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Abstract

A multi-model approach for Constant False Alarm Ratio (CFAR) detection of vehicles through

foliage in FOliage PENetrating (FOPEN) SAR images is presented. Extreme value distributions

and Location Scale properties are exploited to derive an adaptive CFAR approach that is able to

cope with different forest densities. Performance analysis on real data is carried out to estimate the

detection and false alarm probabilities in the presence of a ground truth.

I. INTRODUCTION

The fundamental feature of FOPEN Radars is the capability to collect returns from scatterers

under foliage [1]. This is achieved by using fairly low carrier frequencies (in the UHF and

VHF bands) that are able to penetrate the vegetating layer. The ability to ”see” through foliage

canopies makes FOPEN radar a powerful tool for military purposes and, more interestingly, if

SAR techniques are used, a FOPEN SAR sensor becomes able to detect, track and recognize

vehicles hiding in forests [1].

Due to the nature of the imaged scene, several issues are still under investigation for the

complete and reliable exploitation of such sensors. In particular, canopies and hidden vehicles

are not the only possible reflecting targets in a forest scene; trunks are present and contribute

significantly to the intensity of the signal returned to the radar. Detections will be affected

from reflections from trunks if an accurate strategy of control of false alarms is not pro-

vided. Solutions or partial solutions to this problem have been provided in literature. Clutter

modelling has been identified as a viable solution to mitigate tree and trunks detections,

physical, statistical and the combination of the two approaches were used to model forest

clutter in FOPEN SAR [2], [3], [4], [5], [6]. The models proposed in [2], [3], [4] consider

electromagnetic modeling of forests to extract deterministic clutter models. These models are

useful in terms of understanding of the scattering physics but are not applicable in statistical

detection frameworks. The model presented in [5], introduces statistical properties in the

model in [3], however this model is not robust with respect to the presence of tree trunks

dominating a scene. In [6] a model for VHF clutter generation was proposed, integrating
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both background scatterers and large-amplitude discrete clutter (trees). Despite its flexibility,

the model proposed in [6] does not have a closed form solution and therefore it is not

suitable to derive detectors with false alarm rate control. Different detection approaches have

been evaluated in literature; in [7] a two parameters CFAR, a change detection and multi

aperture detection approaches have been evaluated, with the conclusion that a standard CFAR

approach does not perform as well as the other two approaches. In [8] a rank-order filters

based approach was used to address the poor performance of a traditional CFAR detector,

finally the case of slow moving target detection was investigated in [9] where the authors

proposed an alternative approach based on Along Track Interferometry.

The main problem in VHF SAR clutter is that the data samples are highly inhomogeneous

and variable. In contrast to corner reflector effects at microwaves frequencies, targets do not

exhibit the high peak response in FOPEN SAR images.

Due to the lack of accurate analytic models for FOPEN SAR clutter, a robust algorithm is

required against large variability of amplitude and distribution model of the received data.

Starting from a statistical modeling of the clutter, in this paper we introduce a novel framework

based on multi-model CFAR detection in adverse clutter conditions exhibited from FOPEN

SAR images.

The Multi Model approach derives by a generalization of the single model. In selecting a

specific model for target detection the designer is assuming a risk; the risk of model mismatch

is mitigated thanks to the flexibility of our approach that can be used for any type of LS

distributions. The de-risk is obtained through the exploitation of a goodness of fit based clutter

model selection. [10].

In our approach, the clutter is statistically modeled by light and heavy-tailed distributions

that belongs (directly or after transformations) to the location-scale (LS) family. The light

and heavy-tailed distributions are consistent with the nature of the scattering from different

forest scenarios [1], [6], whereas the location-scale family is a requirement of the CFAR

detection algorithm [11] that is exploited in this work.

The CFAR detection algorithm introduced in [12], [13] and applied to high resolution SAR

images in [11] can be embedded in a framework that is able to select the best location-scale

distribution to be used to compute the adaptive threshold and that will ensure the Constant

False Alarm Rate in the highly inhomogeneous FOPEN SAR image environment. Generally,

it is not easy to prove that a Goodness of fit test based CFAR detector has the CFAR property,

but when the data distribution has some special properties we can prove that the resultant

detector is CFAR. One of these cases is when the assumed distribution is a member of

location-scale (LS) family.

The paper is organized as follows, Section II introduces the multi-Model CFAR detection

framework, addressing the specific cases of Gumbel for Maximum and Weibull distributed

background. The performance in terms of distribution fitting of the two above mentioned



3

models are assessed and discussed in Section III using real VHF FOPEN SAR data. Section

IV discusses the algorithm performance on real data, demonstrating the capability of the

proposed approach to control the false alarm probability and to detect extended targets hiding

in foliage.

NOTATION

Throughout the paper, we use (lower case) boldface for vectors x, and (upper case) for

matrices X. The transpose and inverse matrix operators are denoted by the symbol (·)T

and (·)−1
, respectively. After sorting and censoring operations, the vector xi is denoted as

x̃i; instead x̃
′
i represent the vector x̃i after the transformation function fi (·) related by i-th

distribution.

II. MULTI-MODEL CFAR DETECTOR IN LS ENVIRONMENT

The architecture of the proposed algorithm is depicted in Figure 1.

Figure 1: Architecture of the Multi-Model CFAR system in LS environment.

The algorithm has been designed in order to ensure higher robustness and reliability of the

results, with respect to the single model approach introduced in [11], by considering K

possible statistical distributions for the background. The multi-Model approach stems as a

generalization of the single model approach where, by selecting a specific distribution model,

it is assumed a risk of model mismatch. This risk is mitigated thanks to the flexibility of the

approach that is applicable to any family of LS distributions1.

1A random variable X is of the Location Scale type, with location parameter θL ∈ R and scale parameter θS > 0, if any

variate of the family can be obtained by an affine transformation of the standardized variate X0 , namely

X = θSX0 + θL

where it is clearly understood that the standardized variate corresponds to θS = 1 and θL = 0. As a consequence, the CDF

has the property:

FX (x; θL, θS) = FX0

(

x− θL

θS

)

where FX0 (·) is the distribution of the standardized variate X0 [11].
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In FOPEN SAR, the multi-Model detector automatically searches for the distribution that best

fits the real data in a specific reference window, introducing robustness with respect to non

accurate a-priori knowledge of trees density in a given cell.

The problem can be posed in terms of the binary hypothesis test:
{

HB|Di
: X(m,n) ∼ Fi(x) Target absent

HT |Di
: X(m,n) ∼ FTi

(x) Target present
(1)

where (m,n) represents the cell under test. In the HB|Di
hypothesis the probability distribu-

tion of the background sample is one of a selected set {Fi(x)}i=1...K of distributions with

cardinality K. The probability distribution is selected among the K distributions of Location-

Scale (LS) type using a minimum distance non-parametric test. In the hypothesis HT |Di
the

presence of a target in the background is modeled by the distribution FTi
(x), that is unknown.

Afterwards, a CFAR procedure is applied for the selected background hypothesis.

With reference to Figure 1 it is assumed that the following statements are applicable.

• The data window for the estimation of the background statistics is composed of N×N

intensity samples obtained from the complex SAR image.

• The statistical characterization of the background is chosen according to a best-fit

strategy between the Empirical Cumulative Distribution Function (ECDF) of the data

and the CDFs from a set of model distributions. The fitting strategy is based on the

Lilliefors test, a modified Kolmogorov-Smirnov test accounting for the case of unknown

distributional parameters [14].

The usual outcome of the Lilliefors test, with a given significance level α, is:

◦ H0: the selected distribution is compatible with data, i.e. the p-value is greater

than α;

◦ H1: the null hypothesis is rejected, i.e. the p-value is less than α.

However, we are here interested in fitting the best distribution model rather than deter-

mining if the H0 hypothesis holds given a significance level α. Therefore, we use the

p−value to determine the a-posteriori significance level for the distribution model that

best fits the data.

• The background is highly non homogeneous due to the presence of tree trunks and fo-

liage [6] and statistical distributions with light or heavy tail characteristics are preferred

in such case. To our knowledge, confirmed by simulation assessments, best performance

in terms of goodness of fit are provided by:

◦ the Gumbel for Maximum CDF

F (x; θL, θS) = exp

[

−exp

(

−
x− θL
θS

)]

with θL ∈ R, θS > 0 (2)

which belongs to a location-scale family;
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◦ the Weibull CDF

F (x;κ, λ) =

{

1− e−(
x

λ)
k

, if x ≥ 0,

0, if x < 0.
(3)

that is a location-scale (Gumbel) distribution after a logarithmic transformation.

Location and scale parameters are derived from scale and shape parameters of the

Weibull CDF as in [11], [12].

Let ρi be p−value associated to the i−th distribution Fi(x), for each reference window

the selection rule for the statistical distribution is:

Fi(x) : i = argmax
i=1,2,...,K

ρi (4)

• Data are organized into a vector xi that is sorted and censored. After censoring, that

consists in removing the largest r samples in the vector xi, the new vector x̃i is

produced. This transformation is required in order to control the self masking from

targets inside the reference window [15].

• The Multi-Model CFAR algorithm is applied by exploiting, for each reference window,

the parameters (γi, θ̂L,i, θ̂S,i) of the specific distribution, after a proper transformation

to get an LS distribution. For the case at hand the data transformation follows the rule

fi (·) =

{

1 for i = 1
ln (·) for i = 2

(5)

The Best Linear Unbiased (BLU) estimates of the Location and Scale parameters are

obtained by minimizing the variance of the estimators subject to the constraints of

unbiasedness [13]. It is found that
(

θ̂L,i
θ̂S,i

)

=
(

H
T
i C

−1
0,iHi

)−1
H

T
i C

−1
0,i x̃

′
i

(6)

where x̃
′
i

is a vector of ordered and censored samples from a LS distribution, Hi =

(1µ0,i) and µ0,i and C0,i are the mean vector and the covariance matrix of the stan-

dardized vector x̃
′
0,i, respectively, and whose expressions are reported in Appendix A.

Location and scale parameters related to the specific distribution under test can be thus

estimated through (6), and the threshold for CFAR detection can be derived as

T̂
(

γi, θ̂L,i, θ̂S,i

)

= θ̂S,i(x̃
′
i
) γi + θ̂L,i(x̃

′
i
). (7)

The quantities in (11), in Appendix A, can be used to evaluate, for any value of the

censoring depth r, the mean vector and the covariance matrix of the censored data. In

other words, the “censored” mean vector as well as the “censored” covariance matrix

can be obtained from the “uncensored” expressions by discarding the last r elements

and the last r rows and columns, respectively. However, the evaluation of the adaptive
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threshold in (7) requires also the knowledge of the threshold multiplier γi, that is

evaluated according to the desired false alarm probability.

The threshold multiplier is the solution of the equation:

PFA|Di = Pr

{

X ′
i(m,n)− θ̂L,i

θ̂S,i
> γi|HB|Di

}

, (8)

which is the (1−PFA)-quantile of the normalized test statistic [(X ′
i(m,n)− θ̂L,i)/θ̂S,i],

where X ′
i(m,n) is the sample under test. Obviously, if the statistical distribution of

the test statistic is known, then γi can be determined. Unfortunately, this distribution

cannot be evaluated in a closed form because it requires the knowledge of the joint

distribution of the variable X ′
i(m,n) and of the location and scale estimators. More

easily, the value of the quantile γi can be computed via Monte Carlo simulation where

Np realizations of the test statistic are generated and the threshold multiplier level is

estimated from the empirical CDF [16]. In order to improve the estimators reliability,

a suitable number of trials is needed.

Figure 2: Threshold multiplier values versus PFA, for a Log-Weibull distribution,

with M = N ×N = 256 and various censoring depth r.

In Figure 2 plots show the value of the threshold multiplier versus the false alarm

probability for a Log-Weibull distribution with N = 16, M = 256 and various values

of the censoring depth r. As seen in Figure 2 the value of threshold multiplier increases

by reducing the false alarm probability.
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• Finally, the decision rule

X ′
i(m,n)

HT |Di

≷
HB|Di

T̂
(

γi, θ̂L,i, θ̂S,i

)

(9)

compares each data pixel with the adaptive threshold for CFAR detection. The decision

rule (9) is applied using the threshold value T̂
(

γi, θ̂L,i, θ̂S,i

)

associated to the specific

distribution.

The algorithm adapts itself with respect to the distribution that fits better the real data in a

specific reference window, with no a-priori knowledge of trees density.

As can be seen from equation 8, the false alarm probability is conditionally CFAR. Nev-

ertheless, if the same false alarm probability is kept for all single models, the multi model

approach keeps the CFAR property 2.

Proof. Considering PFA|Di = P̃FA, ∀i = 1 . . . K, for the law of total probability

PFA =
K
∑

i=1

Pr (Di) · PFA|Di = P̃FA ·

K
∑

i=1

Pr (Di) = P̃FA (10)

where
∑K

i=1 Pr (Di) = 1, and PFA is the total false alarm probability of the multi model

algorithm. �

III. STATISTICAL CHARACTERIZATION OF BACKGROUND

In this section we present the results obtained in terms of goodness of fit for the selection of

the statistical distributions in the HB hypothesis. The dataset was acquired using the Swedish

low frequency SAR system CARABAS-II VHF SAR [17]. The system transmits HH-polarized

radio waves between 20-90 MHz, corresponding to wavelengths between 3.3 m and 15 m. In

the imaged areas 25 military vehicles are concealed by forest, in four deployments (for reader’s

convenience see [17]). Due to the presence of trees in the scenario, we deal with extremely

inhomogeneous data. During setup, several light and heavy tailed distributions were analysed,

e.g. the Rayleigh, Normal, Log-Normal, Gamma, Weibull and Extreme Value Distributions.

The Log-Normal distribution in low density forest is rejected in the 42.33% of the analysed

cells. Weibull Distribution and the Gumbel for Maximum Distribution provide the best results

for low and high density forests, respectively. For this reason, and for shortness, these two

distributions have been selected and results will be discussed in this section.

2CFAR property ensured an estimated PFA values in agree with the designed value when the correct model is chosen

during the statistical characterization of the background stage.
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A. High Density Forest

In order to analyse the goodness of fit of the data to the distributions under test, we consider

the area shown in Figure 4-a. Within this image, we selected the subimage enclosed in the

red frame in Figure 4-b, that contains an homogeneous area without targets, with high density

of trees. The selected area has the same characteristics of the surrounding area, where the

targets are placed. For this area, a set of 29 × 29 reference windows, indexed through the

respective quadrant in the Figure 4-b, represents the dataset for the statistical validation. Each

reference window is composed of 16 × 16 pixels producing a set of 256 samples. For each

reference window, a Lilliefors test is carried out to verify the compatibility of the data with

the design distribution. To this aim, the empirical CDF has been compared to the theoretical

CDF, considering the Gumbel for Maximum distribution for high density forest data. This

comparison is shown in Figure 3.

Figure 3: Empirical CDF compared to the theoretical Gumbel for Maximum CDF for a

reference window of 16× 16 pixels, in a high density forest.

The p-values for each reference window in the homogeneous area of Figure 4-b, are evaluated

for both H0 hypothesis, where the Gumbel for Maximum distribution fits well the real

data, and H1 hypothesis, where the Gumbel for Maximum distribution is rejected (with a

significance level set to 0.1%).

Varying the reference window size, as shown in the Table I, best results are obtained with a

reference window of 16×16 pixels. In this case, it is found that H0 hypothesis was rejected 26

times, corresponding to a percentage of acceptance of the Gumbel for Maximum distribution

of 96.91%.
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Figure 4: a) SAR image of 2000× 3000 samples, related to flight pass number 1 of Fredrik

mission. b) The homogeneous area under test with pixel coordinates [2101-2565,701-1165],

within forest 1 [17].

B. Low Density Forests

In a low density forest, the homogeneous area into Forest 2 dataset [17] is considered. The

statistical characterization was carried out by considering an image of the flight pass 1 of

Sigismund mission. In Figure 5 a set of 29 × 29 reference windows is used for test, with

reference window size equal to 16× 16 pixel.

For low density forest data the Weibull distribution is considered. For each reference window, a

Lilliefors test is carried out to verify the compatibility of the data with the design distribution.

The comparison between the empirical CDF and the theoretical Weibull is shown in Figure

6.

From Table I, we note that the Weibull Distribution shows a good fit in 97.50% of cases (H0

hypothesis was rejected 21 times). By changing the reference window dimensions a slight

performance degradation was found for low density forest scenario as already seen in high

density forest case; 16× 16 reference window size, provides the best fitting, for both Weibull

and Gumbel for Maximum distributions.

C. Multi model fitting

Best performance are achieved through the implementation of a multi model fitting approach

as described in Section II. In order to evaluate the advantage of this approach in both low

and high density forests, the same homogeneous areas of Forest 1 in Figure 4 and Forest 2

in Figure 5 were considered.
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Figure 5: a) SAR image of flight pass number 1 of Sigismund mission, showing 2000 × 3000

acquired samples. b) The homogeneous area under test with coordinates [451-915,1-465] in

Forest 2.

Figure 6: Empirical CDF compared to the theoretical Weibull CDF for a reference window

of 16× 16 pixels, in a low density forest.

Differently from the single model approach, whereby either the Gumbel or Weibull distri-

butions have been exploited, with the multi model approach the Lilliefors test is applied

considering both the distributions and choosing the one that provides the highest p-value,

greater than the significance level. The H0 percentage of Lilliefors test outcomes obtained
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Table I: Lilliefors test outcomes for high density and low density forests: percentages where

the H0 hypothesis using Gumbel Maximum distribution and Weibull distribution is accepted.

Fredrik Mission Gumbel Maximum Distribution

16× 16 96.91%
24× 24 93.35%
32× 32 89.80%

Sigismund Mission Weibull Distribution

16× 16 97.50%
24× 24 94.46%
32× 32 92.86%

using the multi model fitting approach, for homogeneous area of Figure 4 and 5, increases

in both scenarios.

For high density forest, from a 96.91% of H0 acceptance percentage, associated to the Gumbel

for Maximum single model, a 98.57% has been achieved using the multi model algorithm.

For low density forest, by comparing Weibull single model approach with the multi model

approach, we find that the percentage of H0 hypothesis is increased from 97.50%, in the

Weibull single model, to 99.16% in the multi model approach (H0 is rejected only 7 times

in the second case).

It is worth to remark that the H0 hypothesis is rejected only for the sake of statistical validation,

but in the detection scheme a distribution is always selected according to the maximum p-

value, even if it is lower than the significance level.

IV. PERFORMANCE ANALYSIS OF THE CFAR DETECTOR

In order to demonstrate the CFAR property of the single and multi-model approaches, simu-

lated data have been considered. In particular, a PFA = 10−4 was set like designed false alarm

rate and 100/PFA realizations of simulated data composed by N2 samples are drawn exactly

from both Weibull and Gumbel distributions. Successively, sorting and censoring block is

applied, accounting for the number of valid samples available for each censoring depth r.

The PFA probability are reported in the tables II and III, choosing the locations θL and scale

θS parameters from a uniform distribution U (a, b) with a and b values tuned on the real data.

In particular for the Gumbel case (al = 0.051, bl = 0.275) and (as = 0.029, bs = 0.157) are

considered for the location and scale parameters respectively, while (as = 0.770, bs = 0.397)

and (ac = 1.450, bc = 2.824) are used for the scale and shape parameter of the Weibull

distribution. For the single model, how clearly reported in the first column of the tables II

and III, the PFA values oscillate around the designed PFA ensuring the CFAR property.

In addiction, a Model Miss-Match Analysis has been done. In this case, simulated data from

a chosen distribution has been draught, using a single-model CFAR detector based on the

other distribution. How clearly reported in the second column of the tables II and III, the PFA
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Table II: Simulated data from Gumbel distribution: false alarm probabilities using both the

correct single-model, the wrong single-model and multi-model CFAR detector for various

values of the censoring depth, with a designed PFA = 10−4.

Censoring Depth PFA GUM PFA WBL PFA MM

0 1.19× 10−4 1.3× 10−3 2.21× 10−4

32 1.11× 10−4 2.22× 10−3 2.48× 10−4

64 9.28× 10−5 2.29× 10−3 2.49× 10−4

96 1.04× 10−4 3.30× 10−3 2.67× 10−4

115 9.49× 10−5 3.13× 10−3 2.61× 10−4

128 1.01× 10−4 2.90× 10−3 2.68× 10−4

Table III: Simulated data from Weibull distribution: false alarm probabilities using both the

correct single-model, the wrong single-model and multi-model CFAR detector for various

values of the censoring depth, with a designed PFA = 10−4.

Censoring Depth PFA WBL PFA GUM PFA MM

0 9.88× 10−5 3.9× 10−6 7.67× 10−5

32 8.86× 10−5 3.72× 10−6 6.15× 10−5

64 9.98× 10−5 3.38× 10−6 5.83× 10−5

96 1.08× 10−4 5.71× 10−6 5.38× 10−5

115 1.02× 10−4 7.55× 10−6 4.69× 10−5

128 1.04× 10−4 1.01× 10−5 4.81× 10−5

values don’t respect the designed PFA. The same procedure has been done with the multi

model approach. The outcomes reported in the tables II and III, confirm the effectiveness of

the proposed approach ensuring robustness of mixed scenario. The discrepancies between the

single and multi-model results are due mainly to cases in which the Lilliefors test is not able

to discriminate correctly the true data distribution. Furthermore, in this section we investigate

the performance of the single-model and multi-model CFAR detector for different forest

environments, using real data. The CFAR detector performance are optimized by choosing

the best size for the reference window and for the depth of censoring. A reasonable rule is to

take the number of samples in the reference window much greater than the maximum expected

object size and, at the same time, to discard a number of samples that is at least equal to

the overall size of the objects. The efficiency of the algorithm has been tested for different

values of the reference window size, censoring depth and false alarm rate. The attention will

focus on the flight pass number 1 of each mission/target deployment [17] with the following

parameters: PFA=10−4; N = 16; r = [0 32 64 96 115 128]. Single-model, model

mismatch and multi-model analysis for high and low density forests are considered and the

results are discussed in the next sections.

A. False Alarm Rate

The first analysis is performed for an area with high density within Forest 1 scenario, in

absence of targets (see Figure 4). The single-model CFAR detector is applied using a Gumbel

for maximum distribution and the false alarm probabilities for single and multi-model CFAR
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detector are reported in Table IV, for a design false alarm rate equal to 10−4 and for various

values of the censoring depth. The detectors exhibit PFA values that are compatible with

the design rate, however the multi-model approach ensures higher reliability thanks to its

capability to adapt to the statistical model.

Table IV: Real data from Fredrik deployment: false alarm probabilities using both the correct

single-model (Gumbel Max), the wrong single-model (Weibull) and multi-model CFAR

detector for various values of the censoring depth, with a designed PFA = 10−4..

Censoring Depth r PFA GUM PFA WBL PFA MM

0 5.55× 10−5 2.54× 10−4 7.86× 10−5

32 0.97× 10−4 1.11× 10−3 1.76× 10−4

64 1.20× 10−4 1.17× 10−3 1.80× 10−4

96 1.66× 10−4 2.00× 10−3 2.45× 10−4

115 1.99× 10−4 2.01× 10−3 3.05× 10−4

128 2.40× 10−4 2.01× 10−3 3.56× 10−4

A similar analysis is considered for the Forest 2 dataset (low forest density, in absence of

targets) shown in Figure 5. Both the single-model CFAR detector for low density forest (using

a Weibull distribution) and the multi-model approach have been considered. The resulting false

alarm probabilities are reported in Table V, for a design false alarm rate equal to 10−4 and

various values of the censoring depth. Again, the false alarm probabilities are compatible with

the design value.

Table V: Real data from Sigismund deployment: false alarm probabilities using both the

correct single-model (Weibull), the wrong single-model (Gumbel Max) and multi-model

CFAR detector for various values of the censoring depth, with a designed PFA = 10−4.

Censoring Depth r PFA WBL PFA GUM PFA MM

0 1.11× 10−4 0 4.16× 10−05

32 3.00× 10−4 1.37× 10−5 6.94× 10−05

64 4.53× 10−4 1.38× 10−5 4.42× 10−05

96 5.87× 10−4 1.39× 10−5 4.16× 10−05

115 4.81× 10−4 1.39× 10−5 5.55× 10−05

128 5.97× 10−4 1.39× 10−5 7.86× 10−05

B. Detection Probability

The detection capability of the single and multi- model CFAR detector is first evaluated by

considering the area of Forest 1. Figure 7-a and -b shows the SAR image of 5× 5 array of

targets and the targets ground truth 3.

The single-model CFAR detector has been applied using the design values PFA = 10−4

and various censoring depths. In Table VI the probability of detection for a single - model

CFAR with Gumbel for Maximum detector with PFA set to 10−4 are reported along with the

3 It has to been considered that the targets ground truth has been estimated affecting the detection probability performance.
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Figure 7: a) SAR image of the 5 by 5 targets array within forest 1 characteristic of Fredrik

deployment; b) Targets ground truth for Fredrik deployment.

probabilities of detection of a multi-model CFAR detector referred to the same area under

test.

When no censoring is applied the targets are not correctly detected, due to the self-masking

effect from the targets. More correct detections are obtained when r is increased up to 128

samples. Further increase of the depth of censoring does not introduce additional features to

the targets detection but, otherwise, generates underestimation of the distribution parameters.

Table VI: Detection probabilities for a single-model CFAR Gumbel for maximum detector

vs multi-model CFAR detector in Fredrik deployment.

Censoring Depth r PD MM PD GUM

0 0.076 0.076
32 0.125 0.124
64 0.172 0.170
96 0.211 0.209

115 0.222 0.220
128 0.237 0.233

Detection maps for Multi-Model CFAR detector are reported in Figure 8, for various censoring

depths and PFA = 10−4. Comparing Figure 8-c with 8-f, where an increase of the depth of

censoring is applied, we can clearly note the performance optimization in terms of false

alarms.

The Multi-Model CFAR algorithm achieves equivalent performance in terms of detection prob-

abilities as the Single-Model CFAR algorithm (see Table VI). The most important remark is

the higher accuracy of the multi-model approach in the estimate of the background parameters,

hence a higher reliability of the obtained detections. To complete the performance analysis,

the low-density area in Forest 2 shown in Figure 9-a is considered. The targets empirical
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(a) r=0. (b) r=32.

(c) r=64. (d) r=96.

(e) r=115. (f) r=128.

Figure 8: Detection maps for multi-model CFAR detector, referred to Fredrik deployment

(Forest 1) and varying censoring depths; PFA = 10−4 and cell size 16× 16.

ground truth in Figure 9-b, has been considered to quantify the capability of the algorithm

to detect targets under foliage.

In Table VII the probability of detection for a single - model CFAR Weibull detector with

PFA set to 10−4 is reported along with the probability of detection of a multi-model CFAR

detector referred to the same area under test. The detection maps for the multi-model detection
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Figure 9: a) SAR image representing the 5 by 5 targets array within forest 2 characteristic of

Sigismund deployment; b) Targets ground truth for Sigismund deployment.

Table VII: Detection probabilities for a single-model CFAR Weibull detector vs multi-model

CFAR detector for Sigismund deployment.

Censoring Depth r PD MM PD WBL

0 0.105 0.045
32 0.167 0.120
64 0.257 0.277
96 0.355 0.396
115 0.373 0.434
128 0.394 0.468

cases reported in Table VII are shown in Figure 10.

C. Clustering strategy

We now assess the capability to detect extended targets using the proposed algorithm. In

particular, by increasing the design false alarm probability, a higher detection probability is

achievable. By introducing some domain knowledge like the size of the targets of interest, an

a-posteriori analysis can be performed to decrease the false alarm rate (preserving the high

detection probability). Precisely, by using a clustering strategy4 and target size selection, the

extended targets can be extracted from the detection map. The clustering algorithm classifies

the detections according to a pixels aggregation procedure and assigns a value to every cluster

equal to the number of pixels forming it. Then, using a-priori knowledge about targets size,

clusters smaller than a fixed threshold can be discarded. This operation leads to a strong

decrement of the false alarms. Setting the design PFA of a Multi-Model CFAR algorithm to

4Clustering is a division of data into groups of similar objects. Each group, called cluster, consists of objects that are

similar between themselves and dissimilar to objects of other groups [18]. In this work the “aggregation” method is exploited,

an algorithm based on the aggregation of adjoining pixels.
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(a) r=0. (b) r=32.

(c) r=64. (d) r=96.

(e) r=115. (f) r=128.

Figure 10: Detection maps for multi-model CFAR detector, referred to Sigismund deployment

(Forest 2) and varying censoring depths; PFA = 10−4 and cell size 16× 16.

10−2 an higher number of detected pixels is achieved. An area with targets within forest 1

with Fredrik deployment (as shown in Figure 7) is considered. The clustering algorithm has

been applied to the area under test. Following the clustering the distribution of the detected

target sizes can be obtained, as shown in Figure 11. Exploiting the a-priori domain knowledge

about the size of the smaller target (≈ 14m2), the clusters smaller than that value have been
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Figure 11: Histogram of number of detections per size vs detection size. In red are shown

the target with size less than 14 m2 while in blue are shown the targets with size greater or

equal than 14 m2.

discarded (red bars in Figure 11). The resulting detection map after the clustering and the

size threshold is shown in Figure 12, where the red detections can be discarded.

Figure 12: Clustering strategy: Detection map of a Multi-Model CFAR detector with PFA =
10−2 and r = 128. The red color represents the discarded pixels, instead the blue color

highlights the potential targets.

In Table VIII the performance in terms of false alarms and detection probabilities on a pixel
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Table VIII: Multi-model CFAR detector vs the same detector with Clustering strategy:

Performance analysis.

PFA = 10−2, r = 128 PD PFA

Multi-Model 0.5804 1 × 10−2

CFAR

Multi-Model CFAR 0.5804 3 × 10−3

with Clustering

basis before and after the clustering and target size threshold are reported. In this case the

proposed approach provides a bounded False Alarm Rate. The clustering strategy applied

to the Multi-Model CFAR algorithm provides a decrement of the false alarm probability,

keeping the same detection probability. Hence, the clustering algorithm can be used if an

higher capability of detecting extended targets is required. For example, for the case in hand,

the 96% of targets were detected (1 vehicle only was missed).

V. CONCLUSION

In this paper a novel framework for CFAR detection of extended target in FOPEN SAR

images has been proposed using a multi-model approach. The novel framework exploits a

CFAR detection algorithm based on location-scale distributions. Due to the peculiar problem in

hand, the location-scale property was not the only constraint on the selection of the statistical

distribution to be considered but, due to the presence of trees in the scene, distributions

having light and heavy-tails were considered as well. The proposed framework is able to

control the False Alarm Probability in the FOPEN SAR scenario, adapting the best location-

scale distribution fitting the background data. The effectiveness of the proposed approach has

been demonstrated on real data, showing that the framework is able to adapt both the model

and the threshold, and provides a higher level of reliability. Moreover, the capability to detect

extended targets has been demonstrated by exploiting domain knowledge. The usefulness of

the Multi Model approach, derived by generalization of the single model, is reinforced by

the possibility of using it also for other kind of clutter, since that it could be used for any

types of LS distribution. In this paper, it has been used for FOPEN clutter, but it does not

exclude the possibility of using this approach for SAR data collected in other conditions. For

example sea clutter at low grazing angle exhibits sea spikes that can lead to a behaviour of

the radar returns similar to those of large trunks in forests. Future work will deal with the

generalization of the statistical model and to the application to 3D FOPEN SAR.
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APPENDIX A

Letting G
(m)
i be the m-th order derivative of the inverse cumulative distribution function

Gi (·) = F−1
i (·), the approximate expressions of mean and covariance matrix of the ordered

samples are [11]:

µ0(k),i ≈ Gk,i +
pkqk

2(n+ 2)
G

(2)
k,i +

pkqk
(n+ 2)2

×

(

1

3
(qk − pk)G

(3)
k,i +

1

8
pkqkG

(4)
k,i

)

,

C0(k,h),i ≈
pkqh

(n+ 2)
G

(1)
k,iG

(1)
h,i +

pkqh
(n+ 2)2

× [(qk − pk)G
(2)
k,iG

(1)
h,i + (qh − ph)G

(2)
h,iG

(1)
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+
1

2
pkqkG
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k,iG
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1

2
phqhG

(1)
k,iG

(3)
h,i

+
1

2
pkqhG

(2)
k,iG

(2)
h,i ], k ≤ h

(11)

with pk = k/(n + 1) and qk = (1− pk) and Gk,i = G (pk). The moments in (11) can

be evaluated with reference to a specific reduced distribution by direct substitution of the

derivatives (up to the fourth order) of its quantile function (inverse CDF). Let Gi=1(x) be

the quantile function associated with the reduced extreme value distribution of type I for

maximum (Gumbel for Maximum), the set of equations to substitute in (11), and containing

the four derivatives under test are:

G1(x) = −ln (−ln(x)) ;

G
(1)
1 (x) = −

(

1

x ln(x)

)

;

G
(2)
1 (x) =

(

ln(x) + 1

x2 ln2(x)

)

G
(3)
1 (x) = −

(

2 ln2(x) + 3 ln(x) + 2

x3 ln3(x)

)

G
(4)
1 (x) =

(

6 ln3(x) + 11 ln2(x) + 12 ln(x) + 6

x4 ln4(x)

)

.

(12)

The same procedure can be applied to obtain the quantile function associated to the reduced

extreme value distribution of type I for minimum (Log-Weibull).

https://www.sdms.afrl.af.mil/index.php?collection=vhf_change_detection
https://www.sdms.afrl.af.mil/index.php?collection=vhf_change_detection
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In this case, we obtain:

G2(x) = ln (−ln(1− x)) ;

G
(1)
2 (x) =

(

1

(x− 1) ln(1− x)

)

;

G
(2)
2 (x) = −

(

ln(1− x) + 1

(x− 1)2 ln2(1− x)

)

G
(3)
2 (x) =

(

2 ln2(1− x) + 3 ln(1− x) + 2

(x− 1)3 ln3(1− x)

)

G
(4)
2 (x) =

−

(

6 ln3(1− x) + 11 ln2(1− x) + 12 ln(1− x) + 6

(x− 1)4 ln4(1− x)

)

.

(13)
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