
Strathprints Institutional Repository

Kokkinakis, Ioannis W. and Drikakis, Dimitris (2016) Near-wall behaviour 

of implicit large eddy simulations. In: ECCOMAS Congress 2016 - 

Proceedings of the 7th European Congress on Computational Methods 

in Applied Sciences and Engineering. National Technical University of 

Athens, pp. 1032-1045. ISBN 9786188284401 , 

This version is available at http://strathprints.strath.ac.uk/59680/

Strathprints is  designed  to  allow  users  to  access  the  research  output  of  the  University  of 

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights 

for the papers on this site are retained by the individual authors and/or other copyright owners. 

Please check the manuscript for details of any other licences that may have been applied. You 

may  not  engage  in  further  distribution  of  the  material  for  any  profitmaking  activities  or  any 

commercial gain. You may freely distribute both the url (http://strathprints.strath.ac.uk/) and the 

content of this paper for research or private study, educational, or not-for-profit purposes without 

prior permission or charge. 

Any  correspondence  concerning  this  service  should  be  sent  to  Strathprints  administrator: 

strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk


ECCOMAS Congress 2016 

 VII European Congress on Computational Methods in Applied Sciences and Engineering 

M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.) 

Crete Island, Greece, 5–10 June 2016 

NEAR-WALL BEHAVIOUR OF IMPLICIT LARGE EDDY 

SIMULATIONS 

Ioannis W. Kokkinakis1, and Dimitris Drikakis1 

1 University of Strathclyde 

Glasgow, G1 1XQ, UK 

e-mail: {ioannis.kokkinakis, dimitris.drikakis}@strath.ac.uk 

Keywords: Implicit Large Eddy Simulation (ILES), turbulent boundary layers, compressible 

flows. 

Abstract. This paper investigates the accuracy of implicit large eddy simulations (ILES) in 

compressible turbulent boundary layers (TBL). ILES are conducted in conjunction with Mon-

otonic Upstream-Centred Scheme for Conservation Laws (MUSCL) and Weighted Essentially 

Non-Oscillatory (WENO), ranging from 2nd to 9th-order. The excess artificial dissipation oc-

curring at low Mach numbers is counter-balanced by using low Mach corrections. The study 

concludes that high-order ILES provide accurate predictions of TBL even on relatively coarse 

grids.  
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1 INTRODUCTION 

Design processes in engineering applications require satisfying various degrees of con-

straints in order to adhere to design quality standards. Through careful planning and availabil-

ity of instrumentation/apparatus that conform to the necessary specifications, experimental 

results can indeed assist considerably during the design stage. However, most experiments are 

deemed cumbersome and require considerable time to plan, execute and later analyse. This is 

particularly true when a design cycle or optimization approach is required early on in the de-

sign phase. Furthermore, availability of diagnostic instrumentation limits the amount of useful 

information that can be extracted. 

Computational methods offer the possibility of a high turnover of results and ample 

amounts of available data, allowing for a plethora of variations to the initial design of a prod-

uct to be investigated. Though computational methods are increasingly becoming more popu-

lar and widely used, particularly in the early-on design phase of many engineering products, 

they are still treated with some caution and due care as the solutions provided can contain sig-

nificant inaccuracies. These are caused mostly by the number of assumptions associated with 

turbulence modelling as well as the excessive numerical dissipation of schemes particularly 

when simulations are performed on coarse grids. 

Though conducting ILES is deemed too computationally costly for use in most engineering 

design projects, it is only now, with the availability of evermore increasing computational 

power, that ILES is in its “infancy” in terms of use in wider industrial applications. Increasing 

the applicability of ILES requires increasing their accuracy in coarse grid simulations.  

Therefore, in this paper, the accuracy of high-order, shock-capturing schemes along with 

any caveats, are investigated in conjunction with ILES to near-wall turbulent boundary layer 

(TBL) flows. The effects of numerical dissipation for schemes with accuracy ranging from 2nd 

to 9th-order are investigated both in subsonic and supersonic TBL. The results show that high-

er order ILES schemes are particularly well suited for simulating TBL and prove resilient to 

the excess artificial dissipation in low Mach flow regions. 

2 METHODOLOGY 

The in-house block-structured grid code CNS3D is used to solve the Navier-Stokes equa-

tions using a finite volume Godunov-type method for the convective terms. The inter-cell 

numerical fluxes of the convective terms are calculated by solving the Riemann problem us-

ing the reconstructed values of the conservative variables at the cell interfaces. The recon-

struction stencil is a one-dimensional swept unidirectional stencil. The Riemann problem is 

solved using the so-called “Harten, Lax, van Leer, and (the missing) Contact” (HLLC) ap-

proximate Riemann solver [1]. Two different flux limiting approaches have been implement-

ed in conjunction with the HLLC solver, namely the: (i) Monotone Upstream-centred 

Schemes for Conservation Laws (MUSCL) and (ii) Weighted-Essentially-Non-Oscillatory 

(WENO). In particular, the following schemes are examined: 

 MUSCL piecewise linear 2nd order Monotonized Central (MC) limiter [2]; 

 MUSCL 3rd (M3) and 5th (M5) order limiters [3]; 

 WENO 5th (W5) and 9th (W9) order schemes [4]. 

The accuracy of the above schemes, as well as of any other, can be further improved in the 

low subsonic region of transitional/turbulent boundary layers by implementing low-Mach cor-

rections [5] (henceforth labelled LM). This essentially involves an additional numerical re-
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construction step of the velocity vector via a progressive central differencing of the velocity 

components. LM corrections ensure a balanced distribution of dissipation of kinetic energy in 

the limit of zero Mach number, thus extending the validity of compressible flow codes to 

Mach numbers as low as 10-5, and are particularly required for schemes providing accuracy 

less than 5th-order [6]. The viscous terms are discretized by a second-order central scheme. 

The solution is advanced in time by using a five-stage (fourth-order accurate) optimal strong-

stability-preserving Runge-Kutta method [7]. Further details of the numerical aspects of the 

code are given in [6] and [14] and references therein.  

3 CHANNEL FLOW 

The fully turbulent channel flow test-case has long been established as one of the major 

“canonical” flow problems used to perform detailed validation of numerical/computational 

methods. A detailed investigation of the accuracy of a number of popular numerical schemes, 

originally designed for shock-capturing, was carried out in [6] with respect to a weakly-

compressible, turbulent channel flow. The specific objectives were: (i) to investigate the accu-

racy of the Monotone Upstream-centred Scheme for Conservation Laws (MUSCL) 2nd to 5th-

order, and the Weighted Essentially Non-Oscillatory (WENO) 5th to 9th-order accurate flux 

limiter schemes against DNS data; (ii) to examine the effects of the low Mach correction on 

the accuracy of the MUSCL and WENO schemes; and (iii) to compare the numerical schemes 

with respect to their computational cost. 

3.1 Case Parameters 

The numerical assessment has been made using the incompressible DNS data of Moser et 

al. [8], corresponding to a friction Reynolds number of ReĲ = 395 based on the friction veloci-

ty (uĲ) and channel half-height. Previous studies concerning compressible, turbulent channel 

flows have been conducted at Mach numbers of 0.4 (quasi-incompressible), however, to ex-

amine the effects of the numerical schemes with and without low Mach correction, we con-

sider here a Mach number 0.2. 

The size of the non-dimensional domain (Lx × Ly × Lz) is (2ʌ × 2 × ʌ) in the streamwise (x), 
wall normal (y) and spanwise (z) directions, respectively. In the streamwise and spanwise di-

rections, periodic boundary conditions are employed, while in the wall normal direction an 

adiabatic no-slip wall condition is applied. 

In Duan et al. [9], it was shown that many of the scaling relations used to express adiabatic 

compressible boundary-layer statistics in terms of incompressible boundary layers hold for 

non-adiabatic cases too. Wall cooling slightly enhances compressibility effects and increases 

the coherency of turbulent structures, however, its effects remain insignificant even for a su-

personic turbulent channel flow. In the compressible DNS channel flow simulations of [10] 

and [11], it was shown that decreasing the wall temperature leads to higher skin friction. In 

the present study, the adiabatic wall condition was employed in order to examine the accuracy 

of the numerical methods unhindered by external heat transfer effects, thus obtaining a more 

meaningful comparison to the incompressible DNS. The streamwise velocity profile is given 

by a laminar (Poiseuille) parabolic profile with a white noise perturbation of 10% superim-

posed. Here we will summarize the key findings made using results only from the finest grid 

composed of 1283 cells. A grid convergence study can be found in [6]. 

3.2 Results 

The three-dimensional turbulent structures obtained from different simulations are shown 

by plotting the iso-surfaces of Q-criterion [12] in Figure 1 and Figure 2 for the schemes with-



Ioannis W. Kokkinakis and Dimitris Drikakis 

out and with the LM correction, respectively. The Q-criterion is an indication of vorticity pre-

vailing over strain and thus represents vortex cores. 

The iso-surfaces reveal, in a qualitative manner, the ability of the different schemes to re-

solve turbulent structures. Note that for the calculation of Q-criterion, the velocity field is 

non-dimensionalized by the bulk velocity and the spatial dimensions by the channel half-

height. It is clearly evident that as the order of accuracy of the reconstruction increases, more 

turbulent structures are resolved. For the same (5th) order of accuracy, the W5 scheme re-

solves more turbulent structures than M5. MUSCL schemes are designed to satisfy positivity-

preserving criterion in the framework of the total variation diminishing (TVD) condition, 

which inevitably leads to more dissipative schemes. 

 

 
(a) MC 

 
(b) M3 

 
(c) M5 

 
(d) W5 

 
(e) W9 

Figure 1: Q-criterion iso-surfaces on 1283
 grid (iso-value=0.5 coloured by streamwise velocity). 
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(a) MCLM 

 
(b) M3LM 

 
(c) M5LM 

 
(d) W5LM 

 
(e) W9LM 

Figure 2: Q-criterion iso-surfaces on 1283
 grid (iso-value=0.5 coloured by streamwise velocity) using the low-

Mach correction [5]. 

Application of the LM correction results in a remarkable improvement for the 2nd, 3rd and 

5th-order schemes (Figure 2), enabling much finer turbulent scales to be resolved. As the order 

of the scheme decreases, hence the numerical dissipation increases, the greater the improve-

ment the LM correction provides. 

The W9 scheme is found to give the most turbulent-like solutions. As the W9 scheme is 

the least dissipative, the addition of the LM correction does not offer any significant im-

provement. In fact, it is shown later that it can actually result in less accurate solutions by am-

plifying the dispersive errors originating from the truncation error terms (odd order terms) of 

a dispersive dominant scheme. 

The results also reveal the mechanism by which the generated vorticity produced in the 

viscous layer is subsequently “ejected” due to low speed streaks into the outer boundary layer, 
thus creating and sustaining turbulence. This mechanism is responsible for the production of 

hairpin vortices that get stretched by the ambient shear. These streamwise elongated vortices 

have also been reported by previous (incompressible) ILES studies [13]. 
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Figure 3 shows the velocity profiles in wall units obtained by the different numerical 

schemes examined. The LM correction provides a significant improvement to the MC, M3 

and M5 schemes and, to a lesser degree, the W5 scheme. In contrast, the LM correction 

slightly deteriorates the profile of the W9. The reason is that the W9 scheme is the least dissi-

pative and most dispersive of the schemes examined. As a result, the LM correction triggers 

locally entropy-violating solutions which tend to reduce the numerical dissipation of a scheme. 

So, if the numerical dispersion of the scheme becomes significantly greater to the dissipation, 

it can actually have an adverse effect on the accuracy of the scheme. 

 

 

Figure 3: Velocity profiles in wall units for the different schemes. 

The results obtained for the Reynolds stresses (RS) (Figure 4) reveal that the most accurate 

solution is obtained by the W9 scheme. The LM correction significantly improves the accura-

cy of all schemes apart from W9. The lower the order of accuracy of the scheme is, the great-

er the effect of the LM correction becomes. The W5 scheme gives better results than M5 for 

the  u'u'RS ,  v'v'RS  and  v'u'RS , while similar results are obtained for  v'v'RS  and 

 w'w'RS  when M5 is used with LM corrections (M5LM). Overall, the W5 and W9 perform 

better than any of the MUSCL schemes and provide extremely accurate results. 

The most noticeable result here is the significant over-prediction of the  u'u'RS  and un-

der-prediction of  v'u'RS  by all schemes apart from W9. Additionally, the W9 was the only 

scheme capable of accurately resolving  w'w'RS  in the vicinity of y = 0.1. Decreasing the 
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order of accuracy leads to a gradual shift of the peak location towards the midstream. The 

wall-normal velocity Reynolds stress  w'w'RS  is the least accurately captured due to the un-

resolved turbulent scales associated with the small near-wall fluctuations. Note that the local 

Mach number of the flow reaches the zero limit as the no-slip wall is approached. 

Regarding  v'u'RS , all schemes overall give a good agreement to the incompressible DNS. 

All Reynolds stress terms gradually converge to the DNS peak values in the proximity of y = 

0.1 (y+ Ĭ 40), an indication of the prevalence of turbulent production located near the end of 

the buffer layer. 

 

 

 
(a)  ''uuRS  

 
(b)  ''vvRS  

 
(c)  ''wwRS  

 
(d)  ''vuRS  

Figure 4: The streamwise velocity Reynolds stresses (RS) calculated by different ILES scheme. 
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4 COMPRESSION RAMP 

4.1 Case parameters 

Shock/Turbulent boundary layer interaction (STBLI) over a compression ramp inclined at 

24° angle was investigated by Wu and Martin [16] using DNS with free-stream conditions of 

Mach 2.9 and Reį of 38,700. The presence of the inclined surface gives rise to a shock wave, 

which interacts with the incoming turbulent boundary layer leading to the formation of a sepa-

ration bubble and a Ȝ-shockwave. The size of the separation region is dictated by the intensity 

of the incoming turbulent flow and the strength of the formed shock wave. A sketch illustrat-

ing the most important physical processes that take place is given in Figure 5. 

 

 

Figure 5: Schematic illustrating the flow over a compression ramp. 

The physical properties and computational domain are similar to previous DNS studies and 

are provided in Table 1 and Table 2, respectively. Since the numerical scheme still needs to 

capture and resolve the synthetic inflow perturbations that lead to a turbulent flow, the length 

of the upstream domain is increased relatively to the DNS by approximately five incoming 

boundary layer heights (į0). The spanwise length is also increased in order to investigate pos-

sible large-scale structures that may develop in the post-shock region after re-attachment has 

occurred. Note that henceforth, x/į0 = 0 will refer to where the compression corner begins. 

 

į0 U∞ T∞ Mach 
0įRe  ȡ∞ Tw 

6.4 mm 609.1 m/s 107.1 K 2.9 38,737 0.077 kg/m3 307 K 

Table 1: Flow properties. 

Periodic boundary conditions are used in the spanwise (y) direction while in the wall-

normal (z) direction a no-slip isothermal wall (TW=309K) is used. A supersonic outflow con-

dition is imposed at the outlet and upper boundary opposite to the wall. The boundary condi-

tion at the inlet requires accurately assigning a turbulent boundary layer. A synthetic turbulent 

digital filter approach [15], further developed in conjunction with the present numerical study, 

is employed to generate the incoming turbulent boundary layer data. Apart from the mean tur-

bulent profile data which can be obtained from either previous studies or flat plate simulations, 
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the digital filter technique requires also knowledge of the integral length scales. Here, an inte-

gral length scale of 0.22į0 is used for the streamwise direction, whereas for the spanwise and 

wall-normal directions, the integral length scales chosen were 0.2į0 and 0.5į0, respectively. 

 

 xmax ymax zmax nx ny nz ǻx+ ǻy+ ǻz+ 

ILES 21.4 3 5 1128 120 168 41.51 51.92 3.5 

DNS[16] 15.4 2.2 5 1024 128 160 31.23 28.56 0.2 

Table 2: Mesh parameters for the supersonic ramp flow 

4.2 Results 

The LM correction is implemented only in conjunction with the 5th-order MUSCL scheme 

(M5LM). From the WENO schemes examined earlier only the 9th-order WENO variant (W9) 

will be considered here. 

The streamwise distribution of the time and spatially averaged mean wall pressure (Figure 

6) shows that the W9 scheme provides more accurate results than the M5LM scheme and is in 

excellent agreement with both the DNS [16] and experiment [17]. The M5LM scheme (green 

line) is characterized by a delay in the location of the separation bubble. This is associated 

with reduced resolution of finer scales compared to W9. 

 

 

Figure 6: Mean wall pressure distribution in the streamwise direction. 

The incoming mean streamwise velocity profile obtained by the digital filter technique at 

the inflow (x/į0 = -15) is compared to a further two downstream locations, positioned at -11 

and -8. This allows the observation of the streamwise evolution of the turbulent boundary lay-

er created by the digital filter technique. The position at x/į0 = -8 is a common location for 

both DNS and ILES upstream of the compression ramp corner and STBLI, thus the velocity 

profiles should closely match. Both M5LM and W9 schemes show very good agreement to 

the DNS and experiment (Figure 7), however the W9 results are marginally more accurate 

near the wall (z/į0 ≈ 0.1) as well as around z/į0 = 0.5. Thus, the synthetic turbulent field cre-

ated by the digital filter technique requires approximately 6į0 in the streamwise direction to 
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adjust. The DNS study [16] used the rescaling method developed by Xu and Martin [18] in 

order to generate the turbulent inflow condition, with the recycling station located at 4.5į0 

downstream of the inlet. 

 

 
(a) M5LM 

 
(b) W9 

Figure 7: Comparison of inflow streamwise velocity to the DNS and Experiment using the W9 and M5LM 

schemes on the fine grid. 

By the time the flow reaches the intermittent region where the foot of the Ȝ-shock interacts 

with the separation bubble formed (Figure 5), there is a considerable difference in the mean 

streamwise boundary layer profile between the two schemes examined (Figure 8a). The W9 

scheme shows the best agreement with the DNS. 
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(a) x/į0 = -1.9 
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(b) x/į0 = 6.1 

Figure 8: Streamwise velocity profiles. 

Near the outlet at x/į0 = 6.1 (Figure 8b), the velocity profiles of both M5LM and W9 show 

a noticeable deviation from the DNS. The freestream velocity tangential to the wall (z/į0 ≥ 2.5) 

reaches a value similar to DNS both for M5LM and W9 schemes. However, W9 resolves the 

separation bubble more accurately and consequently the SWBLI region. This is also reflected 

in the location where the velocity begins to reach the freestream value (z/į0 ≈ 2.3). Nonethe-

less, both schemes fail to accurately capture the DNS profile below this point, possibly due to 

the rapid coarsening of the streamwise grid resolution closer to the outlet. 

Figure 9 shows a qualitative comparison between the two numerical schemes with respect 

to the resolved turbulent flow by plotting the iso-surfaces of the vortex cores. W9 resolves a 

greater number of vortices than M5LM upstream of the separation region. The differences 

between the two schemes becomes less apparent downstream of the STBLI. 
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(a) M5LM 

 
(b) W9 

Figure 9: Iso-surfaces of Q-criterion  20/įU2 Q  coloured by Mach number; grayscale contours plane of 

density gradient magnitude   /ȡįȡ 0 . 
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Figure 10: Skin friction coefficient distribution. 

Although the flow is supersonic in the freestream, the boundary layer remains subsonic in 

the first 5 to 10% of the incoming boundary layer height, i.e. approximately 20 computational 

cells for a relatively fine (LES) grid. The subsonic region of the separation bubble can reach a 

size of 0.6į0 and any loss of accuracy here could potentially lead to significant errors. How-

ever, the streamwise distribution of the coefficient of friction (Cf) given in Figure 10 suggests 

that the prediction of separation bubble is primarily influenced by the resolved upstream tur-

bulent boundary layer.  

5 CONCLUSIONS  

 Low-Mach corrections [5] significantly improve the accuracy of lower order schemes in 

ILES of subsonic TBL but have little effect on STBLI predictions. 

 Low-Mach corrections have a greater effect when they are used in conjunction with low-

er-order schemes (less or equal to 5th-order). 

 Overall, ILES using W9 give very promising results both for subsonic and supersonic 

turbulent boundary layers. 
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