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Abstract: This study deals with nonlinear oscillators whose restoring force has a polynomial 

nonlinearity of the cubic or quadratic type. Conservative unforced oscillators with such a 

restoring force have closed-form exact solutions in terms of Jacobi elliptic functions. This fact 

can be used to design the form of the external elliptic-type excitation so that the resulting 

forced oscillators also have closed-form exact steady-state solutions in terms of these 

functions. It is shown how one can use the amplitude of such excitations to change the way in 

which oscillators behave, making them respond as free oscillators of the same or different 

type. Thus, in cubic oscillators, a supercritical or subcritical pitchfork bifurcation can appear, 

whilst in quadratic oscillators, a transcritical bifurcation can take place.  
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1. INTRODUCTION 

This study is concerned with externally excited nonlinear oscillators governed by 

  tFxcxcx  
1

 , (1) 

where x is the displacement, 
1

c  and c  are the coefficients of the linear and nonlinear stiffness 

terms, and where c  is not necessarily small, while   is the power of nonlinearity that can be 

equal either to 3 or 2, and, thus, results in a cubic or quadratic nonlinearity; the overdots 

denote differentiation with respect to time t.  

Systems that are approximately or exactly governed by Eq. (1) appear widely in 

physics and engineering, and some of them are: pendula, snap-through mechanisms, beams, 

cables, human eardrum oscillations, vibration isolators, etc. (see, for example, [1] and the 

references cited therein). Given this wide range of applications, obtaining their steady-state 

response to external periodic forcing has been of particular interest and has resulted in the 

development of many analytical techniques to find approximate steady-state responses [2-4]. 

However, the aim here is to show how to design the periodic excitation  tF  to get an exact 

analytical steady-state solution, noting that these are normally very scarce in Nonlinear 

Dynamics. The concept of the “exact steady state” of a strongly non-linear, undamped, 

discrete system was defined by Rosenberg [5, 6]: for the steady state forced response of a 

single degree of freedom the ratio of the response and the amplitude is “cosine-like” [6] and 

of the same period of that of the periodic forcing function. Harvey considered “natural forcing 

functions” proportional to the nonlinear restoring forces and applied them to the study of the 

forced Duffing problem [7]. Caughey and Vakakis [8] examined the exact steady states of a 

certain class of strongly nonlinear systems of two degrees of freedom. By expressing the 

forcing as a function of the steady state displacements, the forced problem was transformed to 

an equivalent free oscillation and subsequently a matching procedure was followed which 

resulted in the uncoupling of the differential equations of motion at the steady state. 

The basic idea used in this work dates back to Hsu’s paper [9], in which he considered 

Duffing-type oscillators ( 3 ) governed by Eq. (1) with a positive 
1

c  and a positive or 

negative 
3

c . As these oscillators have exact closed-form solutions for the conservative 

unforced case expressible in terms of Jacobi elliptic functions, Hsu’s approach led to the 

external excitation having the same form, i.e. being proportional to the displacement and 

being expressed in terms of Jacobi elliptic functions. This idea is extended in this work to all 
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other oscillators with the cubic or quadratic nonlinearities that have exact closed-form 

solutions for the conservative unforced case. 

This paper is organised as follows. For the sake of the reader the first part of Section 2 

contains an overview of exact closed-form solutions for certain nonlinear oscillators with 

cubic and quadratic nonlinearity that are expressed in terms of Jacobi elliptic functions and 

depend on the system parameters and the amplitude. The second part of Section 2 includes a 

brief outline of Hsu's approach for hardening and softening Duffing oscillators with some 

physical interpretations in terms of the forcing amplitude factor. In Section 3, exact solutions 

for other nonlinear oscillators with elliptic-type external excitation are derived for the first 

time. They include: bistable oscillators in full swing mode and half-swing mode as well as 

pure cubic oscillators. In Section 4, bifurcations in cubic quadratic oscillators are investigated. 

It is shown analytically and confirmed numerically how one can design the external excitation 

with respect to the parameters of these oscillators to change the way in which the excited 

oscillators behave, making them respond as free oscillators of the same or different type. The 

corresponding types of bifurcation are also discussed. 

 

2. KNOWN EXACT SOLUTIONS FOR FREE AND FORCED OSCILLATIONS 

2.1 Exact solutions for free oscillations  

Several nonlinear oscillators governed by 

 ,0
1

 
 xcxcx  (2) 

have an exact closed-form solution for their free response in terms of Jacobi elliptic functions. 

These oscillators are [1], [10]:  

 Hardening Duffing Oscillator (HDO), for which 3,0,0
31

 cc ; 

 Softening Duffing Oscillator (SDO), for which 3,0,0
31

 cc ; 

 Bistable Duffing Oscillator (BDO), for which 3,0,0
31

 cc , where two cases can 

be recognised. The first one is labelled here by BDO1 and represents the so-called full 

swing mode (motion surrounding all the equilibria), and the second one is labelled 

here by BDO2 and represents the so-called half swing mode (motion surrounding one 

of the non-zero equilibria); 

 Pure Cubic Oscillator (PCO), for which 3,0,0
31

 cc ; 

 Quadratic Oscillator (QO), for which 2 . 
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All of these solutions are expressed in terms of Jacobi elliptic functions (cn, sn or dn) and are 

listed in Table 1 for each oscillator. Note that Jacobi elliptic functions have two arguments. In 

the first one, the frequency  appears kind [1,11]. The second argument is the elliptic 

parameter m [1, 11], and ranges from 0 to 1 (other values can also exist, but require certain 

transformations of the original Jacobi elliptic functions, and are, thus, avoided here). Note 

also that, instead of the elliptic parameter, one can use the elliptic modulus k²=m. The value m 

= 0 transforms the cn function into the Cosine function, the sn function into the Sine function, 

while the dn function becomes equal to unity. As seen from Table 1, both the frequency  and 

the elliptic parameter m depend, in general, on the stiffness coefficients and the amplitude, 

while in the case of the PCO, the elliptic parameter is constant.  

The only specific case in Table 1 is the QO and this includes several features. First, it 

is the only oscillator from the list whose response is the quadratic function of the elliptic 

functions. Second, unlike other oscillators whose elliptic parameter is the explicit single-

valued function of the system parameter and the amplitude, this parameter m is implicitly 

defined here by    12/11 2

2

2

1
 mmcmmmcA  [12], although this expression can 

be transformed further to get a real value of  m. In addition, when 0
1
c , one has 

4/12

1
)1/(5.0  mmc , and it is obvious that the frequency becomes complex. However, 

in the case of complex arguments of Jacobi elliptic functions, certain transformation can be 

used to get real arguments [11]. Contemporary computer algebra and symbolic software 

packages usually have these transformations built-in, offering improvements in ease of 

computation and transformations.  

Table 1 also includes typical phase planes for all the oscillators listed with the 

trajectories surrounding their equilibrium/equilibria (stable equlibria are depicted by the black 

dots and the unstable ones by the white dots).  

All these solutions are closed-form, but to explain and understand what kind of 

functions they actually represent, one can use the corresponding Fourier series expansions 

(see the Appendix): 
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whose amplitudes depend on m, i.e.  ,mCC
NN

   ,mSS
NN

   ,
00

mDD    mDD
NN

 . As 

can be seen, all of them can be interpreted as multi-term periodic excitations; the cn and sn 

functions contains odd harmonics, while the dn function contains both the offset and odd and 

even harmonics; in all cases, the amplitude and frequencies of the harmonics depend on the 

elliptic parameter and are, thus, mutually related, as defined in the Appendix.  

Table 1 also includes typical phase planes for all the oscillators listed with the 

trajectories surrounding their equilibrium/equilibria (stable equlibria are depicted by the black 

dots and the unstable ones by the white dots).  

 

2.2 Brief outline of Hsu's approach with new interpretations 

Hsu considered the following periodically driven Duffing oscillator [9] 

  tFxcxcx  3

31
 . (4) 

including cases when 1c  is positive, while the coefficient 3c  can be either positive (HDO) or 

negative (SDO). The key point of Hsu's approach is to transform this nonautonomous system 

into an autonomous one, and then, for such a system, to utilise known expressions for the 

exact solutions. To that end it is assumed that the response x and the excitation force F are 

proportional, i.e. F=B x. With this assumption, Eq. (3) becomes 

   03

31
 xcxBcx . (5) 

It can be seen that Eq. (5) corresponds to the autonomous system (2) whose exact solutions 

are given in Table 1. It is important to point out that the sign of the coefficient in front of the 

linear term  Bc 
1

 now depends on the parameter B. For the time being it is assumed that 

Bc 
1

, if not noted differently, while other cases are analysed in Section 4.  
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2.2.1. Forced HDO 

The first case considered is when the transformation F=Bx is applied to the HDO, while the 

assumption Bc 
1

 is retained. The resulting equation also corresponds to the HDO, and the 

exact closed-form solution can readily be found based on those given in Table 1. Two 

relationships for the parameters given in Table 1 for the HDO now become 

   ,2
,

2

31

2

32

31

2

AcBc

Ac
mAcBc

r 
  (6a,b) 

where the subscript r refers to the response. It is seen that with B being positive, one has 

HDO
 

r
and 

HDO
mm . Four parameters exist: A, B, 

r
 and m, but there are two relationships 

between them given by Eq. (6a,b). This implies that two parameters may be arbitrarily 

chosen. For example, if r  and m are considered as fixed/given (as suggested in [9]), the 

amplitude of the response A and the parameter B can be determined from the following 

expressions: 

  mcBm
c

A rr 21,
2 2

1
2

3

2   . (7a,b) 

Taking this into account, the single response x(t) and the excitation force  tF  are 

           mtmcm
c

tFmtm
c

tx
rrrrr

 cn21
2

,cn
2 2

1

33

 . (8a,b) 

The elliptic force given by Eq. (8b) that causes the single elliptic response (8a), represents a 

’favoured elliptic forcing’ [9]. By relating these expressions to the Fourier series expansion 

given by Eq. (3a), the HDO can be treated as excited externally with a multiple excitation 

whose amplitudes and frequencies are mutually related. Both the excitation and the response 

consist of odd harmonics and are in phase.  

 

2.2.1.1. Forcing amplitude factor 

At this point, we consider the parameter B defined by Eq. (7b) to determine how it can be 

interpreted and what is depends on. To start with, we will turn to a linear system and the 

definition of a magnification factor, which is the ratio between the amplitude of the response 

A and the forcing amplitude 0F , which reads as 
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BBA

A

F

A 1

0

 . (9) 

It is seen that the magnification factor corresponds to the inverse of the parameter B 

introduced herein. Also, it can be seen that 1/B gives the response amplitude for a unit forcing 

amplitude, i.e., 1/B = A (for )10 F . In fact, for the linear case, this approach is appropriate 

because the amplitude is not related to the period/frequency. Namely, if we take the forced 

harmonic oscillator  tFxcx  1  and introduce xBF   into the equation of motion, we get 

  01  xBcx , whose solution is   tAx cos , where B 22  . This yields 

22

11



B

, which corresponds to Eq. (9). As regards the frequency of the free linear 

oscillator, i.e. its natural frequency, it depends only on the system characteristics. When this 

linear system is subjected to external periodic forcing with the frequency , a phenomenon of 

resonance occurs when the frequency  coincides with the natural frequency. In this case, the 

response amplitude goes to infinity, or large amplitude values appear when these two 

frequencies are close to each other. In contrast to this, for free nonlinear oscillators, the 

amplitude is related to the frequency. When presented graphically, this relationship represents 

the ’backbone curve’. When this nonlinear free oscillator is subjected to periodic forcing the 

question about the resonant frequency is not so simple, i.e., the origin of this term is not as 

clearly evident as in the linear case. So, the proposed approach can be understood in a way in 

which the response amplitude is known or given, and we want to find the forcing amplitude 

which can cause such response. Having this in mind, it follows that instead of 1/B, it is 

appropriate to consider the ’forcing amplitude factor’ [9], which is labelled by   here and 

defined as 

 B
A

BA

A

F
 0 . (10) 

In what follows the detail analysis of  , i.e., B will be given, including appropriate graphical 

presentations for different types of oscillators, starting from the HDO in Figure 1a. According 

to Eq. (6b), the parameter B depends on r  and m, and the three-dimensional graph of B is 

plotted (without loss of generality it is taken that 1
1
c , and the unity value of this constant is 

used in all the forthcoming cases). Also, in the same figure, two planes are present. The first 

one is the horizontal plane which corresponds to B = 0 (free oscillations), while the second 

plane corresponds to 5.0m  and is vertical. This vertical plane is introduced as it presents a 
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limit between two qualitatively different regions as well as the plane of symmetry. The 

surface B intersects these two planes along the lines 1e  and 3e , respectively. The line 3e  is a 

straight line indicating that for 5.0m  the parameter B does not depend on r . Figure 1a) 

also contains the line 2e , which lies in the plane m = 0, and may be considered as 

characterising the linear case. To examine how B varies with r , a two-dimensional graph is 

plotted in Figure 1b) for different values of the parameter m. This figure clearly shows that the 

parameter B increases as r  increases (note that due to the condition Bc 
1

 and 1
1
c , it 

follows that 1B , which can be achieved by using the excitation characterised by 5.0m ).  

 

2.2.2. Forced SDO 

Similarly to the previously explained procedure, the SDO with the excitation xBF   will 

have the response given in Table 1, with: 

  ,2
,

2

2

31

2

3

2

2

31

2

A

A

r

cBc

Ac
mcBc


  (11a,b) 

which yields the following expressions for the amplitude of the response and the parameter B: 

  .1,
2 2

1

2

3

2 mcBm
c

A
rr

   (12a,b) 

With these two parameters defined, the response and the excitation force are 

           mKtmc
c

m
tFmKt

c

m
tx

rrrrr
  sn1

2
,sn

2 2

1

33

.  (13a,b) 

Figure 2a) shows the 3D presentation of B as a function of m  and 
r

 . It is seen that the plane 

m = 0.5 does not represent a plane of symmetry. Also, the 1e  curve slightly decays as m 

decreases. The curves 2e  and 3e  are qualitatively the same. Figure 2b) shows how B changes 

with 
r

 for different values of m . It is seen that all the curves are decreasing and exist for all 

the values of m between zero and unity. 
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3. EXACT SOLUTION FOR OTHER NONLINEAR OSCILLATORS WITH 

ELLIPTIC-TYPE EXTERNAL EXCITATION 

In this section, the approach presented previously is extended to other oscillators listed in 

Table 1. The forcing amplitude factor will be derived for all these cases and the trends of its 

variation are compared mutually. 

3.1. Forced BDO 

As seen from Table 1, the solutions for the conservative free BDO ( 0
1
c ) excited by 

xBF  , will also correspond to BDOs if 0
1
 cB  and will have different forms for two 

distinct types of oscillatory motion: a full swing mode and a half swing mode. The first type 

of oscillatory motion always includes all three equilibria and exists for 2
3Ac >2 1cB . The 

solution of the second type of oscillatory motion is possible for 1
2

3 20 cBAc  . This 

periodic motion takes place around one of the two stable equilibria 31
* / ccBx  . 

 

3.1.1. Full swing mode 

Assuming that 2
3Ac >2 1cB  and using the expressions for the parameters of the BDO1 

given in Table 1, one has  

  
1

2

3

2

3

1

2

3

2

2
,

cBAc

Ac
mcBAc

r 
 . (14a,b) 

Solving them, one derives 

   ,12,
2

1
22

3

2 cmBm
c

A rr     (15a,b) 

with the response and excitation being 

           .cn12
2

,cn
2

r1

2

3

r

3

mtcm
c

m
tFmt

c

m
tx

rr
    (16a,b) 

Based on Eq. (15b), the forcing amplitude factor B is plotted in Figure 3a) in 3D and in Figure 

3b) in 2D for different values of m. Certain similarity with Figure 1a) is noticeable (with the 

HDO), but with the deflection of the surface. This surface appears to be translated along the 

positive part of the m axis. This affects the 1e  line (see Figure 1a). The symmetry between the 

curve 1e  for the HDO and the BDO1 with respect to m = 0.5 is also apparent. Here, the 
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intersection points with the plane B=0 exist for m > 0.5 and these curves are monotonously 

increasing with the increase in 
r

 . 

 

 

3.1.2. Half swing mode 

Applying the same approach for the case of the BDO2 from Table 1 yields the following 

results: 

  ,2,
2 2

1

3

mcB
c

A rr    (17a,b) 

       .dn2
2

,dn
2 2

1

33

mtmc
c

Fmt
c

x rrrrr    (18a,b) 

Figure 4a,b) show the change of the parameter B with the elliptic parameter m and the 

response frequency. The line 
2

e  as the intersection of the surface with the plane B = 0 is 

labelled in Figure 4a) and in Figure 4b). As seen from Figure 4b), all the curves showing the 

change of the parameter B with the response frequency are monotonously increasing. 

 

3.2. Forced QO 

As previously stated it is assumed that xBF   and this is introduced into Eq. (1). With this 

substitution, the expressions from Table 1 give: 

 .14 22

1
 mmcB

r
  (19) 

The 3D presentation of Eq. (19) is given in Figure 5a). Figure 5b) shows the relationship 

between r  and m in the plane B = 0. It can be seen that it represents a slightly curved line, 

which implies that the frequency of the response slightly changes with the elliptic parameter. 

 

4. BIFURCATIONS 

4.1. Bifurcation in HDO and SDO 

The exact solutions for the steady-state response of the HDO and SDO in Section 2.2 were 

derived for the case Bc 
1

. However, it is interesting to show what happens for a more 
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general relationship between these two parameters. To that end a new parameter 1cB  is 

introduced, so that Eq. (2) can be written down as 

 03

3
 xcxx  . (20) 

The parameter  influences the number and stability of the fixed points *x of the 

corresponding potential energy   4/2/ 4

3

2 xcxxV    and this is graphically illustrated in 

Figure 6a) for the HDO and in Figure 6b) for the SDO. For the HDO a supercritical pitchfork 

bifurcation takes place, while for the SDO, a subcritical pitchfork bifurcation appears. 

As can be seen, by the appropriate variation of the force amplitude it is possible to 

change the equilibrium position around which oscillations are performed, i.e. to make the 

forced oscillator respond as the same, or even as a different type of free nonlinear oscillator. 

Different cases of this change are possible, and all of them are summarised in Table 2, 

depending on the signs of the stiffness coefficients and the values of the parameter B. The 

cases when the change of the type of oscillator is achieved are highlighted in grey. 

Figure 7 is obtained numerically from the differential equations of motion and 

confirms the transformations achieved for Cases II and IV. In Case II, the phase trajectory of 

the free oscillator is centred around the origin and has a large amplitude. However, in the 

forced system a closed phase trajectory around a non-trivial point exists and its amplitude is 

significantly reduced. In Case IV, the opposite holds: the phase trajectory of the free oscillator 

is centred around the non-trivial point and has a small amplitude, while the phase trajectory of 

the forced system is centred around the origin and has an enlarged amplitude. Note that the 

reader can relate the phase planes plotted in Figure 7 to those given in Table 1. From the 

practical point of view these transformations can be useful in vibration isolation and energy 

harvesting.  

 

4.2. Bifurcation in PCO 

When the conservative PCO is subjected to the forcing term of the form xBF  , the 

following autonomous equation is obtained 

 03
3  xcBxx  (21) 

Obviously, assuming that 0B , Eq. (21) represents the model of the BDO analysed in 

Section 3.1, where the results derived therein can be used with 0
1
c . Depending on the 
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values of the parameters both a full swing mode or a half swing mode oscillatory solutions are 

possible and these are analysed separately.  

 

4.2.1. Full swing mode solution 

The parameters and the solutions are defined by Eqs. (14a,b)-(16a,b) with 0
1
c . By looking 

at the corresponding diagram of B (Figure 8a), some similarity between the HDO and BDO1 

is noticeable. It is specifically the case here that the spatial surface presented in Figure 8a), the 

plane B=0 and the plane m=0 intersect along the same line, so that 31 ee  . Figure 8b) is 

similar to Figure 3b) for the BDO1, but here the case of free oscillations when m = 0.5 (see 

Table 1) is independent of the frequency r  and the solution exists for all m. 

 

4.2.2. Half swing mode solution 

The parameters and the solutions are defined by Eqs. (17a,b), (18a,b) with 0
1
c . The 

corresponding diagram of the forcing amplitude factor B is plotted in Figure 9a), while Figure 

9b) shows how this factor changes with the frequency r  and different values of m. 

 

4.3. Bifurcation in QO 

To examine the potential qualitative changes in the QOs, a new parameter 1cB  is 

introduced, so that Eq. (2) becomes 

 .02

2
 xcxx   (22) 

All four cases with respect to the combinations of the sign of the stiffness coefficients are 

presented in Figure 10. This figure contains general forms of the potential well as well as the 

type of equlibria (a stable equilibrium is plotted as a black circle and an unstable equilibrium 

as a white circle). The oscillators are labelled by two indices: the first one stands for the 

position of the stable equilibrium (if it is in the origin, the first index is 0; if it is on the 

positive axes, the first index is +; if it is on the negative axes, the first index is -) and the 

second one depicts the position of the unstable equilibrium (if it is in the origin, the first index 

is 0; if it is on the positive axis, the first index is +; if it is on the negative axis, the first index 

is -). The parameter  influences here the stability of the fixed point 
*x of the corresponding 

potential energy   3/2/ 3

3

2 xcxxV   , which is also graphically illustrated in Figure 10. 
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In the forced system with the parameter  , 1 exits with two branches; one stable and one 

unstable branch is seen to exist. 

Table 3 contains all the types of oscillator that can exist depending on the signs and 

values of the stiffness coefficients and the parameter B. Cases when the change of type of 

oscillator is achieved are highlighted.  

Figures 11 shows the phase trajectories for Cases I and VIII, obtained numerically 

from the differential equations of motion to illustrate transformations found and to relate them 

to the phase planes presented in Table 1. In Case I, the phase trajectory is transformed from a 

small-amplitude to large-amplitude, and the point around which it oscillates is changed, too. 

In Case VIII, the point around which it oscillates is changed differently, as illustrated in 

Figure 11b. 

 

5. Conclusions 

We have followed here the idea given in [9], which is to use the form of exact closed-form 

solutions of the conservative unforced oscillators for the external excitation, making it 

proportional to the displacement. This idea is extended in this work to all other oscillators that 

have exact close-form solutions for the conservative unforced case in terms of Jacobi elliptic 

functions. 

It has also been demonstrated how one can use the amplitude of such excitation to 

change the way in which oscillators behave, making them respond as free oscillators of the 

same or different type. Thus, in cubic oscillators, a supercritical or subcritical pitchfork 

bifurcation can appear, while in quadratic oscillators, a transcritical bifurcation can take place. 

All the analysis carried out has been done assuming that the excitation affects the 

linear stiffness term only. In addition, it is possible to make it be of the same nonlinear form 

that exists in the equation of motion, which will then affect the nonlinear stiffness coefficient. 

Besides this it is also possible to assume it as a multi-term excitation influencing both 

stiffness coefficients, which opens more possibilities for bifurcations in the system. 

The cases considered include undamped oscillators only. However, they represent a 

good basis for the analyses of damped cases in future research as they represent their 

‘boundaries’, both in respect of the basins of attractions and the existence/extremes of certain 
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nonlinear phenomena. It is also expected that these results can be useful for new approaches 

in signal processing, modelling and control of dynamic systems. 

 

Appendix: Fourier series of the Jacobi elliptic cn, sn and dn functions 

The Fourier series of the Jacobi elliptic cn function is given by 

    
12

2/1

1 1

2
,

2
12cos,cn





 
 



 

N

N

N

N

N
N

q

q

mK
Ct

K
NCmt


, (A.1) 

where q is the, so-called nome 

 ,exp 





 


K

K
q


 (A.2) 

and where K is the complete elliptic integral of the first kind, while  K  is its associated 

complete elliptic integral of the first kind  mKK  1  

Similarly, the Fourier series expansions of the sn and dn function are 
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 (A.3a-d) 

 

Acknowledgement: ZR and IK acknowledge the supported received from the Ministry of 

Science, Republic of Serbia (Project III41007). 

 

References 

[1] I. Kovacic, L. Cveticanin, M. Zukovic, Z. Rakaric, Jacobi elliptic functions: a review of 

nonlinear oscillatory application problems, Journal of Sound and Vibration, accepted for 

publication 23 May 2016, in press, http://dx.doi.org/10.1016/j.jsv.2016.05.051. 

[2] A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations, Wiley, NewYork, 1979. 

[3] M.P. Cartmell, S.W. Ziegler,  R. Khanin,  D.I.M. Forehand, Multiple scales analyses of 

the dynamics of weakly nonlinear mechanical systems, Applied Mechanics Reviews 56 

(2003) 455-491. 

https://www.researchgate.net/profile/Ivana_Kovacic2
https://www.researchgate.net/researcher/2109694004_Livija_Cveticanin
https://www.researchgate.net/profile/Miodrag_Zukovic
https://www.researchgate.net/profile/Zvonko_Rakaric


15 

 

[4] I. Kovacic, Generalised perturbation techniques for strongly nonlinear oscillators with a 

positive, zero or negative linear stiffness term, International Journal of Dynamics and 

Control 3 (2015) 137-147. 

[5] R. M. Rosenberg, On non-linear vibration of systems with many degrees of freedom, 

Advances in Applied Mechanics 9 (1966) 155-242. 

[6] R. M. Rosenberg, Steady state forced vibrations, International Journal of Non-Linear 

Mechanics 1 (1966) 95-108. 

[7] T. J. Harvey, Natural forcing functions in non-linear systems, Journal of Applied 

Mechanics 25 (1958) 352-356. 

[8] T. K. Caughey, A. F. Vakakis, A method for examining steady state solutions of forced 

discrete systems with strong non-linearities, International Journal of Non-Linear 

Mechanics 26 (1991) 89-103.  

[9] C.S. Hsu, On the application of elliptic functions in nonlinear forced oscillations, 

Quarterly of Applied Mathematics 17 (1960) 393-407. 

[10] I. Kovacic, M.J. Brennan (Eds), The Duffing Equation: Nonlinear Oscillators and their 

Behaviour, John Wiley and Sons, Chichester, 2011. 

[11] P. Byrd, M. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, 

Springer, Berlin, 1954. 

[12] R.H. Rand, Using computer algebra to handle elliptic functions in the method of 

averaging. In: Symbolic Computations and Their Impact on Mechanics, Eds. A.K.Noor, I. 

Elishakoff, G. Hulbert, American Society of Mechanical Engineers, PVP-Vol. 205 (1990) 

311-326. 

  



16 

 

TABLE AND FIGURE CAPTIONS (in the order of appearance) 

 

 

Table 1. Nonlinear oscillators that have exact closed-form solution for their free oscillations 

in terms of Jacobi elliptic functions (cn, sn or dn), certain parameters of these solutions and 

the corresponding phase trajectories and equilibria 

 

Figure 1. Forcing amplitude factor for the elliptically forced HDO;  

a) Parameter B as a function of m and r ; b) Graphs B versus r  for some values of m 

 

Figure 2. Forcing amplitude factor for the elliptically forced SDO;  

a) Parameter B as a function of m and r ; b) Graphs B versus r  for several values of m 

 

Figure 3. Forcing amplitude factor for the elliptically forced BDO1;  

a) Parameter B as a function of m and r ; b) Graphs B versus r  for chosen values of m 

 

Figure 4. Forcing amplitude factor for the elliptically forced BDO2: a) Parameter B as a 

function of m and r ; b) Graphs B versus r  for selected values of m 

 

Figure 5. a) Forcing amplitude factor for the QO oscillator; b) Change of the response with 

the elliptic parameter m 

 

Figure 6. Bifurcation diagram in terms of the parameter 1cB  for: a) the HDO; b) the 

SDO 

 

Table 2. Types of oscillators depending on the signs and values of the stiffness coefficients 

and the parameter B 

 

Figure 7. Phase trajectories for the free and forced systems from Table 2:  

a) Case II with 131  cc , 1.2 , m=0.5, B=7.615, A=2.969; 

b) Case IV with 1,1 31  cc , 6.1 , m=0.3, B=2.024, A=1.239 
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Figure 8. Forcing amplitude factor for the PCO turned into the BDO1 a) spatial surface; b) 

Diagram B versus r  for some values of the elliptic parameter m 

 

 

Figure 9. Forcing amplitude factor for the PCO turned into the BDO2: a) spatial surface; b) 

Diagram B versus r  for some values of the elliptic parameter m 

 

Figure 10. Potential well and equilibria of the QOs with the bifurcation diagrams in terms of 

the parameter 1cB   

 

 

Table 3. Types of oscillators depending on the signs and values of the stiffness coefficients 

and the parameter B 

 

Figure 11. Phase trajectories for the free and forced system from Table 3: a) Case I with 

121  cc , 1 , 5.0m , B=4.46,    5.0,*1*3732.4 2 tsntx  ; b) Case VIII with 

121  cc , m = 0.5, 1 , B= 4.46,    5.0,*1*3267.1 2 tsntx   
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Table 1. 

Type Exact solution Parameters Phase plane 

HDO  
HDOHDOHDO

cn mtAx   

2

31

2

HDO Acc   

 2

31

2

3

HDO
2 Acc

Ac
m


  

 

 

SDO 
 

SDOSDOSDO
sn mKtAx  

 

2

2

31

2

SDO

Acc   

 2

2

31

2

3

SDO
2 Acc

Ac
m


  

 

BDO1  
BDO1BDO1BDO1

cn mtAx   

1

2

3

2

BDO1
cAc   

 
1

2

3

2

3

BDO1
2 cAc

Ac
m


  

 

BDO2 
 BDO2BDO2BDO2 dn mtAx 

 

2

2

32

BDO2

Ac
  

 
2

3

1

2

3

BDO2

2

Ac

cAc
m


  

 

PCO  
PCOPCOPCO

cn mtAx   

2

3

2

PCO Ac  

2

1
PCO

m  

 

QO 

 
QOQO

2

20
sn mtAAx   

 

 

Remark: Certain 

transformations exists for 

complex arguments (see the 

explanation in the text of this 

section) 

4/12
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2

2

2

1
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See Figure 10 

 

 



19 

 

Table 2 

 

 

 
1c  3

c  B 1cB  
Free 

System 

Forced 

system 

I positive positive < 1c  < 0 HDO HDO 

II positive positive > 1c  > 0 HDO BDO 

III negative positive > 1c  > 0 BDO BDO 

IV negative positive < 1c  < 0 BDO HDO 

V positive negative < 1c  < 0 SDO SDO 

VI positive negative > 1c  > 0 SDO Non-

oscillatory 

VII negative negative < 1c  < 0 Non-

oscillatory 

SDO 

VIII 0 positive >0 >0 PCO BDO 

IX 0 positive <0 <0 PCO HDO 
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Table 3 

 

 
1c  2c  B  

Free 

system 

Forced 

system 

I positive positive 
1c  > 0 QO0- QO+0 

II positive positive 
1c  < 0 QO0- QO0- 

III positive negative 
1c  > 0 QO0+ QO-0 

IV positive negative 
1c  < 0 QO0+ QO0+ 

V negative positive 
1c  > 0 QO+0 QO+0 

VI negative positive 
1c  < 0 QO+0 QO0- 

VII negative negative 
1c  > 0 QO-0 QO-0 

VIII negative negative 
1c  < 0 QO-0 QO0+ 
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Figure 1 

 

 

 

 

Figure 2 
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Figure 3 

 

Figure 4 

 

 

 

Figure 5 
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Figure 6 

 

 

 

Figure 7 
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Figure 8 

 

 

Figure 9 
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Figure 10 

 

 

Figure 11 

 

 


