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Abstract The atom-bond connectivity index�abbreviated ABC�has proven to describe the heat of formation of alkanes

with an accuracy comparable to that of high-level ab initio and DFT methods. Its physical interpretation in terms of quantum-

theory, its generalization, and many of its mathematical properties have been reported. Here, a probabilistic interpretation of

the generalized ABC index is provided. It indicates that the terms de�ning this index represent the probability of visiting a

nearest neighbor edge from one side or the other of a given edge in a graph. This interpretation is general enough as to cover

the case of polarizing bonds in a molecular context. We then introduce a matrix representation of these probabilities in the form

of generalized ABC matrices. Using this representation we study some indices related to the eigenvalues of the ABC matrices,

such as the ABC energy and the ABC Estrada index. We provide some bounds for these parameters in general graphs.

Keywords ABC index, Graph energy, Estrada index, spectral theory, probabilistic interpretation

1 Introduction

The history of topological indices�de�ned as numerical values associated with chemical constitution for correlation of chemical

structure with various physical properties, chemical reactivity or biological activity (Van de Waterbeemd et al. (1997))�dates

back to the pioneering e�orts of using graph theory to study molecular problems (Balaban and Ivanciuc (2000)). A relatively

late arrival to the wide list of topological molecular descriptors was the �atom-bond connectivity index � developed by Estrada

et al. (1998). This index, appropriately abbreviated by ABC is de�ned by

ABC (G) =
∑

(i,j)∈E

√

ki + kj − 2

kikj
, (1.1)

where ki is the degree of the node i�the number of edges incident to that node in the graph G = (V,E).

The ABC index was shown to have a good correlation with the heat of formation ∆H◦
f of alkanes (Estrada et al. (1998)).

In a subsequent critical evaluation of this descriptive capacity of the ABC index for the heat of formation of alkanes Gutman

et al. (2012b) con�rmed that it �reproduces the heat of formation with an accuracy comparable to that of high-level ab initio

and DFT (MP2, B3LYP) quantum chemical calculations�. Estrada (2008) provides a quantum-chemical explanation for this

descriptive property of the ABC index based on the ratio of 1,3-interactions with respect to the total number of 1,2-, 1,3- and

1,4-interactions in alkanes. It was concluded that the heat of formation of alkanes can be obtained as a combination of stabilizing

e�ects coming from atoms, bonds and protobranches. This has prompted Gutman (2013) to claim that the �ABC happens to

be the only topological index for which a theoretical, quantum-theory-based, foundation and justi�cation has been found.� This

index also triggers a large series of papers in mathematics (Ahmadi et al. (2013b,a); Chen and Guo (2011); Chen et al. (2012);

Das et al. (2011); Gutman and Furtula (2012); Gutman et al. (2012a); Furtula et al. (2012); Lin et al. (2013); Vassilev and

Huntington (2012); Fath-Tabar et al. (2011); Xing et al. (2011)), specially due to the di�culties found to identify the graphs

with minimal ABC index, which has been coined as the �ABC index conundrum� (Gutman et al. (2013)).

As a collateral e�ect of this interest in the high correlation abilities of the ABC index for the heat of formation of alkanes,

Furtula et al. (2010) make a generalization of this index to consider

ABCγ (G) =
∑

(i,j)∈E

(

ki + kj − 2

kikj

)γ

, (1.2)
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where they showed that when γ = −3 even better correlation is obtained with the ∆H◦
f of alkanes. As Gutman (2013) has

stressed this index was �somewhat inadequately named �augmented Zagreb index� �. We will call it hereafter the generalized ABC

index.

It is obvious from these previous observations that the descriptive capacity of the ABC indices resides very much in the

term (ki + kj − 2) / (kikj). Our main goal here is then to further investigate the topological nature of this ratio in the most

general possible way. Although a quantum-chemical explanation of the capacity of ABC-like indices was previously provided

(Estrada (2008)), the current investigation will provide a probabilistic explanation that �ts very well with the chemical intuition

for understanding the capacity of these indices to describe the energetics of alkanes. Furthermore, it will also allow further

investigations of more general scenarios outside molecular sciences, such as the study of random walks on graphs. We then

formulate a matrix representation of the generalized ABC indices and study some indices derived from it, which hopefully will

open new avenues in the study of the ABC-like analysis of (molecular) graphs.

2 A probabilistic framework for ABC indices

We start by considering a molecular graph G = (V,E) which is a simple, connected graph with n nodes representing the

atoms of the molecule, excluding any hydrogen, and m edges representing the covalent bonds among the n atoms. The theory

presented here is however of application to any connected, simple graph as we will see later on in this work. The degree of

a node, represented here by ki, is the number of nodes adjacent to it. In a chemical context it represents the valency of the

corresponding atom in the hydrogen-depleted graph. Let us consider two adjacent atoms i and j in the molecule and let us

consider that there are two electrons ĩ and j̃ that belong to the atoms i and j, respectively. Then, we ask the following question:

What is the probability that the electron ĩ 'polarizes' one of the bonds incident to the atom i OR the electron j̃ polarizes one

of the bonds incident to the atom j? By 'polarize' here we mean the following. Suppose that the electron ĩ on the atom i is

displaced to the nearest neighbor atom r, then the atom i will have a positive electron charge density and the atom r will have a

negative one. Thus the bond (i, r) ∈ E is polarized. Now, we also want to consider here the situation in which both electrons are

located at their respective atoms. Then, the total number of scenarios here are as follow. Let (i, j) ∈ E be the polarizing bond.

Then, it can polarize any of its nearest neighbors, which total k (eij) = ki+kj−2. Because we also want to count the possibility
that both electrons remain located at their respective atoms we have Sij = k (eij) + 1 = ki + kj − 1 single-bond polarizing

scenarios. In addition, we want to exclude the double polarizing scenarios. That is, such cases in which the electron ĩ polarizes

any of the bonds incident to the atom i AND the electron j̃ polarizes one of the bonds incident to the atom j. Excluding the

self-polarization of the bond (i, j) ∈ E we have that these double polarization scenarios sum Dij = (ki − 1) (kj − 1). Thus, the
probability that the electron ĩ 'polarizes' one of the bonds incident to the atom i OR the electron j̃ polarizes one of the bonds

incident to the atom j is given by

P̃ij =
k (eij)

Sij +Dij
(2.1)

=
ki + kj − 2

ki + kj − 1 + (ki − 1) (kj − 1)
(2.2)

=
ki + kj − 2

kikj
(2.3)

The probability of simultaneously polarizing two bonds in the form described previously is D̃ij =
(ki − 1) (kj − 1)

kikj
, and the

probability of both electrons remaining at the bond is R̃ij =
1

kikj
. Obviously, P̃ij + D̃ij + R̃ij = 1 as required for probabilities.

An illustrative example is provided in Figure (2.1) where we give all the possibilities of polarization of bonds incident with the

atoms i and j in a graph which can be representing the molecule of 2,2,3-trimethylbutane. The �rst image corresponds to the

non-polarization of bonds, from the second to the sixth they correspond to the polarization of one bond, and the rest correspond

to the simultaneous polarization of two bonds.
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Fig. 2.1 Illustration of the bond polarization scenarios for the hydrogen-depleted graph representing 2,2,3-trimethylbutane. Red broken
line represents the polarized bond, where the head of the arrow points to the atoms with negative electron density and the tail points to
the one with a positive electron charge density. The �rst structure represents the case where the two electrons remain at the corresponding
atoms.

The reason for which we exclude the possibility of polarizing two bonds at the same time is because of the obvious chemical

fact that such polarization will make the bond (i, j) ∈ E very unstable due to the presence of two positive charges on the

adjacent atoms of this bond. It is important to remark that Pij indicates the polarizing capacity of the bond (i, j) ∈ E and not

its capacity of being polarized by other bonds. For instance, in 2,2,3-trimethylbutane we have: PCH3−C = 3/4, PC−CH = 5/12,
and PCH−CH3

= 2/3. Thus, the central bond C − CH has the least polarizing capacity. However, it is surrounded by highly

polarizing bonds, which means that�on a purely probabilistic way�it can be easily polarized. It is a well-known fact that such

central bonds in alkanes are more elongated than the peripheral one, which agrees very well with the intuition presented in this

paper.

How is the polarizing capacity re�ected on the stabilization of the corresponding molecule? The polarizing capacity of a given

bond indicates its capacity to delocalize the electrons in that bond through nearest neighbor bonds. Such electron delocalization

is thought to decrease the heat of formation of the molecule and being responsible for the good correlations between ABC-like

indices and the heat of formation of alkanes.

3 De�nition of the ABC matrix and related indices

We now start with the de�nition of the ABC matrix. First, let us consider the Hamiltonian of the corresponding molecule in a

similar way in which the adjacency matrix is used in the tight-binding (Hückel molecular orbital, HMO) method (Kutzelnigg

(2007)). This Hamiltonian is then written as

Ĥγ = α̃I + β̃Mγ , (3.1)

where α = 0 and β = −1 are the typical HMO parameters and the entries of the M̂γ are given in terms of the kinetic Tij and

potential Vij energies of the bond

M̂γ (i, j) = (Tij − Vij)
γ

(3.2)

=

[(

1

ki
+

1

kj

)

− 2

kikj

]γ

. (3.3)

Notice that we consider the kinetic energy of the bond on the basis of assuming that each electron is a random walker that

has probability of jumping to a nearest neighbor given by
1

ki
(respectively

1

kk
) (Lovász (1993)). The potential energy is given

by the interaction of both electrons given by the sum of the number of scenarios of simultaneous polarization of two bonds plus

the scenario in which both electrons remain in the corresponding bond. Let us then call Ĥγ the polarization-HMO Hamiltonian.

We then have the following de�nitions of terms that we will use in this work.

De�nition 1 The ABC matrix is the matrix Mγ ∈ R
n×n whose entries are given as follows:

Mγ (i, j) =

{

P γ
ij

0
(i, j) ∈ E

(i, j) /∈ E,
(3.4)
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Let K be the diagonal matrix whose nonzero entries are the degrees of the nodes and let A be the adjacency matrix of the

corresponding graph. Then, the ABC matrix can be obtained as follow

Mγ =
(

K−1 [(K − I)A+A (K − I)]K−1
)◦γ

(3.5)

=
(

AK−1 +K−1A− 2K−1AK−1
)◦γ

, (3.6)

where ◦ indicates the entrywise�also known as Hadamard or Schur�operation (Horn and Johnson (2012)). Notice that the

matrices AK−1 and K−1A are the transition probability matrices for random walkers on the graph (Lovász (1993)).

De�nition 2 The generalized Randi¢ index (Randi¢ (1975); Li and Shi (2008)) is de�ned as

χγ =
∑

(i,j)∈E

(kikj)
γ
. (3.7)

De�nition 3 The energy levels of a molecule in the polarization-HMO method are de�ned as the negative of the eigenvalues

of Mγ . That is, Eγ,j = −λ̃γ,j , where λ̃γj is the jth eigenvalue of Mγ .

De�nition 4 The graph-theoretic energy�for a compendium about graph energy see (Li et al. (2012))�of the molecule in the

polarization-HMO method is de�ned as Eγ =
∑n

j=1

∣

∣λ̃γj
∣

∣. When γ = 1/2 we will call this the ABC total energy of the graph,

EABC .

De�nition 5 The electronic partition function of the molecule in the polarization-HMO method is de�ned as

Zγ =
n
∑

j=1

exp
(

βλ̃γj
)

, (3.8)

where β̃ is the inverse temperature of the system. This is known as the Estrada index of the graph (Estrada (2000); Estrada and

Rodriguez-Velazquez (2005); Estrada and Hatano (2007)) and typically it is studied for β̃ ≡ 1 (for review about the Estrada

index of graphs see (Deng et al. (2009); Gutman et al. (2011))). When γ = 1/2 we will call this the ABC Estrada index of the

graph, EEABC . Another interpretation of the Estrada index has been provided in the context of thermal Green's functions of

quantum harmonic oscillators (Estrada et al. (2012); Estrada (2012)). For the general theory about the use of matrix functions

in graph theory see Estrada and Higham (2010).

4 Mathematical results

4.1 Spectral radius and total energies

Let λ̃γ,j = λ̃j (Mγ) and let us consider the eigenvalues of Mγ ordered in nonincreasing order as: λ̃γ,1 > λ̃γ,2 ≥ · · · ≥ λ̃γ,n. The

largest eigenvalue λ̃γ,1 is known as the spectral radius of the corresponding matrix (Horn and Johnson (2012)). Let ψγ,j be the

eigenvector associated with the eigenvalue λ̃γ,j . The �rst obvious result is that the ABC index can be expressed as a quadratic

form of the ABC matrix. That is,

ABCγ =
1

2

(

1
TMγ1

)

, (4.1)

where 1 is an all-ones vector. Then, let

Mγ = VγΛ̃γV
T
γ , (4.2)

be the spectral decomposition of the ABC matrix, where Vγ = [ψγ,1 · · ·ψγ,n] and Λ̃γ is the diagonal matrix of eigenvalues of

Mγ . It is straightforward to realize that

ABCγ = n

n
∑

j=1

λ̃γ,j cos
2 θγ,j , (4.3)

where θγ,j is the angle between the corresponding orthonormalized eigenvector ψγ,j and the vector 1. Then, when the spectral

gap of the ABC matrix is very large, i.e., λ̃γ,1 ≫ λ̃γ,2, the ABCγ index can be approximated by
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ABCγ ≈ nλ̃γ,1 cos
2 θγ,1. (4.4)

We will now obtain some bounds for the spectral radius of the ABC matrix. Let ABCγ (i) be the sum of the ith row or

column of the ABC matrix. That is, ABCγ =
1

2

∑

i ABCγ (i). Then, the following result is a simple application of standard

linear algebra theory.

Lemma 1 The spectral radius of the ABC matrix is bounded as

2

n
ABCγ ≤ λ̃γ,1 ≤ max

i
ABCγ (i) , (4.5)

with equality at both sides if and only if ABCγ (i) is the same for every node i of the graph.

Lemma 2 Let γ = 1
2 and let λ̃1 (Mγ) be the largest eigenvalue of the matrix Mγ . Then,

λ̃1

(

M1
2

)

≤
√

λ1 (B) · λ1 (R1). (4.6)

Proof Let

Bγ = (KA+AK − 2A)◦γ (4.7)

and

Rγ =
(

K−1AK−1
)◦γ

, (4.8)

which is the so-called Randi¢ matrix (Bozkurt et al. (2010)) when γ = 1/2. Then, we can express the ABC matrix as follows

Mγ = Bγ ◦Rγ .

It is known that if P,Q ∈ R
n×n are nonnegative and γ ∈ [0, 1] then

λ1

(

P ◦γ ◦Q◦(1−γ)
)

≤
√

λ1 (P ) · λ1 (Q). (4.9)

Then, the result follows for the case γ = 1
2 . ⊓⊔

The previous result is speci�c for the case γ = 1
2 because it is the only case in which the exponent of P and Q in 4.9 is the

same. For other values of γ other techniques must be used to bound the spectral radius of Mγ .

Now we prove a result that connects the ABC total energy with the general Randi¢ index χ−1.

Lemma 3 Let γ = 1
2 , then the ABC energy of a graph is bounded as

EABC ≤
√

2n2 − 4nχ−1 ≤
√

2n2 − 4E2
R, (4.10)

where ER is the Randi¢ energy of the graph (Bozkurt et al. (2010)).

Proof We start by considering the second moment of the ABC matrix,

tr
(

M1/2

)2
= 2

∑

(ij)∈E

P 2
ij = 2

∑

(ij)∈E

ki + kj − 2

kikj
(4.11)

= 2n− 4χ−1 (4.12)

Now using the fact that the variance of the absolute value of a series of numbers is nonnegative we have

1

n

∑

j

|λ̃j |2 −





1

n

∑

j

|λ̃j |





2

≥ 0, (4.13)

which implies that

1

n
tr
(

M1/2

)2 − 1

n2
E2
ABC ≥ 0. (4.14)
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Then, we have that

EABC ≤
√

ntr
(

M1/2

)2
, (4.15)

=
√

2n2 − 4nχ−1. (4.16)

Finally we use the known inequality (Bozkurt et al. (2010))

ER ≤
√

2nχ−1, (4.17)

to prove the last inequality. ⊓⊔

4.2 ABC Estrada index

This subsection is devoted to the analysis of the ABC Estrada index of graphs. We start by proving some upper bounds for

this index in general connected graphs.

Lemma 4 Let γ = 1
2 , then the ABC Estrada index of a simple connected graph is bounded as

EEABC ≤ n− 1 + e
√
2n−4χ

−1−1. (4.18)

Proof Let n+ be the number of positive eigenvalues of the ABC matrix, then we can write the ABC index as

EEABC =
n
∑

j=1

eλ̃j ≤ n− n+ +

n+
∑

j=1

eλ̃j (4.19)

= n− n+ +

n+
∑

i=1

∞
∑

k≥0

λ̃kj
k!

(4.20)

= n+
∞
∑

k≥1

1

k!

n+
∑

i=1

(

λ̃2
j

)k/2
(4.21)

≤ n+
∞
∑

k≥1

1

k!

( n+
∑

i=1

λ̃2
j

)k/2

(4.22)

= n+
∞
∑

k≥1

1

k!



tr
(

M2
1/2

)

−
n
∑

i=n++1

λ̃2
j





k/2

(4.23)

= n+
∞
∑

k≥1

1

k!



2n− 4χ−1 −
n
∑

i=n++1

λ̃2
j





k/2

. (4.24)

If the graph contains at least one edge, i.e., it has K2 as an induced subgraph, then
∑n

i=n++1 λ̃
2
j ≥ 1. This is due to the fact

that K2 has eigenvalues 1 and −1 and then from the interlacing theorem λ̃n (G) ≤ −1, which implies the previous inequality.

Therefore,

EEABC ≤ n+
∞
∑

k≥1

1

k!
(2n− 4χ−1 − 1)k/2 (4.25)

= n− 1 + e
√
2n−4χ

−1−1, (4.26)

as required. ⊓⊔

Another upper bound for the ABC Estrada index is provided in the following result, which shows that the among all graphs

with n nodes the maximum of this index is reached for the complete graph.
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Lemma 5 Let G be a simple connected graph on n nodes and let γ = 1
2 . Then, the ABC Estrada index of G is bounded as

follows

EEABC (G) ≤ e
√

2(n−2) + (n− 1) exp

(

−
√

2 (n− 2)

n− 1

)

(4.27)

with equality if and only if the graph is complete.

Proof Let l be an edge ofG and assume thatG is not trivial, i.e., it contains at least one edge. LetG−l be the graph resulting from

removing the edge l from G. Let µk (G) be the number of closed walks of length k in G. Then, µk (G− l) = µk (G)−µk (G : l),
where µk (G : l) is the number of closed walks of length k in G which contain the edge l. Consequently,

n
∑

p=1

( ∞
∑

k=0

µk (G− l)

k!

)

pp

≤
n
∑

p=1

( ∞
∑

k=0

µk (G)

k!

)

pp

,

tr exp (Mγ (G− l)) ≤ tr exp (Mγ (G))

which means that EEABC (G) ≤ EEABC (Kn) with equality if the graph is the complete graph with n vertices. We now

obtain the formula for EEABC (Kn) . The spectrum of the adjacency matrix of Kn is λ1 = n − 1 with multiplicity one and

λj≥2 = −1 with multiplicity n − 1. The degree of every node in Kn is ki = n − 1. Thus, Pij =

√

2 (n− 2)

n− 1
, for every pair of

nodes in the graph. Consequently, the eigenvalues of the ABC matrix of Kn are: λ1 =
√

2 (n− 2) with multiplicity one and

λj≥2 = −
√

2 (n− 2)

n− 1
with multiplicity n− 1, from which the result �nally comes. ⊓⊔

Corollary 1 Let G be a graph and let T be an induced tree of G and let γ = 1
2 . Then

EEABC (G) ≥ EEABC (T ) . (4.28)

We now move to prove that among all graphs with n nodes the graph with the minimal ABC Estrada index is the path graph.

First, we obtain the expression for EEABC (Pn).

Lemma 6 Let Pn be a path with n nodes and let γ = 1
2 . Then, when n → ∞

EEABC (Pn) = (n+ 1) I0
(√

2
)

(4.29)

Proof It is straightforward to realize that M1/2 (Pn) =
1√
2
A (Pn). Then

EEABC (Pn) =
n
∑

j=1

e(2/
√
2) cos(πj/(n+1)). (4.30)

Now, when n → ∞ the summation in the previous expression can be evaluated by making use of the following integral

I0 (x) =
1

π

∫ π

0

exp(x cos θ)dθ, (4.31)

where I0 (x) is the corresponding modi�ed Bessel function of the �rst kind. Then

EEABC (Pn) = (n+ 1)

∫ π

0

e(2/
√
2) cos(πj/(n+1)) (4.32)

= (n+ 1) I0
(√

2
)

(4.33)

where θ = jπ
n+1 . ⊓⊔

Now, we can �nd the lower bound for the Estrada ABC index of graphs.
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Lemma 7 Let γ = 1
2 and let G be a simple connected graph on n nodes. Then,

EEABC (G) ≥ (n+ 1) I0
(√

2
)

, (4.34)

with equality if and only if G is the path.

Proof Let G be a tree

EEABC (T ) =
n
∑

j=1

exp (λj) (4.35)

= n+
∑

j

λj +
∑

j

λ2
j

2!
+ · · · (4.36)

≥ n+ 2m = 3n− 2 (4.37)

It is easy to show that for n ≥ 3

EEABC (T ) ≥ 3n− 2 > (n+ 1) I0
(√

2
)

= EEABC (Pn) (4.38)

Using Corollary 1 we easily see that EEABC (G) ≥ EEABC (T ) ≥ EEABC (Pn), which proves the result. ⊓⊔

5 Summary

In this work we provide a probabilistic interpretation of the term (ki + kj − 2) / (kikj) which appears in the de�nition of ABC

indices. We have shown that it represents the probability of visiting a nearest neighbor edge from one side or the other of a

given edge in a graph. Such interpretation in the context of molecular graphs can be related to the polarizing capacity of the

bond considered. We then have represented these probabilities in the form of an ABC matrix which has allowed us to consider

more general graph-theoretic indices based on the spectral properties of this matrix. For instance, we have studied here the total

ABC energy and the Estrada ABC index of the graph as well as the relation between the spectral radius of this matrix and the

ABC index. We hope this work opens some new research avenues in the study of the ABC index and properties related to it.
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