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INTRODUCTION

With increasing pressures on marine ecosystems

and little recovery being observed in commercially

important fish, it is essential to understand the fac-

tors affecting their survival. Unfortunately, in many

cases, the habitat requirements of commercially im -

portant stocks are often not well understood. Atlantic

cod Gadus morhua, haddock Melanogrammus aegle -

finus and whiting Merlangius merlangus are of con-

siderable economic importance throughout the North

Atlantic (Cote et al. 2003, Fernandes & Cook 2013).

However, stocks of all 3 species declined in the late

20th century (Holmes et al. 2014, ICES 2016a,b,c).

Efforts have been put in place to recover these

stocks, but little progress has been observed in much

of the west coast of the UK, and recruitment and

spawning stock biomass remains relatively low in

that area for all 3 species (Fernandes & Cook 2013,

ICES 2016a,b,c). This is especially the case in the

Firth of Clyde (southwest Scotland), where the dem-

ersal fishery was predominant (Thurstan & Roberts

2010, Heath & Speirs 2012)

The recovery of commercial fish species depends

not only on reductions in targeted fishing and by -

catch but also on healthy recruitment of juvenile fish.
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ABSTRACT: The protection of species requires an understanding of their habitat requirements
and how habitat characteristics affect their distribution, survival and growth. This need is espe-
cially important in areas where anthropogenic pressures can not only have a significant direct
impact on the survival of the species but also damage their habitat. The Firth of Clyde in south-
western Scotland was an important commercial fishing area for a variety of demersal fish species
up until 1973. However, stocks rapidly declined thereafter and the catch of targeted species
ceased in 2005, despite fisheries measures put in place to aid recovery. Changes in the availability
and quality of fish habitat are possible explanations for this lack of recovery. Here, we report on
stereo baited remote underwater video surveys in the Firth of Clyde between June and September
in 2013 and 2014 to determine the habitat of juvenile Atlantic cod Gadus morhua, haddock
Melanogrammus aeglefinus and whiting Merlangius merlangus. Habitat predictor variables
explored included substratum type, depth, wave fetch, and epibenthic and demersal fauna diver-
sity. G. morhua were most abundant in shallow, sheltered areas composed of gravel−pebble con-
taining maerl. M. aeglefinus and M. merlangus predominated over deeper sand and mud. Onto-
genetic shifts in all 3 species were also observed. Relative abundances of G. morhua and M.

merlangus were positively related to the diversity of epibenthic and demersal fauna. Our results
indicate that spatial conservation measures to benefit demersal fish should be advised by patterns
of epibenthic and demersal fauna diversity as well as physical substratum types.

KEY WORDS:  Nursery · Habitat association · Ontogenetic shift · Gadoid · Diversity · Atlantic cod ·
Gadus morhua · Density dependence · Stereo-video camera
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To facilitate recruitment, juveniles need access to

adequate food resources and shelter to minimise nat-

ural mortality and maximise survival and growth

(Beck et al. 2001, Elliott et al. 2016b). Few studies

have looked at the quality of the seabed indicated by

epibenthic and demersal fauna diversity (mobile

epibenthic fauna and demersal fish species). Under-

standing juvenile gadoid habitat is particularly

important given that settlement and post-settlement

survival is thought to be the best means to under-

standing gadoid population regulation (Myers &

Cadigan 1993, Olsen & Moland 2011, Laurel et al.

2016). Furthermore, many species undergo ontoge-

netic shifts and may require more complex manage-

ment measures for protection (Fitzpatrick et al. 2012,

Nagelkerken et al. 2013).

For clarification purposes, the understanding of

habitat refers to the substrata (abiotic and biotic

seabed characteristics), physicochemical and biolog-

ical characteristics required by a species to survive

during a particular stage in its ontogeny (Elliott et

al. 2016b). An important habitat component is one

which a change in its condition or availability may

directly affect the species success (e.g. survival or

growth) (Gibson 1994, Able 1999, Elliott et al. 2016b).

Terms outlined within Elliott et al. (2016b) have been

used to improve understanding of the relationship

between juvenile gadoids and their habitats. Many

studies that have looked at the habitat use of these

gadoids have not considered biological characteris-

tics, such as how other species may affect abundance

observations (e.g. Tupper & Boutilier 1995a, Bertelli

& Unsworth 2014, Seitz et al. 2014). This is most

likely due to the difficulties of quantifying biological

characteristics and interactions using traditional trawl

survey methods (Lima & Dill 1990, Able 1999).

Structurally rugose substrata, such as cobbles, kelp

beds and seagrass, provide refuge from predators

for juvenile G. morhua (Gotceitas & Brown 1993,

Gotceitas et al. 1995, Tupper & Boutilier 1995a).

However, if these substrata become  saturated from

increased juvenile gadoid abundance, juveniles may

be forced into lower-quality areas where survival is

likely to be lower (Morris 1989, 2003, Laurel et al.

2004). Equally, areas of higher biodiversity may pro-

vide increased food sources in addition to refuge

(Sebens 1991, Grat wicke & Speight 2005, Kovalenko

et al. 2012). Few in situ studies have been under-

taken to explore M. aeglefinus and M. merlangus

substratum association.

The majority of fish distribution and abundance

surveys around the UK, and more widely, have taken

place through trawl and egg surveys (Vasconcelos et

al. 2014) (e.g. Gibson et al. 1996, Wright et al. 2010,

Bastrikin et al. 2014). Such methods provide little

information on fine-scale substratum associations

that may affect gadoid distribution (e.g. Gregory &

Anderson 1997, Gorman et al. 2009). Photogrammet-

ric techniques can provide a useful means of collect-

ing non-damaging and non-extractive data on fish,

epibenthos and substrata (Harvey et al. 2007, Fitz-

patrick et al. 2012, Elliott et al. 2016a). Data collec-

tion using imaging enables access to shallow and

structurally rugose seabed types, and protected areas

that would otherwise be inaccessible using trawl or

seine netting methods (Cappo et al. 2006).

Stereo imaging systems are particularly advanta-

geous as they enable accurate measurements to be

made from stills or video (Harvey et al. 2002). Baited

cameras are commonly presumed to be biased to -

wards larger predators and scavengers (Lowry et al.

2012, Dunlop et al. 2015). However, comparisons

between baited and unbaited cameras have shown

higher relative abundances and species diversity in

baited camera observations (Watson et al. 2005, Har-

vey et al. 2007, Bernard & Götz 2012). Stereo baited

remote underwater video (SBRUV) surveys may be

part of the solution to the survey and monitoring

requirements of spatial management in the UK.

The aims of this study were to identify the environ-

mental variables (including 5 seabed types, epiben-

thic and demersal fauna diversity through Shannon-

Wiener entropy, depth and wave fetch) that juvenile

gadoids are associated with, and to describe their

habitat using SBRUV deployments. By understand-

ing the habitat variables affecting the distribution

and growth of juvenile gadoids, multi-purpose pro-

tection measures can be proposed to protect not only

vulnerable benthos of conservation importance but

also commercially valuable gadoids.

MATERIALS AND METHODS

Study area

Data were collected within the South Arran Nature

Conservation Marine Protected Area (NCMPA) at

depths of 4.0−47.2 m (Fig. 1). The NCMPA was des-

ignated in 2014 for its seagrass and maerl beds

(coralline red algae Phymatolithon calcareum) in

addition to burrowed mud, kelp and seaweed com-

munities and epibenthic fauna (www. snh. gov. uk/

protecting-scotlands-nature/protected-areas/ national-

designations/mpas), and encompasses an area of

250 km2. Data were collected between June and Sep-
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tember 2013 and 2014, but took place before man-

agement measures were implemented. Within the

NCMPA, the Lamlash Bay no-take zone (designated

in 2008) covers an area of 2.67 km2, where all com-

mercial and recreational fishing is prohibited within

its boundaries (Thurstan & Roberts 2010).

Data collection

In the sampling design, the NCMPA was divided

into 5 zones, with samples collected within each

zone over the period of data collection to facilitate

replication. These zones differed in wave fetch

(Burrows et al. 2008) and substratum type (following

the collation of existing information from locals and

broad-scale predicted seabed maps). Stratified ran-

dom sampling location points within each zone were

generated using Geospatial Modelling Environment

software (version 10.1, http://spatialecology.com/).

Deployment locations varied slightly between years

due to logistical reasons (during field season 2013

a 6.5 m RIB was used; during field season 2014 a

slower-speed, larger 10.8 m research vessel was

used). For 2013, 74 deployments were conducted

between 5 June and 29 September. However, only

data collected after 15 July were used due to the

late arrival of gadoids. During 2014, 186 deploy-

ments were conducted from 30 June to 18 Sep -

tember in 4 time periods (for boat time efficiency)

during the course of the summer.

Three baited camera systems were used, each con-

sisting of a pair of high-definition Canon (HF G25)

video cameras in waterproof housings (SeaGIS,

www. seagis.com.au/). The cameras were mounted

on a 57-cm-high custom made steel frame (Fig. 2),

angled at an ~15° oblique view to have a partial view

of the seabed and an inward angle of approximately

~8° with a basal separation of 58 cm. Each camera

was set to manual mode with the focal length set to

125

Fig. 1. Stereo baited remote underwater video (SBRUV) deployment locations within South Arran Nature Conservation
 Marine Protected Area (NCMPA) and Lamlash no-take zone (NTZ) over the course of 2013 and 2014. Different coloured 

squares represent the different substratum types observed

Fig. 2. Stereo baited remote underwater video system show-
ing (i) bait box, (ii) strobe to synchronise cameras, (iii)
torches, (iv) waterproof housing containing video cameras
and (v) float and ropes to deploy the frame to the seabed 

from the vessel
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infinity (∞). Two underwater, LED W38VR Archon-

light (1400 lumen) torches were mounted on the

frame, facing at an angle to the middle of the stereo-

camera field of view. A flashing strobe and bait box

was attached on a 91-cm-long bait arm situated in

front of the camera. The strobe was used to synchro-

nise the stereo-video images. Bait consisted of 500 g

of cut Atlantic mackerel Scomber scombrus. The

SBRUV frame was tethered to a rope for deployment

and retrieval.

The system was set up in a similar way to the pro-

totype described in Harvey & Shortis (1995, 1998).

However, our system was optimised for smaller-bod-

ied (<50 cm) fish in seawater with a visibility of <6 m

distance by bringing the cameras closer together.

The maximum depth and width of the field of view at

which gadoids could be measured was 4 m × 2 m.

Prior to and over the course of field data collection,

the mounted cameras were calibrated within a con-

trolled environment using the methods outlined in

Harvey & Shortis (1998) and CAL software manual

(version 2.11, www.seagis.com.au/event.html).

Camera systems were deployed for a minimum of

55 min on the seabed. This deployment length pro-

vided the best compromise between sufficient bait

soak time for species accumulation, as tested by

Unsworth et al. (2014), and the need to bait and rede-

ploy each camera multiple times on each sampling

day. To minimise the possibility of deployments

affecting each other, SBRUV deployments on the

same day were a minimum distance of 500 m apart

to minimise the possibility of juveniles swimming

between SBRUV deployments. Samples were col-

lected between 09:00 and 15:00 h (GMT), so that all

deployments would be a minimum of 3 h after sunrise

and 3 h before sunset to avoid crepuscular variation

in fauna behaviour (e.g. Keats & Steele 1992, Bertelli

& Unsworth 2014).

Video analysis

Each deployment was analysed using Event Meas-

ure software (version 3.42, www. seagis. com. au/ event.

html) and a sample of 48 deployments were ana lysed

by 2 separate observers to check for observer bias.

All epibenthic and demersal fauna identified were

quantified to the lowest taxonomic level possible.

The maximum number of individuals of the same

species appearing in a frame at the same time

(MaxN) was used as a measure of relative abundance

(Priede et al. 1994, Watson et al. 2005, Cappo et al.

2006). MaxN avoids repeat counts of individuals re-

entering the field of view (Priede et al. 1994, Watson

et al. 2005).

For gadoid length measurements, each individual

observed had to be visible in both cameras. Fish fork

length measurements were taken at one time point per

deployment, when the maximum number of measura-

ble fish was present. All length measurements with a

root mean square (RMS) error >2 cm and a precision

of length measurement >0.5 cm were removed from

the analysis.

To undertake seabed-type categorisation, still images

were extracted from the video recordings. Coral

Point Count (CPC) analysis (version 4.1; Kohler & Gill

2006) was used to record sediment and macrophyte

type from the still images taken of the seabed. Two

divisions of the Wentworth grain scale (Wentworth

1922) were used to classify sediment type (Connor et

al. 2004). A total of 66 (11 × 6) randomly stratified

points were overlaid on the image during CPC analy-

sis following similar protocols used by Deter et al.

(2012). Using the outputs from the CPC analysis, sub-

stratum categories were assigned based on the most

dominant substrata occurring within each sample

(Table 1), as per Elliott et al. (2016a). Substratum

 categories consisted of algal−boulder−cobble (ABC),
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Substratum type Sediment composition Particle size (cm) Macrophyte type and density

Algal−boulder−cobble (ABC) Boulders and cobbles >6.4 Sediment covered in a mixture of kelp 
and red algae (>60%), e.g. Laminaria spp. 
and Ceramium spp.

Algal−gravel−pebble (AGP) Gravel (stone, shell and ~1.6−6.4 Between 20 and 50% cover by algae
maerl Phymatolithon 

calcareum) and pebble
Seagrass Sandy sediment ~0.1−0.4 Presence of seagrass Zostera marina

Sand Sandy sediment ~0.1−0.4 Absence of macrophytes
Mud Mud and sandy mud <0.1 Absence of algae

sediment grain size

Table 1. Substratum type characterisation
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algal− gravel− pebble (AGP), seagrass Zostera marina,

sand and mud (Table 1). Maerl was not treated sepa-

rately as a result of its gravel−pebble-sized form

around South Arran. Furthermore, impacted maerl

has been demonstrated to be more similar to gravel

than live maerl (Kamenos et al. 2003).

Data analysis

Permutational multivariate analysis of variance

(PERMANOVA) was performed in PERMANOVA 6

software (Anderson et al. 2008) to investigate com-

munity composition differences in epibenthic and de-

mersal fauna within and between substratum types.

To explore community composition differences, the

MaxN of epibenthic and demersal fauna were fourth-

root transformed, to reduce the influence of domi-

nant species (Clarke & Green 1988). Prior to applying

PERMANOVA, a Bray-Curtis similarity coefficient

was performed. Posterior pair-wise tests were used

to compare the difference between substratum

 categories. PERMANOVA was run with 9999 per -

mutations and results were considered significant at

p(perm) < 0.01. Non-metric multi-dimensional scaling

(nMDS) plots were used to visualise differences in

epibenthic and demersal fauna be tween substratum

types. nMDS plots provide a stress values that

 increase with reduced dimensionality or ordination

(Clarke & Warwick 2001). Simi larity percentages

(SIMPER) analysis was used to determine species that

contributed most to the dissimilarity between the

 different substratum types (Clarke & Warwick 2001).

To identify gadoid habitat variables, the abiotic

variables explored included substratum type (cate-

gorical, 5 levels), depth (m), distance from coast (m),

wave fetch (km) and year (categorical, 2 levels). Year

was included in the model due to slight differences in

sampling between years. The effect of epibenthic and

demersal fauna MaxN was explored by Shannon-

Wiener entropy (Jost 2010). To facilitate compara -

bility between units, continuous explanatory vari -

ables were standardised by dividing the mean by the

standard deviation prior to statistical analysis. Ran-

dom effects used included the effect of the zones and

grouped days of data collection where significant.

Depth data were obtained from vessel echo sounders.

Distance from coast was calculated using the GPS fix

made at the time of deployment and ArcGIS version

10.1 (EDINA digimap). Wave fetch values for a 200 m

coastline grid (www. sams. ac. uk/ michael-burrows/

downloads) were used as described in Burrows et al.

(2008).

Univariate statistical analysis was performed with

the software R (version 3.2.1; R Core Team; www.r-

project.org). Data exploration followed recommen -

dations from Zuur et al. (2010). Homogeneity and po-

tential outliers were analysed with boxplots. Variance

inflation factor analysis and Spear man’s rank correla-

tions were used to test for colline arity. Temporal auto-

correlation was accounted for by including year in the

statistical model and day of collection as a random ef-

fect. Spatial independence was evaluated with vari-

ograms using R package geoR (http:// CRAN.R-proj-

ect.org/package=geoR). No spatial autocorrelation

was observed. The model of best fit for all count data

was a negative binomial distribution to account for

over dispersion, using R package glmmADMD (http://

glmmadmb.r-forge.r-project. org/). Backwards stepwise

model selection was implemented (Bolker et al. 2009,

Zuur et al. 2010), looking for potential interactions.

Model selection and significance was tested using a

log-likelihood ratio test. Pearson’s residuals were com -

pared between models, fitting a model with the highest

level of hetero scedasticity. Tukey tests using R package

multcomp (Hothorn et al. 2008) were performed to test

for differences between categorical variables.

Eq. (1) provides the model structure used to

explore juvenile gadoid habitat:

log(Yi) = β0 + β1,Xij + β2,Xi + β3,Xi ... + zij + tij (1)

whereYi is the gadoid MaxN, β are the coefficients, X

are the explanatory variables, zij and tij are the ran-

dom effects (zone and day of collection, respectively),

i represents continuous-variable samples and ij rep-

resents categorical-variable samples.

Differences in substratum association between years

was analysed via Eq. (2):

log(Yi) = β0 + β1,Sij * β2,Yij + zij (2)

where Sij is the is substratum type and Yij is the year.

The habitat variables described above and day of

the year were used to explore for any size-related

 differences in age-0 gadoids, enabling inferences on

the quality of the habitat to be made (Gibson 1994,

Able 1999, Elliott et al. 2016b). To reduce the likeli-

hood of including age-1 gadoids, all individuals

larger than 15 cm were removed from the analysis

following DAtabase of TRAwl Surveys (DATRAS)

ALK (product for standard species only) quarter 4

(October− December) data for the Clyde area (www.

datras. com). Linear mixed models were employed

using the R package nlme (http://CRAN.R-project.

org/package=nlme) for length measurements:

Yi = β0 + β1,Di/j + β1,Xi (3)
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where Yi is the gadoid fork length and D is day of the

year.

To investigate whether the ability to identify and

measure gadoids decreased with increasing depth

(and therefore possibly reduced light), an ANOVA

test was used to confirm that the ability to identify

and measure gadoids did not decrease with depth.

RESULTS

Community composition substratum differences

Over the course of data collection, a total of 6186

epibenthic and demersal individuals from 65 species

were recorded from the SBRUV deployments. Signif-

icant differences in community composition between

substratum types were observed (pseudo-F = 6.53,

p(perm) < 0.0001). Table 2 shows significant pair-wise

test differences between substratum types and SIM-

PER percentage dissimilarity between substratum

types and species. The nMDS plot had a stress value

of 0.21 (relatively low), illustrating differences between

the substratum types with some overlap (Fig. 3).

Gadus morhua habitat

An increase in MaxN was observed with increas-

ing Shannon-Wiener entropy. A decrease in MaxN

was observed with increasing depth and wave fetch

(Fig. 4). Fewer G. morhua were observed in 2014

than 2013 (Table 3). Since no G. morhua were ob -

served over mud, this category was removed from

the analysis to improve logistic model convergence.

The highest MaxN was observed over AGP and the

mean average MaxN was observed over sand (l =

−310.99, df = 10, θ = 1.09, p < 0.001; Figs. 4 & 5).

A significant difference in MaxN across substrata

and year was observed. During both years, higher G.

morhua MaxN was observed over AGP than other

substrata. In addition, mean MaxN observed over

AGP remained relatively constant, whereas it de -

creased over other substrata (l = −331.36, df = 10, θ =

1.09, p < 0.001; Fig. 5).
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Substratum types t statistic p(perm) Unique Dissimi- Top 3 species causing dissimilarity
perms larity (%)

AGP, sand 2.16 0.05 9945 79 Gadus morhua, Melanogrammus aeglefinus, flatfish
Pleuronectiformes

AGP, seagrass 5.10 0.01 9962 73 Pleuronectiformes, shore crab Carcinus maenas, G. morhua

AGP, ABC 4.24 0.00 9933 77 Goldsinny Ctenolabrus rupestris, G. morhua, two-spotted 
goby Gobiusculus flavescens

AGP, mud 3.51 0.05 9868 82 G. morhua, rugose squat lobster Munida rugosa, 
Merlangius merlangus

Sand, ABC 4.57 0.00 9949 90 C. rupestris, M. aeglefinus, harbour crab Liocarcinus 

depurator

Sand, seagrass 2.42 0.01 9966 68 C. maenas, M. aeglefinus, G. morhua

Sand, mud 3.55 0.05 9852 67 M. rugosa, M. merlangus, M. aeglefinus

ABC, seagrass 6.43 0.00 9939 87 C. rupestris, Pleuronectiformes, L. depurator

ABC, mud 4.77 0.00 9849 95 C. rupestris, M. rugosa, M. merlangus

Seagrass, mud 3.29 0.01 4378 78 M. rugosa, C. maenas, G. morhua

Table 2. Pairwise tests and percentage dissimilarity in epibenthic and demersal fauna assemblage composition between
 substratum type. PERMANOVA was run 9999 times and results were considered significant at p(perm) < 0.01. AGP, algal−

gravel−pebble; ABC, algal−boulder−cobble

Fig. 3. Non-metric multi-dimensional scaling ordination plot
(fourth-root transformation with Bray Curtis resemblance
matrix) of mobile fauna observed over the different substra-
tum types (h, algal-boulder-cobble; n, algal-gravel-pebble;
r, seagrass; z, sand; d, mud). Significant effects of substra-
tum type on assemblage structure were observed (PERM-

ANOVA, p < 0.001)
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During field season 2013, an increase in length

was observed, as well as an increase in length with

Shannon-Wiener entropy (l = −248.49, df = 7, p < 0.001;

Table 4). Significantly larger G. morhua were ob -

served over AGP (7.5 cm, SE ± 0.03 cm) than sand

(5.7 cm, SE ± 0.1 cm) (p < 0.05; Fig. 6). During field

season 2014, a significant increase in length was

observed over the period of data collection (Table 4).

Significantly larger G. morhua were observed over

seagrass (10.2 cm, SE ± 0.1 cm) than AGP (7.8 cm,

SE ± 0.03 cm) (l = −188.33, df = 5, p < 0.05; Fig. 6).

Melanogrammus aeglefinus habitat

An increase in M. aeglefinus MaxN was observed

with increasing depth. A decrease in MaxN was ob -

served with increasing wave fetch and Shannon en -

tropy (Fig. 4). More individuals were observed in

2014 than 2013 (Table 3). The highest MaxN for M.

aeglefinus was observed over the sand with lowest

MaxN observed over ABC (l = −279.92, df = 11, θ =

1.33, p < 0.001; Fig. 5).

Due to differences in data collection between years,

it was not possible to undertake statistical analysis

comparing M. aeglefinus MaxN between substratum

type, since no data were collected in deeper water

containing mud in year one. Over the course of both

years, few individuals were observed in ABC and

consistently greater numbers of M. aeglefinus were,

however, observed over sand (Fig. 5).

A significant increase in length was observed over

the course of data collection during 2013 (l = −88.19,

df = 3, p < 0.001; Table 4). During field season 2014, a

significant increase in length was observed over the

course of data collection in addition to increasing

length with depth and wave fetch (l = −221.93, df = 7,

p < 0.001; Table 4).
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Fig. 4. Coefficient plot for model of best fit for (a) Gadus

morhua, (b) Melanogrammus aeglefinus and (c) Merlangius

merlangus habitat variables. Lines are the 95% confidence
intervals for each of the explanatory variables. The continu-
ous vertical dashed line is the reference line enabling us to
see which coefficients are significantly different from zero.
The intercept represents algal−boulder−cobble and year 1
(2013) of data collection, AGP refers to algal−gravel−pebble.
Dotted vertical lines with * refer to Tukey test p-value 

significance between substrata: **p < 0.01, ***p < 0.001)

Species Year Total number Mean Habitat variable Substratum significant 
of individuals MaxN ± SE effect for both difference for both 

measured at MaxN 2013 and 2014 2013 and 2014

Gadus morhua 2013 268 3.62 ± 0.44 Shannon ↑ AGP−ABC
2014 182 1.31 ± 0.38 Depth ↓

Wave fetch ↓

Melanogrammus aeglefinus 2013 64 0.86 ±0.37 Shannon ↓ Sand−ABC
2014 190 1.03 ± 0.15 Depth ↑ Seagrass−ABC

Wave fetch ↓

Merlangius merlangus 2013 30 0.40 ± 1.02 Shannon ↑ Sand−ABC
2014 192 1.05 ± 2.18 Depth ↑

Wave fetch ↓

Table 3. Juvenile gadoid MaxN summary results. Arrows represent an increase or decrease in gadoid MaxN
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Merlangius merlangus habitat

An increase in MaxN was observed with increas-

ing Shannon-Wiener entropy and depth and a

decrease in MaxN was observed with increasing

wave fetch (Fig. 4). Fewer individuals were observed

in 2013 (Table 3). The highest MaxN for M. merlan-

gus was observed over sand with the lowest MaxN

observed over ABC (l = −273.64, df = 11, θ = 1.17, p <

0.001; Figs. 4 & 5). More M. merlangus was observed

over sand substrata than the other substrata over the

2 years of data collection (Fig. 5).

During field season 2013, a significant increase

in length was observed (l = −15.56, df = 4, p < 0.05;

Table 4). During field season 2014, an increase in

length with increasing depth was observed (l =

−188.29, df = 3, p < 0.01; Table 4).

DISCUSSION

There is a paucity of data on the habitat require-

ments of commercially important gadoids (Gadus mor -

hua, Melanogrammus aeglefinus and Merlangius

merlangus) within Eastern Atlantic waters. Our study

provides information on the relationship between

juvenile gadoid habitat variables from SBRUV field

observations during daylight hours. A variety of

habitat variables (5 substratum types, depth, wave

fetch and Shannon-Wiener entropy) affected the dis-

tribution of these gadoids, demonstrating the impor-

tance of exploring abiotic and biotic factors that

affect the distribution of species. It was observed that
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Fig. 5. Substratum association between data collection period
2013 (dark grey) and 2014 (light grey) for juvenile Gadus

morhua, Melanogrammus aeglefinus and Merlangius mer-

langus observed within South Arran Nature Conservation
Marine Protected Area. Boxplots: 25th and 75th percentiles
of the total number of juvenile gadoids observed within the
different substrata; upper and lower whiskers: 10th and 90th
percentiles; thick horizontal line: median MaxN; solid dots:
outliers. Dotted horizontal lines with * refer to Tukey test
p-value significance between substrata (p < 0.05). ABC, algal−

boulder−cobble; AGP, algal−gravel−pebble

Fig. 6. Length-frequency distributions by substratum for
Gadus morhua during 2013 and 2014. Year 2013 illustrates
that G. morhua were significantly larger over algal− gravel−
pebble (AGP) than sand. During year 2014 G. morhua was
significantly larger over seagrass than AGP. ABC refers to
algal−boulder−cobble. Dotted horizontal lines with * refer to 

Tukey test p-value significance (p < 0.05)
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the niche occupation of G. morhua was distinct from

that of M. aeglefinus and M. merlangus. Furthermore

ontogenetic shifts in the distribution of age-0 indi -

viduals were observed for a size range of 3−15 cm.

Over both years of data collection, a greater rela-

tive abundance of G. morhua was observed over the

AGP substratum type, with no individuals observed

over mud and the fewest individuals observed over

sand. These results support previous observations

collected by stereo-video SCUBA transects (Elliott

et al. 2016a). It is likely that fewer G. morhua were

observed over seagrass areas due to the patchy, low

density and small area (less than 1 km2) of seagrass

(Jackson et al. 2001, Gorman et al. 2009, McCloskey

& Unsworth 2015) around South Arran (Elliott et al.

2016a). Fewer G. morhua may have been observed

over ABC substrata as other potential predatory

fish were observed around these areas e.g. age-1+

pollack Pollachius pollachius and saithe Pollachius

virens. Similar laboratory results were observed by

Gotceitas & Brown (1993), where in the absence of

predators, juvenile G. morhua were observed over

gravel−pebble; however, in the presence of preda-

tors, they hid in the interstitial spaces of cobble.

Much of the gravel where the SBRUV deployments

took place around South Arran contained maerl.

Maerl is thought to contribute to higher species

diversity and heterogeneity and may be of impor-

tance to juvenile G. morhua (Hall-Spencer et al.

2003, Kamenos 2004).

During data collection period 2014, where signifi-

cantly fewer G. morhua were observed, its relative

abundance was reduced over all substrata apart

from AGP where the G. morhua relative abundance

remained more constant. This could be evidence of

selection of AGP, with density-dependent dispersal

to other substrata at higher population densities. This

indicates that this substratum could be an important

seabed type for juvenile G. morhua (Morris 1989,

2003, Swain & Wade 1993). Lough (2010) also indi-

cated that limited gravel areas may inhibit the

 survival of juvenile G. morhua. Juvenile G. morhua

 density-dependent substrata association was like-

wise observed by Laurel et al. (2004), who found that

the abundance of G. morhua was consistently high

over seagrass areas and more variable in sand.

Over the period of data collection, ontogenetic

shifts in substratum association were observed. An

increase in age-0 G. morhua relative abundance was

observed over more structurally rugose substrata rel-

ative to their size. Keats & Steele (1992), Laurel et al.

(2007) and Tupper & Boutilier (1995b) also observed

ontogenetic shifts to more rugose substrata with in -

creased size. Older (age-1+) and larger gadoids have,

however, been observed to move into deeper, less

rugose substrata with size (Cote et al. 2008, 2013,

Munsch et al. 2016). Ontogenetic shifts within the

size range observed highlights the importance of

substrata of sufficient rugosity relative to the size of

the individual and that multiple substratum types

may be needed by the same species (Nagelkerken et

al. 2013, Elliott et al. 2016b). Differences between

years (2013 and 2014) may be due to on average

larger individuals recorded in 2014 than 2013. In

addition, in 2014, sampling took place at a larger

range of depths than in 2013.

Although previous research has suggested that M.

aeglefinus and M. merlangus do not seem to have a

particular nursery grounds (Hislop 1996), significant

substratum associations were observed. In contrast

to G. morhua, higher relative abundances of both M.

aeglefinus and M. merlangus were observed over

sand followed by mud, with the fewest individuals

observed over ABC substrata. Higher relative abun-

dance over sand was also observed for both years of

data collection for both species, indicating a selection

for this substratum type. These results match labora-

tory and field studies undertaken with M. merlangus
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Species Year Number of length Mean length Minimum size Length increase Ontogenetic 
measurements (cm) ± SE observed (cm) significance shift significance

Gadus morhua 2013 123 7.4 ± 0.2 2.4 <0.001 Shannon <0.05
Substratum type <0.05

2014 96 8.3 ± 0.2 3.0 <0.001 Substratum type <0.05

Melanogrammus 2013 50 12.3 ± 0.2 7.6 <0.001 na
aeglefinus 2014 131 10.6 ± 0.1 6.7 <0.001 Depth <0.001

Wave fetch <0.05

Merlangius 2013 9 10.7 ± 0.7 8.3 <0.05 na
merlangus 2014 83 11.3 ± 0.2 6.3 >0.05 Depth <0.01

Table 4. Gadoid age-0 (<15 cm) length measurements and ontogenetic shift changes. na: not applicable
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and M. aeglefinus (Auster et al. 2001, Atkinson et al.

2004). M. aeglefinus and M. merlangus also demon-

strated ontogenetic shifts to deeper waters with

increasing size. Such results demonstrate that meas-

ures to protect juveniles must be tailored to the spe-

cies and life-history stages under consideration, and

that there may not be general rules that apply evenly

within groups of closely related fish (Nagelkerken

et al. 2013).

Similarities in substratum association between M.

aeglefinus and M. merlangus may be because, on

average, M. aeglefinus and M. merlangus were simi-

lar in size, and individuals of both species were

larger than G. morhua. Such size-related behaviour

may reduce agonistic interactions, such as competi-

tion for resources between individuals and/or pre -

dation from larger individuals (Keats & Steele 1992,

Cote et al. 2008, Bastrikin et al. 2014).  Species-

specific segregation potentially reduces predation

(Myers & Cadigan 1993, Fromentin et al. 1997) and

minimises competition, most likely as a result of dif-

ferent resource needs (Fromentin et al. 1997, Bas-

trikin et al. 2014).

The relative abundances of G. morhua and M.

 merlangus were positively correlated with Shannon-

Wiener diversity entropy. This indicates that G.

morhua and M. merlangus are found in higher rela-

tive abundance when epibenthic and demersal fauna

composition is more even (where an increased ratio of

the number of species relative to the total number of

individuals is observed) (Hill 1973, Jost 2010). Main-

taining species biological di versity is a well-known

mechanism for maintaining the ecosystem services

on which we depend (Worm et al. 2006, Beaumont et

al. 2008).

Growth rates are also used as an indicator for the

quality of a habitat (Gibson 1994, Searcy et al. 2007,

Elliott et al. 2016b). This is particularly relevant in

the case of G. morhua, where an increase in growth

was correlated with an increase in epibenthic and

de mersal fauna diversity. More diverse areas can be

as sumed to represent higher-quality habitats. De -

clines in species diversity are largely caused by

anthro pogenic impacts such as exploitation, physical

damage to substrata and pollution (Thrush & Dayton

2002, Lotze 2006, Worm et al. 2006).

Much of the maerl found around South Arran is

degraded as a result of historic dredging activity

(Thurstan & Roberts 2010). Shallower gravel-type

substrata containing maerl, where G. morhua were

found in greater relative abundance, could be more

vulnerable to dredging activities that take place in

these shallower areas (Collie et al. 2000, Kaiser et al.

2006). Protecting more biodiverse areas may support

the survival of commercial fish (Worm et al. 2006,

Beaumont et al. 2008).

Wave exposure has previously been identified as

having a strong influence on the local distribution of

coastal species (Burrows et al. 2008, Burrows 2012).

For all 3 gadoids, a negative relationship between

their relative abundance and wave fetch was ob -

served. Fromentin et al. (1997) also observed higher

abundances of G. morhua and M. merlangus in more

sheltered areas within fjords as opposed to more

exposed areas outside fjords. These results differ

from the results of Lekve et al (2006), who found an

increased abundance of G. morhua in more exposed

areas. This is another example of the variability in

natural history between G. morhua across its range.

Few studies have been undertaken using SBRUV

as a mechanism to collect fisheries-independent data

in the Europe. The findings within this study linking

gadoid relative abundance to their habitats using

SBRUV deployments within UK coastal waters have

relevance across the region. With the increasing

number of spatial closures being designated within

European waters, SBRUV surveys could be used as a

fisheries and marine protected area (MPA) monitor-

ing method in a variety of conditions and seabed

types, supporting more ecosystem-based manage-

ment.

In conclusion, this study demonstrates the im -

portance of taking into consideration a range of habi-

tat variables to better understand demersal fish dis-

tribution. The link between epibenthic and demersal

species diversity has significant management impli-

cations since insufficient good-quality habitat may

be causing recruitment bottlenecks due to the carry-

ing capacity of the environment (Svåsand et al. 2000).

This has MPA and Marine Strategy Framework Di -

rective (MSFD, 2008/56/EC) management and moni-

toring implications given that the descriptors linking

together biodiversity (D1), seafloor integrity (D6) and

commercially exploited fish (D3) indicators have not

yet been addressed. We recommend linking com-

mercially exploited fish during critical life phases to

habitat variables to support the recovery of depleted

fish stocks and implement more ecosystem-based

management. By understanding the range of condi-

tions suitable to gadoid species, adequate protection

measures can be implemented to try to recover

stocks through improved habitat quality.
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