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A disaggregated, probabilistic, high resolution method for assessment of domestic

occupancy and electrical demand
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Energy Systems Research Unit (ESRU), Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow, UK

Abstract

An integrated domestic occupancy and demand model with a 1-minute resolution has been developed which better captures the

influence of different occupant behaviours than previous models. The occupancy model includes the fundamental link between

occupancy and demand, and differentiates between different types and sizes of households. In particular, the likelihood of daytime

occupancy is captured by age and employment differentiators. A novel method for identifying appliance use events and linking use

to an occupancy profile has been developed that accounts for household specific appliance usage using an event-based approach

calibrated directly from measured data. The method has been shown to perform better than both per-timestep probability models

and models calibrated from time-use survey activity diaries. To further capture individual household behaviours, the demand model

incorporates additional factoring to account for income and random behavioural influences. Whilst improving differentiation of

individual household energy usage, due to limitations in the available data, the model incorporates some occupancy and use be-

haviour factors that are a composite of multiple households, leading to some behaviour averaging in the model output; consequently

the model is best employed for energy demand assessment of multiple households.

Keywords: demand, occupancy modelling, disaggregated, building simulation, probabilistic model

1. Introduction

Demand prediction and its associated modelling methods have

a variety of applications in energy system analysis.

At the regional and national-level, built environment demand

prediction using stock models is used for centralised generation

planning and infrastructure decisions. These models (e.g. SAP,

BREDEM in the UK) make use of average energy usage char-

acteristics, derived from large scale sources such as time-use

and low-resolution demand surveys. However, the increasing

focus on distributed generation and microgrids, involving the

decentralisation of energy supplies ranging from town/district-

scale energy systems to individual household microgeneration,

requires that demand prediction is done at a very much smaller

scale; a scale at which the diversity of demand is reduced, as

distinct energy use behaviours associated with different types of

end-user (e.g. retirement, suburban) and household types (e.g.

retired, family etc.) become more influential. It is therefore es-

sential to understand the variation in energy-use behaviours in

order to better predict localised demand and thereby help de-

velop better performing and more robust local energy systems

in which energy supply and demand are well matched.

Focusing on electrical demand prediction, the work pre-

sented in this paper introduces several modelling techniques

which aim to better account for household-type and specific

household energy use behaviours. Facilitating the generation

of more representative, high-resolution occupancy and demand
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profiles at the local scale, derived from combining specific, de-

tailed, household demand profiles.

2. Demand Prediction Background

Analysis of the distribution of average power use per house-

hold shows a distinct pattern that is consistent across different

types and scales (electricity, heat, appliance-specific demand

etc.). Specifically, the majority of households are characterised

by a broadly linear variation about the mean with a small per-

centage of extreme outliers, particularly at the high end of the

distribution. This is illustrated in Figure 1 which shows the

distribution of average electrical power demand from the 251-

household Household Electricity Survey dataset [1] collected in

the UK.

Fig. 1. Increasing importance of overall demand range and outliers for small-

scale, high-resolution demand analysis.



With small populations of energy users, such as the numbers

of customers found in small energy networks, it is necessary to

account for the full range of potential behaviours, including out-

liers, as these can have a significant impact on energy demand

[2]. This would not be the case with larger networks where the

scale ensures the overall energy demand converges to the mean.

2.1. Demand Factors

A number of factors have been shown to influence household

energy demand characteristics that need to be accounted for in a

small-scale demand model. Yohanis [3], and Haldi and Robin-

son [4] have shown that these include, but are not limited to;

floor area, household size, bedroom number, occupant age, in-

come, children, employment status, and tenure.

There remains a residual, seemingly random, element of

overall and appliance-specific behaviour that cannot be directly

attributed to identifiable household characteristics [5]. This

could be due to different attitudes to energy use, prioritisation of

energy spending, or individual needs driving specific appliance

ownership and use. Haldi and Robinson [4] estimated that the

behavioural impact on energy demand was at least a factor of

two. Any predictive model for demand at the community scale

therefore needs to account for both the influence of identifiable

household characteristics and the stochastic element related to

individual behaviours.

2.2. Demand Modelling Methods

Energy models can be broadly characterised by whether they

are top-down or bottom-up, and deterministic or probabilistic.

• Top-Down vs. Bottom-Up - ’Top-Down’ energy models

typically use national-level data and linear regression to

determine the influences of individual user variables for

prediction. ’Bottom-up’ models use high-resolution de-

tailed usage data to build up models for individual ele-

ments that are combined to reflect the uniqueness of in-

dividual behaviours. [11]

• Deterministic vs. Probabilistic - ’Deterministic’ models

assume that behaviours and responses are predictable and

repeatable, and can be modelled explicitly. ’Probabilistic’

models attempt to reproduce the randomness and unique-

ness of individual responses statistically.

Whilst at a high resolution human behaviour is inherently

probabilistic, a lack of high quality behavioural data has led

to the development of deterministic models and hybrid models

combining both deterministic and probabilistic elements using

either archetypes (example behaviours assumed to be represen-

tative) or composites of individual behaviours. For example, the

occupancy model of Aerts et al [6] uses a probabilistic Markov

Chain approach but is calibrated using seven archetypal occu-

pancy profiles.

Capturing specific household demand variations is suited to

bottom-up, probabilistic modelling approaches whilst recog-

nising that data and computational limitations may require

some simplification using macro-scale regression, composite

behavioural models, etc. An example of the composite ap-

proach is the occupancy model used in this paper [12], which

uses probabilistic calibration data from multiple individuals

with similar characteristics, such as ages and relationships, to

represent the behaviour of the group. This results in a model

that exhibits variation between individual households but which

converges to the overall group average when run for hundreds

of cases. Similarly, the demand model of Richardson et al [7]

predicts individual appliance uses using a per-timestep proba-

bility approach but with the probability model calibrated using

the Time-Use Survey activity diaries from a large number of

households with the same number of occupants. While the po-

tential for convergence has been acknowledged [13], there has

been no detailed evaluation of the potential impact on demand

prediction accuracy.

2.3. Occupancy-to-Demand Relationship

A key determinant of the observed variation in total demand

and demand timing between different household types and indi-

vidual households is the extent to which the house is occupied

[14]. In particular, large daytime occupancy variations driven

by employment-related absences are clearly discernible.

Figure 2 shows that the daytime electrical demand profiles

for different household types, if divided by the proportion of

households with an active occupant at the same timestep, be-

come broadly linear, indicating that a significant proportion

of electricity use is occupant initiated. Whilst there is a de-

gree of residual variation that is attributable to specific day-

time activities, such as meal-times, and to constant demands

(e.g. cold appliances), high-resolution, small-scale demand

modelling clearly requires a robust linkage between occupancy

and occupant-initiated energy use.

Fig. 2. Average electrical demand divided by average active occupancy for

selected household types.

With a view to future changes in demand, it is also impor-

tant to understand specific appliance use in more detail as ini-

tiatives such as demand shifting are highly appliance specific;

with the greatest potential for washing and cooking activities

[15]. Highly disaggregated, bottom-up demand models, which

include realistic occupancy prediction and variation, allow the
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Table 1

Existing high-resolution demand models.

Model Occupancy Data Occupancy Method Occupancy Basis Demand Basis

Aerts [6] TUS
Survival Probability / Seven Typical

Profiles
Profile-differentiated individual

occupant model
Probabilistic power and duration

linked to TUS Activity

Richardson [7] TUS
First-order Markov / Occupancy

States
Occupant number

Per-timestep probability / TUS
activity-linked

Stokes [8] BREDEM BREDEM / Basic Occupancy
Occupant number with additional

type factoring
Per-timestep probability / Demand

data calibrated

Widen [9] TUS First-order Markov / TUS Activities
Undifferentiated individual occupant

model
Directly TUS activity-linked

Wilke [10] TUS Survival Probability / TUS Activities
Household-type differentiated

individual occupant model
Per-timestep probability / TUS

activity-linked

occupancy influence on individual appliance use to be assessed

as a baseline for the impact of additional demand shifting mech-

anisms.

2.4. Existing Occupancy-to-Demand Models

Existing domestic demand models can be split into two broad

categories based on time resolution.

The first type are low resolution, top-down, deterministic

models that seek to use generic rules to assess typical monthly

or annual demand. An example of this type is the UK BRE-

DEM model [16], and is used primarily to assess relative de-

mand across the entire housing stock. These typically do not

explicitly account for occupancy variations.

The second type are high resolution models that attempt

to predict demand at sub-hour timesteps. These are typically

bottom-up, probabilistic models that use occupancy as a key

variable. Grandjean et al [17] compared the existing high res-

olution models in detail, many of which were calibrated with

time-use survey (TUS) data.

Table 1 details several existing modelling methods that link

occupancy to demand. A review of each has identified several

areas for improvement that are common to some or all methods:

• Undifferentiated Occupancy Profiles – With the exception

of Wilke [10], the models do not incorporate significant

differentiation of the occupant and household types to cap-

ture specific occupancy patterns.

• Activity and Use Time Sequencing – The existing mod-

els typically determine whether an appliance demand has

been initiated using a per-timestep analysis with either

fixed or time-dependent probabilities. This approach does

not consider either previous uses, previous TUS activity

sequences, or realistic time gaps between uses, when pre-

dicting the timing of the next demand. While this type of

‘memoryless’ model can be used for low resolution mod-

elling, it has the potential to generate an unrealistic distri-

bution of uses when individual days are assessed.

• Linking TUS Activities to Specific Appliances – Widen and

Wackelgard [9], and Wilke [10] incorporate TUS activi-

ties directly in the occupancy model, and Aerts [6] and

Richardson et al [7] use TUS activity probability sepa-

rately in the demand model. However, TUS activity def-

initions are very broad and, with few exceptions, do not

necessarily infer use of a specific appliance. For exam-

ple, the TUS ’Food Prep’ activity category accounts for all

cooking and food preparation activities and could involve

the use of a number of different appliances (e.g. cooker,

microwave, kettle, grill).

Figure 3 shows the average daily probability profile for the

’Food Prep’ activity from the UK 2001 Time-Use Survey

[18] compared to the demand profiles for three key cook-

ing appliances and for all cooking appliances. The demand

profile has been divided by the ’Food Prep’ probability and

the resulting plot shows no obvious correlation. This effect

can also be shown for other TUS activity-appliance com-

binations, with the exception of TV use. Consequently, it

can be concluded that activity data from time-use surveys

alone is a weak proxy for individual appliance use.

Fig. 3. Average relative cooking appliance power normalised for TUS ‘Food

Prep’ activity probability.

3. Aim

The aim of the work presented here was to develop a high-

resolution, electrical demand model that addressed the high-

lighted areas for improvement: 1) improving differentiation be-

tween households based on characteristics, 2) better capture

of behavioural variations between households probabilistically,

and 3) improving realism in the prediction of appliance use

events.
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The need to develop a model that captures, as far as possible,

individual behaviours is very suited to a bottom-up, probabilis-

tic approach with disaggregation of individual energy uses.

4. Demand Model Development

The new model builds on a previously developed household-

differentiated occupancy model [12] (see 4.1) in order to simu-

late electrical demand for different household types. The con-

tributions that this demand model makes are as follows:

• To capture the identified variation in demand between sim-

ilar households, a set of overall household variance factors

were developed that define appliance ownership and de-

mand multipliers based on a) income, b) random energy

use behaviours, and c) relative occupancy, that are applied

probabilistically for each household modelled.

• Use patterns and typical power profiles for the most com-

monly owned appliances have been analysed and separate

demand sub-models developed for three identified appli-

ance groups that have similar characteristics. Each sub-

model has a discrete-event based algorithm to determine

the number of appliance uses per day which incorporate

the identified behavioural and occupancy-driven factors.

• A discrete-event approach has also been developed to

identify appliance use timing. Separation of the determi-

nation of the predicted number of uses and their timing is

a different approach to existing models and is shown to be

more effective at generating realistic appliance use timing

sequences.

The following sections describe each of these aspects of the

model in more detail. The developed model also includes mod-

ules for other types of demands (i.e. lighting, constant use ap-

pliances, low ownership appliances) which are based on pre-

viously published work ([19], [7], [20]) and are therefore not

described in detail.

4.1. Household-Differentiated Occupancy Model

The underpinning occupancy model is described in a previously

published paper by Flett and Kelly [12] and focuses solely on

basic occupancy states (i.e. sleep, active, absent). Consequently

only a summary is presented here. The occupancy model built

on the Time Use Survey (TUS) calibrated, Markov-Chain prob-

ability approach developed by Richardson et al [7] with three

key improvements.

• The model was calibrated using multiple occupant, house-

hold, and day types to better capture household-specific

patterns. Working and non-working days were differen-

tiated with separate profiles for weekdays, Saturdays and

Sundays. TUS respondents submit one weekday and one

weekend day occupancy diary, therefore each type module

is calibrated from the occupancy data of multiple individ-

uals.

• Interactions between related adults (i.e. co-habiting cou-

ples and parents) were captured by treating related pairs of

occupants as a single entity. Child occupancy was directly

linked to parent occupancy using a simplified Markov-

Chain model. Other occupant types (e.g. single house-

holders, adult children and households comprising unre-

lated adults etc.) were modelled as unlinked individuals.

Each overall household occupancy profile are therefore

generated from the relevant combination of couple, indi-

vidual adult, and child models.

• The occupancy model also uses a higher-order Markov

technique that takes the duration of an activity into account

when predicting future activity. Separate Markov proba-

bility matrices are generated based on ranges of durations

of typically between 30 minutes and 3 hours depending on

the likelihood of the particular transition.

The performance of the model was compared with both the

original Richardson et al method [7] and the event/duration

based probability method developed by Wilke [10], and was

shown to be an improvement [12].

4.2. Electrical Demand Data Analysis

The following sections detail the methods used to analyse the

Household Electricity Survey (HES) dataset [1] to generate cal-

ibration data for the modelling of household-specific appliance

use frequencies and timing. In the HES dataset individual ap-

pliances in 251 representative households were monitored for

at least 1 month at a 2-minute resolution, with 26 households

also monitored for a full year at a 10-minute resolution. De-

spite only comprising private households, the range of house-

hold types and social classes was nationally consistent. It was

therefore assumed that the HES dataset was broadly represen-

tative of appliance use for UK households.

In order to develop a high-resolution demand model that pre-

dicts household-specific electrical demand behaviours and re-

flects variation between households, two main types of elec-

trical dataset analysis were undertaken. The first focused on

overall variation in energy demand between households of the

same type. The second focused on appliance use behaviours,

and variations between and within household type groups.

4.2.1. Overall Demand Analysis

Initial analysis was undertaken by splitting the HES households

into eight basic types (mirroring the household differentiation in

the previously reported occupancy model [9]). With the number

of each household type in the dataset shown in brackets, the

eight types were: 1-person (working age (36) and retired (34)),

retired couple (54), family (2/3-person (24) / 4-person (42) / 5+

(12)), and multi-adult (2-person (32) / 3+ (17)).

Assessment of the average demand profiles for each of the

defined household types (see Figure 13) showed distinct char-

acteristics that would be expected from the different inherent

lifestyles. For example; retired households show a more bal-

anced demand across the day than their working-age equiva-

lents; multi-adult households have less distinct morning and

daytime demand patterns than family households. However,
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Fig. 4. Average electrical demand distribution per household type from the

Household Electricity Survey (HES) dataset.

there are also characteristics that are common, such as the early

evening demand increase driven primarily by higher occupancy,

cooking activities, and increased lighting demand.

Further analysis of individual household occupancy and de-

mand data shows a high degree of variability in behaviour,

even between those households with broadly similar charac-

teristics. Figure 4 shows the range of average power demand

values for each of the eight defined household types from the

HES dataset. It is worth noting that there is greater variation

within household-type groups than between different groups.

This suggests that factors such as appliance ownership, income,

and energy use behaviours are at least as important as household

type and that a significant proportion of the variation in electri-

cal demand between households cannot be attributed solely to

the household characteristics (i.e. type, size, age).

4.2.2. Specific Appliance Analysis

There are thirteen primary occupant-initiated electrical appli-

ances which are commonly owned and for which a significant

depth of use data was available; kettle, microwave, toaster,

cooker, oven, washing machine/washer dryer, tumble dryer,

dishwasher, laptop computer, desktop computer, iron, vacuum

cleaner and hair dryer. Computer use is used to infer use of

routers, monitors and printers. The remainder of this paper

is focused on the model development for these key occupant-

initiated appliances. Televisions, lighting, and low-ownership

appliances are modelled using other methods that, for brevity,

are not covered in this paper.

For each of the thirteen identified appliances, the HES dataset

was analysed for use frequency, duration, and timing per house-

hold and then per defined household type as the basis for model

calibration. A typical example of the generated calibration data

is the average daily use data shown in Table 2 for kettles and

microwaves.

4.2.3. Appliance Sub-Groups

Analysis of the HES dataset identified that the 13 primary ap-

pliances fall into three distinct groups based on typical patterns

and durations of use:

Table 2

Average number of use events per day per household type for kettles and mi-

crowaves.

Household Type Kettle Microwave

Single Non-Pen 3.37 0.86

Single Pensioner 3.98 0.84

Two-Adult Non-Pen 4.59 1.34

Two-Adult Pensioners 6.10 1.34

Three-Adult+ 6.50 2.14

3-Person Family 4.94 1.81

4-Person Family 4.94 2.45

5+-Person Family 6.22 3.09

• ’Simple’ appliances (kettle, toaster, microwave, and hair

dryer) have a high daily usage probability, usage that is

generally independent of use on previous days, and a lim-

ited range of use durations. The HES dataset was analysed

for average and maximum uses per day per household, the

ratio of average daily household use to the household-type

average, and the range of total energy used per use.

• ’Flexible’ appliances (dryers, cookers/ovens, computers)

have significant variation in daily use probability and du-

ration, and are therefore defined by a sub-model that links

both factors probabilistically. The HES dataset was anal-

ysed for daily usage probability, total daily use duration,

and number of uses per day for each household type.

• ’Fixed’ appliances (washing machines, dishwashers, irons,

vacuum cleaners) have a low multiple use per day poten-

tial, a use probability that is related to time since previous

use, and a typical range of fixed or limited use durations.

The HES dataset was analysed for daily usage probability,

number of uses per day of use for each household type,

and for typical power profiles and durations.

Three distinct demand sub-models were created in order to

reflect the different usage patterns for each appliance sub-group

(see 4.6).

4.3. Occupant-Initiated Appliance Use Model Overview

Based on the dataset analysis the required calculation sequence

for a differentiated, probabilistic, bottom-up electrical demand

model focused on the identified primary occupant-initiated ap-

pliances was determined. Five distinct sequential elements

were identified as follows:

• Household Behaviour Factor - To account for the ob-

served intra-household-type variation detailed in 4.2.1, in

addition to appliance-ownership which is captured sepa-

rately, the following were identified as potential causes;

income-driven behaviour, relative active occupancy proba-

bility (particularly as a result of employment), and random

energy-use behaviour variations that cannot be directly at-

tributed to household characteristics. The model incorpo-

rates the influence of each as a combined multiplier as de-

tailed in 4.4.
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• Appliance Ownership - A determination is required to

identify if a household owns a particular appliance. This

can either be user-specified or determined probabilistically

from national survey data based on household type and in-

come. This element is not covered in this paper.

• Appliance-Level Variance Factors - To reflect the signif-

icant variation in individual appliance use frequency be-

tween similar households, and only a weak correlation be-

tween overall household demand behaviour and individual

appliance use behaviour, use of each appliance per house-

hold is independently allocated a relative use multiplier

based on HES dataset analysis. The relative likelihood of

use based on occupancy timing is also captured. These

elements are detailed in 4.5.

• Daily Use Determination - A discrete event-based ap-

proach [21] has been employed to separate the determi-

nation of the number of appliance uses per day and the

timing. A use is defined as a separate demand event for

appliances that are not in constant use. The model deter-

mines average daily use per household, and then use on

individual days based on the average with factoring for

occupancy and random variation. The average use is in-

fluenced by both the household- and appliance-level be-

haviour factors identified. The model basis for each of the

three appliance types identified in 4.2.3 is described in 4.6.

• Use Timing Determination - The start time of each indi-

vidual use is determined based on the modelled occupied

periods and the probability distribution of start times for

a specific use event (i.e. #x of total y per day). This

differs from existing models which tend to incorporate a

per-timestep probability calculation sequence calibrated to

achieve an average use frequency. The new method was

developed primarily to address the problems of unrealistic

use sequencing and timing (see 2.4), where previously de-

veloped methods have not addressed the link between the

number of uses in a day and their timing, and is described

in 4.7.2. A performance comparison of the per-timestep

and newly developed method is detailed in 5.1.1.

4.4. Household Behaviour Factor Development

As outlined, differences in overall demand behaviour for house-

holds with similar characteristics are assumed to be at least par-

tially accounted for by variations in income, occupancy, and

attitudes to energy use. A single household behaviour factor

(HBF) is determined within the developed model by combin-

ing an income (IBF), overall relative occupancy (OROF), and

random energy-use behaviour (RBF) factor as shown in Equa-

tion 1. (OccUse H and OccUse T are appliance-specific factors

for each household (H) and household-type (T) combining both

occupancy and relative appliance use timing probability as de-

fined in 4.5.1). This factor is applied either to daily use number,

use probability, or total daily usage duration as a single multi-

plier depending on the appliance model type (see 4.5.2). The

following sections outline how each factor was identified and is

determined for each modelled household.

HBF = IBF × RBF × (OccUse H/OccUse T )OROF (1)

4.4.1. Effect of Income on Demand: Income Behaviour Factor

Analysis of the specific behavioural effect of income on energy

use is rare. Data from both Jamasb and Meier [22] and White et

al [23] allows the overall income effect on electrical demand to

be determined. However, this indicated that the overall impact

is not solely behavioural but also influenced by household type

and size, occupancy, and appliance ownership; the influence of

which are captured separately in the developed model. The plot

of electricity demand against “equivalised” income (defined be-

low) shown in Figure 5 indicates that there is a general increase

in demand with income; however there are clearly one or more

additional factors that influence demand, particularly at higher

income levels. A regression-based method was therefore de-

veloped that allowed these other income-related factors to be

accounted for separately and the residual behavioural effect of

income on energy use captured.

Published UK 2011 Census data has been separated into dif-

ferent sizes of area for comparative analysis. Area annual elec-

tricity demand data [24] is available down to the Lower Layer

Super Output Area (LSOA) level for England and Wales, this

corresponds to groups of households of between 600 and 1000.

An LSOA is assumed to be sufficiently small that each area has

distinct characteristics that can be used for comparative analysis

but is large enough to ensure that any random household-level

behavioural effects are negated.

All London boroughs were removed from the analysis as

there was clearly a different cost of living basis and relation-

ship between several factors (particularly income) and energy

usage that distorted the results for the rest of the country. For

example, the London boroughs have an average annual elec-

tricity demand to “equivalised” income (see below) of 0.117

kWh/£, with the remainder of England having a value of 0.147.

The number of LSOAs included in the analysis was 28,203.

Fig. 5. Average household annual electricity consumption (kWh) by average

equivalised income per English Lower-Layer Super Output Area (LSOA).

Using UK 2011 Census data various factors were determined

for each LSOA to represent factors captured separately in the
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model. The following were found to generate the most accurate

regression model based on F-Stat and RMSE analysis:

• SAP-Factored Occupant Number – Number of people fac-

tored using the SAP Nˆ0.4714 basis for demand relative

to the household size (N) [16]. This value was shown to

be better correlated with demand than the unfactored oc-

cupant number.

• “Equivalised” Income – Average gross income (2011 ba-

sis) factored by household size and reducing influence of

number of people on expenditure based on the OECD

method [25] (1st Person=0.58, 2nd Person=0.42, 3rd Per-

son+=0.3). This value was shown to be better correlated

with demand than the unfactored gross income.

• Rooms per Person – Average number of habitable rooms

per person. Habitable rooms are living rooms, kitchens,

bedrooms etc. but not toilets and hallways. This value

was shown to be better correlated with demand than the

unfactored room number.

• Owned Appliance Power (Relative) – Estimate of relative

power use related to ownership level of appliances based

on LSOA household type and income mix. The demand

model already accounts for this per-household factor.

• Occupancy (Relative) – Estimated average active occu-

pancy for the LSOA based on household type mix.

The RMSE was minimised with the “equivalised” income

term (IncE) raised to a power of 4.2 (with all other factors set to

a power of 1 to reflect the model basis for those factors). This

demonstrates that the influence of increasing disposable income

on electricity demand is significant.

Substituting average values for the non-income factors and

rebasing the regression output to the LSOA average demand

of 3863.3kWh/yr reduces the regression output to Equation 1

to reflect the income-behaviour impact (based on 2011 “equiv-

alised” income (IncE) values) as a relative Income Behaviour

Factor (IBF).

IBF = 0.9852 + (0.440/3863.3) × (IncE/10000)4.2 (2)

This factor is used as a multiplier, first incorporated in the

household behaviour factor (see 4.4), and then used to manipu-

late the appliance type-specific primary use defining parameter

(daily number, probability, or total duration) used for each mod-

elled appliance (see 4.6).

4.4.2. Random Energy-Use Behaviour Factor

Gill et al [5] determined that 37% of total household electricity

use can be attributed to behaviour independent of identifiable

household characteristics. An additional ’random behaviour’

factor (RBF) is therefore applied; selected randomly between

0.77 and 1.23 (equivalent to a 37% variation). Assuming a lin-

ear distribution is likely to be an over-simplification, but further

work is required to determine if there is a more complex link

between this factor and other household characteristics.

As with the IBF, the Random Behaviour Factor (RBF) is first

incorporated in the household behaviour factor (see 4.4), and

then used to manipulate relative appliance demand per house-

hold (see 4.5.2).

4.4.3. Relative Occupancy Factors

A limitation of the HES dataset is that it does not include occu-

pancy data. Without integrated occupancy and appliance usage

data an explicit assessment of the impact of occupancy dura-

tion and timing on appliance usage is difficult. Calibration of

the model, however, requires two relative occupancy manipu-

lations; first that average usage is determined for each house-

hold type and then adjusted for each modelled household based

on relative occupancy of the household to the household type

average (OROF); and second that average use is determined

for each household and adjusted for daily occupancy relative

to the household average (DROF). Here, occupancy is defined

as the proportion of time the house is actively occupied (i.e. not

sleeping) by at least one person, further investigation is required

to determine if there are more complex relationships linked to

number of occupants present.

To overcome the integrated data problem, the relative im-

pact of occupancy on appliance usage has been determined

from analysis of usage differences between retired and working

age households in the HES dataset. These populations show

a marked difference in active occupancy characteristics, which

can be extracted from UK Time-Use Survey (TUS) data [18].

The relationship between relative occupancy and relative ap-

pliance use is assumed to be a power law (see Equation 1), with

an exponent between 0 and 1. A value of 1 would represent an

appliance with which use frequency was directly proportional

to active occupancy. In reality, the value is much less than 1 for

all appliances. The exponents are determined by comparing the

ratios of average number of uses and average active occupancy

for the working age and retired populations as shown in Equa-

tion 3 to estimate the proportional impact on relative appliance

use frequency of a change in relative occupancy based on the

average appliance use behaviours of the two populations with

distinctly different average active occupancy levels.

ROF = log(Occret/Occwork)/log(Cycret/Cycwork) (3)

Table 3

Overall and daily relative occupancy factors (OROF and DROF) for different

appliances.

Kettle Microwave Toaster Computers

Overall/Daily 0.3 0.1 0.05 0.5

Wash. Mach. Dryer Dishwasher Cooker/Oven

Overall 0 0 0.5 0.1

Daily 0.3 0.5 0.67 0.2

For higher use appliances (i.e. kettle, microwave, toaster,

computer), a single factor is used for both the overall household

relative occupancy factor (OROF) and daily occupancy adjust-

ment within the household model (DROF) as use is assumed to

be highly correlated with occupancy.
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For less frequently used appliances (i.e. washing machine,

dryer, dishwasher, cooker, and oven), the influence of relative

average occupancy on the probability of use is expected to be

stronger with regard to daily use probability (DROF) than over-

all use probability (OROF), as overall use frequency is driven

by other factors, including basic need. For these appliances,

a separate value for daily occupancy impact (DROF) has been

estimated prior to combined occupancy and use data becoming

available. The ‘Overall’ factor (OROF) was determined in the

same manner as for the higher use appliances. Table 3 shows

the overall (OROF) and daily (DROF) relative occupancy fac-

tors used in the model.

To reflect the fact that appliance use is assumed to be im-

pacted by the timing of the occupied period relative to when

particular appliances are typically used in addition to basic

occupancy duration, the factors are applied to a modified

occupancy-use factor as detailed in the following section.

4.5. Appliance-Level Variance Factors

4.5.1. Occupancy-Timing-to-Appliance Use Relationship

The Relative Occupancy factors defined in 4.4.3 are not applied

directly to occupancy but to a modified occupancy factor that

also reflects appliance use probability during the occupied pe-

riod(s). In order to do this, a probability density function (pdf)

distribution for use time probability was generated for each ap-

pliance and household type from start times in the HES dataset.

This distribution was then modified to remove the occupancy-

driven influence on timing by dividing each timestep pdf value

by the occupancy probability at the timestep for the household

type and then rebased to an average value of 1 for clarity. The

updated value per timestep is the element rpcyc(t) in Equation

4. Figure 6 shows the modified distribution for kettle use in

1-person, retired households.

Fig. 6. Modified kettle use time probability with occupancy influence removed

example for 1-person, retired households.

A combined factor (‘OccUse’) reflecting both occupancy

and use probability summed for each of the 144 10-minute

timesteps was then generated (see Equation 4). The term pocc(t),

the occupancy probability at timestep, t, can be either popu-

lation average, household average, or specific day (0 or 1 per

timestep) based depending on the analysis required.

OccUse =
∑144

t=1 pocc(t) × rpcyc(t) (4)

The ‘OccUse’ factor is a unitless term that allows for a rela-

tive assessment of use potential rather than providing useful in-

formation directly. The average ‘OccUse’ value for a household

(OccUse H) compared to the population average (OccUse T)

gives a measure of the potential occupancy-driven variation in

average appliance use. Comparing the value for each modelled

day (OccUse D) to the household average also gives a measure

of the occupancy-driven variation in daily use to the household

average. The determined ratios are factored by either the overall

(OROF) or daily (DROF) relative occupancy factors as defined

in 4.4.3.

4.5.2. Appliance Use Factor

For each appliance there is significant variation in the pri-

mary use defining parameter (‘Simple’ - number of daily uses,

‘Fixed’ - daily use probability, or ‘Flexible’ - daily use duration)

for each household relative to the household type mean (see Ta-

ble 2 for example). Analysis determined that for each of the

appliances the ratio-to-(household type)mean distributions for

each household type were similar and it was therefore accept-

able to use a single combined distribution. The ratio-to-mean

distributions for the ‘Simple’ appliances are shown in Figure 7.

The distributions for all high-ownership appliances are similar.

While the variation is partially attributable to household char-

acteristics, a significant influence on the distribution is assumed

to be random behavioural differences between households at the

appliance level.

Fig. 7. Average household daily use ratio to household type mean distributions

for all ‘Simple’ appliances.

For each modelled appliance, an ‘Appliance Use Factor’

(AUF) is randomly selected from the appliance-specific ratio-

to-mean distribution. This is a multiplier that is combined with

the average value of the appliance primary use defining statistic

(see above) for the household type and the household behaviour

factor (HBF) as per Equation 5 to determine the primary use
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defining statistic for the modelled household incorporating all

behavioural factoring.

Analysis determined that there was no discernible relation-

ship between the relative ranking in the ratio-to-mean distribu-

tion for each appliance per household beyond that which would

be predicted by the application of the household-level factoring

introduced in 4.4. This suggests that any appliance-specific fac-

toring could be allocated randomly and independently using the

generated ratio-to-mean distributions, with additional modifica-

tion using the household behaviour factor (HBF) (see Equation

5) to account for relative household-level behaviours.

4.6. Daily Use Determination Sub-Models

The following three sections outline the different methods used

for the three distinct sub-groups of appliances defined in 4.2.3.

The separate methods are used to predict number of daily uses

and to define use energy and duration. A universal method is

used to predict use time and is detailed in 4.7.2.

Prior to running the individual appliance sub-models, the

‘Household Behaviour Factor’ (HBF) is determined as outlined

in 4.4 and the occupancy model is run to generate 1-minute res-

olution occupancy data for the household.

4.6.1. ‘Simple’ Sub-Model

Use Number Determination

The ‘Simple’ appliance use sub-model is applied to kettles, mi-

crowaves, toasters, and hair dryers and assumes the probability

of use per day is independent of use on preceding and following

days. The primary statistic that is used to define use per house-

hold is the average number of uses per day. The steps required

to determine this value are as follows:

• Step 1 - The ‘Appliance Use Factor’ (AUF) (see 4.5.2)

is determined by randomly selecting a value from the

appliance-specific ratio-to-mean distribution (see Figure

7).

• Step 2 - The occupancy model output is converted to the

combined factor that assesses both occupancy and appli-

ance use likelihood (‘OccUse’) (see 4.5.1) for each in-

dividual day to be modelled (OccUse D) and an overall

household average (OccUse H) for all modelled days.

• Step 3 - The average number of daily uses for the appli-

ance (HhldUse) is determined from the following equation

based on the average number of uses for the household

type (TypeUse), ‘AUF’, and ‘HBF’ factors.

HhldUse = TypeUse × HBF × AUF (5)

• Step 4 - For each modelled individual day, the household

average number of daily uses is used to determine a base-

line number of uses for the day accounting for the ra-

tio of the day-specific ‘OccUse’ factor (OccUse D) to the

household average (OccUse H), as shown by the follow-

ing equation. The baseline use number is the average pre-

dicted number based on the day-specific occupancy char-

acteristics.

UseBase = HhldUse×(OccUse D/OccUse H)DROF (6)

• Step 5 - The predicted number of uses for a specific day is

determined using a binomial probability distribution (see

below) with the baseline use number (‘UseBase’) as the

average output and a random number generated between 0

and 1 to determine the specific value on the distribution to

be used for each modelled day.

Binomial Use Probability Method

As outlined in Step 5 above, a binomial probability model is

used to predict an actual number of uses in relation to the av-

erage predicted number of uses for a specific day. This further

manipulation is based on the assumption that there is a natu-

ral variation in use number about the mean predicted value due

to random differences in occupant behaviours and external fac-

tors, such as weather. Without combined occupancy and use

data the extent of this variation is difficult to predict accurately

but the binomial basis was shown to replicate day-to-day varia-

tions in use number in the HES dataset better than if not further

manipulated and for other probability models, such as Poisson.

Future work with a combined source of occupancy and demand

data would allow the assumed relationship to be confirmed.

Binomial distributions are characterised by a number of tests,

N, and the probability of a success per test, p. For the use num-

ber model, N is the maximum use number for the household

(probabilistically allocated from HES dataset analysis of the re-

lationship between average and maximum use number values

per appliance), and p the daily baseline use number (see Equa-

tion 6) divided by N. An example predicted use number distri-

bution for a daily baseline of 3 uses and a household maximum

of 6 uses is shown in Table 4.

Table 4

Binomial distribution probabilities for a daily use number baseline of 3 and

household maximum daily number of uses of 6.

Predicted Use Number 0 1 2 3 4 5 6

Probability (%) 1.6 9.3 23.5 31.1 23.4 9.5 1.5

Power, Duration, and Energy

The ‘Simple’ model appliances are characterised by short, con-

stant power uses. Each identified use in the HES dataset was

analysed for total energy. Total energy is used rather than sepa-

rate power and duration values to allow use data from multiple

households to be combined for calibration purposes using a sin-

gle value for simplicity.

The analysed data was converted to an average total energy

per use for each household type and a ratio-to-mean distribution

for the ratio to the household type mean of the total energy for

each use ranked in ascending order. Each household is allocated

a unit power from the observed distribution in the HES dataset,

and the total energy allocated per use based on the average per

household type and a randomly selected value from the ratio-

to-mean distribution. The use duration is then determined from

use energy divided by the unit power.

4.6.2. ‘Flexible’ Sub-Model

Use Number Determination

The ‘Flexible’ appliance use sub-model is used for cookers,

ovens, dryers, and computer equipment. The primary statis-
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tic used to define use per household is average total duration of

use per day. The sub-model steps to calculate the number of

appliance uses per day are as follows:

• Steps 1-3 - Identical to Steps 1-3 for the ‘Simple’ model

(see 4.6.1) except that average daily use duration (Hhld-

Dur) replaces average daily use number (HhldUse) as the

output based on the household type average duration.

• Step 4 - Using the Kernel Density method outlined below,

the probabilistic relationship between average daily dura-

tion and use number is converted to a probability matrix

that represents a series of use number cumulative probabil-

ity distributions for the range of potential average daily du-

rations increasing in equal increments. The average num-

ber of daily uses (HhldCyc) is determined probabilistically

from the distribution appropriate for the determined aver-

age daily use duration (HhldDur).

• Step 5 - The average individual use duration (CycDur)

is determined by dividing the average daily use duration

(HhldDur) by the average daily number of uses (HhldCyc).

CycDur = HhldDur/HhldCyc (7)

• Step 6 - For each individual day to be modelled a multi-

plier (DMR) is determined from the day-specific ‘OccUse’

factor (OccUse D) compared to the overall average (Oc-

cUse H) as shown by the following equation.

DMR = (OccUse D/OccUse H)DROF (8)

• Step 7 - The HES data does not allow the relative impact of

occupancy on number of uses and use duration to be deter-

mined. The model therefore assumes an equal impact with

the daily baseline number of use (HhldUse) and use dura-

tion (CycDur) both being multiplied by the square root of

DMR.

• Step 8 - The predicted actual number of uses for a specific

day is determined using a binomial probability distribution

with the baseline use number as the average output in the

same manner as the ‘Simple’ model (see 4.6.1).

Kernel Density Probability Method

The Kernel Density probability method used in Step 4 of the

‘Flexible’ sub-model is a standard method used to characterise

a complex relationship between two variables while also allow-

ing a degree of probabilistic variation to the specific behaviours

used for calibration.

The method requires that each calibration data point (xi,yi)

is converted to probability density function (kernel) centred on

the data point. Key parameters are the shape and width of the

density function. The standard Gaussian kernel has been used

in this case with each data point therefore represented by a nor-

mally distributed function.

An overall probability density function (pdf) distribution is

determined by adding the contribution of each individual ker-

nel at each point on the x-y surface. The continuous functions

x and y are reduced to a set of equal-sized discrete value ranges

analogous to bins in a histogram analysis. For example, analy-

sis of two variables, one with a range from 0 to 1 and the other

from 0 to 10, would be converted to a 100x100 kernel den-

sity matrix with range widths of 0.01 and 0.1 respectively. The

width of the kernels is selected manually to achieve a distribu-

tion that retains the detail of the overall relationship but is not

overly influenced by individual data points.

The pdf matrix is converted to a cumulative probability func-

tion (cdf) matrix along the axis related to the unknown variable.

The unknown variable is then determined by generating a ran-

dom number between 0 and 1 and finding the closest value in

the applicable cdf distribution for the value of the known vari-

able.

Fig. 8. Daily average use duration to average uses per day probability surface.

The resultant probability model is shown graphically in Fig-

ure 8. Each band represents a 0.05 probability, the x-axis daily

use duration and the y-axis use number. A higher use duration

increases the probability of a higher number of uses but the rela-

tionship is complex. This type of probability analysis captures

the range of behaviours.

Power, Duration, and Energy

Cooker and oven demand profiles vary significantly. The ma-

jority of uses start with a period at a fixed power level as the ele-

ment warms, followed by highly variable period of on/off power

cycling at the same fixed power to maintain the chosen temper-

ature or setting, which may also be regularly altered mid-use.

To allow the overall impact on household power use to be ad-

equately captured within a practical model, each identified use

in the HES dataset was analysed for duration and a load factor,

which is the average power per use divided by the observed unit

peak power. Each modelled use was probabilistically allocated

a duration and load factor based on this analysis.

Uses were modelled as an initial short (2-7 mins) period at

peak power (peak power allocated probabilistically per house-

hold based on HES analysis) and then cycles of peak power use

sequenced to achieve the target overall load factor. This mimics

the typical on-off control method used by this type of appliance,

if not necessarily specific unit characteristics, to achieve a rep-

resentative distribution of power demand during a cooker/oven
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(a) (b)

Fig. 9. Relationship between washing machine daily use probability and both ‘next-day’ use probability and maximum days between uses.

use, which is considered sufficiently accurate for an overall de-

mand model.

For dryer and computer models, typical power levels and

use durations were assessed directly from the HES dataset and

applied probabilistically within the demand sub-model, as the

power level was observed to be relatively constant during active

use.

4.6.3. ‘Fixed’ Sub-Model

Use Number Determination

The ‘Fixed’ appliance use sub-model is used for washing ma-

chines, dishwashers, vacuum cleaners and irons. The primary

statistic used to define household use of this type of appliance

is daily use probability.

Analysis of the HES dataset also determined that there was

a relationship between overall daily use probability and next-

day (i.e. day following a use) probability (see Figure 9(a)), and

an inverse relationship between daily use probability and the

maximum time between uses (see Figure 9(b)). Beyond this the

use sequences for households are highly variable. This analysis

was used to model the observed variations in use probability

with time since the previous use.

The Kernel Density method (see 4.6.2) has been used to al-

low the ‘next-day’ use probability and maximum time between

uses to be probabilistically allocated to each modelled house-

hold based on the previously determined daily use probability.

For each household the model then generates the probabilities

for the number of days until the next use randomly but con-

strained by the ‘next-day’ probability, identified average, and

maximum time between uses. These probabilities are further

factored using the relative ‘OccUse’ factor for each day (see

4.5.1).

The following outlines the sequence of steps for the ‘Fixed’

appliance use probability analysis.

• Steps 1-3 - Identical to Steps 1-3 for ‘Simple’ model ex-

cept daily use probability (HhldPrb) replaces average daily

use number (HhldUse) as the output based on the house-

hold type average daily use probability.

• Step 4 - The ‘next-day’ use probability and maximum

number of days between uses is determined from the re-

lationship to the daily use probability using the method

defined above.

• Step 5 - The cumulative probability function for number

of days until the next use is determined using the method

defined above.

• Step 6 - The days in which the appliance is used are iden-

tified by using the cumulative probability model to deter-

mine the sequence of days between uses for the model du-

ration.

• Step 7 - The number of uses in a ‘use’ day is determined

from a simple probability model based on HES dataset

analysis of the distribution of use events per ‘use’ day

for each household type. Household type differentiation

is used as multiple uses are more common for family and

multi-adult households.

Power, Duration, and Energy

For washing machines and dishwashers the HES dataset was

analysed for typical power profiles differentiated by appliance

energy rating. For each energy rating, three typical full wash

cycles (representing a low, medium and high temperature set-

ting) plus a shorter typical spin/rinse cycle were identified for

both power profile and duration, and used for all modelled uses.

Each household was probabilistically assigned an appliance en-

ergy rating and one of the four typical cycles per modelled use.

The cycle type allocation does not currently differentiate by

household type due to difficulty in identifying appliance types

and cycles for all households but analysis showed that the aver-

age power per use is similar for all households suggesting that

use number is more significant than cycle type as a differentia-

tor of relative power use.
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4.7. Use Time Identification Sub-Model

4.7.1. Use Time Probability Distributions

Analysis of the distribution of use times per appliance showed

that timing was dependent on household type, occupancy, num-

ber of uses per day, and specific time-specific drivers (e.g. meal

times).

Separate start time probability distributions were generated

for each primary appliance based on household type, total num-

ber of daily uses, and for each specific use number. Further, to

allow these distributions to be used with the occupancy model

output, the occupancy influence on each distribution needed to

be removed. This is achieved by dividing the unmodified use

time probability density function (pd fraw) at each timestep by

the relative occupancy probability for the household type from

time-use survey data (see Equation 9) and generating cumula-

tive probability models based on the modified pdf values (see

Figure 10 for unmodified and occupancy-modified distribution

examples).

pd fmod(t) = pd fraw(t)/(pocc(t)/p̄occ) (9)

These modified distributions are used as the basis for linking

occupancy with appliance use probability as described in the

following section.

Fig. 10. Unmodified and occupancy-modified start time cumulative probability

distributions example for a 3-use microwave use day.

4.7.2. Use Time Identification Method

For each household the appliance start times are determined

based on the active occupancy periods generated by the occu-

pancy model (see Section 4.1), the sub-model generated daily

use number for each appliance (see 4.6), and the occupancy-

modified, start time cumulative probability curves identified

from the HES dataset for each appliance (see Figure 10 for ex-

ample).

For each modelled day, the occupancy model output is con-

verted into an event matrix that tracks occupancy transitions and

appliance availability at the start and end of each period (see

Table 5). Potential use periods require both active occupancy

and appliance availability at the start of the period to be greater

than zero. Appliance availability tracks whether the appliance

is already being used within the defined period.

Table 5

Daily event matrix example - microwave - Use #1 of 3.

Time 07.50 09.05 10.53 13.16 19.10 20.29 22.09 23.55

Occupants 1 0 1 0 1 2 1 0

Availability 1 1 1 1 1 1 1 1

Cuml. Prob. 0.438 0.563 0.725 0.844 0.988 0.997 0.999 1.000

The appliance-use cumulative probability values at the start

and end of each ’available’ period are determined from the ap-

propriate occupancy-modified curve (see Figure 10). A gen-

erated random number, limited to values within the ’available’

periods, is then used to determine the start time (see Figure 11).

Use events are therefore more likely during periods with higher

use probability relative to occupancy to accurately reflect real-

istic appliance-specific behaviours.

Fig. 11. Use time prediction model example.

For subsequent uses, previously identified use periods (in-

cluding an arbitrary short dead period pre- and post-use to en-

sure adequate use separation) are made unavailable (see Ta-

ble 6). The next use time is determined in the same manner

using the next use time probability distribution.

Table 6

Daily event matrix example for Use #2 of 3 following a 4-minute microwave

use at 08.07.

Timestep 07.50 08.04 08.14 09.05 10.53 13.16 19.10 23.55

Occupants 1 1 1 0 1 0 1 0

Availability 1 0 1 1 1 1 1 1

Cuml. Prob. 0.059 0.062 0.066 0.093 0.175 0.354 0.807 0.941

↑ ↑

4.8. Other Demands

The occupant-initiated appliance demand sub-models only ac-

count for a proportion of household electricity demand. Other

demands (i.e. TV-use, lighting, constant use (e.g. cold appli-

ances), miscellaneous small appliances etc.) are modelled using

a variety of techniques.
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The lighting sub-model is based on the occupant location

prediction approach used by Terry et al [19], and the miscel-

laneous appliance sub-model is similar to the Markov-Chain

approach used by McLoughlin et al [20]. The constant appli-

ance sub-model applies fixed power cycles and the TV-use sub-

model is linked to specific Time-Use Survey TV activity data,

both in the same manner as [7] among others. Consequently,

none of these approaches is reviewed in detail.

5. Validation

5.1. Method Performance

The aim of the developed demand data calibrated, discrete-

event method was to improve on appliance use sequence pre-

diction compared to models that use per-timestep probability

calculation methods and that use time-use survey (TUS) activ-

ities as a proxy for appliance use. In the following sections,

the discrete-event approach (‘event’) is compared with a per-

timestep (‘timestep’) method using the same calibration data,

and the demand data calibrated basis is compared with the time-

use calibrated approach used by Richardson et al [7].

5.1.1. Comparison with Per-Timestep Probability Method

The ‘timestep’ method analysed is similar to that used by [8],

[7], and [10]. The appliance use time distribution is converted

from a cumulative to a probability density function (pdf) distri-

bution. As for the ‘event’ approach, the occupancy model out-

put is used to determine the periods with a non-zero use prob-

ability. The distribution is then rebased such that the sum of

per-timestep pdfs is equal to the same baseline number of uses

as the equivalent ‘event’ model. The methods were compared

for both use number and timing prediction performance.

Use Number Prediction Performance

For the ‘event’ method the actual use number is identified us-

ing the binomial distribution method outlined in 4.6.1. For the

‘timestep’ method an equivalent degree of variance from the

average number of uses to which it has been calibrated is in-

herent in that the method requires a sequence of independent

probability calculations.

The kettle data for each of the single households in the

Household Electricity Survey (HES) [1] dataset and the equiv-

alent model results for both model types were analysed for the

average difference per day between the actual and mean num-

ber of uses divided by the mean number of uses, and the av-

erage for each household determined. The model results used

for the analysis were based on the average for 20 annual du-

ration model runs to ensure a representative distribution of use

behaviours were accounted for. For the HES dataset the aver-

age household value is 0.387. The equivalent for the ‘timestep’

models was 0.608 and for the ‘event’ model the value is 0.433.

Similar results were observed for the other ‘Simple’ appliances.

This suggests that the ‘event’ method generates daily use num-

ber variations that are significantly closer to reality with the

‘timestep’ method generating excessive variability.

The residual error between HES data and model results is a

result of the lack of linked occupancy and demand data allow-

ing both the occupancy influence on use and natural variation

in use for days with identical occupancy to be calibrated more

accurately than the relative occupancy factor (see 4.4.3) and bi-

nomial method (see 4.6.1) currently used.

Use Time Prediction Performance

Both the ‘timestep’ approach and the developed ‘event’ ap-

proach, if a single overall rather than specific use time distri-

bution is used, are memoryless with regard to the sequence of

uses within each day. This has the potential to generate unre-

alistic sequences. To allow the methods to be compared, the

standard deviation range (in minutes) for the timing of multiple

uses is compared to the measured data. This is determined by

converting each use start time to a number of minutes from 4am

(e.g. 08.30 = 270) and then determining the standard deviation

of each daily start time sequence.

The use time standard deviation range for 6-use kettle days

from all single HES dataset households is shown in Figure 12.

Most households are in a range from 200 to 375 minutes with

a mean of 285, which is indicative of a significant separation

between uses (for example, uses at 08.30, 11.52, 14.10, 17.15,

17.42, and 21.58 have a standard deviation of 285).

The equivalent model output results also shown in Figure 12

indicate that the ‘event’ method with multiple specific use dis-

tributions more closely approximates the distribution of the ac-

tual data, although there remains some discrepancy. Compar-

ison of the two ‘event’ method basis (single and specific use

timing distributions) highlights that the use-specific approach

better captures the broad characteristics of the distribution and

also the mean value (287 for the use-specific approach and 268

for the single distribution vs. 285 for the HES data). The per-

timestep probability approach has a significantly higher average

standard deviation of 346 and a more linear distribution. This

is indicative of results where the modelled daily mean use time

varies excessively from the mean (c.14.00) as a result of unre-

alistic sequencing.

Fig. 12. Use time standard deviation range for 6-use kettle use days.

In both use number and timing comparisons, the multiple

distribution ‘event’ approach shows a significantly better per-

formance in capturing realistic use sequences. In this case,

the residual error is the result of the timing sub-model calibra-
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Table 7

Appliance model average use time cumulative probability equivalent results.

Avg. Use CDF (Target=0.5)

Model Kettle MW Toaster Cooker Oven Wash. Mach. Dishwasher Dryer

Time-Use Activity Calibrated Model 0.573 0.388 0.648 0.449 0.325 0.531 0.435 0.421

Demand Data Calibrated Model 0.521 0.494 0.504 0.499 0.529 0.529 0.515 0.540

tion which is based on the combined behaviours of multiple

households. Further work is required to manipulate the cali-

bration basis for individual households to account for different

behaviours (e.g. typically early or later use).

5.1.2. Time-Use Activity Calibrated Model Comparison

To confirm the calibration of the use time identification method

(see 4.7), the modelled use time results were converted to the

associated cumulative density function (cdf) value from the rel-

evant use time distribution. The distributions in this case are the

unmodified versions prior to accounting for relative occupancy

probability (see Figure 10).

The mean of the modelled cdf distribution should be close to

0.5 with a linear variation from 0 to 1. The results are also com-

pared with the method utilised by Richardson et al [7] which

was based on time-use survey activity probabilities. For the

main cooking and washing appliances the mean cdf results are

shown in Table 7.

The TUS linked model results show significant variation

from the 0.5 target, with better performance shown for the de-

mand data calibrated model. This confirms the conclusion from

the initial analysis outlined in 2.4 that broad TUS activities are

a weak predictor of specific appliance use. Residual deviation

from the 0.5 target is a result of occupancy differences between

the HES households and modelled equivalents, and significant

variations in the number of cycles per HES household used for

the calibration.

5.2. Demand Dataset Replication

Further validation undertaken has been to show that the model

converges to the average electrical demand profiles and repli-

cates the overall range of demand profiles from the HES dataset

for an equivalent set of households.

For each household in the HES dataset, 500 model runs were

generated for the same period. Each household model was set

up with the household characteristics (age of respondent, em-

ployment status of respondent, appliances owned etc.) identi-

fied by the HES dataset. Considering the level of probabilistic

factoring used within the model, 500 runs were undertaken to

generate a representative range of potential results. Three levels

of analysis were performed:

• To confirm that the average model output profile is consis-

tent for each HES sub-population

• To confirm that the range of model outputs is consistent

with the HES dataset distribution.

• To compare individual household modelled and measured

average demand profiles over a number of model runs to

determine the similarity of the closest match.

5.2.1. Average Demand Profile Replication

The average demand results from the 500 runs for each of the

eight identified household types were analysed to assess if the

model converged to the average power value and the average

time-specific demand profile for each household type from the

HES dataset.

Figure 13 shows the results for all households and each of

the eight defined household types for both the overall model

output and for the combined results of the cyclic appliance sub-

models only. In general, there is a good correlation between

the model output and the HES data for both measures suggest-

ing that the underpinning methods are effective. However, there

are some discrepancies that need to be analysed to determine if

they are the result of poor calibration, the impact of unrepresen-

tative outliers from the relatively small number of households

per household type, or occupancy differences between the ac-

tual and modelled populations.

For some of the populations analysed, the model has a higher

mid-evening peak and later evening reduction. This difference

is not driven by a single type of demand. There could be several

reasons for this. The model potentially underestimates the vari-

ance in sleep transition time, particularly the variation between

weekday and weekends, and between co-habiting individuals.

Alternatively there may be a tendency to use lower power cy-

cles and lighting levels in the evening period generally that is

not currently captured. By contrast, the modelled morning de-

mand increase is significantly more consistent with the actual

data suggesting that the basic method is effective but that fur-

ther calibration is required for specific periods.

For both the family and multi-adult households the model

tends to underestimate the difference in demand based on the

number of occupants for both overall and cyclic appliance re-

sults. Further analysis of the potential impact of number of oc-

cupants on typical use durations and power requirements, and

likelihood of ownership of higher power appliances in larger

households is, however, currently limited by data availability.

5.2.2. Demand Variance Replication

The HES-equivalent model results were also analysed to con-

firm if the range of household average demand values was con-

sistent with the measured data. This is assessed by running

500 annual duration simulations and ranking the average de-

mand results for each household. The ranking of the model run

with an average demand closest to the value for the actual HES

household on which it is based in then determined. The use of a

ranking rather than a direct evaluation of demand allow the re-

sults for all households to be compared on the same basis. Con-

sistency requires that the model output rankings for all house-

holds are linearly distributed between 1 and 500, which would

indicate that the household type differentiation and probabilistic
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(a) All households (b) 1-person, retired (c) 1-person, working-age

(d) Couple, retired (e) 2-adults, working-age (f) 3-adults+, working-age

(g) Family, 3-person (h) Family, 4-person (i) Family, 5-person+

Fig. 13. Average overall and cyclic appliance electrical power per 10-minute timestep comparison between HES data and model output.

factoring used generates a realistic range of results, including

outliers. The numbers of households whose measured data falls

outside the model predicted results should also be small. To al-

low the performance of the household behaviour factor (see 4.4)

to be determined, a further set of 500 runs was generated with

the factor set to 1 and the same ranking distribution determined.

For overall average power, Figure 14 shows a generally linear

distribution of model output ranking per actual data point for

models with and without household behaviour factoring. This

indicates that a significant degree of demand variance between

households can be accounted for by differences in appliance

ownership, the type of appliances, and behaviours at the appli-

ance level. Similar results are observed when the results for

each household type were reviewed, and also when the ranking

distribution based on 10-minute timestep results was analysed.

However, the model with household-level factoring shows

an improved performance, particularly at the lower end of the

demand range, with a 51% reduction in the error to the target

distribution, The range of household behaviour factors (HBFs)

generated for a single HES dataset equivalent model run is

shown in Figure 15. The overall influence is to reduce the me-

dian demand value (the median HBF is less than 1) and to gen-

erate a significant increase in use for a small number of house-

holds at the upper end of the range. The impact of this is shown

in Figure 14, where there is an improvement for the factored

model in reducing both the demand overestimate in the low-to-

mid range (rank below the target line) and the underestimate at

the upper mid range (rank above the target line).

The residual error for the factored method indicates that the

household behaviour factor as currently modelled is overly sim-

plistic. Simple statistical relationships have been assumed at

this stage due to lack of data, which do not fully capture the

complex influence of income, occupancy, and randomly-driven

variation. The results, however, indicate that household-level

behaviour factoring is required to capture the overall demand

range, and that reliance on household characteristics (type, size,

age), appliance ownership, and individual appliance-level vari-

ation is insufficient. Further work is required to better calibrate

this input.

The inclusion of the household behaviour factoring also re-

duces the number of HES household demands that are outwith

the model output, suggesting that it is required to capture more
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Fig. 14. Model output rank (from 500 runs) for HES household average elec-

trical demand.

Fig. 15. Household behaviour factor (HBF) distribution for a single HES-

equivalent model run.

extreme behaviours. Measured data for 4 (1.6%) of the HES

households lies outside the range of modelled results for the

factored model and 8 (3.2%) for the unfactored. For the fac-

tored model, all outliers are at the low end of the range, and for

the unfactored one outlier is at the upper end.

A significant proportion of the residual error and outlier re-

sults are at the lower end of the demand range. This sug-

gests that there may also be other drivers of the weaker per-

formance for these households, including; modelled relation-

ships between appliance power ratings and relative use not cur-

rently capturing very low demand households; underprediction

of households with low relative use for all appliances; and over-

estimation of minimum occupancy potential as a result of the

group-calibrated occupancy model and limited extended ab-

sence data. The results, however, suggest that the variety of

probabilistic factors applied at different levels of the devel-

oped model do not predict demand levels beyond those seen in

the measured data and broadly capture the typical distribution

driven by household characteristic and behavioural factors.

5.2.3. Individual Behaviour Replication

Having confirmed that the model captures average household

type behaviours and a realistic distribution of average demands,

further analysis is required to determine if the model is able to

replicate household-specific per time step profiles. The follow-

ing outlines a method to determine the similarity between the

model output and measured data.

Similarity Analysis Method Development

The most commonly used numerical string similarity measure

is the Euclidean distance, which is determined by the sum of

the root-mean-squares of the difference per string element. De-

mand profiles at a 10-minute resolution based on one month of

either measured or modelled data tend to be erratic and overly

influenced by individual high power uses. At longer timescales

the demand profiles tend to become smoother and more consis-

tent. Euclidean distance analysis when used for erratic profiles

generates results that do not properly reflect overall similarity

and are too dependent on individual per time step differences.

A method is therefore required to reduce the time-series to

a smoother profile that remains consistent to the overall pro-

file. Piecewise Aggregate Approximation (PAA) [26] is a data

mining method that allows a time series to be condensed and

simplified to its basic structure, reducing the influence of indi-

vidual data points. The simplified time-series’ generated retain

the ability to be compared using Euclidean distance.

To allow results for different households to be compared on

an equal basis. The data was normalised and analysed based

on variance to the time-series mean. For the PAA approach

the time series was z-normalised (difference between actual and

mean result divided by the standard deviation). The number of

segments to be analysed was then reduced by taking the mean

of the 10-minute resolution z-normalised values for each new

larger segment.

Further investigation was required to determine the most ef-

fective segment size for analysis. Analysis of 20, 30, 40 and

60-minute segment sizes determined that 20- and 30-minute

sizes retained a significant degree of the erratic nature of the

10-minute profile while at 60-minutes too much of the detail

was lost. 40-minute segments (36 per 24-hour profile) were

therefore determined to be the best compromise between retain-

ing detail and removing the poor performance associated with

highly erratic profiles.

Figure 16 shows an example conversion from a 10-minute

time step daily profile to the equivalent 40-minute segment pro-

file based on the defined PAA ranges. It can be seen that the ba-

sic demand pattern is retained while reducing the significance

of individual peaks and troughs.

To determine the model effectiveness requires two different

types of analysis; an ‘overall’ and a ‘timing’ comparison. The

’overall’ comparison determines the similarity between profiles

without any further rescaling. One of the profiles is used to set

the mean and standard deviation for the z-normalisation factors

used for both measured and modelled profiles. This is a mea-

sure of the similarity of both power level and timing.

To remove the influence of variable baseline power levels

from the analysis to allow the performance of the use timing
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(a) Average electrical demand profile example (10-minute timestep)

⇒

(b) PAA range 40-minute time segment conversion

Fig. 16. Monthly average profile (10-minute timesteps) to PAA range with 40-minute time segments conversion example.

model to be assessed, a separate ‘timing’ comparison was also

undertaken. This is achieved by allowing each set of profiles to

be z-normalised individually using factors appropriate to each

profile in order that they are rescaled to the same average power

basis. In this case, only relative demand timing is assessed.

Similarity Analysis Assessment Basis

For a 36 time-segment Euclidean Distance comparison of two

time-series’ using the PAA method (hereafter known as PAA-

ED), a score of 1.5 is equivalent to an average z-normalised

PAA value difference of 0.25 per time segment, 3 is equivalent

to 0.5 etc. Whether two time-series can be considered similar

is, however, a subjective judgement that is best determined from

direct visual comparison.

Comparison of results shows that a PAA-ED score of 2.5 or

less represents a close overall correlation between the two time

series. A result between 2.5 and 3.5 retains broad similarity

with evidence of either some time-shifted offset or failure to

model specific extreme values. Between 3.5 and 4.5 the basic

shape of the profile is typically discernible but the model has not

captured specific details. Above 4.5 the model has not captured

a significant proportion of the actual demand detail. Results

have been grouped into these 4 ranges (<2.5, 2.5-3.5, 3.5-4.5,

4.5+), and the ranges are titled ’High’, ’Good’, ’Some’, and

’Low’ respectively. Example PAA value profiles for various

PAA-ED scores are shown in Figure 17.

Similarity Analysis Results

Measured profiles from the HES dataset were compared with

the model output for equivalent populations. The results have

been grouped into the four defined similarity ranges. Detailed

analysis of the data presented in Figure 18 allows the lowest

cumulative PAA-ED score for each household after each run

to be graded. The most significant improvement occurs during

the first 20 runs and with more limited further improvement

seen beyond 200-250 runs. The final results after 500 runs for

both mean-normalised (‘timing’) and overall value analysis are

shown in Table 8.

The ‘timing’ results show that 81% of the results are rated

Table 8

Model similarity results - 250 HES households - 500 dataset equivalent runs.

Similarity ’High’ ’Good’ ’Some’ ’Low’

Timing 105 (42%) 98 (39%) 31 (12%) 17 (7%)

Overall 49 (20%) 118 (47%) 53 (21%) 31 (12%)

Fig. 18. Model similarity results - 250 HES households - mean-normalised

analysis - 500 dataset equivalent runs.

’Good Similarity’ or better after 500 runs. The results for the

overall analysis are lower, as expected, but >65% are within

the ’Good Similarity’ or better range after 500 runs. The results

suggests that the model is able to capture a significant degree of

the highly variable nature of demand while producing outputs

that are consistent with individual behaviours.

However, there remains a small number of households whose

specific demand patterns are not able to be captured by the cur-

rent model. Further consideration is therefore required as to

how the model is calibrated and for potential sources of inaccu-

racy, with focus on the identified areas where the model is cal-

ibrated from composite behaviours as discussed below. Analy-

sis of individual household demand profiles also indicates that

there are a small proportion (<10%) that have highly distinct
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(a) PAA edit distance score=2.0 (b) PAA edit distance score=3.0 (c) PAA edit distance score=4.0

Fig. 17. Example PAA value profiles for different total PAA edit distance scores.

behaviours that are likely outwith the scope of probabilistic

model calibrated from currently available data.

5.3. Residual Behaviour Averaging

The overall validation exercise shows that the model is able

to capture general demand behaviours at the household-type

level by incorporating a number of factors to differentiate oc-

cupancy and demand behaviours. Within each household-type

group a range of individual household behaviours are captured,

but some behaviours, and particularly those that deviate signif-

icantly from the average, are not.

The occupancy model basis for each defined occupant and

day type and the appliance use time distributions are currently

calibrated with data from a significant number of individuals

and households, potentially forcing excessive behaviour aver-

aging. To determine if this is the case, the standard deviation

of the per-household mean-normalised demand per time step is

compared for the HES measured and modelled data. The results

are shown in Figure 19.

Fig. 19. Standard deviation of mean-normalised electrical demand per-timestep

for measured data and modelled equivalent results for the 250-household HES

population.

The results show that the model standard deviation is signif-

icantly lower than the measured data in the key transition peri-

ods of 6am to 9am, 4pm to 7pm and 10pm to 1am. The lower

variance suggests that the model is not fully capturing individ-

ual behaviours in these time periods. This is addressed in the

‘Further Work’ section below.

6. Further Work

The initial verification that the developed model replicates the

Household Electricity Survey (HES) [1] calibration dataset

needs to be further validated with independent data. Initial anal-

ysis with two small UK datasets ([27] and [7]) shows similar

performance to the HES dataset verification analysis. Further

analysis with a larger dataset is required for confirmation.

The impact of composite behaviour averaging on prediction

also requires further review. An improved method or calibration

to capture more individual behaviour elements for both occu-

pancy prediction and appliance use time identification would be

beneficial to allow the model to be applied to individual house-

holds and smaller, distinct populations.

7. Discussion

A model has been developed that seeks to replicate the highly

variable and individual nature of household electrical demand.

By combining an occupancy model that incorporates occupant-

and day-type differentiation and individual calendars with de-

mand prediction that includes factors that capture individual

appliance-use behaviours, the model allows distinct demand

profiles for specific households types to be generated that can be

used to provide improved demand estimation for homogeneous

or heterogeneous communities than existing models. These

have typically focused on either a limited selection of house-

hold archetypes or large composite household groupings to as-

sess differentiated demand. Consequently, for real world as-

sessment they do not adequately capture the breadth of house-

hold types and behaviours, and the results are not sufficiently

representative to drive design decisions. The developed model

has therefore focused on comprehensively capturing all poten-

tial household types and specific demand behaviours associated

with each type.

The occupant-initiated appliance demand modelling method

presented, directly calibrated using appliance-level demand

data, aims to improve on the accuracy of existing models, par-

ticularly those calibrated using time-use survey activities. Us-

ing an event-based rather than timestep-based approach, and

using separate start time probability data for each specific use,
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reduces the likelihood of unrealistic use sequences, both intra-

day and over extended periods.

Validation with both the input and independent datasets has

shown that the model is able to capture a wide breadth of the

individual behaviours seen. There remains a minority of house-

holds that the model does not yet capture accurately. While

some households have highly unusual behaviours that are be-

yond probabilistic modelling, there is also evidence that the use

of modelling factors that are composites of household-type be-

haviours results limits the degree of individual behaviours that

can currently be captured. The current method is therefore pri-

marily focused on modelling small communities, where a de-

gree of behaviour averaging is acceptable, with further work

required to determine the range of applicability and to enhance

its applicability to individual households with further calibra-

tion and method development.
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