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We seek a maximum weight many-to-one matching satisfying two sets of constraints:
vertices in A are incident to at most one matching edge, while vertices in P are
either unmatched or they are incident to a number of matching edges between their
lower and upper quota. This problem, which we call maximum weight many-to-one
matching with lower and upper quotas (WMLQ), has applications to the assignment
of students to projects within university courses, where there are constraints on the
minimum and maximum numbers of students that must be assigned to each project.
In this paper, we provide a comprehensive analysis of the complexity of WMLQ from
the viewpoints of classical polynomial time algorithms, fixed-parameter tractability, as
well as approximability. We draw the line between NP-hard and polynomially tractable
instances in terms of degree and quota constraints and provide efficient algorithms to
solve the tractable ones. We further show that the problem can be solved in polynomial
time for instances with bounded treewidth; however, the corresponding runtime is
exponential in the treewidth with the maximum upper quota umax as basis, and we
prove that this dependence is necessary unless FPT = W[1]. The approximability of
WMLQ is also discussed: we present an approximation algorithm for the general case
with performance guarantee umax + 1, which is asymptotically best possible unless
P = NP. Finally, we elaborate on how most of our positive results carry over to
matchings in arbitrary graphs with lower quotas.

Keywords Maximum matching · Many-to-one matching · Project allocation ·
Inapproximability · Bounded treewidth

1 Introduction

Many university courses involve some element of team-based project work. A set of
projects is available for a course and each student submits a subset of projects as
acceptable. For each acceptable student–project pair (s, p), there is a weight w(s, p)

denoting the utility of assigning s to p. The question of whether a given project can run
is often contingent on the number of students assigned to it. Such quota constraints
also arise in various other contexts involving the centralized formation of groups,
including organizing team-based activities at a leisure center, opening facilities to
serve a community and coordinating rides within car-sharing systems. In these and
similar applications, the goal is to maximize the utility of the assigned agents under
the assumption that the number of participants for each open activity is within the
activity’s prescribed limits.

We model this problem using a weighted bipartite graph G = (A ∪̇ P, E), where the
vertices in A represent applicants, while the vertices in P are posts they are applying
to. So in the above student–project allocation example, A and P represent the students
and projects respectively, and E represents the set of acceptable student–project pairs.
The edge weights capture the cardinal utilities of an assigned applicant–post pair. Each
post has a lower and an upper quota on the number of applicants to be assigned to it,
while each applicant can be assigned to at most one post. In a feasible assignment, a
post is either open or closed: the number of applicants assigned to an open post must
lie between its lower and upper quota, whilst a closed post has no assigned applicant.
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The objective is to find a maximum weight many-to-one matching satisfying all lower
and upper quotas. We denote this problem by WMLQ.

In this paper, we study the computational complexity of WMLQ from various
perspectives. We begin by defining the problem formally in Sect. 2. Then in Sect. 3,
we show that WMLQ can be solved efficiently if the degree of every post is at most 2,
whereas the problem becomes hard as soon as posts with degree 3 are permitted, even
when lower and upper quotas are all equal to the degree, and every applicant has a
degree of 2. Furthermore, we show the tractability of the case of pair projects, i.e., when
all upper quotas are at most 2. In Sect. 4, we study the fixed parameter tractability
of WMLQ. To this end, we generalize the known dynamic program for maximum
independent set with bounded treewidth to WMLQ. The running time of our algorithm
is exponential in the treewidth of the graph, with umax, the maximum upper quota of
any vertex, as the basis. This yields a fixed-parameter algorithm when parameterized
by both the treewidth and umax. We show that this exponential dependence on the
treewidth cannot be completely separated from the remaining input by establishing a
W [1]-hardness result for WMLQ parameterized by treewidth. Finally, in Sect. 5, we
discuss the approximability of the problem. We show that a simple greedy algorithm
yields an approximation guarantee of umax +1 for WMLQ and

√
|A|+1 in the case of

unit edge weights. We complement these results by showing that these approximation
factors are asymptotically best possible, unless P = NP. We briefly comment on the
generalizability our aforementioned results in Sect. 6 for matchings in arbitrary graphs
with lower quotas.

1.1 Related Work

Among various applications of centralized group formation, perhaps the assignment
of medical students to hospitals has received the most attention. In this context, as well
as others, the underlying model is a bipartite matching problem involving lower and
upper quotas. The Hospitals/Residents problem with Lower Quotas (HRLQ) [4,14]
is a variant of WMLQ where applicants and posts have ordinal preferences over one
another, and we seek a stable matching of residents to hospitals. Hamada et al. [14]
considered a version of HRLQ where hospitals cannot be closed, whereas the model of
Biró et al. [4] permitted hospital closures. Strategyproof mechanisms have also been
studied in instances with ordinal preferences and no hospital closures [9,12,13].

The Student/Project Allocation problem [24, Section 5.6] models the assignment of
students to projects offered by lecturers subject to upper and lower quota restrictions
on projects and lecturers. Several previous papers have considered the case of ordinal
preferences involving students and lecturers [1,16,25] but without allowing lower quo-
tas. However two recent papers [18,26] do permit lower quotas together with project
closures, both in the absence of lecturer preferences. Monte and Tumennasan [26]
considered the case where each student finds every project acceptable, and showed
how to modify the classical “serial dictatorship” mechanism to find a Pareto optimal
matching. Kamiyama [18] generalized this mechanism to the case where students need
not find all projects acceptable, and where there may be additional restrictions on the
sets of students that can be matched to certain projects. This paper also permits lower
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quotas and project closures, but our focus is on cardinal utilities rather than ordinal
preferences. Cardinal utilities can facilitate a more flexible representation of prefer-
ences and they occur naturally in various matching problems, such as the solution
of symmetric indefinite systems [31], the organization of Chess tournaments [28] or
car sharing [15]. Moreover, various methods for converting ordinal preferences into
cardinal utilities are known, such as the normalized Borda score [30].

The unit-weight version of WMLQ is also closely related to the D-matching prob-

lem [8,23,33], a variant of graph factor problems [29]. In an instance of the D-matching
problem, we are given a graph G, and a domain of integers is assigned to each vertex.
The goal is to find a subgraph G ′ of G such that every vertex has a degree in G ′ that
is contained in its domain. Lovász [22] showed that the problem of deciding whether
such a subgraph exists is NP-complete, even if each domain is either {1} or {0, 3}.
On the other hand, some cases are tractable. For example, if for each domain D, the
complement of D contains no consecutive integers, the problem is polynomially solv-
able [33]. As observed in [32], D-matchings are closely related to extended global

cardinality constraints and the authors provided an analysis of the fixed-parameter
tractability of a special case of the D-matching problem; see Sect. 4 for details.

The problem that we study in this paper corresponds to an optimization version of
the D-matching problem. We consider the special case where G is bipartite and the
domain of each applicant vertex is {0, 1}, whilst the domain of each post vertex p is
{0} ∪ {ℓ(p), . . . , u(p)}, where ℓ(p) and u(p) denote the lower and upper quotas of
p respectively. Since the empty matching is always feasible in our case, our aim is to
find a domain-compatible subgraph G ′ such that the total weight of the edges in G ′ is
maximum.

2 Problem Definition

In this section we provide a formal definition of the maximum weight many-to-one
matching problem with lower quotas (WMLQ).

Basic Notation Let G = (V, E) be a graph. For a subset of vertices U ⊆ V we denote
by δ(U ) = {{v,w} ∈ E : v ∈ U, w ∈ V \ U } the set of edges incident to exactly one
vertex in U . For a vertex v ∈ V , we write δ(v) = δ({v}), and for a subset of edges
F ⊆ E we write degF (v) = |δ(v)∩ F |. By Γ (v) = {w ∈ V : {v,w} ∈ E} we denote
the neighborhood of v, i.e., the set of vertices that are adjacent to v.

In our problem, a set of applicants A and a set of posts P are given. A and P

constitute the two vertex sets of an undirected bipartite graph G = (V, E) with V =
A ∪̇ P and E represents the set of acceptable applicant-post pairs. Each edge carries
a weight w : E → R≥0, representing the utility of the corresponding assignment.
The set of posts is equipped with functions ℓ : P → Z≥0 and u : P → Z≥0
such that ℓ(p) ≤ u(p) for every p ∈ P . Here ℓ(p) is called the lower quota of
p and u(p) is called the upper quota of p. These functions bound the number of
admissible applicants for the post (independent of the weight of the corresponding
edges). Furthermore, every applicant can be assigned to at most one post. Thus, an
assignment is a subset M ⊆ E of the edges such that |δ(a) ∩ M | ≤ 1 for every
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applicant a ∈ A and |δ(p) ∩ M | ∈ {0, ℓ(p), ℓ(p) + 1, . . . , u(p)} for every p ∈ P .
With respect to an assignment M , a post is said to be open if the number of applicants
assigned to it is greater than 0, and closed otherwise. The size of an assignment M ,
denoted |M |, is the number of assigned applicants, while the weight of M , denoted
w(M), is the total weight of the edges in M , i.e., w(M) =

∑

e∈M w(e). The goal is
to find an assignment of maximum weight. Formally, we define the WMLQ problem
as follows.

Problem 1 WMLQ

Input: I = (G, w, ℓ, u); a bipartite graph G = (A ∪̇ P, E) with edge weights w,

lower quotas ℓ and upper quotas u.

Task: Find an assignment of maximum weight.

If w(e) = 1 for all e ∈ E, we refer to the problem as mlq.

Remark 1 Note that when lower quotas are present but posts cannot be closed, we
obtain the Degree Constrained Subgraph Problem (DCS); a maximum weight match-
ing in an instance of DCS can be found in polynomial time [10]. In the special case
that lower quotas are absent, DCS is referred to as the Upper Degree Constrained
Subgraph Problem (UDCS) [10].

Some trivial simplification of the instance can be executed right at the start. If
u(p) > |Γ (p)| for a post p, then u(p) can be replaced by |Γ (p)|. On the other hand,
if ℓ(p) > |Γ (p)|, then post p can immediately be deleted, since no feasible solution
can satisfy the lower quota condition. Moreover, a post p with ℓ(p) = 1 behaves
identically to the case that ℓ(p) = 0, so we assume that no post p has ℓ(p) = 1. From
now on we assume that the instances have already been simplified this way.

3 Degree- and Quota-Restricted Cases

In this section we characterize the complexity of WMLQ in the presence of upper
bounds placed on vertex degrees or the posts’ upper quotas. Section 3.1 deals with
degree-restricted cases, whilst Sect. 3.2 studies cases involving bounded upper quotas.

3.1 Degree-Restricted Cases

In this subsection we will consider WMLQ (i, j), the special case of WMLQ in which
|Γ (a)| ≤ i for all a ∈ A, and |Γ (p)| ≤ j for all p ∈ P . That is, every applicant
submits at most i applications and every post receives at most j applications. In order
to establish our first result, we reduce the maximum independent set problem (mis)
to mlq. In mis, a graph with n vertices and m edges is given and the task is to find
an independent vertex set of maximum size. mis is not approximable within a factor
of n1−ε for any ε > 0, unless P = NP [35]. The problem remains APX-complete
even for cubic (3-regular) graphs [2].
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Theorem 1 mlq(2,3) is APX-complete.

Proof First of all, mlq(2,3) is in APX because the problem has a 4-approximation
that can be found in polynomial time (see Theorem 7).

To each instance I of mis on cubic graphs we create an instance I ′ of mlq such
that there is an independent vertex set of size at least K in I if and only if I ′ admits
an assignment of size at least 3K , yielding an approximation-preserving reduction.
The construction is as follows. To each of the n vertices of graph G in I, a post
with upper and lower quota of 3 is created. The m edges of G are represented as m

applicants in I ′. For each applicant a ∈ A, |Γ (a)| = 2 and Γ (a) comprises the two
posts representing the two end vertices of the corresponding edge. Since we work on
cubic graphs, |Γ (p)| = 3 for every post p ∈ P .

First we show that an independent vertex set of size K can be transformed into an
assignment of at least 3K applicants. All we need to do is to open a post with its entire
neighborhood assigned to it if and only if the vertex representing that post is in the
independent set. Since no two posts stand for adjacent vertices in G, their neighbor-
hoods do not intersect. Moreover, the assignment assigns exactly three applicants to
each of the K open posts.

To establish the opposite direction, let us assume that an assignment of cardinality
at least 3K is given. The posts’ upper and lower quota are both set to 3, therefore,
the assignment involves at least K open posts. No two of them can represent adjacent
vertices in G, because then the applicant standing for the edge connecting them would
be assigned to both posts at the same time.

Note that every solution of the constructed instance of mlq serves an integer multi-
ple of 3 applicants. In particular, the mlq instance has a solution serving 3K applicants
if and only if there is an independent set of size K in the mis instance. Hence, this
reduction preserves the approximation factors. Since mlq(2,3) belongs to APX and
mis is APX-complete in cubic graphs, it follows that mlq(2,3) is APX-complete. ⊓⊔

So far we have established that if |Γ (a)| ≤ 2 for every applicant a ∈ A and
|Γ (p)| ≤ 3 for every post p ∈ P , then mlq is NP-hard. In the following, we also show
that these restrictions are the tightest possible. If |Γ (p)| ≤ 2 for every post p ∈ P ,
then a maximum weight matching can be found efficiently, regardless of |Γ (a)|. Note
that the case WMLQ(1,∞) is trivially solvable.

Theorem 2 WMLQ(∞,2) is solvable in O(n2 log n) time, where n = |A| + |P|.

Proof After executing the simplification steps described at the end of Sect. 2, we apply
two more changes to derive our helper graph H . Firstly, if ℓ(p) = 0, u(p) = 2 and
|Γ (p)| = 2, we separate p’s two edges, splitting p into two posts with upper quota 1.
After this step, all posts with u(p) = 2 also have ℓ(p) = 2. All remaining vertices are
of upper quota 1. Then, we substitute all edge pairs of posts with ℓ(p) = u(p) = 2
with a single edge connecting the two applicants. This edge will carry the weight equal
to the sum of the weights of the two deleted edges.

Clearly, any matching in H translates into an assignment of the same weight in G

and vice versa. Finding a maximum weight matching in a general graph G = (V, E)

can be done in O(|V |(|E |+ |V | log |V |)) time [11], which reduces to O(|V |2 log |V |)
in our case. ⊓⊔
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3.2 Quota-Restricted Cases

In this section, we consider restrictions of WMLQ with bounded upper quotas. Note
that Theorem 1 already tells us that the case of u(p) ≤ 3 for all posts p ∈ P is NP-
hard to solve. We will now settle the complexity of the only remaining case, where
we have instances with every post p ∈ P having an arbitrary degree and u(p) ≤ 2.
This setting models posts that need to be assigned to none, one or pairs of applicants.

Here we present a solution for WMLQ with u(p) ≤ 2. Our algorithm is based on
f -factors of graphs. In the f -factor problem, a graph G and a function f : V → Z≥0 is
given. A set of edges F ⊆ E is called an f -factor if degF (v) = f (v) for every v ∈ V ,
where degF (v), as per our earlier definition, is the degree of v in the graph (V, F).
Constructing an f -factor of maximum weight in a graph with n vertices and m edges
or proving that none exists can be done in O(φ(m + n log n)) time, where φ is the
sum of all f -values in the graph [10,11].

Theorem 3 WMLQ with u(p) ≤ 2 for every p ∈ P can be solved in O(nm+n2 log n)

time, where n = |V | and m = |E |.

Proof We partition P into P1 and P \ P1, where P1 denotes the set of posts with
u(p) = 1. For posts in P \ P1 we can assume that ℓ(p) = u(p) = 2 for every
post p. For, a post p with ℓ(p) = 0 and u(p) = 2 can be transformed into a post with
ℓ(p) = u(p) = 2 by giving it two dummy edges with zero weight, allowing us to pick
the dummy edges in order to make up for the raised lower quota.

The graph G ′ = (V ′, E ′) of the constructed f -factor instance contains the graph
G = (V, E) of our WMLQ instance, as shown in Fig. 1. We add a dummy post pd to
V ′ and connect it to every applicant in A. We connect every post pi ∈ P1 to pd . For
every post pi ∈ P\P1 we add two dummy vertices q1

i and q2
i and a triangle on the

vertices pi , q1
i and q2

i . All new edges in E ′ \ E carry zero weight.
We set f (pd) = K , f (p) = u(p) for every p ∈ P and f (v) = 1 for the rest of the

vertices. In the initial version of our algorithm, we solve a weighted f -factor problem
for every K ∈ {0, 1, . . . , |A|+|P1|}, and later we will show a slightly modified version
of the f -factor instance so that it is sufficient to construct only two instances.

First we show that if there is a feasible assignment M in G so that the number of
unmatched applicants and the number of closed posts in P1 add up to K , then it can be
extended to an f -factor M ′ of the same weight in G ′. We construct M ′ starting with
M and then adding the following edges to it:

– {pd , ai } for every applicant ai that is unmatched in M ;
–

{

q1
i , pi

}

and
{

q2
i , pi

}

for every post pi ∈ P\P1 that is closed in M ;
–

{

q1
i , q2

i

}

for every post pi ∈ P\P1 that is open in M ;
– {pd , pi } for every post pi ∈ P1 that is closed in M ;

For all vertices v �= pd , it immediately follows from the construction that
degM ′(v) = f (v). The same holds for pd as well, because an edge is assigned to
it either because an applicant is unmatched or because a post in P1 is closed and we
assumed that these add up to K .

It is easy to see that if there is an f -factor M ′ in G ′, then its restriction to G

is a feasible assignment M of the same weight so that the number of unmatched
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pd p1 p2 p3 p4 p5

a1 a2 a3 a4 a5 a6

q1
1

q2
1

q1
4

q2
4

q1
5

q2
5

Fig. 1 The transformation from WMLQ to an f -factor problem. The solid edges form G, while the dotted

edges are the added ones, carrying weight 0. Here, P1 = {p2, p3} and P\P1 = {p1, p4, p5}

applicants and the number of closed posts in P1 add up to K . Since every post pi ∈ P1
is connected to pd and f (pi ) = 1, it is either the case that pi is open in M or
{pd , pi } ∈ M ′. Regarding posts outside of P1, we need to show that the two edges
incident to them are either both in G or neither of them are in G. Assume without
loss of generality that {pi , q1

i } ∈ M ′ and {pi , q2
i } /∈ M ′ for some pi /∈ P1. Since

f (q2
i ) = 1 and degM ′(q2

i ) = 0, M ′ cannot be an f -factor.
So far we have shown that it is sufficient to test |A|+|P1|+1 values for f (pd), and

collect the optimal assignments given by the maximum weight f -factors. Comparing
the weight of these locally optimal solutions delivers a global optimum. A slight
modification on the the graph corresponding to the f -factor instance will allow us
to solve the problem by constructing just two instances, as against |A| + |P1| + 1
instances. Similar to the triangles attached to posts in P \ P1, triangles are added to
pd as well. The added vertices have f -value 1 and the added edges carry weight 0.

The number of such triangles hanging on pd is
⌈

|A|+|P1|
2

⌉

. These triangles can take

up all the f -value of pd if necessary, but by choosing the edge not incident to pd they
can also allow pd to fill up its f -value with other edges. Since a triangle either takes
up 0 or 2 of pd ’s f -value, we need to separate the two different parity cases. Thus, to
cover all the |A| + |P1| + 1 cases for possible values for f (pd), in one instance we
set f (pd) to |A| + |P1| + 1 and in the other instance f (pd) = |A| + |P1|. ⊓⊔

4 Bounded Treewidth Graphs

In this section, we investigate WMLQ from the point of view of fixed-parameter
tractability and analyze how efficiently the problem can be solved for instances with
a bounded treewidth. Graphs with bounded treewidth occur frequently in real-life
instances of various problems, such as expert systems, evolution theory, or natural
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language processing [5]. More specifically, WMLQ could be used as a potential mod-
eling approach to handle load balancing in telecommunication networks that requires
throughput maximization. In WLAN and P2P networks, servers have limited capacities
and in addition the loads need to be reasonably balanced among the active servers [3].
This could be quite efficiently modeled using the upper and lower quotas. Moreover,
certain P2P and WLAN networks have bounded treewidth [19].

Fixed-Parameter Tractability This field of complexity theory is motivated by the fact
that in many applications of optimization problems certain input parameters stay small
even for large instances. A problem, parameterized by a parameter k, is fixed-parameter
tractable (FPT) if there is an algorithm solving it in time f (k)·φ(n), where f : R → R

is a function, φ is a polynomial function, and n is the input size of the instance. Note
that this definition not only requires that the problem can be solved in polynomial
time for instances where k is bounded by a constant, but also that the dependence of
the running time on k is separable from the part depending on the input size. On the
other hand, if a problem is shown to be W[1]-hard, then the latter property can only be
fulfilled if FPT = W[1], which would imply NP ⊆ DTIME(2o(n)). For more details
on fixed-parameter algorithms see, e.g., [27].

Treewidth In case of WMLQ we focus on the parameter treewidth, which, on an
intuitive level, describes the likeness of a graph to a tree. A tree decomposition of
graph G consists of a tree whose nodes—also called bags—are subsets of V (G).
These must satisfy the following three requirements.

1. Every vertex of G belongs to at least one bag of the tree.
2. For every edge {a, p} ∈ E(G), there is a bag containing both a and p.
3. If a vertex in V (G) occurs in two bags of the tree, then it also occurs in all bags

on the unique tree-path connecting them.

The width of a tree decomposition with a set of bags B is maxB∈B |B| − 1. The
treewidth of a graph G, tw(G), is the smallest width among all tree decompositions
of G. It is well known that a tree decomposition of smallest width can be found by a
fixed-parameter algorithm when parameterized by tw(G) [6].

Nice Tree Decomposition A nice tree decomposition is a tree decomposition with the
following additional properties: The decomposition tree has a root bag R, and every
bag in the tree (including R) is of one of the four types below.

– Leaf bag: |B| = 1 and B has no child;
– Introduce bag: B has exactly one child B1, so that B1 ⊂ B and |B \ B1| = 1;
– Forget bag: B has exactly one child B1, so that B ⊂ B1 and |B1 \ B| = 1;
– Join bag: B has exactly two children B1 and B2, so that B = B1 = B2.

For every tree decomposition with a specific treewidth, a nice tree decomposition
of the same treewidth can be found in linear time [20]. We will henceforth assume we
are given such a nice tree decomposition.

In the following, we show that WMLQ is fixed-parameter tractable when parame-
terized simultaneously by the treewidth and umax, whereas it remains W [1]-hard when
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only parameterized by the treewidth. A similar study of the fixed-parameter tractability
of the related extended global cardinality constraint problem (EGCC) was conducted
in Ref. [32]. EGCC corresponds to the special case of the D-matching problem where
the graph is bipartite and on one side of the bipartition all vertices have the domain
{1}. In contrast with WMLQ, EGCC is a feasibility problem (note that the feasibility
version of WMLQ is trivial, as the empty assignment is always feasible). The authors
of [32] provided a fixed-parameter algorithm for EGCC when parameterized simulta-
neously by the treewidth of the graph and the maximum domain size, and they showed
that the problem is W[1]-hard when only parameterized by the treewidth. These results
mirror our results for WMLQ, and indeed both our FPT-algorithm for WMLQ and the
one in Ref. [32] are extensions of the same classic dynamic program for the underlying
maximum independent set problem. However, our hardness result uses a completely
different reduction than the one in Ref. [32]. The latter makes heavy use of the fact that
the domains can be arbitrary sets, whereas in WMLQ, we are confined to intervals.

4.1 Algorithm for Bounded Treewidth Graphs

We will now describe an algorithm for solving WMLQ in polynomial time for graphs
with constant treewidth. The algorithm is a dynamic program that inductively computes
a set of partial solutions for each bag of the nice tree decomposition and each possible
degree profile within that bag. It starts at the leaf bags and then generates partial
solutions for each inner node bag by combining or extending partial solutions of its
children. The final solution can then be obtained from the root bag. We now formalize
the concepts of a partial solution and its corresponding degree profile.

Partial Assignments For any bag B, let VB ⊆ V denote the set of vertices contained
in the union of bags present in the subtree rooted at B. We define the graph G B =
(VB, EB) with EB := E[VB] \ E[B], where E[U ] denotes the set of edges with both
endpoints in U ⊆ V . A partial assignment for the subtree rooted at a bag B (or partial

assignment for B in short) is an assignment M ⊆ EB of G B such that degM (v) = 0
or ℓ(v) ≤ degM (v) ≤ u(v) for all v ∈ VB \ B.1 Note that this definition allows
applicants and posts in B to have an arbitrary assignment, which is not restricted by
their corresponding quota and that by definition of G B , no vertex in B is assigned to
another vertex in B.

Degree Profiles A degree profile for bag B is a vector α ∈ X B := {0, . . . , umax}B .
We say a partial assignment M for B agrees with a degree profile α ∈ X B , if α(v) =
degM (v) for all v ∈ B. For every bag B and every α ∈ X B , let MB(α) be the set of
partial assignments for B that agree with α and let

WB(α) := max {w(M) : M ∈ MB(α)} ∪ {−∞}

1 For ease of exposition, we define ℓ(a) := u(a) := 1 for all a ∈ A. Also recall that degS(v) := |δ(v)∩ S|.
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denote the optimal value of any assignment that agrees with α for the graph G B (note
that a value of −∞ implies that no partial assignment M agrees with α). We further
denote the set of optimal partial assignments agreeing with α by

M
∗
B(α) := {M ∈ MB(α) : w(M) = WB(α)}.

In the following, we will provide a series of lemmas that reveals how to efficiently
obtain an element of M∗

B(α) for every α ∈ X B for a bag B (or showing M∗
B(α) = ∅),

assuming such representatives for each set M∗
B′(α

′) have already been computed for
every child B ′ of B and each α′ ∈ X B′ .

Notation Before we proceed with the formal statement of the lemmas, we introduce
some useful notation. For U ′ ⊆ U and α ∈ Z

U define α|U ′ as the restriction of α to
U ′, i.e., α|U ′ ∈ Z

U ′
and α|U ′(v) = α(v) for all v ∈ U ′. For v ∈ V \ U and i ∈ Z let

further [α, i]v be the extension of α to U ∪ {v} defined by [α, i]v(v′) := α(v′) for all
v′ ∈ U and [α, i]v(v) := i . For a set of edges S we define the vector αS,U ∈ Z

U by
αS,U (v) := degS(v) for all v ∈ U .

We first observe that for leaf bags, the only partial assignment possible is the empty
assignment.

Lemma 1 Let B = {v} be a leaf bag and let α ∈ X B . If α(v) = 0, then M∗
B(α) =

{M∅}, where M∅ is the empty assignment. If α(v) �= 0, then M∗
B(α) = ∅.

Proof This follows directly from the fact that EB = ∅ for all leaf bags and thus the
only assignment in G B is the empty assignment. ⊓⊔

For introduce bags, the set of partial assignments is identical to that of its child,
extending the degree profiles by a 0-entry for the new vertex.

Lemma 2 Let B be an introduce bag such that B ′ is the only child of B and

B \ B ′ = {v′}. Let α ∈ X B . Then

M
∗
B(α) =

{

M∗
B′(α|B′) if α(v′) = 0,

∅ otherwise.

Proof Note that Γ (v′) ∩ VB ⊆ B by Properties 2 and 3 of a tree decomposition. This
implies δ(v′) ∩ EB = ∅ and hence the lemma follows. ⊓⊔

For a forget bag, every partial assignment corresponds to the union of a partial
assignment for its child bag and a subset of edges incident to the removed vertex
(connecting it to the vertices in forget bag).

Lemma 3 Let B be a forget bag such that B ′ is the unique child of B and B = B ′\{v′}
for some v′ ∈ B ′. Let α ∈ X B . Let (S∗, i∗) be an optimal solution to
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[forget] max w(S) + WB′([α − αS,B, i − |S|]v′)

s.t. |S| ≤ i,

αS,B(v) ≤ α(v) ∀ v ∈ B,

S ⊆ δ(v′) ∩ δ(B),

i ∈ {0, ℓ(v′), . . . , u(v′)}.

Then M ∪ S∗ ∈ M∗
B(α) for all M ∈ M∗

B′([α − αS∗,B, i∗ − |S∗|]v′). If the optimal

solution to [forget] has value −∞, then M∗
B(α) = ∅.

Proof Assume MB(α) �= ∅ and let M ′ ∈ M∗
B(α). Let S′ := M ′ ∩ δ(v′) ∩ δ(B)

and let i ′ := degM ′(v′). Observe that (S′, i ′) is a feasible solution to [forget] and that
M ′ \ S′ ∈ MB′([α − αS′,B, i ′ − |S′|]v′). We conclude that

w(M ′) ≤ w(S′) + WB′
(

[α − αS′,B, i ′ − |S′|]v′
)

≤ w(S∗) + WB′
(

[α − αS∗,B, i∗ − |S∗|]v′
)

.

In particular, this implies that the optimal solution value of [forget] is finite and thus
there is some M ∈ M∗

B′([α − αS∗,B, i∗ − |S∗|]v′).
Thus let M∗ := M ∪ S∗. Observe that indeed degM∗(v) = degM (v)

+ degS∗(v) = α(v) − αS∗,B(v) + αS∗,B(v) = α(v) for all v ∈ B. Furthermore
degM∗(v) = degM (v) ∈ {0, ℓ(v), . . . , u(v)} for all v ∈ VB \ B ′ by feasibility of
M . Finally, degM∗(v′) = i∗ ∈ {0, ℓ(v′), . . . , u(v′)}, implying M∗ ∈ MB(α). As
w(M∗) = w(S∗) + WB′([α − αS∗ , i∗ − |S∗|]v′) ≥ w(M ′), we conclude that indeed
M∗ ∈ M∗

B(α). ⊓⊔

For join bags, every partial assignment is a union of partial assignments for the two
child bags.

Lemma 4 Let B be a join bag such that B = B1 = B2 for the two children B1, B2 of

B. Let α ∈ X B . Let (α∗
1 , α∗

2) be an optimal solution to

[join] max WB1(α1) + WB2(α2)

s.t. α1(v) + α2(v) = α(v) ∀ v ∈ B,

α1 ∈ X B1 , α2 ∈ X B2 .

Then M1 ∪ M2 ∈ M∗
B(α) for all M1 ∈ M∗

B1
(α∗

1), M2 ∈ M∗
B2

(α∗
2). If the optimal

solution to [join] has value −∞, then M∗
B(α) = ∅.

Proof Let M∗ := M1 ∪ M2 for some M1 ∈ M∗
B1

(α∗
1), M2 ∈ M∗

B2
(α∗

2). We first
observe that VB1 ∩VB2 = B by Properties 2 and 3 of the tree decomposition and hence
M1 ∩ M2 = ∅. This implies that

degM∗(v) =

⎧

⎪

⎨

⎪

⎩

degM1
(v) ∈ {0, ℓ(v), . . . , u(v)} if v ∈ VB1 \ B,

degM2
(v) ∈ {0, ℓ(v), . . . , u(v)} if v ∈ VB2 \ B,

degM1
(v) + degM2

(v) = α(v) if v ∈ B.
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Hence M∗ ∈ MB(α).
Now let M ′ ∈ MB(α). Let M ′

1 := M ′ ∩ EB1 and M ′
2 := M ′ ∩ EB2 . We observe

that (αM1,B1 , αM2,B2) is a feasible solution to [join] and hence w(M ′) = w(M ′
1) +

w(M ′
2) ≤ w(M1) + w(M2) = w(M∗). ⊓⊔

Finally, we observe that after computing WR(α) and the corresponding elements
of M∗

R(α) for each α for the root bag R, an optimal assignment for G can be easily
obtained.

Lemma 5 Let (S∗, α∗) be an optimal solution to

[root] max WR(α) + w(S)

s.t. α(v) + degS(v) ∈ {0, ℓ(v), . . . , u(v)} ∀ v ∈ R,

α ∈ X R, S ⊆ E[R].

Then S∗ ∪ M is an optimal solution to WMLQ for any M ∈ M∗
R(α∗).

Proof Let M∗ := S∗ ∪ M for some M ∈ M∗
R(α∗). Note that for v ∈ V \ R, we

have S∗ ∩ δ(v) = ∅ and hence degM∗(v) = degM (v) ∈ {0, ℓ(v), . . . , u(v)} by the
feasibility of M . Furthermore, for v ∈ R, we have degM∗(v) = α∗(v) + degS∗(v) ∈
{0, ℓ(v), . . . , u(v)} by the feasibility of S∗ for [root]. We conclude that M∗ is indeed
a feasible solution to WMLQ.

Now let M ′ ⊆ E be any solution to WMLQ. Define S′ := M ′ ∩ E[R] and α′ :=
αM ′,R − αS′,R . Observe that (S′, α′) is a feasible solution to [root] and that further
M ′ \ S′ ∈ MR(α′). We conclude that

w(M ′) ≤ WR(α′) + w(S′) ≤ WR(α∗) + w(S∗) = w(M∗),

and thus M∗ is indeed an optimal solution to WMLQ. ⊓⊔

Theorem 4 WMLQ can be solved in time O(T + (umax)
3 tw(G)+3|E |), where T

is the time needed for computing a tree decomposition of G of width tw(G). In

particular, WMLQ can be solved in polynomial time when restricted to instances

of bounded treewidth, and WMLQ parameterized by max{tw(G), umax} is fixed-

parameter tractable.

Proof In order to solve a given WMLQ instance, the algorithm starts by computing
a nice tree decomposition of G of width tw(G). Note that T is of the same order
for tree decompositions and nice tree decompositions. Using Lemmas 1–5, we can
inductively compute a representative M ∈ M∗

B(α) for every bag B and every α ∈ Xb,
or deduce that M∗

B(α) = ∅. We first observe that |X B | = (umax + 1)|B|, thus only
(umax +1)tw(G)+1 representatives have to be computed per bag. Furthermore, for each
of the above lemmas, the necessary computations to derive an M ∈ M∗

B(α) from
representatives of M∗

B′(α
′)of children B ′ of B can be done in time O((umax)

2 tw(G)+2).
This is obvious for Lemmas 1 and 2. For Lemmas 3–5 we observe that the sets
of feasible solutions for the corresponding optimization problems [forget], [join],
and [root] have size at most 2|B| · (umax + 1), (umax + 1)2|B|, and 2|R|2 · (umax)

|R|,
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respectively (note that without loss of generality we can assume |R| to be of constant
size by introducing at most tw(G) additional forget bags). The theorem then follows
from the fact that the number of bags is linear. ⊓⊔

4.2 W[1]-Hardness for Parameterizing by Treewidth Only

While our algorithm runs in polynomial time for bounded treewidth, the degree of
the polynomial depends on the treewidth and the algorithm only becomes a fixed-
parameter algorithm when parameterizing by treewidth and umax simultaneously. We
will now show by a reduction from Minimum Maximum Outdegree that this depen-
dence is necessary under the assumption that FPT �= W[1].

Problem 2 Minimum Maximum Outdegree

Input: A graph G = (V, E), edge weights w : E → Z+ encoded in unary and a

degree-bound r ∈ Z+.

Task: Find an orientation D of G such that
∑

e∈δ+
D(v) w(e) ≤ r for all v ∈ V , where

δ+
D(v) stands for the set of edges oriented so that their tail is v.

Theorem 5 (Theorem 5 from [34]) Minimum Maximum Outdegree is W [1]-hard

when parameterized by treewidth.

Theorem 6 mlq is W[1]-hard when parameterized by treewidth, even when restricted

to instances where ℓ(p) ∈ {0, u(p)} for every p ∈ P.

Proof Given an instance (G = (V, E), w, r) of Minimum Maximum Outdegree,
we construct an instance (G ′ = (A ∪̇ P, E ′), ℓ, u) of mlq as follows:

– For every vertex v ∈ V we introduce a post pv ∈ P with lower quota ℓ(pv) = 0
and upper quota u(pv) = r .

– For every edge e = {v, v′} ∈ E , we introduce two posts pe,v and pe,v′ with
identical lower and upper quotas of w(e) + 1, i. e. ,

ℓ(pe,v) = ℓ(pe,v′) = u(pe,v) = u(pe,v′) = w(e) + 1.

We also add 2w(e) + 1 applicants a1
e,v, . . . , a

w(e)
e,v , a1

e,v′ , . . . , a
w(e)

e,v′ , ze, which are
connected to the posts by the edges

{

pv, ai
e,v

}

,

{

ai
e,v, pe,v

}

,

{

pv′, ai
e,v′

}

,

{

ai
e,v′ , pe,v′

}

for i ∈ {1, . . . , w(e)}

as well as {pe,v, ze} and {ze, pe,v′}. This construction is shown in Fig. 2.

We show that the constructed instance has a solution serving all applicants if and
only if the Minimum Maximum Outdegree instance has an orientation respecting
the bound on the weighted outdegree.

First assume there is an orientation D of G with maximum weighted outdegree at
most r . Then consider the assignment that assigns for every oriented edge (v, v′) ∈ D

the w(e) applicants ai
e,v to pv and the w(e) + 1 applicants ai

e,v′ and ze to pe,v′ . As
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v

w

x

e

2

f

1

g

3

r = 3post vertex pv with lower quota 0
and upper quota r

post vertex pe,v with lower quota
and upper quota w(e) + 1

applicant vertex

pvpw pxpe,v pe,w

a1
e,v a2

e,v
ze a1

e,w a2
e,w

pf,w pf,x

a1

f,w
zf a1

f,x

pg,x pg,v

a1
g,x a2

g,x a3
g,x

zg a1
g,v a2

g,v a3
g,v

Fig. 2 The transformation of the Minimum Maximum Outdegree instance in the upper right corner to
a mlq instance. The numbers on the edges of the Minimum Maximum Outdegree instance are the edge
weights

the weighted outdegree of vertex v is at most r , every post pv gets assigned at most
r = u(pv) applicants.

Now assume M is a feasible assignment of applicants to posts serving every appli-
cant. In particular, for every edge e = {v, v′} ∈ E , applicant ze is assigned to either
pe,v or pe,v′ and exactly one of these two posts is open because the lower bound of
w(e) + 1 can only be met if ze is assigned to the respective post. If pe,v is open then
all w(e) applicants ai

e,v′ are assigned to pv′ and none of the applicants ai
e,v is assigned

to pv , and vice versa if pe,v′ is open. Consider the orientation obtained by orienting
every edge e from v to v′ if and only if pe,v is open. By the above observations, the
weighted outdegree of vertex v corresponds to the number of applicants assigned to
post pv , which is at most r .

Finally, note that G ′ can be constructed in time polynomial in the input size of
the Minimum Maximum Outdegree instance as the weights are encoded in unary
there. Furthermore, the treewidth of G ′ is at most max{tw(G), 3}. To see this, start
with a tree decomposition of G and identify each vertex v ∈ V with the corresponding
post pv . For every edge e = {v, v′} ∈ E , there is a bag B with pv, p′

v ∈ B. We add
the new bag Be = {pv, p′

v, pe,v, pe,v′} as a child to B. We further add the bags
Bze = {pe,v, pe,v′ , ze}, Bai

e,v
= {pv, pe,v, ai

e,v} and Bai
e,v′

= {pv′, pe,v′ , ai
e,v′} for

i ∈ {1, . . . , w(e)} as children to Be. Observe that the tree of bags generated by this
construction is a tree decomposition. Furthermore, since we did not increase the size
of any of the existing bags and added only bags of size at most 4, the treewidth of G ′

is at most max{tw(G), 3}. ⊓⊔

5 Approximation

Having established the hardness of WMLQ even for very restricted instances in The-
orem 1, we turn our attention towards approximability. In this section, we give an
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approximation algorithm and corresponding inapproximability bounds expressed in
terms of |A|, |P| and upper quotas in the graph.

The method, which is described formally in Algorithm 1, is a simple greedy algo-
rithm. We say a post p is admissible if it is not yet open and |Γ (p)| ≥ ℓ(p). The
algorithm iteratively opens an admissible post maximizing the assignable weight, i.e.,
it finds a post p′ ∈ P and a set A′ of applicants in its neighborhood Γ (p′) with
ℓ(p′) ≤ |A′| ≤ u(p′) such that

∑

a∈A′ w(a, p′) is maximized among all such (p′, A′)
pairs. It then removes the assigned applicants from the graph (potentially rendering
some posts inadmissible) and re-iterates until no admissible post is left.

Algorithm 1 Greedy algorithm for WMLQ
Initialize P0 = {p ∈ P : |Γ (p)| ≥ ℓ(p)}.
Initialize A0 = A.
while P0 �= ∅ do

Find a pair p′ ∈ P0 and A′ ⊆ Γ (p′)∩ A0 with |A′| ≤ u(p′) such that
∑

a∈A′ w(a, p′) is maximized
among all such pairs.

Open p′ and assign all applicants in A′ to it.
Remove p′ from P0 and remove the elements of A′ from A0.
for p ∈ P0 with ℓ(p) > |Γ (p) ∩ A0| do

Remove p from P0.
end for

end while

Remark 2 As an alternative to Algorithm 1, one could use a reduction from WMLQ to
the set packing problem. The elements in the universe of the set packing problem would
be A∪ P . For each post p and for each subset S ⊂ Γ (p), such that l(p) ≤ |S| ≤ u(p),
we create a set S ∪ {p} for the set packing instance. A feasible set packing then
corresponds to a feasible assignment of the same weight. However, if the difference
between p’s upper and lower quota is not bounded by a constant, this would create
an exponential-sized input for the set packing problem and we could only employ
an oracle-based algorithm known for the set packing problem to solve WMLQ. The
greedy algorithm known for the set packing problem [7] can be made to work in a
fashion similar to the algorithm presented above.

In the following we give a tight analysis of the algorithm, establishing approxima-
tion guarantees in terms of the number of posts |P|, the number of applicants |A|, and
the maximum upper quota umax := maxp∈P u(p) over all posts. We also provide two
examples that show that our analysis of the greedy algorithm is tight for each of the
described approximation factors. We further show that the approximation ratios given
above for WMLQ are almost tight from the point of view of complexity theory.

Theorem 7 Algorithm 1 is an α-approximation algorithm for WMLQ with

α = min{|P|, |A|, umax + 1}. Furthermore, for mlq, Algorithm 1 is a
√

|A| + 1-

approximation algorithm. It can be implemented to run in time O(|E | log |E |).

Proof Let p′
i be the post chosen by the algorithm in iteration i and let A′

i be the corre-
sponding set of applicants for every i ∈ {1, . . . , n}. Furthermore, consider an optimal
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solution of weight OPT, consisting of open posts p1, . . . , pk and the corresponding
sets of applicants A1, . . . , Ak assigned to those posts.

We first observe that the first two approximation ratios of |P| and |A| are already
achieved by the initial selection of p′

1 and A′
1 chosen in the first round of the algorithm.

For every i ∈ {1, . . . , k}, post pi is an admissible post in the first iteration of the
algorithm. The first iteration’s choice of the pair (p′

1, A′
1) implies

∑

a∈A′
1
w(a, p′

1) ≥
∑

a∈Ai
w(a, pi ) ≥ w(a′, pi ) for every a′ ∈ Ai . As the optimal solution opens at

most |P| posts and serves at most |A| applicants, we deduce that min{|P|, |A|} ·
∑

a∈A′
1
w(a, p′

1) ≥ OPT.
We now turn our attention to the remaining approximation guarantees, which are

umax + 1 for WMLQ and
√

|A| + 1 for mlq. For every i ∈ {1, . . . , k}, let π(i)

denote the first iteration of the algorithm such that A′
π(i) ∩ Ai �= ∅ or p′

π(i) = pi .
This is the first iteration in which post pi is opened or an applicant assigned to it
in the optimal solution becomes assigned. Note that such an iteration exists, because
pi is not admissible after the termination of the algorithm. Furthermore, observe that
∑

a∈A′
π(i)

w(a, p′
π(i)) ≥

∑

a∈Ai
w(a, pi ), because the pair (pi , Ai ) was a valid choice

for the algorithm in iteration π(i). Now for iteration j define Pj := {i : π(i) = j}
and observe that |Pj | ≤ |A′

j | + 1, because Pj can only contain one index i ′ with
pi ′ = p′

j , and all other i ∈ Pj \ {i ′} must have Ai ∩ A′
j �= ∅ (where the sets Ai are

disjoint). We conclude that

OPT =
k

∑

i=1

∑

a∈Ai

w(a, pi ) ≤
k

∑

i=1

∑

a∈A′
π(i)

w

(

a, p′
π(i)

)

≤
n

∑

j=1

|Pj |
∑

a∈A′
j

w

(

a, p′
j

)

≤
n

∑

j=1

(

|A′
j | + 1

)

∑

a∈A′
j

w

(

a, p′
j

)

.

Note that |A′
j | ≤ umax and therefore

OPT ≤ (umax + 1)

n
∑

j=1

∑

a∈A′
j

w

(

a, p′
j

)

,

proving the third approximation guarantee. Now consider the unit-weight mlq case
and define A′ =

⋃n
j=1 A′

j . If |A′| ≥
√

|A|, then
√

|A||A′| ≥ |A| ≥ OPT. Therefore

assume |A′| <
√

|A|. Note that in this case, the above inequalities imply OPT ≤
(|A′| + 1)|A′| ≤ (

√
|A| + 1)|A′|, proving the improved approximation guarantee for

mlq.
We now turn to proving the bound on the running time. We will describe how

to implement the search for the greedy choice of the pair (p′, A′) in each iteration
efficiently using a heap data structure. Initially, for every post p, we sort the appli-
cants in its neighborhood by non-increasing order of w(a, p). This takes time at most
O(|E | log |E |) as the total number of entries to sort is

∑

p∈P |Γ (p)| = |E |. We then
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introduce a heap containing all admissible posts, and associate with each post p the
total weight of the first u(p) edges in its neighborhood list. Note that these entries can
be easily kept up to date whenever the algorithm opens a post and assigns applicants to
it: In the list of every other post p we simply replace the assigned applicants with the
first not-yet-assigned entry in the list (or we remove the post if less than ℓ(p) applicants
are available). As every edge in the graph can only trigger one such replacement, only
O(|E |) updates can occur and each of these requires O(log |P|) time for reinserting
the post at the proper place in the heap. Now, in each iteration of the algorithm, the
optimal pair (p′, A′) can be found by retrieving the maximum element from the heap.
This happens at most |P| times and requires O(log |P|) time in each step. ⊓⊔

Example 8 The following two examples show that our analysis of the greedy algorithm
is (asymptotically) tight for each of the described approximation factors.

(a) The bounds |P| and umax + 1 are tight, and
√

|A| + 1 is asymptotically tight:
Consider an instance of mlq with k + 1 posts p0, . . . , pk and k(k + 1) applicants
a0,1, . . . , a0,k, a1,1, . . . , ak,k . Let ℓ(pi ) = u(pi ) = k for i ∈ {0, . . . , k}. Each
applicant ai, j applies to post i , and if i > 0, additionally to post 0. For the greedy
algorithm, opening post p0 and assigning applicants a1,1, . . . , ak,k to it is a valid
choice in its first iteration, after which no further posts are admissible. Thus, it only
assigns k applicants in total. The optimal solution, however, can assign all k(k+1)

applicants by assigning applicants ai,1, . . . , ai,k to pi for each i . Therefore, the
greedy algorithm cannot achieve an approximation factor better than k +1 on this
family of instances, for which |P| = k + 1,

√
|A| < k + 1, and umax = k.

(b) The bound |A| is tight:
To see that the approximation ratio of |A| is tight for WMLQ consider the following
instance with k posts p1, . . . , pk and k applicants a1, . . . , ak . Let ℓ(pi ) = 0 and
u(pi ) = k for every i . Every applicant applies for every post, and w(ai , pi ) = 1
for every i but w(ai , p j ) = ε for every j �= i for some arbitrarily small ε > 0. In
its first iteration, the greedy algorithm might choose to open post p1 and assign
all applicants to it. This solution accumulates a weight of 1 + (k − 1)ε, while the
weight of the optimal solution is k = |A|.

Theorem 9 mlq is not approximable within a factor of |P|1−ε or
√

|A|1−ε
or u1−ε

max
for any ε > 0, unless P = NP, even when restricting to instances where ℓ(p) = u(p)

for every p ∈ P and |Γ (a)| ≤ 2 for every a ∈ A.

Proof Once again we use the maximum independent vertex set problem. Given an
instance of mis on a graph G = (V, E) with |V | = n and |E | = m, we create an mlq

instance with n posts p1, . . . , pn , post pi corresponding to vertex vi . We also introduce
n2 − m applicants as follows. Initially, we introduce n applicants ai,1, ai,2, . . . , ai,n

applying for each post pi . Then, for every edge {vi , v j } ∈ E , we merge the applicants
ai, j and a j,i , obtaining a single applicant applying for both pi and p j . Furthermore,
we set ℓ(p j ) = u(p j ) = n for every post. This construction is shown in Fig. 3.

Note that due to the choice of upper and lower bounds, any open post must be
assigned to all the applicants in its neighborhood. Thus, a solution to the mlq instance
is feasible if and only if Γ (pi ) ∩ Γ (p j ) = ∅ for all open posts pi and p j with i �= j ,
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v1

v2

v3

v4

v5

post vertex pi with lower quota
and upper quota n

applicant vertex

p1 a1,1 a1,2 a1,3 a1,4 a1,5

p2 a2,2 a2,3 a2,4 a2,5

p3 a3,1 a3,3 a3,4 a3,5

p4 a4,1 a4,2 a4,4 a4,5

p5 a5,2 a5,3 a5,5

Fig. 3 The transformation of the mis instance in the upper left corner to a mlq instance

which is equivalent to vi and v j not being adjacent in G by construction of the instance.
Therefore, the mlq instance has a feasible solution opening k posts (and thus serving
kn applicants) if and only if there is an independent set of size k in G. We conclude
that OPTmlq = n · OPTmis for the two instances under consideration.

Note that in the constructed mlq instance, n = |P| = umax ≥
√

|A|. Therefore any
approximation algorithm with a factor better than |P|1−ε or

√
|A|1−ε or u1−ε

max for ε > 0
yields a solution of the instance that serves at least (1/n1−ε)OPTmlq applicants and
therefore opens at least (1/n2−ε)OPTmlq = (1/n1−ε)OPTmis posts, corresponding to
an independent set of the same size. By Ref. [35], this implies P = NP. ⊓⊔

6 Matchings with Lower Quotas in General Graphs

Throughout this paper, we focused on many-to-one matchings in bipartite graphs
because these fit most applications in the centralized formation of groups that motivated
our investigation. A straightforward generalization of WMLQ to matchings in an
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arbitrary (not necessarily bipartite) graph G allows all vertices of the graph to have
lower and upper quotas.

Problem 3 gwmlq

Input: I = (G, w, ℓ, u); a not necessarily bipartite graph G = (V, E) with edge

weights w, lower quotas ℓ and upper quotas u.

Task: Find an assignment of maximum weight.

If w(e) = 1 for all e ∈ E, we refer to the problem as gmlq.

One can see this generalization as a variant of the D-matching problem (see
Sect. 1.1), where each vertex has a domain consisting of 0 and an interval. Clearly, the
hardness results derived in the previous sections are valid for gwmlq as well. We now
briefly argue that the positive results from Sects. 3 and 4 carry over to this generalized
setting. However, our approximation results do not hold even if G is bipartite and only
a single applicant is equipped with lower and upper quotas. In fact, gwmlq does not
allow for any approximation even in this very restricted case unless P = NP.

The two positive results in Sect. 3, namely Theorems 2 and 3, are applicable to
gwmlq. Note that Theorem 2 (bounded degree for all posts) is a special case of
Theorem 3 (bounded upper quota for all posts).

Theorem 10 gwmlq can be solved in polynomial time when restricted to instances

with u(v) ≤ 2 for all v ∈ V .

Proof We will work with the proof of Theorem 3, which requires some simple mod-
ifications to fit the case of arbitrary graphs. All we need to do is to add a dummy
vertex vd to G—this resembles dummy post pd in the proof of Theorem 3. The steps
corresponding to a post vertex should now be executed for all vertices of the graph.
We can assume there are no vertices with lower quota 0 and upper quota 2 by a similar
reasoning given in Theorem 2. For every vertex vi with ℓ(vi ) = 2, we add two dummy
vertices q1

i and q2
i and connect them to each other and vi . For all of these vertices, we

set ℓ(q1
i ) = u(q1

i ) = ℓ(q2
i ) = u(q2

i ) = 1. Then, the dummy vertex vd is connected
to vertices with upper quota 1. We finish the construction by adding triangles to vd to
ensure that only two f -factors need to be computed. The arguments in the proof of
Theorem 3 can now be applied to this f -factor instance. ⊓⊔

As for Theorem 4, the algorithm for bounded treewidth and upper quota carries
over to gwmlq without any modification. Note that in the proof we never used the
bipartiteness of G or that u(a) = 1 for the applicants.

Theorem 11 gwmlq can be solved in time O(T + (umax)
3 tw(G)+3|E |), where T

is the time needed for computing a tree decomposition of G of width tw(G). In

particular, gwmlq can be solved in polynomial time when restricted to instances

of bounded treewidth, and WMLQ parameterized by max{tw(G), umax} is fixed-

parameter tractable.

Finally, we prove that Algorithm 1 cannot be generalized even for bipartite mlq

with lower and upper quotas on both sides.
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v1

v2

v3

v4

v5

post vertex pi with lower quota
and upper quota n + 1

applicant vertex

dummy applicant vertex with
lower quota and upper quota K

p1 a1,1 a1,2 a1,3 a1,4 a1,5

p2 a2,2 a2,3 a2,4 a2,5

p3 a3,1 a3,3 a3,4 a3,5

p4 a4,1 a4,2 a4,4 a4,5

p5 a5,2 a5,3 a5,5

ad

Fig. 4 The transformation of the mis instance in the upper left corner to a generalized mlq instance

Theorem 12 It is NP-hard to decide whether OPT > 0 for an instance of gmlq, even

if the graph is bipartite and on one side of the bipartition all vertices except for one

have unitary upper and lower quota.

Proof To every instance of mis we construct an instance of gmlq so that the mis

instance admits an independent set of size K if and only if OPT > 0 for the gmlq

instance. We start with the same mlq instance that was constructed from an mis

instance in the proof of Theorem 9. The changes are depicted in Fig. 4. A dummy
applicant ad is added to the graph and connected to all posts. We set ℓ(ad) = u(ad) =
K and change ℓ(p) = u(p) to n + 1 for every post p ∈ P .

Since every post is adjacent to exactly n + 1 applicants, opening a post requires
allocating all its applicants to it, including ad as well. Thus, opening any post implies
allocating ad to exactly K posts. These K open posts do not share applicants other than

123



Algorithmica

ad , which is equivalent to the K vertices corresponding to them in the mis instance
forming an independent set. ⊓⊔

7 Conclusion

We discussed the complexity, approximability and fixed-parameter tractability of
WMLQ from various viewpoints such as bounded degree, quota and treewidth.

Further work on the topic might include imposing common quotas on some groups
of posts. That is, we may have subsets P1, . . . , Pk , where for each i (1 ≤ i ≤ k),
Pi ⊆ P , Pi has a common quota u(Pi ) ≥ 1, where u(Pi ) ≤

∑

p∈Pi
u(p), and any

assignment M must now satisfy the additional property that
∑

p∈Pi
|δ(p) ∩ M | ≤

u(Pi ). Common quotas are similar to regional caps studied in Economics [17] and
they can model constraints such as the limited availability of resources required for
certain projects—for example P1 might correspond to those projects that require access
to high-performance computing facilities.

We have seen that WMLQ as defined in Problem 1 has a natural application in
the context of student–project allocation, where the weight on a given edge (s, p)

corresponds to the utility of student s being assigned to project p. However in many
applications students have ordinal preferences over projects. Cardinal utilities can of
course follow from these via the use of Borda scores, so we can obtain WMLQ as
before. But ordinal preferences themselves allow alternative optimality criteria to be
formulated. For example we may optimize on the profile of a matching M , which is
a vector whose i th position indicates the number of students who obtain their i th-
choice project in M [24]. A greedy maximum matching is a matching whose profile
is lexicographically maximum, taken over all maximum cardinality matchings, whilst
a generous maximum matching is a matching whose reverse profile is lexicograph-
ically minimum, taken over all maximum cardinality matchings. There are efficient
algorithms to find greedy and generous maximum matchings in the absence of lower
quotas [21], but it remains open to extend the positive results in this paper to the setting
involving both lower quotas and preferences.
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