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Abstract. Orientational and translational ordering of anisotropic nanoparticles in the lamellae and hexago-
nal phases of diblock copolymers have been considered theoretically in the case of strong segregation taking
into account the anisotropic interaction between the nanoparticles and the monomers in different blocks. It
has been shown that anisotropic nanoparticles are orientationally ordered in the boundary region between
the blocks and the nematic order parameter possesses opposite signs in different blocks: the nanoparticles
align parallel to the boundary in one block and perpendicular to it in the other. In the hexagonal phase,
a weak biaxial ordering of nanoparticles is also induced in the boundary region. Explicit analytical results
have been obtained for the distribution of nanoparticles in the lamellae phase. The results are compared
with the existing experimental data.

1 Introduction

Composite polymer nanomaterials that contain metal, ox-
ide, silicate or semiconductor nanoparticles (NPs) have a
number of advantages over pure polymer systems. It has
been shown that the introduction of NPs improves the me-
chanical, thermal, electric and dielectric characteristics of
polymer materials [1–7]. Microphase separation in block
copolymers can stabilize the spatially inhomogeneous dis-
tribution of the NPs, which in principle enables one to
develop highly ordered hybrid materials with controlled
parameters. Such materials can be used as novel mem-
branes and employed in nanophotonics [8,9].

Recently, NPs have been selectively confined in one
block domain and assembled into quantum dots, nanowires,
and nanoring structures [10–13] by varying the composi-
tion of copolymers and their chemical structure. In con-
trast to nanostructures produced by the lithography tech-
niques, such systems are self-organizing and essentially
three dimensional. The assembly of spherical NPs in block
copolymers has been of significant interest since the the-
oretical and experimental studies undertaken during the
past decade [10,11,14,15]. At the same time, recent stud-
ies of nanorods (NRs) in homopolymer [16–19] show that
dispersion and alignment of anisotropic NPs can result in
a tunable structure-property relationship.

With few exceptions (see, for example, Refs. [20–23])
the existing theoretical studies of polymer nanocomposites
are confined to the case of isotropic NPs [24]. So far, there

has been no systematic investigation of the effect of NP
anisotropy on the phase behavior of diblock copolymers
and, reciprocally, of the effect of microphase separation on
the orientational and translational ordering of anisotropic
NPs. At the same time, the NP anisotropy is known to
play a significant role in the related soft matter systems.
In particular, it has been shown that anisotropic compos-
ites based on low molecular weight liquid crystals (LCs)
doped with NPs possess a number of improved character-
istics in comparison with conventional LCs including lower
threshold voltages and switching times of LC displays [25–
29]. The introduction of NPs in various LC materials en-
ables one to extend the range of several LC phases, to
raise the temperature of phase transitions and to improve
the conditions of lasing in the LC matrix doped with dyes
[30–34]. Recently, a molecular theory has been developed
to explain the effect of NPs on thermodynamic and di-
electric properties of low molecular weight LCs [35–39].
One expects that composites based on LC polymers and
anisotropic NPs will offer a number of benefits over the
conventional LC polymers.

Quite generally, the ability of block copolymers to form
organized structures with a period in the range of tens to
hundreds of nanometers, can be widely used in the devel-
opment of nanomaterials for lithography, membrane tech-
nology, light transmission, data recording, etc. However,
one of the serious unsolved technological problems here is
the aligning of anisotropic phases, mainly the hexagonal
and the lamellae ones, with respect to the substrates. In-
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duced orientational order of strongly anisotropic NPs in
block copolymers may, in principle, be employed to align
these phases by external electric field.

There exists an experimental evidence that anisotropic
NPs may be aligned in lamellae and hexagonal phases of
block copolymers even at very low concentrations. For ex-
ample, it has been found that poly(ethylene glycol) (PEG)
functionalized gold nanorods are aligned parallel to the
lamellae planes [40]. At the same time, the polystyrene
functionalized NRs are orientationally ordered in the hexag-
onal phase of the same block copolymer with the long
axes perpendicular to the cylinders [41,42]. In contrast,
the alkyl phosphonic acid capped NRs are ordered paral-
lel to the cylinders in a different block copolymer [43].

Therefore, the effect of NPs on the properties of block
copolymers is twofold. On the one hand, NPs may affect
the relative stability of different phases and shift the corre-
sponding transition temperatures. On the other hand, the
microphase separation in the polymer matrix may induce
inhomogeneous periodic distribution of NPs. This, in turn,
may affect dielectric, optical and mechanical properties of
block copolymers. In this paper we address the second
topic, and calculate the spatial distribution of anisotropic
NPs in lamellae and hexagonal phases as well as the ori-
entational order parameter profiles in these phases, tak-
ing into account both isotropic and anisotropic interac-
tions between NPs and monomers. As far as we know, the
anisotropic interaction between NPs and polymer chains
has not been taken into account in the existing theory of
polymer nanocomposites.

The most interesting effects are predicted in the vicin-
ity of the interface between the blocks. In this region,
anisotropic NPs may interact simultaneously with differ-
ent monomers located in adjacent blocks. This asymmetric
interaction generally induces nematic orientational order
of anisotropic NPs in the interfacial region. Moreover, NPs
may align parallel and perpendicular to the interface on
different sides of the boundary. In the hexagonal phase,
the curvature of the cylindrical interface also induces the
biaxial order of NPs.

The paper is arranged as follows: in Sections 2 and 3
the NP density and nematic order parameter profiles are
calculated in the lamellae phases with strong and weak
block segregation respectively. The case of the hexagonal
phase with strong segregation is considered in Section 4.
Section 5 contains a discussion.

2 Lamellae phase. Strong segregation

Let us consider a small admixture of anisotropic uniaxial
NPs in the idealized diblock-copolymer with fixed density
distribution of A and B segments. In the simplest lamellae
phase, the total periodicity is d = dA+dB , where dA is the
thickness of the A-rich layer and dB is that of the B-rich
layer, respectively.

Let us first consider the ideal copolymer in the strong
segregation limit. In this case, the block A is composed
only of monomers A while the block B is composed of
monomers B. Denoting the densities of the monomers A
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Fig. 1. NP embedded in a lamellae diblock copolymer with
strong segregation.

and B in the corresponding pure polymers as ρ0A and ρ0B
respectively, one can express the average number density
of monomers A as ρA(r) = ρ0A when 0 < z < dA, ρA(r) =
0 when dA < z < d, and ρA(z) = ρA(z+d) for all z as it is a
periodic function with the period d. The average number
density of monomers B is given by similar expressions:
ρB(r) = ρ0B when dA < z < d, ρB(r) = 0 when 0 < z <
dA and ρB(z) = ρB(z + d) for all z.

In this paper we use a simple expression for the inter-
action potential between the i-th NP and the monomers,
which is composed of the isotropic and anisotropic parts:

Ui =
∑

l=lA

[JA(ril) + IA(ril)P2(ai · uil)] +

∑

l=lB

[JB(ril) + IB(ril)P2(ai · uil)] , (1)

where ril = ri − rl, and uil is the unit vector in the di-
rection of ril; ri is the position vector of the i-th NP and
ai is the unit vector in the direction of its long axis; rl is
the position vector of the corresponding monomer (A or
B); the functions JA(ril), IA(ril) and JB(ril), IB(ril) de-
scribe the isotropic and anisotropic coupling between NPs
and monomers A and B; and P2(x) is the second Legendre
polynomial.

The anisotropic interaction between isotropic monomers
and anisotropic NPs in Eq. (1) effectively couples the long
NP axis ai and the unit vector uil pointing from the parti-
cle to the monomer. The anisotropic part of the potential
vanishes after integration over the unit intermolecular vec-
tor uij . One notes that the anisotropic interaction of this
kind has not been taken into consideration in the existing
theory of polymer nanocomposites [24]. At the same time,
such an anisotropic interaction potential appears naturally
in the general expression for the dipole-dipole dispersion
intermolecular interaction [44,45] and describes a coupling
between the NP anisotropic polarizability and isotropic
polarizability of a monomer. This potential has also been
used in the molecular theory of Smectic A – Smectic C
phase transition [45,46]. In contrast, the Maier-Saupe type
interaction potential, which promotes the nematic order-
ing in LCs [45], is proportional to the anisotropy of the
polarizabilities of both interacting molecules0. One notes
also that in this model we do take into account the geo-
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metrical anisotropy of a NP explicitly but consider only
the anisotropy of the corresponding interaction potential
which is determined by by the anisotropic polarizability
of a NP.

In the molecular field approximation, the single NP
spatial and orientational distribution function is given by
the Boltzman expression:

f(ai, ri) = Z−1 exp [−UMF (ai, ri)/kBT ] , (2)

where Z is the normalization factor and the mean-field
potential UMF (ai, ri) is expressed as:

UMF (ai, ri) =
∫

[JA(ril) + IA(ril)P2(ai · uil)] ρA(rl)d
3rl+

∫

[JB(ril) + IB(ril)P2(ai · uil)] ρB(rl)d
3rl. (3)

The local scalar NP nematic order parameter with re-
spect to the block interface normal k is then expressed
as

S(r) = 〈P2(ai · k)〉 =

∫

P2(ai · k)f(ai, r)d
2ai

∫

f(ai, r)d2ai
, (4)

while the average density distribution of NPs is given by

ρ(r) = ρN

∫

f(ai, r)d
2ai, (5)

where ρN is the average NP number density .
The NP distribution can be determined only within a

particular model of the NP–monomer interaction. Let us
assume for simplicity that Jα(r) = Jαr

−6 and Iα(r) =
Iαr

−6 (which corresponds, e.g., to the dispersion inter-
molecular interaction), where α = A,B, and there is a
cut-off at small r = r0, where r0 is the NP radius. At
larger r, there is another cut-off at r = R0, where R0 is
the range of interaction, which is assumed to be relatively
small, e.g., R0 < dA/2, dB/2.

In this case, some of the integrals in Eq. (3) can be
taken analytically. Let us consider the mean-field poten-
tial UMF (a, r) acting on NP at some point r (see Fig. 1).
Taking into account that the interaction range is smaller
than the half-widths of the blocks, one concludes that NP
at point r interacts with the monomers inside the same
block and with the monomers of the other type in the
closest adjacent block, if NP is sufficiently close to the
boundary between the blocks. We denote by L the dis-
tance from the NP center to the closest boundary between
the blocks.

Taking into account that the interaction potentials (1)
are even functions of ril, one can express the mean-field
potential (3) acting on a particle in the block A as:

UMF =
1

2

∫

r0<r<R0

dV×

[(ρ0AJA + ρ0BJB) + (ρ0AIA + ρ0BIB)P2(a · u)] r−6−
∫

V0

dV [∆J +∆IP2(a · u)] r−6. (6)
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Fig. 2. NP local density (a) and nematic order parameter (b)
inside a lamellae diblock copolymer with strong segregation.
The block thickness is dA = dB = 10r0, the interaction radius
R0 = 3r0, the isotropic interaction constant ∆J = 0 and the
anisotropic constant ∆I = kBT, 3kBT, 5kBT for the lines
from 1 to 3 respectively.
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Fig. 3. The same as in Fig. 2 for the isotropic interaction
constant ∆J = kBT and the anisotropic constant ∆I =
−3kBT, −kBT, kBT, 3kBT for the lines from 1 to 4 respec-
tively.
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where we have identified a half of the integral over the
spherical volume r0 < r < R0 with the integral over a
half of this volume. For a particle centered in block B,
one has to reverse the sign of the last term. Here the dif-
ferences of the interaction parameters are introduced as
∆J = ρ0BJB−ρ0AJA, and ∆I = ρ0BIB−ρ0AIA. The first
integral is taken over the volume of the whole interaction
sphere while the second one is taken over its fragment V0

confined between the plane of the particle and the block
boundary (highlighted in red in Fig. 1). The first term
in Eq. (6) yields a constant contribution which is inde-
pendent of a and L, and therefore it can be neglected.
The rest of the mean-field potential can be evaluated in
a spherical coordinate system with the polar z-axis along
the normal to the block boundary k, the azimuthal angle
φ, and the polar angle θ measured from the z axis. Then
u = k cos θ + x sin θ cosφ+ y sin θ sinφ.

For L > R0 one obtains the following expression for
the mean-field potential:

U
(0)
MF (a, L) = −

∫ R0

r0

r−4dr

∫ 1

0

d cos θ

∫ 2π

0

dφ×

[∆J +∆IP2(a · u)] =

=
2π

3
∆J(R−3

0 − r−3
0 ). (7)

For an intermediate r0 < L < R0, the potential can be
expressed as

U
(1)
MF (a, L) =

−

[

∫ L

r0

dr

∫ 1

0

d cos θ +

∫ R0

L

dr

∫ L/r

0

d cos θ

]

×

2πr−4 [∆J +∆IP2(cos θ)P2((k · a))] =

=
2π

3
∆J(L−3 − r−3

0 )+

+
πL

2

[

∆J −
∆I

2
P2(k · a)

]

(R−4
0 − L−4)+

πL3

6
∆IP2(k · a)(R−6

0 − L−6), (8)

For a particle very close to the block boundary, L < r0,
one obtains:

U
(2)
MF (a, L) == −

∫ R0

r0

dr

∫ L/r

0

d cos θ×

2πr−4 [∆J +∆IP2(cos θ)P2((k · a))] =

=
πL

2

[

∆J −
∆I

2
P2(k · a)

]

(R−4
0 − r−4

0 )+

πL3

6
∆IP2(k · a)(R−6

0 − r−6
0 ). (9)

One can verify that the obtained expressions (7), (8)
and (9) are continuous at L = r0 and L = R0. The ex-
pressions can easily be generalized to the case when NP is
located inside the block B. In this case, the distance L is
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Fig. 4. NP local density and nematic order parameter inside a
lamellae diblock copolymer with weak segregation. The coordi-
nate z is normalized by the structure period d, the isotropic in-
teraction constant is ∆Jq = kBT and the anisotropic constant
is ∆Iq = kBT , and the density spatial modulation is varied as
δ = 1, 0.5, 0.3, 0.1 for the lines from 1 to 4 respectively.

negative. Note that when the particle is located close to
the block boundary, the potential (9) is an odd function
of L and vanishes when the particle center is directly at
the boundary independently of the particle orientation.

Thus we have obtained the analytical expression for
the NP distribution in the lamellae phase of the diblock
copolymer. The orientational order parameter profile can
now be obtained by a numerical integration in Eq. (4).
Representative NP density and nematic order parameter
profiles are shown in Figs. 2 and 3.

One can readily see in Fig. 2 that in the case ∆J = 0
and ∆I 6= 0 (that is when the effective isotropic interac-
tion of NP with monomers A and B is the same while
the corresponding anisotropic interaction constants are
different) the concentration of NPs is nearly the same
throughout the blocks A and B except for the boundary
region, where the concentration may be strongly affected
by the anisotropic interactions. In this case, the substan-
tial amount of NPs is concentrated in the boundary region,
and the concentration is different in the blocks A and B
close to the boundary. The latter is, in principle, natural
as the interface is not a mirror plane.

In contrast, even for relatively small values of ∆J ,
the NP density profile is only weakly dependent on the
strength of the anisotropic interaction ∆I (see Fig. 3),
and NPs are predominantly located in the block A which
is characterized by the strongest interaction between NPs
and monomers. Similarly to the previous case, NPs are ori-
entationally ordered only in the interfacial region on both
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sides of the boundary. As seen in Fig. 3, the long NP axes
are aligned parallel and perpendicular to the block bound-
ary on its different sides, and the nematic order parameter
profiles are nearly antisymmetric.

One notes that on the microscopic scale anisotropic
NPs may be aligned parallel or perpendicular to the poly-
mer chains. However, far away from the boundaries there
is no macroscopic orientational order of NPs because each
polymer block is macroscopically isotropic in the bulk.

3 Lamellae phase. Weak segregation

At any point in an incompressible copolymer, the local
densities ρA(r) and ρB(r) satisfy the following equation
(see e.g. [47]):

ρA(r)

ρ0A
+

ρB(r)

ρ0B
= 1. (10)

Weak segregation can be described by a single spatial
harmonic of the density modulation and then the distri-
butions of the monomers A and B are given by:

ρA(r) = ρ0A [1− δ cos(q · r)] , ρB(r) = ρ0Bδ cos(q · r),
(11)

where the modulation wave vector is q = 2πk/d.
Substituting Eq. (11) into the mean-field potential (3),

and using the identity cos(q · rl) = cos(q · ril) cos(q · ri) +
sin(q · ril) sin(q · ri) one obtains:

UMF (ai, ri) = δ cos(q · ri)

∫

dV×

[∆J(r) +∆I(r)P2(ai · u)] cos(q · r), (12)

where a constant contribution is neglected. Introducing
the interaction parameters

∆Jq = 2π

∫

r2dr

∫

d cos θ∆J(r) cos(qr cos θ), (13)

∆Iq = 2π

∫

r2dr ∆I(r)

∫

d cos θP2(cos θ) cos(qr cos θ),

(14)
one can write

UMF (ai, ri) = δ cos(q · ri) [∆Jq +∆IqP2(ai · k)] , (15)

where the parameters (13) and (14) can be evaluated nu-
merically for a given model interaction potential. Repre-
sentative profiles of the NP spatial distribution and the
nematic order parameter in the limit of weak segregation
are presented in Fig. 4. It is interesting to note that the
nematic order parameter varies periodically following the
periodicity of the lamellae phase, and possesses opposite
signs in different blocks. One can readily see that NPs
have a strong tendency to be localized in the regions with
maximum concentration of monomers A which interact
stronger with them.

In the important limit when the NP-monomer inter-
actions are short-ranged compared to the lamella block

d
A 

B 

A 

V
0 

R
0 

r
0 z

 

d
B 

Fig. 5. NP embedded in a hexagonal diblock copolymer with
strong segregation.

thickness, one can assume qr ≪ 1 and then the folowing
equation is obtained:

∆Jq ≈ 4π

∫

∆J(r)r2dr, (16)

i. e., as independent of q, and hence

∆Iq ≈ −
2π

5
q2

∫

∆I(r)r4dr. (17)

The latter parameter induces the NP orientational order-
ing and, apparently, it can be estimated as (r0/d)

2 times
smaller than the parameter ∆Jq which is responsible for
the NP positional segregation between different blocks.

4 Hexagonal phase. Strong segregation

Consider NPs embedded into a hexagonal diblock copoly-
mer with strong segregation. We start with the case of
NP inside the cylindrical A-block at the distance L from
the block boundary as shown in Fig. 5. We assume again
that NP interacts with the monomers inside the spherical
volume limited by the outer and inner radii R0 and r0
respectively. Similarly to Eq. (6), the mean-field potential
can then be expressed as:

UMF = ρ0A

∫

r0<r<R0

dV [JA + IAP2(a · u)] r−6

+

∫

V0

dV [∆J +∆IP2(a · u)] r−6, (18)

where the first integral yields a potential that acts on the
particle when its interaction sphere is completely inside
the block A:

U
(h0)
MF (a, L) =

2π

3
ρ0AJA(r

−3
0 −R−3

0 ). (19)
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This part of the potential is similar to Eq. (7) and does
not depend on the NP location and orientation.

The second integral is taken over the volume confined
between the interaction sphere surfaces and the cylindri-
cal A-block surface, as highlighted in red in Fig. 5. The
integration limits here can be determined by considering
the intersection of the spherical and cylindrical surfaces.
Let us use a local spherical coordinate system with the
origin at the NP center r and the polar z-axis pointing
towards the cylindrical A-block boundary (see Fig. 5).

The boundary of the A-block of the radius dA/2 in this
coordinate system is described by the equation:

(r cos θ + dA/2− L)2 + r2 sin2 θ cos2 φ = d2A/4, (20)

where the azimuthal angle φ is measured from the plane
of the plot in Fig. 5. Altogether, the volume V0 is confined
between the surfaces r = r0, r = R0 and the cylinder
described by Eq. (20).

Inside V0, the radius is limited by max(r0, L) < r <
R0, the azimuthal angle 0 < φ < 2π, and the polar angle
is 0 < θ < θm(r, φ) with the upper limit achieved on the
cylinder surface (20). Solving the latter with respect to θ
yields:

cos θm(r, φ) =
dA − 2L

2r sin2 φ
×

[
√

1 + 4 sin2 φ
(dA − L)L− r2 cos2 φ

(dA − 2L)2
− 1

]

. (21)

Therefore, the second term in Eq. (18) can be ex-
pressed as

U
(h1)
MF =

∫ R0

max(r0,L)

r−4dr

∫ 2π

0

dφ

∫ θm(r,φ)

0

sin θdθ×

[∆J +∆IP2(a · u)] =

=

(

∆J −
∆I

2

)
∫ R0

max(r0,L)

r−4dr

∫ 2π

0

dφ(1− cos θm)+

∆I

2

∫ R0

max(r0,L)

r−4dr

∫ 2π

0

dφ×

[P2(a · k) cos θm sin2 θm + 1− cos θm+

(2 + cos θm)(1− cos θm)2
1

2
[(a · x)2 − (a · y)2] cos 2φ],

(22)

where we have taken into account that θm(r, φ) is an even
function of φ. Apparently, the next integration steps are
to be taken numerically.

The expressions for the mean-field potential acting on
NP centered outside the cylindrical block A are very sim-
ilar if one introduces negative L in this case. One has to
account only for the fact that for r < −L the maximum
polar angle is θm = π.

We have obtained the NP density and orientational or-
der parameter profiles by a numerical integration of Eq. (4).
A number of characteristic profiles are shown in Fig. 6.
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Fig. 6. NP local density, biaxial nematic and uniaxial ne-
matic order parameters inside a hexagonal diblock copolymer
with strong segregation. The block thickness parameters are is
dA = dB = 7r0, the interaction radius R0 = 3r0, the isotropic
interaction constant ∆J = kBT and the anisotropic constant
∆I = −3kBT, −kBT, kBT, 3kBT for the lines from 1 to 4
respectively.

One notes that the point symmetry of the hexagonal phase
in the vicinity of the cylindrical surface is biaxial due to
the surface curvature. As a result, there exists a weak bi-
axial ordering of uniaxial NPs in this region. The biaxial
nematic order parameter P = 〈(a · x)2 − (a · y)2〉 pro-
files are also presented in Fig. 6. Note that in contrast
to the uniaxial nematic order parameter, the biaxial or-
der parameter possesses the same sign in both blocks and
reaches its maximum exactly at the boundary.

The role of the cylindrical block boundary curvature
is illustrated in Fig. 7 where the positional distribution of
NPs and their uniaxial and biaxial order parameter pro-
files are presented in the vicinity of the cylindrical bound-
ary for different values of its curvature. For comparison,
we also present the corresponding profiles calculated near
a flat boundary in a lamellae phase using the same inter-
action parameters. One can readily see that the curvature
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Fig. 7. The role of block boundary curvature: NP local density
(a), biaxial nematic (b) and uniaxial nematic (c) order param-
eters inside a hexagonal diblock copolymer with the block di-
ameter varying as dA = dB = 7r0, 20r0, 50r0 for the lines from
1 to 3 respectively. The interaction radius R0 = 3r0, the inter-
action constants are ∆J = kBT and ∆I = kBT . The dotted
line 4 is calculated for comparison for the lamellae copolymer
with the same parameters.

only slightly affects the spatial distribution of NPs and
the uniaxial nematic ordering. The biaxial nematic order-
ing, however, is determined by the curvature and strongly
depends on it. Note also that for the chosen parameters
the NP density near the boundary is rather low and only
a small fraction of NPs is orientationally ordered.

5 Discussion

In this paper we have considered spatial distribution and
orientational ordering of anisotropic NPs embedded into
the lamellae and hexagonal phases of a block copolymer.
NP concentration profiles and the nematic order parame-
ter profiles of anisotropic NPs have been calculated in the
lamellae and hexagonal phases in the limit of strong segre-
gation taking into account both isotropic and anisotropic

interactions between NPs and monomers. One notes that
explicit analytical expression for the distribution of NPs
in the lamellae phase have been derived. The translational
and orientational distributions of NPs have also been cal-
culated analytically in the lamellae phase in the opposite
limit of weak segregation.

The role of isotropic interaction appears to be rather
straightforward. If the isotropic interaction between NPs
and monomers is sufficiently large, NPs are mainly located
inside the block with the strongest interaction. A small
fraction of particles also resides in the boundary region
between the blocks. In contrast, the anisotropic interac-
tion between NPs and monomers (which is not taken into
consideration in the existing molecular theory of polymer
nanocomposites) is responsible for a number of interesting
phenomena in the boundary region.

If NP is located inside a particular block far enough
from its boundaries, the anisotropic interaction is aver-
aged out and the orientational order parameter of anisotropic
NPs vanishes. At the same time, if NP is sufficiently close
to a boundary between two blocks, it may interact simul-
taneously with the monomers of both blocks. The corre-
sponding anisotropic interaction constants are generally
different, and this asymmetry induces some orientational
order of NPs in the boundary region. Moreover, the sign of
the nematic order parameter is different in the two blocks,
that is the rod-like NPs are expected to align parallel to
the interface in one block and perpendicular to the inter-
face in the other. Taking into account that the density of
NPs is different in different blocks in the boundary region,
one concludes that there is a nonzero average nematic or-
der in the block copolymer. The corresponding average
orientational order parameter is small but it may be suffi-
cient to align the polymer by external electric or magnetic
field if the NP anisotropy is sufficiently large. These the-
oretical results are qualitatively confirmed by the exper-
iment. For example, functionalized gold NRs are aligned
parallel or perpendicular to the surface of the cylindrical
domain in the hexagonal phase [41–43]. Similar gold NRs
have also been found to align parallel to the flat block
boundary in the lamellae phase [40]. One notes that the
theoretical profiles describe the average distribution and
orientation of NPs. In real systems, the particles are some-
times rather large and their concentration is low. In this
case, the distribution is essentially discrete and individ-
ual NPs may be aligned parallel or perpendicular to the
interface depending on their location in a particular block.

At present, there are few experimental data on the
orientational ordering of NPs in block copolymers [40–43],
and all of these data have been obtained using rather large
NPs with dimensions comparable to the size of a block.
It would be interesting to decrease the size of anisotropic
NPs and increase their molar fraction. In this way, it will
be possible to verify the qualitative prediction of the the-
ory which indicates that NPs are expected to align per-
pendicular to the boundary (between the two blocks) in
one block and parallel to the boundary in another block.

There is an interesting special case when the isotropic
interaction between NPs and monomers of blocks A and B



8 Mikhail A. Osipov, Maxim V. Gorkunov: Title Suppressed Due to Excessive Length

is approximately the same while their anisotropic interac-
tion is different. Then the concentration of NPs is nearly
the same in both blocks away from the boundaries, while
the NP concentration in the boundary region is higher
than in the bulk. Anisotropic NPs are also orientationally
ordered in the boundary region.

In the hexagonal phase, the NP spatial distribution
and their nematic order parameter profiles are qualita-
tively similar to those in the lamellae phase. In addition,
the curvature of the cylindrical surface induces a small bi-
axiality in the orientational distribution of uniaxial NPs
in the interfacial region, although the corresponding bi-
axial order parameter stays rather small. Note that the
biaxial order parameter has been calculated above in a
local coordinate system. Biaxial order will vanish identi-
cally after averaging over the whole uniaxial diblock peri-
odic structure. The same is valid for the uniaxial nematic
order parameter of NPs in a body-centered cubic diblock
copolymer with spherical blocks. The local values of the
order parameter is nonzero but on average there is no ori-
entational order in this case as the system does not have
a preferred direction on average. In the case of spherical
blocks, the local biaxial order occurs only if the primary
axis of a NP is aligned on average parallel to the spherical
boundary because in this geometry the two local direc-
tions perpendicular to the preferred direction of ordering
are not equivalent. In contrast, if the preferred direction of
the NP axis is perpendicular to the spherical block bound-
ary, the two other orthogonal directions are equivalent and
hence there is no local biaxial order.

One notes also that the inhomogeneous distribution
of NPs in the lamellae and hexagonal phases as well as
the orientational ordering of anisotropic NPs in the in-
terfacial region between the blocks generally contributes
both to the bulk and to the interfacial free energy of these
phases. As a result, NPs may affect the relative stability of
these phases and shift the parameters of the corresponding
phase transitions. A molecular theory, which takes these
effects into account will be developed in our future works.
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