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Abstract: hy2Foam is a newly-coded open-source two-temperature computational fluid dynamics
(CFD) solver that has previously been validated for zero-dimensional test cases. It aims at (1) giving
open-source access to a state-of-the-art hypersonic CFD solver to students and researchers; and
(2) providing a foundation for a future hybrid CFD-DSMC (direct simulation Monte Carlo) code
within the OpenFOAM framework. This paper focuses on the multi-dimensional verification of
hy2Foam and firstly describes the different models implemented. In conjunction with employing the
coupled vibration-dissociation-vibration (CVDV) chemistry–vibration model, novel use is made of
the quantum-kinetic (QK) rates in a CFD solver. hy2Foam has been shown to produce results in good
agreement with previously published data for a Mach 11 nitrogen flow over a blunted cone and with
the dsmcFoam code for a Mach 20 cylinder flow for a binary reacting mixture. This latter case scenario
provides a useful basis for other codes to compare against.

Keywords: hypersonics; computational fluid dynamics; two-temperature solver; OpenFOAM;
verification; direct simulation Monte Carlo

1. Introduction

The Knudsen number, defined as the ratio of the mean free path of the gas particles to the
characteristic length of the problem, is commonly employed to gauge the degree of rarefaction of a
gas. During the entry of a planetary atmosphere at hypervelocities, a craft will traverse the full range
of the Knudsen number, from the free-molecular regime down to the continuum regime. Practically,
this translates into the need for different numerical techniques to resolve the flow-field past such
hypersonic bodies.

The direct simulation Monte Carlo (DSMC) method developed by Bird [1] is a particle-based
methodology that is particularly well-suited for computing high Knudsen number flows, typically
above 0.05, while the conventional computational fluid dynamics (CFD) approach that solves the
Navier–Stokes–Fourier (NSF) equations is generally adopted for the lower range, below 0.005.
In between lies an intermediate zone where DSMC is computationally prohibitive and where
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conventional CFD fails due to the presence of non-continuum regions within the flow-field. To extend
the range of applicability of the NSF equations towards the continuum–transition regime, Park
formulated the two-temperature CFD model [2], thus distinguishing the trans-rotational energy pool
from the vibro-electronic energy pools and modelling the energy exchange processes via vibrational
rate equations.

Open-source solvers dedicated to the study of the hypersonic regime are very scarce. Among such
codes are hy2Foam and dsmcFoam. hy2Foam [3] is a new two-temperature CFD solver developed at the
University of Strathclyde [4,5] within the framework of the open-source CFD platform OpenFOAM [6].
It aims at (1) giving open-source access to a state-of-the-art hypersonic CFD solver to students and
researchers; and (2) providing a foundation for a future hybrid CFD-DSMC code [7].

For rarefied gas flow environments, OpenFOAM possesses a DSMC solver called dsmcFoam

that has been developed and validated at the same University [8,9]. The two main features of
dsmcFoam are that vibrational-translational post-collision energy redistribution is executed using
a quantum version of the Larsen–Borgnakke procedure [8,10] and that chemical reactions are described
by Quantum-Kinetic (QK) theory, as initially proposed by Bird [11].

The primary objective of this paper concerns the verification and validation of hy2Foam for
multi-dimensional case scenarios. The secondary goal is the assessment, for a two-dimensional
gas flow, of one of the conclusions formulated in [5], namely that the combination of a particular
chemistry–vibration model with chemical rates derived from QK theory provides a satisfactory
consistency between the CFD and DSMC codes.

2. Methodology

This section essentially describes the state-of-the-art numerical procedures that have been
implemented in hy2Foam to solve hypervelocity flow-fields in near-thermal equilibrium.

2.1. Non-Equilibrium Navier–Stokes–Fourier Equations

The computation of transient hypersonic reacting flows in the continuum regime traditionally
employs the non-equilibrium Navier–Stokes–Fourier (NSF) equations. These are shown below in
flux–divergence form using a Cartesian coordinate system for a mixture composed of Ns species,
including Nm molecules [12]:

∂U

∂t
+

∂ (F i, inv −F i, vis)

∂xi
= Ẇ . (1)

The vector of conserved quantities, U , is defined as

U = (ρ, ρs, ρu, ρv, ρw, Eve,m, E)T , s ∈ Ns , m ∈ Nm, (2)

where u, v, and w are the components of the velocity vector. ρ is the mass density of the fluid and ρs is
the partial density of species s. The flux vectors are split into inviscid and viscous contributions and
are written as follows:

F i, inv =



























ρui

ρsui
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F i, vis =
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, (4)

where the index i refers to one of the three dimensions of space and δ is the Kronecker delta. E and Eve,m

represent, respectively, the total energy and the total vibro-electronic energy for molecule m. In the
remainder of the article, the index tr denotes the trans-rotational energy mode, ve the vibro-electronic
energy mode and e the electron energy mode. hs is the enthalpy per unit mass of species s, while the
pressure, p, is recovered from the partial pressures using Dalton’s law

p = ∑
s 6=e

ps + pe = ∑
s 6=e

(ρs Rs Ttr) + ρe Re Tve,ref, (5)

where Rs is the specific gas constant. Finally, the electron temperature is set to the vibro-electronic
temperature of a reference particle, Tve,ref.

In Equation (4), τij represent the components of the viscous stress tensor, which can be written
as follows:

τij = µ

(

∂ui

∂xj
+

∂uj

∂xi

)

+ (λ + µb)
∂uk

∂xk
δij, (6)

where µ is the shear viscosity, λ is the second viscosity coefficient, and µb is the bulk viscosity. This
work assumes that Stokes’ hypothesis is valid, namely that µb = 0 and that the shear and second
viscosity are not independent quantities but given by the relation λ = − 2

3 µ. In hy2Foam, the species
shear viscosities can be considered as temperature-independent, or either set to follow Blottner’s
formula [13] or a power law. The spatial components of the heat conduction vector are assumed to
follow Fourier’s law

qtr,i = ∑
s

qtr,i,s = ∑
s

− κtr,s
∂Ttr

∂xi
for s ∈ Ns \ {e} (7)

and

qve,i = ∑
s

qve,i,s = ∑
s

− κve,s
∂Tve,s

∂xi
for s ∈ Ns. (8)

The thermal diffusivities κtr,s and κve,s can be considered as temperature-independent, or set
to follow Eucken’s formula [12,14]. Mixture quantities are recovered from species quantities using
a mixing rule. The Wilke [15], Gupta [16], and Armaly and Sutton [17] mixing rules have been
implemented, and the latter one is being used in this work, as recommended in the review of Palmer
and Wright [18].

The diffusion fluxes, Js, i, are governed by Fick’s law with a correction term to ensure mass
conservation [19]

Js, i = Is, i − Ys ∑
r 6=e

Ir, i, for s, r ∈ Ns \ {e},

= Me ∑
r 6=e

Cr ×Jr, i

Mr
otherwise,

(9)
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with

Is, i = −ρDs
∂Ys

∂xi
, (10)

where Y is the mass-fraction and with the effective diffusion coefficient of species s in the mixture
defined as [20]

Ds = (1 − Xs)

(

∑
r 6=s

Xr

Ds,r

)−1

for s, r ∈ Ns \ {e}, (11)

in which X is the molar-fraction, Cr represents the charge of species r and M is the molecular weight.
The binary diffusion coefficients, Ds,r, are modelled using binary collision integrals ∆s,r as [21]

Ds,r =
kB Ttr

p ∆s,r
. (12)

Finally, the source term vector, Ẇ , is written as

Ẇ =
(

0, ω̇s, 0, 0, 0, ω̇v,m, 0
)T

, (13)

where ω̇s is the net mass production of species s and ω̇v,m, for m ∈ Nm, is defined as follows:

ω̇v,m = Qm,V−T
+ Qm,V−V

+ Qm,C−V
+ Qm,e−V

, if the reference molecule for e is not m,
= Qm,V−T

+ Qm,V−V
+ Qm,C−V

+ Qm,e−V
+ Qh−e + Qe−i + U · ∇pe otherwise,

(14)

where U represents the velocity vector. The meaning of the different vibrational source terms that
appear in Equation (14) is given in the subsequent paragraphs.

2.2. Energy Transfers

The decomposition of the total energy, E, as shown in Equation (15), allows the isolation of
different energy pools, each of them being described by a specific temperature and exchanging energy
with the other pools:

E =
1
2

ρ ∑
i

u2
i + ∑

s 6=e

Et,s + ∑
s 6=e

Er,s + ∑
s 6=e

Ev,s + ∑
s 6=e

Eel,s + Ee + ∑
s 6=e

ρsh
◦

s . (15)

In order of appearance in Equation (15) are the kinetic, translational (index t), rotational (r),
vibrational (v), electronic (el), electron (e), and chemical energies. ui are the spatial components of the
velocity vector and h

◦

s is the standard enthalpy of formation of species s. The relationship between the
total energy of a specific mode and the energy per unit mass of species s is given in Equation (16) for
the electronic energy mode

Eel = ∑
s 6=e

Eel,s = ∑
s 6=e

ρs eel,s (16)

and the different energies per unit mass of species are detailed below for each mode:

et =
3
2

Rs Ttr, (17)

er = Rs Ttr, (18)
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ev,s = Rs
θv,s

exp
(

θv,s
Tve,s

)

− 1
, (19)

ee = Re Tve,ref, (20)

eel,s = Rs

∞

∑
i=1

gi,s θel,i,s exp (−θel,i,s/Tve,s)

∞

∑
i=0

gi,s exp (−θel,i,s/Tve,s)

. (21)

The simple harmonic oscillator model [11] is utilized for the vibrational mode, with θv,s being the
characteristic vibrational temperature for species s. θel,i,s and gi,s are the characteristic electronic
temperature and the degeneracy degree of a given electronic state i for species s, respectively.
The two-temperature model formulation adopted in hy2Foam then consists in rewriting Equation (15)
as follows:

E =
1
2

ρ ∑
i

u2
i + Etr + ∑

s 6=e

Eve,s + Ee + ∑
s 6=e

ρsh
◦

s (22)

with

Etr = Et + Er (23)

and

Eve,s = Ev,s + Eel,s. (24)

The vibrational source terms introduced into the NSF equations in the preceding paragraph are
now described in sequence. The energy exchange between the trans-rotational and the vibro–electronic
energy modes (V–T), designated by Qm,V−T

, is dictated by the Landau–Teller equation [22] and may be
written as

Qm,V−T
= ρm

∂eve,m(Tve,m)

∂t
= ρm

eve,m(Ttr)− eve,m(Tve,m)

τm,V−T

m ∈ Nm, (25)

where τm,V−T
is the molar-averaged V–T relaxation time. This former quantity is evaluated as the

summation of the Millikan and White semi-empirical correlation [23] and Park’s correction factor [2],
and later denoted as MWP. It becomes

τm,V−T
=

∑
s 6=e

Xs

∑
s 6=e

Xs/τm−s,V−T

m ∈ Nm, (26)

where X is the species molar-fraction and τm−s,V−T
is the interspecies relaxation time expressed as

τm−s,V−T
=

1
p

exp
[

Am,s

(

T−1/3
tr − Bm,s

)

− 18.42
]

+
1

c̄m σv,m nm,s
with p in atm. (27)

For a given colliding pair (m, s), the tabulated values of Am,s and Bm,s used in this paper can be
found in [4]. The collision-limited relaxation time introduced by Park [2] is a function of the average
molecular speed, c̄m, the limited collision cross-section, σv,m, and the number density of the colliding
pair, nm,s.
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The second V–T model tested in this work is the SSH theory named after Schwartz, Slawsky, and
Herzfeld [24]. The coefficients of this latter model are taken from the work of Thivet [25] and a blended
model is created with the MWP formulation for molecule-atom collisions.

Vibrational–vibrational (V–V) energy transfer is denoted by Qm,V−V
and modelled according to the

formulation given by Knab et al. [26,27], as described in [4]. In Equation (14), Qh−e, Qm,e−V
, and Qe−i

stand for the energy exchange between free-electrons and heavy-particles, free-electrons and the
vibrational mode, and the vibrational energy removal due to electron impact ionisation, respectively.
They are assumed to be zero in this work. The term in U · ∇pe represents an approximation to the
work done on the electrons by the electric field induced by the electron pressure gradient [28]. Finally,
the vibro-electronic energy added or removed by chemical reactions to species m, and represented by
Qm, C−V

, is modelled either with the Park TTv model [2] or the coupled vibration-dissociation-vibration
(CVDV) model in hy2Foam [4].

2.3. Departure from the Continuum Regime

The local gradient-length Knudsen number introduced by Boyd [29] is often used as a breakdown
parameter in the literature (e.g., in [30–33]). For a local macroscopic flow quantity φ, it is written as

KnGLL−φ =
λ

φ
|∇φ|, (28)

where λ is the local mean free path of the gas molecules and φ can either be the gas density, the
temperature, or the magnitude of the velocity vector |U| (or max (|U|, a) in the denominator, where a

is the speed of sound for low-speed regions [34]). The degree of local continuum breakdown is then
evaluated as the maximum for all of the aforementioned flow quantities

KnGLL = max
(

KnGLL−ρ, KnGLL−Ttr
, KnGLL−Tve

, KnGLL−|U|

)

, (29)

and the regions where the continuum assumption does not hold are identified when KnGLL exceeds
a given breakdown value, KnBr, typically being taken equal to 0.05. This parameter is key in hybrid
CFD-DSMC codes.

3. Results and Discussion

3.1. Mach 11.3 Blunted Cone

In this section, a non-reacting nitrogen flow past a blunted cone is examined at Mach 11.3.
The case is composed of a 6.35 mm-radius nose followed by a flat plate forming a 25◦ angle with the
free-stream flow direction and whose streamwise extension is 5 cm. The 2D axisymmetric mesh that
has been employed is shown in Figure 1. The structured grid is aligned with the bow shock and
consists of 600 by 200 cells. The first spacing at the wall surface is set to 2µm by default and to 10µm
for comparison purposes.

Figure 1. Mesh for the blunted cone (each 5th line is represented in each direction).
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The initial conditions of this case scenario are given in Table 1. The free-stream velocity
corresponding to a Mach number of 11.3 is 2764.5 m/s. The free-stream temperature and pressure are
144.4 K and 21.9 Pa, respectively. The wall is assumed to be isothermally heated to a temperature of
297.2 K. This simulation uses the MWP formulation for V–T energy exchange and the Blottner and
Eucken formulas to compute transport properties. The variable hard sphere model is chosen for the
calculation of the mean-free-path and the Knudsen number is computed using the streamwise extent
of the cone as the characteristic length. The non-equilibrium boundary conditions employed at the
cone surface are the first-order Smoluchowski temperature jump [35] and Maxwell velocity slip [36],
with the accommodation coefficients being taken as equal to unity. The set-up for this case can be
found in the Supplementary Materials.

The hy2Foam solver uses the numerics present in the official OpenFOAM application
rhoCentralFoam [37], namely the KNP central-upwind schemes of Kurganov, Noelle and Petrova [38].
Hence, hy2Foam is first order accurate in time and second order accurate in space. Improving the
numerics of the solver to better capture the near-wall region notably is an ongoing area of research.
Convergence was achieved after 2.8 h of computations on the ARCHIE-WeSt (Academic and Research
Computer Hosting Industry Enterprise in the West of Scotland) High Performance Computer [39].
The run used 24 Intel Xeon X5650 2.66 GHz cores (Santa Clara, CA, USA) with 48 GB RAM and 4xQDR
Infiniband Interconnect computer-networking communications.

Table 1. Initial conditions for the Mach 11.3 blunted cone.

Quantity Value Unit

Free-stream velocity, U∞ 2764.5 m/s
Free-stream pressure, p∞ 21.9139 Pa
Free-stream density, ρ∞ 5.113 × 10−4 kg/m3

Free-stream temperature, T∞ 144.4 K
Free-stream mean-free-path, λ∞ 1.01 × 10−4 m
Overall Knudsen number, Knov 0.002 -
Wall temperature, Tw 297.2 K

This particular configuration has already been studied by Wang and Boyd [40], using the
MONACO DSMC code and a Navier–Stokes CFD solver from the University of Michigan. The results
from these simulations are reported in the subsequent graphs with the denomination DSMC: MONACO

and CFD: Michigan. Moreover, experimental data is also shown in Figure 2d,f and correspond to the
run 31 of the CUBRC (CUBRC Inc., Buffalo, NY, USA) experiments [41].

The emphasis is placed on stagnation line data and then on surface properties such as the pressure
coefficient, Cp, friction coefficient, C f , and Stanton number, St, respectively, given by

Cp =
p − p∞

0.5 ρ∞ U2
∞

, (30)

C f =
τ

0.5 ρ∞ U2
∞

, (31)

St =
q

0.5 ρ∞ U3
∞

, (32)

those essential aerothermodynamic quantities being shown in Figure 2d–f.
In Figure 2a–c, the pressure, temperature, and velocity stagnation line solutions given by the CFD

code of Wang and Boyd are very similar to the ones produced by hy2Foam. It can be seen in Figure 2a
that the vibrational mode is barely excited for this case scenario. The single-temperature model version
of hy2Foam gave the same results. The small discrepancies concerning the shock stand-off distance can
easily be explained by the difference in grid point density along the symmetry axis (indeed, the spatial
extension of the domain normal to the body adopted here is about 40% larger than the one in [40]) and
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by the use of a different viscosity model (the power law was used in [40]). As it is the case in most
simulations of hypersonic flow-fields, the bow shock thickness given by the NSF equations is clearly
under-predicted, as shown by the different DSMC profiles.
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Figure 2. (a–c) Stagnation line profiles, and (d–f) surface quantities along the blunted cone;
(a) normalised temperature; (b) normalised mass density; (c) normalised velocity; (d) pressure
coefficient; (e) friction coefficient; (f) Stanton number.

Once again in Figure 2d–f, an excellent agreement is found between hy2Foam and the Michigan
NSF solver as the profiles of the surface quantities are shown to be superimposed with a first spacing
of 10µm. If the mesh is further refined to 2µm, a small decrease in the Stanton number is observed.
In conclusion, it is thought that the mesh used in [40] had a first spacing close to 10µm.
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The variable hard sphere mean-free-path computed by hy2Foam in the wall vicinity is of the
order of 2µm. Good DSMC practice dictates that the mean-free-path to cell-size ratio should exceed
one so one could argue that the DSMC mesh employed might not be fine enough near the wall to
accurately capture the surface aerothermodynamic coefficients along the body, e.g., the peak amplitude
of the skin-friction.

Finally, this case is a good illustration that a hypersonic simulation can now be carried out using
open-source packages all the way from pre- to post-processing using Gmsh (version 2.11.0) [42] as
a mesher, hy2Foam as a solver, Paraview [43] (version 4.1.0, Sandia Corporation, Albuquerque, NM,
USA and Kitware Inc., Clifton Park, NY, USA) as a visualization utility, and Gnuplot [44] (version 5.0)
as a grapher.

3.2. Mach 20 Cylinder

This section focuses on the hypersonic Mach 20 flow of nitrogen over a two-dimensional circular
cylinder of radius R = 1 m. A symmetry plane exists about the y = 0 plane allowing the modelling
solely of the upper half of the domain to be considered. The streamwise extent of the computational
domain spans from −1.8 m to 5 m and the initial conditions are listed in Table 2.

A free-stream velocity of 6047 m·s−1 is applied with a free-stream pressure of 0.89 Pa and
temperature T∞ = 220 K. Such a temperature is high enough to result in a vibrationally-excited and
chemically active flow-field. The cylinder wall is held at a uniform temperature of 1000 K. The overall
Knudsen number of 0.0022 lies in the lower range of the continuum-transition regime; however, the
gas locally may lie in the transition regime.

Table 2. Initial conditions for the Mach 20 cylinder.

Quantity Value Unit

Free-stream velocity, U∞ 6047 m/s
Free-stream pressure, p∞ 0.89 Pa
Free-stream density, ρ∞ 1.363 × 10−5 kg/m3

Free-stream temperature, T∞ 220 K
Free-stream mean-free-path, λ∞ 4.45 × 10−3 m
Overall Knudsen number, Knov 0.0022 -
Wall temperature, Tw 1000 K

The mesh used in this investigation is shown in Figure 3 and was constructed using Ansys ICEM
(Integrated Computer Engineering and Manufacturing) CFD (Canonsburg, PA, USA) [45]. This mesh
consists of 155,000 cells with the first cell spacing at the cylinder wall set to 2 microns. Both Maxwellian
velocity slip and Smoluchowski temperature jump boundary conditions were applied at the walls
with the accommodation coefficient equal to 1.

Figure 3. Mesh for the cylinder (each 5th line is represented in each direction).
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For the shear viscosity and the thermal conductivity, the Blottner and Eucken formulae were
applied, respectively, while the mixing rule employed was that of Armaly and Sutton. Both MWP and
SSH formulations are successively used for V–T energy transfer for comparison purposes. The different
set-ups are summarised in Table 3 together with a run identification number.

Table 3. Computational fluid dynamics (CFD) simulations performed.

Run Number V–T Transfer Electronic Mode CV Model Rates

1 MWP no CVDV QK
2 SSH no CVDV QK
3 MWP no Park TTv Park

Two chemical reactions were also considered, these being the irreversible molecule–molecule and
molecule–atom dissociation of nitrogen

N2 + N2 −−→ 2 N + N2,
N2 + N −−→ 2 N + N.

The Arrhenius rate constants are shown in Table 4 in which the units of A and Ta are given in
m3·mol−1·s−1 and Kelvin, respectively. They are derived from the QK theory [8] and Park’s rates for
use in a two-temperature CFD solver [2].

Finally, two configurations associating a chemistry–vibration model with a set of chemical rates
have been studied. The first one is called CVDV-QK and has been tested for zero-dimensional heat
bath scenarios only [4]. The second configuration, subsequently named Park, is the one conventionally
used in hypersonics and combines the Park TTv model with Park’s rates. The set-up for this case can
be found in the Supplementary Materials.

Table 4. Parameters for the evaluation of the forward rate constant.

Reaction Rate
Reaction Arrhenius Law Constants

Colliding Partner A β Ta

Quantum-Kinetics (QK)
N2 2.47 × 1018 −0.62 113,500
N 6.02 × 1018 −0.68 113,500

Park
N2 7.0 × 1021 −1.6 113,200
N 3.0 × 1022 −1.6 113,200

The DSMC configuration is provided in [5], and good DSMC practice was satisfied for both the
mesh and time-step. In the DSMC mesh, a total of 5.5 million cells were employed, which were filled
with over 80 million equivalent DSMC particles at steady-state. Non-reacting case scenarios were
also executed in [5], and the analysis will not be repeated here, although some of the results will be
reported in the following graphs and tables.

The departure from local thermodynamic equilibrium is shown in Figure 4a for the CFD run
number 2 using the local gradient-length Knudsen number. Dark grey and black colours indicate
KnGLL values beyond 0.05 and cover, as expected, the bow shock and the near-wake areas. Similar
results were found for the other runs.

The Mach and trans-rotational temperature fields given by hy2Foam and dsmcFoam in Figure 4b,c
compare well in the compression region, for x < 0. In the wake of the cylinder, however, Ttr is generally
smaller using DSMC. Unlike the non-reacting simulation that demonstrated a good agreement for
the vibrational temperature field in the compression area [5], the discrepancies in Figure 4d are much
larger this time in the whole domain when compared with DSMC. This can be explained by the
application of the QK theory to capture the chemistry–vibration coupling and the use of the quantum
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Larsen–Borgnakke method in dsmcFoam, which promotes a quicker energy harmonisation in expansion
regions (where Tv > Ttr) as reported in [4] using a zero-dimensional analysis. The Park combination
used in run 1 is the instance that provides less accurate results with local vibrational temperatures
above 10,000 K.

(a) (b)

(c) (d)

Figure 4. Computational fluid dynamics-direct simulation Monte Carlo (CFD-DSMC) flow-field
comparisons for run number 2. In (b–d): the dsmcFoam solution is represented in the upper half and
the hy2Foam solution in the lower half. (a) Local gradient-length Knudsen number; (b) Mach number;
(c) trans-rotational temperature; and (d) vibrational temperature.

Figure 5a–c compares the stagnation line profiles of Mach number, temperature, and number
density given by hy2Foam and dsmcFoam. It is normally evident that the bow shock is more diffuse
when using the DSMC method compared with CFD. However, it is evident that the shock stand-off
distances are almost identical using both solvers and are approximately equal to 0.25 m, which
is about 5 cm closer to the body than for the non-reacting case [5]. The peak in trans-rotational
temperature is correctly determined using the CVDV-QK combination for both runs 1 and 2 and is
slightly over-predicted using the Park combination. As shown previously in Figure 4d, the trend in
vibrational temperature shows a steeper increase across the shock wave. In Figure 5c, the evolution of
the species number densities for all runs is in satisfactory agreement with dsmcFoam outside of the
KnGLL > 0.01 band. The early production of atomic nitrogen within the shock is not captured in the
CFD solver due to the slight difference in shock thickness prediction.
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Surface properties of pressure coefficient, skin friction and heat transfer are shown in Figure 5d–f
for both non-reacting (NR) and reacting simulations. There is a reasonable agreement between the
CFD and DSMC solvers for Cp and C f .
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Figure 5. (a–c): Stagnation line profiles. CFD run 1: black lines, run 2: red lines, run 3: blue lines.
(d–f): surface quantities around the cylinder. (a) Mach number; (b) temperature; (c) number density;
(d) pressure coefficient; (e) skin-friction coefficient; (f) surface heat flux.

The drag coefficient for each simulation is provided in Table 5, and this coefficient estimated by
hy2Foam represents less than 2% error when compared with dsmcFoam, and the reacting environment
does not significantly affect its magnitude. In addition, the values of hy2Foam and dsmcFoam are
reasonably close to the one predicted by the Newtonian theory that is 4/3. The integrated heat flux,
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CH , is however showing larger discrepancies between the two codes. There are several factors that
could explain this observation: (1) a KnGLL number greater than 0.1 all around the cylinder; (2) a
different treatment of the vibration-translational energy transfer between CFD and DSMC codes; and
(3) the use of the KNP numerical schemes in hy2Foam that are known for being too dissipative in the
near-wall region. It is also shown that the CVDV-QK association is producing a 27% larger integrated
heat flux as compared with dsmcFoam, while the Park combination overpredicts CH by 39%.

Table 5. Aerothermodynamic coefficients.

CFD Run Number
CD CH (kW)

CFD DSMC CFD DSMC

NR 1.3 1.286 106 115

1 1.302
1.284

81.0
63.32 1.302 80.5

3 1.304 88.1

CD is the drag coefficient and CH represents the integrated heat flux.

4. Conclusions

The newly-coded open-source two-temperature CFD solver hy2Foam has been extended to
simulate hypersonic multi-dimensional case scenarios. hy2Foam has shown to perform as well as a
Navier–Stokes CFD solver from the University of Michigan for a Mach 11 blunted cone, and to be in
satisfactory agreement with the dsmcFoam code for a Mach 20 flow of a binary reacting mixture around
a circular cylinder. For this latter case, the aerothermodynamic loads were better estimated using the
novel CVDV-QK model combination rather than the conventional Park combination, when compared
to the dsmcFoam code. This result reaffirms the predictions found using zero-dimensional cases in [4].
Finally, it is considered that the cylinder case scenario presented in this paper provides a useful basis
for other codes to compare against.

Future work for the extension of hy2Foam will include the development of an 11-species plasma
model for application in weakly-ionized flow environments. The discrepancies observed between
the CFD and DSMC codes for KnGLL numbers outwith the continuum regime will motivate the
development of an open-source hypersonic hybrid hydrodynamic-molecular gas flow solver using
both the dsmcFoam and hy2Foam codes [7].

Supplementary Materials: The following are available online at www.mdpi.com/2226-4310/3/4/45/s1.
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