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Abstract 

The induced fit binding model describes a conformational change occurring when a small 

molecule binds to its biomacromolecular target.  The result is enhanced non-covalent 

interactions between ligand and biomolecule.  Induced fit is well-established for small 

molecule-protein interactions, but its relevance to small molecule-DNA binding is less clear. 

We investigate the molecular determinants of Hoechst33258 binding to its preferred A-tract 

sequence relative to a sub-optimal alternating A-T sequence. Results from 2-dimensional 

infrared spectroscopy, which is sensitive to H-bonding and molecular structure changes, show 

that Hoechst33258 binding results in loss of minor groove spine of hydration in both sequences, 

but an additional perturbation of the base propeller twists occurs in the A-tract binding region. 

This induced fit maximizes favourable ligand-DNA enthalpic contributions in the optimal 

binding case and demonstrates that controlling the molecular details that induce subtle 

changes in DNA structure may hold the key to designing next-generation DNA-binding 

molecules. 

 

  



Introduction: 

Deoxyribonucleic acid (DNA) is the fundamental repository of genetic information used in the 

majority of organisms in nature.1 A structural hallmark of DNA is the anti-parallel helix where 

the major and minor grooves provide sites for sequence-selective binding of proteins and small 

molecules. Molecular recognition of double-stranded DNA (dsDNA) sequences by 

transcription factors for example is essential for the initiation of transcription. Furthermore, 

DNA-binding small molecules such as minor groove binders (MGBs) can perturb various 

processes associated with gene expression,2 making them excellent candidates for the design 

of sequence-selective probes of DNA function in cells and potentially novel therapeutics. 3-5  A 

comprehensive set of guiding principles for the rational design of MGBs to target DNA 

sequences in a highly sequence-selective manner has yet to emerge however, as a consequence 

of the complex combination of competing enthalpic and entropic contributions from H-

bonding, van der Waals forces and changes in hydration of the DNA and ligand.  

An archetypal exemplar of this problem is the bis-benzimidazole family of ligands, including 

Hoechst33258 (H33258), which show preferential binding to AT-rich dsDNA. Spectroscopic 

and DNA-footprinting studies reveal that H33258 binds to dsDNA in a 1:1 stoichiometry and 

exhibits a 22-fold binding preference for A-tract dsDNA (e.g., 5'-A3T3) over an alternating 

sequence (e.g., 5'-ATATAT).6,7,8,9 The current reasoning for this sequence preference is that 

the A-tracts possess a narrower minor groove with a well-defined spine of hydration. The 

release of this water upon ligand binding is linked to the observed entropic driving force for 

H33258 binding.10,11 In contrast, crystallography suggests that the hydration of the alternating 

sequence minor groove is not as strongly ordered.12-14  

Overall, H33258 binding has been found to be endothermic, but favourable enthalpic 

contributions arise from hydrophobic interactions between the minor groove wall and the 



ligand. Direct H-bonding interactions between the ligand and dsDNA are not believed to be an 

important stabilising factor.15-23 This balance in favour of entropic contributions has led to 

widespread claims that complex formation follows a ‘rigid body’ model with no significant 

structural change to the dsDNA upon ligand binding. This however neglects changes in base 

orientation upon binding revealed by crystallography15-19 and NMR20-23 studies. Indeed, NMR 

has revealed that the minor groove of A-tract dsDNA narrows upon ligand binding, rather than 

being inherently narrow, prompting suggestion of a significant contribution from an induced 

fit mechanism,24 but unfortunately a direct comparison of optimal and sub-optimal binding was 

not performed. 

The induced fit process, in which the biomolecule changes structure to better accommodate the 

ligand, is often found in binding to proteins, but rarely invoked in small-molecule-DNA 

binding. Further study is thus required to develop a clear picture of the molecular determinants 

controlling the sequence selectivity of ligand binding to the minor groove of target dsDNA 

sequences. We believe that two-dimensional infrared (2D-IR)25-27 has sufficient sensitivity to 

differentiate the structural details that are central to the binding of H3325828 to a preferred A-

tract sequence, d(GGAAATTTGC)2, (A3T3), from those involved in sub-optimal sequence 

binding, of which d(GGATATATGC)2, (AT)3 is our chosen exemplar.  

2D-IR offers the advantage of being able to probe structure, intermolecular interactions and 

hydration by directly measuring the coupling and dynamics of vibrational modes. 25-27  It has 

extended our understanding of the nature of the vibrational modes of DNA bases,29 Watson-

Crick (W-C) base pairing 30,31 and base stacking 32 as well as revealing energy transfer 

mechanisms between bases and backbone33,34 and the interactions of water with DNA.35 Most 

recently, temperature-jump 2D-IR reported sequence-dependent pre-melting dynamics.36  



Here, we show that the distinct difference between H33258 binding to A-tract and alternating 

sequence DNA is the loss of the ordered propeller twist arrangement of the base pairs present 

in the uncomplexed A-tract. This results in a subtle but distinct conformational change within 

the minor groove to accommodate the ligand, maximising favourable enthalpic contributions 

to binding. The uniquely ordered A-tract sequence also governs the formation of the spine of 

hydration and so its removal contributes to the entropic gain from releasing hydration water. 

Although the results for binding to the alternating sequence are similar, the emphasis is shifted 

toward loss of the spine of hydration, suggesting that the induced fit effect is crucial to the 

observed difference in binding affinities. 

 

Experimental 

Lyophilised, salt-free DNA oligonucleotides were obtained from Eurofins; H33258, D2O, 

DMSO, monobasic and dibasic sodium phosphate were obtained from Sigma-Aldrich. All 

chemicals were used without further purification. All samples were prepared using pD7 

phosphate buffer solution to a final duplex:H33258 ratio of 1:1 and annealed at 90 °C for 10 

minutes. For all IR measurements, samples were held between two CaF2 windows separated 

by a polytetrafluoroethylene spacer of 50 µm thickness. FTIR measurements were carried out 

using a Bruker Vertex 70 spectrometer at a resolution of 1 cm-1 with sample concentrations of 

2.5 mM (A3T3 duplex/H-A3T3 complex) or 5 mM ((AT)3 duplex/H-(AT)3 complex). 2D-IR 

spectra were collected using the ULTRA FT-2D-IR spectrometer.37,38 The IR pulses used had 

a temporal duration of  100fs; a center frequency of 1650 cm-1 and a bandwidth of ~300 cm-

1, at a repetition rate of 10 kHz. FT-2D-IR measurements were carried out at concentrations of 

1.25 mM (A3T3 duplex/H-A3T3 complex) or 2.5 mM ((AT)3 duplex/H-(AT)3 complex). Further 

details are given in Supporting Information. 



Results and Discussion: 

The FTIR spectra of the A3T3 DNA sequence and its complex with H33258 (H-A3T3) are 

shown in Fig.1(a). The corresponding spectra of (AT)3 and H-(AT)3 are shown in Fig.2(a). The 

IR spectra of both DNA sequences show four peaks (Fig.1(a), Fig.2(a), red), these are indicated 

by grey dashed lines in the figures and listed in Table 1. The results are consistent with previous 

studies and peaks are assigned by reference to spectra of DNA duplexes containing exclusively 

GC or AT base pairs, shown in Figs.1(d), 2(d) and S1.29,32,33,39 The assignments are summarized 

in Table 1. The peaks in the spectra of the two DNA sequences are dominated by AT modes, 

though contributions from GC base pairs, which are less intense, do influence the magnitude 

of the absorption between the peaks. This spectral congestion can be unraveled by 2D-IR 

methods, which report vibrational coupling patterns in the off-diagonal region of the spectrum.  

The changes to the FTIR spectra upon formation of the H-A3T3 and H-(AT)3 complexes 

(Fig.1(a), Fig. 2(a), black) are displayed via difference spectra (Fig.1(a), Fig. 2(a), blue). Since 

H33258 exhibits no vibrational modes in this spectral region (Fig.S2), these are assigned to 

modifications of the DNA upon binding.  

The H-A3T3 sequence shows three main features in the difference IR spectrum (Fig.1(a)). Two 

of these, near 1665 cm-1 and 1700 cm-1 (blue arrows), consist of a negative peak located to the 

lower frequency side of a positive peak, suggesting that the AT4S and AT2S modes shift to 

higher wavenumber. In the case of the AT2S peak near 1690 cm-1, the presence of the new 

component is visible as a shoulder on the high frequency side of the peak in Fig.1(a). The third 

feature (red arrow) has reversed positive/negative contributions, consistent with a shift of the 

AR1T mode to lower frequency.  

The features in the FTIR difference spectrum obtained for the H-(AT)3 complex (Fig.2(a)) are 

smaller and less well-defined than those for the complex with the A-tract sequence (Fig.1(a)).  



 

Figure 1: a) FTIR spectra of A3T3 DNA with (black) and without (red) H33258. Blue spectrum shows 

the binding-induced difference FTIR spectrum (complex-free sequence). b) 2D-IR spectrum of H-A3T3 

complex. Crosses mark off-diagonal peaks assigned to coupling of modes primarily located on T-base. 

Circles show off-diagonal peaks assigned to coupling of modes on A and T bases induced by W-C base 

pairing. c) Ligand binding induced 2D-IR difference spectrum. Crosses show locations of small off-

diagonal features. d) FTIR spectra of GC and AT-only DNA sequences to show the relative (weighted 

per base) magnitudes of peaks and peak positions to aid assignment of the IR spectrum of the A3T3 

sequence, see also Fig S1). 

AT2S

AT4S

TR

AR1T

AR2T

GSCS(-)

GSCS(+)

GSCR

GRCS



Table 1: Assignment of peaks in the IR spectra of A3T3 and (AT)3 DNA duplexes, showing 

comparison with AT and GC-only sequences. 

 

Assignment Position (cm-1) 

 

Description 

A3T3 (AT)3 ATa GCb 

AT2S 1692 1689 1692  T2 C=O stretch 

GSCS(-)    1684 GC C=O antisymmetric stretch 

AT4S 1666 1666 1664  Base-paired T4 C=O stretch 

GSCS(+)    1651 GC C=O symmetric stretch 

TR 1646 1650 1640  T ring vibration 

AR1T  
1622 1622 

1622 (s)  Coupled AT ring vibration/ 

GSCR  1622 (w) C ring mode + G C=O  

 
a obtained from the sequence: 5’-ATTATTATTATATTA-3’ (Fig S1(a)); b obtained from the sequence: 

5’-GCCGCCGCCG-3’ (Fig S1(b)); modes marked (s) are those which contribute strongly to the overall 
spectrum and modes marked (w) are those which contribute weakly to the overall spectrum. 

The shift of the AT2S peak at 1690 cm-1 to higher frequency (blue arrow), as observed for the 

A3T3 sequence, is still detected, but the other features are less apparent. A contribution from a 

loss of intensity of the AT2S mode means that the negative portion of this feature is of slightly 

larger magnitude than the positive component. 

Despite the modest impact on the IR spectra, ligand-induced stabilization of the melting 

temperatures of the DNA duplexes by 24 °C and 16 °C was observed for the A3T3 and (AT)3 

sequences respectively, confirming H33258 binding (Fig.S3-S8). The reduced stabilization for 

the alternating sequence is consistent with the reported 22-fold preference of H33258 for 

binding to A-tracts.8  

The 2D-IR spectrum of the H-A3T3 complex is shown in Fig.1(b). Each peak observed in the 

FTIR spectrum gives rise to a negative feature (red) located on the 2D-IR spectrum diagonal. 

These are assigned to the respective ߭ ൌ Ͳ ื ͳ transitions, each with an accompanying, 

positive (blue), ߭ ൌ ͳ ื ʹ peak shifted by ~10 cm-1 to lower probe frequency. 33,36,39-42 



 

Figure 2: a) FTIR spectra of (AT)3 DNA with (black) and without (red) H33258. Blue spectrum shows 

the binding-induced difference FTIR spectrum (complex-free sequence). b) 2D-IR spectrum of H-(AT)3 

complex. Crosses mark off-diagonal peaks assigned to coupling of modes primarily located on T-base. 

Circles show off-diagonal peaks assigned to coupling of modes on A and T bases induced by W-C base 

pairing. c) Ligand binding induced 2D-IR difference spectrum. d) FTIR spectra of GC and AT-only 

DNA sequences to show the relative (weighted per base) magnitudes of peaks and peak positions to aid 

assignment of the IR spectrum of the (AT)3 sequence. 
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Peaks located in the off-diagonal region primarily indicate the presence of coupling between 

diagonal vibrational modes, though a small contribution is expected from energy transfer due 

to the fast (~650 fs) vibrational relaxation of the base vibrational modes.33 Two groups of off-

diagonal peaks are indicated in Fig.1(b). Those due to intra-base coupling between the AT2S, 

AT4S and TR modes that are primarily located on the thymine base are marked with crosses. 

Other off-diagonal peaks (Fig 1(b), circles) indicate inter-base coupling between the adenine-

based AR1T mode and the three thymine modes that is induced by Watson-Crick H-bonding.  

A difference 2D-IR spectrum shows the impact of binding H33258 (Fig.1(c)). A comparison 

of the diagonal peak positions in the 2D-IR difference spectrum with the linear AT and GC 

spectra (Fig.1(d)) suggests that H33258 binding primarily affects the AT2S and AT4S 

vibrational modes of the A3T3 duplex. Other, smaller, features appear in the 2D-IR difference 

spectrum that originate from changes in the AR1T modes, consistent with the FTIR spectrum, 

but also the TR mode and related off-diagonal peaks (crosses Fig.1(c)).  

The 2D-IR spectrum of the H-(AT)3 complex and the binding-induced 2D-IR difference 

spectrum for the (AT)3 sequence are shown in Figs.2(b) and (c) respectively. The major 

changes upon binding affect the AT2S and AT4S modes and the overall pattern of peaks in the 

2D-IR difference spectrum is similar to that for the A-tract sequence, although the AT2S feature 

is clearly dominant.  

The overlapping peaks in the IR spectrum of the DNA bases mean that the 2D-IR off-diagonal 

peaks are essential for clear differentiation between changes affecting the AT and GC base 

pairs (e.g. arrows Figs 1(c)&2(c)). The peaks in the difference FT-IR and 2D-IR spectra focus 

on the AT2S and AT4S modes, but to rule out contributions from GC modes and to quantify the 

changes, we employed a model 2D-IR spectrum (Fig.3) constructed from 2D Gaussian  

 

 



Table 2: Changes to the IR response of A3T3 and (AT)3 DNA duplexes due to H33258 binding. 

 

Changes due to H33258 Binding Host DNA Duplex 

 

A3T3 (AT)3 

AT2S Shift (cm-1) 6.4 15.1 

AT2S Shifted Subset Size (%) 20.3 11.3 

Change in T2 H-bond Strength (kJmol-1)a -2.8 -6.6 

AT4S Shift (cm-1) 8.7 15.6 

AT4S Shifted Subset Size (%) 9.6 1.7 

Change in T4 H-bond Strength (kJmol-1)a -3.9 -6.9 

aValues calculated using the C=O bond energy (~ 743 kJmol-1)43 via the methodology as outlined in ref. 

44 using equation ref. 45. 

 

Figure 3: Simulated 2D-IR spectra of the coupled AT2S and AT4S transitions before (a) and after (b) a 

shift of a subset of the bands to higher frequency. (c) shows the simulated difference 2D-IR spectrum 

that results from a subtraction of (a) from (b). (d) Shows the difference 2D-IR spectrum obtained 

following formation of the H-A3T3 complex. Pink and black arrows point to off-diagonal features linking 

the two modes in experimental and simulated spectra. 



lineshapes, which simulate the coupled peaks in the 2D-IR spectra of the DNA duplexes 

(Fig.3(a) and 3(b)). A variety of spectral changes were modelled and the difference spectra 

simulated (SI (Fig.S9)). The best agreement with the experimental 2D-IR difference spectra 

(Figs.1(c)&2(c)) was obtained by shifting a subset of the AT2S and AT4S peaks to higher 

frequency (Fig.3(c)). Crucially, this simulation recreated the off-diagonal structure of the 

difference spectrum as well as the diagonal peaks (see arrows Fig.3(c&d)). The results are 

summarized in Table 2, which show that ~20% of the AT2S mode of the A3T3 (A-tract) sequence 

is shifted ~6 cm-1 to higher frequency while ~10% of the AT4S mode shifts by ~9 cm-1.  For the 

alternating sequence, the shift to higher frequency is ~7-9 cm-1 larger for both modes, but the 

fraction of the carbonyls affected is smaller. Particularly noteworthy is the very small (2%) 

fraction of the AT4S peak that is shifted whereas the 11% change in the AT2S mode is more 

comparable with the A3T3 sequence.  

Based on these models, we assign the peaks appearing in the FT-IR and 2D-IR difference 

spectra to a binding-induced shift to higher frequency of a portion of the AT2S and AT4S base 

vibrations. No contributions from diagonal or off-diagonal peaks attributable to GC were 

observed, showing that the binding interactions of H33258 are localized to the AT region of 

the duplex. 

Shifts of the AT2S and AT4S modes of the A-tract sequence to higher frequency are consistent 

with a decrease in the strength of H-bonds formed to the T2 and T4 carbonyl groups upon 

H33258 binding of 2.8 and 3.9 kJmol-1 respectively. 43-45 It is important to note that, although 

the two modes exhibit coupling, it has been demonstrated that this is weak and that a local 

mode picture, treating the two carbonyls as separate modes is appropriate. 29 The smaller 

changes in the AR1T and TR vibrational modes are likely to be a result of changes to the two T 

carbonyls since their stretches are known to contribute to these modes.39  



The T2 carbonyls point directly into the minor groove of the DNA duplex and do not engage in 

W-C H-bonding. Water molecules are present in the minor groove as a spine of hydration and 

form H-bonds to the T2 carbonyl. 10,11 The reduction in strength of these H-bonds to some of 

the T bases in the sequence is consistent with structural studies showing that the bis-

benzimidazole of H33258 displaces water molecules from the minor groove. 10,11  

 

Figure 4: a) Diagram illustrating the binding of H-A3T3 from X-ray crystallography.18 Pink lines show 

H-bonds between ligand and DNA. b) AT propeller twists of the free (green bars, PDB ID: 1S2R12) and 

the complexed A3T3 (red bars, PDB ID: 296D18). c) 2D-IR difference spectrum between (AT)3 and A3T3 

duplex d) FTIR spectra of AT only (blue) and GC only (red) DNA sequences e) AT propeller twists of 

A3T3 (green, PDB ID: 1S2R12) and (AT)3 (purple, PDB ID: 1DN913) base sequences. 

a)

b)

c) d)
e)



Although the ligand has been shown to replace the H-bonds to the T2 carbonyls, our results 

show that the overall H-bond strength is lower than that formed by the water, consistent with 

evidence that the interaction between H33258 and DNA is not stabilized to any great degree 

by H-bonding.11 

The frequency shift of the T4 carbonyl, which is involved in the W-C interaction, shows that 

binding is also accompanied by a structural change affecting the DNA bases. The two major 

structural changes that can weaken the W-C hydrogen bond are a buckle and propeller twist.40 

An increase in the base buckle angle will reduce the strength of the W-C H-bonds, but a 

computational study predicted that the T4 carbonyl is not strongly affected by this until an 

extreme angle of buckle (~50°) is reached. 40 This is not consistent with the relatively minor 

structural changes detected by NMR20-23 or crystallography15-19 on H33258 binding to the A3T3 

duplex.15 An increase in the propeller twist will cause an increase in the length of the W-C 

hydrogen bond to the T4 carbonyl, decreasing its strength. This is consistent both with the 

spectroscopic data and previous structural studies using 2D-NMR20-23 and X-ray 

crystallography,15-19 which have reported changes in propeller twist. The results of 

crystallographic investigations of the structure of the H-A3T3 complex are reproduced in 

(Fig.4(a)) alongside a bar-graph showing perturbations in the propeller twist in the H-A3T3 

complex (Fig.4(b), red bars) relative to the uncomplexed DNA (Fig.4(b), green). H33258 forms 

two bifurcated H-bonds to T2 carbonyls (Fig.4(a), pink lines) and accommodating these 

interactions increases the propeller twist in some of the AT base pairs with one (at position 4) 

particularly strongly affected. This is consistent with our observations of a subset of T4-related 

modes shifting to higher frequency upon ligand binding. The propeller twisting does not affect 

the GC base pairs, again consistent with our spectroscopic data. Whilst supporting the 

conclusions of crystallographic studies, our new results demonstrate that, in solution, the 

influence of solvated water does not perturb the nature of the interaction. Whilst at first this is 



expected given the nature of binding and rejection of water within the minor grove, we show 

that, even in solution, the interaction is localised by not observing spectral perturbations in the 

neighboring GC.  

Comparing the A-tract sequence with the alternating sequence, it is clear that the disruption to 

the spine of hydration, affecting the T2 carbonyl is still present in the data. The smaller shifted 

subset size and the larger frequency shift observed for the T2 carbonyl in the (AT)3 sequence 

supports the conclusion of an X-ray crystallography19 study of Hoechst33258 binding to a 

(AT)2 sequence, which indicated the presence of only one bifurcated H-bond as opposed to two 

in the complex with A3T3. However, the impact upon the propeller twist, while present, is 

markedly reduced. This is shown by the relatively small size (1.7%) of the shifted subset in the 

(AT)3 duplex showing that this does not undergo significant structural changes upon binding 

compared to the A3T3 (9.7%) sequence. This is a major difference between the two strands and 

may be relevant to the differences in binding affinity. It is clear from thermodynamic 

measurements that H33258 binding is entropically-driven; this is attributed to the release of 

water from the spine of hydration. Our data reflects this and the minor groove of the A-tract 

sequence is known to contain a more ordered spine of hydration than the alternating sequence. 

12-14 Many reports assume that conformational changes in the DNA accompanying this binding 

are negligible, citing a ‘lock and key’ or ‘rigid body’ interaction. 10,11,46-48 In contrast, our data 

indicate that conformational changes take place in order to accommodate and optimize 

structures for base-to-H33258 binding, which would be expected to increase favorable 

enthalpic contributions to binding, as given by the induced fit model.   

The enthalpy of binding has been measured to be endothermic overall, but the greatest 

favourable contribution to binding has been assigned to hydrophobic contacts between the 

DNA groove and the ligand. 11,48 A-tract DNA is unique in that it features a very regular set of 

propeller twists (Fig 4(b) green bars) due to the formation of 3-centre H-bonds, leading to a 



rigid and ordered section of the helix. 43 The indications from our data are that, rather than this 

unique structural feature being beneficial to ligand binding in itself, the disruption of the A-

tract structure leads to a closer interaction between ligand and DNA than is possible in the 

alternating sequence. While the change in macroscopic conformation of the DNA is small and 

unlikely to outweigh the entropic benefits of releasing hydration water, our results indicate that 

binding to A-tract DNA is better described by an induced fit type model, where the DNA 

structure changes to accommodate the ligand. By contrast, binding to a sub-optimal sequence 

((AT)3) proceeds without significant change to the DNA structure, which lacks the enthalpic 

benefit of the improved DNA-ligand interactions and also does not gain from any entropic 

benefit from disrupting the ordered propeller twists. A structure-related narrowing of the minor 

groove and restriction of dynamical motion upon ligand binding to A-tract DNA has been 

suggested in simulations but was stated to be insignificant.43,49 Rather, our results support 

conclusions drawn from NMR studies, demonstrating that induced fit is an important aspect of 

optimized Hoechst binding.24 

Further evidence that the difference 2D-IR spectrum observed on the formation of the H-A3T3 

complex results from an order-disorder change in the base orientation within the AT region of 

the duplex arises from a difference 2D-IR spectrum between the uncomplexed A3T3 and (AT)3 

sequences (Fig.4.(c)). These structures differ mainly through the three-centered H-bonds and 

ordered propeller twists of the A3T3 sequence (Fig.4(e), green) in contrast to the alternating 

sequence (Fig.4.(e), purple).13 The difference 2D-IR spectrum (Fig.4.(c)) is remarkably similar 

to that arising from formation of the H-A3T3 complex; the AT2S and AT4S modes shift by 6.3 

cm-1 and 10.7 cm-1. This observation supports the hypothesis that the ligand binding induces 

changes in the propeller twists of the A3T3 sequence. It is also noticeable that the T2 mode shifts 

between the two uncomplexed sequences. This suggests a weakening of the hydrogen bonds to 

the T2 in the alternating sequence versus the A-tract, consistent with the more ordered spine of 



hydration (and so stronger H-bonds) found in the minor groove of the latter sequence. 12-14 This 

further indicates that an entropic gain may arise from losing the spine of hydration as well as 

the ordered propeller twist caused by induced fit of the ligand. 

Conclusions: 

In conclusion, 2D-IR shows that binding H33258 to two DNA sequences leads to shifts in 

vibrational modes associated with specific AT base pairs that are due to the loss of the spine of 

hydration and formation of direct H-bonding between DNA and ligand as well as alterations in 

the propeller twist induced by the ligand locating in the minor groove. Comparison of binding 

to A-tract and alternating DNA sequences revealed that binding to A3T3 results in loss of the 

ordered propeller twist arrangement of bases found in the uncomplexed DNA. This is not 

replicated to the same extent in the alternating sequence and we propose that these structural 

changes constitute an induced fit type interaction that facilitates superior accommodation of 

H33258 and increased hydrophobic interactions between ligand and DNA. This contradicts 

current pictures which treat H33258 binding as a rigid body interaction and complements the 

entropic release of water from the minor groove. Finally, the results fully demonstrate 2D-IR 

capabilities to simplify quantification of solution phase DNA-binding. 

Supporting Information 

Additional information relating to experimental details, spectroscopic characterization of 

samples and 2D-IR data analysis can be found in the Supporting Information.  
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