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STABILIZATION OF HYBRID SYSTEMS BY FEEDBACK CONTROL

BASED ON DISCRETE-TIME STATE AND MODE OBSERVATIONS†

Jianqiu Lu1∗, Yuyuan Li2, Xuerong Mao1, Qinwei Qiu2

ABSTRACT

Recently, Mao [1] proposed a kind of feedback control based on discrete-

time state observations to stabilize continuous-time hybrid stochastic systems

in mean-square sense. We find that the feedback control there still depends

on the continuous-time observations of the mode. However, it usually costs to

identify the current mode of the system in practice. So we can further improve

the control to reduce the control cost by identifying the mode at discrete times

when we make observations for the state. In this paper, we aim to design such

a type of feedback controls based on the discrete-time observations of both

state and mode to stabilize the given unstable hybrid stochastic differential

equations (SDEs) in the sense of mean-square exponential stability. Moreover,

a numerical example is given to illustrate our results.

Key Words: Brownian motion, Markov chain, mean-square exponential

stability, discrete-time feedback control.

1. INTRODUCTION

Hybrid stochastic differential equations (SDEs)

(also known as SDEs with Markovian switching),

usually used to model practical systems where they

may experience abrupt changes in their structure and

parameters, have been attracting a lot of attention in

recent years. Particularly, as the most fundamental

problem in engineering, the asymptotic stability has

been studied extensively [2, 3, 4, 6, 12, 13, 14, 18, 20,

21, 22, 23, 24, 26, 27, 28, 29, 30]. Here we mention that

[10, 11] are two of the most cited papers while [17] is

the first book in this area.

One classical topic in this field is the problem

of stabilization, i.e. designing a control function

u(x(t), r(t), t) which usually appears in the drift part
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such that the controlled system

dx(t) =[f(x(t), r(t), t) + u(x(t), r(t), t)]dt

+ g(x(t), r(t), t)dw(t)
(1.1)

will be stable though the original system (1.1) with

u(x(t), r(t), t) = 0 is unstable, where t ≥ 0, r(t) is

a Markov chain, x(t) ∈ Rn is the state, w(t) =

(w1(t), · · · , wm(t))T is an m-dimensional Brownian

motion and the SDE is in the Itô sense.

Wang et al. in [25] designed a state feedback

controller to stabilize bilinear uncertain time-delay

stochastic systems with Markovian jumping parameters

in mean square sense. In [5], the problem of almost sure

exponential stabilization of stochastic systems by state-

feedback controls was discussed. A robust delayed-

state-feedback controller that exponentially stabilizes

uncertain stochastic systems was proposed in [15]. It

is observed that the state feedback controllers in these

papers require continuous observations of the system

state x(t) for all time t ≥ t0. Recently, Mao [1] first

proposed to design a discrete-time feedback control

u(x(δ(t, t0, τ)), r(t), t) in order to make the controlled

c© 2017 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society

Prepared using asjcauth.cls [Version: 2008/07/07 v1.00]



2 Asian Journal of Control, Vol. 00, No. 0, pp. 1–10, Month 2017

system

dx(t) =[f(x(t), r(t), t) + u(x(δ(t, t0, τ)), r(t), t)]dt

+g(x(t), r(t), t)dw(t)

(1.2)

become exponentially stable in mean square. Here τ >
0 is a constant and

δ(t, t0, τ) = t0 + [(t− t0)/τ ]τ, (1.3)

in which [(t− t0)/τ ] is the integer part of (t− t0)/τ .

The advantage of such a discrete-time feedback control

is that it requires only state observations x(t0 + kτ)
at discrete times t0, t0 + τ, t0 + 2τ, · · · and hence it

will cost much less and more realistic. Despite this

advantage, we can take a further step to make it even

better. We observe that the feedback control in Mao

[1] is based on the discrete-time observations of the

state x(t0 + kτ)(k = 0, 1, 2, · · · ) but still depends on

the continuous-time observations of the mode r(t) on

t ≥ t0. This is perfectly fine if the mode of the system

can be fully observed at no cost. However, it usually

costs to identify the current mode of the system in

practice. So we can further improve the control to

reduce the control cost by identifying the mode at

discrete times when we make observations for the

state. Therefore, in this paper, we will consider an n-

dimensional controlled hybrid system

dx(t) =[f(x(t), r(t), t)

+ u(x(δ(t, t0, τ)), r(δ(t, t0, τ), t)]dt

+ g(x(t), r(t), t)dw(t)

(1.4)

on t ≥ t0, where our new feedback control is based on

the discrete observations of state x(t0 + kτ) and mode

r(t0 + kτ).
Due to the difficulties arisen from the discrete-

time Markov chain r(t0 + kτ), the analysis in this paper

will be much more complicated in comparison with

the related previous papers and new techniques will be

developed. Our main results will be formed in Section

3 and Sections 4 after giving preliminaries in Section 2.

We will discuss an example in Section 5 to verify the

effectiveness of the results and conclude our paper in

Section 6.

2. Notation and Problem Statement

In this paper, we use the following notation. Let

(Ω,F , {Ft}t≥0,P) be a complete probability space with

a filtration {Ft}t≥0 satisfying the usual conditions (i.e.

it is increasing and right continuous with F0 contains

all P-null sets). Let w(t) = (w1(t), · · · , wm(t))T be

an m-dimensional Brownian motion defined on the

probability space. If A is a vector or matrix, its

transpose is denoted by AT . If x ∈ Rn, then |x| is

its Euclidean norm. If A is a matrix, we let |A| =
√

trace(ATA) be its trace norm and ‖A‖ = max{|Ax| :
|x| = 1} be the operator norm. If A is a symmetric

matrix (A = AT ), denote by λmin(A) and λmax(A) its

smallest and largest eigenvalue, respectively. By A ≤ 0
and A < 0, we mean A is non-positive and negative

definite, respectively. Denote by L2
Ft
(Rn) the family of

all Ft-measurable Rn-valued random variables ξ such

that E|ξ|2 < ∞, where E is the expectation with respect

to the probability measure P.

Let r(t), t ≥ 0, be a right-continuous Markov chain

on the probability space taking values in a finite state

space S = {1, 2, · · · , N} with generator Γ = (γij)N×N

given by

P{r(t+∆) = j|r(t) = i}

=

{

γij∆+ o(∆) if i 6= j,

1 + γii∆+ o(∆) if i = j,

where ∆ > 0. Here γij ≥ 0 is the transition rate from i
to j if i 6= j while

γii = −
∑

j 6=i

γij .

We assume that the Markov chain r(·) is independent of

the Brownian motion w(·). It is known that almost all

sample paths of r(t) are piecewise constant except for a

finite number of simple jumps in any finite subinterval

of R+ (:= [0,∞)). We stress that almost all sample

paths of r(t) are right continuous.

Consider an n-dimensional uncontrolled unstable

linear hybrid SDE

dx(t) = A(r(t))x(t)dt+

m
∑

k=1

Bk(r(t))x(t)dwk(t)

(2.1)

on t ≥ 0, with initial data x(0) = x0 ∈ L2
F0

(Rn). Here

A, Bk : S → Rn×n and we will often write A(i) =
Ai and Bk(i) = Bki. Now we are required to design

a feedback control u(x(δ(t)), r(δ(t))) based on the

discrete-time state and mode observations in the drift

part so that the controlled linear SDE

dx(t) =[A(r(t))x(t) + u(x(δ(t)), r(δ(t)))]dt

+

m
∑

k=1

Bk(r(t))x(t)dwk(t)
(2.2)
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will be mean-square exponentially stable, where u is a

mapping from Rn × S to Rn, τ > 0 and

δ(t) = [t/τ ]τ for t ≥ 0, (2.3)

in which [t/τ ] is the integer part of t/τ . As the given

SDE (2.1) is linear, it is natural to use a linear feedback

control. One of the most common linear feedback

controls is the structure control of the form u(x, i) =
F (i)G(i)x, where F and G are mappings from S to

Rn×l and Rl×n, respectively, and one of them is given

while the other needs to be designed. These two cases

are known as:

• State feedback: design F (·) when G(·) is given;

• Output injection: design G(·) when F (·) is given.

Again, we will often write F (i) = Fi and G(i) = Gi.

Then the controlled system (2.2) becomes

dx(t) =[A(r(t))x(t) + F (r(δ(t)))G(r(δ(t)))x(δ(t))]dt

+

m
∑

k=1

Bk(r(t))x(t)dwk(t). (2.4)

It is observed that equation (2.4) is in fact a stochastic

differential delay equation (SDDE) with a bounded

variable delay (see e.g. [1]). So equation (2.4) has a

unique solution x(t) such that E|x(t)|2 < ∞ for all

t ≥ 0 (see e.g. [17]).

3. Stabilization of linear hybrid SDEs

We will first denote F (r(δ(t)))G(r(δ(t))) =
D(r(δ(t))) and discuss the stability of the following

hybrid stochastic system

dx(t) =[A(r(t))x(t) +D(r(δ(t)))x(δ(t))]dt

+

m
∑

k=1

Bk(r(t))x(t)dwk(t)
(3.1)

in this section. And then design either G(·) given F (·)
or F (·) given G(·) in order for the controlled SDE (2.4)

to be stable.

Let us first give two lemmas for preparation.

Lemma 3.1 Let x(t) be the solution of system (3.1). Set

MA = max
i∈S

‖Ai‖2, MD = max
i∈S

‖Di‖2,

MB = max
i∈S

m
∑

k=1

‖Bki‖2

and define

K(τ) = [6τ(τMA +MB) + 3τ2MD]e6τ(τMA+MB)

(3.2)

for τ > 0. If τ is small enough for 2K(τ) < 1, then for

any t ≥ 0,

E|x(t)− x(δ(t))|2 ≤ 2K(τ)

1− 2K(τ)
E|x(t)|2. (3.3)

Proof. Fix any integer v ≥ 0. For t ∈ [vτ, (v + 1)τ), we

have δ(t) = vτ . It follows from (3.1) that

x(t)− x(δ(t)) =x(t)− x(vτ)

=

∫ t

vτ

[A(r(s))x(s) +D(r(vτ))x(vτ)]ds

+

m
∑

k=1

∫ t

vτ

Bk(r(s))x(s)dwk(s).

Using the fundamental inequality |a+ b+ c|2 ≤
3|a|2 + 3|b|2 + 3|c|2 as well as Hölder′s inequality and

Doob’s martingale inequality, we can then derive

E|x(t)− x(δ(t))|2

≤3(τMA +MB)

∫ t

vτ

E|x(s)|2ds

+3τ2MDE|x(vτ)|2

≤6(τMA +MB)

∫ t

vτ

E|x(s)− x(δ(s))|2ds

+[6τ(τMA +MB) + 3τ2MD]E|x(vτ)|2.

By the well-known Gronwall inequality, we have

E|x(t)− x(δ(t))|2 ≤ K(τ)E|x(vτ)|2.

Consequently

E|x(t)− x(δ(t))|2

≤ 2K(τ)
(

E|x(t)− x(δ(t))|2 + E|x(t)|2
)

.

This implies that (3.3) holds for t ∈ [vτ, (v + 1)τ). But

v ≥ 0 is arbitrary, so the desired assertion (3.3) must

hold for all t ≥ 0. The proof is complete. 2

Lemma 3.2 For any t ≥ 0, v > 0 and i ∈ S,

P(r(s) 6= i for some s ∈ [t, t+ v]|r(t) = i)

≤ 1− e−γ̄v, (3.4)

where

γ̄ = max
i∈S

(−γii). (3.5)

c© 2017 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
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Proof. Given r(t) = i, define the stopping time

ρi = inf{s ≥ t : r(s) 6= i},

where and throughout this paper we set inf ∅ = ∞ (in

which ∅ denotes the empty set as usual). It is well

known (see e.g. [17]) that ρi − t has the exponential

distribution with parameter −γii. Hence

P(r(s) 6= i for some s ∈ [t, t+ v]|r(t) = i)

=P(ρi − t ≤ v|r(t) = i) =

∫ v

0

1

−γii
eγiisds

=1− eγiiv ≤ 1− e−γ̄v

as desired. 2

We now state the main result on the exponential

stability in mean-square of system (3.1).

Theorem 3.3 If there exist positive definite symmetric

matrices Q(i) = Qi, i ∈ S, such that

Q̄(i) = Q̄i :=Qi(Ai +Di) + (Ai +Di)
TQi

+

m
∑

k=1

BT
kiQiBki +

N
∑

j=1

γijQj (3.6)

are all negative-definite matrices. Set

MQD = max
i∈S

‖QiDi‖2, ND = max
i,j∈S

‖Dj −Di‖2

and − λ := max
i∈S

λmax(Q̄i)

(of course λ > 0). If τ is sufficiently small for λ >
2λτ + 2λMµτ , where

λτ :=

√

2MQDK(τ)

1− 2K(τ)
, µτ :=

√

2ND(1− e−γ̄τ )

1− 2K(τ)
,

(3.7)

then the solution of the SDE (3.1) satisfies

E|x(t)|2 ≤ λM

λm

E|x0|2e−θt, ∀t ≥ 0, (3.8)

where K(τ) has been defined in Lemma 3.1 and

λM = max
i∈S

λmax(Qi), λm = min
i∈S

λmin(Qi),

θ =
λ− 2λτ − 2λMµτ

λM

. (3.9)

In other words, the SDE (3.1) is exponentially stable in

mean square.

Proof. Let V (x(t), r(t)) = xT (t)Q(r(t))x(t). Applying

the generalized Itô formula (see e.g. [17]) to V , we get

dV (x(t), r(t)) = LV (x(t), r(t))dt+ dM1(t),

where M1(t) is a martingale with M1(0) = 0 and

LV (x(t), r(t))

=2xT (t)Q(r(t))[A(r(t))x(t) +D(r(δ(t)))x(δ(t))]

+

m
∑

k=1

xT (t)BT
k (r(t))Q(r(t))Bk(r(t))x(t)

+

N
∑

j=1

γr(t),jx
T (t)Qjx(t)

=xT (t)Q̄(r(t))x(t)

−2xT (t)Q(r(t))D(r(t))(x(t)− x(δ(t)))

−2xT (t)Q(r(t))(D(r(t))−D(r(δ(t))))x(δ(t))

≤− λ|x(t)|2 + 2
√

MQD|x(t)||x(t)− x(δ(t))|
−2xT (t)Q(r(t))(D(r(t))−D(r(δ(t))))x(δ(t))

(3.10)

Applying the generalized Itô formula now to

eθtxT (t)Q(r(t))x(t), we then have

eθtxT (t)Q(r(t))x(t) = xT (0)Q(r(0))x(0)

+

∫ t

0

eθs[θxT (s)Q(r(s))x(s) + LV (x(s), r(s))]ds

+M2(t),

where M2(t) is also a martingale with M2(0) = 0.

Combining this with (3.10) yields

λmeθtE|x(t)|2

≤E(eθtxT (t)Q(r(t))x(t))

≤λME|x0|2 +
∫ t

0

(θλM − λ)eθsE|x(s)|2ds

+

∫ t

0

2eθs
√

MQDE(|x(s)||x(s)− x(δ(s))|)ds

−
∫ t

0

2eθsE(xT (s)Q(r(s))(D(r(s))

−D(r(δ(s))))x(δ(s)))ds. (3.11)

c© 2017 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
Prepared using asjcauth.cls



5

But, by Lemma 3.1 and 3.2, we have

−2eθsE
(

xT (s)Q(r(s))(D(r(s))−D(r(δ(s))))x(δ(s))
)

≤eθsE
(

λMµτ |x(s)|2

+
λM

µτ

‖D(r(s))−D(r(δ(s)))‖2|x(δ(s))|2
)

=eθsλM{µτE|x(s)|2

+
1

µτ

E
(

E(‖D(r(s))−D(r(δ(s)))‖2|x(δ(s))|2|Fδ(s))
)

}

≤eθsλM{µτE|x(s)|2

+
1

µτ

E
(

|x(δ(s))|2
∑

r(δ(s))=i

I{r(δ(s))=i} max
i,j∈S

‖Dj −Di‖2
)

}

≤eθsλM{µτE|x(s)|2 +
ND(1− e−γ̄τ )

µτ

E|x(δ(s))|2}

≤eθsλM{µτE|x(s)|2

+
ND(1− e−γ̄τ )

µτ

2

1− 2K(τ)
E|x(s)|2

)

}

=2eθsλM µτE|x(s)|2 (3.12)

and

2
√

MQD E(|x(s)||x(s)− x(δ(s))|)

≤λτE|x(s)|2 +
MQD

λτ

E|x(s)− x(δ(s))|2

≤λτE|x(s)|2 +
MQD

λτ

2K(τ)

1− 2K(τ)
E|x(s)|2

=2λτE|x(s)|2. (3.13)

Substituting (3.12)(3.13) into (3.11) gives

λmeθtE|x(t)|2 ≤ λME|x0|2

+

∫ t

0

(θλM + 2λτ + 2λMµτ − λ)eθsE|x(s)|2ds.

But, by (3.9), θλM + 2λτ + 2λMµτ − λ = 0. Thus

λmeθtE|x(t)|2 ≤ λME|x0|2,

which implies the desired assertion (3.8). The proof is

complete. 2

The following two corollaries provide us with

an LMI method to design the controller based on

discrete-time observations of both state and mode to

stabilize the unstable system (2.1). Corollary 3.4 and

3.5 demonstrate the case of state feedback and output

injection, respectively.

Corollary 3.4 Assume that there are solutions Qi =
QT

i > 0 and Yi (i ∈ S) to the following LMIs

QiAi + YiGi +AT
i Qi +GT

i Y
T
i

+

m
∑

k=1

BT
kiQiBki +

N
∑

j=1

γijQj < 0. (3.14)

Then by setting Fi = Q−1
i Yi and Di = FiGi, the

controlled SDE (2.4) will be exponentially stable in

mean square if τ > 0 is sufficiently small for λ > 2λτ +
2λMµτ .

Proof. Recalling Fi = Q−1
i Yi and Di = FiGi, we find

that (3.14) is equivalent to the condition that matrices in

(3.6) are all negative-definite. So the required assertion

follows directly from Theorem 3.3.

Corollary 3.5 Assume that there are solutions Xi =
XT

i > 0 and Yi (i ∈ S) to the following LMIs




Mi1 Mi2 Mi3

MT
i2 −Mi4 0

MT
i3 0 −Mi5



 < 0, (3.15)

where

Mi1 = AiXi + FiYi +XiA
T
i + Y T

i FT
i + γiiXi,

Mi2 = [XiB
T
1i, · · · , XiB

T
mi],

Mi3 = [
√
γi1Xi, · · · ,√γi(i−1)Xi,

√
γi(i+1)Xi, · · · ,

√
γiNXi],

Mi4 = diag[Xi, · · · , Xi],

Mi5 = diag[X1, · · · , Xi−1, Xi+1, · · · , XN ].

Then by setting Qi = X−1
i , Gi = YiX

−1
i and Di =

FiGi, the controlled SDE (2.4) will be exponentially

stable in mean square if τ > 0 is sufficiently small for

λ > 2λτ + 2λMµτ .

Proof. We first observe that by the well-known Schur

complements (see e.g. [17]), the LMIs (3.15) are

equivalent to the following matrix inequalities

AiXi + FiYi +XiA
T
i + Y T

i FT
i + γiiXi

+

m
∑

k=1

XiB
T
kiX

−1
i BkiXi +

N
∑

j 6=i

γijXiX
−1
j Xi < 0.

(3.16)

Recalling that Gi = YiX
−1
i and Xi = XT

i , we have

AiXi + FiGiXi +XiA
T
i +XiG

T
i F

T
i

+

m
∑

k=1

XiB
T
kiX

−1
i BkiXi +

N
∑

j=1

γijXiX
−1
j Xi < 0.

(3.17)

c© 2017 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
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Multiplying X−1
i from left and then from right, and

noting Qi = X−1
i , Di = FiGi, we see that the matrix

inequalities (3.18) are equivalent to the following

matrix inequalities

QiAi +QiDi +AT
i Qi +DT

i Qi+

m
∑

k=1

BT
kiQiBki +

N
∑

j=1

γijQj < 0, (3.18)

which yields matrices in (3.6) are all negative-definite.

Again, the required assertion follows directly from

Theorem 3.3.

4. Stabilization of nonlinear hybrid SDEs

Let us now develop our theory to cope with the

more general nonlinear stabilization problem. For an

unstable nonlinear hybrid SDE

dx(t) =f(x(t), r(t), t)dt+ g(x(t), r(t), t)dw(t) (4.1)

on t ≥ 0 with the initial data x(0) = x0 ∈
L2
F0

(Rn). Here, f : Rn × S ×R+ → Rn and

g : Rn × S ×R+ → Rn×m. Assume that both f
and g are globally Lipschitz continuous and hence obey

the linear growth condition (see e.g. [17]).

Assumption 4.1 Assume that the coefficients f and g
are globally Lipschitz continuous (see e.g. [7, 8, 9, 17]).

That is, we have

|f(x, i, t)− f(y, i, t)| ≤ K1|x− y|
and |g(x, i, t)− g(y, i, t)| ≤ K2|x− y|, (4.2)

for all (x, i, t), (y, i, t) ∈ Rn × S ×R+, where both K1

and K2 are positive numbers.

We also assume that f(0, i, t) = 0 and g(0, i, t) = 0
for all i ∈ S and t ≥ 0 so that x = 0 is an equilibrium

point for (4.1).

Hence, f, g satisfy the following linear growth

condition as stated in Assumption 4.3 with δ1 = K2
1 and

δ2 = K2
2 .

We are required to design a linear feedback control

F (r(t))G(r(t))x(δ(t)) based on the discrete-time state

and mode observations in the drift part so that the

controlled system

dx(t) = [f(x(t), r(t), t) + F (r(t))G(r(t))x(δ(t))]dt

+ g(x(t), r(t), t)dw(t) (4.3)

will be mean-square exponentially stable. Defining ζ :
[0,∞) → [0, τ ] by

ζ(t) = t− vτ for vτ ≤ t < t(v + 1)τ, (4.4)

and v = 0, 1, 2, · · · , then we see that the SDE (4.3) can

be written as an SDDE

dx(t) = [f(x(t), r(t), t)+

F (r(t− ζ(t)))G(r(t− ζ(t)))x(t− ζ(t))]dt

+ g(x(t), r(t), t)dw(t). (4.5)

It is therefore known (see e.g. [17]) that equation (4.3)

has a unique solution x(t) such that E|x(t)|2 < ∞ for

all t ≥ 0.

In order to stabilize a nonlinear system by a linear

control, we impose some conditions on the nonlinear

coefficients f and g as follows.

Assumption 4.2 For each i ∈ S, there is a pair of

symmetric n× n-matrices Qi and Q̂i with Qi being

positive-definite such that

2xTQif(x, i, t) + gT (x, i, t)Qig(x, i, t) ≤ xT Q̂ix

for all (x, i, t) ∈ Rn × S ×R+.

Assumption 4.3 There is a pair of positive constants

δ1 and δ2 such that

|f(x, i, t)|2 ≤ δ1|x|2 and |g(x, i, t)|2 ≤ δ2|x|2

for all (x, i, t) ∈ Rn × S ×R+.

Let us first present a useful lemma.

Lemma 4.4 Let Assumption 4.3 hold. Set

δ3 = max
i∈S

m
∑

k=1

‖FiGi‖2,

and define

H(τ) = [6τ(τδ1 + δ2) + 3τ2δ3]e
6τ(τδ1+δ2) (4.6)

for τ > 0. If τ is sufficiently small for 2H(τ) < 1, then

the solution x(t) of the SDE (4.3) satisfies

E|x(t)− x(δ(t))|2 ≤ 2H(τ)

1− 2H(τ)
E|x(t)|2 (4.7)

for all t ≥ 0.

This lemma can be proved in the same way as

Lemma 3.1 was proved so we omit the proof.
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Theorem 4.5 Let Assumptions 4.2 and 4.3 hold.

Assume that the following LMIs

Ui :=Q̂i +QiFiGi +GT
i F

T
i Qi

+

N
∑

j=1

γijQj < 0, i ∈ S, (4.8)

have their solutions Fi (i ∈ S) in the case of feedback

control (i.e. Gi’s are given), or their solutions Gi in the

case of output injection (i.e. Fi’s are given). Set

−γ := max
i∈S

λmax(Ui) and δ4 = max
i∈S

‖QiFiGi‖2,

δ5 = max
i,j∈S

‖FiGi − FjGj‖2.

If τ is sufficiently small for γ > 2γτ + 2λMητ , where

γτ :=

√

2δ4H(τ)

1− 2H(τ)
, ητ :=

√

2δ5(1− e−γ̄τ )

1− 2H(τ)
(4.9)

then the solution of the SDE (4.3) satisfies

E|x(t)|2 ≤ λM

λm

E|x0|2e−θt, ∀t ≥ 0, (4.10)

where H(τ) has been defined in Lemma 4.4 and

λM = max
i∈S

λmax(Qi), λm = min
i∈S

λmin(Qi),

θ =
γ − 2γτ − 2λMητ

λM

. (4.11)

Proof. This theorem can be proved in a similar way

as Theorem 3.3 was proved so we only give the

key steps. Applying the generalized Itô formula to

xT (t)Q(r(t))x(t) we get

d[xT (t)Q(r(t))x(t)]

=
(

xT (t)U(r(t))x(t)

−2xT (t)Q(r(t))F (r(t))G(r(t))(x(t)− x(δ(t)))

−2xT (t)Q(r(t))

F (r(t)− r(δ(t)))G(r(t)− r(δ(t)))x(δ(t))
)

dt

+dM3(t),

where M3(t) is a martingale with M3(0) = 0.

Applying the generalized Itô formula further to

eθtxT (t)Q(r(t))x(t), we can then obtain

λmeθtE|x(t)|2

≤λME|x0|2 +
∫ t

0

(θλM − γ)eθsE|x(s)|2ds

+

∫ t

0

2eθs
√

δ4 E(|x(s)||x(s)− x(δ(s))|)ds

+

∫ t

0

2E
(

eθsxT (s)Q(r(s))(F (r(s))G(r(s))

−F (r(δ(s)))G(r(δ(s))))x(δ(s))
)

ds. (4.12)

But, by Lemma 4.4, we can show

2
√

δ4 E(|x(s)||x(s)− x(δ(s))|) ≤ 2γτE|x(s)|2,
(4.13)

while by Lemma 3.2 and (4.9) we can prove that

2E
(

eθsxT (s)Q(r(s))(F (r(s))G(r(s))

−F (r(δ(s)))G(r(δ(s))))x(δ(s))
)

≤2eθsλMητE|x(s)|2. (4.14)

Substituting this into (4.12) yields

λmeθtE|x(t)|2 ≤ λME|x0|2,

which implies the desired assertion (4.10). The proof is

complete. 2

To apply Theorem 4.5, we need two steps:

1 we first need to look for the 2N matrices Qi and

Q̂i for Assumption 4.2 to hold;

2 we then need to solve the LMIs in (4.8) for their

solutions Fi (or Gi).

There are available computer softwares e.g. Matlab for

step 2 so in the remaining part of this section we will

develop some ideas for step 1. To make our ideas more

clear, we will only consider the case of feedback control,

but the same ideas work for the case of output injection.

In theory, it is flexible to use 2N matrices Qi and

Q̂i in Assumption 4.2. But, in practice, it means more

work to be done in finding these 2N matrices. It is in

this spirit that we introduce a stronger assumption.

Assumption 4.6 There are N + 1 symmetric n× n-

matrices Z and Zi (i ∈ S) with Z > 0 such that

2xTZf(x, i, t) + gT (x, i, t)Zg(x, i, t) ≤ xTZix

for all (x, i, t) ∈ Rn × S ×R+.

c© 2017 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
Prepared using asjcauth.cls



8 Asian Journal of Control, Vol. 00, No. 0, pp. 1–10, Month 2017

Under this assumption, if we let Qi = qiZ and Q̂i =
qiZi for some positive numbers qi, then Assumption 4.2

holds. Moreover, the LMIs in (4.8) become

qiZi + qiZFiGi + qiG
T
i F

T
i Z

+

N
∑

j=1

γijqjZ < 0, i ∈ S.

If we set Yi := qiFi, then these become the following

LMIs in qi and Yi:

qiZi + ZYiGi +GT
i Y

T
i Z

+

N
∑

j=1

γijqjZ < 0, i ∈ S. (4.15)

We hence have the following corollary.

Corollary 4.7 Let Assumptions 4.6 and 4.3 hold.

Assume that the LMIs (4.15) have their solutions qi >
0 and Yi (i ∈ S). Then Theorem 4.5 holds by setting

Qi = qiZ, Q̂i = qiZi and Fi = q−1
i Yi. In other words,

the controlled SDE (4.3) will be exponentially stable in

mean square if we set Fi = q−1
i Yi and make sure τ > 0

be sufficiently small for γ > 2γτ + 2λMητ .

An even simpler (but in fact stronger) condition is:

Assumption 4.8 There are constants zi (i ∈ S) such

that

2xT f(x, i, t) + |g(x, i, t)|2 ≤ zi|x|2

for all (x, i, t) ∈ Rn × S ×R+.

Under this assumption, if we let Qi = qiI and Q̂i =
qiziI for some positive numbers qi, where I is the n× n
identity matrix, then Assumption 4.2 holds. Moreover,

the LMIs in (4.8) become

qiziI + qiFiGi + qiG
T
i F

T
i

+

N
∑

j=1

γijqjI < 0, i ∈ S.

If we set Yi := qiFi, then these become the following

LMIs in qi and Yi:

qiziI + YiGi +GT
i Y

T
i

+

N
∑

j=1

γijqjI < 0, i ∈ S. (4.16)

We hence have another corollary.

Corollary 4.9 Let Assumptions 4.8 and 4.3 hold.

Assume that the LMIs (4.16) have their solutions qi >
0 and Yi (i ∈ S). Then Theorem 4.5 holds by setting

Qi = qiI , Q̂i = qiziI and Fi = q−1
i Yi. In other words,

the controlled SDE (4.3) will be exponentially stable in

mean square if we set Fi = q−1
i Yi and make sure τ > 0

be sufficiently small for γ > 2γτ + 2λMητ .

5. Example

Let us consider an unstable linear hybrid SDE

dx(t) = A(r(t))x(t)dt+B(r(t))x(t)dw(t) (5.1)

on t ≥ t0. Here w(t) is a scalar Brownian motion; r(t)
is a Markov chain on the state space S = {1, 2} with the

generator

Γ =

[

−1 1
1 −1

]

;

and the system matrices are

A1 =

[

1 −1
1 −5

]

, A2 =

[

−5 −1
1 1

]

,

B1 =

[

1 1
1 −1

]

, B2 =

[

−1 −1
−1 1

]

.

The computer simulation (Fig. 1) shows this hybrid

SDE is not mean square exponentially stable.

Let us now design a discrete-time-state feedback

control to stabilize the system. Assume that the

controlled hybrid SDE has the form

dx(t) = [A(r(t))x(t) + F (r(δ(t)))G(r(δ(t)))x(δ(t))]dt

+B(r(t))x(t)dw(t), (5.2)

where

G1 = [1, 0], G2 = [0, 1].

Our aim is to find F1 and F2 in R2×1 and then make

sure τ is sufficiently small for this controlled SDE to be

exponentially stable in mean square. To apply Corollary

3.4, we first find that the following LMIs

Q̄i :=QiAi + YiGi +AT
i Qi +GT

i Y
T
i +BT

i QiBi

+

2
∑

j=1

γijQj < 0, i = 1, 2,

have the following set of solutions

Q1 =

[

1 0
0 2

]

, Q2 =

[

2 0
0 1

]

,
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Fig. 1. Computer simulation of the paths of r(t), x1(t) and x2(t) for
the hybrid SDE (5.1) using the Euler–Maruyama method with
step size 10−6 and initial values r(0) = 1, x1(0) = −2 and
x2(0) = 1.

and

Y1 =

[

−10
0

]

, Y2 =

[

0
−10

]

,

and for these solutions we have

Q̄1 =

[

−7 0
0 −1

]

, Q̄2 =

[

−1 0
0 −7

]

.

Hence, we have

−λ = max
i=1,2

λmax(Q̂i) = −1, MY G = max
i=1,2

‖YiGi‖2 = 100.

It is easy to compute that

MA = 27.42, MB = 2, MD = 100, MQD = 100, ND = 100.

Hence

λτ =

√

200K(τ)

1− 2K(τ)
, µτ =

√

200(1− e−γ̄τ )

1− 2K(τ)

where K(τ) = [6τ(27.42τ + 2) + 300τ2]e6τ(27.42τ+2).

By calculating, we get that λ > 2λτ + 2λMµτ when-

ever τ < 0.000015. By Corollary 3.4, if we set F1 =
Y1 and F2 = Y2, and make sure that τ < 1.5× 10−5,

then the discrete-time-state feedback controlled hybrid

SDE (5.2) is mean-square exponentially stable. The

computer simulation (Fig. 2) supports this result clearly.
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Fig. 2. Computer simulation of the paths of r(t), x1(t) and x2(t)
for the controlled hybrid SDE (5.2) with τ = 10−3 using the
Euler–Maruyama method with step size 10−6 and initial values
r(0) = 1, x1(0) = −2 and x2(0) = 1.

6. Conclusion

In this paper, we have proved that unstable linear

hybrid SDEs, in the form of (2.1), can be stabilized by a

feedback control based on discrete-time state and mode

observations. Moreover, we have generalised the theory

to a class of nonlinear systems.
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