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Abstract 

Abstract 

During cell activation the tightly compacted DNA is made available to DNA-binding proteins 
allowing the induction of gene transcription. In the resting cell, DNA is packaged into chromatin 
whose fundamental subunit is the nucleosome, composed of an octamer of four core histones 
(H) 3, 4, 2A and 2B. During the induction of gene transcription, modification of histones, by 
acetylation, methylation etc., results in unwinding of the DNA, permitting access of large DNA
binding proteins, such as RNA polymerase II, and subsequent induction of gene transcription. 

This investigation initially examined the effects of pro-inflammatory stimuli LPS and TNF-a on 
the production of IL-8 in a macrophage cell line (U937 cells) and in two T-cell lines (Jurkat and 
HUT-78 cells) as a marker of NF-KB-directed inflammatory gene expression. The ability of 
dexamethasone (Dex) and triamcinolone acetonide (TA) (synthetic glucocorticoid agonists) to 
suppress expression of the inflammatory cytokine IL-8 and to regulate histone acetylation was 
also investigated in these cells. LPS and TNF-a caused an increase in IL-8 expression, which 
was further enhanced by the histone deacetylases inhibitor trichostatin A (TSA), suggesting a 
role for histone acetylation in IL-8 production in these cells. Dex and TA, repressed LPS- and 
TNF-a -induced IL-8 expression in all three cell lines. This effect of both Dex and TA was 
attenuated by TSA in all cell lines studied, where the effect of TSA was greater in TA 
stimulated cells. 

Stimulation of all cell lines with LPS and TNF-a induced acetylation of H4 lysine residues (K5, 
8, 12 and 16), the highest elevation of which was for K8 and K12. Also demonstrate is a K5 
and K16 specificity of acetylation by glucocorticoids, apparent in all cell lines studied. Dex and, 
to a greater extent, TA suppressed LPS- and TNFa-induced K8 and K12 acetylation. TSA 
attenuated the inhibitory effect of the glucocorticoids for all three cell lines. An inCrease in 
HDAC activity with GCs was observed and ChiP assay showed these events occur on the 
native IL-8 promoter via histone acetylation. 

Further studies investigated whether there were any links between histone acetylation and the 
regulation of apoptosis. It was showed that TSA induced apoptosis in cells previously 
stimulated with the inducer of oxidative stress hydrogen peroxide (H20 2). Studies into the 
activation of caspase 3 in LPS- and TNF-a stimulated cells revealed that the combinatory 
effect of Dex or TA with TSA Significantly enhanced expression of the marker in all three cell 
lines. In resting cells, Dex, and TA, in the presence of TSA downregulated caspase 3 
expression. These findings support the notion that glucocorticoid actions on apoptosis is 
mediated, at least in part, through an action on histone acetylation. 

Finally, histone acetylation was investigated in vivo in two rat models of inflammation and in 

human subjects with inflammatory bowel disease (IBD). The results showed an increase in 
histone H4 acetylation lysine specificity of acetylation on K8 and K12 in inflamed tissue and 
Peyer's patches in animal models and in IBD patients. Whereas H3 acetylation was not 
elevated to the same extent in tissue and was restricted to the mantle zone of Peyer's patches. 
In general, the present studies on histone acetylation and inflammation (in animal models and 
IBD patients) underlined the possibility of a general mechanism linking activation of the 
transcription factor NFKB with histone acetylation. The ultimate objective of this work is to aid in 
the understanding of the mechanisms of how deregulation of chromosome structure leads to 
progression of the disease state. This knowledge may aid in the development of new 
therapeutic approaches or improved glucocorticoids. 
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15 1. Introduction 

Chapter 1 

Introduction 

1.1 Inflammation 

1.1.1 General aspects of inflammation 

Inflammation is a complex response to localized injury, other trauma or infection, which 

involves various cells of the immune system and numerous inflammatory mediators that are 

released by cells of innate or acquired immunity during the in'flammatory response. Such 

mediators are released by blood platelets, and leukocytes, including neutrophils, 

monocytes/macrophages, eosinophils, basophils and lymphocytes. These mediators trigger 

or enhance speCific aspects of immunity. The hallmark signs of an inflammatory response, 

first described 2000 years ago, are swelling (tumor), redness (rubor), heat (ca/or) and pain 

(dolor) with the more recent additional sign of loss of function (Male et aI., 1996). 

An inflammatory response can be acute or chronic. An acute inflammatory response involv.es 

both localized and systematic effects on the organism. The localized effect begins when 

tissue and endothelial damage, induce formation of mediators (enzymes) that lead to 

vasodilation and increased vascular permeability. Neutrophils and then monocytes migrate 

into the site (Male et a/., 1996). Two cytokines, IFN-y and TNF-u, are central to the chronic 

inflammatory response, which often involves granuloma formation and tissue damage. 

Activation of tissue macrophages and degranulation of mast cells lead to release of numerous 

inflammatory mediators, some of which induce systematic acute phase effects. The 

systematic response induces fever, leucocytosis and production of corticosteroids. A chronic 

inflammatory response may accompany allergies, microbial infections, transplants, burns and 

autoimmune diseases (Kuby, 1997). 

1.1.2 The phases of inflammation 

The main purpose of inflammation is to bring fluid, proteins and cells from the blood into the 

damaged tissues. It should be remembered that the tissues are normally bathed in a watery 

fluid (extracellular lymph) that lacks most of the proteins and cells that are present in blood, 

since the majority of proteins are too large to cross the blood vessel endothelium. Thus there 

have to be mechanisms that allow cells and proteins to gain access to extravascular sites 

where and when they are needed if damage and infection has occurred (Male et al., 1996). 

The main features of the inflammatory response are, vasodilation, i.e. widening of the blood 

vessels to increase the blood flow to the infected area; increased vascular permeability, which 

http:involv.es


16 1. Introduction 

allows diffusible components to enter the site; cellular infiltration by chemotaxis, or the 

directed movement of inflammatory cells through the walls of blood vessels into the site of 

injury; changes in biosynthetic, metabolic, and catabolic profiles of many organs; and 

activation of cells of the immune system as well as of complex enzymatic systems of blood 

plasma. The degree to which these occur is normally proportional to the severity of the injury 

and the extent of infection (Male et aI., 1996). 

Inflammation can be divided into several phases. The earliest, gross event of an inflammatory 

response is temporary vasoconstriction, i.e. narrowing of blood vessels caused by contraction 

of smooth muscle in the vessel walls, which can be seen as blanching (whitening) of the skin. 

This is followed by several phases that occur over minutes, hours and days later, outlined 

below (Sherman & Ward, 1998 and references therein) 

The acute vascular response follows within seconds of the tissue injury and lasts for several 

minutes. This results from vasodilation and increased capillary permeability due to alterations 

in the vascular endothelium, which leads to increased blood flow (hyperaemia) that causes 

redness (erythema) and the entry of fluid into the tissues (oedema). This phase of the 

inflammatory response can be demonstrated by scratching the skin with a finger-nail. The 

"wheal and flare reaction" that occurs is composed of (a) initial blanching of the skin due to 

vasoconstriction, (b) the subsequent rapid appearance of a thin red line when the capillaries 

dilate; (c) a flush in the immediate area, generally within a minute, as the arterioles dilate; and 

(d) a wheal, or swollen area that appears within a few minutes as fluid leaks from the 

capillaries. It usually terminates within 30-60 minutes (Sherman & Ward, 1998). 

If there has been sufficient damage to the tissues, or if infection has occurred, the acute 

cellular response takes place over the next few hours. The hallmark of this phase is the 

appearance of granulocytes, particularly neutrophils, in the tissues. These cells first attach 

themselves to the endothelial cells within the blood vessels (margination) and then cross into 

the surrounding tissue (diapedesis) (Sherman & Ward, 1998). During this phase erythrocytes 

may also leak into the tissues and a haemorrhage can occur (e.g. a blood blister). If the 

vessel is damaged, fibrinogen and fibronectin are deposited at the site of injury, platelets 

aggregate and become activated, and the red cells stack together in what are called "rouleau" 

to help stop bleeding and aid clot formation. The dead and dying cells contribute to pus 

formation (Sherman & Ward, 1998). 

If the damage is sufficiently severe, a chronic cellular response may follow over the next few 

days. A characteristic of this phase of inflammation is the appearance of a mononuclear cell 

infiltrate composed of macro phages and lymphocytes. The macrophages are involved in 

microbial killing, in clearing up cellular and tissue debris, and they also seem to be very 

important in remodelling the tissues (Sherman & Ward, 1998). 
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Over the next few weeks, resolution may occur, meaning that the normal tissue architecture is 

restored. Blood clots are removed by fibrinolysis, and if it is not possible to return the tissue to 

its original form, scarring results from in-filling with fibroblasts, collagen, and new endothelial 

cells. Generally, by this time, any infection will have been overcome. However, if it has not 

been possible to destroy the infectious agents or to remove all of the products that have 

accumulated at the site completely, they are walled off from the surrounding tissue in 

granulomatous tissue. A granuloma is formed when macrophages and lymphocytes 

accumulate around material that has not been eliminated, together with epitheloid cells and 

giant cells (perhaps derived from macrophages) that appear later, to form a ball of cells 

(Sherman & Ward, 1998 and references therein). 

In addition, a large number of more distant effects occur during inflammation. These include: 

the production of acute phase proteins, including complement components, by the liver; fever, 

caused by pyrogens acting on the hypothalamus in the brain; and systemic immunity, 

resulting in part from lymphocyte activation in peripheral lymphoid tissues (Sherman & Ward, 

1998). 

1.1.3 Interleukin-8/chemokines: 

IL-8 and other low molecular weight chemokines (e.g. platelet factor 4, macrophage 

inflammatory protein (MIP)-1alpha and p, MIP-2, monocyte chemoattractant protein-1 (MCP

1/JE), belong to a chemotactic cytokine family and are responsible for the chemotactic 

migration and activation of neutrophils and other cell types (such as monocytes, lymphocytes, 

basophils, and eosinophils) at sites of inflammation (Miller & Krangel, 1992; M.Y. Stoeckle & 

Barker, 1990). The two subsets of the chemokine family, "CXC" (or alpha), "C-C" (or 13) are 

divided based on presence or absence of an amino acid between the first two of four 

conserved cysteines. A recent third subset, "C", has only two cysteines and to date only one 

member, IL-16, has been identified (Strieter et al., 1996). Chemokines have been implicated 

in inflammatory conditions from acute neutrophil-mediated conditions such as acute 

respiratory distress syndrome to allergic asthma, arthritis, psoriasis, and chronic inflammatory 

disorders. To date, at least 27 chemokines have been described. 

The product of many cell types, including mononuclear phagocytes, antigen-activated T cells, 

endothelial and epithelial cells, and even neutrophils, IL-8 was previously known as neutrophil 

chemotactic factor (NCF) and neutrophil activating protein (NAP-1) (Baggiolini & Clark-Lewis, 

1992) (Fig. 1-1). It is the most thoroughly studied chemokine and therefore serves as a 

prototype for discussing the biologic properties of this rapidly growing family of inflammatory 

mediators. It consists of a 6-8 kDa protein whose cDNA was cloned by three different 

laboratories between 1987 and 1989. The corresponding gene has been mapped to 

chromosome 4 in humans (Van Damme, 1994). Its main inflammatory impact lies in its 
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chemotactic effects on neutrophils and its ability to stimulate granulocyte activity. In addition, 

IL-8, IL-1, and TNF-cx are involved in neutrophil recruitment by upregulating cell-surface 

adhesion molecule expression (such as endothelial leukocyte adhesion molecule, ELAM-1; 

and intracellular adhesion molecule, ICAM-1), thereby enhancing neutrophil adherence to 

endothelial cell and facilitating their diapedesis through vessel walls. Thus, IL-8 mediates the 

recruitment and activation of neutrophils in inflamed tissue (Feghali & Wright, 1997). IL-8 can 

be detected in synovial fluid from patients with various inflammatory rheumatic diseases 

(Seitz et al., 1992), and mucosal levels of IL-8 are elevated in patients with active ulcerative 

colitis (Mahida et al., 1992). 

(IL-8 ) 
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Figure 1-1 Schematic representation of the induction and activation of interleukin 8 (IL-8). 
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1.2 Inflammatory Gene Expression 

Altered gene expression contributes to the aetiology of inflammatory diseases by modulation 

of the concentration of disease-related proteins. The expression of inflammatory genes is 

controlled through the concerted actions of specific transcription factors. Signal transduction, 

networks positively or negatively to regulate the activity of these transcription factors. Key 

components of these networks are protein kinases, which phosphorylate substrates on 

tyrosine, threonine or serine residues. During the disease process, pro-inflammatory 

signalling at the cell surface leads to a cascade of kinase activation, which ultimately 

culminates in modulation of the activity of transcription factors (Alton et al., 2002). A 

schematic model of inflammatory gene expression and its regulation is shown in figure 1-2. 

Post-transcriptional regulation of gene expression is generally mediated by the 5' or 3' 

untranslated regions (UTRs) of the mature mRNA, which flank the protein coding sequence. It 

is assumed that regulation is mediated by proteins that specifically interact with these regions. 

Much recent attention has focused on adenosine/uridine-rich elements (AREs), particularly 

repeats of the sequence AUUUA, which are present in the 3' UTRs of many transiently 

expressed cytokine and growth'factor mRNAs, including tumour necrosis factor-alpha (TNF

a), interleukin-1 alpha (IL-1a), interleukin-1 beta (IL-1[3), interleukin 6 (IL-6) and IL-8, 

interferon gamma (IFN-y) and granulocyte macrophage colony stimulating factor (GM-CSF) 

(Caput et al., 1986). 

TNF-a or endotoxin, induce the activation of two major transcription factors, nuclear factor

kappa B (NF-KB) and activating protein-1 (AP-1), which in turn induce genes involved in 

chronic and acute inflammatory responses. The activity of both of them is regulated by 

phosphorylation and subsequent interaction with the coactivator protein CREB-binding protein 

(CBP). Thus limiting amounts of CBP may play an important role in the development of critical 

illness (Matt, 2002). 

Pro-inflammatory stimuli activate transcription factors such as AP-1, signal transducer and 

activator of transcription (STAT)s, CCMT enhancer binding protein (C/EBP) and NF-KB. 

These transcription factors act co-ordinately to modulate gene expression via binding to 

specific response elements in the 5'-UTR. The activation of RNA polymerase 1\ by these 

factors appears to be mediated by a number of common transducing molecules such as CBP, 

steroid receptor coactivator 1 (SRC-1) and retinoid interaction protein 160 (RIP 160) (Barnes 

& Adcock, 1998). The major role of glucocorticoids, which will be discussed later on, acting 

via a specific receptor (GR), appears to be by inhibition of transcription factors either by direct 

inhibition of DNA binding or by competition with these transcription factors for the common 

transducing proteins thus causing modulation of transcription (Almawi & Melemedjian, 2002) 
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Pro-inflammatory cytokines (IL-1~, IL-8, IL-17, TNF-a) or microbial products 

(lipopolysaccharide; LPS) trigger receptor aggregation and subsequent TNF receptor

associated factor (TRAF) oligomerization, a crucial step in activation of the IKB kinase, 

extracellular-regulated kinase (ERK), JUN-N-terminal kinase (JNK) and p38 mitogen

activated protein kinase (MAPK) signalling pathways (Dunn et a/., 2002). These kinases 

phosphorylate either IKB and NF-KB, or the transactivation domains of AP-1 proteins. This 

results in activation of both, nuclear NF-KB and AP-1. At least one activated MAP kinase 

pathway is required in addition to NF-KB to promote strong transcription. Signals from these 

pathways converge at gene promoters by promoting chromatin remodelling via histone 

acetylation and phosphorylation (Rahman, 2002). This is followed by the formation of multi 

protein complexes, so-called enhanceosomes. Within an enhanceosome NF-KB and AP-1 

interact with DNA, other transcription factors, co-activators such as CBP/p300 and the RNA 

polymerase II hOloenzyme. Variations within the enhanceosome composition result in 

activation of specific genes. The newly synthesized mRNA is stabilized by the p38- mitogen 

activated protein kinase-2 (MK-2) pathway (Shi & Gaestelts, 2002) (Fig. 1-2). 

1.3 Histone Modifications 

In the resting cell, DNA is tightly compacted into chromatin; a highly organized and dynamic 

protein-DNA complex, to prevent transcription factor accessibility. During activation of the cell 

the compact inaccessible DNA is made available to DNA-binding proteins, thus allowing the 

induction of gene transcription (Luger et al., 1997) (Fig. 1-3). 

The discovery of nucleosomes as a fundamental structural element for packaging DNA into 

ordered arrays was a historic breakthrough that initiated much of the contemporary research 

aimed at defining the structure and function of chromatin (Kornberg & Thomas, 1974). The 

nucleosome is composed of an octamer of 4 core histones, an H3/H4 tetramer and two 

H2A1H2B dimers surrounded by 146bp of DNA and a single molecular of a linker protein H1 

(Beato, 1996). Histones are unusual proteins containing many basic amino acids (thought to 

be required for ionic interactions with the acidic phosphate-pentose backbone of DNA), each 

containing a structured histone fold domain and a basic amino (N-) terminal tail domain 

(Arents et a/., 1991). The core histone folding motif is conserved across the 

archaealleukaryotic boundary, and the overall amino acid sequences are highly similar across 

the entire eukaryotic range indicating the functional significance of such a structural features 

(Fig 1-4). This high degree of structural conservation is also reflected on the functional level: 

yeast and human core nucleosomes bind exactly the same amount of double-stranded DNA 

(146 base pairs)(Weinzierl, 1999). 
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Apart from the histone fold-containing central domains, which allow the formation of stable 

nucleosome particle, all four histones contain N- and C-terminal tails that are mostly freely 

exposed, unstructured and located on the periphery of the nucleosome particle (Arents et ai , 

1991). Genetic studies carried out in yeast show that different genes have different 

requirements for the histone N-termini. The presence of an intact H2A N-terminus is essential 

for the correct transcription of the SUC2 gene (Hirschhorn et ai , 1995), and intact H3/H4 N

termini are required for the regulated expression of several other genes (including GAL 1, 

GAL7 and GAL 10) (Grunstein et ai, 1995) and nucleosome assembly (Ling et ai , 1996). The 

gene-specific phenotypes that mutations in particular histone N-termini impart on yeast cells 

thus provide a strong hint that histones affect the expression of genes in different manners. 

Many, if not all , of these effects are exerted by differential post-translational modifications of 

specific N-terminal amino acid residues by acetylation, phosphorylation , methylation and 

ubiquitination (Ling et ai, 1996; Wade et ai , 1997) . 
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Figure 1-5 Model of the nucleosome. Histones form a tight core around which the DNA is tightly bound. The 

histone tails lie on the outside of the nucleosome where they are accessible to enzymes that carry out histone 

modifications . Here the lysine residue acetylation sites of all four core histones are shown (Steinbach, 1997) 

The histone fold domains are involved in histone-histone interactions and in wrapping DNA 

The core histone tails are the sites of post-translational modifications. Histone modifications 

are diverse they include acetylation, methylation , phosphorylation , ADP ribosylat ion and 

ubiquitination (Berger, 2002) . The tail domains lie on the outside of the nucleosome where 

they are accessible both to the enzymes that carry out the modification and to specific trans

acting factors that recognize the tail domains (Berger, 2002) (Fig 1-5). The structural 

consequences of histone modification for the nucleosome have been determined in greatest 

detail for acetylation of the core histones. Specific lysine residues in the N-terminal tails of the 

core histone can be post-translation ally modified by acetylation of the £-amino group H2A 

can be acetylated at lysine site 5, H2B at Iysines 5, 12, 15 and 20 , H3 can be acetylated at 
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Iysines 4, 9, 14, 18, 23 and 27 and finally H4 can be acetylated at Iysines 5, 8, 12 and 16. 

The dynamic equilibrium of core histone acetylation is established and maintained by histone 

acetyltransferase (HAT) that catalyze acetylation and histone deacetylase that remove it 

(HDAC) (Gray & The, 2001). 

At least three critical roles may be assigned to HDACs and HATs: nucleosome assembly, 

transcriptional control and cell cycle checkpoint modulation, all being necessary mechanisms 

for a cell to choose a fate of cell growth or differentiation. Inhibition of HDACs leads to histone 

hyperacetylation, proliferation blockade and differentiation. These roles are accomplished by 

reversible acetylation of histones and formation of molecular complexes. Cycling cells thus 

need to dynamically modify their chromatin structure to coordinate the complex interplay of 

competing molecular complexes, in a process that is mediated by HDACs and HATs (Gray & 

The, 2001). Disruption of chromosome remodeling has been linked to a number of diseases, 

such as autoimmune diseases (List, 2002) and cancer (Batova et al., 2002) and therefore 

elucidation of the differential responsiveness and specificities of HATs and HDACs may shed 

as light into potential therapeutic targets for intervention in autoimmunity and cancer. It is not 

clear yet whether histone modification plays a specific role in the activation of lymphocytes or 

other cell types during immune responses. It is assumed that these proteins allow the cells to 

respond during inflammatory conditions. 

1.4 Glucocorticoid regulated inflammatory gene 'expression 

1.4.1 Regulation of inflammatory gene expression 

Glucocorticoids have been used for decades to control the progression of serious 

inflammatory diseases, such as inflammatory bowel diseases and asthma, by suppressing 

immune reactions. Until recently the mode of action of glucocorticoids was unknown, although 

it was clear that they suppressed transcription of many of the genes that are required for 

immune response functions. 

Glucocorticoids penetrate the cell membrane and then bind to a steroid-binding site on the C

terminal of a cytoplasmic glucocorticoid receptor (GR) (Muller & Renkawitz, 1991). GR is a 

multi-domain 94 kDa member of a superfamily of steroid/thyroid/retinoic acid receptors. 

Binding of steroid triggers dissociation of heat shock proteins (hsp90) that bind to GR and 

mask the two nuclear translocation domains (Fig. 1-6). The GR alters gene expression in two 

ways. The 'first way is dependent on the GR binding directly to DNA and acting (positively or 

negatively) as a transcription factor. Active steroid-receptor complex translocates as a 

homodimer into the nucleus via the exposed translocation motifs and then binds to DNA at 

glucocorticoid response elements (GREs) (Gronemeyer, 1992) influencing transcription and 

inhibiting inflammatory or potentiating endogenous anti-inflammatory mechanisms, such as 
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1.4.2 How are genes inhibited by hormone-GR complexes? 

How steroid repression of gene transcription may be achieved is not well understood. 

Although the existence of negative steroid response elements (nGRE) and their functional 

suppression of gene transcription has been established, for example in IL-1~ gene (Zhang et 

al., 1997), they are very similar to hormone response elements at which activation occurs, 

and not enough have yet been studied to enable one to state whether a different consensus 

sequence is involved. 

An alternative possibility is that the binding site may be identical to that for activated genes, 

but its location is such that the bound receptor blocks, rather than enhances, the binding of 

other transcriptional activators. Support for this has come from studies of the genes encoding 

a ex. subunit of the glycoprotein hormones, which is repressed by glucocorticoids. It was found 

that the binding sites for the glucocorticoid receptor and a transcriptional activator of the gene 

(CREB) were overlapping. The critical feature may therefore be the location of the binding site 

for the receptor relative to those of other transcription factors (De Bosscher et a/., 2000). 

Other effects may also be invoked, such as distortion of the DNA helix that may hinder 

binding of other factors distal to GRE (Ptashne, 1986). However, few of the inflammatory 

genes repressed by steroids have been shown to possess nGRE motifs (or indeed GREs) in 

their promoter region. Glucocorticoids therefore, must be exerting their effects through less 

direct mechanisms, which would suggest less speCific mechanisms of protein-DNA 

interactions. 

1.4.3 Mechanisms of gene activation 

Since steroid hormones can activate different genes in different cell types, despite the 

presence of the same receptor protein, it is clear that other proteins, such as transcription 

factors or transcriptional coactivators, that are expressed in a tissue-specific manner are 

required for gene activation (Fig. 1-7). Appreciation of the profound effects that one 

transcription factor can have on the activity of another may prove of key importance in 

understanding how genes are regulated, both in homeostasis and in disease states. Allusion 

has already been made to the effects of heterodimerization (e.g. Fos/Jun combinations) and 

isoform variation within a transcription factor on gene transcription (Zhou et al., 1999). The 

potential interaction of transcription factors triggered through different signaling pathways and 

networks makes the effects of such cross-talk even more complex. 

Interaction of the activated receptors with other transcription factors can be directly 

demonstrated using DNA constructs in which a hormone response element and a binding site 

for another factor are coupled to the promoter for a reporter gene (Saklatvala, 2002). The 
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and -250 was no longer protected against chemical cleavage: this is exactly the region 

containing the hormone response elements. Thus, the binding of the activated receptor 

appears to have displaced a nucleosome, or at least to have altered the nucleosome structure 

in this region. It has recently been demonstrated that this process is very rapid lasting only for 

-6 seconds (McNally et a/., 2000). Further experiments showed that this also exposed a 

region from the initiation site to -60, which bound two other transcription factors, one of which 

was nuclear factor-1 (NF-1, Fryer & Archer, 2001; Deroo & Archer, 2001). 

Although both of these factors appear to be present in extracts of unstimulated cells, they do 

not bind to the chromatin unless the cells are first treated with glucocorticoid. Therefore, 

binding of the activated hormone receptor may cause a local change in chromatin structure, 

which enables the binding of other proteins essential for initiation of transcription. At least 

some of the latter may be tissue-specific, explaining the different responses to the same 

hormone in different tissues (Collingwood et al., 1999). 

One of the best documented transcription factor interactions is the one between nuclear factor 

(NF-AT) and activator protein 1 (AP-1). NF-AT, once phosphorylated, has transient DNA 

binding and basal transcription capability. However, attachment of AP-1 stabilizes the 

transcription complex and this is likely to increase promotor activation (Hanson et a/., 1993). 

Co-operative activity of NF-AT and AP-1 is observed at several promoter sites including IL-2 

(Prieschl et al., 1995) and GM-CSF (Cockerill et al., 1995). This process requires the 

interaction of several signaling pathways in cellula. 

Transcription factor interaction may prove to be the major mechanism through which 

glucocorticoids exert their peiotropic effects. Two early observations of steroid activity confirm 

this concept. Firstly, sub-transcriptional activation doses of steroid hormone can have a 

significant inhibitory effect on AP-1 activity, with GR and AP-1 co-precipitating (Jonat et a/., 

1990). Secondly, GR monomers repress AP-1 activity (Heck et a/., 1994). Other observations 

have supported transcription factor interaction as a likely modus operandi (Schule et al., 

1990) In asthmatic inflammation GR has been shown to inhibit AP-1 DNA binding in both 

human lung and peripheral blood mononuclear cells (Adcock et al., 1995). 

Immunosuppressant activity through GR-AP-1 interaction may also be achieved via trans

repression of N F-AT activity. The facts that steroids are known to suppress AP-1 binding to 

DNA and that AP-1 is a component of NF-AT transcription complex, lead to the conclusion 

that NF-AT is a likely target for GR-mediated trans-repression (Paliogianni et a/., 1993). Such 

an interaction in T-Iymphocytes could profoundly suppress the inflammatory process. 

Cross talk between GR and NF-KB has also been implicated in the anti-inflammatory effects 

of steroids. The NF-KB/Rel dimer is a major transcription factor associated with inflammatory 

cytokine production (Barnes & Adcock, 1993). As discussed previously, activity of NF-KB is 
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regulated through association of the inhibitor IKBa, which sequesters NF-KB in the cytoplasm 

and must be released for transcriptional activation. It is known that steroid-GR binding to the 

IKBa promotor induces expression of the inhibitor, explaining some of the repressing actions 

of steroids on NF-KB driven gene regulation. However, it has also been demonstrated that 

increased synthesis of IKBa is neither requisite nor sufficient for hormone-mediated 

suppression of NF-KB (Heck et aI., 1997). Therefore, through NF-KB interaction, other 

transcription factors may be expected to influence the inflammatory process. A similar mutual 

repression to that observed between GR and AP-1 is demonstrated between GR and NF-KB 

(Schein man et aI., 1995), with the corollary that NF-KB/Rel can in turn repress GRiGRE trans 

activation (Ray & Prefontaine, 1994). 

The above suggest a theoretical GR intervention in the many inflammatory systems militated 

by NF-KB. In support to this, the steroid-GR complex is able to repress NF-KB promotion of 

ICAM-1 expression through direct physical interaction with the Rel-A p65 family protein 

(Caldenhoven et al., 1995). GR-DNA binding was not required for this repression, since GR 

with a P-box mutation (making it unable to recognize GRE) still repressed NF-KB. However, 

there is a possibility that GR repression of NF-KB is also due to GR competing with NF-KB for 

limiting amounts of transcriptional co-activator CBP (Sheppard et aI., 1998). The Rel(p65) 

component is thought to be the target for many transcription factor interactions with the NF-KB 

dimer since p5G does not appear to be targeted (Ray & Prefontaine, 1994). 

1.5 Macrophages and T-cells 

1.5.1 Macrophages and monocytes 

Originally, monocytes and macrophages were classified as cells of the reticulo-endothelial 

system (RES) (Aschoff, 1924). Van Furth et al. (1972) proposed the mononuclear phagocyte 

system (MPS), and monocytes and macrophages became basic cell types of this system. 

Their development takes in the bone marrow and passes through the following steps: stem 

cell - committed stem cell - monoblast - promonocyte - monocyte (bone marrow) - monocyte 

(peripheral blood) - macrophage (tissues). Monocyte differentiation in the bone marrow 

proceeds rapidly (1.5 to 3 days). During differentiation, granules are formed in monocyte 

cytoplasm and these can be divided as in neutrophils into at least two types. However, they 

are fewer and smaller than their neutrophil counterparts (azurophil and specific granules). 

Their enzyme content is similar (Male et a/., 1996). 

The blood monocytes are young cells that already possess migratory, chemotactic, pinocytic 

and phagocytic activities, as well as receptors for IgG Fe-domains (FcyR) and iC3b 

complement. Under migration into tissues, monocytes undergo further differentiation (taking 

at least one day) to become multifunctional tissue macrophages. Monocytes are generally, 
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therefore, considered to be immature macro phages. However, it can be argued that 

monocytes represent the circulating macrophage population and should be considered fully 

functional for their location, changing phenotype in response to factors encountered in 

specific tissue after migration (Kuby, 1992). 

Macrophages can be divided into normal and inflammatory macrophages. Normal 

macrophages include macrophages in connective tissue (histiocytes), liver (Kupffer's cells), 

lung (alveolar macrophages), lymph nodes (free and fixed macrophages), spleen (free and 

fixed macrophages), bone marrow (fixed macrophages), serous fluids (pleural and peritoneal 

macrophages), skin (histiocytes, Langerhans's cell) and in other tissues. The macrophage 

population in a particular tissue may be maintained by three mechanisms: influx of monocytes 

from the circulating blood, local proliferation and biological turnover. Under normal steady

state conditions, the renewal of tissue macrophages occurs through local proliferation of 

progenitor cells and not via monocyte influx. Originally, it was thought that tissue 

macrophages were long-living cells. More recently, however, it has been shown that 

depending on the type of tissue, their viability ranges between 6 and 16 days (Roitt et aJ., 

1995). 

Inflammatory macrophages 'are present in various exudates. They may be characterized by 

various specific markers, e.g. peroxidase activity, and since they are derived exclusively from 

monocytes they share similar properties. The term exudate macrophages designates the 

developmental stage and not the functional state (Male et al., 1996). 

Macrophages are generally a population of ubiquitously distributed mononuclear phagocytes 

responsible for numerous homeostatic, immunological, and inflammatory processes. Their 

wide tissue distribution makes these cells well suited to provide an immediate defence against 

foreign elements prior to leUkocyte immigration. Because macrophages participate in both 

specific immunity via antigen presentation and IL-1 production and nonspecific immunity 

against bacterial, viral, fungal, and neoplastic pathogens, it is not surprising that macrophages 

display a range of functional and morphological phenotypes (Male et a/., 1996). 

1.5.2 T -Cells 

Lymphocytes recognize antigens presented by macrophages, proliferate after contact with 

antigens, attack antigen-labelled cells, and manufacture antibodies. These cells belong to 

many different functional groups, which interact in a complex way, resembling a large military 

organization (Kuby, 1992). 

T-cells are lymphocytes, which develop and differentiate in the thymus before seeding the 

secondary lymphoid tissues. Resting mature T-Iymphocytes recognize antigen and MHC 
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molecules when they are triggered via their antigen- specific T-cell receptor (TCR) molecule. 

TCR, distinct from but related to immunoglobulin, consists of an antigen binding domain 

formed by two different polymophic chains, which is associated with CD3, a complex of 

polypeptides involved in signaling cellular activation. The antigen binding domain may consist 

of an af3 or yo heterodimer, but the great majority of T -cells contain the a[3 heterodimer. In 

humans the markers cluster of differentiation 2 (C02) and CD5 are also present on all T-cells. 

In some species, including humans, activated T-cells also carry endogenously synthesized 

MHC class II molecules, although these are absent from resting T-cells. Activated T-cells may 

also be induced to express CD25, which forms part of the high affinity IL-2 receptor and is 

important in clonal expansion. Other markers differentiate T cell subsets (Kuby, 1992). 

There are two main subpopulations of T cells, which can be distinguished according to their 

expression of CD4 or CDS. These molecules act as receptors for class" and class I MHC 

molecules, respectively, and contribute towards both T cell immune recognition and cellular 

activation. Most CD4+ T cells recognize antigens associated with MHC class" molecules and 

these cells act predominantly as helper T cells (Th). CDS+ T cells recognize antigens 

associated with MHC class I molecules and are primarily responsible for cytotoxic destruction 

of virally infected cells. Th1 cells interact preferentially with mononuclear phagocytes, while 

Th2 cells tend to promote B cell division and differentiation. The balance of activity between 

those two subsets is related in part to how:antigen is presented to the cells and it ultimately· 

determines the type of immune response, which develops (Kuby, 1992). 

The surface phenotypes of T cell population change during development. In humans, virgin T 

cells express CD45RA, while activated cells express CD45RO and higher levels of adhesion 

molecules such as the [3, integrins (CD29). The relationship of activated cells to resting 

memory T cells is not completely understood. The enhanced secondary response to antigens 

is only partly due to the increased numbers of activated cells available. Primed T cells also 

respond to antigens more efficiently than virgin T cells but this does not appear to be due to 

affinity maturation of the T cell receptor. 

Under physiological conditions, T-cell production is a 'Flne balance between proliferation and 

apoptosis, both of which require on-going gene induction regulated, at least in part, by histone 

acetylation and deacetylation as stated previously. In contrast, pre-activated T-cells can 

undergo antigen-induced cell death (AICD) in response to the same signals. Stimulation of 

activated T-cells upregulates the expression of the Fas-ligand and the interaction of Fas

ligand with the corresponding Fas-receptor (cell surface receptor) triggers an apoptosis 

program that CUlminates in cellular suicide usually associated with the fragmentation of DNA 

into oligonucleosomal bands (Kabelitz and Janssen, 1997). 
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Molecular evidence indicates that proteases relating to interleukin-1 ~ converting enzyme play 

an essential role in the execution of cell death. Apoptosis of mature T-Iymphocytes can be 

efficiently triggered by monoclonal antibodies against the CD3/TCR complex, or by 

superantigens such as bacterial enterotoxins. Although it is more difficult to induce apoptosis 

by conventional peptide antigens, it is now clear that antigen-induced AICD is a powerful 

means of eliminating antigen-reactive T-cells. Therefore, AICD contributes to the regulation 

(i.e., termination) of cellular immune responses. In addition, AICD might playa role in the 

establishment of peripheral immune tolerance (Kabelitz and Janssen, 1997 and references 

therein). 

1.6 Apoptosis and Inflammation 

1.6.1 Cell death and Apoptosis 

For many years, cellular injury was seen in black and white terms. A cell subjected to minor 

damage recovered, whereas a cell subjected to a more severe injury died by uncontrolled 

necrotic cell death, in which cells and their organelles swell and rupture. Leakage of cellular 

components, characteristics of necrosis, elicits an inflammatory response, which can further 

damage tissues. Kerr and colleagues in 1972 (Kerr et al., 1972) described a morphologically 

distinct form of cell death, termed apoptosis. The term, is derived from the Greek word 

meaning "dropping off', as with the leaves ·of a tree in the autumn. Apoptotic cell death is 

characterized by the controlled removal of a cell, without leakage of intracellular contents, in 

the absence of an inflammatory response. The distinction between apoptotic and necrotic cell 

death that occurs during development, in response to tissue damage, and in association with 

uncontrolled cellular proliferation has revolutionized the study of cell death. This is particularly 

since the manipulation of apoptosis during development and/or disease states, promises 

major therapeutic implications permitting the removal or preservation of specific cells in 

diseased tissues (Bamford et al., 2000). 

Apoptotic cell death is characterized by cell shrinkage, loss of cell-cell contacts, nuclear 

chromatin condensation, plasma membrane budding, and removal of cell debris by 

macrophages and surrounding cells in the absence of an inflammatory response (Wylie et a/., 

1980) (Fig. 1-8). The requirement for energy in apoptotic cell death, in the form of ATP, is 

absolute. Cells that are damaged and unable to maintain adequate ATP levels will, by default, 

undergo necrotic cell death (Leist et a/., 1997; Lelli et al., 1998). Necrotic cell death is 

characterized by cellular swelling, plasma membrane blebbing/disruption, swelling of the 

mitochondria (that show amorphous densities), chromatin clumping, release of intracellular 

contents into the interstitium and removal of cell debri by inflammatory cells (Savill & Fadok, 

2000). 
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Apoptosis Oncosis 

Single/clusters of cell affected Areas of tissue destroyed 

Small, contracted cells Cellular oedema 

Mitochondrial swelling Mitochondrial rupture 

(amorphous densities) 

Chromatin condensation Coarse chromatin 

Intact plasma membrane Plasma membrane rupture 

Phagocytosis of apoptotic bodies Inflammatory response 

Table 1-1 Comparison of the gross morphological 

features of apoptotic and oncotic cell death 

1.6.2 Regulation of apoptosis by intracellular signaling pathways 

Regulation of ubiquitously expressed pro-apoptotic and anti-apoptotic factors is afforded by 

subcellular localization, oligomerisation and/or cleavage. Key elements of the apoptotic 

process are also regulated by protein phosphorylation, linking the control of apoptosis with the 

complex intracellular signaling pathways, which are activated within a cell by intrinsic factors 

and cellular stresses (Gallaher et al., 2001). The best-characterized group of protein kinases 

implicated in the control of apoptosis is the SerlThr protein kinases, although tyrosine kinases 

may also be involved (Yuan et aJ., 1999). SerlThr protein kinases involved in the control of 

apoptosis include the MAPKs, protein kinase B (PKB) and protein kinase A (PKA) (Cross et 

al., 2000). Other SerlThr protein kinases [e.g. protein kinase C (PKC) and p21-activated 

protein kinase-1 (PAK)J (Swannie & Kaye, 2002) are also likely to be involved in the 

regulation of apoptosis, but their role is less well established. 

1.7 Caspases - the effectors of apoptosis 

1.7.1 The caspases 

Most of our initial understanding of the molecular mechanisms controlling apoptosis came 

from developmental studies of the nematode Caenorhabditis elegans (C.e/egans). A group of 

cell death (CEO) genes were identified that was central to the process of apoptotic cell death, 

which occurred during the development of C. elegans (Yuan, 1996). Following the discovery 

of the CED genes and their corresponding proteins, mammalian homologues were identified. 
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CED-3 homologues were identified as a group of proteases (Martin and Green, 1995), now 

referred to as caspases (for cysteine aspases) (Alnemri et al., 1996). Caspases cleave 

substrates after specific aspartic acid residues and are central to the execution of apoptosis. 

However, there may be some instances where caspase-independent apoptosis occurs (Xiang 

et al., 1996; Susin et al., 1999). 

Prior to the use of the generic term caspase, the enzymes had a bewildering array of 

unrelated names. Standardized nomenclature has now clarified the situation (Table 1-2). 

Caspases are pro-apoptotic and exist as pro-enzymes that are activated by cleavage at 

specific peptide sequences. To date, at least 14 isoforms have been identified and some 

caspases may be alternatively spliced (Cohen, 1998; Thornberry and Lazebnik, 1998). 

Following activation, these enzymes have proteolytic activity and cleave substrates at specific 

cleavage sites. Caspase-6, caspase-8, caspase-9 preferentially act at V/L-E-T/H-D, whereas 

caspase-3 and caspase-7 show high selectivity for the peptide motif DEVD. Caspases 

activated early in the apoptotic process (initiators; e.g. capsase-8 and caspase-9) act on 

downstream caspases (effectors; e.g. caspase-3) in a caspase cascade that affords 

amplification. Ultimately, the caspase cascade results in the cleavage of target intracellular 

molecules resulting in: recruitment and activation of other caspases and proteins involved in 

the apoptotic process (Cardone et al., 1997;.Sakahira et a/., 1998), inactivation of 

survival/repair proteins (Widmann et a/.,1998)and the DNA repair enzyme poly(ADP-ribose) 

polymerase (PARP) (Szabo and Dawson, 1998) and finally, cleavage of proteins involved in 

cytoskeletal regulation, including gelosin (Kothakota et a/., 1997) and focal adhesion kinase 

(FAK, Wen et al., 1997). The role of caspases therefore, is to reorganize the cell cytoskeleton, 

shut down DNA replication/repair processes and induce cells to display "eat me" signals that 

mark them for phagocytosis. 

1.7.2 Activation ofthe caspase cascade 

Caspase precursors are ubiquitously expressed in living cells (including terminally 

differentiated cells) and can be quickly activated, initiating apoptotic cell death. Caspase 

activity is, under tight regulation involving a combination of regulatory proteases, cofactors, 

feedbacks and thresholds that converge to control the activity of individual caspases. 

Activation of the caspase cascade occurs when initiator caspases at the plasma membrane 

(caspase-8) or at the mitochondria (caspase-9) bind specific cofactors. The means of 

caspase activation by cofactors is unclear, but the formation of caspase dimers/oligomers, 

which have intermolecular autocatalytic activity, may be important (Martin et a/., 1998). 
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Caspases Old nomenclature 

Caspase-1 Interleukin 1 j3 converting enzyme (ICE) 

Caspase-2 ICH-1, Nedd2 

Caspase-3 Apopain, CPP32, Yama 

Caspase-4 ICH-2, ICErel-lI, TX 

Caspase-5 ICErel-llI, TY 

Caspase-6 Mch2 

Caspase-7 ICE-Lap3, Mch3, CMH-1 

Caspase-B FLlCE, MchS, Mach 

Caspase-9 ICE-Lap6, MCH6 

Caspase-10 Mch4 

Table 1-2 New and old nomenclature of CED-3 homologues 

1.7.3 Inhibition of caspase activity 

Caspase activity can be inhibited by decoy proteins, inhibitor proteins and by post

translational modifications .of -caspase residues. The interaction between cytokine receptor 

death domains and their· respective death domain associated proteins can be inhibited by 

FADD-like interleukin 1/3.,converting enzyme-inhibitory proteins (FLIPs). FLIPs have a high 

degree of sequence homology with caspase-8, but lack a catalytic site and therefore function 

as decoy proteins (Irmler et al., 1997). Direct inhibition of caspase activity is also possible 

through the activity of mammalian homologues of viral inhibitor of apoptosis proteins (lAPs) 

and related molecules. The X-linked lAP is a potent and selective inhibitor of caspase-3 and 

caspase-7 activity (Deveraux et aI., 1998), and a protein with a similar mode of action, the 

apoptosis repressor with caspase recruitment domain (ARC) protein, directly inhibits caspase

8 (Koseki et al., 1998). Modification of residues within caspases is a further means of 

controlling caspase activity. Phosphorylation of serine-196 of human pro-caspase-9 prevents 

its activation (Cardone et al., 1998) and S-nitrosylation of the active site cysteine residues of 

pro-caspase prevents their proteolytic activity (Man nick et al., 1999). The control and 

implications of caspase inhibitors remain to be determined, but may be of particular 

importance in tissues where they are highly expressed. 

1.8 B-ceillymphoma leukemia 2 (Bcl-2) family proteins 

1.8.1 Regulators of mitochondrial apoptotic processes 

CED-3 (the C. e/egans caspase homologue) promotes apoptosis, whereas CED-9 protects 

cells from apoptosis (Wu et al., 1997). CED-9 was found to have sequence homology with the 
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human Bcl-2 proto-oncogene, and subsequently an ever-increasing family of related Bcl-2 

family proteins has been identified. So far, over 20 members of the Bcl-2 family have been 

identified, each possessing up to four conserved BcI-2 homology domains (BH1, BH2, BH3 

and BH4), which correspond to a-helical domains (Adams and Cory, 1998; Gross et a/., 

1999). BcI-2 family members can be either pro-apoptotic or anti-apoptotic. The anti-apoptotic 

members Bcl-2 and BcI-XL display sequence conservation in all four domains and localize to 

mitochondrial, endoplasmic reticulum and nuclear membranes (Hockenberry et al., 1990; 

Boise et a/., 1996). 

Deletion and mutagenesis studies suggest that the BH3 domain serves as a critical death 

domain. This is supported by an emerging subset of "BH3-domain-only" members (e.g. Bad, 

Bim and Bid) that are all pro-apoptotic and are primarily localized to the cytosol in healthy 

cells (Lutz, 2000). BcI-2 family proteins influence the apoptotic process upstream of 

irreversible cell damage and primarily act to control the mitochondrial response to apoptotic 

signals (Green and Reed, 1998). Activation of mitochondrial apoptotic processes is regarded 

as the "point of no return" in apoptosis and therefore BcI-2 family proteins playa pivotal role in 

deciding the fate of a cell. 

8c1-2 family proteins act to r.egister cellular damage and growth/cytoprotective stimuli, 

integrate these signals and determine whether or not to initiate mitochondrial apoptotic 

processes. Once initiated, mitochondrial involvement in apoptosis is characterized by the 

translocation of cytochrome c and apaf-1 and other pro-apoptotic factors to the cytoplasm, 

disruption of the electron transport chain, generation of reactive oxygen species and, 

ultimately, deterioration of the mitochondrial membrane potential (L\\}'m) (Gross et al., 1999). 

The role of the mitochondrial permeability transition pore (MPTP), a non-specific pore 

comprising of the voltage-dependent anion channel (VDAC; outer mitochondrial membrane) 

in apoptosis is unclear. Some studies suggest it is a pre-requisite to mitochondrial apoptotic 

processes and others that it is not involved at all (Green and Reed, 1998 and references 

therein). 

In addition to their role in the control of apoptosis, Bcl-2 family proteins may modulate cell 

cycle progression in some cell types (e.g. thymocytes). Bcl-2 promotes exit into quiescence 

and retards re-entry into the cell cycle (Brady et aI., 1996; Lind et al., 1999; Vairo et al., 2000). 

BcI-2 can also modulate cyclin dependent kinase activity (Gil-Gomez et al., 1998). By way of 

contrast, the pre-apoptotic proteins, Bax and Bad, promote entry to the cell cycle (Mok et a/., 

1999). The role of 8c1-2 family proteins in cell cycle control remains poorly characterized and 

understood. 
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inflammatory cell infiltrate is confined to the mucosa and when acute often crypt abscesses 

are observed. Clinically the patients suffer cramping abdominal pains, weight loss, loss of 

appetite, urgency and frequently loose stool containing blood and mucus. The disease is 

characterized by frequent periods of remission (Ray horn & Rayhorn, 2002 and references 

therein). 

Ulcerative Colitis Crohn's Disease 

Static Incidence Incidence increasing 

Colon affected only Small bowel can also be affected 

Marked tendency to relapse and remit Similar but less marked tendency 

No abdominal mass, signs of Clinical features of abdominal mass, 
malabsorption, fistula formation or gross signs of malabsorption, fistula formation, 
perianal disease gross perianal disease 

Changes affect rectum and proximal Deep fissuring and ampoid ulceration, 
colon in continuity "skip" lesions and small bowel 

involvement 
Mucosal inflammation, crypt abscesses, Transmural inflammation, fissuring, 
goblet cell depletion granulomas, goblet cell preservation 

Table 1-3 Differences between Ulcerative Colitis and Crohn's Disease 

Crahn's disease is a transmural inflammatory process, characterized by the presence of 

granulomas, mucosal ulceration and the formation of fistulas and sinuses mainly affecting the 

terminal ileum of the small intestine, parts of the colon and the rectum. The symptoms involve 

anal bleeding, abdominal pain, weight loss, diarrhea with mucous and/or pus, fever, nausea, 

lethargy and loss of appetite (Rayhorn & Rayhorn, 2002). UC and CD share very similar 

extra-intestinal manifestations including mouth ulcers, involvement of the skin, joints, liver and 

uveal tracts (McCay et a/., 1997). Moreover, when the colon alone is involved a clinical 

distinction between UC and CD may be difficult (MacDonald et a/., 2000). 

Immune phenomena linked to the etiopathogenesis of inflammatory bowel disease have also 

been extensively investigated, and findings have underscored the differences between the 

responses of normal and affected individuals. For example, it is well known that the 

distribution of specific cytokine-producing lymphocytes differs between normal persons and 

patients with CD or UC (Ardizzone & Porro, 2002). However, much less is known about how 

microbial agents affect the disease process. Speculations that viruses may be involved in the 

pathogenesis of inflammatory bowel disease have been advanced for some time because of 

the clinical association of respiratory virus infections with subsequent disease flares 

(Blumberg, 1990). With inflammatory bowel disease, the mucosal immune cell population 

increases dramatically, and the infiltrate is predominantly comprised of mononuclear 

leukocytes (Lakatos, 2000) (Fig. 1-9). Furthermore, the muscularis mucosae cell layer 

thickens to nearly 300 times its normal depth secondary to smooth muscle cell hyperplasia 

and extracellular matrix deposition. These features suggest that interactions between 
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concentrated in the T cell zone, the germinal center and beneath the epithelium (MacDonald 

& Carter, 1982). 

Peyer's patches are not only aggregations of lymphoid follicles. They consist of definite 

compartments with a number of basic structural elements and specific compositions of 

lymphocyte subsets and accessory cells. Along with other gut-associated lymphoid tissue 

(GALT) sites, they can be divided into four compartments. A Peyer's patch is a site of 

continuous cell proliferation and cell death in the gut. The lymphoid follicles are localized 

below the muscularis mucosae. Proliferating B-Iymphocytes form germinal centers that also 

contain macrophages that phagocytose remnants of lymphocyte nuclei (Spencer et al., 1987). 

Cell death occurs in sheep ileal Peyer's patches and is believed to be important for B cell 


selection. A small corona of lymphocytes surrounds the follicles. In many of the lymphocyte 


cell surface, IgM and IgD antibodies are expressed. The inter-follicular area is characterized 


by high endothelial venules (HEV) that are surrounded by densely packed lymphocytes, most 


of which are T cells. These HEV serve as a pathway for the lymphocytes to enter Peyer's 


patches. This compartment is also called the traffic area of Peyer's patches. Lymphocytes are 


. also found on top of the follicle toward the gut lumen, in the dome area. Specialized M cells in 


the follicle-associated epithelium of Peyer's patches represent an intimate interface between 


luminal antigens and gut-associated lymphoid tissue (Farstad et al., 1994). M cells form 


pockets that contain clusters of leukocytes probably involved in the first encounter with 


antigens from the gut lumen (Braegger et al., 1992). 

In untreated human tissue, Peyer's patches, are macroscopically invisible and they are 

distributed in small clusters throughout the gastrointestinal tract, being most concentrated in 

the terminal ileum. The Peyer's patches of mice and rats however, are found in approximately 

10 clusters along the length of the ileum. Their size varies in humans, while in rodents they 

consist of only a few follicles. It is believed now that the size and the location of each Peyer's 

patch are genetically determined. It is also believed that the transposition of gut segments or 

the removal of a large portion of Peyer's patches does not influence the number of the 

remaining patches (McDonald et al., 1987 and references therein). 

Lymphoid sinuses are situated around the follicles as shown by scanning electron microscopy 

of sheep ileal Peyer's patches. These are connected to septal vessels, lymph vessels and to 

the deep mucosal network that contains valves. In general, the function of Peyer's patches as 

antigenic sampling sites involve the complex interplay of a variety of mechanisms that aim to 

recognize luminal antigens, induce an immunological response to decrease the incidence of 

antigen translocation across the mucosal epithelium (Finke and Kraehenbuhl, 2001 and 

references therein). 
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Gunez, 2001). Apaf-1 and other proteins that regulate apoptosis through the CARD domains 

are included in this family. NOD1 and NOD2 act in a similar fashion in that they both self 

associate, oligomerise and then bind to Rip2 through CARD-CARD interactions which then 

interacts with IKKy, leading to the activation of NF-KB in a caspase independent manner 

(Inohara et a/., 1999). Although neither NOD1 Or NOD2 induce apoptosis on their own, both 

promote caspase-9 induced apoptosis although the exact mechanism by which they do so in 

currently unknown. Whilst NOD1 is expressed in adult heart, placenta, lung, liver, kidney, 

spleen, thymus and ovaries (Inohara et al., 1999), NOD2 is only expressed in monocytes 

(Ogura et a/., 2001). 

NOD2 is highly homologous to a class of plant disease resistance gene products and its 

leucine rich repeat region is homologous to that of Toll-like receptors, important for the 

recognition of microbial products (Hugot J.P. et a/., 2001) Unlike Toll-like receptors however, 

NOD2 does not possess a Toll-IL-1 receptor domain and as previously stated is cytosolic. 

The association between mutant forms of NOD2 and CD must therefore relate to one (or 

both) of the similarities with other inflammatory cell signalling pathways mentioned above. 

Study of the location and degree of activation oft NF-KB within the bowel wall is relevant to the 

understanding of the mechanisms of inflammation in Crohn's disease and Ulcerative colitis 

• (Ellis et 	aI., 1998). It has recently been shown that corticosteroids exert their diverse anti

inflammatory effects by inhibition of activation of N F-KB (Adcock, 2001) and this occurs post 

NF-KB nuclear translocation. This may account for the lack of corticosteroids effect seen by 

Ellis and co-workers on NF-KB nuclear localization. 

The perpetuated activation of NF-KB in patients with active IBD suggests the regulation of NF

KB activity as a very attractive target for therapeutic intervention. Such strategies include 

antioxidants, proteasome inhibitors, inhibition of NF-KB by adenoviral IKBa expression vectors 

and antisense DNA targeting of the transcription factor (Neurath et aI., 1998). These 

approaches together with the latest association of NF-KB with the discovery of the NOD 

proteins will hopefully permit the design of new treatment strategies for chronic intestinal 

inflammation. 

1.10 A Priori Rationale 

Inflammation and inflammatory responses have been studied by many groups, but generally 

in certain cell models, mainly focusing on the cytokines produced by these cells following 

inflammatory stimuli. In this thesis, the aim is to investigate down-stream events activated by 

cytokines. It is currently unclear how histone acetylation and cell death (apoptosis/necrosis) 

are regulated during progression of inflammation or during the immunologic response of the 

animal to inflammation. 
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Current research in asthma showed increased histone acetylation, in epithelial cells (A549 

lung epithelial cells) and macrophages (U937 cell), stimulated with inflammatory mediators, 

suggesting that ongoing gene transcription occurs during the early inflammatory responses of 

the cells. The reports in asthma, another inflammatory disease, provided some clues into the 

possible involvement of histone acetylation in the pathogenesis of IBD. However, it is not 

clear which of the four histones are playing the most significant role in inflammatory gene 

transcription. Since the pathogenesis and progress of IBD is not well understood, this thesis 

aims to investigate whether specific histones are being acetylated during the course of the 

disease. Prior to in vivo, in vitro studies are performed to assess whether acetylation of 

histones depends on certain inflammatory mediators and if so, whether all histones are 

acetylated in a similar fashion. The ultimate goal is to identify whether specific patterns of 

histone acetylation can be identified in IBD following in vitro studies in macrophages and T

lymphocytes. 

Studies are required to reveal the functional outcomes resulting from the acetylation of the 

genes being transcribed during histone modifications. Furthermore, it should be evaluated 

whether distinct inflammatory markers, such as IL-8, are produced as a result of histone 

acetylation of specific histone lysine residues and whether the latter are acetylated during 

inflammatory cell responses. Glucocorticoids, acting .through glucocorticoid receptors, are 

thought to inhibit histone acetylation. Being one of the most effective treatments for lBO, the 

aim is to provide further evidence on how glucocorticoids work and whether their action is 

associated with histone acetylation in the cell lines studied and in IBD. It should also be 

assessed whether cell death, as part of the functional response to inflammation, is 

encouraged (or discouraged) and whether it correlates with post transcriptional modifications 

of histones. 

As both macrophages and lymphocytes playa pivotal role in the immune responses during 

inflammation, investigation of the above questions is performed in the monocytic cell line 

U937 and in the T -cell lines Jurkat and HUT-78. Both cell types are known as two of the major 

inflammatory cells involved in the pathogenesis of IBO. The role of the macrophages is to 

eliminate apoptotic and necrotic cells and the role of the T -cells is to orchestrate the immune 

response. 

Finally, this project investigates whether the in vitro findings regarding histone acetylation and 

inflammatory gene expression in the monocytic and T~cell lines correlate with in vivo 

processes occurring In IBO. Specific interest is given to the acetylation of histones in Peyer's 

patches since, although, these organs have been known to play a regulatory role in the 

activation of lBO, their detailed mechanism of action has not yet been identified. In summary, 

this project attempts to investigate the rote of histone acetylation in the process of 

inflammation, in the activation of cells and in disease. 
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Chapter 2 

Materials and Methods 

2.1 Cell culture 

All cell lines used for this work were acquired as live cultures from the European Collection of 

Cell Cultures (ECACC, Salisbury, UK). After receipt, all work carried out on them was completed 

in sterile conditions inside a class II hood using sterile, pyrogen free reagents, purchased (unless 

stated otherwise) from Sigma (Poole, UK), and sterile disposable plastic wear purchased from 

Helena Bioscience (Helena Bioscience, Sunderland, UK) (unless stated otherwise). The cells 

were incubated in a cell culture cabinet (BOC, Crawley, UK) at 37°C in a 5% CO2 humidified 

atmosphere. Cells were culture in disposable 25 cm2 or 50 cm2 cell culture flasks, in 7 or 14 ml of 

culture medium, unless stated otherwise. 

The cell lines used were U937 cells, HUT-78 cells and Jurkat E6.1 cells. All cell lines used were 

grown in suspension. U937 cells are a human Caucasian histiocytic lymphoma cell line. HUT-78 

cells are a human T cell lymphoma cell line. Finally, Jurkat E6.1 cells are a human leukaemic T 

cell lymphoblast cell line (for further.information on all cell lines used see appendix). 

2.1.1 U937 cell culture 

U937 cells were grown as per instructions from ECACC, in Roswell Park Memorial Institute 

(RPM I) 1640 containing 10% (v/v) Foetal Calf Serum (FCS) (Helena Bioscience, Sunderland, 

UK) and 2 mM L-glutamine until approximately 90% confluence had been attained. Upon 

reaching confluence, cells were passaged by centrifuging the cells for 5 min at 700 rpm at 37°C, 

disposing of the culture medium and washing the cells, followed by centrifugation under the 

same conditions, twice with Hank's Balanced Salt solution (HBSS). Finally, the cells were 

resuspended in fresh culture medium to a 3x the volume they were cultured in (unless otherwise 

stated: 3x7=21 ml). The diluted suspension was divided into fresh 25 cm2 flasks at 7 ml per flask 

and incubated as described above. The cell medium was replaced once every two days during 

inCUbation. Cells would take approximately 5 days to reach confluence after each passage. 

All U937 cells used for experiments were maintained within 10 passages of one another. For 

stimulation, cells were grown to the appropriate degree of confluence (depending on the 

experiment) in 25 cm2 flasks, the medium was removed, the cells were washed twice with HBSS, 

as described above, and the cells were further incubated with FCS (serum) free medium 

(containing 0.25% FCS) for 48-72 hrs to achieve synchronisation. Following serum starvation, 

the medium was removed and replaced with fresh serum free medium containing the appropriate 

stimulant. The cells were incubated for an appropriate time period depending on the experiment. 
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2.1.2 HUT-78 cell culture 

HUT-78 cells were grown (following the ECACC instructions) in the same manner as described 

for the U937 cells. HUT-78 cells usually required 7 days to reach confluence. Stimulation 

procedures were the same as described for the U937 cells. 

2.1.3 Jurkat E6.1 cells 

Jurkat cells were grown (following the ECACC instructions) in the same way as U937 cells. 

Jurkat cells usually required 7 days to reach confluence. Stimulation procedures were the same 

as described for the U937 cells. 

2.1.4 Cell treatments 

Following serum starvation all three cells lines were treated similarly. 


The cell density used for each experiment was 106 cells/ml. For Western blotting (see section 


2.6) and Chromatin IP (see section 2.8) experiments, 107 cells were used. Cells were stimulated 


as follows: 


LPS and TNF-a were used at concentrations of 1 Ong/ml for 1 hour in all three cell lines. 


TSA was used at concentrations of 1 ng/ml in U937 cells and 1 Ong/ml in HUT -78 and Jurkat cells 


respectively and was added to the medium 30 min prior to addition of LPS or TNF-a. 


Dexamethasone and Triamcinolone Acetonide were used at concentration of 10·sM and 1O-1oM 


respectively in all three cell lines. The steroids were added simultaneously with the addition of 


TSA and were incubated in the medium for 30 min prior to addition of the inflammatory stimuli 


(LPS and TNF-a). 


For ELISA purposes (see section 2.7) the cells were incubated to stimuli for 17-24 hrs. 


2.2 Collection of animal tissue 

The 2,4,-trinitrobenzene sulfonic acid (TNBS) model of intestinal inflammation, based on that of 

Morris et al., (1989), was used. All handling of live animals was completed off site, by Tim Bourne 

(at Celltech Chiroscience, Slough), with the appropriate licences and ethical permission already 

having been granted. Eighteen male Sprague-Dawley rats (Charles River, UK) with a median 

weight of 337.5 g were fed with basic rat chow. The animals were divided into two groups each 

consisting of nine animals. The first group was treated intrarectally with 30 mg of TNBS in 30% 

w/v ethanol, using a syringe and tube, on day zero. At the same time and using the same 

technique, the second, Sham operated (control), was treated with 30% ethanol alone. The 

animals were sacrificed on day seven and tissue was resected from two separate areas of the 

large intestine- two centimetres distal to the caecum (proximal colon) and three centimetres 

proximal to the anus (distal colon). Within the TNBS treated group these two areas constituted 
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the inflamed (distal) and non-inflamed (proximal) regions of the colon. All samples were snap 

frozen in liquid nitrogen immediately after excision. Tissue was subsequently maintained in a 

frozen state at -80°C until use. 

2.3 Collection of human tissue 

Collection of human intestinal tissue was based on a technique previously described (Ellis et a/., 

1998). Human tissue was obtained during routine surgery at 8t. Thomas' hospital, or routine 

endoscopy procedures at 8t. Thomas' hospital or the Middlesex hospital. In Crohn's disease 

patients, biopsies were collected from either macroscopically inflamed or non-inflamed regions of 

the large and small intestine. In control patients, biopsies were collected at least 4 cm from 

macroscopic disease. Upon collection, tissue was immediately snap frozen in liquid nitrogen and 

then stored until use in liquid nitrogen or at -80°C. Patient information, supplied by the surgeons, 

included sex, age, disease type and location as well as treatment regime. None of the patients 

were smokers. 

2.4 Preparation of tissue sections 

For microscope analysis, the biopSies were fixed in 4% (w/v) paraformaldehyde/PB8 for 3 h at 

4°C,'cryoprotected in sterile 4%(w/v) sucrose/PBS at 4°C overnight, mounted in OCT mountant 

(BDH, Atherstone, UK) on labeled cork discs and frozen in liquid nitrogen-cooled isopentane. 

Tissue samples were stored at -70°C. The sections were cut in a cryostate in the appropriate 

depth, generally 5iJm thick, and were positioned in electrostatically charged slides. The slides 

were allowed to dry completely in air. Finally, the slides were covered in foil (shiny side 

touching the sections) and stored at -20°C. 

2.5 The BioRad™ Bradford method for protein quantitation 

The BioRad ™ Bradford assay is a rapid and accurate method for the estimation of protein 

concentrations (between 1-10 J.l.g), and is an adaptation of that described by Bradford (Bradford, 

1976). The Bradford assay relies on the binding of the dye Coomassie blue G250 to protein. The 

anionic form of the dye, which binds to protein, has maximum absorbance at a wavelength of 595 

nm. Thus, the amount of dye bound to protein can be quantified by measuring the absorbance of 

the dye/protein solution at 595 nm. The advantage of the BioRad assay compared to the 

Bradford assay is that the BioRad assay is compatible with a wider range of detergents and is 

therefore compatible with the lysis buffers used herein. 

The protein assay detergent was prepared by diluting the BioRad dye 1/5 with deionised water 

(diH20), as per instructions. For all estimates of protein content, a standard curve (0-10 ).1g 

protein, 2 J.l.g increments) was used, in duplicate using a 96 well microtitre plate. The protein 
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standard was a 1 mg/ml solution of BSA in dH20 (stored at 20°C). Protein extracts were added to 

separate wells and 200~1 of diluted dye was added to all wells using a multichannel pipette. 

Plates were incubated for five min in darkness at room temperature before being read as 595 nm 

using an ELISA plate spectrophotometer (Rosys Anthos HIli; Anthos Labtech Instruments, 

Salzburg, Austria). The protein concentration of the samples was then read off the standard 

curve. 

2.6 Western Blotting 

Western blotting allows the semi-quantitive measurement of a specific protein within a given 

sample (Sam brook & Gething, 1989). The sample proteins are separated by gel electrophoresis 

and transferred to a more stable matrix, in this case a nitrocellulose membrane, which is 

incubated with an antibody raised against the antigen of interest. The first incubation is followed 

by a second, using an antibody raised against the first antibody and which is conjugated to an 

enzyme. This enzyme is then allowed to react with a chemi-Iuminescent substrate, which causes 

the evolution of blue light wherever the first and the second antibodies have bound, forming 

distinctive bands. These bands of blue light can be captured on film and after X-ray development 

of the film; the presence of the target proteins can be quantified by computer analysis of the 

image density of the bands captured. on film. The protocol used here was based on that of 

Sambrook (Sam brook et a/., 1989). 

2.6.1 Cell harvesting 

The stimulated cells (methods described is sections 2.1.2, 2.1.3 and 2.1.4) were washed 

(centrifuged at 12.000g for 5 min) in ice cold phosphate buffered saline pH 7.4 (PBS). The 

supernatant was removed and the pelleted cells underwent nuclear/cytosolic fractionation or 

histone isolation depending on the proteins that required measurement. 

2.6.2 Nuclear/cytosolic fractionation 

The nuclear/cytosolic fractionation method was similar to those previously described (Latchman, 

1992). 

The cell pellet was resuspended (10IlI I 5x106 cells. 70111 J 25cm2 flask) in a solution that 

consisted of 10mM N-(2-hydroxyethyl)piperazine-N'-(2-ethane)sulfonic acid (HEPES) pH 7.9, 

1.5mM MgCI2• 10mM KCf (Merck, Poole. UK), 0.5mM trans-1,2-dithiane-4,5-diol (DTT) and 

0.25% v/v nonldent P-40 (NP-40). The solution was allowed to incubate for 20 min on ice during 

which time lysis of the plasma membrane occurred. To retrieve the cytosolic fraction the samples 

were centrifuged for 15 sec at 12.0009 to pellet the nuclei. The supernatant (cytosolic fraction) 

was removed and stored subsequently at -20°C. 
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The remaining nuclei pellet was resuspended in 15 fll of a solution consisting of 20mM 

HEPES pH 7.9, 1.5mM MgCI2, 0.42M NaCI, 0.5mM OTT, 2S% glycerol and 0.5mM phenyl 

methanesulfonyl fluoride (PMSF) in diH20. The cell suspension was allowed to incubate for 20 

min on ice and was then centrifuged at 12.000g for 10 min in a microcentrifuge (Sanyo, MSE II, 

CN Biosciences, Nottingham, UK) to pellet the cellular debris. The supernatant (nuclear fraction) 

was removed to a fresh eppendorf. The fresh nuclear fraction was diluted in 7S!l1 of a third 

solution consisting of 20mM HEPES pH 7.9, SOmM KCI, O.SmM Ott, 0.2mM ethylenediamine 

tetraacetic acid (EOTA) and O.SmM PMSF. Prior to storing the nuclear and cytosolic fractions at-

20°C, a BioRad™ protein assay (see 2.4) was performed to determine sample protein 

concentrations. 

2.6.3 Histone isolation 

Note: AU procedures were carried out on ice 

The cells were cultured in 6 well plates until they reached a subconfluent state (40%-60% 

confluent). The medium was changed to serum (FCS) free 24-48 hours prior treatment. The cells 

were stimulated with the appropriate concentration of the stimulant for a required established 

time. Cell suspensions were washed twice with cold HBSS. S00l-11 of cold lysis buffer consisting 

of 10 mM Tris-HCI pH 6.5. 50mM sodium bisulfate, 10mM MgCI2• 8.6% sucrose, 1% Triton X

100, one protease cocktail tablet (Complete Mini; Boehringer Manheim, lewes, UK) and 100 

nglml TSA, were added in each well. The cells were harvested into eppendorf tubes and allowed 

to stand on ice for 10 min. The cells were washed three times with 200fll of lysis buffer 

(centrifuged at 12000 rpm. for 5 minutes, at 4°C). Cell suspensions were washed once with 

nuclear washing buffer and 1501-11 of an acid mixture consisting of O.2M HCI and 0.4 M H2S04 

were added to the pellet and sonicated for 3 seconds (making sure that the cells were kept on ice 

while sonicating). The solution was allowed to stand on 4°C for at least 2 hours. The cell 

suspenslon was centrifuged at 12000 rpm. for 10 minutes. at 4°C. 120j.11 of the supernatant were 

aliquoted in 1ml of chilled acetone. Allowing the samples to stand in the freezer overnight 

precipitated histones. The samples were centrifuged at 12000 rpm, for 10 minutes, at 4°C. The 

pellets were washed twice with chilled acetone and the pellets were allowed to air dry. The dry 

pellets were diluted in deionised water (usually 20-30J.!1 depending on the concentration of 

histones iso'lated). Finally. a Bradford (Biorad) assay was performed to determine the final protein 

concentration. 

2.6A Sodium dodecyl 8ulphate-polyacrylamide gel electropholW. 

Sodium dodecyl sulphate (SDS}-poIyacrylamlde gel eiectrophoresis (PAGE) was used to 
separate the sample proteins. An 80S-PAGE gel is a vertical gel that contains two distinct layers 

of gel; a resolving gel at the bottom and a stacking gel at the top. The gels were poured between 



50 2. Materials and Methods 

two glasses (10x10 cm2; Novex, Hamburg, Germany) separated by one mm thick spacers which 

had previously been thoroughly cleaned with 70% IMS. The resolving gel consisted of 3.S5ml 

diH20, 2.Sml Acrylamide/Bisacrylamide (40% 19: 1; Anachem), 3.7Sml of 1.SM Tris buffer pH8, 

100~1 SDS (10% w/v) , 100~1 ammonium persulfate (APS) (10% w/v) and 10~LI 1,2

Bis(dimethylamino)ethane (TEMEO). This was poured into the bottom of the plate assembly. 

Water saturated isobutanol (isobutanol and 10% v/v diH20) was added on top of the resolving 

gel whilst it set, creating an airtight seal (02 is inhibitory to gel polymerization) whilst at the same 

time smoothing the surface of the gel. 

Once the resolving gel was set, the isobutanol was poured and the gel was washed with diH20 to 

completely remove any isobutanol. The stacking gel that consisted of 3.64ml diH20, 0.63ml 

Acrylamide/Bisacrylamide (40% 19: 1), 0.63ml of 1 M Tris buffer pH 6.8, SO~I SOS (10% w/v) , SOfll 

APS (10% w/v) and 5~d TEMEO, was poured on top of the resolving gel. A ten-tooth gel comb 

was quickly placed on top of each gel thereby creating the sample wells. Once the gel had set 

the gel combs were removed and the gel (still supported by the glass plates) was placed into an 

electrophoresis tank (Novex), filled with running buffer (25mM Tris base, 250mM Glycine and 

0.1 % w/v SOS in diH20). The tank was filled so that the level of the buffer completely covered the 

gel(s). 

With the gels prepared, four times required concentration (4x) loading buffer was added to all 

samples in the correct volume to yield the correct working concentration and the samples were 

boiled for five minutes. The 4X loading buffer consisted of 1 M Tris-HCI (pH 6.8), 8% w/v SOS, 

40% v/v Glycerol, 0.04% wlv Bromophenol Blue and 4% vlv 2 Mercaptoethanol. Subsequently, 

the samples were loaded into each well, with one well being set aside for the addition of 5111 of 

molecular weight markers (Rainbow Markers; Amersham, Little Chalfont, UK). The gels were run 

at 40mA for approximately gOmin until all the samples had migrated to the base of the gel. With 

this complete the proteins in the gel were transferred to a nitrocellulose membrane by 

electroblotting. 

2.6.5 Electroblotting 

Electroblotting buffer was prepared consisting of 700ml diH20, 100ml of 10x-transfer buffer 

(200mM Tris-base and 1.92M Glycine in diH20), and 200ml Methanol (AnalaR grade; Merck, 

Harlow, UK). Gel sized (10cm2) blotting paper and nitrocellulose membrane (ECl Hybond; 

Amersham, Cardiff, UK) were cut and soaked in transfer buffer for Smin. The SDS-PAGE gel was 

removed from the supporting glass plates and Eel membrane was placed on top of the gel. The 

gel and the membrane were sandwiched between blotting paper and foam pads placed either 

side. This construction was placed inside the electroblotting module (Novex, Hamburg, Germany) 

orientated so that the gel was on the anode side and the membrane on the cathode. After filling 
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the module with electroblotting buffer, a 200mA current was passed through the module for 

4Smin. 

2.6.6 Immunoblotting 

With electroblotting complete the membrane was recovered and protein transfer was verified by 

staining with Ponceau S solution (Sigma) for approximately Smin. Ponceau S stains proteins in 

red allowing verification of even protein loading and transfer. Subsequently, the membrane was 

blocked in PBS containing 0.05% v/v Tween-20 (PBS-T) and S% w/v non-fat powdered milk, for 

1 h at room temperature (incubation could be extended to overnight at 4 cG). 

Once blocked, the membrane was washed twice for Smin in PBS-T and finally placed in the 

primary (1°) antibody solution. The primary antibodies (Serotec, Oxford, UK) that had been 

raised to specific peptide were; polyclonal rabbit anti-histone H4 (acetylated) (1/600 dilution in 

blocking buffer), rabbit anti-histone H4 (AcS) (1/600 dilution), rabbit anti-histone H4 (Ac8) (1/600 

dilution), rabbit anti-histone H4 (Ac12) (1/600 dilution), rabbit anti-histone H4 (Ac16) (1/600 

dilution), rabbit anti-histone H3 (1/600 dilution), polyclonal goat Annexin V (Santa Cruz 

Biotechnology, loughborough, UK) (1/400 dilution), rabbit polyclonal Caspase-3 (Santa Cruz) 

·(1/400 dilution) and rabbit polyclonal Bcl-2 (Santa Cruz) (1/400 dilution). The primary antibody 

incubation was carried out at room temperature with agitation for gOmin. 

Subsequently the membranes underwent by two 5min washes in PBS-T followed by incubation 

with the secondary (2°) antibody at 1/4000 dilution for 60min. The secondary antibody was goat 

polyclonal anti-rabbit, horseradish peroxidase (HRP) conjugate (Dako, Cambridge, UK), for all 

the primary antibodies except the goat anti-Annexin V antibody. For this a mouse anti-goat was 

used followed by a wash sequence and a further incubation with the rabbit anti-goat-HRP 

conjugate. With the final antibody incubation complete, the membranes were subjected to three 

Smin washes in PBS-T. The membranes were blotted dry and covered with ECl substrate for 

1 min in darkness followed immediately by the exposure of the membrane to a blue light sensitive 

film (X-ograph). The film was developed by inCUbation in GBX developer for 5min followed by a 

30 second wash in tap water, then Bmin incubation in GBX fixative with a final wash in tap water. 

All manipulations of the developed film were carried out in a photographic dark room. The films 

were analysed using digital optical densitometry software (GeIPro, MediaCybemetics, Silver 

Spring, USA) on a computer linked to a flatbed scanner configured to scan using transmitted 

light. 

2.7 Interleukin-8 ELISA 

To determine cell culture medium concentrations of interleukin-8 (ll-8) an enzyme linked 

immuno-sorbent assay (ELISA) kit was used (Pharmingen, Oxford, UK). The kit was used 
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according to manufacturers instructions. Briefly, all reagents were brought to room temperature 

before use. The ELISA standards were reconstituted in 1ml of diH20 and allowed to equilibrate 

for 15min. Aliquots of these standards were stored at -70°C. To prepare a standard curve, serial 

dilutions of the standards that ranged from 200-31 pg/ml were made in assay diluent, consisting 

of PBS (pH 7) and FCS. Assay diluent alone served as the control. 

The ELiSAs were carried out in 96 well microtitre plates that were coated with the IL-8 capture 

antibody. The antibody was diluted (according to kit specific ratios) in coating buffer consisting of 

0.1 M Carbonate buffer (8.4gr NaHC03 and Na2C03 made up into 11tr of diH20) pH 9.5. 100111 of 

this solution were added per well to the microtitre plate, the plate sealed and incubated overnight 

at 4°C. After coating, the plates were washed three times with 300111 wash buffer (PBS-T) per 

well per wash. Plates were blocked by the addition of 200J-l1 assay diluent per well and incubated 

at room temperature for one hour. After two washes, as described above, 100111 of standard or 

sample were added to the appropriate wells and the plate sealed and incubated at room 

temperature for a further two hours. Subsequently, the plates were washed five times and 100J-l1 

per well of detector antibody diluted as per kit instructions was added. Again, the plate was 

sealed, incubated at room temperature for one hour and then washed seven times. Finally, 100111 

per well of TMB substrate solution (Pharmingen, Oxford, UK) were added and the plates were 

incubated for 30min at, room temperature in darkness. The absorbance of each well was then 

read at 450 nm (with subtraction of 570nm from 450nm) and the concentration of the samples 

determined by plotting the unknowns from the standard curve. 

2.8 Chromatin Immunoprecipitation assay 

The protocol used was based on a method described by Ito et al. (2000). 

Cells were treated with LPS (10ng/ml) and TNF-a (10ng/ml) in the presence of dexamethasone 

(10·8M) and triamcinolone acetonide (10·10M) as described above. After a 4-h incubation, protein

DNA complexes were fixed by formaldehyde (1 %, final concentration) and treated as previously 

described (Ito et al., 2000). Cells were resuspended in 2001-11 of SDS lysis buffer (50 mM Tris, pH 

8.1; 1% SDS; 5mM EDTA; complete proteinase inhibitor cocktail) and sonicated (three 10s 

pulses) on ice. Sonicated samples were centrifuged to spin down cell debris, and the soluble 

chromatin was immunoprecipitated using Pan-AcH4 antibody (201-11) (Serotec) and salmon sperm 

DNA agarose A slurry (251-11) (Upstate Biotechnology, Buckingham, United Kingdom). P rotein

bound immunoprecipitated DNA was washed with LiCI wash buffer and Tris-EDTA (TE), and 

immune complexes were eluted by adding elution buffer (1 % SDS, 0.1 M NaHC03). The elution 

was treated successively for 4h at 65°C in 200mM NaCI-1 % SDS to reverse cross-links and then 

incubated for 1h at 45°C with 70l-lg of proteinase K per ml, DNA extracted with phenol

chloroform, preCipitated with ethanol/O.3 M NaHCOOH/20l-lg of glycogen, and resuspended in 

50JJI of TE. Semi-quantitative PCR was performed with 101-11 of DNA sample for 30 cycles. Primer 
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pairs to detect NF-KB binding site on the IL-8 promoter region were as follows: forward, 5

AACAGTGGCTGAACCAGAG-3; and reverse, 5-AGGAGGGCTTCAATAGAGG -3. PCR 

products were resolved by using 3% agarose gel and visualized with ethidium bromide. 

2.9 Immunocytochemistry/Immunohistochemistry 

The Immunocytochemical and immunohistochemical techniques used varied according to the 

target proteins in question. 

2.9.1 Preparation of cytospins 

Cytospins were prepared from cell suspensions at O.S x 106 cells/slide coated with 0.1 % poly-L

lysine (BDH, Atherstone, UK). The purpose of slide treatment was mainly to minimize non

specific attachment of radio-labeled probes to slides and maximize section of cell retention on the 

slides through the various treatments involved in immunocytochemical procedures. 

2.9.2 Protocol for rabbit polyclonal antibodies 

Note: Protocol used for Immunocytochemistry and immunohistochemistry using anti-histone 

antibodies 

The slides were fixed for 10min in chilled acetone and allowed to air dry for a further 10mins. 

They were then incubated for 1 hr in Quench Endogenous Peroxidase (3% H20 2 in PBS 

containing 0.02% Sodium Azide). Subsequently, they were washed 3xSmins in PBS and were 

pre-blocked with 5% normal swine serum (NSS, depending on the secondary antibody) for 

20mins. The slides were incubated with the primary antibody diluted in PBS. The time of the 

incubation as well as the dilutions depended on the recommendation of the manufacturer. They 

were then washed twice for 5mins in PBS and the secondary antibody was added (the time of 

the incubation as well as the dilutions depended on the recommendation of the manufacturer). 

Slides were again washed 2x5mins in PBS. Avidin-HRP was added in a dilution 1/S00 in PBS for 

4Smins before two final washes in PBS for 5mins. DAB (one tablet diluted in 5ml of PBS) was 

added and allowed to incubate until colour had developed. The slides were washed for Smins in 

distilled water and were counterstained in 20% Harris haematoxylin for 10sec. Finally, they were 

air-dried and mounted in DPX. 

2.9.3 Protocol for glucocorticoid receptors and goat polyclonal antibodies 

Note: Protocol most appropriate for Bcl-2 and Annexin-V antibodies 
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The slides were allowed to stand for 10mins in 2% formaldehyde in PBS followed by 10mins in 

O.S% NP-40 in PBS. Slides were subsequently incubated in 100mM glycine in PBS for Smins. 

Glycine solution was discarded and the slides were immersed for 10mins in PBG (O.S% BSA, 

0.1% gelatin in PBS). The primary antibody (4°C) was diluted in PBG and added to the slides. 

Time and dilution depended on recommendation by the manufacturer. The slides were washed 

4xSmins in PBG. The slides were allowed to stand on secondary antibody (room temperature) 

diluted in PBG. Time and dilution depended on recommendation by the manufacturer. The slides 

were washed 4xSmins in PBG. Slides were incubated for 1 hr in FITC-Streptavidin in a dilution 

1/100 in PBG. The slides were washed 4xSmins in PSG. The slides were washed for 10mins in 

PBS. The slides were counterstained in 20% Harris haematoxylin. Finally, slides were air dried 

and mounted in Citifluor (DPX was used if immunofluorescence was not required). 

2.10 HDAC fluorescent activity assay 

An HDAC fluorescent activity assay/ Drug discovery kit was used to measure histone 

deacetylase (HDAC) activity in cell nuclear extracts (Biomol, Exeter, UK). 

In a 96 well plate, assay buffer (2SmM Tris/CI, pH 8.0, 137mM NaCI, 2.7mM KCI, 1mM MgCI2) 

and diluted TSA were added to appropriate wells. Diluted (supplied) HeLa extracts and U937, 

HUT-78 and Jurkat cell extracts Were added to the rest of the wells. Diluted Fluor de LysTM 

extract (supplied) was allowed to equilibrate in the microtiter plate to assay temperature (2S°C). 

The HDAC reaction was initiated by adding diluted substrate (25!J.1) to each well and mixing 

thoroughly. The HDAC reaction was allowed to proceed for 1 h and then stoped by the addition of 

Fluor de LysTM developer (50~d). The plate was incubated at room temperature for is min. The 

samples were read in a microtiter-plate reading fluorimeter capable of excitation at a wavelength 

in the range 3S0-380nm and detection of emitted light in the range 440-4660nm. 

2.11 Detection of cell viability and apoptosis 

2.11.1 MIT cell viability assay 

The 3-[4,S-Dimethylthiazol-2yl]-2,S-dephenyletetrazolium (MTT) viability assay, based on that of 

Denizot & Lang (1986) and Carmichael et al., (1987) was used for the purpose of assessing 

U937, HUT-78 and Jurkat cell viability in 96 well plates. The cells grown into 96 well plates and 

stimulated (section 2.1.2). At the end of the stimulation period the culture medium was removed 

and replaced with 2S!J.1 of MTT solution consisting of Smg/ml MIT in phenol free RPMI-1640 

medium. After a two hour incubation period, the MTT solution was removed leaving behind the 

insoluble MTT product. This was re-dissolved in a SOS-isopropanol mix, consisting of 1% w/v 

SOS and 5% vlv distilled water in absolute propyl alcohol. 100!J.1 of this solution were added per 

well and mixed by repeated aspiration through a pipette. The absorbance of the solution was 
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measured at 570nm with background subtraction at 620nm using an ELISA plate 

spectrophotometer (Rosys Anthos Hili, Salzburg, Austria). 

2.11.2 Hoechst 33342 staining for apoptosis detection 

The cells were harvested and to 1ml of cell suspension (106cells), 100lli of 10,","g/ml Hoechst 

33342 solution were added. The cell suspension was incubated for 5min at room temperature. 

100,","1 of the dead cell discriminator propidium iodide (50,","g/ml) were added. The cells were 

viewed under a fluorescent microscope and cells stained with the dye were counted using a 

cytometer. 

2.11.3 DNA laddering 

A DNA laddering kit was used to assay cells for apoptosis by detecting internucleosomal DNA 

fragmentation and displaying DNA laddering (R&D Systems, Abingdon, UK). 

2.11.3.1 DNA isolation 

Cells were cultured and stimulated as described previously (section 2.1). 1x107 cells were 

collected by centrifugation at 2000g for 5min at 4°C. The cells were resuspended in 1OO~.tI of 

sample buffer (provided by kit). The cell suspension was incubated at 18-24°C for 10min. The 

samples were lysed and the DNA stabilized by addition of 100,","1 of a supplied lysis solution. The 

samples were transferred to a 2ml microcentrifuge tube and 700111 of extraction solution were 

added. 400111 of the second extraction buffer was added and the samples were vortexed for 

10sec. The samples were microcentrifuged at 12,0009 for 5min. The upper (aqueous) layer, 

which was formed into the tube, was transferred to a new microcentrifuge tube. 0.1 volume of 

sodium acetate was added to the aqueous DNA solution. To the total volume in the 

microcentrifuge tube, an equal volume of 2-propanol was added. The samples were 

microcentrifuged at 12,000g for 10min. The supernatant was carefully removed and discarded. 

1ml of 70% ethanol was added to the DNA pellet. The DNA solution was microcentrifuged at 

12,OOOg for Smin. the supernatant was discarded and the DNA pellet was allowed to air-dry. The 

DNA was resuspended in 100,","1 of DNase-free water. DNA was quantified using a 

spectrophotometer (SI.t! of the DNA were diluted in 99S/-.tI of water and the optical density was 

read at a wavelength of 260nm. 

2.11.3.2 Ethidium Bromide labeling and detection 

1,..tI of DNA was diluted in 9111 DNase-free water and 21-.11 of gel loading buffer (provided by kit) 

were added. The samples were loaded into a 1.5% TreviGel 500 gel (provided by kit) in TAE 

buffer (242g Tris-base, S7.1 ml glacial acetic acid, 100ml o.SM EDTA, pH 8.0 in 11t of dH20). The 

http:99S/-.tI
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samples were run at 100V for 2h. The gel was then stained for 1Smin in O.S!ll/ml ethidium 

bromide prepared in DNase-free water. Ethidium bromide stained DNA was visualized using a 

UV translluminator and photographed using Kodak 22A yellow filter. 

2.12 Statistical Analysis 

Results are expressed as mean±SEM with n being the number of independent observations. 

Statistical significance of differences between means were evaluated by computer program 

(Graphpad Prism, version 3), using one-way AN OVA, followed by a Tukey post-hoc analysis, or 

a Student's t-test where appropriate. p<O.OS was considered significant. 
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Chapter 3 

Role of histone acetylation in IL-8 expression 

3.1 Introduction 

In order to fit into the nucleus, DNA has to be condensed about 10,OOO-fold. For this reason, 

the DNA is first wound around a histone octamer core consisting of histones (H) 2A, 2B, 3 and 

4. Assembling higher-order structures with the help of histone 1 and other non-histone proteins 

achieve further compaction. Under resting conditions, DNA is tightly compacted into the 

nucleosome complex excluding the binding of RNA polymerase II (Pol II), the key enzyme that 

results in transcription of the gene and the formation of messenger RNA, and other large 

protein complexes. The tightly wound DNA forms a "closed chromatin structure", also 

excluding binding of transcription factors, so that the gene is silent or repressed (Grunstein, 

1997; Wolffe, 1999). In stimulated cells, transcription factors such as NF-KB, AP-1 and 

STATS, are activated within the nucleus and bind to co-activator molecules, such as CREB

binding protein (CBP), p300, GCN5 and PCAF (Torchia et al., 1997; Kamei et al., 1996). These 

co-activator molecules are part of multiprotein complexes that are recruited by DNA-bound 

transcription factors to the transcription start site and act as molecular switches. When 

transcription factors bind to these co-activator molecules, the intrinsic histone acetyltransferase 

(HAT) activity on these proteins is activated resulting in acetylation on core histone proteins 

(Ogryzko et al., 1996). When the histone basic lysine residues, situated in the N-terminal tails, 

are acetylated by HAT this neutralises the charge on the histone tail and allows DNA to 

unwind. This opens up the chromatin structure, allowing RNA Pol II and other factors to bind, 

thus switching on gene transcription. 

Therefore, high levels of histone acetylation are associated with transcriptionally active 

chromatin (Turner, 1993). Actively transcribed chromatin regions have been associated with 

hyperacetylation and histone acetyltransferase (HAT) recruitment. Histone deacetylase 

(HDAC)-mediated deacetylation on histones is thought to promote the return to a repressive, 

higher order chromatin structure. This balance between acetylation and deacetylation is an 

important factor in regulating gene expression and is thus linked to the control of cell fate 

(Timmermann et al., 2001). As a consequence, hyperacetylation of normally silenced regions 

or deacetylation of normally actively transcribed regions can lead to various disorders, 

including developmental and proliferative diseases (Marks et al., 2001). 

Glucocorticoids, which induce changes in cell proliferation and differentiation, exert their effects 

through specific intracellular steroid hormone receptors. It is well established that glucocorticoids 

down regulate the transcription of pro-inflammatory genes (Ray & Prefontaine, 1994; Mukaida et 

al., 1994). Those genes are themselves activated by the NF-KB transcriptional regulator, but the 
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mechanism by which glucocorticoids preclude activation has been a matter of debate (Ito et aI., 

2000; Nissen & Yamamoto, 2000). The anti-inflammatory effects of glucocorticoids are due to 

the glucocorticoid receptor acting as a hormone-dependent transcription factor to modify 

chromatin structure. On ligand binding, these receptors are activated and translocate to the 

nucleus where they interact directly with glucocorticoid response elements (GREs) or associate 

with other transcription factors through protein:protein:DNA complexes to induce local DNA 

unwinding and subsequent gene induction. Glucocorticoid receptors interact with CREB-binding 

protein (CBP) and several other transcriptional co-factors including SRC-1 to enhance gene 

expression. Increased transcription is associated with uncoiling of DNA, which in turn is 

associated with acetylation on histones by the enzymic action of the CBP and other HATs. 

Glucocorticoids may also modify chromatin structure indirectly by recruiting HDACs to the 

promoter site of inflammatory genes resulting in histone deacetylation, tighter coiling of DNA and 

reduced access of the large basal transcription complex and RNA pol II and thereby suppressing 

inflammatory gene expression (Barnes, 1998). 

In this chapter, the effect of whole cell histone acetylation status in inflammatory gene expression 

is investigated. To assess whether histone acetylation influences transcription and chromatin 

modifications it was determined whether TSA, an antifungal antibiotic with differentiating 

properties in a mammalian cell culture and a potent and specific inhibitor of HDAC activity, 

influenced basal, inflammatory stimUli-mediated and glucocorticoid-mediated release of pro

inflammatory cytokines in a monocytic cell line (U937) as well as in two T-cell lines (Jurkat and 

HUT-78). 

3.2 Results 

3.2.1 Evidence of a role of histone acetylation in IL-8 production in macrophages and 

lymphocytes 

IL-8 production in three cell lines was the focus of this study because of its physiological 

importance during inflammation. The 5' flanking region of the IL-8 gene contains potential 

binding sites for several nuclear factors such as NF-KB, activation factor-1 (AP-1) and a 

glucocorticoid responsive element. The cell lines studied were: U937, HUT-78 and Jurkat. Both 

LPS (10 ng/ml) and TNF-a. (10 ng/ml) stimulated IL-8 production in each cell line after 18h (Fig. 

3-1). No induction of IL-8 release was seen before 4h and a maximum was reached after 24h. 

In U937 cells LPS (1430 ± 140 versus 210 ± 30 pg/ml; p<0.01) and TNF-a. (1220 ± 100 versus 

140 ± 30 pg/ml; p<0.01) both induced IL-8 expression. A similar effect was seen in HUT-78 

cells, where LPS (542 ± 41 versus 120 ± 12 pg/ml, p<0.05) and TNF-a. (683 ± 35 versus 200 ± 

22 pg/ml, p<0.05) stimulated IL-8 production but to a lower extent compared to that seen in 

U937 cells. Finally, both LPS and TNF-a. also stimulated IL-8 production in Jurkat cells (453 ± 

23 versus 123 ± 15 pg/ml, p<O.05) and (690 ± 38 versus 193 ± 15 pg/ml, p<0.05) respectively. 
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To determine whether histone acetylation played a role in LPS- or TNF-a- induced IL-8 

release, cells were further stimulated with increasing concentrations of Trichostatin A (TSA) , a 

potent histone deacetylase inhibitor (Fig. 3-2). For U937 cell the optimal concentration of TSA 

stimulation was 1 ng/ml causing the highest release of the cytokine. In both T-cell lines, TSA 

had the most potent effect at 10 ng/ml (Fig. 3-2). In all three cell lines investigated higher 

concentrations of TSA suppressed cytokine release. 

Figure 3-3 shows the additional effect of TSA on IL-8 production stimulated by LPS or TNF-a. 

TSA enhanced LPS-induced IL-8 production in all three cell lines. In U937 cells IL-8 production 

increased by 22% (1740 ± 120 versus 1530 ± 140 pg/ml, p<0.1). Smaller increases were seen 

in HUT-78 cells (630 ± 42 versus 542 ± 41 pg/ml LPS alone, p<0.05) and in Jurkat cells (628 ± 

35 versus 453 ± 23 pg/ml LPS alone, p<0.05). 

TSA also enhanced the release of IL- 8 in cells stimulated with TNF-a (10 ng/ml) (Fig. 3-4). 

Here the increase in IL-8 production observed was: 1453 ± 121 versus 1220 ± 100 pg/ml 

(p<0.05) for U937 cells; 872 ± 44 versus 683 ± 23 pg/ml (p<0.05) for HUT-78 cells and 800 ± 52 

versus 690 ± 28 pg/ml (p<0.05) for Jurkat cells. 
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Figure 3-1 Effect of lipopolysaccharide (LPS) (10 nglml) and tumour necrosis factor-a. (TNF-a.) (10 nglml) in 

interleukln 8 (IL-8) release In U937, Jurkat and HUT·78 cells. Both inflammatory stimuli induced IL-8 production in 

all three cell lines. In U937 the release of IL-8 induced by both inflammatory stimuli is Significantly higher than that of 

the T-cell lines (·p<0.01, "·p<0.05) (#p<O.05 U937 vs HUT·78 and Jurkat cells). (n=4). 
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Figure 3-2 Concentration response curve of Trichostatin A (TSA) in U937. HUT-78 and Jurkat cells. The 

concentration of TSA was increased from 0.1 ng/ml to 50 ng/ml. In macrophages. a significant increase in interleukin 8 

(IL-8) production is observed after stimulation of 1 ng/ml of TSA. In both T-cell lines maximum IL-8 reiease was 

observed with a 10 ng/ml concentration of TSA. (*p<0.05). (rl=4). 
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Figure 3-3 Effect of Trichostatin A (TSA) on the production of interleukin 8 (IL--8). Lipopolysaccharide (LPS) (10 

ng/ml). enhanced production of IL-8 in all three cell lines with the most Significant increase observed at the 

macrophage cell line. In all three cell lines the production of IL-8 was significantly increased following addltion of TSA 

at concentrations determined in figure 3-2 (1 ng/ml in U937 cells and 10 ng/mf in HUT-78 and Jurkat cells). (*p<O.1). 

(n=4). 
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Figure 3-4 Effect of Trichostatin A (TSA) on the production of interleukin 8 (IL-B). Tumour necrosis factor ex (TNF

ex) (10 ng/ml) induced elevated production of IL-8 in all three celi lines with the most significant increase observed in 

the U937 celis. In ali three cell lines the production of IL-8 was Significantly increased following further addition of TSA 

at concentrations determined in figure 3-2 (1 ng/ml in U937 cells and 10 ng/ml in HUT-78 and Jurkat cells). (*p<O.05). 

(n=4). 

3.2.2 Role of histone acetylation in dexamethasone and triamcinolone acetonide

mediated actions 

Next, the effect of glucocorticoid agonists, dexamethasone (Oex) (10-8 M) and triamcinolone 

acetonide (T A) (10-10 M), on LPS and TNF-a. -stimulated release in all three cell lines was 

investigated. Cells were pre-incubated with either Dex or TA for 30min before incubation with 

either LPS or TNF-a at pre-determined concentrations (10 ng/ml for both LPS and TNF-o:). In 

figure 3-5 the effect of Dex on LPS stimulated cells is demonstrated. Dex (10-8 M) down

regulated IL-8 production (Fig. 3-5) in U937 cells by 28% (1150 ± 105 versus 1600 ± 140 

pg/ml, p<0.05), in HUT-78 cells by 43% (308 ± 29 versus 570 ± 35 pg/ml, p<0.05), and in 

Jurkat cells by 33% (323 ± 30 versus 518 ± 22 pg/ml, p<0.05). 

TSA enhanced IL-8 release and also altered the suppressive effect of Dex on LPS-induced IL

a release. The percentage inhibition by Dex was reduced by 50% in U937 cells (1548 ± 125 

versus 1150 ± 105 pg/ml, p<0.05) and 51% HUT-78 cells (506 ± 23 versus 308 ± 29 

pg/ml,p<0.05). In both cases the production of IL-8 remained at almost pre-steroid treatment 

levels. In Jurkat cells TSA, only altered dexamethasone suppression by 9% (390 ± 31 versus , 323 ± 30 pg/ml LPS plus Dex). 

http:pg/ml,p<0.05
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Similar results were obtained when the cells were treated with the more potent synthetic 

glucocorticoid, TA (10-10 M) (Fig. 3-6). TA suppressed LPS-induced IL-8 production 

significantly in all cell lines. The percentage inhibition by TA was reduced by 66% reduction in 

U937 cells, (510 ± 58 versus 1430 ± 140 pg/ml, p < 0.01), 55% in HUT-78 cells (261 ± 14 

versus 542 ± 41 pg/ml, p < 0.01) and 43% in Jurkat cells (310 ± 19 versus 453 ± 23 pg/ml, p< 

0.05). 

TSA similarly to the findings obtained in figure 3-5, enhanced IL-8 release and also altered the 

suppressive effect of TA on LPS-induced IL-8 release. The suppression percentage was 65% 

in U937 cells (1347± 100 versus 510 ± 58 pg/ml LPS plus TA, p<0.05), 72% in HUT-78 cells 

(552 ± 42 versus 261 ± 14 pg/ml LPS plus TA, p<0.05) and 76% in Jurkat cells by (538 ± 23 

versus 310 ± 19 pg/ml LPS plus TA, p<0.05). 

Dex (10-8 M) also suppressed TNF-a.-induced IL-8 production. By 28% in U937 cells (872 ± 36 

versus 1220 ± 100 pg/ml TNF-a alone), by 20% in HUT-78 cells (620 ± 23 versus 683 ± 35 

pg/ml TNF-a alone) and by 16% in Jurkat cells (613 ± 28 versus 690 ± 38 pg/ml TNF-a. alone) 

(Fig. 3-7). 

TSA altered the suppressive effect of Dex on TNF-a.-induced IL-8 release by 27% in U937 cells 

(1140 ± 90 versus 872 ± 36 pg/ml TNF-a plus Dex), by 55% in HUT-78 cells (770 ± 35 versus 

620 ± 23 pg/ml TNF-a plus Dex) and by 12.5% in Jurkat cells (690 ± 25 versus 613 ± 28 pg/ml 

TNF-a. plus Dex) (Fig. 3-7). 

TA suppressed TNF-a-induced IL-8 release more potently than dexamethasone. The 

percentage that TA suppressed TNF-a-induced IL-8 release was 40% in U937 cells (780 ± 43 

versus 1220 ± 100 pg/ml TNF-a alone, p<0.01), 42% in HUT-78 cells (462 ± 28 versus 683 ± 

35 pg/ml TNF-a. alone, p<0.01) and 46% in Jurkat cells (410 ± 20 versus 690 ± 38 pg/ml TNF

a. alone, p<O.01) (Fig. 3-8). 

TSA altered the suppressive effect of TA on TNF-a. induced IL-8 release by 72.5% in U937 

cells (1223 ± 110 versus 780 ± 43 pg/ml TNF-a. plus TA, p<0.05), by 83% in HUT-78 cells (790 

± 31 versus 462 ± 28 pg/ml TNF-a plus TA, p<0.05) and by 86% in Jurkat cells (748 ± 21 

versus 410 ± 20 pg/ml TNF-a plus TA, p<0.05). In all three cell lines TSA restored IL-8 levels 

to those observed following TNF-a stimulation alone. Table 3-1 shows a summary of the 

results. 
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Figure 3-5 Effect of dexamethasone (Dex; 10-3 M) and Trichostatin A (TSA) (1 ng/ml in U937 cells and 10 nglml 

in HUT-7B and Jurkat cells) on interleukin S (IL-S) release in lipopolysaccharide (LPS) treated cells. LPS (10 

ng/ml) induced a high production of IL-8 in all three cell lines with the most significant increase observed in the U937 

cells. Addition of Dex inhibited IL-B release in all three cell lines with significant results observed for U937 and HUT-78 

cells. Further addition of TSA resulted in the upregulation of the IL-S levels in all three cell lines. (*p<0.05). (n=6) 
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Figure 3-6 Effect of triamcinolone acetonlde (TA) and Trichostatin A (TSA) on the production of 

lipopolysaccharide (LPS)-Induced Interfeukln 8 (IL-8) in U937, HUT·78 and Jurkat cells. LPS (10 nglml) induced 

a high production of IL-8 in ali three ceil lines, an effect that was significantly blocked by further addition of TA (10.10 

M). The levels of IL-8 for all cell lines were decreased to 40% for the macrophage cell line and almost 50% for the T

cell lines. In all three cell lines the production of IL-8 was significantly increased following further addition of TSA at 

concentrations determined In figure 3--2. (*p<O.05, **p<0.01). (n=6). 
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Figure 3-7 Effect of dexamethasone (Dex; 10""M) and Trichostatin A (TSA; 10 ng/ml) on tumour necrosis factor 

a (TNF-a)-induced interleukin 8 (IL-8) release in U937, HUT-78 and Jurkat cells. TNF-a (10 ng/ml) induced IL-8 in 

all three cell lines. Dex decreased IL-8 levels, in U937 and HUT-78 cells. Addition of TSA resulted in upregulation of 

the production of IL-8 in all cell lines. (* p<0.05). (n=6). 
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Figure 3-8 Effect of triamcinolone acetonide (TA; 10-10 M) and Trichostatln A (TSA; 10 nglml) on the production 

of interleukin (IL-S) in three cell lines stimulated with tumour necrosis factor Cl (TNF-a). TA downregulated the 

production of IL-8 significantly in all cell lines. Further treatment of the cells with TSA blocked the effect of TA, with the 

greatest effect seen in the U937 cells where the levels of IL-8 almost reached TNF-a stimulated levels. (·p<O.05, 

··p<0.01, comparisons made as in figure 3-7). (n=6). 
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Induction of IL-8 U937 HUT-78 Jurkat 

LPS+Dex 28±3% 43±5% 33±3% 
LPS+Dex+ TSA 14 ±4% 21 ±9% 30 ± 15% 
Blocking effect (%) of 50 ± 7% (p<0.05) 51 ± 4% (p<0.05) 9± 1% 
TSA versus Dex 

LPS+TA 66 ± 9% 55 ±6% 43±3% 
LPS+TA+TSA 23±3% 15±4% 10 ±2% 
Blocking effect (%) of 65 ± 7% (p<0.05) 72 ± 6 (p<0.05) 76 ± 4% (p<0.05)
TSA versus T A 

TNF-a+Dex 28±4% 20±3% 16 ±2% 
TNF-a+Dex+ TSA 21.5 ± 5% 9±2% 14±4% 
Blocking effect (%) of 27 ± 4 % (p<0.05) 55 ± 7% (p<0.05) 12.5± 3% 
TSA versus Dex 

TNF-a+TA 40±4% 42±3% 46±4% 
TNF-a+TA+TSA 11±3% 7±2% 6.5 ±2% 
Blocking effect (%) of 72.5 ± 8% (p<O.05) 83 ± 5% (p<0.05) 86 ± 6% (p<O.05) 
TSA versus T A 

Table 3-1. Percentage representation of the blocking effect of Trichostatin A (TSA) of glucocorticoid actions in 

repressing interleukin 8 (IL-8)-stimulated cytokine release in U937, HUT-78 and Jurkat cells. In all cell lines the 

effect of TSA was more potent in downregulating triamcinolone acetonide (TA)-stimulated IL-8 release. The two T-cell 

lines (HUT-78 and Jurkat) responded differently in dexamethasone (Dex) stimulation (Dex was more potent in 

downregulating IL-8 production in the HUT-cells). TA was a more potent glucocorticoid in all three cell lines compared 

to the effect of Dex. 

3.2.3 Transcriptional regulation 'is associated with TNF-cx and LPS-induction of IL-8 

This far, it has been shown that LPS and TNF-cx -induction of the pro-inflammatory cytokine, 

IL-8 involves histone modifications. Further studies were required to investigate if these 

modifications occurred on the IL-8 promoter and to determine whether GR blocks histone 

acetylation at the IL-8 promoter. The cells were stimulated as previously with LPS (10 ng/ml) or 

TNF-cx (10 ng/ml) in the presence or absence of TA (10.10 M), as TA was the most potent 

glucocorticoid shown from previous results. 

Using chromatin immunoprecipitation (ChiP) assays, immunoprecipitation (IP) with an antibody 

directed against pan-acetylated histone 4 resulted in the enrichment for the DNA segments 

encompassing the KB site in the IL-8 promoter following both LPS and TNF-cx treatments. (Fig. 

3-9; lane 3). This was apparent in all three cell lines stimulated with both LPS and TNF-cx. 

These data demonstrate that increased histone acetylation occurs at the KB site of the IL-8 

promoter in vitro and is associated with increased IL-8 expression. The presence of the 

glucocorticoid (TA) , caused a reduction in the enrichment of histone 4 -associated IL-8 

promoter fragments an effect which was seen in U937, HUT-78 and Jurkat celis. This effect 

correlated with TA repression of IL-8 release shown in previous results. 
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Figure 3-9 Association of histone acetylation with the interleukin S (IL-S) gene promoter. Cells were incubated 

with either lipopolysaccharide (LPS; 10 ng/ml) or tumour necrosis factor a (TNF-a; 10 ng/ml) in the presence (+) and 

absence (-) of triamcinolone acetonide (TA; 10'10 M). Both LPS and TNF-a induced histone acetylation at the IL-8 

promoter in all three cell lines. The presence of TA caused the reduction of the density of the IL-B promoter fragments 

in all three cell lines. The results are representative of three independent experiments. 

3.3 Discussion 

In this chapter the effects of inflammatory stimuli, LPS and TNF-a., in the production of the pro

inflammatory cytokine IL-8 in a macrophage cell line (U937) and in two T-cell lines (HUT-78 

and Jurkat) were investigated. LPS and TNF-a caused an increase in IL-8 expression, which 

was inhibited by the synthetic glucocorticoids, dexamethasone (Dex) and triamcinolone 

acetonide (TA) , in all three cell lines. TSA produced a concentration-dependent increase in IL

8 release, which reached a peak at 1 ng/ml for the macrophage cell line and at 10ng/ml for the 

two T-cell lines. LPS (10ng/ml) and TNF-a (10ng/ml) -stimulated release of IL-8 was enhanced 

by TSA, suggesting a role for histone acetylation in IL-8 production in these cells. Similar 

results have been reported for HeLa cells where it has been shown that inhibition of HDAC 

activity causes increased expression of the IL-8 gene (Ashburner et a/., 2001). The same 

report interestingly shows that only the level of expression, not the kinetfcs of IL-8 expression, 
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was altered by TSA treatment. This implies that HDACs are associated directly with factors 

that induce IL-8 production and that the effect of TSA is not secondary to induction of other 

transcription factors. These results suggest that treatment of the cells with TSA blocks the 

activity of HDAC proteins, resulting in hyperacetylation on histones and subsequently a higher 

level of gene expression. Similar data have also been reported by Ghosh et al., (2002) where 

HDAC1 associates with p65 or p50 in resting cells. 

Dex and TA repressed LPS and TNF-a -induced IL-8 expression in all three cell lines. TA was 

significantly more potent than Dex in all cell lines studied. In addition, the effect of Dex was 

significantly less in Jurkat cells compared to HUT-78 cells. In U937 cells, Dex caused a 28% 

reduction in both LPS- and TNF-a-induced IL-8 release compared to a 66% reduction in LPS _ 

induced and 40% reduction in TNF-a induced IL-8 production by TA. In both T-cell lines the 

difference in the effects of the two glucocorticoids was even greater. In HUT-78 cells Dex 

caused a 43% (LPS-induced) and a 20% (TNF-a induced) reduction of IL-8 levels compared to 

a 55% (LPS-induced) and a 42% (TNF-a induced) downregulation caused by TA. Similarly, in 

Jurkat cells Dex caused a 33% (LPS-induced) and a 16% (TNF-a induced) downregulation 

whilst TA caused a 43% (LPS-induced) and a 46% (TNF-a induced) decrease of IL-8 levels. It 

is shown that the glucocorticoid action in repressing LPS and TNF-a -stimulated cytokine 

release is mediated by HDACs. TSA (1 ng/ml and 10 ng/ml) caused a decline in. the ability of 

the glucocorticoids to inhibit both LPS and TNF-a ~stimulated IL-8 release (Table 3-1). 

In U937 cells the presence of TSA blocked Dex -induced IL-8 downregulation (by 50% in LPS

stimulated cells and by 27% in TNF-a stimulated cells). Similarly in HUT-78 cells TSA blocked 

the Dex actions by 51% (in LPS stimulated cells) and 55% (in TNF-a stimulated cells). In 

Jurkat cells the blocking effect of TSA in Dex actions was significantly lower compared to the 

other cell lines (9% in LPS stimulated cells and 12.5% in TNF-a stimulated cells). TSA blocked 

the suppressive action of both Dex and T A on LPS- and TNF-a-induced IL-8 production. 

Similar investigation in all three cell lines on the effect of TA showed that TSA blocked 

Significantly the effect of the glucocorticoid regardless of cell type and inflammatory stimuli. 

This variation in the response of the two T-cell lines to Dex (and the slight difference in their 

response to T A) might reflect altered GR expression present in the two cell lines or a difference 

in the regulation of IL-8 in the two cell lines. Further studies would therefore be required, in 

ideally primary cells. 

Nissen and Yamamoto (2000) reported, but did not show, that GR repression of NF-KB

mediated IL-8 expression was resistant to the effects of a single concentration of TSA in the 

epithelial lung cell line A549 (Nissen & Yamamoto, 2000). Enhanced IL-8 transcription was 

associated with increased phosphorylation of serine residues 2 and 5 of the carboxyl terminal 

domain (CTD) of RNA pol II. CTD phosphorylation allows RNA pol II-mediated mRNA 
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transcriptional initiation, elongation and subsequent re-initiation of RNA pol II to the IL-8 start 

site. Nissen and Yamamoto report that GR receptor inhibited serine 2 phosphorylation of the 

CTD. Contrary to these findings here it is shown that in U937, Jurkat and HUT-78 cells, TSA 

upregulated the production of LPS and TNF-cx -induced IL-8 both in the presence and absence 

of glucocorticoids. Similar results have been reported in the A549 lung epithelial cells for IL-1~

stimulated GM-CSF release (Ito et a/., 2000). Altered TSA responsiveness may reflect 

differential HDAC expression in cell lines and recruitment to distinct promoters in the same cell 

lines and this might explain the reported discrepancies. These contradictory findings also 

enhance the theory that transcriptional regulators such as GR are likely to exploit a diversity of 

mechanisms across different cellular and promoter contexts. 

Previous data have suggested a role for CBP in the nuclear integration of NF-KB and 

glucocorticoid actions (Wolffe, 1997). Acetylation on histones produces a loose, less-regulated, 

chromatin structure that allows transcription factors to bind to nearby promoter sequences, 

thus, activating gene transcription. Although CBP overexpression can modify NFKB and 

glucocorticoid actions, squelching of limited cellular amounts of CBP is not now thought to be 

important (de Boscher et al., 2000). The use of the histone de-acetylase inhibitor shows that 

the actions of glucocorticoids may result from a functional reversal of the ability of CBP to 

regulate histone acetylation (Sheppard et. aI., .1998) rather than a direct inhibition of CBP 

activity per se. 

Having showed that LPS and TNF-a -induction of IL-8 involves histone modifications it is also 

demonstrated that these events occurred on the native IL-8 promoter using chromatin 

immunoprecipitation. In addition, TA suppressed the amount of acetylated histone 4 associated 

with the IL-8 promoter following cell stimulation. No obvious differences were detected 

between cell lines. The PCR products encompassed the NF-KB response element within the 

IL-8 promoter and it is tempting to speculate that these events are mediated via NF-KB 

activation. This needs confirmation using specific inhibitors of NF-KB. 

A previous report has shown a histone 4 lysine residue dependent transcriptional activation, 

where IP with an antibody against acetylated K8 and K12 resulted in the enrichment for the 

DNA segments encompassing the NF-KB site in the GM-CSF promoter following IL-1 ~ 

treatment (Ito et al., 2000). It is also important to take into account that the effect of TSA has 

been shown to be non-specific. The HDACs involved in the corepressor complex, which 

interacts with the CBP-associated coactivator complex, are not clear. It has been shown that 

HDAC3, HDAC2 and HDAC1 participate in activating complexes but it is possible that other 

HDACs may be activated. Therefore, the use of specific HDAC inhibitors could help to clarify 

which types of HDAC are involved in the transcriptional regulation of cytokine release and 

whether their effect is cytokine or GR specific. 
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Glucocorticoids exert their anti-inflammatory effects largely by interfering with the ability of 

cytokine-activated pro-inflammatory transcription factors to induce inflammatory gene 

transcription. This interaction may affect transactivation by the pro-inflammatory transcription 

factor, association with histone acetylation, DNA methylation, and subsequently, activation of 

RNA polymerase II. The exact contribution of each mechanism may vary between cell types 

and depend upon the cell stimulus. Attempting to determine the involvement of histone 

acetylation in the inflammatory gene expression and the mechanism through which the 

glucocorticoid receptor and chromatin activation interact, it was firstly required to determine 

whether a histone deacetylase inhibitor (TSA) would influence the inflammatory stimuli and the 

glucocorticoid actions in vitro. The blockade of TSA in the effect of glucocorticoids, Dex and 

TA, for macrophages as well as T-Iymphocytes, indicated a role of histone deacetylases in 

inflammatory gene expression in these cells. Further study in the role of histones and their 

acetylation on the native IL-8 promoter would help the understanding of the mechanism of 

which gene activation and repression occur in these cells under inflammatory conditions 

(Chapter 4). The central role of histone acetylation in mediating these actions makes these 

potentially important targets for future anti-inflammatory drug interventions. 
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Chapter 4 

Histone acetylation in an in vitro model of inflammation 

4.1 Introduction 

On the tails of histones, extensive post-translational modifications, such as acetylation, 

phosphorylation and methylation occur. The best studied of these, is the acetylation of core 

histone tails (Hebbes et a/., 1988). The correlation between acetylation and increased 

transcription has been known for years and acetylated histones have been shown to 

preferentially associate with transcriptionally active chromatin (Sealy et al., 1978). The 

discovery of GCN5 (Brownwell et aI., 1996), the first nuclear acetylase, and HDAC1 (Taunton 

et al., 1996), the first deacetylase, verified that acetylation of histones is an important 

controlling step in transcription and has also aided the discovery of novel nuclear targets for 

acetylation. Some of these targets are well-known and extensively characterized transcription 

factors. There are now several reported families of acetylases exemplified by PCAF/GCN5, 

p300/CBP, TAF2S0, SRC1 and MOZ (Kouzarides, 1999). However, despite the many 

attempts to understand the role of acetylation in chromatin assembly, transcription factor 
'. , " 

accessibility and nucleosome remodeling~ the fact, remains that the precise mechanism by 

which acetylation of histones augments transcription remains elusive. The truth is tikely: to be 

complicated, since acetylation of histones most probably effects a combination of events, 

which allows for higher processivity of RNA polymerase II (Kouzarides, 2000). 

Acetylation occurs at conserved lysine residues on the amino terminal tails of core histones, 

such as Iysines 5, 8, 12 and 16 on histone 4 and Iysines 9 and 14 on histone 3 (Davie, 1998). 

Acetylases modify very few Iysines within a given protein, an indication of specificity. 

Alignment of sequences surrounding modified Iysines and mutagenesis of Rch1 (human 

importin-a.) suggest that the amino sequence GK may be part of a recognition motif. The 

crystal structure of GCNS, a gene regulatory protein, with a histone identifies GKXXP as a 

possible recognition motif and site selection for deacetylases (Rojas et aI., 1999). The 

consequence of acetylation depends on where within the protein acetylation takes place. In 

the case of four site-specific DNA-binding transcription factors, p53, E2F1, EKLF and GAT A 1, 

the acetylation site falls directly adjacent to the DNA-binding domain and acetylation results in 

stimulation of DNA binding (Boyes et aI"~ 1998; Zhang and Beaker, 1998; Martinez-Balbas, 

2000). In contrast, the Iysines acetylated within the HMGI(Y) transcription factor fall within the 

DNA-binding domain and result in disruption of DNA binding. 

As previously mentioned (Chapter 3), glucocorticoids are the most effective therapy for the 

treatment of inflammatory diseases such as inflammatory bowel disease and asthma. 

Functionally glucocorticoids act partly by inducing some anti-inflammatory genes (IL-1 
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receptor agonist) (Levine et a/., 1996), but mainly by repression of inflammatory genes, such 

as cytokines, inflammatory enzymes and receptors. Within the nucleus, the activated 

glucocorticoid receptor (GR) either induces gene transcription by binding to specific DNA 

elements in the promoter-enhancer regions of responsive genes, or reduces gene 

transcription by transrepression (Truss and Beato, 1993). GR reduces gene transcription by 

interaction with pro-inflammatory transcription factors such as AP-1 and NF-xB (Barnes and 

Adcock, 1998)(Fig. 4-1). Both transcription factors and GR mutually repress each other's 

ability to activate transcription and require CBP for maximal activity. It has also been reported 

that sodium butyrate, a histone deacetylase inhibitor, interferes with GR-activated 

transcription (Plesko et a/., 1983). These findings together with findings, as mentioned in 

Chapter 3, suggest that alterations in chromatin structure must playa role in modulating 

glucocorticoid actions. 
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Figure 4-1 Schematic representation of glucocorticoids on chromatin structure. Chromatin can become 

alternatively transparent (clear) or opaque to facilitate or restrict the access of transcription factors and RNA 

polymerase to DNA. Transcription factors (Le. NF-KB) bind to co-activator molecules (i.e. CBP), resulting in 

acetylation of the histone residues. This leads to unwinding of the DNA and allows increased binding of transcription 

factors resulting in increased gene transcription (figure adapted from Barnes, 1998). 

Many of the above mentioned studies relied on the overexpression of components of these 

pathways, which could lead to misinterpretation of the results, Therefore, the examination of 

the role of histone acetylation and associated factors in the regulation of the glucocorticoid 

functions was performed in non-transfected cells. The ability of glucocorticoids 

dexamethasone and triamcinolone acetonide to regulate histone acetylation and 

deacetylation in three cell lines (U937, HUT-78 and Jurkat cells), was investigated. Changes 

in the phosphorylation status of histone 1 were also monitored as this would reveal that this 

linker histone dissociated from the chromatin complex allowing other core histones to be post

translationally modified. In this chapter it is demonstrated that both glucocorticoids show a 

different pattern of histone 4 acetylation from that seen with inflammatory stimUli LPS and 

TNF-a. and in low doses (as determined in Chapter 3) repress LPS and TNF-a. histone 

acetylation. 
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4.2 Results 

4.2.1. Histone acetylation in three cell lines stimulated with LPS and TNF-a. 

In ali three cell lines acetylation levels of the four core histones were investigated under the 

effect of inflammatory stimuli. This was to determine the acetylation pattern and therefore the 

role of each core histone in inflammatory responses of the cells. Acetylation of histones 2A and 

2B failed to show any significant changes upon stimUlation of the cells with LPS and TNF-a. 

Figure 4-2 illustrates a set of western blot analysis bands obtained from these experiments after 

1 h stimulation. Results obtained from analysis of U937 cells are shown as representative of all 

the experiments performed on ali three cell lines (n=6). 

Figure 4-3 illustrates changes in acetylation status of histones 2A, 2B, 3 and 4 in LPS (10 ng/ml) 

and TNF-a (10 ng/ml) induced U937, Jurkat and HUT-78 cells after 1h stimulation. 

Histone control LPS TNF-a 

H2A 

H2B -
H3 

H4 

H1 

p-actin 

Figure 4-2 Western Blot analysis of lipopolysaccharide (LPS) and tumour necrosis factor-a (TNF-a) 

stimulated histone acetylation (and phosphorylation of H1) in a monocytic cell line (U937 cells). Lanes: (1) 

control, (2) LPS (10 ng/ml) stimulated, (3) TNF-a (10 ng/ml) stimulated. Results are shown for 1h stimulations. 

Similar results were obtained from experiments performed for T-cell lines Jurkat and HUT-7B. p-actin was measured 

to ensure equal protein loading. The results are representative of six independent experiments. 
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Figure 4-3 Acetylation of core histones and histone 1 phosphorylation in U937, Jurkat and HUT-78 cell lines 

as determined by Western blotting. The cells were stimulated with lipopolysaccharide (LPS; 10 ng/ml) or tumour 

necrosis factor a (TNF-a; 10 ng/ml) [concentrations determined previously (see Chapter 3)] for 1 h. Histones 2A and 

28 showed a small increase in acetylation following stimUlation. Histones 3 and 4 however showed the highest up 

regulation with a significant elevation of acetylation levels for histone 4. Phosphorylation levels of histone 1 

decreased indicating the weakening of the basic tails of the histones with DNA and therefore the transcriptional 

activation occurring in the cells. (*p<0.05) (n=6). 
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Treatment with both LPS and TNF-a for 1h affected all three cell lines studied in a similar 

manner. Changes in the levels of acetylation however were both cell and histone specific 

being greatest in the U937 cells (Fig. 4-3). Whereas H2A and H2B acetylation showed no 

significant increase in U937 cells following LPS and TNF-a treatment, acetylation of the other 

two core histones (H3 and H4) showed significant elevation. Specifically, acetylation of 

histone 4 was significantly up-regulated following stimulation by both LPS (740 ± 110 versus 

100 ± 43 noh-stimulated cells, p<0.05) and TNF-a (690 ± 81 versus 100 ± 43 non-stimulated 

cells, p<0.05). Histone 3 levels were also elevated but to a lesser extent for LPS (300 ± 58 

versus 100 ± 26 non-stimulated cells, p<0.05) and TNF-a (410 ± 62 versus 100 ± 26 non

stimulated cells, p<0.05). Phosphorylation of linker histone 1 was also investigated. Down 

regulation of phosphorylation of H1 is interpreted as dissociation of this linker protein enabling 

activation of other histone proteins (Fig. 4-3). Both LPS and TNF-a reduced histone 1 

phosphorylation in U937 cells whereas this effect was only significant following TNF-a 

stimulation in Jurkat cells. HUT-78 cells showed no difference in histone 1 phosphorylation 

after either stimulation. 

4.2.2 Histone 4 lysine residue acetylation in three cell lines 

Following the results shown in figure 4-2 and 4-3 further studies were required to investigate 

whether H4 acetylation was localised to specific lysine residues. Experiments were performed 

in LPS (10 ng/ml) and TNF-a (10 rig/ml) stimulated macrophage and T-cell lines in which 

acetylation of lysine residues 5, 8, 12 and 16 was investigated with the use of specific 

antibodies by both Western blotting and immunocytochemistry. Figure 4-4 shows band 

changes in the acetylation status of specific lysine residues for histone 4 when cells were 

treated with LPS and TNF-a for 1h. Due to similarities of the bands obtained in all cell lines, 

results obtained by U937 cells are shown as representative of all three cell lines. A graphical 

representation of the acetylation status of speci·fic histone 4 lysine residues in all cells 

stimulated with LPS and TNF-a is shown in figure 4-5. All lysine residues show an elevation in 

acetylation in all three cell lines. Interestingly and in accordance to previous findings the 

highest levels of acetylation are observed for lysine residues 8 and 12 in U937 and T-cell 

lines, where acetylation of these Iysines was significantly increased (p<0.05). Both 

inflammatory stimuli had a similar effect on acetylation levels in all three cell lines studied. 
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Western blot data at 1 h was confirmed using confocal microscopy (Fig. 4-6). The micrographs 

show localised histone 4 lysine residue acetylation and increased acetylation of Iysines 8 and 

12 in cells stimulated with the pro-inflammatory stimuli LPS and TNF-a. Treatment with TSA 

alone showed an upregulation of acetylation of all lysine residues. Similar results were 

obtained from both T-cell lines stimulated in the same manner. The photomicrographs are 

representative of three individual experiments performed. 

Histone lysine residue Non-Stim LPS TNF-a 

H4 K5 

H4 K8 

H4 K12 

H4 K16 

l3-actin 

Figure 4-4 Western Blot analysis of histone 4 (H4) acetylation of specific lysine residues in a monocytic cell 

line (U937) stimulated for 1h with lipopolysaccharide (LPS) and tumour necrosis factor a (TNF-a). Lanes: (1) 

control, (2) LPS (10 ng/ml) stimulated, (3) TNF-a (10 ng/ml) stimUlated. Similar results were obtained from 

experiments performed for T-cell lines Jurkat and HUT-78. l3-actin was detected to ensure that equal amounts of 

protein were loaded onto the gels. The results are representative of six independent experiments. 
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Figure 4-5 Western blotting analysis of lysine residue acetylation on histone 4 (H4) in U937, Jurkat and HUT

78 cells after 1h. Treatment of the celis with lipopolysaccharide (LPS; 10 ng/ml) and tumour necrosis factor a (TNF

ex; 10 ng/ml) induced activation of acetylation on all four lysine residues. Acetylation on lysine residues 8 and 12 is 

elevated predominantly. Statistical analysis of the results revealed that in all three cell lines acetylation on Iysines 8 

and 12 was significantly upregulated in comparison to the remaining lysine residues. Results were similar in ali cell 

lines investigated. (*p<O.05) (n=6). 
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Figure 4-6 Immunocytochemical stain ing for specific histone 4 (H4) acetylated lysine residues of Jurkat cells 

stimulated with lipopolysaccharide (LPS), tumour necrosis factor 0. (TNF-o. ) and Trichostatin A (TSA). LPS 

and TNF-O'. acetylate specific and distinct lysine residues. TSA acetylates all four histone 4 lysine res idues. Cells 

were incubated with LPS (10 ng/ml). TNF-a (10 ng/ml) and TSA (100 ng/ml) for 6 h before staining for acetylated 

forms of histone 4 lysine residues 5, 8, 12 and 16. For reference, micrographs of non-stimulated cells in all instances 

appeared similar to the LPS st imulated K5 and K16 micrographs . Counterstaining with DAPI confirmed that the 

staining was nuclear and not cytoplasmic (data not shown for clarity). Results are representative of three independent 

experiments . 
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4.2.3 Effect of TSA in lysine residue acetylation in three cell lines 

In chapter 3 it was established that the histone deacetylase inhibitor, Trichostatin A (TSA), 

enhanced the LPS and TNF-a induced IL-8 production in monocytes and T-cells suggesting a 

role for chromatin acetylation in IL-8 production. Here, whether the effect of TSA is 

associated with acetylation on specific lysine residues within histone 4 is investigated. Cells 

were stimulated as previously with LPS and TNF-a with an additional stimulation of TSA. 

Western blotting experiments were performed and in figure 4-7 representative bands of the 

results obtained from western blot analysis of U937 cells stimulated with LPS and TNF-a as 

well as the additional effect of TSA are shown. Similar results were obtained for Jurkat and 

HUT-78 cells. The data from these experiments are illustrated in figure 4-8 in representative 

histograms. TSA as expected upregulated the acetylation levels of all lysine residues in all 

cell lines. In the T-cell lines the effect was similar to the effect observed in the macrophage 

cell line but less potent. Whereas further addition of TSA in the U937 cells resulted in an 

almost two-fold increase in acetylation, the acetylation levels for the T-cells were not elevated 

to the same extent. 

Histone lysine c LPS TNF-a. LPS+TSA TNF-u+TSA 
residue 

H4K5 

H4K8 

H4 K12 

H4 K16 

j3-actin ..... 
Figure 4-7 Western Blot analysis showing the effect of Trichostatin A (TSA) on histone 4 (H4) lysine (K) 

acetylation in a monocytic cell line (U937 cells) stimulated by lipopolysaccharide (LPS)- and tumour necrosis 

factor a (TNF-a). Lanes: (1) control, (2) LPS (10 ng/ml) (1hr incubation), (3) TNF-a (10 ng/ml) (1hr incubation), (4) 

LPS+ TSA (LPS: 1 ng/ml, TSA: 1 Dng/ml) (1 hr incubation), (5) TNF-a+ TSA (TNF-a: 1 ng/ml, TSA: 10ng/ml) (1 hr 

incubation). Increased acetylation on all lysine residues is evident with the addition of TSA Similar results were 

obtained from experiments performed for T-cell lines Jurkat and HUT·78. 13-actin was measured to ensure equal 

protein loading. The results are representative of six independent experiments. TSA (10ng/ml) alone enhanced 

acetylation of all lysine residues (data not shown). 
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Figure 4-8 Changes in lysine residue acetylation of histone 4 (H4) in U937, Jurkat and HUT-78 cells following 

treatment with Trichostatin A (TSA). Co-stimulation of cells with TSA and lipopolysaccharide (LPS) or tumour 

necrosis factor a. (TNF-a) for 1 h resulted in an increase of acetylation levels of all H4 lysine residues as seen on 

figure 4-5. Results were similar in all cell lines investigated. (*p<0.05) (n=6). 
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4.2.4 Effect of steroids in histone acetylation 

Next, the effect of the glucocorticoids, dexamethasone (Dex; 10-8 M) and triamcinolone 

acetonide (TA; 10-10 M) alone, and on LPS- and TNF-a -stimulated mediator release, on 

histone acetylation, was investigated. In addition, the pattern of histone acetylation following 

glucocorticoid stimulation of cells and glucocorticoid suppression of LPS or TNF-a -induced 

acetylation, was determined. 

First, the effect of Dex and T A alone, in all three cell lines was studied. The cells were 

stimulated with relatively high concentrations of steroids, as these have been shown to 

transactivate the expression of responsive genes (Truss & Beato, 1993). There was no 

significant effect of TA and Dex on acetylation of histones 2A, 2B and 3 (data not shown). 

Both glucocorticoids, as illustrated in figure 4-10 (figure 4-9 illustrates representative bands 

from experiments), targeted acetylation on H4 K5 and K16 (with weaker signals apparent at 

K8 and K12) (values are shown in table 4-1). TA induced higher levels of histone acetylation 

compared to those seen with Dex. 

Histone lysine c. TA Dex 
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f3-actin 

Figure 4-9 Western Blot analysis of Triamcinolone Acetonide (TA) and Dexamethasone (Oex) actions in a 

monocytic cell line (U937 cells). Lanes: (1) control, (2) TA (10.10 M), (3) Oex (10.8 M). Increased acetylation in 

histone 4 (H4) lysine (K) residues 5 and 16 is evident in the presence of both glucocorticoids. Similar results were 

obtained from experiments performed for T-cell lines Jurkat and HUT-7B. f3-actin was measured to ensure equal 

protein loading. The results are representative of six independent experiments performed after 1 h stimulation. 
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Figure 4-10 Western Blot analysis of the effect of Dexamethasone (Oex) and Triamcinolone Acetonide in histone 4 (H4) 

lysine (K) residue acetylation in U937, Jurkat and HUT-78 cells. Treatment of the cells with Dex (10.8 M) and TA (10.10 M) 

significantly induced activation of acetylation on residues K5 and K16. Acetylation on residues K8 and K12 was also upregulated 

but to a lesser degree. The results shown were obtained by Western Blotting and are expressed as a percentage of the control 

after 1h (*p<O.05, ··p<O.01) (n=6). 
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Increase in histone 4 lysine acetylation 

Cell line 	 Stimulation H4K5 H4KB H4K12 H4K16 

U937 	 Dex 503 ± 70 (p<0.05) 316 ± 30 323 ± 45 414 ± 45 (p<O.05) 

TA 526 ± 40 (p<0.01) 333 ± 37 330 ± 36 570 ± 36 (p<0.01) 

Jurkat 	 Dex 480 ± 90 (p<0.05) 310 ± 34 330 ± 36 383 ± 32 (p<0.05) 

TA 563 ± 70 (p<O.01) 283 ± 65 343 ± 58 600 ±55 (p<0.01) 

HUT-7B 	 Dex 416±45 (p<0.05) 293 ± 55 330 ± 36 393 ±47 (p<0.05) 

TA 593 ±92 (p<O.01) 410 ± 68 356± 47 613 ± 75 (p<O.01) 

Table 4-1 Increases in acetylation of histone 4 (H4) lysine residues in cells stimulated with Dexamethasone 

(Dex) and Triamcinolone Acetonide (TA). In all three cells lines (U937, Jurkat and HUT-78) acetylation of all lysine 

residues increased following glucocorticoid stimUlation (Dex, 10.8 M; TA, 10.10 M). Acetylation of lysine (K) residues 5 

and 16 was noted as significantly higher than that of K8 and K12 in U937, Jurkat and HUT-78 cells. The results were 

obtained via Western blotting and presented as mean ±SEM increase in band density at 1h. 

Photomicrographs in figure 4-11 illustrate H4 lysine activation in U937 cells stimulated with 

TA A strong nuclear signal of cells stained with K5 and K16 antibodies is shown. Activation of 

cells stained with K8 and K12 antibodies is also present but to a much weaker degree. Due to 

the similarity of photomicrographs obtained for Jurkat and HUT-78 cells and also for cells 

stimulated with Dex, only one set of results is shown. The figure is representative of results 

from three individual experiments. 
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It was further examined whether Dex and TA could suppress K8 and K12 acetylation induced 

by LPS and TNF-a, Figure 4-12 shows the effect of glucocorticoids in LPS- and TNF-a- induced 

histone lysine acetylation expressed as a percentage of the control. A significant reduction of 

acetylation levels is observed for residues K8 and K12 in all cell lines. 

In LPS-stimulated U937 cells, Dex suppressed K8 acetylation by 52% (396 ± 68% versus 826 

± 41%, p<O.01) and K12 acetylation by 47% (406 ± 61% versus 773 ± 104%, p<O.01). TA 

suppressed K8 acetylation by 61% (323 ± 55% versus 826 ± 41%, p<O.01) and K12 

acetylation by 52% (370 ± 60 versus 773 ± 104%, p<O.01). 

In TNF-a stimulated U937 cells, Dex suppressed K8 acetylation by 52% (380 ± 65% versus 

796 ± 57%, p<0.01) and K12 acetylation by 42% (400 ± 62% versus 693 ± 35%, p<O.01). TA 

had a more profound effect and suppressed K8 acetylation by 56% (350 ± 26% versus 796 ± 

57%, p<0.01) and K12 acetylation by 50% (340 ± 30% versus 693 ± 35%, p<O.01), 

In LPS-stimulated Jurkat cells, Dex suppressed K8 acetylation by 46% (300 ± 66% versus 

560 ± 72%, p<O.01) and K12 acetylation by 18% (470 ± 40% versus 580 ± 53%, p<0.05). TA 
, ' 

was mor~ potent as it suppressed K8 acetylatio[l by 51% (270 ±.49%, p<0.01) and K12 
, I 

acetylation by 47% (296 ± 55%, p<O,01). 

In TNF-a -stimulated Jurkat cells, Dex suppressed K8 acetylation by 48% (310 ± 35% versus 

603 ± 40% TNF-a alone, p<O.01) and K12 acetylation by 32% (330 ± 36% versus 483 ± 40% 

TNF-a alone, p<O.01). TA, similarly, suppressed K8 acetylation by 51% (293 ± 46%, p<0.01) 

and K12 acetylation by 37% (303 ± 70%, p<O.01). 

Finally, the effect that the two glucocorticoids had on LPS and TNF-a -stimulated HUT-78 

cells was investigated. Dex suppressed K8 acetylation by 43% (313 ± 32% versus 553 ± 60% 

LPS alone, p<O.01) and K12 acetylation by 30% (403 ± 72% versus 573 ± 50% LPS alone, 

p<O.01). TA also suppressed K8 by 47.5% (290 ± 79%, p<0.01) and K12 by 48% (300 ± 55%, 

p<O,01) acetylated levels. 

In TNF-a-stimulated HUT-78 cells, Dex suppressed K8 acetylation by 47% (273 ± 86% versus 

516 ± 38% TNF-a alone, p<O.01) and K12 acetylation by 50% (250 ± 81% versus 500 ± 62% 

TNF-a alone, p<0.01). Only in this cell type was the TA effect less potent on both K8 (41% 

suppression, 306 ± 70%, p<0.01) and K12 (36% suppression, 320 ± 46%, p<0.01) residues. 

Interestingly, there was a mutual repression of K5 and K12 acetylation induced by 

dexamethasone and TA by both LPS and TNF-a (compare Figures 14a and 14b with results 

in Table 4.0). 
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Figure 4-12 Effect of Dexamethasone (Dex) and Triamcinolone Acetonide (TA) lipopolysaccharide (LPS)- and 

tumour necrosis factor a (TNF-a) -induced histone 4 (H4) lysine (K) acetylation in U937, Jurkat and HUT-78 

cells. Treatment of the cells with LPS or TNF-a (both at 10 ng/ml) significantly induced activation of acetylation on 

lysine residues 8 and 12. Addition of Dex (10.8 M) or TA (10.10 M) reduced the levels of acetylation of all lysine 

residues with a more potent decrease on K8 and K12. The results shown were obtained by Western Blotting and 

expressed as a percentage ofthe control at 1h (*p<0.05, *'p<O.01) (n=6). 
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4.2.5 Effect of TSA in histone 4 inflammatory stimuli -induced acetylation in the 

presence of glucocorticoids 

TSA, as shown previously, elevated the acetylation levels of ali histone 4 lysine residues in 

cells stimulated with LPS and TNF-a (Figure 4-8). The effect of TSA in the presence of Dex 

and TA was further investigated. U937, Jurkat and HUT-78 cells were stimulated as 

previously (pg. 80). Dex or TA in the presence ofTSA (1 ng/ml for U937 celis and 10 ng/ml for 

Jurkat and HUT-7S cells), were added 30 min prior to stimulation with the inflammatory 

stimuli. 

Western blotting revealed that in U937 celis, TSA partially overcame the effect of the steroids. 

In LPS-stimulated U937 cells, TSA attenuated Dex suppression on K8 acetylation (470 ± 30% 

versus 353 ± 29% LPS alone, p<0.05) and K12 acetylation (517 ± 30 versus 380 ± 45 LPS 

alone, p<0.05). A lesser effect was noted on K5 acetylation (410 ± 65% versus 320 ± 34% 

LPS alone, p<0.05) and K16 acetylation (243 versus 216 ± 32 LPS alone, p<0.05). 

TSA attenuated TA suppression on K8 acetylation (390 ± 75% versus 340 ± 26% LPS alone, 

p<0.05) and K12 acetylatiO,n (483 ± 65 versus. 326 ± 38 LPS alone, p<0.05). TSA had a lesser 

effect on K5 acetylation (313 ± 293% versus 293 ±: 30% LPS alone, p<O.05) and K16 

acetylation (306 versus 226 ± 25 LPS alone, p<0.05) (Fig. '~-14.a) 

In LPS-stimulated Jurkat cells, TSA also attenuated Dex suppression but to a lesser extent. 

TSA attenuated Dex suppression on K8 acetylation (360 ± 70% versus 310 ± 40% LPS alone, 

p<O.05) and K12 acetylation (520 ± 94% versus 496 ± 38% LPS alone). TSA had a lesser 

effect on K5 acetylation (510 ± 105% versus 430 ± 62% LPS alone) and K 16 acetylation (360 

± 66% versus 280 ± 57%). 

TSA attenuated TA suppression on K8 acetylation (380 ± 46% versus 200 ± 61 % LPS alone, 

p<0.05) and K12 acetylation (490 ± 66% versus 290 ± 53% LPS alone, p<0.05). TSA had a 

lesser effect on K5 acetylation (420 ± 44% versus 266 ± 50% LPS alone, p<O.05) and K16 

acetylation (480 ± 56% versus 290 ± 49% LPS alone, p<O.05) (Fig. 4-14.a). 

In LPS-stimulated HUT-78 cells, TSA also attenuated Dex suppression on K8 acetylation (480 

± 53% versus 340 ± 52% LPS alone, p<0.05) and K12 acetylation (510 ± 45% versus 405 ± 

66% LPS alone, p<O.05). TSA had a lesser effect on K5 acetylation (470 ± 50% versus 320 ± 

76% LPS alone, p<O.05) and K16 acetylation (440 ± 46% versus 310 ± 74%, p<0.05). 
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TSA attenuated TA suppression on K8 acetylation (270 ± 42% versus 190 ± 31 % LPS alone) 

and K12 acetylation (350 ± 61 % versus 220 ± 34% LPS alone, p<0.05). TSA had a lesser 

effect on K5 acetylation (250 ± 35% versus 170 ± 47% LPS alone) and K16 acetylation (420 ± 

65% versus 320 ± 55% LPS alone) (Fig. 4-14.a). 

In TNF-a-stimulated U937 cells, TSA had a more variable effect. It blocked considerably the 

Dex effect (decreased acetylated lysine levels) but the effect of TA was not significantly 

altered on any of the lysine residues when cells were further stimulated with TSA. In Jurkat 

cells however, the inhibitor had a similar effect as the one observed in cells induced with LPS 

and under the influence of both corticosteroids. 

likewise, in TNF-a-stimulated U937 cells TSA attenuated the Dex effect on K8 acetylation 

(112 ± 35%, p<0.05) and K12 acetylation (70 ± 25%, p<0.05). TSA also attenuated the effect 

of Dex on K5 acetylation (110 ± 37%, p<O.05) and K16 acetylation (80 ± 28%, p<0.05) (Fig. 4

14.b). 

In TNF-a-stimulated U937 cells TSA attenuated the TA effect on K8 acetylation (170 ± 43%) 

and K12 acetylation (60 ± 32%). TSA also attenuated the effect ofTA on K5 acetylation (160., 

± 50%) and K16 acetylation (20 ± 12%) (Fig. 4-14.b). 

In the T-cell lines, the TSA blocking effect was similar, in that it increased acetylation levels of 

all lysine residues proportionally to the previous effect of each steroid. In TNF-a-stimulated 

Jurkat cells, TSA attenuated Dex suppression on K8 acetylation (160 ± 65%, p<O.05) and K12 

acetylation (170 ± 64%, p<0.05). TSA also attenuated Dex suppression on K5 acetylation 

(160 ± 56%, p<0.05) and K16 acetylation (120 ± 32%, p<0.05). 

In TNF-a-stimulated Jurkat cells, TSA attenuated TA suppression on K5 acetylation (100 ± 

46%, p<0.05), K8 acetylation (130 ± 62%, p<0.05), K12 acetylation (40 ± 27%) and K16 

acetylation (120 ± 32%, p<0.05). 

Finally, in TNF-a-stimulated HUT-78 cells TSA attenuated the Dex effect on K8 acetylation 

(120 ± 46%, p<0.05) and K12 acetylation (160 ± 68%, p<0.05). TSA also attenuated the effect 

of Dex on K5 acetylation (70 ± 55%) and K16 acetylation (180 ±57%, p<0.05) (Fig. 4-14.b). 
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In TNF-a-stimulated HUT-78 cells TSA attenuated the TA effect on K8 acetylation (120 ± 

46%, p<O.05) and K12 acetylation (190 ± 58%, p<0.05). TSA also attenuated the effect of TA 

on K5 acetylation (90 ± 55%, p<0.05) and K16 acetylation (200 ± 45%, p<0.05) (Fig. 4-14.b). 

Representative bands of the results obtained are shown in figure 4-13 for U937 celis, since 

they were the only cell line not to be affected by TSA under the effect of triamcinolone 

acetonide. 

Lysine Residues Cntl TNF-a TNF·a TNF·a TNF-a 
+Dex +Dex +TA +TA 

+TSA +TSA 

K5 

K8 

K12 

K16 

Figure 4-13 Western Blot analysis of Trichostatin A (TSA) actions on tumour necrosis factor a (TNF-a) 

stimulated histone 4 (H4) lysine (Kl acetylation in the presence of Dexamethasone (Dex) (10-8 M) and 

Triamcinolone Acetonide (TAl (10.10 M) in U937 cells. Lanes: control, TNF-a + Oex, TNF-a + Dex + TSA, TNF-a + 

TA and TNF-a + TA + TSA. Increased acetylation of all lysine residues is evident with the addition of the inhibitor. 

Similar results were obtained from experiments performed for the Jurkat and HUT-78 T-cell lines. The results are 

representative of four independent experiments performed at 1 h post stimulation. 
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Figure 4-14.a Effect of Trichostatin A (TSA) in U937, Jurkat and HUT-78 cells stimulated with 

lipopolysaccharide (LPS) and glucocorticoids. Cells were stimulated with either LPS (1 angiml) in the presence of 

Dexamethasone (Dex; 1 O·s M) or Triamcinolone Acetonide (TA; 1 a· l °M) and histone acetylation levels were monitored 

after further addition of TSA (1 ng/ml for U937 cells and 10 ngiml for Jurkat and HUT-78 cells) by Western blotting. 

The histograms show percentage changes in acetylation levels of all histone 4 (H4) lysine (K) residues. Increased 

levels of acetylation are observed in all lysine residues in all three cell lines with TSA. (*p<O.05) (n=4). Dex and TA 

suppressed LPS-stimulated K8 and K12 histone acetylation in all 3 ceil lines (##p<:O.01). 
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Figure 4-14.b Effect of Trichostatin A (TSA) in U937, Jurkat and HUT-78 cells stimulated with tumour necrosis 

factor a. (TNF-a.) and glucocorticoids. Cells were stimulated with either TNF-a. (10 ng/ml) in the presence of 

Dexamethasone (Dex; 10.8 M) or Triamcinolone Acetonide (TA; 10.10 M) and histone acetylation levels were 

monitored after further addition ofTSA (1 ng/ml for U937 cells and 10 ng/ml for Jurkat and HUT-78 cells) by Western 

blotting. The histograms show changes in acetylation levels of all histone 4 (H4) lysine (K) residues. Increased levels 

of acetylation are observed on all lysine residues in all three cell lines with TSA, with the exception of TNF-a

stimulated U937 cells where TSA did not affect histone acetylation. (*p<0.05) (n=4). Dex and TA suppressed TNF-u

stimulated K8 and K12 histone acetylation in all 3 cell lines C'"p<O.01). 

http:C'"p<O.01
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4.2.6 Histone deacetylase enzyme activity assay 

Since HDACs are enzymes it was important to investigate the effect of LPS and TNF-a. on 

HDAC activity in the presence and absence of glucocorticoids. U937, Jurkat and HUT-78 cells 

were stimulated with Dex (10-8 M) or TA (10-10 M) for 30 min followed by stimulation with either 

LPS or TNF-a. for 1 hr and nuclear extracts isolated. Figure 4-15 illustrates changes in HDAC 

activity in all three cell lines. HDAC enzymic activity, as measured by a fluorescent activity 

assay, did not significantly increase following stimulation of the cells with LPS or TNF-a. 

compared to the non-stimulated cells. Similar results were seen in all three cell lines. In U937 

cells, addition of Dex and TA resulted in a significant increase in HDAC activity. Addition of 

Dex caused an upregulation in cells stimulated with LPS (435 ± 83% versus 200 ± 45% LPS 

alone) and TNF-a. (475 ± 50% versus 180 ± 25% TNF-a alone). In addition, TA resulted in 

greater upregulation following both LPS- (570 ± 80% versus 200 ± 45% LPS alone) and TNF

a-stimulation (680 ± 145% versus 180 ± 25% TNF-a alone). 

In the T-cell lines HDAC activity was also increased when cells were stimulated with either 

Dex or TA in the presence of LPS or TNF-a but to lower levels than seen in U937 cells. In 

Jurkat cells the upregulation reached a maximum of 435:± 83% versus 210 ± 25%, increase 

(in cell!:? stimulated with TNF-a and TA). In HUT-78 cells, TA was more potent than Dex. 

Addition of TA to both LPS- (250 ± 43% versus 160 ± 25% LPS alone) ar,d TNF"a- (480 ± 

43% versus 170 ± 26% TNF-a. alone) stimulated cells resulted in the highest upregulation of 

HDAC activity. Addition of TSA inhibited HDAC activity in all cell lines as expected to baseline 

levels. The data represent the means ± the SEM of three independent experiments (*p<0.05, 

**p< 0.01). 
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Figure 4-15 Effect of lipopolysaccharide (LPS), tumour necrosis factor (J. (TNF-a) and glucocorticoids on 

HDAC activity. HDAC activity was measured by a fluorescent activity assay. Dexamethasone (Dex; 10-6 M) and 

Triamcinolone Acetonide (TA; 1O-10M) enhanced HDAC activity in the presence of LPS or TNF-a. This was in 

contrast to the lack of effect seen with LPS and TNF-a. The findings were consistent in monocytes and T-cells. TSA 

downregulated HDAC activity to basal levels in all cell lines. The results are representative of three independent 

experiments and are presented as the mean ±SEM. (*p<O.05, **p< 0.01) (n=4). 
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4.3 Discussion 

The work described in this chapter set out to characterise histone acetylation, as the most 

extensively studied histone modification, which occurs in response to inflammatory-stimuli in 

monocytes and T-cells. This was undertaken because of the important role that both 

macrophages and lymphocytes play in the regulation of inflammation. 

In the U937 cells, as well as in the T-cell lines Jurkat and HUT-78, both LPS and TNF-a 

induced histone acetylation. Acetylation of histones 2A, 2B and 3 increased by a small factor 

but acetylation of histone 4 was predominant (seven-fold increase in the monocytic cell line 

and six-fold increase in the T-cell lines). Histone 4 acetylation has been previously shown to 

be upregulated in a number of cell lines. H4 acetylation was induced in the lung epithelial cell 

line A549 by IL-1 ~ (Ito et aI., 2000) and in MCF-7 cells, where estradiol was used for induction 

of the progesterone receptor (Ruh et a/., 1999). This core histone dependent acetylation, 

where acetylation levels on H4 were higher than H3 and much higher than H2A and H2B 

(H2A=H2B), suggests a role of histone 4 in inflammatory transcriptional regulation, while 

involvement of other core histones does not seem to be of major importance. These in vivo 

results also differ with findings in yeast, where acetylation on H3 is predominant compared 

with other core histones (Van Oriel & Otte; 1997) .. 

The core histones have been associated however, with other cell functions such as the cell 

cycle and cell proliferation. Acetylation of specific lysine residues in histone 3, for example, is 

associated with processes apart form transcription (Turner & O'Neil, 1995). During DNA 

replication, new histones are rapidly synthesized and assembled onto the replicated DNA. H3 

(and H4) is brought to replicating chromatin in a pre-acetylated state that becomes erased 

after replication is completed and the newly assembled chromatin matures (Turner & O'Neil, 

1995). Histone 2A is phosphorylated during mitosis (Paulson & Taylor, 1982) while ADP 

ribosylation of histone 2B introduces a negatively charged branched molecule into chromatin 

that resembles a single stranded nucleic acid and therefore such a structure disrupts higher 

order chromatin structure and potentially displaces the more weakly bound histones from 

nucleosomes. 

The finding that replication-coupling assembly factor (RCAF), a chromatin assembly complex 

in Drosophila, contains H4 specifically acetylated at Iysines 5 and 12 suggests that these 

acetylation sites play an important role in chromatin assembly (Tyler et a/., 1999). Following 

the results demonstrating that H4 was highly upregulated by inflammatory stimuli in 

monocytes and T-cells, acetylation of the specific lysine residues in these cells was further 

investigated. Lysines 8 and 12 were significantly upregulated in all three cell lines suggesting 

that a common pathway occurred in the inflammatory gene expression process, whilst LPS 

and TNF-a did not show any significant differences in the upregulated levels of histone 
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acetylation in any of the cell lines in question Ito et al (2000) rt d . 
. . repo e an upregulatlon of the 

same lysine residues in A549 cells. The same paper showed that p65 mediated activation of 

the GM-CSM promoter in vitro is concomitant with the acetylation of H4 K8 and K12 residues. 

The agreement of the present results with Ito et al. (2000), in conjunction with findings 

presented in Chapter 3, also suggests that p65 mediated actiVation of the IL-8 promoter in 

vitro could be concomitant with the acetylation of H4 K8 and K12 residues. 

Trichostatin A has been shown to release transcriptional repression in some model systems. 

Studying the effect of TSA in the activation of histone 4 Iysines showed that the actions of 

TSA were not lysine residue specific. It was however shown that TSA Significantly 

upregulated acetylation of all histone 4 lysine residues in both monocytes and T-cells. 

The effect of glucocorticoids in lysine specific histone 4 acetylation was further investigated. 

Western blotting and immunocytochemistry showed lYSine 5 and 16 specificity for 

glucocorticoids alone in all three cell lines. Prior to this investigation a concentration response 

curve of the effect of glucocorticoids Dex and TA on a/l three cell lines was performed and the 

results showed the maximal effect at 10-8M for Dex and 10-10M for TA. The effect of the . I 
I

glucocorticoids on pro-inflammatory stimuli LPS and TNF-a induced cells was again lysine 
i 
!residue specific, but the pattern revealed was different. Here, both dexamethasone and I 
Itriamcinolone acetonide decreased acetylation of the lysine residues (K8 and K12) that were 

upregulated by the effect of the inflammatory stimuli used indicating a lysine specificity of the 

GR receptor. This, corresponds to reports from Ito et a/., (2000) that dexamethasone targeted 

the same lysine residues in A549 cells pre-treated with IL-1~. Their findings in relation to 

histone acetylation and glucocorticoid actions, suggested that CSP-associated factors, but not 

CBP itself, is the most likely target for competition between GR and p65 or other 

transactivating proteins. 

In the present chapter, it is also shown that TSA blocked the inhibitory effect of steroids on 

histone acetylation in all cell lines. It is noteworthy that in the U937 cells the effect of TSA in 

cells stimulated with TA was not as potent as expected compared to the T-cell lines. The data 

to this pOint suggested that TA was a more effective glucocorticoid than dexamethasone and 

therefore it would be interesting to study the effect of other steroids and more specific histone 

deacetylase inhibitors such as SAHA in the TA actions. Similar studies using sodium butyrate, 

another HDAC inhibitor, have proved inconclusive because of the high toxicity and low half

life that this inhibitor has been reported to have (Santini et a/., 2001). Trichostatin A repressed 

the steroid effect to almost baseline levels as shown by the HDAC assay in all cell lines. The 

greatest increase in HDAC activity in cells stimulated with TA compared to Dex, suggested 

TA as the most potent glucocorticoid in monocytes and T-cells stimUlated with either LPS or 

TNF-a. 

= 
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Two major possible models are available at the moment in explaining the cross-talk between 

GR complexes and histone acetylation. The first suggests that deacetylation of histones 

increases tightening of the DNA around histone residues and therefore, reduces access of 

transcription factors such as AP-1 and NF-KB to their binding sites and of RNA polymerase II 

to the activation complex resulting in repression of inflammatory genes (Ito et al., 2000). The 

second model proposes that GR interferes with p65 association with the TATA box 

environment, therefore, inhibiting p65 actions (Vanden Berghe, 2000). These models are not 

necessarily exclusive since altered histone acetylation will block bromodomain-regulated 

recruitment of cofactors including other TFs and TAFs. Another possibility suggested by 

Nissen & Yamamoto (2000), is that GR inhibits NF-KB by interfering with serine-2 

phosphorylation of the mRNA polymerase II carboxy-terminal domain. 

Acetylation of histones has acquired clinical importance with the findings that histone 

deacetylase (HDAC) inhibitors administered with retinoic acid can cause differentiation in 

promyelocytic leukaemia cells that had previously acquired resistance to retinoic acid (Lin et 

al., 1998). The molecular mechanism of the HDAC inhibition was uncovered by the finding 

that histones in TSA treated cells are acetylated to unusually high degrees (Yoshida et a/., 

2001). Pulse-chase experiments revealed that histone hyperacetylation induced by TSA is 

not" due to increased acetylation but to decreased deacetylation of histones (Yoshida et a/., 

2001). In a recent study in K562 cells Where. Trichcstatin A induced H4 hyperacetylation, it 

was shown that changes in cellular phosphatase activity inhibited H4 acetyltransferase 

activity (Galasinski et a/., 2002). Since HDACs are also phosphoproteins, it is possible to 

speculate that changes in HDAC activity may also be modulated at by kinase and 

phosphatase activities affected by steroids and inflammatory mediators. This raises the 

possibility that phosphatases released from the GR/hsp90 complex may directly modulate 

HDAC activity. 

Although not shown here in vitro, it is possible that inflammation in vivo reduces HDAC 

activity. Cigarette smoke, another pro-inflammatory stimulus, is associated with a reduction in 

HDAC2 expression and activity in bronchial biopsies and alveolar macrophages (Ito et a/., 

2001). Furthermore, there was an inverse correlation between HDAC activity and the ability of 

glucocorticoids to suppress TNF-a.-induced IL-8 release. The present findings, although not 

HDAC specific, showed an increase in HDAC activity in cells by glucocorticoids in the 

presence of inflammatory stimuli. The increase was significant in all three cell lines 

suggesting a similar mechanism of cross talk between GR activation, HDAC activity and pro

inflammatory transcription factors resulting in the regulation of inflammatory gene expression. 

The repressive action of glucocorticoids may therefore, at least in part, result from recruitment 

of activation of HDACs to sites in the promoters of inflammatory genes regulated by TFs, 

including AP-1 and NF-KB (Adcock, 2001). Alternatively, activated GR could bind to one of 
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the several transcription corepressor molecules, such as RIP140, which associate with 

proteins that have a differing histone deacetylase activity (Adcock and Caramori, 2001). 

In summary, in this chapter it is shown that both inflammatory stimuli and glucocorticoids 

induced histone acetylation, albeit with different patterns of histone 4 acetylation. Low 

concentrations of both glucocorticoids in combination with LPS or TNF-a, repressed H4 

acetylation on Iysines 8 and 12, while glucocorticoids alone induced acetylation of different 

lysine residues (K5 and K16). The HDAC activity assay also showed a more potent effect of 

T A in repressing LPS and TNF-a induced histone acetylation compared to Dex, which agree 

with the functional data. Most important though, was the suggestion that monocyte and 

lymphocyte gene expression follows a similar and distinct pattern of histone acetylation. This 

leads to the conclusion that a more general pharmacological manipulation of specific histone 

acetylation status is a potentially useful approach for the treatment of inflammatory diseases. 

Extensive knowledge of the exact mechanism by which activated GR recruits HDACs may 

reveal new targets for the development of drugs that may dissociate the anti-inflammatory 

actions of glucocorticoids from their side effects that are largely due to gene induction. 

Alternatively, it could assist in the development of drugs that prevent K8 and K12 acetylation. So 

far, available drugs are non-specific in targeting histone lysine residue acetylation. The finding 

that K12 was less sensitive to GC actions than K8, could lead in the development of new drugs 

that will be lysine residue specific and therefotetarget K8 acetylation rather than acetylation of 

both K8 and K12 residues., 

A number of lines of evidence indicate that the enzymatic activity of acetylases is regulated 


by proliferation and differentiation signals (Ait-Si-Ali et al., 1998). In vitro studies with TSA 


indicated that it produces an irreversible growth arrest (at least in the short term) in 


keratinocyte-derived squamous carcinoma cell (Yoshida et al., 1995). TSA has also recently 


been reported as a potent inhibitor of proliferation with an antitumor efficacy without 


measurable toxicity in human breast cancer cell lines (Vigushin et al., 2001). The evidence 
 !provided in this chapter, along with reports on the effects of TSA in cell death and proliferation ,3(Dagmond et al., 1998), suggest that the role of histone acetylation in the regulation of I 


inflammation is not only due to its effects in inflammatory gene transcription but also to its 
 .... 
regulation of cell cycle progress and apoptosis. In chapter 5, early and late markers of 


apoptosis are studied, under the same conditions used in this chapter, in order to evaluate the 


role of histone acetylation in programmed cell death. 
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Chapter 5 

Role of histone 4 acetylation in 

the regulation of apoptosis 

5.1 Introduction 

One of the cardinal signs of inflammation is loss of function. This has long been associated 

with cell death and apoptosis. The current chapter investigates the role of histone acetylation 

and inflammatory gene expression in programmed cell death. As it has previously been 

described, nucleosomal histones play key regulatory functions, as their acetylation state can 

be modified by histone acetylatransferase (HAT) and histone deacetylase (HDACs) enzymes. 

In addition to this, the use of HDAC inhibitors has revealed, a complex role for HDACs in cell 

function, as these agents block proliferation (Bohmig et a/., 1995), cause G1 (Gilbert and 

Weigle, 1993) or G2 cell cycle arrest (Yoshida and Beppu, 1988) and lead to cell 

differentiation (Hoshikawa et al., 1994) and apoptosis (Conway et a/., 1995; Chang & Yung, 

1996). These findings together with the understanding that histone acetylation plays a major 

role in the control of inflammatory gene expression has opened the gate to new and exciting 

possibilities on the understanding of the regulation of gene transcription. 

HDACs are known to associate with two important cell cycle regulators: Myc activation factor 

X (Max)/Max dimeriser (Mad) and retinoblastoma (RB) (Sears et a/., 1997). Mad/Max 

heterodimers are essential for the repression of E-box-containing growth stimulatory genes 

during cellular differentiation (Sears et a/., 1997). Transcriptional repression by Mad/Max 

requires the assembly of a multisubu nit repressor complex that carries HDAC activity. 

Disruption of this repressor by overexpression of myelocytomatosis viral oncogene 

homologue (c-Myc) or sarcoma viral oncogene homologue (v-Ski) results in re-induction of 

cell cycle progression and transformation (Fig. 5-1). RB is critical for the regulation of S-phase 

entry in eukaryotic cells. It performs its function through association with the E-box 

transcription factor (E2F) and repression of E2F-dependent promoters. It has been 

demonstrated that the repressive function of RB is mediated by its interaction with a histone 

deacetylase (Brehm et a/., 1998; Luo et a/., 1998). Mutations or deletion of RB disaggregates 

this repressive complex and can lead to uncontrolled proliferation, irregulation in apoptosis 

rates and tumour formation. Since aberrant histone acetylation has been linked to malignant 

diseases in some cases, HDAC inhibitors, such as sodium butyrate and Trichostatin A (TSA) , 

have potential as new drugs due to their ability to modulate transcription and to induce 

differentiation and apoptosis (Marks et a/., 2000). 
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Butyrates, such as sodium butyrate and phenylbutyrate have been shown to induce 

differentiation in non-acute promyelocytic leukemia cell lines such as U937 and HL-60 cells 

(Guidez et al., 1998). DNA repair processes are rapidly downregulated during differentiation 

induction of leukemic cells and consequently intracellular levels of previously administered 

cytotoxic agents are more effective in producing leukemia cell death by apoptosis (Waxman, 

2000). The effects of butyrate and TSA also include direct apoptosis induction. 

The effective concentration of sodium butyrate that cause histone hyperacetylation is in the 

millimolar range, which may also have nonspecific effects on cellular function. However, other 

HDAC inhibitors such as TSA and trapoxin are effective in the nanomolar range in inducing 

hyperacetylation of histones (Luo and Dean, 1999). TSA appears to be a reversible inhibitor 

of histone deacetylase activity, whereas trapoxin irreversibly inhibits histone deacetylase. The 

short half life of TSA could explain its reversable action. Siavoshian et al., compared the 

effects of butyrate and TSA in HT-29 colonic cells, and found that the two compounds showed 

different histone H4 hyperacetylation kinetics. The effect of butyrate on histone H4 

hyperacetylation was maintained after 24 h, whereas the TSA effect was no longer detectable 

after 15 h (Siavoshian et aI., 2000). After 16 h of exposure to butyrate, most H4 histones are 

acetylated whereas around 60% of H4 is acetylated in the presence of TSA after 2 h and the 

amount of non-acetylated H4 returns to control levels by 16 h. This difference in kinetics may 

explain the variance of HDAC inhibitors in their effect in apoptosis regulation observed in a 

number of cell lines, it does however reinforce the conclusion that histone acetylation may. . 

play a significant role in the regulation of programmed cell death. Apoptosis-inducing 

concentrations of TSA and butyrate upregulated the expression of HDAC mRNAs in a 

differential manner and acted synergistically with phytohemagglutinin (PHA) to induce HDAC 

expression, suggesting the presence of independent HDAC regulatory mechanisms 

(Dangond & Gullans, 1998). In addition, TSA abrogated interferon gamma (IFN-y) production 

at a time-dependent manner in Th1 T cells and blocked proliferation (Dangond & Gullans, 

1998). IFN-y plays an anti-apoptotic, protective role during Shigella flexneri-induced apoptosis 

(Hilbi et al., 1997) and induced the expression of Bel-xL in human macrophages (Okada et al., 

1998). Furthermore, treatment with TSA and retinoic acid (RA) markedly enhanced neuronal 

differentiation in P19 embryonal carcinoma cells, although TSA alone did not induce 

differentiation but caused extensive apoptosis (Minucci et al., 1997). Finally, micromolar 

amounts of arsenic (AsZ0 3) lead to growth arrest and apoptosis induction following induction 

of hyperacetylation of histones in leukemia cells (Perkins et al., 2000). 

Glucocorticoids can significantly reduce the survival of certain inflammatory cells such as T

lymphocytes. Exposure of the cells to glucocorticoids can block the effect of cytokines (i.e 

GM-CSF) that are required for survival and therefore lead to programmed cell death (Owens 

et al., 1991), In contrast, glucocorticoids decrease apoptosis and therefore increase cell 

survival in other cell types such as neutrophils (Meagher et al., 1996). In thymocytes, 
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inhibition of HDACs, by butyrate and TSA, is unable to augment dexamethasone-induced 

apoptosis . Even more pronounced was the antagonistic relationship between dexamethasone 

and Trichostatin A, as TSA-induced apoptosis was not only blocked by the presence of 

dexamethasone but dexamethasone-induced apoptosis was also partially inhibited in the 

presence of TSA (Bernhard et aI. , 1999). The fact that the antagonistic relationship with 

dexamethasone for apoptosis was also observed with butyrate , suggests that in thymocytes 

this phenomenon may be related to histone acetylation. The molecular mechanisms that 

account for the opposing effects of glucocorticoids on these two types of cell , are yet unclear 

and in need of investigation. The molecular mechanism of action of glucocorticoids in 

increasing T-cells apoptosis is still poorly understood and there are many potential sites of 

action , including effects of histone deacetylase inhibitors. 

There is some controversy as to the precise mechanism of H DAC inhibitors on cell apoptosis 

(Kelly et aI., 2002). H DAC inhibitors are reported to induce apoptosis through induction of 

p21 cI PIWAF (Richon et aI. , 2000) but there is evidence that the concentrations of HDAC 

inhibitors used to induce apoptosis are far greater than those required to enhance histone 

acetylation (Vigushin and Coombes, 2002). 
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Figure 5-1 Model for transcriptional regulation by c-Myc, Max and Mad 
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While a number of groups have studied the effects of HDACs and HDAC inhibitors in vivo and 

in vitro, little work has been reported examining directly histone acetylation and apoptosis. 

The pro-inflammatory cytokine IL-8 and controlled cell suicide are associated with signaling 

and increased induction of inflammation (see chapter 2). The aim of this study was to 

compare the effects of LPS, a known stimUlator of pro-inflammatory mediator production, 

H20 2, an oxidative stress inducer resulting in apoptosis or necrosis depending on the 

concentrations used and TNF-a, a pro-inflammatory cytokine, on the production of IL-8 and 

apoptosis in these cells. In this chapter the induction of histone acetylation in these conditions 

is studied. Also the effects of glucocorticoids dexamethasone and triamcinolone acetonide in 

apoptosis and the interrelationship between the chromatin remodeling machinery and steroid

induced programmed cell death in these cell lines are investigated. 

5.2 Results 

5.2.1 Inflammatory stimuli cell death in three cell lines 

To detect cell death induced in U937, Jurkat and HUT-78 cells when stimUlated with 

inflammatory stimuli and steroids an MTT assay was used. Figure 5-2 illustrates the changes 

in the viability of U937, Jurkat and U937 cells following treatment with LPS (10 ng/ml), TNF-a 

(10 ng/ml and 100 ng/ml) and hydrogen peroxide (H20 Z; 100 !J.M). Increased or decreased 

viability by the MTT assay would be detected as changes in the absorbance (increased 

viability: increases in absorbance and decreased viability, cell death: decrease in 

absorbance). In U937 cells, LPS did not affect cell viability, during the 1 hr incubation period. 

H20 2 and TNF-ex. however, induced a significant reduction in cell viability (p<O.05). In both 

HUT-78 and Jurkat cells, LPS and H20 2 (p<0.05) also induced a reduction in cell viability. 

Cells were also treated with TSA and its effect on cell viability was monitored. The effect of 

TSA in all three cells was concentration dependent. TSA did not affect cell viability at 10 ng/ml 

but at 100 ng/ml it reduced cell viability to a similar extent to that observed with H20 Z, in all 

three cell lines (p<O.05). Similar experiments were also performed for an additional 24 h 

incubation. These showed a contradictory increase in the viability of the cells (results not 

shown). This result may be interpreted as being due to the necrotic or apoptotic cells having 

already been eliminated from the cell suspension or surviving cells proliferating following 

removal of dead cells at 1hr. 
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Figure 5-2 3-(4,5-dimethylthiazol-2-yl}-2,5-diphenyl tetrazolium bromide (MTT) viability assay in U937, Jurkat 

and HUT-78 cells. The cells were stimulated with pro-inflammatory stimuli lipopolysaccharide (LPS; 10 ng/ml) or 

tumour necrosis factor ex (TNF-a; 10 ng/ml), the oxidant stress inducer hydrogen peroxide (H20 2 ; 100J.lM) and the 

HDAC inhibitor Trichostatin A (TSA) for 1hr and changes in the cell viability and therefore cell death were detected. In 

the U937 cells LPS did not change cell viability, while both TNF-a and H20 2 decreased cell viability shown by the 

reduced absorbance in the chart. In both T-cell lines the effects of LPS and H20 2 were similar in that they affected 

cell viability. Addition ofTSA (10 ng/ml) did not alter cell viability, while addition of 100 ng/ml induced cell death in all 

three cell lines. Columns represent the mean ± SD (bar) of three independent experiments (*p<0.05 compared to 

non-stirn). 
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5.2.2 Stimuli induced apoptosis in three cell lines 

Following the results in section 5.2.1 it was examined whether the cell death detected was 

necrotic or apoptotic. Using a Hoechst 33342 stain, apoptotic bodies within cells were 

visualised under a fluorescence microscope and the ratio of apoptotic versus total cell 

numbers was measured. The cells were stimulated as stated previously, in order to detect 

signs of apoptosis however the incubation periods were increased to 6 hrs. Table 5-1 shows 

the percentage of cells undergoing apoptosis after each treatment. The data was generally 

inversely related to the results obtained from the MTT assay and showed an increase in 

apoptotic cell death in all cell lines following stimulation with LPS (except in the U937 cells 

where LPS did not induce apoptosis or changes in cell survival), TNF-a (except in the HUT-78 

cells, were no significant induction of apoptosis or cell survival was detected), H20 2 and TSA 

(100 ng/ml). At a concentration of 10 ng/ml, TSA did not induce apoptosis in any cell line. 

These results verified that the reduction of cell viability detected by the MTT assay was 

related to programmed cell death. 

Cell line 

U937 

Jurkat 

HUT-78 

Stimulant 

Non-Stirn 


LPS 


H20 2 


TNF-a 


TSA (10 ng/ml) 


TSA (100 ng/ml) 


Non-Stim 


LPS 


H20 2 


TNF-a 


TSA (10 ng/ml) 


TSA (100 ng/ml) 


Non-Stim 


LPS 


H202 


TNF-C( 


TSA (10 ng/ml) 


TSA (100 ng/ml) 


Apoptotic cell No (%) 

9±4% 

27±8% 

45± 12% 

57 ± 15% 

18±7% 

64 ± 13% 

13±5% 

49 ± 13% 

68 ± 17% 

63 ± 14% 

20±5% 

73 ± 17% 


5±2% 


51 ± 14% 


68 ± 16% 


24±9% 


18 ±5% 


72 ± 16% 


Table 5-1 Percentage of apoptotic cells following cell stimulation. 


Results are expressed as mean ± SEM (n=6) 
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The hoechst stain is an efficient method of detecting apoptosis at its late stages where 

changes in cell morphology can be detected. However apoptotic cell signalling pathways are 

initiated as soon as 1 h following stimulation. It was therefore required to investigate whether 

apoptotic regulating proteins were activated during stimulation. The cells were stimulated as 

above for 1 hr and changes in the activation status of B cell lymphoma leukemia 2 (BcI-2) and 

Annexin V were measured by Western blotting. Figure 5-3 shows representative bands 

obtained by Western blotting and figure 5-4 illustrates changes in the expression status of 

BcI-2 in all three cell lines when stimulated as above. 

Cntl LPS TNF-a TSA TSA 

(10ng/ml) (100nglml) ......U937 

Jurkat 

HUT-78 

~-actin 

Figure 5-3 Representative bands of B-cell lymphoma leukemia 2 (Bcl-2) expression as obtained by Western 

blotting in three cell lines. Lanes represent: control, lipopolysaccharide (LPS; 10 ng/ml), hydrogen peroxide (H20z.; 

100j.lM), tumour necrosis factor a. (TNF-a; 10 ng/ml), Trichostatin A (TSA; 10 ng/ml) and TSA (100 ng/ml) 

stimulations for 1 hr. The results are representative of three independent experiments. f)-actin controls for loading 

were for HUT-78 cells. 

In U937 cells LPS Significantly downregulated BcI-2 levels (57 ± 12% versus 100 ± 26% 

control U937 cells, p<O.05). H20 2, TNF-a and TSA did not affect Bcl-2 expression. 

In the T-cell lines LPS, TNF-a and H20 2 induced Bcl-2 expression to a similar extent. LPS, 

H20 2, and TNF-a induced an upregulation of the protein levels. TSA, as in U937 cells, did not 

affect Bcl-2 expression in either low or high concentrations. 
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Figure 5-4 B-ceillymphoma leukemia 2 (Bcl·2) expression, in stimulated U937, Jurkat and HUT-78 cells. Cells 

were stimulat&ci with lipopotysaccharide (LPS: 10 ns/ml). hydrogen peroxide (H2~ ; 100ilM), tumour necrosis factor a 

(TNF-a; 10 ng/ml) and Trlchostatln A (TSA; 10 and 100 nglml) for 1hr and changes in the expression of the protein 

were detected by Western blotting, LPS downregulated protein levels in the U937 cells while it had the opposite 

effect in the T-eel/lines, HA and TNF'(l induced activation of 8c1-2 in T-cells, whilst TSA was ineffective in all 3 cell 

types ("p<O 05 compared to non-stim), 
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Activation of annexin V is an effective method of identifying early stages of apoptosis by 

detecting the translocation of phosphatidylserine from the inner to the outer cell membrane. 

Suspensions of all three cell lines were stimulated as above and following a 1 h incubation 

period whole cell extracts were isolated. The histograms in figure 5-5 illustrate expression of 

annexin V in U937, Jurkat and HUT-78 cells. The data were obtained by Western blotting and 

the results are representative of three independent experiments Representative Western 

blots are shown in the Appendix. 

In U937 cells, LPS did not induce annexin V expression. However, when cells were 

stimulated with H20 2 (261 ± 34% versus 123 ± 25%, p<0.05) annexin V expression was 

significantly upregulated. Similarly, stimulation of the cells with TNF-a, significantly induced 

annexin V expression (300 ± 45%, p<0.05). Finally, TSA (10 ng/ml) upregulated annexin V 

expression (258 ± 45%, p<0.05). In contrast TSA (100 ng/ml) had no effect on annexin V 

levels. 

The data obtained in the T-cell lines for annexin V levels were very similar to those observed 

with the Bcl-2 protein with the exception of the effect of TNF-o:. Stimulation of both Jurkat and 

HUT-78 cells with H20 2 induced upregulation of annexin V expression (in Jurkat: 334 ± 66% , 
versus 115 ± 21%, p<0.05 and in HUT-7~: 333 ± 76% versus 109 ± 19%, p<0.05). In contrast, 

only TNF-o: significantly upregulated annexin V levels in Jurkat cells (346 ± 35%, p<O.05).. 

LPS did not affect annexin V expression in either T-cell line. Finally, a similar effect of TSA to· 

that seen observed in U937 cells was seen. Low concentrations (10ng/ml) of the inhibitor TSA 

significantly induced annexin V expression (in Jurkat cells: 260 ± 50%, p<O.05 and in HUT-78 

cells: 350 ± 62%, p<O.05) whilst high concentrations (100ng/ml) resulted in no enhancement 

of annexin V expression. 

I 
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Figure 5-5 Annexin V expression, in stimulated U937, Jurkat and HUT-78 cells, indicating early stages of 

apoptosis. Cells were stimulated with lipopolysaccharide (LPS; 10 ng/ml), hydrogen peroxide (H20 2 ; 100 ~M). 

tumour necrosis factor ex (TNF-a; 10 ngfml) and Trichostatin A (TSA; 10 and 100 ngfml) for 1hr and upregulation of 

the protein was detected by Western blotting. LPS had no effect in any cell line. H20 2 induced Annexin V expression 

in all three cell lines, while the effect of TSA was concentration dependent. At 10 ngfml TSA slightly upregulated 

Annexin V expression, while at 100 ng/ml no significant upregulation of Annexin V expression. TNF-(~ induced 

Annexin V expression in U937 and Jurkat cells. Columns represent the mean ± SO (bar) of three independent 

experiments (*p<0.05 compared to non-stirn). 
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5.2.3 Glucocorticoid induced apoptosis in three cell lines 

Following the investigation of the glucocorticoid effects on IL-8 production and histone 

acetylation described in chapters 3 and 4, the effects of dexamethasone and triamcinolone 

acetonide in the induction of apoptosis in the cells were also studied. Cells were stimulated as 

in chapters 3 and 4 and apoptosis was detected indirectly via Western blotting for BcI-2 and 

by immunocytochemistry for annexin V. 

In all three cell lines, addition of the steroids had no effect on expression of BcI-2 (Fig. 5-6.a). 

In U937 cells, addition of Dex to TNF-a and H20 2 or TSA stimulated cells did not alter BcI-2 

levels. However, Dex significantly increased BcI-2 levels in LPS stimulated cells (137 ± 32% 

versus 56 ± 12% LPS alone, p<0.05). TA had no effect on BcI-2 expression (Fig. 5-6.b) 

except in LPS stimulated cells where addition of TA significantly upregulated BcI-2 levels (168 

± 16% versus 56 ± 12% LPS alone, p<0.05). In the two T-cell lines investigated addition of 

either steroid did not affect Bcl-2 levels in LPS, TNF-a, H20 2 or TSA stimulated cells. 

Figure 5-7 illustrates expression of annexin V in the three cell lines in the presence of steroids 

when stimulated as previously. Regardless of the .upregulation of Bcl-2 levels shown above, 
., . 

indicating protection of the cells against ap6ptosis, it is sf10wn that annexin V levels were 

upregulated in stimulated cells in the presence of both glucocorticoids. Glucocorticoids alone 

did not induce annexin V levels in the U937 cells or the T-cell lines. However, annexin V 

levels were upregulated significantly in stimulated cells. 

Dex enhanced annexin V expression in LPS-stimulated U937 cells (315 ± 27% versus 177 ± 

26% LPS alone, p<0.05) only. In contrast, Dex enhanced annexin V expression in all cell 

types stimulated by H20 2 (U937 cells: 448 ± 41% versus 261 ± 34% H20 2 alone, p<O.05; in 

Jurkat cells: 413 ± 55% versus 333 ± 67% H20 2 alone, p<0.05 and in HUT-78 cells: 490 ± 

85% versus 312 ± 62% H20 2 alone, p<O.05). In TNF-a stimulated cells Dex enhanced 

annexin V expression in U937 (442 ± 45% versus 300 ± 41 % TNF-a alone, p<0.05) and HUT

78 cells (364 ± 34% versus 183 ± 75% TNF-a alone, p<0.05) (Fig. 5-7.a) but not in Jurkat 

cells. 

In contrast, TA enhanced annexin V expression in LPS-stimulated U937 cells (444 ± 44% 

versus 177 ± 26% LPS alone, p<0.05), Jurkat cells (440 ± 55% versus 230 ± 45% LPS alone, 

p<0.05) and HUT-78 cells (323 ± 40% versus 260 ± 57% LPS alone, p<0.05). 

! 

l 
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Figure 5-6.a Western Blot analysis of B-cell lymphoma leukemia 2 (Bcl-2) expression, in stimulated U937, Jurkat 
and HUT-78 cells. Cells were stimulated with lipopolysaccharide (LPS; 10ngiml), hydrogen peroxide (H20 z; 100I1M), 

tumour necrosis factor a (TNF-a; 1 Dng/ml) and Trichostatin A (TSA; 10 and 1 DOng/ml) in the presence of dexamethasone 
(Oex; 10.8 M). Cells were stimulated with Oex and TSA 30min prior to the addition of the inflammatory stimuli and then 

allowed to incubate for a further 1hr. Oex alone failed to induced Bcl-2 upregulation in all three cell types. Oex enhanced 

BcI-2 expression in the presence of LPS in U937 cells. Columns represent the mean ± SO (bar) of three independent 

experiments. (*p<0.05 compared to LPS). 

------------...
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Figure 5-6.b Western Blot analysis of B-cell lymphoma leukemia 2 (Bcl-2) expression, in stimulated U937, 
Jurkat and HUT-78 cells. Cells were stimulated with lipopolysaccharide (LPS; 10ng/ml), hydrogen peroxide (H20 2; 

1OO~lM), tumour necrosis factor a (TNF-a; 10ng/ml) and Trichostatin A (TSA; 10 and 100ng/ml) in the presence of 
triamcinolone acetonide (TA; 10.10 M). Cells were stimulated with TA and TSA 30min prior to the addition of the 
inflammatory stimuli and then allowed to incubate for a further 1 hr. TA alone had no effect on Bcl-2 levels in any cell 
type. In U937 cells, TA enhanced Bcl-2 expression in the presence of LPS. Columns represent the mean ± SD (bar) 

of three independent experiments. (*p<O.05 compared to LPS). 

- _____________1aIIII10' 
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Similar effects were seen with H20 z-treated cells (U937 cells: 493 ± 42% versus 261 ± 34% 

H20 2 alone, p<0.05; Jurkat cells: 540 ± 40% versus 333 ± 67% H20 2 alone, p<0.05; and HUT

78 cells: 550 ± 48% versus 312 ± 62% H20 2 alone, p<0.05) and TNF-a. treated cells (U937 

cells: 533 ± 49% versus 300 ± 41 % TNF-a. alone, p<0.05; Jurkat cells: 572 ± 56% versus 300 

± 41% TNF-a alone, p<0.05; and HUT-78 cells: 443 ± 30% versus 183 ± 75% TNF-a. alone 

p<0.05 (Fig. 5-7.b). ' 

Finally the effect of TSA on Dex and T A actions on annexin V expression was investigated. 

Previous results in this chapter showed no effect of TSA alone on annexin V expression. 

However, in both T-cell lines, the presence of glucocorticoids synergistically interacted with 

TSA to significantly enhance annexin V expression. Specifically, Dex enhanced Annexin V 

expression in the presence of TSA in Jurkat cells (405 ± 42% versus 242 ± 38% TSA alone, 

p<0.05) and in HUT-78 cells (405 ± 38% versus 308 ± 31 % TSA alone, p<0.05)(Fig. 5-7.a). 

More potent effects were seen with TA in Jurkat cells (593 ± 58% versus 242 ± 38% TSA 

alone, p<0.05) and in HUT-78 cells (435 ± 41% versus 308 ± 31% TSA alone, p<0.05)(Fig. 5

7.b). 

Addition; of TSA to LPS+Dex (493 ± 91% versus 315 ± 27% LPS+Dex alone; p<O.:05), 

H20 2+Dex (534 ± 39% versus 448 ± 41% H20 2+Dex alone, p<0.05) and TNF-a+Dex (469 ± 

32% versus 442 ± 45% TNF-a+Dex alone, p<0.05) -stimulated U937 cells resulted in 

enhanced annexin V expression. Similar effects were seen in Jurkat (LPS+Dex: 382 ± 50% 

versus 298 ± 35% LPS+Dex alone, p<0.05 and H20 2+Dex: 530 ± 52% versus 413 ± 55% 

HZ0 2+Dex alone, p<0.05) and HUT-78 cells (LPS+Dex: 467 ± 48% versus 253 ± 39% 

LPS+Dex alone, p<0.05; H20 2+Dex: 652 ± 46% versus 490 ± 85% H20 2+Dex, p<0.05 and 

TNF-a+Dex: 482 ± 27% versus 364 ± 34% TNF-a.+Dex alone, p<0.05) (Fig. 5-7.a). 

Addition of TSA to LPS+ TA (U937: 617 ± 33% versus 444 ± 44% LPS+ TA, p<O.05; Jurkat: 

506 ± 76% versus 440 ± 55% LPS+ TA, p<0.05 and HUT-78: 529 ± 30% versus 323 ± 40% 

LPS+ TA, p<O.05), H20 2+ TA (U937: 673 ± 69% versus 493 ± 42% H20z+TA, p<0.05; Jurkat: 

666 ± 59%, versus 540 ± 40% H20 2+ TA, p<0.05 and HUT-78: 688 ± 50%, versus 550 ± 48% 

H20 2+ TA, p<0.05) and TNF-a (U937: 672 ± 49% versus 533 ± 49% TNF-a.+TA, p<0.05; 

Jurkat: 676 ± 59% versus 572 ± 56% TNF-a+ TA, p<0.05 and HUT-78: 622 ± 51% versus 443 

± 30% TNF-a.+ TA, p<0.05) -stimulated cells resulted in enhanced annexin V expression in all 

three cell lines. 

It is therefore demonstrated that glucocorticoids and TSA possibly act synergistically towards 

the induction of programmed cell death in both monocytes and lymphocytes depending on the 

inflammatory stimuli. 

------------......... 
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Figure 5-7.a Western Blot analysis of Annexin V expression, in stimulated U937, Jurkat and HUT-78 cells, in the 
presence of dexamethasone (Dex; 10.8 M). Cells were stimulated with Dex and TSA 30min prior to the addition of the 

inflammatory stimuli and then allowed to incubate for a further 1hr. Dex did not upregulate annexin V levels alone. In all 

stimulated celis, Dex induced annexin V expression except following lipopolysaccharide (LPS)-stimulation in T-cells. Ca
stimUlation of the cells with Trichostatin A (TSA) and Dex also induced apoptosis in all three cell lines. Columns represent 
the mean ± SD (bar) of three independent experiments (*p<O.05 compared to inflam. stim; #p<O.05 compared to inflam. 

stirn. plus Dex). 
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Figure 5-7.b Western blot analysis of annexin V expression, in stimulated U937, Jurkat and HUT-78 cells, in 

the presence of triamcinolone acetonide (TA; 10-10 M). Cells were stimulated with TA and TSA 30min prior to the 

addition of the inflammatory stimuli and then allowed to incubate for a further 1hr. TA did not upregulate annexin V 

levels alone. In stimulated cells (monocytes and T-cells) TA upregulated annexin V expression. Co-stimulation of the 

cells with Trichostatin A (TSA) and TA also induced annexin V expression in all three cell lines. Columns represent 

the mean ± SO (bar) of three independent experiments (*p<O.05 compared to inflam. stirn; #p<O.05 compared to 

inflam. stim. plus Oex). 
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5.2.4 The role of histone acetylation in glucocorticoid induced apoptosis in three cell 

lines 

Having proved that stimulation of cells induced programmed cell death, caspase activation 

was also investigated. To distinguish between necrosis and apoptosis a caspase 3 assay, 

and a caspase 3 monoclonal antibody for inmmunocytochemical staining of the cells were 

used. Cells were stimulated as previously in the presence of TSA and glucocorticoids and the 

activation of caspase 3 was recorded (Fig. 5-8). In all three cell lines Dex and TA alone did 

not Significantly induce caspase 3 activation. Preliminary results also indicated that TSA did 

not induce caspase 3 activation in any of the three cell lines (results not shown). However the 

presence of Dex induced caspase 3 activation in all H20 z-stimulated cells lines (p<O.05). TA 

had a more potent effect in U937 and HUT-78 cells as it induced caspase 3 activation with all 

inflammatory stimuli (LPS, HzOz and TNF-a), but it was only effective in HzOTstimulated 

Jurkat cells. 

In U937 cells costimulation with TSA and Dex only significantly activated caspase three in 

TNF-a-stimilated cells. Costimulation with T A and Dex however, resulted in increased 

caspase 3 levels in all inflammatory stimuli. , 

In Jurkat cells TSA only significantly upregulated TNF-a+Dex-stimulated cells whilst TA 

upregulated caspase 3 activation in all cells stimulated with TA plus inflammatory stimuli. 

Finally, in HUT-78 cells only the TA effect was enhanced by further addition of TSA in LPS, 

HZ0 2 and TNF-a stimulated cells. 

The micrographs illustrated in figure 5-9, exhibit staining of caspase 3 in U937 cells. The 

results are representative of similar results obtained for the lymphocytic cell lines. The 

intensity of green fluorescence indicated caspase 3 expression. Neither Dex nor TA 

enhanced annexin V expression whereas caspase 3 expression was elevated in LPS, H20 Z, 

and TNF-a -stimulated cells. Upon addition of TSA the fluorescence intensity is further 

increased. Consistent with the caspase 3 assay the micrographs showed that caspase 3 is 

not expressed in U937 cells stimulated with TA and TSA. In the Jurkat and the HUT-78 cells, 

however, caspase 3 was visualised (Fig. 5-10). 

Finally apoptosis in these cell types under the same stimulatory conditions using DNA 

laddering was examined. In figure 5-11, DNA fragmentation in Jurkat cells is shown. As 

shown in the figure all treatments induced DNA fragmentation to a greater or lesser extent 

indicating late stages of apoptosis. The results confirmed those obtained for annexin V 

expression (Fig. 5-6) in Jurkat cells. Similar data was found in HUT-78 and U937 cells except 

that TSA plus steroid treatment in U937 cells did not result in DNA fragmentation. 
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Figure 5-8 Caspase 3 activation assay, in stimulated U937, Jurkat and HUT-78 cells, in the presence of 

glucocorticoids. Cells were stimulated with glucocorticoids and TSA 30min prior to the addition of the inflammatory 

stimuli and then allowed to incubate for a further 1hr. Both steroids did not affect caspase 3 levels alone. In 

stimulated cells (monocytes and T-cells). In the presence of dexamethasone (Dex; 10-8 M) and triamcinolone 

acetonide (TA; 10.10 M) increases in caspase levels were inflammatory stimuli and cell type dependent, with 

triamcinolone being more potent in the upregulation of higher levels of the caspase. Co-stimulation of the cells with 

Trichostatin A (TSA) and T A resulted in an increase in the activation of caspase 3. Columns represent the mean ± 

SO (bar) of three independent experiments (*p<0.05 compared to inflam. stim; #p<0.05 compared to inflam. stim plus 

steroid). 
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Figure 5-9 Immunocytochemical detection of caspase 3 in U937 cells. The cells were stimulated with 

lipopolysaccharide (LPS), hydrogen peroxide (H20 2) and tumour necrosis factor a (TNF-a) for 1hr and caspase 3 was 

detected . In experiments conducted iin the presence of triamcinolone acetonide (TA; 1O. ,O M), TA was added 30 

minutes before cell activation. TA alone did not induce activation of the protein. In stimulated cells, however, TA 

induced apoptosis . Co-stimulation of the cells with Trichostatin A (TSA; 1 Ong/ml) and TA also induced apoptosis . The 

micrographs are representative of 3 independent experiments. Similar results were obtained for Jurkat and HUT-78 

cells. TSA alone had no effect on Caspase 3 expression . 
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U937 Jurkat HUT-78 

Figure 5-10 Imm unocytochemical detection of caspase 3 in U937, Jurkat and HUT-78 cells. The cells were 

stimulated with Trichostatin A (TSA) and caspase 3 was detected in the presence of triamcinolone acetonide 

(TA; 10.,0 M). Caspase 3 was not activated in the U937 cells but it was detected in both T-cell lines. Similar results 

were obtained in cell stimulated with dexamethasone (Oex) and TSA. 

Lanes Cntrl Blank Oex Oex TA TA Oex TA 
+H20 2 +H20 2 +H20 2 +H 20 2 +TSA +TSA 

+TSA +TSA 

Figure 5-11 DNA fragmentation in Jurkat cells indicating late stages of apoptosis. The lanes represent different 

cell treatments . Lane: kit control , blank, dexamethasone (Oex)+hydrogen peroxide (H20 2), Oex+H20 2+ Trichostatin A 

(TSA), triamcinolone acetonide (TA)+H202, TA+H 20 2+ TSA, Oex+ TSA, TA+ TSA. Similar results were obtained in 

U937 and HUT-78 cells . Treatment of the cells with glucocorticoids and TSA induced DNA fragmentation in the T

cells (evident in lanes 7 and 8) . This was not seen in U937 cells treated with glucocorticoids and TSA (results not 

shown) . Results are representative of three independent experiments . 
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5.3 Discussion 

The mechanisms involved with induction of cell death by histone deacetylase inhibitors 

remain unclear. In lymphoid and colorectal cells, the histone deacetylase inhibitor butyrate 

acted synergistically with staurosporine to promote apoptosis by upregulating the expression 

of caspase-3 (Medina et af., 1997). In the human leukaemia cell line CEM-C7H2, low 

concentrations of butyrate promoted cell death that was triggered by dexamethasone 

(Bernhard et af., 1999). This synergism however, was not seen with TSA. Increasing the 

concentration of these inhibitors produced an antagonistic effect on Oex-induced apoptosis. In 

this chapter, supportive evidence of a role for histone acetylation in apoptosis are provided. 

Cells under the effect of inflammatory stimuli can either activate cell signalling pathways that 

lead to restoration of function or undergo programmed cell death. Having established from 

previous work that increased histone acetylation occurs in cells when induced with 

inflammatory stimuli, here, whether histone hyperacetylation leads to programmed cell death 

was investigated. 

Following previous findings this investigation concentrated on the induction of apoptosis in the 

monocytic cell line U937. In the immune system, especially in lymphocytes, apoptosis plays 

an important IOle in maintaining the T cell repertoire and in deleting autocrinelymphocytes, 

thus regulating the immune response, however it has been reported that 'some T-cell 

subtypes are particularly resistant to various inducers of apoptosis. For this reason two 
'; ,. 

lymphocytic celi lines (Jurkat and HUT-78 cells) were studied. All three cell lines were 

primarily stimulated as previously with LPS (10ng/ml), TNF-a (10ng/ml) and TSA (10 ng/ml 

and 100 ng/ml) over a period of 1 hour. TSA at 100 ng/ml is associated with induction of 

apoptosis in a number of cell lines while at the lower concentration of 10 ng/ml the inhibitor is 

known to induce histone hyperacetylation. The cells were also stimulated with H2 0 2 (1 OOIlM) a 

known inducer of oxidative stress and consequently apoptosis in many cell lines. 

Preliminary studies on the initiation of cell death following stimulation showed that in LPS 

stimulated U937 cells, cell death was not detectable whereas in both T-cell lines, cell death 

was induced. Stimulation of the cells with HzOz and also TSA (100 ng/ml) induced cell death 

in all three cell lines. In U937, Jurkat and HUT-78 cells viability was not altered by the addition 

of TNF-a. Finally TSA (10 ng/ml) did not appear to induce cell death in any of the cell lines. 

Studies into programmed cell death showed that in the U937 cefis, cell death was due to 

apoptosis (over 50% apoptotic cells detected) when TNF-a and TSA (100 ng/ml) treated. 

Despite its toxicity, HZ0 2 did not induce apoptosis in U937 cells. This finding is in agreement 

with a report stating that H20 Z suppressed cell death in U937 cells by two different 

mechanisms depending on its concentration (Lee and Um, 1999) and in alveolar 

macrophages from smokers (Tomita, 2002). The T-cell lines were shown to be more 
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susceptible to apoptosis. In the Jurkat cells H20 2• TNF-a and TSA caused more than 60% 

apoptosis and LPS caused more than 40% of the cells to undergo apoptosis. Similar effects 

were seen in HUT-78 cells. TNF-a treatment alone however did not induce apoptosis in these 

cell lines. This is in contrast to a previous showing that in contrast to Jurkat cells, HUT-78 

cells were resistant to the apoptotic effects of TNF (Giri et al., 1998). 

Our investigation on the expression of Bcl-2, an anti-apoptotic protein, suggested that 

different cells respond differently to the same apoptotic stimulus. In general upregulation of 

BcI-2 is associated with an increase in the resistance of cells to apoptosis. In the U937 cells 

Bcl-2 expression was only significantly downregulated following treatment with LPS. It has 

been reported (Vanhaesebroeck et a/., 1993) that in U937 cells as well as in the human 

breast carcinoma cell line MCF7 and promyelocytic leukaemia cell line HL60, despite 

constitutive expression of the endogenous BcI-2 gene, that cells underwent apoptosis 

following TNF-a stimulation. BCI-2-overexpressing derivatives of these cell lines did not 

acquire reduced TNF sensitivity and still exhibited the characteristic pattern of 

internucleosomal DNA fragmentation of TNF-induced apoptosis. An absence of a correlation 

between BcI-2 gene expression and cellular sensitivity to TNF-induced cell lysis was 

proposed. Moulding et al., (2000) showed that in the U937 cells the induction of Mcl-1 is 

'required to prevent apoptosis during 'differentiation, and the constitutive expression of Bcl-2 is 

unable to compensate for the loss of Mel-i. Also, in nitric oxide stimulated U937 cells,· Bcl-2 is 

. downregulated as caspase activation occurs (Brockhaus & Brune, 1998). 

ScI-2 expression in T-cell lines showed a similar pattern of activation for both Jurkat and HUT

78 cells. Bcl-2 levels were increased with all stimulants with the exception of TSA (100 ng/ml). 

Trichostatin A has been demonstrated to increase the expression of the Bcl-2 related protein 

Bad, although the expression of Bd-2, Bcl-xL, Sax, and Fas was not changed by the addition 

of TSA in human glioma cells (Sawa et a/., 2001). The same report suggested that HDAC 

inhibitors such as TSA and sodium butyrate induce apoptosis through an increase in Bad 

protein in human glioma cells in vitro. 

I nvestigation of the activation of annexin V as a method for the detection of early stages of 

apoptosis showed that in U937 cells H20 2, TNF-a and TSA (10 ng/ml) significantly 

upregulated this protein. In Jurkat cells LPS, H;202, TNF-a and TSA (10 ng/ml) also 

upregulated annexin V upregulation but in contrast, in HUT-78 cells TNF-a did not induce 

annexin V expression. TSA (10 nglml) caused the upregulation of annexin V despite the fact 

that high levels of apoptosis were not detectable at this concentration. 100 ng/ml of the 

inhibitor did not upregulate annexin V levels. This might be due to the fact that TSA at high 

concentrations causes rapid apoptosis and therefore at the later time points investigated 

annexin V may have been downregulated. 
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In a recent study, an increased constitutive expression of a Fas-associated death domain 

protein (FADD) was reported in ageing subjects at the protein and not at the mRNA level, 

suggesting a post translational modification of FADD in ageing humans (Green & Scott, 

1994). In another paper it has been reported that in peripheral blood monocytes that 

apoptosis increased with increased levels of of histone 4 acetylation (Sourlingas et a/., 2001). 

Finally, the HDAC inhibitor HDAI, has been shown to augmented TNF family-related 

apoptosis in the human colonic adenocarcinoma cell lines, LS 180 cells and HT-29. The same 

report suggested that HDAI sensitises human colonic adenocarcinoma cell lines to TRAIL

mediated apoptosis (Inoue et a/., 2002). Our studies, in contrast, show that TSA and 

presumably changing histone acetylation status did not affect induction of apoptosis in 

monocytic and T-cell lines since only high concentrations of the inhibitor caused cells to 

undergo apoptosis. This, however, is attributed to the toxic effect of TSA rather than its 

deacetylation inhibitory abilities. 

Steroid hormones are potent regulators of programmed cell death in many steroid-dependent 

cells and tissues such as the mammary gland, prostate, ovary and testis where they can 

affect or facilitate apoptotic process either by presence or absence. Here the effects of the 

g.lucocorticoids dexamethasone and triamcinolone acetonide on the induction of apoptosis in 

cells t~eated with inflammatory stimuli were stUdied. Glucocorticoids alone failed to show any 

significant changes in the activation of BcI-2 in all three cell lines. The only Significant effect of 

dexamethasone and triamcinolone acetonide on BcI-2 expression was seen in. LPS

stimulated U937 cells where BcI-2 levels were elevated 2-fold. It has been 'previously 

demonstrated that Bcl-2 did not markedly affect glucocorticoid-mediated growth arrest, 

thereby separating the anti-proliferative from the apoptosis-inducing effect of glucocorticoids 

(Hartmann et al., 1999). Moreover, Bcl-2 did not prevent the dramatic reduction in the levels 

of several mRNAs observed during glucocorticoid treatment, including the transgenic Bcl-2 

mRNA. The same report therefore suggested that Bcl-2 can be placed upstream of effector 

caspase activation, but downstream of other glucocorticoid-regulated events, such as growth 

arrest and the potentially critical repression of steady state levels of multiple mRNA. In the 

CCRF-CEM acute-lymphatic-leukaemia model, mutations in the GR-gene coding region has 

been suggested to represent one cause of glucocorticoid apoptosis resistance (Hala et a/., 

1996). 

However, investigation of the activation of annexin V in stimulated cells in the presence of 

glucocorticoids revealed an upregulation of the protein in all cell lines with the exception of 

TNF-a-stimulated Jurkat cells where the presence of Dex in TSA stimulated cells did not 

induce upregulation of annexin V. This phenomenon was distinct from that of a recent report 

by Bernhard et a/., showing that in cultured rat thymocytes the apoptosis induced by 

dexamethasone alone did not increase following butyrate addition (Bernhard et al., 1999). 

The authors also reported a non-additive interrelationship between Dex and TSA, as TSA

- -------------~)?;i\1 



120 
5. Role of histone 4 acetylation in the regulation of apoptosis 

induced apoptosis was not only blocked by the presence of Dex but Oex-induced apoptosis 

was also partially inhibited in the presence of TSA, suggesting that in thymocytes this 

phenomenon is related to histone acetylation. Furthermore, in CEM-C7H2 cells, at higher 

concentrations of butyrate or trichostatin A, there was a minor but reproducible antagonistic 

effect of dexamethasone on apoptosis induced by each of the two histone deacetylase 

inhibitors, suggesting that this antagonistic effect too, is related to histone hyperacetylation. In 

contrast to this, in the human T cell-derived leukaemia cell line CEM-C7H2, Dex did not block 

butyrate- or TSA-induced apoptosis; moreover, butyrate, over a range of concentrations, had 

a marked synergistic effect on Oex-induced apoptosis. This synergism, however, was not 

mimicked by TSA, indicating that the effect is not related to histone acetylation but rather due 

to a pleiotropic effect of butyrate. It could also be explained by differences in cell specificity or 

apoptotic stimulus. 

Investigation of Caspase 3 activation of the cells under the same conditions revealed that the 

combinatory effect of steroids and TSA in stimulated cells enhanced this marker of apoptosis 

in all three cell lines. Here, the effect of triamcinolone acetonide was significantly more potent 

compared to that of dexamethasone. The findings in this chapter complement a study of the 

structural changes that occur in chromatin of apoptotic cells by Allera et a/. (1997). The 

authors reported that histones became·deacetyiated in rat thymocytes that were induced into 

apoptosis by glucocorticoids. Triton-acid-urea gels revealed that with increasing cell death, 

the percentages of monoacetylated and deacetylated histone H4 decreased with a 

corresponding increase in the percentage of unmodified histone H4. It was proposed that 

either this histone deacetylation could function to suppress gene expression during apoptosis, 

or the bulk deacetylation could promote chromatin condensation by allowing greater DNA

histone interactions and conformational changes in the nucleosomallevel. This loss of histone 

acetylation in apoptotic cells was also reported by Hendzel et al., (1998) in several cell lines 

that either entered apoptosis simultaneously or were induced with programmed cell death. 

ISD has been reported to be associated with changes in apoptosis of inflammatory cells as 

well as enhanced expression of inflammatory mediators (Sturm and Fiocchi, 2002). Several 

key proteins including p300, HDAC1 and HDAC2, have intrinsic acetyl- or deacetyl

transferase activity, which as previously discussed has been linked to transcriptional 

activation and repression. The present results suggest that TSA may induce or prevent 

apoptosis due to its histone deacetylase ability and not due to its toxicity. Therefore lower 

concentrations of TSA could reduce the inflammation seen in ISO without the toxic side 

effects of the inhibitor being manifested. This is also demonstrated in combination to the 

glucocorticoid effects in inflammatory stimuli induced cells. TSA acted synergistically with 

glucocorticoids to enhance apoptosis in stimulated U937, Jurkat and HUT-78 while preventing 

programmed cell death in the absence of these other stimuli. These findings support the 

notion that histone acetylation regulates apoptosis and this may be the target for the actions 
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of glucocorticoids. The variable results that Dex and TA had on macrophages and 

lymphocytes suggest that probably regulation of apoptosis via histone acetylation is cell type 

and inflammatory stimuli dependent. Finally, in agreement to findings in chapter 4 where 

triamcinolone acetonide actions were more potent compared to dexamethasone actions in the 

regulation of histone acetylation, triamcinolone acetonide appears to be effective in the 

regulation of apoptosis in both macrophage and T-cell lines. 

Some of the cutting edge discoveries that have been made during the last few years are 

based on the growing realisation that several drugs in widespread use, such glucocorticoids, 

act on the transcriptional level, although often in an indirect manner. Instead of modulating 

directly the function of gene-specific transcription factors, such drugs often target various 

signalling pathways that ultimately control the activity of whole transcriptional networks in the 

nucleus. Histone deacetylase inhibitors have recently been used in cancer therapy trials and 

the results have proved to be very promising (Marks et a/., 2001). Having established the role 

of histone H4 acetylation and deacetylation in inflammatory gene expression and the 

regulation of apoptosis this investigation finally expanded in the role of histone acetylation in 

disease, speCifically in inflammatory bowel diseases and Peyer's patches. 
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Chapter 6 

Histone acetylation in in vivo inflammation induced animal 

models and human IBO Peyer's patches 

6.1 Introduction 

The cause of inflammatory bowel disease (ISD) remains unknown. It has been proposed that 

epithelial abnormalities are the central defect, and that they underlie the development of 

mucosal inflammation and its chronicity (Gibson, 1997). ISD can be effectively treated by 

enemas containing short chain fatty acids (SCFA) such as butyrate, propionate, and acetate 

(Perrin et al., 1994) in combination with steroid treatment. The molecular mechanisms that 

lead to this response have not been well characterized. It is well known that intestinal 

inflammation leads to an alteration in patterns of epithelial differentiation with an increase in 

epithelial proliferation and an expansion ofcel! populations in an undifferentiated state. SCFAs 

such as butyrate are capable of inhibiting cell proliferation and inducing a differentiated 

phenotype in vitro. 

Butyrate is the preferred energy source for colonocytes (Ahmad et aI, 2000,) and its 

therapeutic potential in colon cancer has been proposed. It has been suggested that colitis' 

may be caused by impaired colonocyte oxidation of butyrate (Hague et al., 1995)..The most 

commonly reported mechanism by which butyrate modulates gene expressior:l involves an 

alteration of chromatin structure subsequent to increased histone acetylation. 

In the Caco-2 colon cancer eel! line the effect of SCFAs and the process of cellular 

differentiation on the expression of the pro-inflammatory cytokine, interleukin 8 (lL-8) has been 

studied. SCFAs and Trichostatin A, structurally unrelated compounds which both induce 

histone hyperacetylation, both led to a concentration-dependent inhibition of IL-8 expression 

(Huang et a/., 1997). The same report suggested that a possible mechanism by which SCFAs 

may be effective in the treatment of ulcerative colitis may be through their ability to increase 

histone acetylation stat es and inhibit the production of pro -inflammatory substa nces by the 

intestinal epithelium. In the human intestinal epithelial cells HT-29, the HDAC inhibitor TSA, 

only partly mimicked the effects of butyrate, and although both compounds induced histone 

hyperacetylation, they did so with different kinetics of action (Siavoshian et al., 2000). 

Although these findings might seem contradictory to the present study, the results reported 

may be cell and cytokine specific and relate to the high concentrations of drugs used. 

However, they do suggest that histone acetylation may be involved in the control of 

inflammatory gene expression in inflammation of the bowel. 
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The ideal animal model of inflammatory bowel disease, should be a naturally or inducible 

animal disease that is identical in every aspect to the human disease. This means that the 

disease is induced and maintained by the same primary and secondary factors (same 

aetiology and pathophysiology), has an equivalent clinical spectrum and is treatable with 

therapeutic agents (Kim & Berstad, 1992). Several animal models of experimental ulcerative 

colitis have been described (Table 6-1) and, of these, colitis induced in mice by oral dextran 

sulfate sodium (OSS) has been widely used because of many similarities to human ulcerative 

colitis involving a T H2 type inflammation (Dieleman et ai, 1997; Dohi et al., 1999). Ulcerative 

colitis can be induced in hamsters (Ohkusa, 1985) and mice (Okayasu et a/., 1990) by giving 

OSS in their drinking water. On postmortem examination, multiple erosions and inflammatory 

changes including crypt abscesses can be found on the descending and sigmoid colon and 

the rectum. Mice develop chronic colitis, including dysplasia, shortening of the large intestine 

and prominent lymphoid follicles after five administration cycles, each cycle conSisting of 7 

days with 5% dextran sulfate sodium in the drinking water followed by 10 days consumption 

of distilled water. The observation that shortening of crypts occurs early after exposure to oral 

DSS and precedes development of significant inflammation has been used to suggest that the 

primary defect in DSS colitis is an abnormal colonic epithelium (Cooper et ai, 1993). Okayasu 

et a/. (1990), also reported swollen macrophages in the inflamed colonic wall of the DSS 

. model, a finding that was consistent with other sulphate type-induced colitis (Le. carrageenan 

.and amylopectin sulphate induced colitis). 

Affected site Pathology Pathogenic mechanism 
of injury 

Chemically induced models 

Acetic Acid Colon, ileum Acute Toxic 

TNBS/Ethanol 
Cyclosporin 

Colon, ileum 

Stomach, colon 

Acute/Chronic 
Acute 

Toxic 
Altered T cell function 

Microbial and polymer induced models 

Dextran sulphate Colon, cecum Acute Unknown 

T-cell receptor mutant Colon 
Genetically engineered models 

Acute/Chronic Absent T-cells, present S

cells 

Disrupted interleukin-2 Colon Acute/Chronic Absent IL-2 

gene 
Disrupted interleukin-10 Jejunum, ileum, colon Acute/Chronic Absent IL-10 

gene 

C3H/HEJ mice Colon 

Spontaneous models 
Acute/Chronic Genetic, environmental 

Table 6-1 Models of IBD (adapted from Kirsner, 1995) 

The trinitrobenzene sulfonic acid (TNBS) model of colitis (Morris et a/., 1989), is a commonly 

used experimental model of colitis very similar to IBO and particularly crohn'~ disease (Fig. 6

1) (V' I t al 1990). I n this model an acute inflammation of the claSSical delayed-type
I aseca e ., . 

hypersensitivity with the T H1 type profile is generated (Neurath et a/., 2000) resulting In a 
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transmural granulomatous colitis with characteristics very similar to Crahn's disease, such as 

transmural inflammation with granuloma, skip-segment ulceration and inflammation 

cobblestone-like appearance of the mucosa, mast cell and lymphoid infiltrates, and Cryp~ 
distortion (Parronchi et aI., 1997). Inflammation is induced through sensitization with TNBS, 

which is a chemical hapten that binds to tissue proteins and is capable of stimulating cell

mediated immunity (Kim et al., 1992). However, TNBS induced colitis is not purely T cell 

driven, as colonocytes can also metabolize TNBS to form reactive oxygen species that are 

themselves pro-inflammatory (Grisham et al., 1991). 

The nuclear factor kappa B (NF-KB)-p65 subunit has been shown to be activated in response 

to a number of immune and inflammatory stimuli. NF-KB has been demonstrated to be 

essential in OSS induced colitis through the use of p65 antisense to prevent inflammation 

(Murano et a/., 2000) and through the use of gliotoxin a non-specific inhibitor of NF-KB, 

(Herfarth et aI., 2000; Fitzpatrick et 81., 2000). Preliminary results showed that NF-KB-p65 

protein expression levels were increased by DSS in inflamed tissue, where also, the p65 

subunit was suggested as being of greatest significance in the early stages of inflammation. 

In the TNBS model, active NF-KB-p65 has been localized to both lamina propria and 

epithelium of intestinal tissue (Segain et al., 2000). Also, dexamethasome has been shown to 
. . . 

suppress the TNBS induced NF-KB activity and inflammation of the intestine (Nakase et al., 

2001). Since dexamethasone suppresses TNBS induced NF-KB activity and is also shown to 

effect histone acetylation levels (see chapter .4), it could be hypothesized that histone 

acetylation could be involved in the regulation of inflammatory bowel disease. 

Currently, whilst an essential role for histone acetylation has been demonstrated by the use of 

HDAC inhibitors as treatment for 180 in cell models and in patients, a more thorough 

examination of the chromatin remodeling machinery that is activated during intestinal 

inflammation, has yet to be undertaken. To date, no relevant work has been performed on the 

role of histone acetylation in Peyer's patches or in intestinal tissues from ISO animal models 

or patients. Thus, this chapter investigates the activation of histone 4 acetylation in Peyer's 

patches of two in vivo models of inflammation (Lewis and Sprague-Dawley) as well as in 

Peyer's patches of 180 patients. 

It is clear that many different immune defects or alterations can lead to similar IBD 

phenotypes. Interaction between genetic factors and environment playa crucial role in the 

development of IBD and it has been shown that the onset and severity of colitis are 

dependent on the background strain of the animals, for this reason, for the in vivo model two 

mouse strains were used as OSS animal models. Acetylation on histones 4 and 3 was 

investigated in the Peyer's patches of these animal models as well as acetylation on the 

specific H4 lysine residues 5, 8, 12 and 16. Finally in this chapter the induction of histone 4 

acetylation in the Peyer's patches of 180 patients studied. 
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6.2 Results 

6.2.1 Localisation of histones 4 and 3 in animal models 

The investigation into the activation of histone acetylation into Peyer's patches was initiated 

by a study into the activation of histones 3 and 4 in Peyer's patches of Lewis and Sprague

Dawley rats treated with 5% DSS in drinking water. Tissue of sacrificed animals following 

treatment showed severe inflammation. However, the Peyer's patches did not show any 

macroscopic signs of inflammation. This was due to the fact that the inflammation induced by 

DSS more closely resembles ulcerative colitis i.e. inflammation is observed on the 

descending and sigmoid colon and the rectum, but is not apparent along the wall of the small 

intestine where Peyer's patches are situated. Western blotting was once again employed to 

study histone 3 and 4 acetylation. In figure 6-1 representative bands obtained from Western 

blotting are illustrated where increased acetylation on histones is shown by the increase of 

density in the bands that represent of proteins isolated from Peyer's patches of DSS-treated 

animal. Protein levels of ~-actin are also shown to indicate equal protein loading. The graphs 

in figure 6-2 show acetylation on histones 3 and 4 as shown by three independent 

experiments. In both Lewis and Sprague-Dawley non-treated animals, acetylation on both 

histones 4 and 3 was evident However, when animals were treated with DSS histone 4
l' 

! acetylation was significantly upregulated three fold in the Lewis rat Peyer's patches. Similar 

I results were also found for the Sprague-Dawl,ey rats. Histone 3 acetylation levels were also 

upregulated in DSS treated rats b~t to a lesser extent (2-fold increase) than with histone 4 

acetylation. 

2 3 4 

H4 

H3 

'-~ 

~-actin 

Figure 6-1 Representative bands of histone 4 (H4) and 3 (H3) acetylation as obtained by Western .blo~in~ in 

two dextran sulfate sodium (055) rat strains of inflammation (animals were treated with 5% 055 In drinking 

water). Lanes represent: (1) non-OSS treated Lewis rats (control), (2) OSS-treated Lewis rats, (3) non-DSS treated 

Sprague-Dawley rats (control) (4) DSS-treated Sprague-Dawley rats. ~-actin levels were als.o measured to ensure 

equal protein loading in all samples. The results are representative of three independent expenments. 
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Figure 6-2 Acetylation on histones 3 (H3) and 4 (H4) in Lewis and Sprague-Dawley dextran sulfate sodium 

(DSS) treated rats (5% of DSS was added to drinking water). The results were obtained by Western blotting. In 

both strains of non-DSS treated animals acetylation was not induced. Acetylation was increased significantly in Lewis 

and Sprague-Dawley rats when treated with DSS to induce inflammation. Columns represent the mean ± SEM of 

three independent experiments. (*p<O.05). 



6. Histone acetylation in in vivo inflammation induced animal models and human IBO Peyer's patches 127 

6.2.2 Localisation of histones 4 and 3 in Peyer's patches 

In Chapter 4 it was showed that acetylation on histones 4 and 3 was increased in cell lines 

stimulated with inflammatory stimuli, with histone 4 being the predominantly acetylated 

histone. After demonstrating that acetylation on both histones was upregulated in the Peyer's 

patches of DSS treated animals, as measured by Western blotting, this investigation was 

continued by localising the activation of those two histones in the Peyer's patches from the 

same animals. The results (Fig. 6-3) revealed an increase in the acetylation of both histones 

during inflammation of the bowel, regardless of the fact that no apparent signs of inflammation 

were present in the Peyer's patches of both animals macroscopically. It was also apparent as 

shown in figure 6-3 that different cell types were acetylated in Peyer's patches obtained from 

the DSS treated animals. Light microscopy revealed that in the Peyer's patches of both DSS 

treated rats, only cells situated in the mantle zone of the Peyer's patches stained positive for 

acetylated histone 3. This pattern of staining was consistent in both Lewis and Sprague

Dawley rats as seen in Peyer's patches from two separate animals. Immunocytochemical 

results showed a more uniformed staining for acetylated histone 4 throughout the surface of 

the Peyer's patches i.e. all cells present were stained positive for acetylated histone 4. Again 

the results were similar for both animal strains and were consistent in two individual 

experiments performed. 

6.2.3 Acetylation on histone 4 specific lysine residues in the Peyer's patches of two 

DSS models of inflammation 

The results on the acetylation on histones 4 and 3 showed an upregulation of acetylation on 

both histones in the Peyer's patches of both DSS treated rat strains. However, similarly to 

results shown in chapter 4, acetylation on histone 4 was significantly higher (3 fold) compared 

to upregulation on histone 3 (2 fold elevation on acetylated histone levels). Thus, to continue
I 

I this investigation acetylation on histone 4 specific lysine residues 5, 8, 12 and 16 was 

I 
determined in both DSS models of inflammation (Lewis and Sprague-Dawley strains)(Fig. 6-4 

and 6-5). In this instance, the investigation into the activation on histone 4 lysine acetylation 

studying the DSS animal model was expanded by the addition of metronidazole. 

Metronidazole (MTD) is a synthetic 5-nitroimidazole, has an antibiotic action that is based on 

I 
the modification of the genetic substance of microorganisms and bee n reported to be effective 

in the treatment of ulcerative colitis and Crohn's disease (Sartor, 1995). In experiments as 

described in Chapter 2, increased doses of MTD were administered in the DSS treated rat 

models.i, 
,, 

I 

I 
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H4 

Figure 6-3 Immunocytochemistry of dextran sulfate sodium (DSS) treated Lewis rats using anti-histone 3 (H3) 

and 4 (H4) antibodies. The micrographs show sections of Peyer's patches . Histone 3 was acetylated only in the 

mantle zone of the Peyer's patch, while histone 4 appears to be acetylated throughout the surface of the Peyer's 

patch to both mantle zone and germinal centre cells . Similar results were obtained from Sprague-Dawley DSS

treated celis . In the Peyer's patches of untreated animals no acetylation on either histone 3 or 4 was apparent The 

micrographs are representative of two individual experiments for each strain . Isotype controls show no staining. 
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Figure 6-4 shows representative bands obtained by Western blotting of the acetylation on 

lysine residues 5 and 8 of histone 4 in both Lewis and Sprague-Dawley DSS treated rat 

models. Figures 6-5a and 6-5b show histograms on the acetylation on lysine residues 5, 8, 12 

and 16 of histone 4 in both Lewis and Sprague-Dawley DSS treated rat models. Acetylation 

on H4 K5 in the Lewis DSS models increased by 3 fold as shown in figure 6-5.a. Similarly 

administration of 0.1 % MTD to the same strain induced K5 acetylation. However, when the 

administered dose of MTD was increased to 0.2%, acetylation levels were reduced to control 

(untreated) levels. Acetylation levels on H4 K8 were also elevated in the DSS treated animal. 

In animals treated with 0.1% MTD, acetylation remained at similar levels as with the DSS 

treated animals whilst administration of 0.2% MTD again reduced K8 acetylation back to 

control levels. The effect of MTD on DSS-treated Lewis rats was not determined. 

Lewis Non-DSS 055 MTD (0.1%) MTD (0.2%) 

H4K5 

Spraque-Dawley Non-DSS DSS DSS MTD MTD 

+MTD (0.1%) (0.2%) 

H4K5 .......•..•..................... 

".', Y_'-" <. 

H4K8 

Figure 6-4 Representative bands of histone 4 (H4) lysine 5 (K5) and 8 (K8) acetylation as obtained by Western 

blotting in Lewis and Sprague-Dawley dextran sulfate sodium (DSS) and Metronidazole (MTD) treated rats. 

Lanes for Lewis rats represent: non-DSS treated rats (control), DSS-treated rats, rats treated with 0.1% MTD rats 

treated with 0.2% MTD. Lanes for Sprague-Dawley rats represent: non-DSS treated rats (control), DSS·treated rats, 

rats treated with DSS and 0.1 % MTD rats treated with 0.1 % MTD rats treated with 0.2% MTD. Due to the similar 

patterns of acetylation on K5, K8, K12 and K16 in the Lewis rats strains one representative gel is illustrated. Likewise 

representative bands are illustrated for the Sprague-Dawley rats. The results are representative of two independent 

experiments. Due to lack of tissue ~-actin loading controls were not performed. 20119 protein was loaded onto each 

well. 

I 
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In the Sprague-Dawley rats, the pattern of acetylation was different compared to the Lewis 

model. Treatment with DSS upregulated H4 K5 acetylation two-fold. Treatment with 0.1 % MTD 

enhanced K5 acetylation four-fold, an effect that was not modified by co-treatment with DSS. 

Treatment with MTD was dose-dependent with a seven-fold increase in K5 acetylation seen 

with 0.2% MTD (Fig. 6-5.a). Similar results were obtained for both Lewis and Sprague-Dawley, 

for K8 acetylation induced by DSS treatment. DSS induced an increase in K8 acetylation (414 ± 

51% versus 100 ± 23% non-DSS treated Lewis rats, 1275 ± 123% versus 100 ± 13% non-DSS 

treated Sprague-Dawley rats). In contrast, MTD (0.1 %) enhanced K8 acetylation but higher 

doses (0.2%) reduced this increase. This effect was more marked in Lewis rats. Combined MTD 

and DSS treatment did not alter K8 acetylation. 

K12 and K16 acetylation (Fig. 6-5.b) revealed similar patterns to those seen for K8 and K5 

acetylation respectively in both rat models of inflammation. DSS treatment of both animal 

strains induced acetylation on lysine residues 12 and 16. The acetylated levels of K12 were 

markedly higher than those of Iysines 16 and 5 (in Lewis rats: 703 ± 64% versus 100 ± 14 

control; in Sprague-Dawley rats: 1117 ± 113 versus 100 ± 27 control). In the Lewis rats 

administration of MTD had a dose-dependent bell shaped response curve with an initial 

induction on K12 and K16 acetylation at 0.1% followed by repression at 0.2%. In Sprague

Dawley rats, administration of M'rD 'in two ircreasing doses results in the dose-dependent 

downregulation of acetylation on K12 similarly to the effect observed in the Lewis rats. The 

same treatment however, resulted in the elevation of K16 acetylated levels in a dose

dependent manner. 

The additional effect of DSS and MTD studied in the Sprague-Dawley strain, resulted in highly 

acetylated K12 levels. The same effect was seen on K16 acetylation (high levels of acetylated 

K16 but not as high as the levels noted for K12). Limited supply of tissue allowed only two 

independent experiments to be conducted on these models. It was therefore not possible to 

perform any statistical analysis of these results. 

I 

I 

I 
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Figure 6-5.a Acetylation on histone 4 (H4) specific lysine residues 5 (KS) and S (KS) in Lewis and Sprague

Dawley dextran sulfate sodium (OSS) (5% of OSS was added to drinking water) and Metronidazole (MTD) 

treated rats. The results were obtained by Western blotting. OSS induced acetylation on both K5 and K8 lysine 

residues in both rat models. The lysine acetylation pattern that MTD administration induced appeared to be dose

and lysine residue-dependent in both rat strains. Columns represent the mean ± SEM (bar) of two independent 

experiments. 
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Figure 6-5.b Acetylation on histone 4 (H4) specific lysine residues 12 (K12) and 16 (K16) in Lewis and 

Sprague-Dawley dextran sulfate sodium (OSS) (5% of OSS was added to drinking water) and Metronidazole 

(MTD) treated rats. The results were obtained by Western blotting. DSS induced acetylation on both K12 and K16 

lysine residues in both rat models. The lysine acetylation pattern that MTD administration induced appeared to be 

dose- and lysine residue-dependent in both rat strains. Columns represent the mean ± SEM (bar) of two independent 

experiments. 
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6.2.4 Macroscopical characterisation of the intestine in a rat TNBS model of colitis 

The TN BS model of colitis was compared to a Sham operated group (saline treated animals) 

and initial investigations were made macroscopically com paring newly operated colon tissue 

from both animal groups. Visual observation of the samples showed that the distal colon in 

the TNBS model was significantly inflamed compared to the control Sham group (Fig. 6-6). 

Comparing the two samples from proximal to the distal region of the colon also revealed that 

in the distal region of the TNBS model the inflammatory process was quicker as inflammation 

was well advanced, indicated by the dark reddish colouration of the tissue also indicative of 

necrosis . 

Proximal Colon 

Distal Colon 

Sham TNBS 


Figure 6-6 Sham (saline treated) operated and trin itrobenzene sulfonic acid (TNBS) treated rat large intestine. 

Rats were Sham or TNBS treated for 7 days before sacrifice. The large intestine was removed and photographed . 

Well-advanced inflammation is apparent in the colon of the TNBS rat model. 
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6.2.5 Histone acetylation in inflamed and non-inflamed regions of the colon in the rat 

TNBS model of colitis 

Histone 4 acetylation was assessed by Western blotting in the Sham (non-treated) animal as 

well as in macroscopically inflamed and non-inflamed tissue of the TNBS rat model. Rats 

were Sham operated or TNBS treated seven days prior to sacrifice. The proximal (non

inflamed) and distal (inflamed) regions of the colon were removed and homogenised followed 

by histone isolation as described in chapter 2. Initially pan acetylation on histone 4 was 

investigated (Fig. 6-7). 

Sham TNBS 

Prox Distal Prox Distal 

Histone 4 pan acetylation 
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Figure 6-7 Pan acetylation on histone 4 (H4) in the trinitrobenzene sulfonic acid (TNBS) rat model of 

inflammation. The Sham model represents saline and therefore non-inflamed (control) treated mice. In the TNBS 

model, animals were treated with TNBS seven days prior to sacrifice. The proximal region of the TNBS model 

macroscopically showed no signs of inflammation while the distal region was severely inflamed. The results were 

obtained by Western blotting. In both regions of the TNBS model histone 4 was induced with the most significant 

elevation of acetylation on histone 4 revealed at the distal (inflamed) regions of the colon. A representative example 

of the bands obtained is shown on top of the graph. Columns represent the mean ± SEM of three independent 

experiments. ("p<O.05 vs Sham proximal or Sham distal respectively). 
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Figure 6-7 illustrates acetylation on H4 in the Sham and TNBS rat models. In the Sham 

treated animals, both proximal and distal regions showed low levels on pan histone 4 

acetylation. Following TNBS treatment the proximal (non-inflamed) regions showed significant 

upregulation on pan histone 4 acetylation (315 ± 39% versus 125 ± 19% sham operated 

animals, p<0.05). Histone 4 acetylation of the distal regions of the colon (inflamed) of the 

TNBS model, were also significantly elevated five-fold compared to the Sham model (592 ± 

54% versus 135 ± 24 Sham operated animals, p<0.05). The level of elevation was almost 

twice that compared to the proximal region of the TNBS treated animals. 

Following confirmation that H4 is acetylated in the TNBS rat model of colitis, it was further 

investigated whether specific lysine residues of H4 are acetylated in the colon and whether 

acetylation on these specific lysine residues was associated with inflamed and non-inflamed 

regions in induced colitis. Figures 6-B.a and 6-B.b illustrate acetylation on specific histone 4 

Iysines in the Sham and the TNBS models. In the TNBS model acetylation on K5 was induced 

in the proximal (255 ± 39% versus 100 ± 15% Sham operated animals, p<O.05) region of the 

colon. The levels of acetylated K5 are higher to the non-inflamed (proximal) region compared 

to the inflamed region. In addition, acetylated levels of K8 were significantly induced in the 

TNBS model compared to Sham. In the proximal region of the TNBS model acetylation was 

significantly upregulated (546 ± 50% versus 100 ± 21% Sham operated animals, p<0.05). 

Acetylated K8 levels were also upregulated six-fold in the inflamed (distal) region (818 ± 

111 % versus 138 ± 19% sham operated animals, p<0.05). 

The graphs illustrated in figure 6-B.b illustrate acetylation on histone 4 residues K12 and K16. 

The patterns on K12 and K16 acetylation were similar to K8 and K5 acetylation respectively. 

K12 acetylation was increased in the proximal region (533 ± 69% versus 100 ± 26% Sham 

operated animals, p<O.05) and the distal (741 ± 64% versus 121 ± 34% Sham operated 

animals, p<0.05) region of the colon compared to the same region in the Sham operated 

animals. K12 acetylation was higher in the inflamed region of the colon. K16 acetylation was 

very similar to that for K5. TNBS induced K16 acetylation significantly in the proximal (300 ± 

63% versus 1,00 ± 29% Sham operated animals, p<0.05) colon, albeit to a reduced extent. In 

summary, TNBS induced the greatest increase in K8 and K12 acetylation in both the proximal 

and distal colon with highest levels seen in the distal (inflamed) colon. Smaller increases were 

seen with K5 and K16 acetylation with greater acetylation seen in the non-inflamed (proximal) 

colon. 
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Figure 6-8.a Acetylation on histone 4 (H4) specific lysine residues 5 (K5) and 8 (KS) in Sham (control) and 

trinitrobenzene sulfonic acid (TNBS) rat model of colitis. The results were obtained by Western blotting. TNBS 

induced acetylation on both lysine 5 and 8 residues in the rat model. In the proximal (non-inflamed) and distal 

(inflamed) regions of the colon of the TNBS model acetylation on lysine 8 was significantly upregulated. ColLimns 

represent the mean ± SEM of three independent experiments. (*p<O.05 vs Sham proximal or Sham distal 

respectively). 
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Figure 6-S.b Acetylation on histone 4 (H4) specific lysine residues 12 (K12) and 16 (K16) in Sham (control) 

and trinitrobenzene sulfonic acid (TNBS) rat model of colitis. The results were obtained by Western blotting. 

TNBS induced acetylation on both lysine 12 and 16 residues in the rat model. In the proximal (non-inflamed) and 

distal (inflamed) regions of the colon of the TNBS model acetylation on lysine 12 was significantly upregulated. 

Columns represent the mean ± SEM of three independent experiments. (·p<O.05 vs Sham proximal or Sham distal 

respectively). 
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6.2.6 Histone acetylation in inflammatory bowel disease 

Histone 4 acetylation was finally assessed in twelve patients with Grahn's disease. The age 

range was 18-57 years old. Because no connection has been previously made as to the 

susceptibility of sex and Grohn's disease, no distinction was made between males and 

females, in grouping the samples. The biopsies all came from the ileum, or were isolated 

Peyer's patches and were grouped to inflamed and non-inflamed based on macroscopic 

examination by a surgeon. Gontrol, non-inflamed biopsies from non-IBD patients who had a 

colonoscopy for other reasons (Le. suspicion of cancer or other bowel diseases) were also 

examined. The biopsies collected at routine endoscopy were homogenised and histones were 

isolated as described in chapter 2. 
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biopsies were pooled to obtain sufficient protein for one experiment. (*p<O.05 vs control). 
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In figure 6-9, pan acetylation on H4 in Crohn's disease is illustrated. Four biopsies were 

homogenised to collect enough protein for one sample, due to the very small size of the 

samples (approximately 0.2 g/biopsy). Acetylation on H4 was slightly induced in the non

inflamed ileum of Crohn's disease patients. In the inflamed regions, however, acetylation on 

H4 was significantly elevated. The Peyer's patches of Crohn's disease patients also showed a 

significant increase on H4 acetylation compared to the control non-inflamed, non-ISD tissue. 

Figures 6-10.a and 6-10.b illustrate further investigation on H4 specific lysine residue 

acetylation in Crohn's disease. In figure 6-10.a levels of acetylated Iysines 5 and 8 detected 

by Western blotting are shown. Levels of acetylated K5 were not significantly upregulated 

compared to the control. 

Acetylation on K8 was not upregulated in the non-inflamed CO areas, however, acetylation on 

K8 was significantly induced compared to control samples in the inflamed regions (527 ± 44% 

versus 100 ± 25% control tissue, p<0.05) and the non-inflamed CD samples (527 ± 44% versus 

195 ± 42% non-inflamed CD, p<O.05). In the Peyer's patches of CD patients, K8 was also 

significantly upregulated compared to the control (488 ± 52% versus 100 ± 25% control tissue, 

p<0.05) and the non-inflamed CD tissue (488 ± 52% versus 195 ± 42% non-inflamed CD tissue, 

p<0.05). 

Enhanced acetylation on K12 was detected in inflamed regions of CD compared to control 

(442 ± 54% versus 100 ± 29% control tissue, p<O.05) and non-inflamed CD tissue (442 ± 54% 

versus 223 ± 38% non-inflamed ISO tissue, p<0.05). Similarly, enhanced acetylation on K12 

was detected in Peyer's patches compared to control (429 ± 65% versus 100 ± 29% control 

tissue, p<0.05) and non-inflamed CD tissue (429 ± 65% versus 223 ± 38% non-inflamed ISD 

tissue, p<O.05). Acetylation on lysine 12 was not significantly increased in non-inflamed tissue 

compared to control. 

Finally, investigation of lysine 16 acetylation showed no increase in the non-inflamed or 

inflamed tissue of Crohn's disease patients. In the Peyer's patches, however, a significant 

elevation of acetylation on K16 was observed. 
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Figure 6-10.a Acetylation on histone 4 (H4) specific lysine residues S (KS) and S (KS) in non.inflamed, 

inflamed tissue and Peyer's patches of Crohn's disease patients. The results were obtained by Western blotting. 

Lysine 8 acelylation was significantly Induced in the inflamed tissue as well as in the Peyer's patches of CO patients. 

Acetylation on K5 was not significantly increased in the non-inflamed nor the inflamed regions of CD patients. 

Columns represent the mean :t SEM of three independent experiments. (*p<0.05 vs control) (#p<0.05 vs non

inflamed CD). 
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Figure 6-10.b Acetylation on histone 4 (H4) specific lysine residues 12 (K12) and 16 (K16) in non-inflamed, 

inflamed tissue and Peyer's patches of Crohn's disease patients. The results were obtained by Western blotting. 

Lysine 12 acetylation was significantly induced in the inflamed tissue as well as in the Peyer's patches of CD 

patients. Acetylation on lysine 16 was not significantly increased in the non-inflamed nor the inflamed regions, but it 

was noted to be slightly upregulated in the Peyer's patches of CD patients. Columns represent the mean ± SEM of 

three independent experiments. (*p<O.05 vs control) (#p<O.05 vs non·inflamed CD). 
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6.2.7 Localisation of H4 acetylation and associated lysine residues in Crohn's disease 

The investigation on the activation of histone acetylation in Crahn's disease was concluded by 

local ising immunohistochemically H4 and its specific lysine residues acetylation in illeal 

biopsies and Peyer's patches of Crohn's disease patients. 

First, control non-inIlamed non-IBD tissue was compared to non-inflamed and inflamed 

Crahn's disease tissue by staining against a pan-histone 4 antibody. Figure 6-11 illustrates 

the representative micrographs obtained from three individual experiments. Histone 4 was not 

demonstrably pan-acetylated in the control tissue by this technique, and only weak non

specific staining could be visualised. In the non-inflamed CD tissue however, positive cells 

containing pan-acetylated H4 could be localised. In the inflamed tissue, the very strong 

staining indicated activity of pan-acetylated H4. Similarly, in the control Peyer's patches H4 

pan-acetylation could not be localised as shown in figure 6-12. In the Peyer's patches of 

Crahn's disease patients, however, H4 was pan-acetylated, localised throughout their surface 

as evidenced by very strongly stained cells. 

Acetylation on the specific H4 lysine residues in the illeal biopsies of Crohn's disease patients 

was also investigated immunohistochemically (Fig. 6-13). None of the lysine residues was 

highly acetylated in the non-inflamed, non-IBD biopsies. Immunohistochemical staining 

against the H4 lysine residues revealed that specific Iysines were acetylated differently in the 

non-inflamed and inflamed tissue. Acetylation on H4 K5 residue produced a very weak 

staining in both non-inflamed and inIlamed tissue sections. K8 was acetylated in both 

inflamed and non-inflamed biopsies but the signal was much stronger in the inflamed tissue. 

In contrast to K8 acetylation, acetylated K12 showed strong nuclear staining in both the non

inflamed and inflamed tissue. Acetylation on K16 was very weakly localised in both non

inflamed and inflamed biopsies of the Crohn's disease patients. 

Finally acetylation on the specific H4 lysine residues was investigated in the Peyer's patches 

of Crahn's disease patients, shown in figure 6-14. The pattern of acetylation on lysine 

residues was very similar to that observed in the Peyer's patches of the animal models shown 

previously. K5 and K16 appeared to be acetylated at the periphery of the Peyer's patches 

within the mantle zone. Acetylation on K8 and K16 could be localised not only at the periphery 

but also in the germinal centre of the Peyer's patches and the nuclear staining produced was 

very strong. Due to the very similar patterns formed by the two groups of lysine residues (K5 

and K16, K8 and K12) one set of micrographs is only shown in figure 6-14 as representative 

of the results obtained. 
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Non-inflamed 

Figure 6-11 Immunocytochemical analysis for acetylation on histone 4 (H4) in inflamed and non-inflamed 

biopsies of Crohn's disease patients. Histone 4 was not acetylated in ihe control (non-IBD). Acetylated histone 4 

could be localised in the non-inflamed tissue . Activation on histone 4 acetylation was higher in the inflamed biopsies. 

Counterstaining with DAPI showed that staining was nuclear and not cytoplasmic. Micrographs are representative of 

3 independent experiments. 
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Figure 6-12 Immunocytochemical analysis for acetylation on histone 4 (H4) in the Peyer's patches of Crohn's 

disease patients. Histone 4 was not acety lated in the control (non-IBO) . Increased activation on acetylated histone 4 

cou ld be localised in the Peyer's patches of Crohn's disease patients , Counterstaining with OAPI showed that 

staining was nuclear and not cytoplasmic Micrographs are representative of 3 independent experiments , 



6. Histone acetylation in in vivo inflammation induced animal models and human IBO Peyer's patches 145 

Control Non-inflamed Inflamed 

H4K5 

H4K8 

H4K12 

H4K16 

Figure 6-13 Immunocyto chemical analysis fo r acetylation on histone 4 (H4) specific lysine residues in the 

illeal biopsies of Crohn 's disease patients_Increased activation on acetylated histone 4 lysine residues 8 (K8) and 

12 (K12) is observed in the inflamed tissue of Crohn's disease patients K12 was also highly acetylated in the non

inflamed mucosa of CO patients . Counterstaining with OAPI showed that staining was nuclear and not cytoplasmic. 

Microg raphs are representative of 3 independent experiments 
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Figure 6-14 Immunocytochemical analys is for acetylation on histone 4 (H4) lysine residues S (KS) and 8 (KS) 

in Peyer's patches biopsies of Crohn 's disease patients. H4 K5 (and K16 not shown) was only acetylated in the 

mantle zone of the Peyer's patches . Acetylated K8 (and K12 not shown) was localised throughout Peyer's patches . 

Acetylated Iysines were not localised specifically in control Peyer's patches . Due to the similarities of acetylation 

patterns on K5 and K16 and K8 and K12 micrographs from acetylation on K16 and K12 are not shown . DAPI nuclear 

staining is also shown for comparison Micrographs are representative of 3 independent experiments . 
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6.3 Discussion 

In this chapter, the possible involvement of histone acetylation in inflammatory bowel disease 


in vivo was investigated. Initially, widespread use of sodium butyrate, a histone deacetylase 


inhibitor in the treatment of lBO, lead to the hypothesis that its histone deacetylation inhibitory 


activity (and not only its anti-proliferative action) could be associated with its therapeutic 


effects. However due to the pleiotropic effects of butyrate its therapeutic role may be 


attributed to properties distinct from its HOAC inhibitory actions. This theory is supported by a 


study in human umbilical vein endothelial cells (HUVEC), showing induction of tissue-type 


plasminogen activator (t-PA) transcription by butyrate and Trichostatin A was found to be 


preceded by histone 4 acetylation (Arts et a/., 1995). Additionally, recent findings report that 


histone 1 bears a recurring COOH-terminal epitope recognised by monoclonal Ulcerative 


colitis-associated perinuclear anti-neutrophil cytoplasmic (pANCA) marker antibodies (Eggena 


et aI., 2000). 

The diversity of IBD and the difficulty in successfully distinguishing between Ulcerative colitis 

and Crohn's disease formed the criteria of employing two different animal models for studying 

histone acetylation, namely DSS and TNBS associated with Ulcerative colitis and Crohn's 

'. disease respectively. ft :is· also knowrfth,at naive T..cells differentiate into effector cells upon . 

. stimulation with antigen,',a' process that i~ acco'mpanied by changes in the chromatin structure 

; of effector cytokine genes.l~ has been reported 'that TCR, in the presence of polarizing 
i': 

cytokines, established a selective pattern of histone acetylation on IL-4 and IFN-y cytokine 

genes correlating with exclusive gene expression by the differentiated T cells (Avni et a/., 2002). 

The two models, as discussed before, show different T H profiles (the DSS model involves T H2 

type inflammation while the TNBS model involves T H1 type inflammation) and these types of 

studies could help to clarify whether histone acetylation is TH dependent in vivo as well. In the 

DSS model, the acetylation activity on histones 4 and 3 was initially measured. Findings 

indicated that histone acetylation was upregulated in the two investigated rat strains (Lewis 

and Sprague-Dawley). Comparison of acetylated levels between histones 3 and 4 revealed 

that while both were acetylated, the latter reached significantly higher acetylation levels. 

Similarly, in the Peyer's patches of the DSS model, histone 4 acetylation was higher than 

histone 3. Localisation of histones in the Peyer's patches immunohistochemically revealed a 

pattern formation, which was noticeable in both Lewis and Sprague-Dawley strains. Histone 

types were acetylated forming a specific pattern. Acetylation on H3 was only detected in the 

mantle zone of the Peyer's patches, whilst acetylated H4 occurred in both the periphery and 

the germinal centre of the Peyer's patches. Therefore, it was concluded that acetylation on H3 

could possibly be cell specific, whereas H4 is generally induced in all cell types present in the 

Peyer's patches (T-cells, B-cells, dendritic cells and macrophages). These results indicated a 

uniform mechanism of H4 acetylation in the regulation of inflammation in IBD. Paradoxically, 

HDAC inhibitors are used in the treatment oflBD. This may reflect either an anti-proliferative 
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effect seen with high, non-specific doses of HDAC inhibitors or an effect on the acetylation 

status of non-histone proteins e.g. tubulin and transcription factors such as NFKB and GATA 

(Adcock and Caramori, 2001 and references therein). 

Previous findings described in Chapter 4, have suggested that H4 residues K8 and K12 are 

associated with the regulation of inflammatory gene expression. Conformation of the 

activation of H4 in the DSS model required further investigation as to whether histone 

acetylation is, as in vitro, in vivo lysine residue dependent In the experimental models of 

colitis, H4 K8 and K12 were highly acetylated in the Sprague-Dawley rats. These findings 

were in agreement with previous results documented in this report in vitro, and with other 

reports that pro-inflammatory cytokines can cause acetylation on H4 Iysines 8 and 12 (Ito et 

al., 2000). Interestingly, in the Lewis rats, KS, K8 and K16 reached very similar levels. In 

contrast with results in the Sprague-Dawley strain, only K12 acetylation was strongly induced. 

In DSS treated Lewis rats, dose-dependent metronidazole (MTD) treatment resulted in the 

down regulation on all lysine residue levels. The same treatment in the Sprague-Dawley rats 

had equivalent effects on K8 and K12 acetylation, but upregulated the acetylation on KS and 

K16. This could be attributed to the association of these lysine residues with cell proliferation 

and cell death (Zhu et a/., 2001). One report on the effect of the HDAC inhibitor, Trichostatin' 

A, (TSA) on hepatic stellate' cells 'sho\'l/edthat TSA (inducing histone hyperacetytation)' 

retarded the morphological changes, characteristic for activation of primary stellate celis, and 

that the proliferatioTl rate of those cells was strongly suppressed (Rombouts sf a/., 2001). 

These differences could be further attributed to genetic variances between the two rat strains, 

also discussed by other groups (Quary, et al., 2000; Jurado et al., 1999). 

The combined effect of DSS and MTD in the Sprague-Dawley rat strain, did not lead to further 

elevation of acetylated lysine levels. These findings are in agreement with a report on the role 

of masalazine, another anti-inflammatory drug used widely in the treatment of Crohn's 

disease. The authors reported that levels of anti-histone antibodies, in a patient with lupus 

induced by mesalazine therapy (administered for over a year for Crohn's disease treatment), 

were considerably high and that discontinuation of mesalazine was followed by a rapid 

reduction of the anti-histone antibodies to almost undetectable levels (Timsit et aI., 1997). 

Pro-inflammatory cytokines are key factors in the pathogenesis of Crohn's disease (CD), 

Activation of nuclear factor kappa B (NFKB), which is involved in pro-inflammatory cytokine 

gene transcription, is increased in the intestinal mucosa of CD patients (Schreiber, 2000). As 

discussed in Chapter 4, it has been reported that modulation of histone acetylation is involved 

in transcriptional regulation, associated with the NFKB pathway (Beato & Eisfeld, 1997; Ito et 

a/., 2000; Ashburner et a/., 2001). Previous work within the group (Jones et af., 2002; Ellis et 

al., 1998), suggest the existence of abnormalities in NFKB activity in the non-inflamed 

intestinal tissue of CD patients. This was attributed to the possibility that an inflammatory 
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state in one section of the intestine is able to trigger changes in the NFKB signaling pathway 

in another macroscopically non-inflamed section. Recent evidence revealed that butyrate 

decreases pro-inflammatory cytokine expression via inhibition of NFKB activation and IKBo: 

degradation (Segain et al., 2000) while it has also been demonstrated that NFKB induction of 

inflammatory gene expression is associated with histone acetylation (Ito et al., 2000, 

Ashburner ef ai, 2001) and indeed with p65 acetylation (Chen ef al., 2002). 

Therefore, experiments were carried out in to investigate whether acetylated histone 4- activity 

was altered in inflamed and non-inflamed tissue of a TNBS model of colitis. Pan acetylation 

on histone 4 was increased in lower levels in the non-inflamed mucosa and was significantly 

elevated in inflamed tissue. Results further revealed a general upregulation on all H4 lysine 

residues in the proximal (non-inflamed) and distal regions (inflamed) of TNBS treated 

animals. In both regions of the TNBS treated bowel, acetylation on K8 and K12 was 

significantly increased, specifically in the distal region where acetylated levels were also 

significantly higher compared to the proximal. This specificity on lysine acetylation could be 

explained by the reported NFKB selectivity of DNA binding in response to a large variety of 

stimuli leading to its activation. As a result, genes with promoters or enhancers, containing 

variant KB elements, have the potential to be regulated by specific NFKB complexes (Perkins, 
. , 

1997). Therefore NFKB DNA binding does not necessarily correlate with tradscriptional 

activation (Perkins, 1997). Although tempting to suggest a cause-and-effect model it. is 

unclear whether increased inflammation leads directly to increased histone acetylation in vivo 

at specific gene promoters. Further studies will be needed to address this. Preliminary 

evidence suggests that this may be the case for the GM-CSF promoter in alveolar 

macrophages from smokers (Ito et al., 2001). 

The studies on the role of H4 acetylation in ISO were completed, by measuring its activity in 

Grohn's disease patient biopsies. As with the TNSS model, non-inflamed and inflamed 

biopsies were assessed as well as Peyer's patches. In preliminary experiments, it was 

observed that in the inflamed biopsies, levels of acetylated H4 were the most prominent, 

followed by those in Peyer's patches. Acetylation was also detectable in the non-inflamed 

mucosa of the Grahn'S disease patients. The results for acetylation on H4 Iysines in Crohn's 

disease were very similar to those obtained in the TNBS treated animals. K5 and K16 were 

only slightly activated in all samples, with the inflamed and non-inflamed samples presenting 

no significant difference in acetylation. Peyer's patches showed the highest levels of K5 and 

K16 acetylation. Finally, Western blotting indicated that in biopsies of inflamed bowel and in 

Peyer's patches of Grohn's disease patients, K8 and K12 were both significantly acetylated. 

Acetylation on lysine residues in the non-inflamed biopsies was only slightly upregulated. 

Interestingly, the immunohistochemical studies in Peyer's patches, revealed acetylation on K5 

and K16 in the mantle zone with a similar pattern to histone 3 acetylation. In contrast, 

acetylation on K8 and K16 was localized in both mantle zone and germinal center. These 



150 6. Histone acetylation in in vivo inflammation induced animal models and human IBO Peyer's patches 

latter results suggested that although pan acetylation on H4 in the Peyer's patches is 

probably not cell specific, it is possible that acetylation of its specific lysine residues is cell 

type dependent. They could also explain the significant increase of lysine 8 and 12 acetylation 

revealed by Western blotting as immunocytochemistry showed acetylation of these lysine 

residues in abundance throughout the surface of the Peyer's patches. Cell-dependent 

acetylation on histone lysine residues has not been suggested before. However, it is possible 

that these results may, at least in part, be explained by a recent study, which stated that the 

regulatory T-cells involved in active inflammatory suppression are primarily induced in the 

Peyer's patches (Tsuji et al., 2001). 

Studying histone acetylation in inflammatory bowel diseases concluded this investigation in 

the role of histone acetylation in inflammatory processes. The results presented in this 

chapter are indicative of the importance of histone 4 acetylation in the expression of 

inflammatory genes in inflammatory diseases, such as IBO. Albeit, an increase of the n 

numbers in the animal model and subjects used, would be appropriate to confirm these 

findings and an examination of the effects of various deacetylase inhibitors in vivo would be 

suitable. In general the present preliminary studies aim to provide further understanding in the 

role that histone acetylation plays in the regulation of inflammation. It is, therefore, possible to 

speculate that further understanding of the role of histone modifications in IBO may lead to . 

new therapeutic strategies in the treatl"r1ent of IBD and expi<2in the therapeutic utility of.current . 

treatment regimes. 

I 
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Chapter 7 

Conclusions and Further Work 

7.1 Concluding remarks & further work 

Current research in the field of inflammation and inflammatory responses has focused in 

certain cell models, and the cytokines produced by these cells following inflammatory stimuli. 

However, the mechanisms underlying the transcriptional control of inflammatory gene 

expression, mechanisms of fundamental importance to biomedical research, are still not well 

understood. One of the most exciting advances has been the identification that chromatin 

remodeling is linked with transcriptional regulation. More specifically, levels of histone post 

translational modifications are associated with transcriptionally active/inactive chromatin. Early 

stages of the present research revealed increased histone acetylation, in various cell types 

(epithelial cells [A549 cells] and macrophages [U937 cell]), stimulated with inflammatory 

mediators. This suggested that ongoing gene transcription occurs during the early 

inflammatory responses of the cells. Cause and effect for the role of histone modification in 

inflammatory gene transcription is yet to be conclusively established. Nevertheless, it is now 

clear that modified histones have an essential function in establlshing and maintaining stable 

states of gene activity. In this thesis, an explanation on the rnechanism by which the'chromatin , 

remodeling machinery regulates inflammatory gene expression is attempted. 

A number of cytokines pray a significant role in the development of an acute or chronic 

inflammatory response. One of the best characterized cytokines is interleukin-8 (lL-8) 

produced by a variety of cells including monocytes/macrophages, neutrophils and endothelial 

cells. This investigation was initiated by monitoring the effects of pro-inflammatory stimuli LPS 

and TNF-a on the production of Il-8 in a macrophage cell line (U937 cells) as well as in two T

cell lines (Jurkat and HUT-78 cells) as a marker of NF-KB-directed inflammatory gene 

expression. lPS and TNF--fx caused an increase inlL-8 expression. The histone deacetylase 

inhibitor Trichostatin A (TSA) alone, produced a concentration-dependent increase in IL-8 

release. In addition, lPS and TNF-a -stimulated release of IL-8 was further enhanced by TSA, 

suggesting a role for histone acetylation in IL-8 production in these cells. 

It has well been established that glucocorticoids downregulate the transcription of 

proinflammatory genes (van de Stolpe et al., 1993) but the mechanism by which 

glucocorticolds preclude activation has been a matter of debate. Here, the synthetic 

glucocorticoids, dexamethasome (Dex) and triamcinolone acetonide (TA), repressed LPS and 

TNF-a -Induced IL-8 expression in U937, HUT-78 and Jurkat cells. TA was significantly more 

potent than Dex ioaH cell Hnes studied. In addition, the effect of Dex was significantly less in 

Jurkat cells compared to HUT-78 cells. TSA attenuated the suppressive action of both Dex and 

TA on LPS· and TNF""'<l-inducedIL-8 production, in all three cell lines. This variation in the 
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response of the two T-cell lines to Dex (and the slight difference in their response to TA) might 

reflect altered GR expression present in the two cell lines or a difference in the regulation of IL

a in the two cell Hnes. To clarify these results, further studies are required to expand on other 

cell hnes and In pnmary cells. Contrary to a previous report (Nissen and Yamamoto, 2000), 

where it was shown that in the transformed A549 lung epithelial cell line, GR repression of NF

hB activIty is resistant to the effects of a single concentration of TSA, here it is showed that in 

U937, Jurkat and IIUT·78 cells, TSA upregulated the production of LPS and TNF-o. -induced 

IL-8 both In the presence and absence of glucocorticoids. In the non-transformed lung 

epithelial cell hne ;\549 similar results have been reported for GM-CSF (Ito et al., 2000). The 

present dala suggest that different celts and genes are selectively responsive to various 

concentratlons of TSA and that tilis might explain the reported discrepancies. Stimulus

dependlii:nt on gene expression may also be important in this respect. These 

contradictory nnf'llnC"" also enhance the theory that pleiotropic transcriptional regulators such 

as GR are t() explOIt a cilverslty of mechanisms across different cellular and promoter 

contexts Tile use ()f thfC' histone deacetylase inhibitor shows that the actions of glucocorticoids 

may result a reversa! of the ability of CBP-associated HATs to regulate histone 

acetylation (Sheppard et at 1998) rather than a direct inhibition of CBP activity per se although 

exclUSivethese are not 

In Chapter 3 indicate that LPS and TNF-o. -induction of IL-Brequires 

and that this could be attenuated in the presence of glucocorticoids .. In 

of GR on inhibiting TNF-<.t and LPS -mediated histone acetylation at 

the !L-8 is shown In agreement with these results, a recent paper using chromatin 

ImrnunopreClpfttltlon showed that TSA rapidly induced H4 acetylation at the IL-8 promoter 

(Hoshllroto at 81 2002) Interestingly, the present results also showed a decrease in 

acetylated t'llstcnes wlthm the IL·8 promoter when cells were stimulated in the presence of the 

WIth no apparent differences were detected between celt lines. HDAC1, 

HDAC2 and HDAC3 Mve been reported to participate in p-65 modulated activating complexes 

but It lS pOSSible ~ha! other HDACs may be activated (Zhong et a/., 2002; Ito et al., 2002; 

Peterson, 2002 Ashbumerel at 2001), The use of specific HDAC inhibitors or interference 

RNA could help to c.!anfy which HDAC(s) are involved in the transcriptional regulation of 

cytolune release and whether their effect is cytokine or GR specific. 

Attemptmg to determine the Involvement of histone acetylation in the inflammatory gene 

expression and rnechanism through which the glucocorticoid receptor and chromatin 

actl'Jatton it WDS f!rstly required to determine whether a histone deacetyfase inhibitor 

(TSA} the of inflammatory stimuli and glucocorticoid actions in vitro. 

Ttlf: (Oex ;;md TA) effects by TSA in macrophages as well as T-

of histor1e deacetylaseS in inflammatory gene expression in 

this role, the work presented in Chapter 4 demonstrates a these 
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direct link between histone acetylation and inflammatory regulation. In the U937 cells, as well 

as in the T-cell lines JUrkat and HUT-78, both LPS and TNF-a induced histone acetylation, 

Acetylation of histones (H) 2A, 2B and 3 increased by a small factor. Histone 4 acetylation was 

significantly upregulated (seven-fold increase in the monocytic cell line and six-fold increase in 

the T-cell lines), suggesting a role of H4 in inflammatory transcriptional regulation, while the 

rest of the core histones did not seem to be as important. Further investigation into the 

acetylation of specific H4 lysine residues showed that Iysines (K) 8 and 12 were significantly 

upregulated in all three cell lines suggesting a common pathway occurring in the inflammatory 

gene expression process. LPS and TNF-a did not show any significant differences in the 

upregulated levels of histone acetylation in any of the cell lines in question. Ito et al. (2000) 

reported an upregulation of the same lysine residues in A549 cells. The same paper showed 

that p65 mediated activation of the GM-CSM promoter in vitro is concomitant with the 

acetylation of histone H4 K8 and K12 residues. 

The effect of TSA in the activation of H4 Iysines revealed that the actions of TSA were not 

lysine residue specific. It was however shown that TSA significantly upregulated acetylation of 

aU H4 lysine residues in both monocytes and T -cells. Results presented in this chapter showed 

a K5 and K16 specificity for glucocorticoids alone in all three cell lines. The effect of the 

glucocorticoids on pro-inflammatory stimuli LPS and TNF-a induced celis was again lysine 

residue specific, but the pattern revealed was different. Both Dex and TA, decreased 

acetylation of the lysine residues (K8 and K12) that were upregulated by inflammatory stimUli. 

It is also shown that TSA attenuated the inhibitory effect of steroids on histone acetylation in all 

cell lines. It is noteworthy that in the U937 cells the effect of TSA in cells stimUlated with T A 

was not as potent as expected compared to the T -cell lines. 

The data to this point suggested that TAwas a more effective glucocorticoid than Dex and 

therefore it would be interesting to study the effect of other more specific histone deacetylase 

inhibition by using RNAi to study TA actions. Interestingly, TA and Dex induced an increase in 

whole cell HDAC activity with TA being the more potent than Dex. The increase was Significant 

in all three cell lines, again indicating a similar mechanism of cross talk between GR and pro

inflammatory transcription factors in these cells. The repressive action of glucocorticoids may 

therefore, at least in part, result from recruitment of activated HDACs to sites in the promoters 

of inflammatory genes regulated by transcription factors, including AP-1 and NF-KB as well as 

the induction of HDAC expression (Adcock, 2001). Alternatively, activated GR could bind to 

one of the several transcription corepressor molecules, such as RIP140, which associate with 

proteins that have a differing histone deacetylase activity (Adcock and Caramori, 2001). 

Addition of TSA repressed the effect of the steroids and resulted in a downregulation of HDAC 

activity reaching almost pre¥steroid treatment levels in all cell lines. 

I 
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Most important, however, was the suggestion that monocyte and lymphocyte gene expression 

follows a similar and distinct pattern of histone acetylation. This leads to the conclusion that a 

more general pharmacological manipulation of specific histone acetylation status is a 

potentially useful approach for the treatment of inflammatory diseases. Extensive knowledge of 

the exact mechanism by which activated GR recruits HDACs may reveal new targets for the 

development of drugs that may dissociate the anti-inflammatory actions of glucocorticoids from 

their side effects that are largely due to gene induction. Alternatively, it could assist in the 

development of drugs that prevent K8 and K12 acetylation. So far, available drugs are non

specific In targeting histone and non-histone lysine residue acetylation. The finding that K12 is 

less sensitive to GC actions than K8 could hint in the development of new drugs that will be 

lysine reSidue speCific and therefore target lysine K8 acetylation rather than acetylation of both 

K8 and K12 lYSine reSIdues Interestingly, pCAF/GCN5 is known to be a potent activator of K8 

acetylation following IL·l r\ stimulation (Ito et al., 2000). Recent evidence suggests that the 

development of speClflc HAT inhibitors may prove to be important pharmacological tools 

(Workman and Kaye, 2002) The crystallisation of the GR LBO band to Dex indicates a distinct 

dimmer Interface. Mutation of 1628A prevents dimerisation and produced contrasting effects on 

transactJvation and transrepression suggesting that the monomer and dimmer forms of GR may 

regulate distinct sIgnalling pathways possibly through recruitment of distinct co

activatorsJrepressors and subsequent changes in the ability to acetylate histone residues. 

Controlled cell sUIcIde (apoptosis) has long been associated with inflammation. Recent 

eVidence on the effects of TSA and butyrate (both histone deacetylase inhibitors) on cell death 

and proliferation (Dangond et al" 199B) have been the initiators for the debate on whether 

histone acetylation can directly. or indirectly. be linked with the regulation of apoptosis. Having 

established from prevIous work that increased histone acetylation occurs in cells when induced 

with IOftammatory stlmull. this work focused in the role of histone acetylation in apoptosis. TSA 

IS now 10 phase! and II chnlcal trials for breast cancer and acute myeloid leukaemia. 

Prellmlnary studIes on the InItiation of eel! death following stimulation with inflammatory 

mediators showed that In LPS stimulated U937 cells, cell death was not detectable whereas in 

both T~celi hnes apoptosis was Induced. Stimulation of the cells with a known inducer of 

oXldatll.ie stress and consequently apoptosis (H20;!) and also a toxic, high concentration of TSA 

{100 ng/ml} Induced cell death 10 all three cell lines. U937 and Jurkat cells were prone to cell 

death !,',hen stimulated With TNF-n whereas this was not demonstrated in HUT-78 cells where 

eel! death was nct detected Finally, a low concentration of TSA (10 ng/ml) that induced 

hIstone acetylation Old not sppear to induce cell death in any of the cel/lines investigated. 

StudIes '"to progremmed eel! death showed that in U937 cells apoptosis accounted for over 

50% of follOWing TNF ~(i and TSA (100 ng/ml) treatment. Despite its toxicity, H20 2 did 

not Induce apoplo~)ls in U937 cells, In Jurkat cells H20;.!, TNF-aand TSA caused more than 

http:oXldatll.ie
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60% of the cells to undergo apoptosis. Similarly in HUT-78 cells, H20 2 and TSA also induced 

apoptosis. Interestingly, LPS also induced more than half the cell population to undergo 

apoptosis. TNF-a treatment however did not induce apoptosis in these cell lines. Similar 

findings have been reported previously where in contrast to Jurkat cells, HUT-78 cells were 

resistant to the apoptotic effects ofTNF (Giri et al., 1998). In U937 cells activation of Bcl-2 was 

only significantly downregulated following treatment with LPS, and slightly downregulated with 

the high concentration of TSA. Studies in the activation of Bcl-2 in T-cell lines showed a similar 

pattern of activation for both Jurkat and HUT-78 cells. Bcl-2 levels were activated in all 

stimulations with the exception of the highest concentration of TSA. The complexity of 

apoptotic signalling in these cells warrants further investigation into the effects of TSA on the 

expression of patterns such as p21 CIP, which are upregulated by HDAC inhibitors and control 

cell cycle proliferation. The effects of HDAC inhibitors on proliferation and apoptosis may 

however be divorced from HDAC inhibition since concentrations required to inhibit HDAC 

activity are generally 10 to 1DO-fold lower than those required to modify cell proliferation (Paul 

et a/., 2002). 

In U937 cells, H20 2 and TNF-tx significantly upregulated annexin V. In Jurkat cells LPS, H20 2 

and TNF-a stimuli also upregulated annexin V expression but in HUT-78 cells TNFa did not 

induce annexin V. Low concentrations of TsA induced annexin V despite the ·fact that 'high 

levels of apoptosis were not detectable at this concentration. This suggests that analysis of 

apoptosis by a single factor could be misleading in these cells. Interestingly, 100 ng/ml of the 

inhibitor did not upregulate annexin V levels. This might be due to the fact that high 

concentrations of TSA cause immediate apoptosis to the cells and therefore changes in 

annexin V, which is elevated at the first apoptotic stages, may have been missed. Studies to 

this point showed that TSA and presumably histone acetylation did not affect induction of 

apoptosis in cells since only high concentrations of the inhibitor caused cells to undergo 

apoptosis. This, however, is attributed to the toxic effect of TSA rather than its inhibitory effects 

on histone deacetylation. Investigation into the effects of the glucocorticoids Dex and TA in the 

induction of apoptosis in cells alone failed to show any significant changes in the activation of 

Bcl-2 in all three cell lines. The levels of the protein following treatment were only slightly 

upregulated with the exception of Dex treatment to U937 cells were Bcl-2 levels were 

Significantly elevated. In the U937 cells the addition of glucocorticoids to treated cells also did 

not lead to any significant activational changes. In the T-cell lines only the addition of 

glucocorticoids to H20 2 treated cells caused a noteworthy upregulation of BC\-2. However, 

investigation in the activation of annexin V in stimulated cells in the presence of glucocorticoids 

revealed an upregulation of the protein in all cell lines in all treatments with the exception of the 

U937 cells were the presence of both steroids in TSA stimulated cells did not induce 

upregulation of annexin V. 



A recent :in cxp!anatlon on the mechanism by which histone acetylation could 

fola of the nuclear. growth inhibitory proteins ING1 (Vieyra et 

showed that human ING1 proteins interact with proteins associated 

r:::lr'1;"cT~).r';~c,,,,, (HAT) activity such as TRAP, CSP, PCAF and p300 and that 

iNGl lfiduced hyperacetylation of H3 and H4 in vitro and in vivo. Overall 

their data that hllman ING1 proteins provide a direct linkage between DNA repair, 
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Studies mto the actIvation of Caspase 3 under the same conditions revealed that the 

combinatory effect of steroids and TSA in stimulated cells significantly enhanced this marker of 

apoptosis In all three cel! lines It was also significant that co-stimulation of the cells with 

gillcocortlco!ds and TSA only. downregulated caspase 3 levels and therefore suggested an 

inhibitory effect or: In all three cell lines. TA was again more potent than Dex. 

Results that TS)!!;, modifies Caspase 3 expression due to its histone deacetylase 

inhibitory acllon and no! due to Its toxicity. This is also demonstrated in LPS- and TNF-a

stimulated In combinatIon with the glucocorticoids. TSA acted synergistically with 

glucocortlCOids to enh"nceapoptosIS In stimulated monocytes and lymphocytes while 

preventlf19 pr(')9r;~mml~ cell death alone. These findings support the notion that histone 

acelylatlon regulates apoptt"')slS as part of the transactivation and trans-repression ability of 

glucocortiCO!dS 

ap'vpIOSi$ and cnrt)lnalin rel'TlOdeiling via multiple HAT:ING1:pCNA protein complexes. Further 

sludies as 10 whetner these complexes are HAT specific and whether they are part of the same 

complexes fenned wrth cap to regulate inflammatory gene expression could help to paint a 

wfder picture on the role hIstone acetylation in the regulation of apoptosis in monocytes and 

T-celis 

Expandmg on tht:) poss:ble role of histone 4 acetylation and deacetylation in disease, 

specIfically In and Peyer's patches, completed this thesis. Two animal models and 

samples from were llsed to investigate the activation of histone 4 in inflamed and 

non-mftamed biopSies. In the dextran sodium sulphate (DSS) rat model of 

the acetylation activity of H4 and H3 was initially measured. Findings indicated 

Ihat histone was upregulated in the two investigated rat strains (Lewis and 

Spragu8"Dav/ley) Comparison of acetylated levels between H3 and H4 revealed that while 

both were acetylated. latter reached significantly higher acetylation levels. Similarly, in the 

Payer's of the DSS model. H4 acetylation was higher than H3. Localisation of histones 

in th~ pati::;hes immunohistochemicaUy revealed a pattern formation, which was 

nOI:lcc,abl:e 111 both La"'''I$ and Sprague-Dawley strains. Acetylation of H3 was only detected in 

the zone of the Payer's patches. whilst acetylated H4 occurred in both the periphery 

and tho centre the Peyer's patches. It was therefore concluded that acetylation of 

H3 could poSSibly be cell specific. whereas H4is generally induced in all cen types present in 

the Payer's patChes (1~ceil5. S--calls. dendritic cells and macrophages), These results indicated 
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a uniformed mechanism of H4 acetylation in the regulation of inflammatory gene activation in 
IBO. 

In the experimental models of colitis, H4 K8 and K12 were highly acetylated in the Sprague

Dawley rats. These findings were in agreement with findings presented previously in vitro, and 

with other reports that pro-inflammatory cytokines can cause histone acetylation of H4 Iysines 

8 and 12 (Ito et aI., 2000). In contrast to the data obtained in Sprague-Dawley rats, only K12 

acetylation was strongly induced in Lewis rats with K5, K8 and K16 acetylation reaching similar 

levels. In non-treated Lewis rats, dose-dependent metronidazole (MTD) treatment resulted in 

the downregulation of all acetylated lysine residue levels. The same treatment in the Sprague

Dawley rats had equivalent effects on K8 and K12 acetylation, but upregulated the acetylation 

of K5 and K16. The combined effect of DSS and MTD in the Sprague-Dawley rat strain, did not 

lead to further elevation of acetylated lysine levels. Intriguingly, these are the residues targeted 

by glucocorticoids. 

Histone H4 lysine acetylation was also studied in inflamed and non-inflamed tissue of the 

trinitrobenzene sulfonic acid (TNBS) model of colitis. Pan acetylation of histone H4 increased 

slightly in the non-inflamed mucosa and was Significantly elevated in inflamed. Results further 

revealed a general upregulation of all histone H4 lysine residues in the proximal (non-inflamed) 

and distal regions (inflamed) of TNBS treated animals. ~n both regions of the TNBS treated 

bowel, K5 and K16 were elevated slightly. Acetylation of K8 and K12 however, was 

significantly increased, specifically in the distal region where acetylated levels were also 

significantly higher compared to the proximal. The results indicate that in both non-inflamed 

and inflamed regions of the bowel histone 4 lysine acetylation occurs with Iysines 8 and 12 

being predominantly acetylated whilst acetylated lysine levels in the non-inflamed regions were 

less than those recorded in inflamed regions. Ellis et al., (1998) have described a selectivity of 

NFKB to DNA binding concluding that this could possibly explain how an inflammatory state in 

one section of the intestine could trigger changes in the NFKB Signaling pathway in another 

macroscopically non-inflamed section. It is possible that a similar or the same process could be 

involved in the upregulation of acetylated lysine levels in the non-inflamed regions of the 

bowel. A direct link between NFKB activation and histone acetylation in these tissues needs to 

be confirmed. 

The role of histone H4 acetylation in IBD was finally investigated by measuring H4 acetylation 

in Crohn's disease patient biopsies. Non-inflamed, inflamed and Peyer's patches biopsies were 

assessed. Initial experiments, showed that in the inflamed biopsies, levels of acetylated H4 

were highest, followed by Peyer's patches. Acetylation was also detectable in the non-inflamed 

mucosa of the Crohn's disease patients. The results for acetylation of histone H4 Iysines in 

Crohn's disease were very similar to those obtained in the TNBS treated animals. K5 and K16 

were only slightly activated in all samples, with the inflamed and· non-inflamed samples 

-
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presenting no significant difference in acetylation status. Peyer's patches showed the highest 

H4 acetylation activity for K5 and K16. Finally, in biopsies of inflamed bowel and in Peyer's 

patches of Grohn's disease patients, K8 and K12 acetylation was equally elevated. Acetylation 

of lysine residues in the non-inflamed biopsies was only slightly upregulated. Interestingly, 

immunohistochemical studies of Crohn's disease Peyer's patches, localized acetylation of K5 

and K16 in the mantle zone with a similar pattern to histone H3 acetylation. In contrast, 

acetylation of K8 and K16 was localized in both mantle zone and germinal center. These latter 

results suggest that although pan acetylation of H4 in the Peyer's patches is probably not cell 

specific. it is possible that acetylation of its specific lysine residues is cell type dependent. 

AppreciatIon of the structural and biochemical properties of nucleosomes and chromatin 

containing histone modifications in human diseases is still elementary and further work is 

needed to understand it. The work described throughout this thesis have the ultimate objective 

of pointing out the importance of the expanding need to fully understand the complicated 

chromatin remodelling machinery and the mechanisms by which it regulates inflammatory 

gene expression. With the extensive developments in linking covalent histone modifications to 

biological processes acetylation of histones has acquired clinical importance. It is likely that 

novel drugs directed in selective HAT/HDAG modulation will lead to novel types of anti

inflammatory drug that will result to fewer side effects in the future. The ultimate objective is the 

complete understanding of the mechanisms of how deregulation of chromosome structure 

leads to diseases leading to the development of new therapeutic approaches. 

In conclusion, the following list assembles a summary of some of the most important points of 

interest that future work could be directed to based on this thesis: 

Increased numbers of animal models in order to establish the preliminary data • 
presented here 

Use of IKK2 inhibitors and RNAi to confirm whether the effects observed are • 
NFKB mediated 

Use of specific HATs and HDACs to determine whether, similarly to previous • 
reports, GG induced histone acetylation is modulated by specific HAT/HDAC 

complexes and to assess their role in inflammatory gene expression 

Finally, to ascertain the molecular mechanism of TSA-induced cell death or its• 
effects on cell proliferation 
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Appendix A 

Name: Jurkat ES.1 ECACC Ref No: 88042803 

Derived from Jurkat FHCRC. An IL-2 producing cell line, derived by 
incubating the cells at 41°C for 48h followed by a limiting dilution cloning 
over macrophages. 

SuspenSiOn Description Key Human leukaemic T 
Words: cell lymphoblast 

Blood Species: Human 
RPMI '1640 + 2mM Glutamine + 10% Foetal Bovine Serum (FBS). 
MaintaIn cultures between 3- RC.D: No 
9)(100.000 cellslml; 5% C02; 

On resuscitation single 

cells can be observed, during 

culture most cells will grow as 

aggregates 


Pseudodiplold, modal No 46 Passage Number: 
Histocompatability: 

Inteneukirl 2 (fl-2), human alpha Reference: J Immunol 
interleron 1984;133:123; J 

Immunol Meth 
1993; 157:203··207 

Name: ECACC Ref No: 88041901 

Derived from peripheral bloedof a 50 year old mate patient with Sezary 
syndrome Cells exhibit the features of a mature T cell line with 
inducer/helper phenotype. Biologically active IL-2 can be eluted from the 

surface 

Lymphoblast Description Key Human Tcell 
Words: lymphoma 

Blood Species: Human 

RPMI 1640 + 2mM Glutamine + 10% Foetal Bovine Serum (FBS). 
! !MaIntain cultures between 3- R.C.D: No 


9x100,000 cell:sJml; 5% C02; 


Not Spec-ifie.Q Passage Number: 
Histocompatability: 
Reference; J Exp Moo 

1981;154:1403 
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Name: 

Comments: 

Morphology: 

Tissue: 

Medium 

Sub Culture 
Routine: 

Karyotype: 

Receptors: 

Products: 

Name: 
Comments: 

Morphology: 

Tissue: 

Medium: 

Sub Culture 
Routine: 

I 

\ 

.1 
Karyotype: 

Receptors: 

Products: 

I 
:.1 

I 
\ 

A549 	 ECACC Ref No: 86012804 

De:iv~d fr.~n: a 58 year old Caucasian male. The cells can synthesise 
lecithin utilising the cytidine diphosphocholine pathway. Occasional cells 
may also contain inclusion bodies although they are not known to carry any 
human pathogen. 

Epithelial 	 Description Key Human Caucasian 
Words: lung carcinoma 

lung 	 Species: Human 

Ham's F12K or DMEM + 2mM Glutamine + 10% Foetal Bovine Serum 
(FBS). 

Split confluent cultures 1:3 to R.C.D: No 
1:6 i.e. seeding at 2-4x1 0,000 
cells/cm2 using 0.25% trypsin or 
trypsin/EDTA; 5% C02; 3rC. 

Hypotriploid 	 Passage Number: 85 

Histocompatability: 
J Nat Cancer Inst Lecithin, High amounts of de- Reference: 
1973;51:1417; IntJsaturated fatty acids. 
Cancer 1967;17:62 

ECACC Ref No: 	 85011440U937 
Derived from malignant cells of a pleural effusion of 37 year old caucasian 
male with diffuse histiocytic lymphoma. One of only a few human lines still 
expressing many of the monocytic like characteristics exhibited by cells of 

histiocytic origin. 

Human CaucasianDescription KeyLymphoblast 
histiocytic lymphoma Words: 

lung Species: Human 


RPMI1640 + 2mM Glutamine + 10% Foetal Bovine Serum (FBS). 


Maintain cultures between R.C.D: No 

2-9x100,OOO cells/ml; 5% 

C02; 3rC. Cells may 

take up to 72 hours until 

confluent. 

Not Specified Passage Number: 


Histocompatability: 
Reference: 	 IntJ Cancer 1976;17:565; J 

Exp Med 1976;143:1528; 
Nature 1979;279:328; J 
ImmunoI1980;125:463 



Details of the patients used in Chapter 6 

r 
I 
i AGe 18-57 yrs 
! 

! 

I 
i NoOf 12 
i PATIENTS 

I 

~"--
i 

i STATE disease 
I 

! 
I 

I 
CONTROL 	 Other disease, samples obtained from routine 

examination 

"'--"""-"1' '-'''''-''---''-'''--'-"''-'~'--''-----
TREATMENT Sulfasafazine andlor antibiotics (ampicillin, 

i Itetracycline] 

~,~"__"_,"L_"____. 
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Appendix 8 

TRIAMCINOLONE ACETONIDE AND DEXAMETHASOME SUPPRESS TNF-a. INDUCED 


HISTONE H4 ACETYLATION ON LYSINE RESIDUES 8 AND 12 IN MONONUCLEAR 


CELLS. 


Loukia G. Tsaprounil, Kl~z\lhiro Ito2, Neville Punchard1 and Ian M. Adcock2 


(/) Department 01 Bi%gy & Health Science. University o.lLuton. Luton LUi 3JU, UK. 

(2) nwrlldc Ml!dh:iflt!. lmpt!riu/ College .)c:hool a/Medicine. National Heart & Lung Institute, London. 

SWj 6Lr. UA'. 

Introduction 

The anti-intlammatory properties of Glucocorticoids (Gel result from transcriptional repression of pro-

inflammatory genes. In the inactive state DNA exists as condensed chromatin composed of 

nuclcosomes. \vith the DNA tightly wrapped around a octameric protein complex composed of two 

copies earh of four core hi~tones. H}, H4. H2A and H2B. During the induction of gene transcription 

modifkation of these histones, e,g. by acetylation and methylation, results in local relaxation of the 

DNA/protein complex. permitting access of DNA-binding proteins and transcription i . Thus, 

Trichostatin A (TSA), a potent ,md specific inhibitor of histone deacetylase, has effects on cell 

proliferation ,md differcntiation2• Recently, alterations in chromatin structure have been shown to play 

an important role in modulation of GC activity. for example the histone deacetylase (HDAC) inhibitor, 

l>lxlium butyrate. interferes with GC receptor activated transcriptionJ·,. Here, we have studied the 

ctTc~!s ()f the (iCs. Dexamcthasome (De>.:) and Triamcinolone acetonide (TA), on production of the 

inflammatory cytokine IL-S and regulation of histone acetylation in a macrophage cell line stimulated 

withTNr-o:. 

Experimentul Procedures 

(40,60% ,;ollfluenl). cultured under standard conditions in the presence of antibiotics, were 

:.ynci1wnised hi' res bUlrvation for 48 hrs (O,25!1lo FCS in RPM!), prior to 24h incubation (non

l.l~imul.Ui:.'Ij; NS) ()f' stimulation with TNF-c£ (I Onglml) in the presence, or absence, of Dex (J 0.6 M) or 

TA. (lcrl M), IL·g was measun~d in culture supcmatalHs by ELISA (Amersham). Following SDS

poi;!li;rylamidl' gel dettt{:.phoresis of extracted histones" the separated proteins were transferred to 
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nitrocdlulose membnmcs. After blocking, membranes were exposed to antibodies to acetylated H4 

(lysine:> 5, 8, 12 and 16). Subsequently, membranes were washed and treated with horseradish 

peroxidase-conjugated secondary antibody and binding of secondary antibody detected using enhanced 

(hemihlmint:sccnce (EeL) and exposure to film, followed by densitometry. 

Reli tlit<; 

'nlC HDAC inhihitor TSA enhanced TNFa-induced IL-8 release and partially blocked GC-inhibition of 

this n:lcal'c (results not shown) suggesting that histone acetylation plays role in IL-8 production and the 

ilCti(lns of Gel;. TNF-ct (Fig.1 ) increased production of IL-8 as expected. Addition of Dex (I IlM) and 

TA (i pM) significantly repressed the levels of IL-8 to almost control levels (Fig. 1). Stimulation with 

TNf-{X in<.:rC(I!wd <lcctylzltion of all histone H4 lysine residues (K5, 8, 12 and 16), the highest elevation 

of which was for Iysilles 8 and 12 (Fig.2). Addition of Dex or TA reduced the levels of acetylation of 

K8, K12 and K! 6 residues, the greatest effect being with lysines 8 and 12, without affecting K5 levels. 

Oi.,t'u!'l~ion 

The ctTc~t<; of Dcx and T A on histone acetylation are in agreement with previous findings observed at 

A$49 lung, epithelial cells l . Thus the TA and Dex reduction in TNF-a induced IL-8 release appears to 

involve inhihilion of K8 and K 12 H4 acetylation. This possible mechanism for GC repression is novel 

and establishes inhibition of histone acetylation as an additional level of control of inflammatory gene 

expression suitable for drug intervention. 
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Production of Il-8 in U937 cells 

1200 ""! 

• p < 0.05 

TNF TNF+Dex TNF+TA 

f'i"llre 1. I)roduction of IL-S in rnacrophages stimulated with TNF-a. (IOng/mt) in the absence 

tied pr{.~nC'(: of steroids. Stimulation with TNF-cx induced production of the inflammatory cytokine 

lI-S, 01' the stcroiJ:;; Dexamethasone (Dex) and Triamcinolone acetonide (TA) significantly 

(11·6,' p"·0.(5) down regulated IL·8 production approximately two fold. 

Histone H4 lysine acetylation in U937 cells 

o Non-Stirn 

II TNF (10 ng/ml) 

E21TNF +Dex 

sTNF+TA 

• p< 0.05 

.'lInn: 1. 1'lIft''''!! H4 a~l:uion of IY!'iine residues 1(5, K8, K12 and K16 in U937 cells. Increased 

wer.: ol~rved in all lysine residues of U937 cells treated with TNF-(X.. Most 

K8 und K12, where acetylation was elevated by almost a factor of 7. 

(n 6," p<O,OS) decreased acetylation levels in lysines K8 and K12. 

;.ln~' 
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