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Abstract: In this study, the effect of small cracks on the dynamic propagation of a macrocrack is 
investigated by using a new continuum mechanics formulation, peridynamics. Various combinations 
of small cracks with different number, location and density are considered. Depending on the 
location, density and number of small cracks, the propagation speed of macrocrack differs. Some 
combinations of small cracks slows down the propagation of a macrocrack by 34%. Presented results 
show that this analysis can be useful for the design of new microstructurally toughened materials.  
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1. Introduction 

Small cracks can have significant effect on the dynamic propagation behaviour of macrocracks 
if they are within the range of the macrocrack’s influence domain. The location of small cracks and 
their orientation with respect to the tip of a macrocrack are important, since the stress intensity of the 
macrocrack tip changes accordingly. Numerical tools can be useful to investigate such an interesting 
and important problem.  

Numerical prediction of crack growth in computational mechanics has been and it still is 
considerable problem that can’t be easily solved by conventional numerical methods such as 
cohesive elements [1,2] and extended finite element method (XFEM) [3,4]. XFEM require damage 
criterion and careful stress tracking around the crack tip in order to decide if crack is going to branch 
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or not. On the other hand, mesh dependency is a problem for cohesive elements. All of the above 
problems are making it difficult to correctly simulate crack propagation and especially multiple crack 
propagation/interaction [5]. Meshfree methods can be a good alternative to finite element method 
and has been applied to dynamic fracture and fragmentation [6,7]. Moreover, Cracking Particle 
Method (CPM) [8] was introduced for complex fracture patterns such as crack branching and 
coalescence. Another promising approach for fracture modelling is lattice methods which represent a 
medium as a connection of interacting nodes or particles [9–13].  

In this study, it is shown that using a new continuum mechanics formulation, peridynamics, as 
an alternative method, it is possible to correctly model and simulate dynamic fracture, in particular 
multiple small cracks interacting with a macrocrack in brittle materials. Peridynamics [14,15,16] 
doesn’t need fracture criteria for crack propagation as in XFEM or cohesive FEM methods. 
Moreover, multiple cracks can easily be analysed since cracks are not treated as special objects in the 
formulation. Peridynamics has been successfully used to analyze different material systems and 
geometrical configurations [17–21]. An extensive literature survey on peridynamics is given in 
Madenci and Oterkus [22].  

2. Peridynamic Formulation 

By considering all of the shortcomings of classical theories such as Finite Element Analysis 
(FEM), the peridynamic theory was introduced by Silling [14] as a new continuum mechanics 
formulation in order to solve problems with discontinuities such as cracks. Peridynamic theory uses 
displacements rather than displacement derivatives in its formulation. Hence, as opposed to classical 
continuum mechanics formulation which uses partial differential equations, peridynamic theory is 
based on integral equations which are defined at fracture surfaces. Furthermore, material damage is 
part of the peridynamic constitutive laws [22].  

In peridynamic theory, material points inside the body interact with each other through response 
functions. Material points (there is infinitely many) constitute the continuum and each response 
function contains all the information associated with the material [22]. 

Moreover, peridynamic theory can be considered as continuum version of molecular dynamics, 
where acceleration of any material point at position x in reference state at time t can be found from 
the equation of motion as follows: 

    (1) 

where Hx represents horizon, xj are family members of the material point xk inside its horizon, u is 
the displacement vector, b is the body load and ȡ is the mass density. In Eq. (1), f is a pairwise force 
function which is the force that the material point xj exerts on the material point xk. The relative 
position of the material points xj and xk is denoted as (see Figure 1): 

  x
j
 x

k
         (2) 
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and their relative displacement is defined as: 

 u x
j
┸t u x

k
┸t         (3) 

 

Figure 1. Each material point xk interacts with other material points inside its horizon Hx.  

In the original peridynamic formulation, i.e., bond based peridynamics, we can define pairwise 
force function as: 

f  ┸   
 

f   ┸         (4) 

where f   ┸  is a scalar-valued function and it depends on the bond stretch, s and the bond 

constant, c which can be written as [15] 

f   ┸  c s         (5) 

In Eq. (5), the stretch can be expressed as 

s 
   


         (6) 

The bond constant c, can be specified in terms of elastic modulus, E, thickness, h and horizon 
size   as 

c 
ひE
h ぬ forにD        (7) 
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Eq. (7) can be obtained by comparing strain energy density of a material point inside a body 
subjected to a simple loading condition obtained from classical continuum mechanics and 
peridynamics. Derivation procedure is given in Madenci and Oterkus [22]. 

Note that stretch is positive when bond (interaction) is in tension and negative when bond is in 
compression. Combining equations given above and using numerical discretization based on 
meshless scheme, we can perform the time integration of the peridynamic equation of motion by 

using explicit time integration [15]. If the displacement of the material point at nth time step is 

represented as 		uk

n u
k
t  nt , then the peridynamic form of the equation of motion can be written 

as 

      (8) 

or 

     (9) 

where N is the number of the family members inside the horizon of the material point xk, Vj is the 
volume of the material point xj, vcj and scj represent volume correction factor and surface correction 
factor, respectively [22].  

Introducing failure in peridynamics is straightforward. Failure can be introduced by eliminating 
the interactions between the material points. A history dependent scalar valued function can be 
defined for each interaction as 

f   ┸  c s t ┸         (10) 

where 

 t ┸  なif s t ┸  sどど otherwise




       (11) 

and s0 is called critical stretch. The local damage at a material point can be defined as [15] 

			 x ┸t な  x ┸t ┸ dV
H
x


dV

H
x


       (12) 
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3. Validation Study 

In order to validate the peridynamic formulation, a Diagonally Loaded Square Plate (DLSP) 
problem is considered as shown in Figure 2. 

 

Figure 2. Diagonally Loaded Square Plate (DLSP) problem geometry. 

The material is chosen as Poly(methyl methacrylate) (PMMA), also known as acrylic or acrylic 
glass. The material properties are summarized in Table 1. The edge length of the plate is specified as 
2 0.15w m . The length of the pre-crack length is 2 0.045a m  and the pre-crack inclination angle is 
defined by angle, . Different values of  indicates different types of loading conditions ranging 
from mode-I to mode-II. When  is zero degree, then the initial crack becomes perpendicular to the 
loading direction which induces crack surfaces to open in loading direction and represents mode-I 
loading. Mode-II type of loading, which forces crack surfaces to slide against each other, can be 
obtained when  is equal to 62.50 and if crack-edge length ratio ( /a w ) is equal to 0.3. For the other 
 values between mode-I and mode-II angles, mixed-mode loading conditions can be induced. In this 

study, the following  values are considered: 0 ,15 ,30 ,45 ,62.5       . For the spatial discretization, 

meshless scheme is used and the distance between material points is specified as 310x m  . 
Moreover, the horizon size is chosen as 3.015 x   . The plate is loaded at the upper and lower 
edges through a region with a length of 0.025b m . A velocity boundary constraint of 

81 10 /V m s  is considered to achieve a quasi-static loading condition. To achieve such a 
condition in peridynamics, the problem is solved by using Adaptive Dynamic Relaxation  
method [23]. Hence, a time step size of 1sec.t   is used. The total number of time steps is 40000. 
In order to prevent unrealistic failure around the loading area, a no-fail zone is introduced with a 

length of 0.0375n m . The critical stretch is specified as 39.735 10cs   .  
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Table 1. Material properties for PMMA. 

 Density (ȡ) 
(kg/m3) 

Young’s modulus 
(E) (MPa) 

Poisson ratio 
(Ȟ) 

Fracture energy (G0) 
(J/m2) 

PMMA 1200 2940 0.38 602 

As can be seen in Figure 3, peridynamic fracture pattern results agree very well with 
experimental results obtained by Ayatollahi and Aliha [24] for different pre-crack inclination angles, 
. 

 

Figure 3. Comparison of fractured DLSP specimens obtained from experiments and 
peridynamic simulations for different pre-crack inclination angles, .  

Moreover, for all cases, load variation (P) with respect to displacement () results are plotted as 
shown in Figure 4. Since PMMA material has a linear elastic behavior, P- curves follow a straight 
line prior to the fracture load. After crack starts to propagate, the curves smoothly drop down and 
suddenly reduce to zero value when the plate fractures completely. 
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Figure 4. Load variation (P) with respect to displacement () curves for all crack 
inclination angles,  obtained by using peridynamics. 

Evaluated fracture loads from Figure 4, are also compared with experimental results (see  
Table 1 of [24]) as shown in Figure 5 and comparable results are obtained for all crack inclination 
angles, . 

 

Figure 5. Fracture loads for all crack inclination angles, . 

Moreover, crack (propagation) initiation angles are also compared with experimental results 
(see Figure 11 of [24]) as demonstrated in Figure 6 and again a good agreement is obtained for all 
crack inclination angles, . 
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Figure 6. Crack initiation angles for all crack inclination angles, . 

Hence, it can be concluded that peridynamics can make accurate fracture predictions and can be 
used for more sophisticated problem cases as considered in Section 5. 

4. Problem Definition 

A rectangular plate with dimensions of 0.05m by 0.05m is considered as shown in Figure 7. As 
in the validation case, the material is chosen as PMMA. Plate contains a macrocrack that interacts 
with multiple small cracks. In the case of bond based peridynamics, there is a constraint on Poisson’s 
ratio as 1/3 for 2-Dimensional problems due to the assumption of pairwise forces between material 
points which is slightly lower than the actual Poisson’s ratio of PMMA. However, for dynamic 
fracture problems, Poisson’s ratio has insignificant influence on speed and direction of crack 
propagation [5]. 

 

Figure 7. Problem definition. 

In this study, the plate is considered under tension loading and it is subjected to a high velocity 
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boundary condition of 5 m/s. Several types of small crack configurations are considered; single small 
crack collinear to the main crack, two symmetrical small cracks, horizontal and transverse array of 
small cracks, to investigate the effect of small cracks on the macrocrack behaviour by calculating the 
crack propagation speed. 

5. Numerical Results 

Peridynamic model used for this study is defined with a fixed horizon size of h = 3 × 〉x, where 
〉x is the spacing between material points and it is specified as 0.0001m. Therefore, a total number of 
250000 material points exist in the model. Boundary region is equal to horizon size, h and thickness 
of the plate is specified as h = 〉x (Figure 8). Critical stretch is set to s0 = 0.030857. The time step is 
chosen as 〉t = 4 × 10−8 s and the number of time steps is 2000. 

 

Figure 8. Peridynamic model and its discretization. 

Finally, the length of a small crack is defined as 

   【 のど
small crack macrocrack small crack macrocrack
l l l l      (13) 

5.1. Macrocrack Propagation 

In the first example, the crack propagation of a macrocrack is investigated without considering 
small cracks in the model in order to compare with those cases including small cracks. It is observed 
that the macrocrack started to propagate around a time step of 500 and reached the end of the plate 
after 1700 time steps. The crack speed is calculated by comparing the crack length at 4 × 10−5 s with 
the initial crack length (Figure 9a) as 

v
cp

l
dt

 ねぱどm【s            (14) 
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(a)        (b) 

Figure 9. Macrocrack propagation without considering small cracks (a) at 4 × 10−5 s,  
(b) at 6.8 × 10−5 s. 

5.2. One Small Crack Collinear to a Macrocrack 

In the second example, a single small crack is aligned with the macrocrack as shown in  
Figure 10 [25,26]. 

 

Figure 10. Collinear small crack in front of a macrocrack. 

The macrocrack propagation speed is calculated for different ratios of a/b as given in Table 2. 
The minimum crack propogation speed is obtained for the highest a/b ratio which corresponds to 
furthest small crack. By comparing with the only macrocrack case, the collinear small crack causes 
an increase in macrocrack propagation speed. However, no effect on initiation time is observed, i.e., 
all the cases have the same initiation time as benchmark case—500 time steps. The effect of a/b 
ratios on the crack shapes can be seen in Figure 11. 
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Table 2. Macrocrack propagation speed at 4 × 10−5 s. 

 a/b = 0.2 a/b = 0.4 a/b = 0.6 a/b = 0.8 
vcp (m/s) 562.5 562.5 557.5 515 

 
(a)           (b) 

 
(c)           (d) 

Figure 11. Macrocrack propagation for different values of a/b (a) a/b = 0.2, (b) a/b = 0.4, 
(c) a/b = 0.6, (d) a/b = 0.8 at 6.4 × 10−5 s. 

5.3. Two Parallel Small Cracks 

In the third example, two symmetric small cracks are positioned on both sides of the 
macrocrack (Figure 12). 

The macrocrack propagation speed is calculated for varying h/l and s/l values.  It is found that 
for s/l = −2, the influence of the small cracks on the speed of macrocrack propagation is insignificant 
and the shape of the crack path is very similar to that of a single macrocrack (Figure 13). 
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Figure 12. Two parallel small cracks. 

 
(a)           (b) 

 
(c)           (d) 

Figure 13. Comparison of a single macrocrack and macrocrack with two parallel small 
cracks (a) macrocrack without a small crack, (b) h/l = 0.75, s/l = −2, (c) h/l = 1, s/l = −2, 
(d) h/l = 1.25, s/l = −2 at 6 × 10−5 s. 
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Moreover, h/l ratio has the least influence on the overall macrocrack propagation as shown in 
Table 3. The minimum crack speed is obtained for h/l = 1.25 and s/l = 0 (Figure 14). It is worth 
noting that for s/l = 0 and s/l = 2, the crack propagation is observed in small cracks only. This 
behaviour is also observed by Wang at al. [25]. They observed that for h/l = 0.75 and 1, the influence 
of the stress intensity factor of small cracks is greater than the macrocrack. A similar behaviour is 
also observed for h/l = 1.25. 

Table 3. Propagation speeds of a macrocrack at 4 × 10−5 s. 

 s/l = −2 s/l = 0 s/l = 2 
h/l = 0.75 480 m/s 356.25 m/s 356.25 m/s 

h/l = 1 480 m/s 356.25 m/s 362.5m/s 
h/l = 1.25 480 m/s 350 m/s 362.5 m/s 

 
(a)                                                   (b)                                                 (c) 

Figure 14. Crack propagation for h/l = 1.25 (a) s/l = −2, (b) s/l = 0 and (c) s/l = 2 at 4 × 10−5 s. 

5.4. Multiple Small Cracks Interacting with the Macrocrack 

For the last example, interactions between macrocrack and multiple small cracks are 
investigated. First, a set of horizontal cracks (see Figure 15) for h/l = 1 and H/l = 2.5 are investigated. 
It is observed that H/l should be greater than 2 in order to exclude the effect between adjacent 
columns of small cracks [25]. 

 

Figure 15. Set of horizontal small cracks. 
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The crack propagation speed is calculated for different ratios of s/l as given in Table 4. It is 
found that the present small crack configuration stopped the macrocrack propagation. However, the 
present configuration has no influence on crack initiation time and a very low influence on the 
overall crack propagation length (Table 4 and Figure 16). 

Table 4. Overall crack propagation length of horizontal small cracks at 4 × 10−5 s. 

 s/l = −2 s/l = 0 s/l = 2 
x (m) 0.00975 0.00985 0.01075 

 
(a)                                                   (b)                                               (c) 

Figure 16. Crack propagation of horizontal small cracks (a) s/l = −2, (b) s/l = 0 and  
(c) s/l = 2 at 4 × 10−5 s. 

Moreover, the effect of multiple small cracks in the vertical direction is investigated (Figure 17) 
for h/l = 1 and s/l = −2, 0 and 2.  

 

Figure 17. Set of vertical small cracks. 

The crack propagation speed is calculated for different ratios of s/l as given in Table 5. It is 
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found that the crack propagation speed is reduced by 34% for s/l = 0 compared to a single 
macrocrack case (Table 5). The results show good correlation with conclusions from Wang at al. [25] 
where they observed relatively high amplification decrease for h/l = 1 (Figure 18). 

Table 5. Crack propagation speed of vertical small cracks at 4 × 10−5 s. 

 s/l = −2 s/l = 0 s/l = 2 
vcp (m/s) 480 316.66 333.33 

 

(a)                                              (b)                                               (c) 

Figure 18. Crack propagation of vertical small cracks (a) s/l = −2, (b) s/l = 0 and  
(c) s/l = 2 at 4 × 10−5 s.  

Finally, the superior capability of peridynamics for fracture prediction is demonstrated by 
considering a significantly large number of small cracks. In the first case, thirty-two small cracks are 
considered as shown in Figure 19. The second case includes eighty small cracks as depicted in  
Figure 20.  

 

Figure 19. Set of thirty-two small cracks. 



133 

AIMS Materials Science  Volume 4, Issue 1, 118-136. 

 

Figure 20. Set of eighty small cracks. 

Corresponding fracture patterns for these two cases are presented in Figures 21 and 22, 
respectively. In both cases, it can be seen that small cracks behind the macrocrack tip does not effect 
crack propagation. Furthermore, only small cracks ahead of the macrocrack tip close to the centerline 
influences the crack propagation pattern and causes crack branching behavior.  

   

(a)          (b) 

Figure 21. (a) Initial configuration and (b) crack propagation in a set with thirty-two 
small cracks.  



134 

AIMS Materials Science  Volume 4, Issue 1, 118-136. 

          
(a)          (b) 

Figure 22. (a) Initial configuration and (b) crack propagation in a set with eighty small 
cracks.  

6. Conclusion 

In this study, quantitative comparison of effects of small cracks on dynamic macrocrack 
propagation is obtained by using periydnamics. Several small crack configurations are considered 
including single small crack collinear to the main crack, two symmetrical small cracks, and 
horizontal and transverse array of small cracks. The results show expected behaviour when compared 
to similar cases found in the literature. Finally, two cases including significantly large number of 
small cracks are demonstrated. These cases show the superior capability of peridynamics in 
capturing sophisticated fracture patterns where significantly large number of cracks present. 
Moreover, presented results also show that this analysis can be useful for the design of new 
microstructurally toughened materials.  
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