sec) 0.298 ± 0.03 0.305 ± 0.02  -0.28 0.586 0.296 0.232 

Vertical stiffness (N.m-1.kg-1) 176 ± 25 132 ± 25 1.76 0.003* -0.705 0.001** 

Vertical stiffness α (%) 6.6 ± 5.4 5.8 ± 3.3 0.18 0.733 -0.022 0.932 

Vertical GRF (N.kg-1) 30.32 ± 2.79 28.61 ± 1.55 0.79 0.149 -0.391 0.109 

COM displacement (m) -0.17 ± 0.03 -0.19 ± 0.06 -0.49 0.380 0.035 0.890 

Ankle stiffness (N.m-1.rad-1) 602 ± 273 488 ± 92 0.62 0.280 -0.008 0.974 

Ankle stiffness α (%) 2.8 ± 1.2 3.5 ± 2.0 -0.47 0.379 0.247 0.322 

Ankle displacement (rad) -0.61 ± 0.14 -0.65 ± 0.06 0.40 0.465 0.079 0.757 

Knee stiffness (N.m-1.rad-1) 2075 ± 576 2195 ± 499 -0.22 0.661 0.044 0.863 

Knee stiffness α (%) 2.4 ± 2.0 2.5 ± 1.8 -0.05 0.868 -0.138 0.586 

Knee displacement (rad) -0.49 ± 0.12 -0.46 ± 0.07 0.24 0.652 0.048 0.850 

Hip stiffness (N.m-1.rad-1) 7808 ± 3338 8444 ± 3553 -0.19 0.716 0.102 0.686 

Hip stiffness α (%) 2.8 ± 2.7 3.6 ± 2.6 -0.30 0.585 -0.042 0.869 

Hip displacement (rad) -0.22 ± 0.10 -0.20 ± 0.07 0.22 0.735 0.155 0.539 

* indicates significant difference between ‘fast’ and ‘slow’ groups (P ≤ 0.01), ** indicates significant correlation with CODS test time (P ≤ 0.01). 

Key: CODS = change of direction speed, α = symmetry angle, RSI = reactive strength index, GRF = ground reac tion force, COM = centre of mass. 
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Table 5.3 - The association of CODS test variables with change of direction speed test performance. 

Variable 

 

Fast group  

(n = 9) 

Slow group 

(n = 9) 

Effect size P Value Correlation with 
CODS 

P Value 

CODS performance time (s) 5.18 ± 0.18 5.64 ± 0.14 -2.86 <0.001*   

CODS time α (%) 0.8 ± 1.2 1.2 ± 0.4 -0.50 0.396 0.367 0.134 

Ground contact time (s) 0.25 ± 0.04 0.31 ± 0.05 -1.33 0.018* 0.496 0.036** 

Ground contact time α (%) 2.2 ± 3.3 3.4 ± 3.2 -0.37 0.472 0.005 0.985 

Summed GRF (N.kg-1) 46.9 ± 6.4 45.7 ± 5.7 0.20 0.691 -0.116 0.647 

Summed GRF α (%) 3.8 ± 2.8 4.5 ± 3.3 -0.23 0.661 0.470 0.049** 

Vertical GRF (N.kg-1) 24.2 ± 4.4 24.2 ± 3.8  0.00 0.991 0.001 0.996 

Vertical GRF α (%) 5.8 ± 4.1 6.6 ± 5.4 -0.17 0.743 0.315 0.203 

Vertical GRF / Total GRF (%) 51.1 ± 2.8 52.5 ± 3.1 -0.47 0.337 0.236 0.345 

Med-Lat GRF (N.kg-1) 11.0 ± 1.4 10.4 ± 1.8 0.38 0.459 -0.100 0.692 

Med-Lat GRF α (%) 2.5 ± 1.0 4.2 ± 2.7  -0.92 0.117 0.347 0.159 

Med-Lat GRF / Total GRF (%) 23.6 ± 1.1 22.9 ± 2.7 0.37 0.504 0.020 0.938 

Ant-Post GRF (N.kg-1) 11.8 ± 1.3 11.1 ± 1.4 0.52 0.352 -0.391 0.109 

Ant-Post GRF α (%) 4.9 ± 4.0 4.1 ± 2.3 0.19 0.623 0.136 0.589 

Ant-Post GRF / Total GRF (%) 25.3 ± 2.3 24.5 ± 2.4 0.34 0.522 -0.325 0.188 

* indicates significant difference between ‘fast’ and ‘slow’ groups (P ≤ 0.05), ** indicates significant correlation with CODS test time (P ≤ 0.05). 

Key: CODS = change of direction speed, α = symmetry angle, GRF = ground reaction force, med-lat = medio-lateral, ant-post = anterior-posterior. 
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5.4.2 Drop jump variables and change of direction speed 

Drop jump height was negatively correlated with CODS test time (r = -0.71; P = 

0.001). Drop jump height asymmetry was positively correlated with CODS test time 

(r = 0.60; P = 0.009). The faster group demonstrated greater vertical stiffness (F(1,15) 

= 12.40; P = 0.003) and less asymmetry in jump height (F(r =1,15) = 6.02; P = 0.026) 

during the drop jump (Table 5.2); these effect sizes were ‘large’ and ‘moderate’ 

(vertical stiffness: d = 1.76, jump height asymmetry: d = -1.28). Effect size analyses 

also revealed a ‘moderate’ difference in ankle stiffness (P = 0.28; d = 0.62) and 

vertical ground reaction force relative to body mass (P = 0.15; d = 0.79). 

5.4.3 Change of direction speed test variables 

Performance times in the CODS test were significantly different between fast and 

slow groups (F(1,15) = 32.02; P < 0.001) and associated with a ‘very large’ effect 

size (d = -2.86) (Table 5.3). The faster group also displayed shorter ground contact 

times during the test (F(1,15) = 6.98; P = 0.018), this was associated with a ‘large’ 

effect size (d = -1.33). Ground contact time correlated significantly with 

performance time (r = 0.50; P = 0.036). In regards to force application, asymmetry 

in summed ground reaction force correlated with performance time (r = 0.47; P = 

0.049), but between-group differences were not significant and the effect size was 

‘small’ (d = -0.23; P = 0.66). A ‘moderate’ between-group effect size (d = -0.92) 

was observed for asymmetry in medio-lateral ground reaction force, although 

differences were not significant (P = 0.12) and did not correlate to performance 

time (r = 0.35; P = 0.16). 
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5.4.4 Determinants of vertical stiffness asymmetry 

A model including centre of mass displacement and vertical ground reaction force 

explained 99% of vertical stiffness asymmetry (Equation 5.2; r2 = 0.99; adjusted r2 

= 0.99; F(1,15) = 638.36; P < 0.001).  

Equation 5.2: Kvert α = 0.000 - 0.980(COM α) + 0.850(vGRF α)  

Where Kvert α = vertical stiffness symmetry angle, COM α = centre of mass 
displacement symmetry angle, vGRF α = vertical ground reaction force 
symmetry angle. 

A model including centre of mass displacement alone explained 90% of vertical 

stiffness asymmetry (r2 = 0.90; adjusted r2 = 0.90; F(1,15) = 147.17; P < 0.001). 

Table 5.4 - Results of the step-wise regression analysis for vertical stiffness 
symmetry angle. 

Model b SE-b Beta t P 

2 (Constant)  -0.008 0.009  -0.914   0.375 

Kankle α (%) 1.299 0.263 0.617 4.939 <0.001 

RSI α (%)  0.633 0.164 0.481 3.851   0.002 

Dependant variable was vertical stiffness symmetry angle (%).  

Model 2: r2 = 0.79, adjusted r2 = 0.76, P < 0.001. 

Key: SE-b = standard error of b, Kankle = ankle stiffness, α = symmetry angle, RSI = 
reactive strength index. 

When centre of mass displacement and vertical ground reaction force were 

excluded, regression analyses revealed that a model including ankle stiffness and 

reactive strength index symmetry angles explained 79% of the variance in vertical 

stiffness asymmetry angle (r2 = 0.79; adjusted r2 = 0.76; F(1,15) = 27.41; P < 0.001) 

(Table 5.4; Equation 5.3). 

Equation 5.3: Kvert α = -0.008 + 1.299(Kankle α) + 0.633(RSI α)  

Where Kvert α = vertical stiffness symmetry angle, Kankle α = ankle stiffness 
symmetry angle, RSI α = reactive strength index symmetry angle. 
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5.4.5 Stiff versus compliant limbs 

Table 5.5 - Differences in kinetic and kinematic variables between the stiff and 
compliant limbs during unilateral drop jumping. 

 Stiff limb Compliant 
limb 

t17 d  P 

Stiffness 

Vertical stiffness (N.m.kg-

1) 
190 ± 52 156 ± 44 5.49  0.70 <0.001* 

Ankle stiffness (N.m.rad-1) 564 ± 230 526 ± 194 2.68  0.18 0.016* 

Knee stiffness (N.m.rad-1) 2171 ± 539 2099 ± 559 1.65  0.13 0.188 

Forces / moments 

vGRF (N.kg-1) 29.44 ± 2.68 28.77 ± 2.58 1.27  0.25 0.222 

Ankle moment (N.m.kg-1) 4.04 ± 0.69 3.94 ± 0.95 0.43  0.11 0.670 

Knee moment (N.m.kg-1) 12.40 ± 2.24 12.01 ± 3.47 0.55  0.14 0.591 

Hip moment (N.m.kg-1) 18.19 ± 7.59 19.71 ± 7.97 -0.78 -0.20 0.449 

Displacement 

DCOM (m) 0.17 ± 0.05 0.19 ± 0.05 -2.19 -0.36 0.043* 

Ankle displacement (rad) 0.63 ± 0.11 0.61 ± 0.15  0.42  0.11 0.677 

Knee displacement (rad) 0.48 ± 0.10 0.47 ± 0.13  0.13  0.03 0.899 

Hip displacement (rad) 0.20 ± 0.08 0.22 ± 0.10 -1.43 -0.27 0.170 

Temporal 

RSI  (flight time / GCT) 1.030 ± 
0.198 

1.001 ± 0.193  1.73  0.34 0.259 

GCT (s) 0.297 ± 
0.029 

0.301 ± 0.035 -5.13 -0.14 0.616 

Time to peak force (s) 0.151 ± 
0.036 

0.155 ± 0.039 -1.17 -0.19 0.102 

* indicates a significant difference between stiff and compliant limbs (P < 0.05).  

Key: vGRF = vertical ground reaction force, DCOM = centre of mass displacement, RSI = 
reactive strength index, GCT = ground contact time. 

Vertical stiffness was significantly different between the stiff and compliant limbs, 

such that an asymmetry percentage of 17.8% was observed in the compliant limb 

and associated with a ‘moderate’ effect size (Table 5.5). An asymmetry percentage 

of 6.8% was observed for ankle stiffness although the effect size was ‘trivial’. 

Centre of mass displacement was an average of 9.4% greater in the compliant 
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limb; the effect size between limbs was ‘small’. No other significant differences 

were observed between the stiff and compliant limbs, although differences in 

vertical ground reaction force, angular hip displacement and reactive strength 

index were associated with ‘small’ effect sizes. 
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5.5 Discussion 

The primary aim of Study 3 was to establish if vertical stiffness and vertical stiffness 

asymmetry influenced CODS. It was hypothesised that vertical stiffness would be 

significantly and positively correlated to CODS performance (i.e. greater stiffness 

would be associated with faster performances). This hypothesis is accepted as 

vertical stiffness was the strongest predictor of CODS in the regression model. It 

was also hypothesised that the symmetry angle of vertical stiffness would be 

significantly and negatively correlated to CODS performance (i.e. greater 

asymmetries would be associated with slower performances). This hypothesis is 

rejected as vertical stiffness asymmetry angle was not associated with CODS. A 

secondary aim of the current study was to ascertain the determinants of vertical 

stiffness asymmetry; it was hypothesised that ankle stiffness asymmetries would 

determine vertical stiffness asymmetries. This hypothesis is accepted as 

regression analyses demonstrated that ankle stiffness symmetry angle was the 

strongest predictor of vertical stiffness symmetry angle. 

Mean vertical stiffness and asymmetry in jump height, both determined during a 

unilateral drop jump test, were the strongest predictors of the time taken to 

complete the CODS test employed in Study 3. As such, whilst vertical stiffness 

asymmetry was not a predictor of performance, both vertical stiffness and 

asymmetry (drop jump height) were strongly associated with CODS as separate 

entities. Vertical stiffness was the strongest predictor of CODS according to the 

regression model, greater vertical stiffness led to quicker performance times. 

Between-group analyses also revealed a ‘large’ and significant difference between 

fast and slow groups such that faster athletes exhibited greater vertical stiffness. 

However, it is important to acknowledge the limitations inherent with regression 

and correlation analyses. This study is unable to demonstrate a cause and effect 
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relationship between vertical stiffness and CODS as a consequence. The 

mechanisms which may explain this relationship must therefore be explored. Also, 

it is important to note that the current study cannot differentiate between the linear 

acceleration/deceleration and turning components within the CODS test itself. For 

example, approach and exit speeds into the turn were not measured. It therefore 

cannot be determined if faster performances are a consequence of faster linear 

accelerations, faster cuts or a combination of these factors. Nonetheless, vertical 

stiffness is correlated with linear acceleration (i.e. r = 0.8; P < 0.01 (Chelly & Denis, 

2001) and would therefore positively influence both components of the CODS test. 

It is also the overall performance time that is of greatest importance to the athlete 

and would be therefore be the primary target of any intervention.       

Pruyn et al. (2014) had previously examined the potential relationship between 

stiffness and CODS, although employed a unilateral hopping task which may not 

represent the acyclic, ballistic nature of CODS tasks. Contrary to the results of the 

current study, Pruyn et al. (2014) reported that vertical stiffness was not correlated 

to CODS and that performance times of median-split stiff and compliant groups 

were not different. The reduced homogeneity of the population sample in the 

current study in comparison to that of Pruyn et al. (2014) (highly trained female 

netballers) may explain this discordance in results. Intuitively, it would seem likely 

that athletes exhibiting greater vertical stiffness during the drop jump would exhibit 

greater leg stiffness during a change of direction, although this cannot be 

definitively concluded from this study. The current study does report that faster 

athletes displayed shorter ground contact times than slower performers (P = 0.018; 

d = -1.33), in line with the results of previous investigations (Sasaki et al., 2011; 

Marshall et al., 2014). This is likely to be indicative of greater leg stiffness during 
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the change of direction (Arampatzis et al., 2001a; 2001b) and would suggest a 

greater level of change of direction ability within these athletes.  

Whilst the unilateral drop jump provides a reliable measure of vertical stiffness, it 

must be recognised that this task does not impose the medio-lateral and anterior-

posterior demands present during a change of direction. It also clear that the CODS 

test imposes greater ground reaction forces on the lower limb at ground contact. 

Greater ground reaction forces may be expected to increase joint angular 

displacements, potentially increasing the demands placed upon the knee (versus 

the ankle) joint (Kuitunen et al., 2011). Nonetheless, the unilateral drop jump is a 

maximal, acyclic and unilateral task that describes resistance to deformation in the 

presence of high-force. These are key characteristics shared with changes of 

direction (Glaister et al., 2008; Spiteri et al., 2013). Ground contact times between 

the two tasks are also similar (unilateral drop jump: ~0.31 sec, CODS test: 0.28 

sec). Moreover, the stiffness of the muscle-tendon unit would not be dependent 

upon the vector of force application (i.e. Butler et al., 2003). Future research should 

seek to directly examine leg stiffness during changes of direction in order to better 

provide greater depth to explain the relationship between stiffness and CODS, the 

absence of a three-dimensional motion capture system precluded such 

measurements to be used in this thesis. However, the use of such equipment in 

unlikely to be viable in an athletic training environment given the monetary cost, 

expertise requirement and the time required for set-up and analysis. It is important 

to state that the current study demonstrates the unilateral drop jump to provide a 

test with high logistical value and that may be realistically administered within the 

athletic training environment. 

Regression analyses revealed that asymmetry in unilateral drop jump height was 

the second strongest predictor of CODS performance time such that lesser 
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asymmetries were associated with quicker times. Between-group analyses also 

indicated a ‘large’ and significant difference between median-split fast and slow 

performers. Whilst previous investigations have associated asymmetries in force-

related parameters with impaired athletic performance (Bailey et al., 2013; Bazyler 

et al., 2014; Bell et al., 2014; Hart et al., 2014b; Bailey et al., 2015), the relationship 

between asymmetry and CODS is not clear. Two investigations have noted 

reductions in CODS performance where an eccentric strength asymmetry is 

apparent (Chaouachi et al., 2012; Lockie et al., 2012); eccentric strength is likely 

to underpin an athlete’s ability to effectively utilise the stretch shortening cycle 

during movements such as a drop jump or a change of direction where minimal 

joint displacement may be desired (Cormie et al., 2010). Given the association of 

eccentric strength in modulating stiffness (Lindstedt et al., 2001) it is perhaps 

surprising that asymmetries in vertical stiffness did not influence CODS 

performance in a similar manner. As the investigations by Chaouachi et al. (2012) 

and Lockie et al. (2012) were conducted in elite Tunisian soccer players and 

strength trained team-sport athletes, respectively, it is possible the effects of 

asymmetries are modulated by the athletic background of the participant 

population sampled. As will be discussed, a similar effect has been reported by 

Bazyler et al. (2014) in relation to force asymmetry.  

Lockie et al. (2014) examined the relationship between multi-planar unilateral 

jumping performance and CODS in well-trained, multidirectional team-sport 

athletes. Lockie et al. (2014) noted asymmetries of 10.4% (± 10.8%), 3.3% (± 

3.0%) and 5.1% (± 3.9%) in vertical, horizontal and lateral jump performance 

respectively, but reported that these asymmetries were not related to 5-0-5 or T-

test performance. Previously, Hoffman et al. (2007) had also reported that 

asymmetries in unilateral vertical jump power of 9.7% (± 6.9%) were not associated 
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with reductions in CODS performance (3-cone drill) in collegiate American 

footballers. In neither of these studies do the investigators’ data permit the 

calculation of a symmetry angle. The average jump height asymmetry in the current 

study was 13% (± 12%) when expressed as a symmetry index as in Lockie et al. 

(2014) and Hoffman et al. (2007), equating to a symmetry angle of 4.3%. The larger 

asymmetries present in the current population could potentially explain why CODS 

impairments were observed.  

It is also possible that the athletic background of participants could explain why 

asymmetry was detrimental to CODS in this instance. Lockie et al. (2014) 

hypothesised that more skilled performers may be better able to initiate technical 

adjustments in response to strength or power asymmetries than recreationally 

trained participants such as those sampled in the current study. However, 

investigations have not considered whether technical factors, such as foot 

placement and stride adjustment, may contribute to CODS asymmetries. In the 

current study, the direction of asymmetries in drop jump variables did not 

correspond well with the direction of asymmetry in the CODS test. It is therefore 

conceivable that the observed association between asymmetry and CODS 

performance is purely indicative of participants’ current athletic ability or training 

status. Indeed, Bazyler et al. (2014) reported that asymmetries are likely to be 

greater in weaker individuals. Across a seven-week bilateral training programme, 

Bazyler et al. (2014) also noted that as strength increased there was a concomitant 

decrease in asymmetry in weaker individuals. Future investigations should seek to 

determine whether asymmetries in the variables highlighted in the current study 

are associated with CODS in an athletic population. Investigators should also 

consider the role of technical factors and their potential contribution to 

asymmetries. 
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In addition to the asymmetries in jump height observed during the drop jump test, 

the results of the current study suggest that asymmetries in the application of force 

during the CODS test may also be linked to performance time. Most notably, 

asymmetries in summed ground reaction force were linked to impaired 

performance. Condello et al. (2016) similarly reported between-limb differences in 

ground reaction forces, although reported no difference in ground contact time (no 

overall ‘performance’ time was recorded). If greater forces, relative to body mass, 

can be applied to the ground without negatively affecting ground contact time then 

this is likely to be beneficial to CODS performance due to the necessary impulse 

required to change direction being generated quicker. Between-group differences 

in the current study also suggested that slower performers exhibited ‘moderately’ 

greater asymmetry in medio-lateral ground reaction force, however, this variable 

did not directly correlate to performance time. The amount of force expressed in 

the medio-lateral direction (i.e. the direction of intended travel) is most likely to 

result in improved CODS performance (Shimokochi et al., 2013) and would appear 

to be an important variable. Nonetheless, the current study did not observe notable 

correlations or inter-group differences in CODS test force profiles when these 

asymmetries were not considered. 

Reactive strength index is a quality purported to be closely linked to vertical 

stiffness as greater vertical stiffness should facilitate shorter ground contact times 

and improved reactive strength index scores (Arampatzis et al., 2001b; Bret et al., 

2002). Whilst previous investigations had reported significant correlations (r = -0.44 

- -0.65) between reactive strength index and CODS performance in athletic 

populations (Young et al., 2002; Delaney et al., 2015; Young et al., 2015), the 

current study did not observe this relationship to be significant in recreationally 

trained individuals. It should also be noted that the current study examined CODS 
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performance using a task employing two 90o cuts and that the cutting angle is not 

consistent between investigations. Young et al. (2002) tested over three different 

cutting angles (20o, 40o, and 60o) with the investigators’ results suggesting that the 

strength of the correlation reduced as cutting angle increased (r = -0.65, -0.53 and 

-0.35, respectively), although Young et al. (2002) reported a stronger correlation 

when the number of direction changes was increased (four consecutive 60o cuts: r 

= -0.54). Sharper direction changes are associated with longer ground contact 

times (Condello et al., 2016), so it is possible that the influence of reactive strength 

and stiffness is slightly diminished as the cutting angle increases. As Young et al. 

(2015) also used a shallower cutting angle (45o), this could contribute to the 

discrepancies observed within the current study. In contrast, Delaney et al. (2015) 

employed a sharp 180o change of direction (5-0-5 CODS test) which may be 

associated with a different kinematic profile versus a 90o cut - such as a deeper 

squat into the turn and pronounced heel contact (Hewit et al., 2012) - which are 

likely to impose different demands on the leg-spring. Importantly, vertical stiffness 

was not assessed in the aforementioned investigations (Young et al., 2002; 

Delaney et al., 2015; Young et al., 2015), further emphasising the novelty of the 

current study. The effect of cutting angle on the relationship between ankle and 

knee stiffness has not been explored and would prove an interesting area for future 

investigation. It would be anticipated that the influence of knee stiffness would 

increase in response to larger cutting angles given that longer contact times and 

greater angular displacements would increase the reliance on active force 

generation (Kuitunen et al., 2011). However, it is important to state that shorter 

ground contact times, regardless of task, are strongly related to performance. For 

example, Sasaki et al. (2011) examined a 180° task and Marshall et al. (2014) a 

75° task.  Stiffer systems are likely to transfer force more efficiently (Bret et al., 

2002) and reduce ground contact times (Arampatzis et al., 2001b).   
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It is also clear that parameters such as vertical stiffness and ground contact time 

would be affected by the shoe-surface interaction (i.e. Ferris & Farley, 1997). 

Athletes would be expected to increase stiffness of the lower limb on a more 

compliant surface and reduce stiffness on a stiffer surface in order to maintain total 

stiffness of the body/surface interface (Ferris & Farley, 1997). Such adjustments 

can be made in a single step and allow the body to minimise changes in centre of 

mass displacement (Ferris et al., 1999). The extent to which CODS variables may 

differ between a stiffer indoor surface and a more compliant grass surface warrants 

specific investigation. As the current study sought to replicate movement patterns 

associated with field-based sport, the use of an indoor surface must be 

acknowledged as a limitation but balanced by the indoor environment allowing 

greater control of confounding variables such as surface stiffness. In the current 

study, participants performed the test on the same surface and used the same 

footwear in each trial to ensure the body/surface interaction remained consistent.  

Vertical stiffness is a function of vertical ground reaction force and centre of mass 

displacement (Farley et al., 1998; Farley & Morgenroth, 1999), therefore 

asymmetries in either of these variables could influence asymmetries in vertical 

stiffness. In line with the findings of Study 2, Study 3 reports that asymmetries in 

vertical stiffness are determined by asymmetries in centre of mass displacement 

(r2 = 0.90). However, centre of mass displacement is a global representation of 

how the leg-spring deforms in response to ground reaction force (Butler et al., 

2003), and does not consider the respective contribution of individual joints or 

‘springs’ (Pearson & McMahon, 2012). It is therefore important to determine if a 

particular joint/s is responsible for dictating vertical stiffness asymmetries as this 

could influence the design of subsequent exercise interventions. 



 

151 
 

Simulation models had previously determined that vertical stiffness was regulated 

by ankle stiffness and not by knee stiffness (Farley et al., 1998; Farley & 

Morgenroth, 1999). This position has been supported in hopping investigations by 

Kuitunen et al. (2011) and Kim et al. (2013), and in drop jumping by Arampatzis et 

al. (2001). Given these observations it is not surprising that asymmetries in vertical 

stiffness appear to be predicted by asymmetries in ankle stiffness within this thesis. 

In a fixed system with multiple springs, the least stiff joint would be expected to 

undergo the greatest angular displacement in response to a given force (Farley et 

al., 1998; Kuitunen et al., 2011). During the unilateral drop jump task performed in 

Study 3, the ankle was the least stiff spring within the system and underwent the 

greatest angular displacement. The results of the current study support the notion 

that the least stiff joint will have the greatest influence on the overall stiffness of the 

leg-spring system (Kuitunen et al., 2011) and, perhaps, bilateral asymmetries 

therein.  

Adjustments in knee stiffness appear important in optimising torque output rather 

than in the modulation of vertical stiffness (Kuitunen et al., 2011); the anatomy of 

the knee extensors in relation to the plantar flexors facilitates greater moments at 

the knee versus the ankle (Alexander & Ker, 1990). Comparisons between the fast 

and slow groups (Table 5.3) suggest a potential reliance on different movement 

strategies during the drop jump; the fast group exhibit ‘moderately’ greater ankle 

stiffness but lower values for knee and hip stiffness. In line with the findings of 

Bobbert et al. (1987) this could infer that faster performers are utilising a more 

reactive ‘bounce’ drop jump strategy whereas slower performers are utilising 

something closer to a ‘countermovement’ drop jump strategy. These differences in 

ankle stiffness may ultimately explain the differences in CODS performance. 
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In the investigation by Pruyn et al. (2014), stiffness of the medial gastrocnemius 

and soleus, determined by quasi-isometric myometry, was shown to differentiate 

fast and slower performers where vertical stiffness did not. Marshall et al. (2014) 

also observed a significant correlation plantar flexor moment at the ankle (r = -0.65) 

and ankle power (r = -0.77) with the time to complete a lateral cutting task. These 

results suggest that stiffness around the ankle may contribute to CODS although 

this was not examined directly in either investigation. The current study reports a 

‘moderate’ between-group difference in ankle stiffness and ‘small’ difference in 

ankle stiffness asymmetry such that faster performers had stiffer ankles and 

displayed less asymmetry. However, correlations with CODS performance time 

were not observed. Whilst ankle stiffness is no doubt important during a change of 

direction, particularly given its likely governance of vertical stiffness (Farley et al., 

1998; Farley & Morgenroth, 1999; Arampatzis et al., 2001b; Kuitunen et al., 2011; 

Kim et al., 2013), it appears that this is not an important determinant of CODS 

performance in its own right, at least when evaluated in a drop jump task. As 

previously discussed, it is possible that the increased ground reaction forces 

associated with the change of direction increased the relative important of stiffness 

at the knee joint as a consequence (Kuitunen et al., 2011). The current study 

suggests that summative stiffness of the leg may be more important to CODS than 

the stiffness of any individual joint, but future investigations should seek to examine 

joint stiffness during the CODS task directly. A three-dimensional motion analysis 

of the CODS test would demonstrate how additional kinematic factors (i.e. pelvic 

lateral tilt and thorax rotation (Marshall et al., 2014) influence and interact with 

stiffness variables and CODS performance. 
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5.6 Conclusion 

In conclusion, mean vertical stiffness and jump height asymmetry, both determined 

during a unilateral drop jump, were the strongest predictors of CODS in 

recreationally trained males. The unilateral drop jump test may provide coaches 

and practitioners with a tool to not only assess an individual’s stiffness profile, but 

also to quantify specific factors linked to CODS. However, the efficacy of this tool 

should be further evaluated in athletic populations. This assessment may be used 

to inform the training process and evaluate the impact of specific exercise 

interventions, although further research is required to determine if the modulation 

of these factors through training may improve CODS. 

 

5.7 Implications for the thesis 

The results of Study 3 demonstrated that vertical stiffness was the strongest 

predictor of CODS. This was the first study to report a relationship between 

stiffness variables and CODS. It is therefore hypothesised that interventions 

designed to augment vertical stiffness would improve CODS as a consequence of 

reducing ground contact time. This hypothesis was to be evaluated in Study 4. 

Study 3 was the first study to evaluate determinants of vertical stiffness asymmetry, 

reporting that ankle stiffness symmetry angle was the strongest predictor of vertical 

stiffness symmetry angle. Less asymmetry in ankle stiffness was also observed in 

faster performers. In Study 4 it was to be explored whether vertical stiffness 

asymmetries are reduced in response to the stiffness intervention and whether this 

directly modulates the effect of the intervention on CODS. As a result of the findings 

of Study 3, the protocols used as part of the intervention in Study 4 sought to 

augment vertical stiffness with a particular focus on stiffness at the ankle joint. 
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Chapter 6 - Acute Stiffness Interventions and Change of Direction Speed 

6.1 Overview 

The primary purpose of this chapter was to establish if acute exercise interventions 

designed to augment vertical stiffness would improve change of direction speed 

(CODS). Were it to be determined that such interventions could impact 

performance this could influence the performance preparation strategies of 

athletes, coaches and applied practitioners. 

The secondary purpose of this chapter was to establish if the effects of the 

intervention on CODS was linked to the modulation of vertical stiffness and 

stiffness asymmetries. For this reason, this chapter sought to evaluate bilateral and 

unilateral focused interventions.  

 

The chapter will report the results of the following: 

Study 4: The acute effects of bilateral and unilateral stiffness interventions 

on change of direction speed. 
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6.2 Introduction 

The importance of CODS in athletic performance is well established (Reilly et al., 

2000; Meir et al., 2001; Keogh et al., 2003; Sturgess & Newton, 2008; McGill et al., 

2012) and has been previously discussed in Section 2.10; interventions designed 

to improve CODS are therefore likely to carry a beneficial effect to performance. 

Acute pre-conditioning interventions employing heavy resistance exercise (Zois et 

al., 2011) and loaded ballistic exercise (i.e. weight vest loaded warm-up) (Maloney 

et al., 2014b; Nava, 2015) have been demonstrated to favourably affect CODS 

although the reasons behind these performance enhancements are yet to be 

elucidated.  

Considering ballistic exercise as the pre-conditioning stimulus, plyometric 

exercises emphasising the development of high levels of musculoskeletal stiffness 

may carry the greatest benefit to performance (Maloney et al., 2014a). 

Explanations of the post-activation potentiation effect tend to focus on 

physiological (such as the phosphorylation of myosin regulatory light chains 

(Sweeney et al., 1993) and increases in pennation angle (Mahlfeld et al., 2004)) 

and neural (such as the recruitment of higher order motor units (Gullich & 

Schmidtbleicher, 1996)) factors. Augmentations in any of these parameters would 

be expected to increase the rate of force development within skeletal muscle 

(Maloney et al., 2014a) and therefore benefit CODS performance. However, it is 

also important to consider the potential role of acute modulations in stiffness 

(Maloney et al., 2014a). Heavy resistance exercise has been shown to augment 

vertical stiffness in studies by Comyns et al. (2007) and Moir et al. (2011), the 

investigators noting increases of 10.9% (P < 0.05) and 16% (P = 0.013; d: 0.52) 

respectively. A weight vest loaded dynamic warm-up has also been demonstrated 

to augment vertical stiffness by 20% (d: 0.76; 90% confidence interval: ± 4%) 
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during a plyometric jumping task (Barnes et al., 2015). The modified deterministic 

model of CODS (Figure 6.1, discussed in Section 2.10) highlights the role of 

stiffness as a physical quality which not only allows efficient transmission of the 

generated impulse, but also its role in facilitating shorter ground contact times. 

Study 3 lends weight to this theory as it demonstrated that faster performers 

exhibited greater vertical and ankle stiffness during drop jumping along with shorter 

ground contact times during the CODS test. Given the importance of stiffness in 

maximising CODS, particularly at the ankle joint, it is possible that the performance 

improvements observed following pre-conditioning interventions are related to 

augmentations in stiffness, however, such propositions must be examined directly.  

 

Figure 6.1 - The modified deterministic model of change of direction speed. Key: 
LPHC = lumbo-pelvic hip complex.  

Asymmetries in force-related properties have been linked to impaired performance 

(Bailey et al., 2013; Bazyler et al., 2014; Bell et al., 2014; Hart et al., 2014b; Bailey 

et al., 2015), discussed in detail in Section 2.7. However, the literature had not 

previously investigated the effects of asymmetries in stiffness. Study 3 

demonstrated that faster performers (symmetry angle: 2.4 ± 3.9%) exhibited 
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significantly less asymmetry in drop jump height than slower performers (7.2 ± 3.8 

%) and reported a significant correlation (r = 0.60; P < 0.01) for this variable with 

CODS performance. Investigations by Lockie et al. (2014) and Hoffman et al. 

(2007) had previously reported that asymmetries in jump performance were not 

associated with impairments in CODS performance, although the asymmetry 

observed in Study 3 (asymmetry percentage: 13 ± 12%) was greater than reported 

by the previous investigations (Lockie et al. (2014): 10.4 ± 10.8%, Hoffman et al. 

(2007): 9.7 ± 6.9%). Effect size comparisons within Study 3 also revealed that 

asymmetries in ankle stiffness (d = -0.47), although not vertical stiffness, were 

lower in faster performers.  

It has been reported that asymmetries are likely to be linked to training status, 

weaker athletes demonstrating greater asymmetry during isometric squat testing 

(Bazyler et al., 2014). Following a seven-week training programme, Bazyler et al. 

(2014) subsequently observed concomitant reductions in force production 

asymmetry and increases in maximal force in weak athletes, but in not strong 

athletes. Whether acute reductions in asymmetry are associated with increased 

performance has not been investigated, although it has been demonstrated that 

asymmetry may be acutely reduced in response to exercise. Hodges et al. (2011) 

reported reductions in vertical ground reaction force asymmetry following a back 

squat protocol (5 sets of 8 repetitions) in athletes who exhibited an initial 

asymmetry (>1.7% in set 1). Whilst it is likely that exercise interventions will have 

a greater impact where pre-intervention asymmetries are more pronounced, 

discussed further in Section 2.9, it is not known how the modulation of asymmetries 

may contribute to CODS performance. Moreover, no studies have examined how 

exercise interventions may modulate stiffness asymmetries. 
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The findings of Golik-Peric et al. (2011) suggest that unilateral versus bilateral 

training may differently affect inter-limb asymmetries, also discussed in Section 

2.9. Whilst the potential applicability of these findings is limited by the population 

sampled (individuals were selected because of their asymmetry) and the training 

modalities employed (unilateral knee extensions versus bilateral half-squats), it 

does appear that unilateral versus bilateral performances are governed differently. 

As discussed in Section 2.6, the findings of a number of studies suggest the 

performance of each limb during bilateral tasks may be more closely regulated by 

neural mechanisms than during unilateral tasks (Flanagan & Harrison, 2007; 

Simon & Ferris, 2008; Benjanuvatra et al., 2013). This proposition is supported by 

the findings of Study 2 with unilateral versus bilateral tasks differently exhibiting 

stiffness asymmetries. It may appear likely that unilateral and bilateral exercise 

interventions would differently affect stiffness asymmetries but this is yet to be 

determined. 

Whilst there is no data comparing the effects of acute bilateral and unilateral 

interventions on CODS, Fisher and Wallin (2014) compared the effects of six-week 

unilateral and bilateral training interventions on CODS in collegiate rugby players. 

Incorporating a combination of resistance and plyometric exercises, the 

investigators observed greater improvements following unilateral training in both 

T-Test (unilateral: -0.63 ± 0.36 seconds, bilateral: -0.11 ± 0.03 seconds; P < 0.05) 

and Illinois agility test (unilateral: -0.80 ± 0.25 seconds, bilateral: -0.50 ± 0.06 

seconds; P = 0.05) performances. Fisher and Wallin (2014) highlight that the 

absence of force production or muscle activation data precluded an explanation of 

why the unilateral intervention appeared superior. In addition, the authors did not 

perform any unilateral measures to permit calculations of asymmetry. Whether the 

greater performance enhancements elicited by the unilateral regimen were 
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associated with reductions in asymmetry remains an unanswered question. 

Perhaps more pertinently, whether unilateral interventions are also superior to 

bilateral interventions when administered acutely is yet to be established. 

The primary aim of the Study 4 was to establish if acute exercise interventions 

designed to augment vertical stiffness influenced CODS. Previous investigations 

have not sought to determine a mechanistic basis for the acute enhancement of 

CODS and Study 3 had shown that vertical stiffness was the strongest determinant 

of CODS. It was hypothesised that both bilateral and unilateral ‘stiffness’ 

interventions would significantly improve CODS performance versus a control 

strategy of additional CODS practice. In addition, it was hypothesised that 

improvements in performance would be significantly greater following the unilateral 

intervention than following the bilateral or control interventions. 

The secondary aim of Study 4 was to establish if the effects of the intervention on 

CODS was linked to the modulation of vertical stiffness and vertical stiffness 

asymmetries. It was hypothesised that the unilateral intervention would increase 

vertical stiffness and reduce vertical stiffness asymmetry significantly more than 

the bilateral or control interventions. 
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6.3 Method 

6.3.1 Experimental overview 

Study 4 was a repeated measures experiment designed to compare the effects of 

different pre-conditioning interventions on stiffness, asymmetries and CODS. 

Following a familiarisation session, participants performed three different ‘stiffness’ 

interventions in a randomised and counterbalanced order. The three interventions 

were a) bilateral-focused (BILATERAL), b) unilateral-focused (UNILATERAL), and 

c) a control of CODS test practice (CONTROL). Vertical stiffness was determined 

pre- and post-intervention whilst CODS test performance was assessed post-

intervention.  

6.3.2 Participants 

Fourteen healthy males volunteered to participate in the study. Ten participants 

completed all three experimental trials (age: 22 ± 2 years; height: 1.78 ± 0.05 m; 

body mass: 75.1 ± 8.7 kg), four did not complete all three trials due to time 

commitments. A minimum sample size of nine participants was determined from a 

priori power analysis (G*Power 3.1, Heinrich-Heine-Universität, Düsseldorf, 

Germany) based upon an estimated effect size (d) of 0.6 and a power of 0.8 (Beck, 

2013). Participants were recreationally active (undertaking ≥ 2.5 hours of physical 

activity per week), reported no previous (within the last 12 months) or present lower 

limb injury and provided informed consent to participate in the study. Full ethical 

approval was granted by the review board of the Institute for Physical Activity 

Research, University of Bedfordshire and all procedures were conducted in 

accordance with the Declaration of Helsinki. 
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6.3.3 Experimental trials 

A single familiarisation session was performed seven days prior to the 

experimental trial. Study 1 had indicated that a single familiarisation session was 

appropriate for unilateral drop jumping and pilot testing prior to Study 3 indicated 

that this was also appropriate for the CODS test. During the session, participants 

were also familiarised with all the warm-up exercises including both the bilateral 

and unilateral intervention exercises. 

An outline of the experimental trials is shown in Figure 6.2. All trials were conducted 

at the same time of day (09:30 - 12:00) for each participant, to alleviate the effects 

of circadian rhythms. The testing laboratory was controlled at an ambient 

temperature of 25oC. Participants were instructed to prepare for testing as they 

would for training. The execution of each experimental trial was monitored by a 

United Kingdom Strength and Conditioning Association accredited strength and 

conditioning coach to ensure for consistency of technique. 

 

Figure 6.2 - The design of each experimental trial. Key: CODS = change of 
direction speed.  

6.3.4 Warm-up 

Participants completed 5 minutes of cycle ergometry at a self-determined power 

output (135 ± 22 W). During the familiarisation session, participants were instructed 

to find a cadence and loading which allowed them to achieve a rating of perceived 
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exertion of 5-7 (0-10 scale), this cadence and loading combination was then 

employed during the experimental trials. Immediately following the completion of 

the cycle ergometry, participants performed the exercises from the ‘generic 

movement preparation’ section of the warm-up outlined in Section 3.3.2.3 (Table 

3.5); this is termed as the ‘mobility’ component within Figure 6.2. 

6.3.5 Stiffness interventions 

In a randomised cross-over design, participants completed experimental trials with 

the bilateral, unilateral and control stiffness interventions outlined in Figure 6.3; 

trials were separated by no less than six and no more than fourteen days. For the 

unilateral exercises, the number of prescribed repetitions was performed on both 

legs. For the bilateral and unilateral exercises, sets and exercises were separated 

by 60 seconds (Read & Cisar, 2001), in the unilateral intervention there was no 

recovery between limbs for any of the exercises.  

 

Figure 6.3 - Exercises performed in each of the three stiffness inventions. Key: 
CODS = change of direction speed.  

Bilateral and unilateral interventions were cued using the same terminology. The 

‘soft’ set of pogo hops was cued to be performed in a “spongy and relaxed” manner. 

The ‘stiff’ pogo hops and drop jumps were cued to be performed in a “stiff” manner; 

participants were instructed to spend as little time in contact with the floor as 

possible during each jump and cued to imagine the floor as “hot coals”. For the 

control intervention, participants performed circuits of the CODS test. CODS 
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practice was chosen as the control intervention as this would be more 

representative of a ‘typical’ warm-up strategy which would attempt to replicate the 

types of subsequent activity to be undertaken (McGowan et al., 2015). Circuits of 

the CODS test were performed alternating between clockwise and anti-clockwise 

directions, each separated by 60 seconds. Participants were instructed to perform 

the first circuit at 50% intensity and the subsequent four with maximal effort. 

6.3.6 Stiffness testing 

Vertical and joint stiffness of the left and right limbs was assessed before and after 

the stiffness intervention (Figure 6.2) using the unilateral drop jump protocol. These 

general procedures have been described in detail in Sections 5.3.5 - 5.3.8. 

Participants performed two unshod drop jumps for each limb at each time point.  

Drop jumps were performed from a height of 0.18 m onto a force plate system 

(Kistler 9281, Kistler Instruments, Winterthur, Switzerland) and were recorded in 

the sagittal plane using a high-speed video camera (Quintic High-Speed LIVE USB 

2, Quintic Consultancy Ltd., Coventry, United Kingdom) at a frame-rate of 100 Hz. 

Inverse dynamics was used to determine vertical stiffness and joint stiffness of the 

ankle and knee. 

6.3.7 Change of direction speed testing 

CODS performance was assessed following each of the stiffness interventions 

(Figure 6.2) using the double-cut test shown in Figure 6.4 and described in detail 

in Section 5.3.9. 
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Figure 6.4 - An example of the experimental set-up for the change of direction 
speed test set up to examine right leg cutting performance, the set-up would be 
mirrored to examine left leg performance.  

Participants were required to perform two 90o cuts in the same direction (clockwise 

for the left leg trials or anti-clockwise for the right leg trials) during each trial and 

were instructed to complete the task as quickly as possible. Performance time was 

recorded using two sets of timing gates (TC-Timing System, Brower Timings, Utah, 

USA). Participants performed four consecutive trials in one direction before 

performing four trials in the other direction; the order in which directions were tested 

was randomised and counterbalanced. Participants’ fastest trial in each direction 

was subsequently analysed. Overall CODS performance was the sum of 

participants’ fastest trials in the clockwise and anticlockwise directions. Trials were 

separated by a recovery duration of 60 seconds. 

To obtain ground reaction force data during the CODS test, the first cut was 

performed with the push-off (outside) foot contacting entirely within the force plate. 

Trials were excluded if the participant landed outside the confines of the force plate, 

this was retrospectively checked using video analysis. All of the participants’ 

fastest trials met these criteria. 
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6.3.8 Statistical analysis 

Asymmetries were quantified using the symmetry angle, calculated using the 

procedures outlined by Zifchock et al. (2008). As symmetry angle values may be 

negative or positive to reflect left or right side dominance, negative values were 

transformed to positive values prior to examining the relationship with performance 

in order to evaluate differences solely in the magnitude of asymmetry. 

Shapiro-Wilks tests were performed to assess for normality; all variables were 

considered to be normally distributed given an alpha level of P > 0.05. Pair-wise 

effect sizes (d) (Cohen, 1998) were calculated and interpreted using the thresholds 

defined by Hopkins (2003) where: <0.20 = trivial, 0.20-0.59 = small, 0.60-1.19 = 

moderate, 1.20-1.99 = large, and ≥2 = very large. Statistical significance for all 

analyses was set at an alpha level of P ≤ 0.05 and all statistical procedures were 

conducted using the Statistical Package for the Social Sciences for Windows 

(v21.0; SPSS Inc., Chicago, USA) 

A 3 (condition) x 2 (pre- to post-intervention) repeated measures analysis of 

variance (ANOVA) was performed to analyse for the effect of the interventions and 

subsequent interactions. An additional repeated measures ANOVA was performed 

for post-intervention values alone, to analyse for differences between the 

interventions. The correlation between post-intervention vertical stiffness and 

overall CODS time was examined using Pearson’s r.   
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6.4 Results 

6.4.1 Change of direction speed 

 
Figure 6.5 - Mean (± standard deviation) change of direction speed test 
performances following each of the three interventions. * indicates significantly 
faster than control (P < 0.05). 

CODS performances were significantly different between conditions (F(2,18)  = 7.14; 

P = 0.005). Performances in UNILATERAL were 1.7% faster than CONTROL (P = 

0.011; d = -1.08), but not BILATERAL (1.0% faster; P = 0.14; d = -0.59); these 

effect sizes were both ‘moderate’. BILATERAL performances were not different 

from CONTROL (0.8% faster; P = 0.41; d = -0.48) although the effect size was also 

moderate. CODS performance time was significantly correlated to post-

intervention vertical stiffness (r = -0.31; P = 0.046). 
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Figure 6.6 - Participants’ change of direction speed test performances following 
each of the three interventions. 

There was evidence of some inter-individual variability in response to the 

interventions (Figure 6.6). Seven participants recorded their quickest CODS test 

performance following UNILATERAL, two following BILATERAL and one following 

CONTROL. 

Table 6.1 - Change of direction speed test performance and ground contact times, 
and the associated symmetry angles, following the three interventions. 

Variable Bilateral Unilateral Control 

     Faster limb 

Performance time (sec) 2.56 ± 0.04 2.53 ± 0.03 2.58 ± 0.05 

     Slower limb 

Performance time (sec) 2.60 ± 0.05 2.58 ± 0.05 * 2.62 ± 0.05 

     Symmetry 

Performance time SYM (%) 0.5 ± 0.3 0.6 ± 0.7 0.6 ± 0.5 

GCT SYM (%) 2.1 ± 1.3 2.2 ± 0.7 3.1 ± 1.9 

* indicates significantly different from control (P < 0.05). 

Key: SYM = symmetry angle. 
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There was a main effect of intervention on CODS performance time for participants’ 

faster (F(2,18) = 3.56; P = 0.050) and slower (F(2,18) = 6.70; P = 0.007) limbs (Table 

6.1). Pair-wise comparisons were not significant for the faster limb, although the 

faster performances following UNILATERAL were associated with moderate effect 

sizes versus CONTROL (P = 0.079; d = -1.12) and BILATERAL (P = 0.37; d = -

0.69). Performances for the slower limb were significantly faster following 

UNILATERAL than following CONTROL (P = 0.017; d = -0.86). 

 
Figure 6.7 - Participants’ ground contact times during the change of direction 
speed test for the fast and slow limbs following each of the three interventions. 

Differences in ground contact times were not observed for the fast (F(2,18) = 0.75; P 

= 0.49) or slow (F(2,18) = 1.46; P = 0.26) limbs (Figure 6.7). Moderate effect sizes 

reported that ground contact time symmetry angle was lower following BILATERAL 

(d = -0.69) and UNILATERAL (d = -0.64) than following CONTROL, but these 

differences were not significant (F(2,18) = 2.19; P = 0.14). 
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6.4.2 Stiffness 

Table 6.2 - Post-intervention vertical, ankle and knee stiffness, and the associated 
symmetry angles and percentage changes, following the three interventions. 

Variable Bilateral Unilateral Control 

     Vertical stiffness 

Stiffness (N.m-1.kg-1) 14.4 ± 4.8 * 14.8 ± 4.7 * 13.0 ± 4.3 

Change in stiffness (%) 22.2 ± 29.7 26.0 ± 33.7 12.8 ± 22.1 

Symmetry angle (%) 4.0 ± 4.3 5.3 ± 3.7 5.3 ± 4.0 

Change in symmetry angle 
(%) -0.7 ± 5.7 1.0 ± 6.3 0.2 ± 7.5 

     Ankle stiffness 

Stiffness (N.m-1.rad-1) 535.1 ± 137.6 550.5 ± 131.5 518.7 ± 91.1 

Change in stiffness (%) 9.9 ± 1.3 8.6 ± 1.6 8.4 ± 1.5 

Symmetry angle (%) 3.2 ± 3.0 3.1 ± 3.6 3.5 ± 2.5 

Change in symmetry angle 
(%) 

0.9 ± 4.9 2.7 ± 5.0 -0.8 ± 8.4 

     Knee stiffness 

Stiffness (N.m-1.rad-1) 2565.2 ± 714.3 2547.2 ± 590.6 2200.8 ± 359.0 

Change in stiffness (%) 20.1 ± 23.5 * 15.3 ± 22.1 0.1 ± 19.2 

Symmetry angle (%) 7.0 ± 5.4 4.0 ± 3.0 4.5 ± 3.4 

Change in symmetry angle 
(%) 

0.9 ± 7.2 -2.7 ± 7.9 5.0 ± 10.0 

* indicates significantly different from control (P < 0.05). 

Key: change = change from pre- to post-intervention. 

Pre- to post-intervention 

There was a main effect of the intervention, such that there was a significant 

increase in vertical (F(1,9)  = 6.53; P = 0.031) and ankle (F(1,9)  = 6.38; P = 0.032) 

stiffness, but not knee (F(1,9) = 2.80; P = 0.13) stiffness, from pre- to post-

intervention. There was no significant interaction effect between time (pre- to post-

intervention) and intervention for vertical (F(2,18) = 2.58; P = 0.104) and ankle (F(2,18)  

= 0.39; P = 0.684) stiffness, but there was a significant time by intervention 
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interaction effect for knee stiffness (F(2,18) = 5.38; P = 0.015) indicating that the 

change in knee stiffness was not uniform across all three conditions (Table 6.2). 

The percentage change in vertical (F(2,18) = 2.36; P = 0.12) and ankle (F(2,18) = 0.04; 

P = 0.96) stiffness was not significantly different between conditions (Table 6.2). 

The percentage change in knee stiffness (F(2,18) = 5.85; P = 0.011) from pre- to 

post-intervention was significantly different between conditions. The change in 

knee stiffness was greater following BILATERAL versus CONTROL (P = 0.012; d 

= 0.86) but not UNILATERAL (P = 0.90; d = 0.21); there was no difference between 

UNILATERAL and CONTROL although the effect size was moderate (P = 0.06; d 

= 0.65). 

Post-intervention 

Post-intervention vertical stiffness was significantly different between conditions 

(F(2,18) = 5.16; P = 0.017) (Table 6.2). Vertical stiffness was greater following 

BILATERAL (11%; P = 0.019; d = 0.31) and UNILATERAL (14%; P = 0.049; d = 

0.39) versus CONTROL; there was no difference between BILATERAL and 

UNILATERAL (-2.6%; P = 0.94; d = -0.08).  

Post-intervention ankle (F(2,18) = 0.41; P = 0.67) and knee (F(2,18) = 3.04; P = 0.073) 

stiffness were not significantly different between conditions. A small effect size 

suggested greater ankle stiffness (6.1%; d = 0.26) and knee stiffness (15.7%; d = 

0.58) following UNILATERAL versus CONTROL. A moderate effect size suggested 

greater knee stiffness (16.6%; d = 0.61) following BILATERAL versus CONTROL. 

Asymmetry 

Post-intervention symmetry angles for vertical (F(2,18) = 0.32; P = 0.73), ankle (F(2,18) 

= 0.14; P = 0.87) and knee (F(2,18) = 1.90; P = 0.18) stiffness were not significantly 
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different between conditions (Table 6.2). Likewise, the percentage change in 

vertical (F(2,18) = 0.15; P = 0.87), ankle (F(2,18) = 0.60; P = 0.56) and knee (F(2,18) = 

1.60; P = 0.28) stiffness was not significantly different between conditions. 

6.4.3 Jump height and reactive strength index 

Table 6.3 - Post-intervention drop jump height and reactive strength index, and the 
associated symmetry angles and percentage changes, following the three 
interventions. 

Variable Bilateral Unilateral Control 

     Drop jump height 

Jump height (m) 0.09 ± 0.04 0.09 ± 0.04 0.09 ± 0.05 

Change in jump height (%) 17.9 ± 22.9 30.2 ± 32.2 10.8 ± 11.7 

Symmetry angle (%) 6.1 ± 4.7 6.2 ± 3.6 7.1 ± 5.3 

Change in symmetry angle (%) -3.7 ± 5.0 1.5 ± 9.9 -4.1 ± 8.2 

     Reactive strength index 

RSI (flight time : contact time) 1.03 ± 0.25 1.03 ± 0.26 0.94 ± 0.29 

Change in RSI (%) 16.1 ± 18.8 22.4 ± 17.7 7.1 ± 11.9 

Symmetry angle (%) 3.9 ± 3.0 3.6 ± 2.5 3.9 ± 2.2 

Change in symmetry angle (%) 0.0 ± 4.1 1.3 ± 6.5 -1.4 ± 5.0 

Key: change = change from pre- to post-intervention, RSI = reactive strength index. 

Pre- to post-intervention 

There was no significant change in drop jump height (F(1,9) = 0.62; P = 0.55) or 

reactive strength index (F(1,9) = 2.18; P = 0.14) from pre- to post-intervention. There 

was no interaction effect between time and condition for drop jump height (F(2,18) = 

0.53; P = 0.598), but there was for reactive strength index (F(2,18) = 3.59; P = 0.049). 

The percentage change in drop jump height (F(2,18) = 0.17; P = 0.18) or reactive 

strength index (F(2,18) = 0.04; P = 0.31) was not significantly different between 

conditions. 
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Post-intervention 

Post-intervention reactive strength index was significantly different between 

conditions (F(2,18) = 4.21; P = 0.032) (Table 6.3), although post-hoc comparisons 

did not reveal significant pair-wise differences. Post-intervention drop jump height 

was not significantly different between conditions (F(2,18) = 0.72; P = 0.50). 

Asymmetry 

Post-intervention symmetry angles for drop jump height (F(2,18) = 0.34; P = 0.72) 

and reactive strength index (F(2,18) = 0.05; P = 0.95) stiffness were not significantly 

different. Likewise, the percentage change in drop jump height (F(2,18) = 1.51; P = 

0.25) and reactive strength index (F(2,18) = 0.52; P = 0.60) was not significantly 

different between conditions. 
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6.5 Discussion 

The primary aim of Study 4 was to establish if acute exercise interventions 

designed to augment vertical stiffness influenced CODS. It was hypothesised that 

both the bilateral and unilateral preparation strategies would significantly improve 

CODS test performance versus a control strategy and that improvements would 

be greater following the unilateral intervention. Effect size analysis reported that 

both BILATERAL and UNILATERAL improved CODS performance versus 

CONTROL, but this difference was only significant for UNILATERAL. As such, 

these hypotheses cannot be wholly accepted. 

The secondary aim of Study 4 was to establish if the effects of the interventions on 

CODS was linked to the modulation of vertical stiffness and vertical stiffness 

asymmetries. It was hypothesised that both BILATERAL and UNILATERAL would 

increase vertical stiffness versus CONTROL, but that the UNILATERAL would 

reduce vertical stiffness asymmetry to a greater extent. The first of these 

hypotheses may be accepted as vertical stiffness was greater following both 

BILATERAL and UNILATERAL in comparison to control. The second of these 

hypotheses is rejected as vertical stiffness symmetry angle was not different 

between interventions. 

Following UNILATERAL, CODS test performance was 1.7% (d = 1.08) quicker 

versus CONTROL and 1.0% (d = 0.59) quicker versus BILATERAL. The effect of 

pre-conditioning interventions versus traditional dynamic warm-up practices on 

CODS has been evaluated previously in a selection of investigations. Reactive 

agility has been improved by 4.7% (d = 1.2) following heavy leg press exercise 

(Zois et al., 2011) in amateur soccer players. Badminton specific CODS has been 

improved by 5.0% (d = 0.83) following a weight vest loaded warm-up by Maloney 
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et al. (2014b) in professional badminton players. Nava (2015) also noted significant 

improvements in T-test performance following weight vest loaded warm-up in 

collegiate athletes, although the presentation of their results did not permit the 

calculation of percentages and effect size. Whilst Sole et al. (2013) did not report 

significant improvements (2.3%; d = 0.18; P = 0.07) in 10 m shuttle test 

performance following heavy back squats in collegiate tennis and basketball 

players, 70% of participants recorded faster times than following a dynamic warm-

up. The magnitude of CODS improvement observed in the current study is 

therefore less than has previously been reported in the literature, although 

differences in the CODS tests employed make it difficult to draw direct 

comparisons. 

The aforementioned studies which have reported CODS enhancements following 

pre-conditioning interventions have not attempted to examine the mechanisms by 

which these enhancements occur. The post-activation potentiation phenomenon is 

typically discussed within these investigations, as too is the purported physiological 

and neural underpinning of the post-activation potentiation response. However, it 

is also important to consider the potential role of acute modulations in stiffness 

(Maloney et al., 2014a). In Study 3 it was reported that vertical stiffness was the 

strongest predictor of CODS in the regression model and that faster performers in 

the CODS test exhibited greater vertical stiffness. This supports the deterministic 

model of CODS proposed in this thesis (Figure 6.1) and the hypothesis that 

increasing vertical stiffness will improve CODS. In comparison to CONTROL, post-

intervention vertical stiffness was 11% (d = 0.31) greater following BILATERAL and 

14% (d = 0.39) greater following UNILATERAL. The increase in vertical stiffness 

could explain why performances were quicker following the two stiffness 

interventions and is to be discussed later on in this section. 
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The increases in stiffness (BILATERAL: 11% and UNILATERAL: 14%) observed 

in the current study are comparable to the respective increases of 11% (P < 0.05) 

and 16% (d: 0.52; P = 0.013) observed by Comyns et al. (2007) and Moir et al. 

(2011) following heavy back squat interventions versus a post-warm-up baseline. 

However, Barnes et al. (2015) reported a greater increase of 20% (d: 0.76; 90%CI: 

4%) following a weight vest loaded warm up versus a control warm-up, an 

intervention with greater similarity to the interventions performed in the current 

study. Comparisons with the Barnes et al. (2015) investigation are also more 

appropriate given that they are the only investigators, to this author’s knowledge, 

to attempt to link performance enhancements to specific biomechanical variables, 

albeit within linear running. Barnes et al. (2015) reported an enhancement in 

performance (peak running speed) of 2.9% (90%CI: 0.8%), noting a ‘very-high’ 

correlation between the change in performance and the change in vertical stiffness 

(r = 0.88; 90% confidence intervals: 0.66-0.96). The current study reports a 

statistically significant relationship between increased stiffness and CODS, 

although this correlation (r = 0.31) is notably weaker than that of Barnes et al. 

(2015). 

Study 3 demonstrated that shorter ground contact times were associated with 

faster CODS performances, in agreement with previous investigations (Sasaki et 

al., 2011; Marshall et al., 2014). Increased stiffness would be expected to facilitate 

shorter ground contact times, as has been discussed previously (Section 2.11), 

and could explain how greater stiffness may contribute to the enhancement of 

CODS. Whilst the shortest ground contact times were observed following 

UNILATERAL and the longest following CONTROL (Figure 6.7), mirroring what 

was observed for CODS performance time, this relationship was not statistically 

significant and the effect sizes were small (d < 0.2). The likely reason for the lack 
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of a relationship within the current study is that augmentations in ground contact 

time were small and inter-participant variation was large. For example, the 

difference in average ground contact time between UNILATERAL and CONTROL 

was -1.6%, and the standard deviation was ~18% of the mean. It should also be 

noted that limb or joint stiffness was not determined during the CODS test within 

this thesis. Future investigations should seek to examine direct measures of 

stiffness during the changes of direction. 

Differences in CODS performance between interventions within the current study 

were not linked to symmetry angles or to changes (pre- to post-intervention) in 

symmetry angles. Study 3 had established that asymmetry in drop jump height was 

associated with slower CODS and that asymmetries in ankle stiffness, although 

not vertical stiffness, were greater in slower performers. This was in agreement 

with previous literature which had linked asymmetries in force-power qualities to 

impaired athletic performance (Bailey et al., 2013; Bazyler et al., 2014; Bell et al., 

2014; Hart et al., 2014b; Bailey et al., 2015), discussed in detail in Section 2.7. The 

magnitudes of asymmetry reported in the current study are similar to those 

reported in Study 3. It may therefore be inferred that asymmetries (drop jump 

height and ankle stiffness) show potential to differentiate CODS performance 

between individuals but that acute changes in these variables are not linked to 

changes in CODS within an individual. However, the current study demonstrates 

that changes in symmetry angles for all jump-derived variables were highly 

variable; in all but one instance the standard deviation was at least double the 

mean difference. Future investigations may wish to consider whether the 

magnitude of pre-intervention asymmetry could affect this response.  

Although the enhancement in CODS performance was not linked to changes in the 

symmetry angle between ‘fast’ and ‘slow’ limb performances, statistical analyses 
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suggest that the effect of the interventions could be different for the respective 

limbs. The current study reported that performances for the slow limb were 

significantly faster following UNILATERAL than following CONTROL but a similar 

relationship was not observed for the fast limb. Given that the performance 

improvement was the same for both limbs (1.7%) and a greater effect size was 

observed for the fast limb (d = 1.12) than for the slow limb (d = 0.86), this is perhaps 

an example of a type I error and consequential of a relatively small sample size (n 

= 10). Nonetheless, this is an area that future research may wish to explore. 

 

6.6 Conclusion 

Study 4 reports that a unilateral pre-conditioning intervention designed to augment 

vertical stiffness improved CODS performance relative to a control intervention. 

The improvements in CODS performance observed following the unilateral 

intervention were reported in conjunction with greater post-intervention vertical 

stiffness. Asymmetries in jump and stiffness variables were not modulated 

following the pre-conditioning interventions and do not appear related to the 

enhancements in performance. 
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Chapter 7 - Summary of Findings and Practical Implications 

7.1 Original contribution to knowledge 

This thesis seeks to highlight the following original contributions to knowledge: 

 This thesis demonstrated the reliability and validity of a novel method by 

which to assess vertical stiffness - the unilateral drop jump. 

 This thesis demonstrated that vertical stiffness during unilateral drop 

jumping was associated with change of direction speed (CODS) 

performance. This highlights the potential applicability of the unilateral drop 

jump within athletic testing protocols. 

 This thesis demonstrated that a novel unilateral ‘stiffness’ intervention 

augmented vertical stiffness and CODS performance beyond bilateral and 

control interventions. This highlights that the potential applicability of 

unilateral stiffness interventions in the pre-performance preparation of 

athletes. 
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7.2 Reflection on aims 

This thesis aimed to answer three questions: 

1. What is the most reliable and ecologically valid method to assess vertical 

stiffness in athletes required to perform changes of direction? 

2. Do vertical stiffness and vertical stiffness asymmetries influence CODS? 

3. Can acute ‘stiffness’ interventions positively influence CODS and, if so, are 

augmentations linked to the modulation of vertical stiffness and/or vertical 

stiffness asymmetries? 

This thesis found that: 

1. The unilateral drop jump was a more reliable and ecologically valid method 

to assess vertical stiffness in athletes required to perform changes of 

direction than bilateral hopping or bilateral drop jumping. 

2. Stiffness asymmetries did not influence CODS, however, vertical stiffness 

and asymmetry in drop jump height negatively affected CODS as separate 

entities. 

3. Acute stiffness interventions augmented CODS performance and vertical 

stiffness, but did not influence asymmetries. CODS performance was not 

directly related to the modulation of vertical stiffness.  

In addition, unilateral stiffness interventions were the most effective in 

augmenting both CODS performance and vertical stiffness. 

 



 

180 
 

7.3 Summary of studies 

A total of five studies were conducted in order to answer the questions posed by 

this thesis. 

7.3.1 Pilot study 

The reliability of Achilles tendon stiffness derived from isometric 

dynamometry and ultrasonography 

The aim of the pilot study was to assess the inter-session reliability of Achilles 

tendon stiffness obtained through ultrasonography. Despite the widespread use of 

ultrasonography to assess tendon properties, there has been a large degree of 

variability in the figures reported between investigations. Were the reliability of this 

method found to be acceptable during single-joint, quasi-isometric activity it would 

allow exploration of the reliability of these techniques during more complex and 

dynamic movements.  

The pilot study reported that Achilles tendon stiffness demonstrated poor reliability 

(coefficient of variation (CV): > 10%, ICC: < 0.80) over four testing sessions in 

participants previously unfamiliar with the testing protocol. The lowest inter-session 

CV, of 27%, was found between testing sessions 3 and 4.  

Given the high variability associated with ultrasonography measurements 

demonstrated in the pilot study, the use of ultrasonography was not incorporated 

in subsequent studies in this thesis. 
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7.3.2 Study 1 

The reliability of vertical stiffness during bilateral hopping, bilateral drop 

jumping and unilateral drop jumping 

The aim of Study 1 was to assess the inter-session reliability of vertical stiffness 

obtained through bilateral hopping, bilateral drop jumping and unilateral drop 

jumping. Bilateral hopping is the most widely used method by which to assess 

vertical stiffness but drop jumping tasks may demonstrate higher validity if seeking 

to explore relationships with high-intensity athletic performance. 

Study 1 reported CVs for vertical stiffness of ~14% for bilateral hopping, ~12% for 

bilateral drop jumping and ~7% for unilateral drop jumping following a single 

familiarisation session. 

These results suggested that unilateral drop jumping provides a more reliable 

measure of vertical stiffness when compared to bilateral drop jumping or bilateral 

hopping; this was the only task to report CVs < 10%. The most valid task by which 

to assess vertical stiffness asymmetries for an individual athlete now needed to be 

considered; this was evaluated in Study 2. 
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7.3.3 Study 2  

A comparison of methods to determine vertical stiffness asymmetries 

The aim of Study 2 was to establish the most valid performance task by which to 

assess the stiffness of the lower limb in subsequent investigations. Previous 

research has suggested that asymmetries may be differently expressed in cyclic 

versus acyclic (Flanagan & Harrison, 2007) and bilateral versus unilateral 

(Benjanuvatra et al., 2013) performance tasks. Determining the most valid task will 

provide athletes, coaches and applied practitioners with the most appropriate 

assessment tool to assess stiffness. 

Study 2 reported that significant vertical stiffness asymmetries were observed 

within all three tasks; as such, all three tasks could be used as a diagnostic tool to 

directly assess and quantify vertical stiffness asymmetry. However, vertical 

stiffness (P = 0.033) and vertical stiffness symmetry angle (P = 0.006) were 

significantly different between methods. Vertical stiffness was significantly lower in 

the compliant limb versus the stiff limb (P < 0.001) with a significant interaction 

effect between limb and performance task (P = 0.013). Asymmetry percentages 

between compliant and stiff limbs were 5.6% (P < 0.001; d: 0.22), 23.3% (P = 

0.001; d = 0.86) and 12.4% (P = 0.001; d = 0.39) for the bilateral hopping, bilateral 

drop jumping and unilateral drop jumping methods respectively. 

The results of Study 2 demonstrated that asymmetry in vertical stiffness is 

expressed differently in cyclic versus acyclic and bilateral versus unilateral 

performance tasks. As this thesis sought to examine the relationships between 

stiffness and CODS - acyclic and unilateral in nature - the unilateral drop jump was 

subsequently used as the performance task by which to assess parameters of 

stiffness.  
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7.3.4 Study 3  

Do stiffness asymmetries predict change of direction speed? 

The primary aim of Study 3 was to determine if bilateral asymmetry in vertical 

stiffness influenced CODS. Force-related and kinematic asymmetries have been 

linked to impaired performance (Bailey et al., 2013; Bazyler et al., 2014; Bell et al., 

2014; Hart et al., 2014b; Bailey et al., 2015), but this has not been evaluated in 

regards to CODS. Were it to be determined that asymmetry influenced CODS, this 

would influence how interventions to improve CODS may be devised and 

structured. 

The secondary aim of Study 3 was to evaluate the relative importance of the ankle, 

knee and hip in modulating vertical stiffness asymmetry. Previous research has 

demonstrated that ankle stiffness is likely to determine vertical stiffness (Farley et 

al., 1998; Farley & Morgenroth, 1999; Arampatzis et al., 2001b; Kuitunen et al., 

2011; Kim et al., 2013) but has not examined this in relation to asymmetry. 

Understanding the determinants of asymmetry could influence the design of 

strategies intended to reduce asymmetry. 

Study 3 reported that mean vertical stiffness and asymmetry in drop jump height 

explained 63% (r2 = 0.63; P = 0.001) of CODS performance. Faster performers in 

the CODS demonstrated greater vertical stiffness (P = 0.003; d = 1.76), less 

asymmetry in jump height (P = 0.026; d = -1.28) and ‘moderately’ greater ankle 

stiffness (P = 0.28; d = 0.62). Ankle stiffness and reactive strength index symmetry 

angles explained 79% of the variance in vertical stiffness asymmetry angle (r2 = 

0.79; P < 0.001). 

Whilst vertical stiffness asymmetry was not a predictor of performance, both 

vertical stiffness and asymmetry (drop jump height) were strongly associated with 
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CODS as separate entities. The unilateral drop jump test may therefore provide 

coaches and practitioners with a tool to not only assess an individual’s stiffness 

profile, but also to quantify specific factors linked to CODS. Study 4 would seek to 

evaluate the effect of specific ‘stiffness’ pre-conditioning interventions on CODS 

with a particular focus around the ankle joint. 
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7.3.5 Study 4  

The acute effects of bilateral and unilateral stiffness interventions on change 

of direction speed 

The primary aim of Study 4 was to determine if acute exercise interventions 

designed to augment vertical stiffness would improve CODS. It has previously 

been shown that pre-conditioning interventions can augment both vertical stiffness 

(Comyns et al., 2007; Moir et al., 2011; Barnes et al., 2015) and CODS (Zois et al., 

2011; Maloney et al., 2014b; Nava, 2015), but not examined the relationship 

between these factors. Were it to be determined that such interventions impact 

performance, this could influence the performance preparation strategies of 

athletes. The literature had also demonstrated that unilateral training interventions 

(Fisher & Wallin, 2014) may carry greater benefits to CODS than bilateral 

interventions, but had not examined this effect acutely. For this reason, Study 4 

examined the effects of bilateral and unilateral focused interventions. 

The secondary aim of Study 4 was to establish if the effects of the intervention on 

CODS was linked to the modulation of vertical stiffness and vertical stiffness 

asymmetry. Previous research had shown that acute exercise interventions may 

reduce ground reaction force asymmetry (Hodges et al., 2011), but had not 

evaluated stiffness asymmetries.  

CODS performance was significantly different between conditions (P = 0.005). 

Performances following the unilateral intervention were significantly faster than 

control (1.7%; P = 0.011; d = -1.08), but not significantly faster than the bilateral 

intervention (1.0% faster; P = 0.14; d = -0.59). Post-intervention vertical stiffness 

was also significantly different between conditions (P = 0.017). Versus control, 

vertical stiffness was 14% greater (P = 0.049; d = 0.39) following the unilateral 



 

186 
 

intervention and 11% greater (P = 0.019; d = 0.31) following the bilateral 

intervention; there was no difference between unilateral and bilateral interventions 

(2.6%; P = 0.94; d = -0.08). Post-intervention symmetry angles for vertical (P = 

0.73) and ankle (P = 0.87) stiffness were not significantly different between 

conditions. 

Study 4 reported that a unilateral pre-conditioning intervention designed to 

augment vertical stiffness improved CODS performance relative to a control 

intervention and was also associated with greater post-intervention vertical 

stiffness. However, performance improvements were not related to parameters of 

stiffness asymmetry. 
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7.4 Impact of the thesis 

7.4.1 Publications  

Partial findings from Study 1 have been published in the following peer-reviewed 

manuscript: 

Maloney SJ, Fletcher IM and Richards J. (2015). Reliability of unilateral vertical leg 

stiffness measures assessed during bilateral hopping. Journal of Applied 

Biomechanics 31(5): 285-291. 

Partial findings from Study 1 have also been submitted for publication in the 

following manuscript: 

Maloney SJ, Fletcher IM and Richards J. Reliability of vertical leg stiffness during 

bilateral and unilateral drop jumping. Journal of Sports Sciences. Under 

review. 

The findings of Study 2 have been published in the following peer-reviewed 

manuscript: 

Maloney SJ, Fletcher IM and Richards J. A comparison of methods to determine 

bilateral asymmetries in vertical stiffness. Journal of Sports Sciences 34(9): 

829-835. 

The findings of Study 3 have been published in two separate manuscripts: 

Maloney SJ, Richards J, Nixon DJN, Harvey LJ and Fletcher IM. Do stiffness and 

asymmetries predict change of direction performance? Journal of Sports 

Sciences. 30th April 2016 [epub ahead of print]. [doi: 

10.1080/02640414.2016.1179775]. 

Maloney SJ, Richards J, Nixon DJN, Harvey LJ and Fletcher IM. Determinants of 

vertical stiffness asymmetries in drop jumping. Scandinavian Journal of 

Science and Medicine in Sports. 30th March 2016 [epub ahead of print]. 

[doi: 10.1111/sms.12682] 
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The findings of Study 3 were also presented in a poster at the 2015 national 

conference of the United Kingdom Strength & Conditioning Association: 

Maloney SJ, Richards J, Nixon DJN, Harvey LJ and Fletcher IM. (2015, August). 

Do stiffness and asymmetries predict change of direction performance?  

Poster presented at the 2015 United Kingdom Strength & Conditioning 

Association National Conference, Kenilworth, United Kingdom. 

 

7.4.2 Dissemination of findings to the wider audience 

Following publication of the manuscript allied to Study 2, the author of this thesis 

was invited to discuss the study on a popular sports science podcast: 

 Franklyn-Miller, A. (Producer). (2015, 8th August). Measuring Leg Stiffness and 

Asymmetry with Sean Maloney [audio podcast]. Retrieved from 

https://soundcloud.com/drandyfranklynmiller/. 

The methodologies and findings of Studies 1 - 2 have also been discussed in the 

following online blog articles: 

Maloney, S. (2013, 20th October). Stiffness 1.01 [web log post]. Retrieved from 

http://www.maloneyperformance.com/Blog/?p=1213. 

Maloney, S. (2013, 3rd December). Measuring Stiffness - The Principles [web log 

post]. Retrieved from http://www.maloneyperformance.com/Blog/?p=1246. 

Maloney, S. (2015, 27th December). Assessing Stiffness in Athletes [web log post]. 

Retrieved from http://www.maloneyperformance.com/Blog/?p=1550. 
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7.5 Implications of the thesis 

7.5.1 Implications for the assessment of athletes 

Study 2 demonstrated that the expression of vertical stiffness and vertical stiffness 

asymmetry differs depending on the type of performance task utilised. Careful 

consideration must therefore be given to the most appropriate task for an individual 

or group of athletes. It is therefore proposed that:  

1. For athletes predominantly engaged in cyclic, submaximal activities 

bilateral hopping provides the assessment task with the greatest 

correspondence to performance. 

2. For athletes required to perform bilateral, vertical jumps bilateral drop 

jumping would be the preferred task. 

3. For athletes performing changes of direction off a single limb unilateral drop 

jumping carries the greatest degree of validity. 

However, Study 1 demonstrated that the unilateral drop jump was the most reliable 

test (CV: ~7%). Bilateral hopping and bilateral drop jumping were associated with 

CVs > 10%. Researchers and practitioners should seek to establish the reliability 

of their chosen method within their specific population before deciding on the most 

appropriate assessment of vertical stiffness. 
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7.5.2 Implications for the preparation of athletes 

Chronic preparation (training) 

Study 3 demonstrated that vertical stiffness and drop jump height asymmetry were 

the strongest determinants of CODS. In addition, ankle stiffness was also likely to 

differentiate faster and slower performers within the sampled cohort. Athletes, 

coaches and applied practitioners should seek to develop vertical and ankle 

stiffness, whilst also minimising drop jump performance asymmetry, in instances 

where CODS is important to performance.  

Although performance enhancement was the focus of this thesis, it is important to 

acknowledge that changes in stiffness parameters and related asymmetries is 

likely to influence injury incidence. It has been purported that high levels of 

stiffness, whilst advantageous to performance, may predispose an athlete to an 

increased risk of injury (Butler et al., 2003; Pearson & McMahon, 2012). The review 

article by Butler et al. (2003) summarises that high levels of stiffness may increase 

the risk of bony injuries such as knee osteoarthritis and stress fractures (no specific 

location), a likely consequence of increased loading rates. There is evidence to 

support a link between stiffness and stress fractures. For example, Milner et al. 

(2006) observed greater knee, but not ankle, stiffness in female endurance runners 

with a history of tibial stress fractures. There is currently no evidence to support 

the role of stiffness in knee osteoarthritis in humans; Kujala et al. (1995) concluded 

that repetitive non-traumatic loading was unlikely to confer greater risk. Lorimer 

and Hume (2016) have also linked increased leg stiffness, although decreased 

ankle stiffness, with an increased incidence of Achilles tendon injury in endurance 

runners.  
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However, the Butler et al. (2003) review also suggests that low levels of stiffness 

have been associated with an increased incidence of (non-specific) soft tissue 

injuries. Williams et al. (2001) observed that the incidence of general knee pain, 

patellar tendinopathy and posterior tibialis tendinopathy was higher in low-arched 

(and therefore lower leg stiffness) endurance runners. Reduced stiffness may also 

explain the increased incidence of anterior cruciate ligament injury in female 

athletes (Pearson and McMahon, 2012). Padua et al. (2006) reported that female 

athletes demonstrated less vertical stiffness than male athletes. A more compliant 

leg spring is likely to be associated with greater anterior translation of the tibia and 

increased internal rotation of the femur at ground contact (Pearson and McMahon, 

2012). 

It is perhaps appropriate to suggest that that there will be a ‘desirable’ stiffness 

profile for an individual dependent on their sport, position and athletic profile. 

Factors that could influence the body/surface interface, such as type of playing 

surface, weather conditions and choice of footwear, may also modulate this 

relationship on an intra-individual basis. The desirable stiffness profile would 

consider the magnitude of stiffness that is required for them to perform in an 

effective manner versus the increased demand this places upon the body. For this 

reason, the monitoring of vertical stiffness and related asymmetries may also be 

warranted from an injury prevention perspective. As asymmetries in vertical 

stiffness appear to infer an increased risk of muscular injury in Australian Rules 

footballers (Pruyn et al., 2012), a potential consequence of an imbalance in loading 

and loading rates, the monitoring of stiffness asymmetries may be more important 

than the overall level of stiffness.  
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Acute preparation (warm-up) 

Study 4 demonstrated that a unilateral ‘stiffness’ pre-conditioning strategy was 

more effective than bilateral or control (additional CODS practice) strategies. For 

athletes preparing to engage in sports where CODS is an important determinant of 

performance, it is therefore recommended that preparation strategies include 

unilateral exercises designed to augment vertical and ankle stiffness. Examples 

utilised in this thesis included pogo hops and drop jumps. 
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7.6 Limitations of the thesis 

7.6.1 Participant population 

The population sampled in the current study were recreationally active males 

recruited from a university campus. Inclusion criteria stated that participants must 

be undertaking a minimum of 2.5 hours of physical activity per week, but did not 

stipulate that all participants were engaged in competitive sport, in order to ensure 

that a large enough sample size was achieved to meet a priori power analysis 

requirements. Future research should seek to explore the findings of this thesis in 

competitive athletes who are likely to have a greater training age, strength and 

CODS skill. It has been established that asymmetries are likely to be smaller in 

stronger individuals (Bazyler et al., 2014) and more skilled CODS performers may 

also be better able to initiate technical adjustments in response to asymmetries 

(Lockie et al., 2014).  

 

7.6.2 Equipment 

Ultrasonography 

In the pilot study, the medial gastrocnemius - Achilles tendon complex was imaged 

using an ultrasound scanner (Vivid 7, GE Healthcare, Horton, Norway) capable of 

sampling at a rate of just 16.8 Hz. As discussed in Section 3.2.4, this could explain 

why poor reliability of elongation measures was observed. Elsewhere in the 

literature sampling rates of 25 - 50 Hz are commonly utilised (Kubo et al., 2001; 

Magnusson et al., 2001; Kubo et al., 2002; Burgess et al., 2009; Kongsgaard et al., 

2011). It is reasonable to suggest that the reliability of Achilles tendon elongation 
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measures is unlikely to achieve improved reliability unless higher sampling rates 

can be utilised. 

Motion capture 

As drop jumping is a task performed in the sagittal plane, the assessment of ankle, 

knee and hip kinematics using two-dimensional motion capture would therefore 

seem appropriate. Indeed, this technique has been widely used within vertical 

stiffness investigations using drop jumping and hopping (Farley & Morgenroth, 

1999; Arampatzis et al., 2001a; Arampatzis et al., 2001b; Hobara et al., 2009; 

Kuitunen et al., 2011). However, changes of direction are performed in sagittal, 

frontal and transverse planes of motion and a two-dimensional motion analysis is 

clearly inappropriate.  

As a three-dimensional motion analysis system was not available for use within the 

thesis, Studies 3 and 4 were unable to evaluate kinematic parameters during the 

CODS test. Were this data available, this would permit the calculation of stiffness 

measures directly during the cutting action. As established in Study 2, the 

expression of stiffness and subsequent asymmetries is task-dependant. Stiffness 

measures determined during cutting may demonstrate different relationships with 

CODS performance than those determined during a unilateral drop jump. In 

addition, a three-dimensional motion analysis would also demonstrate how 

different kinematic factors (i.e. pelvic lateral tilt and thorax rotation (Marshall et al., 

2014)) influence and interact with stiffness variables and CODS performance. 
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7.6.3 Change of direction speed test 

Specificity of cutting angle 

This thesis employed a 90o double-cutting task as the measure of CODS 

performance; the specific set-up of the task was constrained by the space within 

the testing laboratory and position of the force plates. Whilst a 90o cut may be -

particularly applicable within certain team-sports - for instance, attempting to side-

step a defender within rugby union - it may not be appropriate to extrapolate the 

findings of the current thesis to other cutting angles without investigating these 

directly. Within most sports, players are required to perform cutting actions across 

a range of angles and it is therefore important to consider whether determinants of 

CODS - such as vertical stiffness - are common across all of these. 

Influence of linear velocity 

The CODS task employed within this thesis incorporated short bursts of linear 

acceleration and deceleration punctuated by two changes of direction. The 

respective influence of these factors to overall CODS performance was not 

separated. The short distance between cuts (3 m) would be anticipated to reduce 

the emphasis placed upon linear speed versus longer distances.  Also, the specific 

nature of the cut (a sharp 90o power cut with no curved approach) would be 

expected to increase the emphasis placed upon the change of direction. However, 

the possibility that task performance was dependent upon participants’ velocity 

between the changes of direction cannot be discounted. Consideration of factors 

such as approach velocity and exit velocity, together with the aforementioned 

three-dimensional motion capture, would be warranted in future investigations. The 

utilisation of additional pairs of timings gates in future investigations would help 

differentiate linear and turning components of the CODS test. 
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Appendix A2 - Inverse Dynamics  

Linear kinetics 

Acceleration, velocity and centre of mass displacement at time intervals of 0.001 

sec were determined from the vertical force trace using the biomechanical 

principles described by Blazevich (2007) and Hall (2012), detailed in the following 

formulae. 

Acceleration 

Instantaneous acceleration (m.s-2) at each time interval was calculated from 

instantaneous force and body weight (both in N) as shown in Equation 1. 

 
 
(     )

/ 9.81
i

Fi BW
A

BW


   (1) 

Where: Ai = instantaneous acceleration, Fi = instantaneous force and BW = body 
weight. 

Velocity 

Instantaneous velocity (m.s-1) at each time interval was calculated from velocity at 

the previous time interval, acceleration at the previous time interval and the time 

interval as shown in Equation 2.  

      i p pV V A t      (2) 

Where: Vi = instantaneous velocity, Vp = previous velocity, Ap = previous 
acceleration and ∆t = time interval.  

Velocity at the first time interval (0.001 sec) previous velocity was determined as 

shown in Equation 3 (Hobara et al., 2013). A velocity of -1.88 m.s-1 is equivalent to 

the estimated velocity of a mass falling from a height of 0.18 m. 
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 0 0.5 9.81 aV t      (3) 

Where: V0 = initial velocity, ta = aerial time. 

Centre of mass displacement 

Centre of mass displacement (m) at each time interval during the initial ground 

contact phase was calculated from displacement at the previous time interval, 

velocity at the previous time interval and the time interval as shown in Equation 4.  

      i p pD D V t      (4) 

Where: Di = instantaneous displacement, Dp = previous displacement, Vp = 
previous velocity and ∆t = time interval. 
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Angular kinetics 

Ankle moment 

The sum of moments at the ankle (N.m) was calculated as shown in Equation 5. 

 ( ) ( ) ( )a x x z zM I F A F A        (5) 

Where: Ma = ankle moment, I = moment of inertia, α = angular acceleration, ΣFx = 
sum of horizontal forces, Ax = horizontal moment arm, ΣFz = sum of vertical forces 
and Az = vertical moment arm. 

Knee moment 

The sum of moments at the knee (N.m) was calculated as shown in Equation 6. 

( ) ( ) ( )k x x z zM I F A F A                         (6) 

Where: Mk = knee moment, I = moment of inertia, α = angular acceleration, ΣFx = 
sum of horizontal forces, Ax = horizontal moment arm, ΣFz = sum of vertical forces 
and Az = vertical moment arm. 

Hip moment 

The sum of moments at the hip (N.m) was calculated as shown in Equation 7. 

( ) ( ) ( )H x x z zM I F A F A                          (7) 

Where: MH = hip moment, I = moment of inertia, α = angular acceleration, ΣFx = 
sum of horizontal forces, Ax = horizontal moment arm, ΣFz = sum of vertical forces 
and Az = vertical moment arm. 
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Leg stiffness 

Leg stiffness may be calculated as shown in Equation 8 (McMahon and Cheng, 

1990) 

(8) 

Where: kleg = leg stiffness, Fmax = maximum vertical force, ∆L = change in leg 

length. 

The change in leg length used in Equation 8 is calculated as shown in Equation 9 

(McMahon and Cheng, 1990).  

 0
1

0(1 cos) and sin (ut / 2 )cL y L L         (9) 

Where: ∆y = maximum displacement to the centre of mass, L0 = standing leg 
length, θ = half angle of the arc swept by the leg, u = horizontal velocity, tc = contact 

time. 

 

  

max/legk F L 
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