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Abstract

This thesis is concerned with the inversion of lattice pore-network model parameters of
carbonate rocks using only the capillary pressure, and then the use of the inverted parameters
to predict the water-flooding relative permeabilities of the carbonate rocks. Background:
There has been a tendency to claim that pore-network modelling using three-dimensional
micro-computed tomography or 3D mathematically created images can predict imbibition
relative permeabilities for wettabilities other than strongly water/oil-wetting. This is based
on the flexibility for matching data, which is a weakness of pore-network modelling. The
method proposed in this thesis is important because a large percentage of the porosity in
carbonates is microporosity.

Conclusions: We applied stochastic inversion of lattice pore-network model parameters
using Hamiltonian Dynamics (Hamiltonian Monte Carlo) to three carbonate rock samples
and we predicted water-flooding relative permeabilities with good accuracy by using as con-
straint only routinely obtained data, such as mercury intrusion capillary pressure (MICP)
and oil/water capillary pressure. We found that there is a strong correlation between the
amount of microporosity and the volume exponent parameter. This suggests that when
microporosity is ignored, the volume exponent will tend to be systematically strongly un-
derestimated. HMC found large variability in wettability that causes mid-sized pores to
be invaded at the same level of pressure as larger pores. The coexistence of these events
reduces the tendency for preferential flow through large pores, resulting in more uniform
flow at the pore scale compared with the case in which flow is restricted only to large pores.
Mid-sized pores have an important effect on the connectivity because they could have higher
contact angles than larger pores. Therefore, they do not spontaneously imbibe and shield
larger pores, improving water-flooding displacement. The wettability of micropores could
better explain the gentle curvature of the imbibition water relative permeability compared
with the generally assumed mixed-wet large wettability model. The importance of the max-
imum and minimum observed capillary pressure is directly connected to accounting for the
full pore-size distribution. Thus, the common assumption that microporosity can be ignored
is unsatisfactory. The ranges of advancing contact angles obtained from the HMC inversion



ii

were wider than the ranges of apparent advancing contact angles obtained with analytical
determinations in previous studies, and in one case our results were contradictory to the an-
alytical determination. It follows that variability in advancing and receding contact angles
is not reflected in the apparent contact angle data outside porous media. Apparent contact
angle data outside porous media cannot completely characterise the wettability in pore-
network models because the data does not capture the contact angle variability in porous
media. The existence of wetting films depends on the maximum capillary pressure during
drainage, and thus wettability alteration during ageing. Our results suggest that matching
both connate water at the maximum drainage capillary pressure before ageing and matching
residual oil at the minimum imbibition capillary pressure leads to better estimation of the
advancing and receding variability in the contact angles.
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α Absolute temperature in Gibbs Equation (Variance in statistical context)

Σ Covariance matrix

θθθ
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ow Oil/water advancing operative contact angle [deg]

ϕrec
ow Oil/water receding operative contact angle [deg]

ϑ T
ow Oil/water equilibrium contact angle [deg]

ϑ adv
ow Oil/water advancing apparent contact angle [deg]

ϑ A−rec
owMAX

Oil/water receding contact angle upper bound for population A [deg]

ϑ A−adv
owMAX

Oil/water advancing contact angle upper bound for population A [deg]

ϑ A−rec
owMIN

Oil/water receding contact angle lower bound for population A [deg]

ϑ A−adv
owMIN

Oil/water advancing contact angle lower bound for population A [deg]

ϑ B−rec
owMAX

Oil/water receding contact angle upper bound for population B [deg]

ϑ B−adv
owMAX

Oil/water advancing contact angle upper bound for population B [deg]

ϑ B−rec
owMIN

Oil/water receding contact angle lower bound for population B [deg]

ϑ B−adv
owMIN

Oil/water advancing contact angle lower bound for Population B[deg]

ϑHga Mercury/air contact angle [deg]

ϑ rec
ow Oil/water receding apparent contact angle [deg]

ϑ T
ow Oil/water intrinsic contact angle [deg]

ϑ ow
owT h

Oil/water contact angle threshold for the existence of oil-wetting [deg]

ϑ ww
owT h

Oil/water contact angle threshold for the existence of water-wetting [deg]

Superscripts

A Population A of pores
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adv Advancing

B Population B of pores

rec Receding

t Current time along the chain

Subscripts

a Air

α: Fluid phase

Hg Mercury

o Oil

w Water

Other Symbols

A ∗ Transformed set of events

A Set of events

Io Amott oil wettability index

Iw Amott water wettability index

A2 Area under the secondary drainage capillary pressure curve

A2 Area under the imbibition capillary pressure curve

D Dimensions

∆So Total change in oil saturation

∆Sws Change in water saturation

∆Swt Total change in water saturation

E(θθθ) Energy (misfit)

Em Microscopic displacement efficiency
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Ai Event

F Inverse probability function

f̂ ∗ Transformed pore-size distribution estimator

F−1 Inverse probability

fw Fractional-wet

fw Fraction of pores in population A [fraction]

G Forward operator (pore-network model simulator)

H Entropy of the set

h Entropy of an event

H Hamiltonian

I Identity matrix

K Absolute permeability [md]

K Kinetic energy

l Lag distance

L Lattice pore-network model size

L Lagrangian

r− Bin left bound [m]

P∗c,Hga Logarithmic transformation of mercury air capillary pressure

Pc,Hga Mercury/air capillary pressure [Pa]

ppp Momentum vector

n Number of time steps

N Total number of bins in the pore-size distribution estimator

n Total number of bins in the transformed pore-size distribution estimator
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XXX Observation vector

ppp Conjugate momentum

P: Set of frequencies

P Probability

PAcc Transition probability

p∗i Bin probability in the transformed parameterisation

Pc,ow Oil/Water capillary pressure [Pa]

Pobs
c,ow Observed oil/water capillary pressure [Pa]

Pobs
c,owMAX

Observed maximum drainage capillary pressure [Pa]

Pobs
c,owMIN

Observed minimum imbibition capillary pressure [Pa]

Pre f Reference pressure [Pa]

pi Probability of a bin i

Pnw Nonwetting pressure [Pa]

Pw Wetting pressure [Pa]

r Radius [m]

r+ Bin right bound [m]

rmax Maximum radius in the pore-size distribution [m]

rmin Minimum radius in the pore-size distribution [m]

rpt Radius at percolation threshold [m]

RT-I Rock type I

RT-II Rock type II

RT-III Rock type III

RWet Threshold radius in the pore-size distribution that separates population A from pop-
ulation B [m]
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S 2 20 Sample 2 20 - RT-III

S 2 4 Sample 2 4 - RT-II

S 28 Sample 28 - RT-I

SHg Mercury saturation

Soi Initial oil saturation

Sor Residual oil saturation

Sobs
or Observed residual oil saturation

Sw Water saturation

Swc Connate water saturation

Sobs
wc Observed connate water saturation

T Total integration time

T2 Relaxation time [ms]

U Uniform distributed random variable

f̂ Pore-size distribution estimator

x Random number from U

Y Random variable

y Random number from U

Acronyms / Abbreviations

2D Two-dimensional

3D Three-dimensional

ACF Autocorrelation function

AH Amott: wettability index

BSEM Backscattering scanning electron microscope
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CDF Cumulative distribution function

ECDF Empirical cumulative distribution function

Em Microscopic displacement efficiency

EnKF Ensemble Kalman filter

EOR Enhanced oil recovery

HMC Hamiltonian Monte Carlo

IFT Interfacial tension [N/m]

KLD Kullback–Leibler distance

KL Kalman Filter

MCMC Markov Chain Monte Carlo

MICP Mercury intrusion capillary pressure

µ-CT Micro-computed tomography

NMR Nuclear magnetic resonance

PDF Probabilistic distribution function

PTFE Polytetrafluoroethylnes material

REV Representative elementary volume

SANS Small angle neutron scattering

SEM Scanning electron microscope

SSIP Statistical solution to the inverse problem

USBM United States Bureau of Mines wettability index

Var Variance



Chapter 1

Introduction

1.1 Background

A large percentage of the world’s remaining oil is located in carbonate rocks (estimated
to be 50% [304]). The pore sizes in carbonates may vary by several orders of magnitude,
and describing in detail all of the features of the pores at different length scales may not be
possible [321]. Because of the steady growth in oil demand and the decline in discovery,
enhanced oil recovery (EOR) processes have become important to produce reserves from
already developed oil reservoirs.

From a global viewpoint, the development of EOR technologies should align with world-
wide initiatives to reduce carbon dioxide emissions. With regard to global warming, projects
such as gas injection might be important. In the petroleum industry, macroscale full-field
flow simulations to provide an economic basis to sustain the technical developments are
well established. A reservoir model of this scale integrates information from pore-scale dis-
placements to the scale of facies and formations to produce the output in terms of the fluids
produced in the wells. Therefore, it is important to develop a model of functions that reflects
the reality of the underlying recovery process. These functions are the relative permeabil-
ities and capillary pressures. It is clear that EOR processes will dominate the future of oil
recovery, and therefore understanding the physics at the pore scale is important to identify
the key factors for a successful strategy.

pore-network models have attracted much interest in the last decade, although they date
back to the work of Fatt [106]. Lattice networks have been known in physics for more than
50 years, while unstructured network models have only recently attracted attention. They
allow the underlying physical principles to be included and the macroscopic behaviour to
be simulated.
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1.2 Using Pore-Scale Models to Model Carbonate Rocks

Pore-scale modelling seeks to implement the physics describing the fluid flow at the pore
scale to predict macroscopic properties from first principles. These macroscopic properties
are the inputs for continuous models of the porous media. In some situations, laboratory
measurements are difficult and expensive to carry out. Using pore-scale modelling, one can
understand how to improve oil recovery and predict flow functions that give better estimates
of a given process at a large scale to support significant capital investments.

1.2.1 Limited Resolution of Micro-Computed Tomography

There has been considerable interest in obtaining X-ray micro-computed tomography (µ-
CT) three-dimensional (3D) digital images of porous media as a source for pore-network
models. The maximum resolution of µ-CT is approximately 1 µm [199], which leaves a
large percentage of the total porosity in carbonates unresolved. For carbonate rocks, the
pore-size distribution and connectivity may vary considerably with image size.

Moreover, the connectivity below µ-CT resolution is important [14, 40], and there is a
trade-off between resolution and the length scale. At the highest resolution, the length scale
of the reconstructed rock sample is a few millimetres [402], but carbonate rock samples may
be heterogeneous in the centimetre range [284, 310]. Thus, a 3D image cannot simultane-
ously represent the large and small pores present in carbonates. We refer the reader to the
review papers of Blunt et al. [48], Fusseis et al. [124], and Sheppard et al. [353], and the
references therein, for more details.

1.2.2 Multiscale Problem

The limited resolution of µ-CT has motivated the development of algorithms that derive
statistics from high-resolution scattering electron microscopy images of the microstructure.
These algorithms [19, 20, 42–44, 55, 205, 227, 229, 293, 331, 407] produce 3D images of
the porous media, similar to those produced by µ-CT. Overall, the results agree well with
the bulk properties, such as the absolute permeability[283], formation factor, and porosity.
However, the pore-size distributions of porous media are rarely reported. The combined
effect of the resolution and volume of the reconstructed porous media (known as the multi-
scale problem [104, 180, 379, 384]) makes it difficult to capture the wide range of pores
present in carbonate rock samples. When the material is highly heterogeneous because of
a large variation in pore sizes, (i) the resolution must be sufficient to resolve the smallest
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features and (ii) there must be sufficient volume to accommodate all scales. These two
requirements are only met in isotropic macroscopically homogeneous materials [400].

1.2.3 Characterisation of Wettability

Wettability is essential in various EOR processes, such as gas injection [79, 108, 112,
143, 157, 158, 167, 192, 193, 208, 209, 219, 233, 234, 285, 297–299, 301, 308, 313,
337, 389, 390, 392, 395, 397–399] and surfactant injection [137, 359, 361–363, 408, 412].
The wettability plays an important role in determining the water-flooding performance
[236, 238, 240, 247, 248, 295], residual oil saturation [74, 145, 306, 307, 385, 387], and
improving the productivity of gas wells in gas fields [1, 220, 410].

There is a threshold in pressure beyond which the thickness of water wetting films
reaches a lower limit and they collapse. This lower limit is related to the displacement
pressure from pores of a given size. When the films collapse, the surface is available to
developed mixed-wet wettability [265].

Any EOR method attempting to change the wettability needs to first assess the cur-
rent wettability and determine whether the changes from the initial conditions significantly
change the macroscopic properties. The complex pore structure and mineralogy of reservoir
rocks along with the interaction with crude oil result in there being a complicated relation-
ship between the wettability and the capillary pressure.

1.3 What Makes Prediction of Relative Permeabilities Us-
ing Pore-Network Models Nontrivial?

In general, the main problem when using pore-network models is the uniqueness of the
estimated pore-network model parameters [51, 160, 360]. capillary pressure measurement
predictions are not sufficient to predict the relative permeabilities, because the data being
predicted are used to characterise the network model. Additionally, little attention has given
to characterising wettability in pore-network models.

The multiplicity of models that equally estimate the capillary pressure indicates that
pore-network model parameter estimation is a difficult problem. capillary pressure, porosity,
and absolute permeability were the only data available in this study. Reliable predictions
are difficult with limited information, which suggests that using only capillary pressure as a
calibration measurement is a strong limitation when predicting flow functions.
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Wettability is an important parameter for any pore-network model that aims to predict
water-flooding or gas-flooding rock functions. In the last decade, considerable effort has
been made to rigorously model the coexistence of multiple phases within a single pore
using pore-network models [46, 92, 111, 146, 249, 311, 312, 337, 388, 393, 394].

Pores with angular cross-sections have been proposed as a more realistic conceptual-
ization of the real pore space [201, 300]. While these models have progressively captured
more of the physics of the pore-scale displacement mechanisms, they have not focused on
characterising the wettability parameters in the models.

1.4 Using Lattice Pore-Network Model to Characterise Car-
bonates

This work uses lattice pore-networks to investigate carbonate rock samples shown in Fig.
1.1a, as opposed to irregular pore-networks, shown in Fig 1.1b, more closely resembling
realistic pore structures.

Diagenetic processes in carbonates rocks have modified the initial porous media leading
to complex multiscale system with complex wettability. A large part of the pore-size dis-
tribution is located in the sub-micrometer range of pore sizes (25–50% of the total porosity
[71]). Therefore, these systems require high resolution below 1 micron. However, µ-CT
cannot provide (We will discuss this further in Section 2.3.2).

Using different scanning electron microscope (SEM) images at different resolutions can
incorporate different scales [181]. However, this type of approaches may result in practical
difficulties and uncertainties in how to merge the scales. Images at different scales are
different in size and are very tiny. The pore-size distributions obtained at each scale may
be not representative. In addition, the variability from the multiple scales is frequently
neglected. There are difficulties in these approaches which include (1) unknown relationship
between SEM image, the resulting training template or training image and the final product
which is the 3D reconstructed 3D image (2) ad hoc assumption in the segmentation of the
raw SEM image. Therefore, the question of whether reconstructed porous media are faithful
representations of the real microstructures has not been fully answered.

Simplifying real porous media with any pore-network model causes a problem of unique-
ness of the estimated pore-network model parameters [51, 160, 360]. A weakness of pore-
network models is the multiplicity of models that equally match capillary pressure, porosity
and absolute permeability. This indicates that pore-network model parameter estimation is
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a b
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Fig. 1.1 (a) Lattice pore-network model; (b) Irregular pore-network model.

a difficult problem.
The work done in predicting relative permeabilities for carbonates using irregular net-

works have only considered a limited part of the pore-size distribution attentive only to
feature of resembling realistic pore structures and neglecting. However, it is well-known
that the universality in relation to percolation properties applies equally to lattice and to
other type of pore-network models, such as irregular pore-network models extracted from
the digital reconstruction of the porous media. Basically, at low fluid velocities the capil-
lary forces dominates and the system is capillary dominated [217]. Fluid distribution at low
capillary number is independent of the orientation of pores. Jerauld et al. [176, 179] showed
that if the average coordination number of a lattice network equals the average coordination
number of an irregular network, transport and percolation properties of both networks are
in agreement.

In this work, we use lattice pore-network models tha have parameters that can be inves-
tigated sythematically using probability theory. In that sense a probabilistic approach can
give better insight into of the relation between the porous media represented by the data set
and the numerical model of reality represented by the network of interconnected capillary
elements. The principal disadvantage of lattice network (Fig. 1.1a) compared with an ir-
regular pore-network that inputs the skeleton extracted from the digital reconstruction (Fig.
1.1b) of porous media is that the maximum coordination number is 6. However, as mention
above average coordination number is usually below six. Variable volume and conductance
exponents in lattice pore-networks can capture a realistically wide range of the complexity
of porous media. In inverse problems the probability of nouniqueness increases if more
complex representations are used. And therefore, more complex pore-network models may
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produce better matching of the capillary pressure data but they will not necessarily produce
better predictions. However, the implications of this nonuniqueness are not that obvious and
may depend on the interplay between the different parameters. In Sections 2.3, 2.4, 2.5, and
2.6 we discuss a number of approaches to characterise pore-network models that readily
show the problem of nonuniqueness of pore-network model parameters.

Adopting a probabilistic approach without forcing the model to fit data allows the un-
derlying phenomena to produce patterns of variability and flexibility that may offer the
possibility to make better predictions. We feel that this method will become increasingly
important in the future as the oil industry is moving towards more difficult rocks such us un-
conventional resources in which pore sizes are smaller and maybe mercury intrusion capil-
lary pressure is the only data available [70, 105, 114, 374, 413, 414]. Moreover, our method
can provide more complex approaches with a baseline for understanding more complex
pore-network models.

It has become increasily apparent the role of microporosity [49, 59, 70, 77, 123, 188,
318, 414]. There are two hypothesis; one that neglects microporosity and another that allo-
cates microporosity everywhere as a virtual network [25] with weakly oil wet.

The idea is to use lattice networks (Figs 1.1a and 1.2) combined with indirect mea-
surements of real samples to characterise the pore-network structures [33, 163, 221, 252,
269, 314, 319, 378, 379, 381, 383, 384]containing any possible range of pore sizes and any
possible pore-size distribution that allows interaction of the different length scales with wet-
tability. Chapter 7 will show that accounting for microporosity turned to be a key component
in determining the wettability.

We first focused on deriving prior information from MICP data that is independent of the
several orders of magnitude of pore sizes in carbonate rock samples. We then incorporated
this information into the inversion algorithm by parameterising the pore-size distribution
using information theory. The main concern in information theory is to define the param-
eters or the probabilistic distribution functions (PDFs) using the least possible number of
assumptions based on the information at hand. This approach is different from other meth-
ods, which rely on strong assumptions regarding the parametric form of the PDF.

There has been little discussion about the distribution of contact angles. Characterisa-
tion of porous media involves the interplay of parameters that are involved in the capillary
pressure behaviour. The same patterns of contact angle hysteresis have been observed in two
systems with different complexity but with the same fluids and solid substrate [274]. The
dependence between the pore structure and the wettability results in a number of solutions.
Despite the efforts made in identifying wettability models and quantifying the wettability
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Fig. 1.2 The top figure shows the lattice network. The black pores offseting the cube repre-
sent the inlet pores. The bottom figure shows a typical junction in which the branch are cut
to vary the coordination number.

behaviour wettability indexes, they are still not reliable. The distribution of contact angles
influences spontaneous imbibition and has effects that are difficult to directly interpret from
two-phase capillary pressure data ([86, 237, 257]). A carbonate rock sample with a pore-size
distribution of 4 to 5 orders of magnitude might contain both expressions of heterogeneous
wettability.
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Using probability theory, the solution to the inverse problem of parameter estimation is
a distribution of possible model parameters. A probabilistic approach involves sampling the
solution space using a search algorithm, which must be able to escape from local minima.
We proposed stochastic inversion as a solution to the nonuniqueness of lattice-type pore-
network model parameters. We used a hybrid algorithm that combines molecular dynamics
steps with stochastic steps using Hamiltonian equations. The proposed Hamiltonian Monte
Carlo (HMC) method has a unique combination of desirable properties: it can move large
distances in a complex misfit landscape and escape from local minima to find the global
minimum. The method solves the general statistical equation for the parameter estimation
problem using sampling. We validated the proposed method using synthetic capillary pres-
sure data, and applied it to three carbonate rock samples.

1.5 Objectives

The main objective of this work is to model multiphase flow in carbonate sedimentary rocks.
Within this sedimentary rock group, this work is specific to a data set from a reservoir in
the Middle East . This work focuses on using routinely acquired measurements, such as
mercury intrusion and oil/water capillary pressure, to predict relative permeabilities.

The core idea behind our study based on HMC is that interaction of parameters leads to
complex collective behaviour. Stochastic Inversion allowed us to generate large amount of
simulation data. And certain properties/characteristics of pore-network models conditioned
to data only emerge and thus become visible when dealing with lots of simulations .

1.6 Contributions

This is the first application of HMC to pore-network model parameter estimation, in partic-
ular to the complicated case of carbonates and using only capillary pressure as the only data
to constrain the inversion algorithm. The findings are unique in the sense that HMC has
allowed correlations to emerge that contribute to an ongoing debate about wettability in car-
bonates. These correlations challenge the usual assumption that microporosity is water-wet
and only large pores maybe oil-wet.
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1.6.1 Contributions

• We developed a methodology to fully characterise lattice network parameters only
with routinely acquired capillary pressure data.

• We developed a new implementation of Hamiltonian Monte Carlo stochastic inver-
sion.

• We developed a Nonparametric representation of the pore-size distribution based on
information entropy, with equal information per bin.

• We developed a new pore-size distribution estimator.

• We validated the methodology using a synthetic case with a difficult pore-size distri-
bution.

• We successfully applied the methodology to three very different carbonate samples.

1.7 Organisation of the Thesis

This thesis is divided into eight chapters. Chapter 2 reviews the previous research of esti-
mation of pore-network models to predict the relative permeability of sandstones and car-
bonates. Chapter 3 introduces the available carbonate data set. Chapter 4 presents a method
for scale-independent parameterisation of the pore-size distribution. The key concept is the
Shannon information. The technical aspects of implementing Hamiltonian dynamics cou-
pled with stochastic steps, which forms the core of the Hamiltonian Monte Carlo (HMC)
inversion method, along with the pore-network model are presented.

In Chapter 5, the HMC algorithm is benchmarked to an analytical problem. Application
of the proposed theory and methods to a synthetic case is demonstrated in Chapter 6. The
first part of this chapter investigates the effect of recovering the true pore-network model
parameters generated in a large network using a small network for the inversion. The sec-
ond part of Chapter 6 focuses on the advantages of the proposed parameterisation. The
proposed pore-size distribution parameterisation approach is compared with a log-uniform
parameterisation, and suggests that care is required when there are several orders of magni-
tude difference in pore sizes. The effects of pore-network model lattice size and statistical
temperature are also investigated in a statistical context.

Chapter 7 applies the methods to a real carbonate data set. This chapter is divided
into three parts. The first part focuses on inversion of the pore-network model structural
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parameters, and the second part applies the HMC to the inversion of pore-network model
wettability parameters. The last part of the chapter uses a full set of estimated parameters
to predict the imbibition relative permeabilities, and the importance of microporosity is
discussed in detail together with its implications.

Finally, Chapter 8 summarises the findings and presents recommendations for possible
new research directions.



Chapter 2

Literature Review

2.1 Introduction

The purpose of this literature review is to provide the context of this work and give an
overview of the key research in this area (Sections 2.3, 2.5 and 2.6). The method is devel-
oped in detail in Chapter (4), and additional specific references will be given.

Characterising porous media involves two interrelated aspects. First, the pore sizes and
the connection between them, i.e., the structure of the porous media (Section 2.3). The
second aspect is the wettability, which describes the multiple immiscible phases that are
in contact (Section 2.5) and can be correlated with the pore size. Section 2.3 reviews how
the structure of porous media is characterised at the pore scale. This can be essentially
performed in two ways.

First, indirect observed data is used to construct a single model to describe the porous
media. This model simulates the behaviour of real porous media. The important role of
micropores (microporosity), and their connection with wettability mainly distinguishes car-
bonate rocks from clastic sedimentary rocks. The micropores result in an extremely large
variation in the pore sizes in the internal structure of the rock, and influence the distribution
of oil, water, and gas within the porous media. The deterministic nature of the approaches
reviewed in this section raises questions about the uniqueness of the solution to the inverse
problem.

The second approach involves methods that seek an exact representation of the porous
media as if it was a direct measure. These methods have limitations in terms of resolu-
tion and the representative elementary volume (REV). The methods that use this approach
are micro computerised tomography (µ-CT) and algorithms that statistically reconstruct an
exact representation of the porous media. There is an intermediate step that extracts the
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network from the void space of these reconstructed porous media involving assumptions
without a single solution.

Section 2.5 discusses wettability, i.e., the affinity of fluids for the solid surface, which is
an additional characteristic of the complete porous-media/fluid system. The first part of this
section explains the concept of wettability, the methods to quantify wettability, and the effect
of wettability on capillary pressure. Even though there are indices that quantify wettability,
they might not completely convey the underlying wettability at the pore level. The second
part of this section explains the relationship between wettability and pore structure, and
determination of contact angles from capillary pressure measurements.

Section 2.5 describes how wettability is accounted for at the pore scale. The multiple
wettability scenarios at the pore scale can produce similar behaviour at the scale of capillary
pressure measurements. The capillary pressure depends on both the wettability and the pore
structure.

2.2 Pore-Scale Modelling Aspects of Reservoir Engineer-
ing

Proper understanding of the physics at the pore scale can incorporate knowledge about var-
ious aspects from large-scale production strategies to detailed description of laboratory ex-
periments. Ultimately, at the field scale, the quality of production forecasts will be deter-
mined by whether the measurements made in the laboratory are representative of the in situ
conditions in the reservoir.

Different layer sweep efficiencies can essentially give the same oil recovery at water
breakthrough (Fig. 2.1). Capillary, viscous, and gravitational forces affect the vertical dis-
tribution of saturation (Fig. 2.1). Thus, it is necessary to consider all of these forces and
ensure that the dynamics in the reservoir is satisfactorily represented.

Generally, reservoir engineers have to continuously adjust field-scale models. One of
the reasons is that some of the pore-scale behaviour of the capillary pressure is ignored in
field-scale reservoir simulators. Positive capillary pressure is effective in promoting cross-
flow towards low permeability layers (Fig. 2.1, Pc,ow > 0), increasing the vertical sweep
performance in which the fluids are swept. The opposite effect is caused by negative cap-
illary pressure, which delays cross-flow until highly permeable layers are depleted. Taking
wettability into account in field-scale reservoir simulations can have a large effect on the
recovery factor [245] (Fig. 2.2b), not only the sign of the capillary pressure, but also its
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functional form (Fig. 2.2a).
Microscopic efficiency is a crucial reservoir engineering aspect of any oil recovery pro-

cess. The previous example discussed the vertical efficiency of water-flooding. The expres-
sion of microscopic displacement efficiency Em = Soi− Sor/Soi quantifies the maximum
potential of oil recovery and involves the initial (Soi) and residual oil saturation (Sor) [266].

Fig. 2.1 Assessment of the effect of considering capillary pressure by simulation of three
water-flooding scenarios: positive, zero, and negative capillary pressure. Different layer
sweep efficiency can give essentially the same oil recovery at water breakthrough (cases 3a,
3b, and 3c) but the fluid distribution is different because of the wettability [245].

a b

Fig. 2.2 (a) Different negative capillary pressure curves; (b) Recovery factor versus cummu-
lative water injected from field-scale reservoir simulations using capillary pressure curves
in (a) [245]

There are essentially two types of mechanisms observed in laboratory experiments. (1)
In fluid/rock systems in which the rock exhibits a strong preference for being in contact
with the water phase (i.e., strongly water-wet systems), the oil phase is left behind as the
water front sweeps the medium. This oil phase is located in disconnected oil-saturated clus-
ters. Thus, Em reaches a maximum value after one pore volume of injected water. Further
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injection of water is incapable of pushing out the disconnected oil clusters and there is no
significant additional oil production. Similar behaviour but with even higher oil recovery
has been observed for weakly water-wet conditions [278]. (2) In fluid/rock systems in which
the rock exhibits mixed-wet, intermediate-wet/neutral-wet (mixed-wet will be used to refer
to these systems: mixed-wet and intermediate-wet/neutral-wet systems), and oil-wet be-
haviour (Section 2.5 gives a more detailed definitions of these systems), the oil phase shows
continuity even at very low oil saturations. Thus, oil recovery is a function of the number of
pore volumes injected. These two conditions are important to design the recovery process.

The microscopic efficiency in mixed-wet systems shows counterintuitive behaviour in
terms of the absolute permeability. Absolute permeability is an intrinsic property of porous
media. The microscopic efficiency correlates well with the absolute permeability in the
majority of rock/fluid systems, except for mixed-wet systems. The microscopic efficiency
in mixed-wet systems seems to be independent of the absolute permeability even at very
low absolute permeability [238].

Wettability depends not only on lithology, but also on the crude oil composition. Study-
ing the effect of wettability on water-flooding performance has a long history in the oil
industry. There is a common laboratory practice of studying the alteration of the initial wet-
tability of porous media by putting the rock surface in contact with crude oil and brine for a
long period of time in an attempt to simulate geological time. Bobek et al. [50] found that
combining different sets of core materials (carbonates and sandstones) with different types
of crude oil from the Texas basin resulted in uncorrelated behaviour between the crude oil
and the lithology. Crude oil can affect different types of rock lithology in different ways and
the same lithology is affected differently by different crude oils.

Wettability is important to identify the optimum conditions for oil recovery. The en-
hanced oil recovery (EOR) process needs to know the potential of the reservoir in terms of
remaining oil. Bobek et al. [50] found that water-wet cores led to more initial recovery than
oil-wet cores. This highlights the importance of evaluating the wettability to identify the
potential of a reservoir for EOR and to determine whether there is a mechanism to shift the
wettability to recover more oil. The wettability of the rock controls the optimum conditions
for oil recovery (Fig. 2.3) and incorrectly characterising the wettability can directly affect
the design of production facilities. This may seem to be a strong justification for investing
resources in determining the wettability. In addition, not only are laboratory experiments
necessary, but care and effort also needs to be taken in interpreting laboratory measurements
[245].

The laboratory protocol is based on the assumption that all reservoirs are water-wet be-



2.2 Pore-Scale Modelling Aspects of Reservoir Engineering 15

Fig. 2.3 Recovery factor as a function of contact angle. The line across the curves indicates
WOR= 25. Figure taken from [50]

cause oil migrates into the rock body that was initially filled with water. Therefore, core
cleaning is a laboratory protocol that seeks to render the rock water-wet to calculate the ini-
tial saturation distribution in the reservoir regardless of the actual conditions of the reservoir.
The assumption of strongly water-wet conditions may influence interpretation of capillary
pressure measurements, especially in cases where the reservoir is actually intermediate- or
oil-wet [12]. The shape of the capillary pressure curve changes, causing underestimation of
the vertical distribution of saturation (Fig. 2.4).

Introducing imbibition capillary pressure in field-scale numerical simulation models en-
sures that the vertical saturation distribution match the wire-line log [162]. Many reservoir
engineering studies underestimate the effect of capillary pressure and it is often ignored
(scenario Pc,ow = 0 in Fig. 2.1). Including imbibition capillary pressure in the field-scale
numerical model significantly reduces the predicted water-cut in producers located towards
the low part of the flanks of the reservoir structure compared with simulations assuming
Pc,ow = 0. This helps to define a strategy to place the producers closer to oil–water contact
to increase oil recovery [162]. The distribution of wettability across the oil zone can be
complex and directly affects the water-flooding performance [294].

Figure 2.5 shows the variation of wettability with depth in terms of the wettability in-
dices (Amott and United States Bureau of Mines (USBM) wettability indices will be ex-
plained in detail in Section 2.5.1). There is a clear indication that the wettability of the
reservoir changes from water-wet at the bottom near the water–oil contact to intermediate
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Fig. 2.4 Effect of contact angle (the upper right corner shows the association of symbols and
contact angles ϑT ) on drainage capillary pressure [275]. The figure shows that the relative
shapes of the curves change as the contact angle increases. Figure taken from [275]

and/or oil-wet behaviour at the top. The oil wetting character increases towards the top of
the oil column and is correlated with the decrease in water saturation.The large variation
in the wettability indices may influence the water-flooding performance. The laboratory
measurements of residual oil saturation with depth varied by five times.

The variation of wettability with height affects the oil recovery in carbonate reservoirs
differently than in sandstone reservoirs. The Prudhoe Bay reservoir, a giant oil reservoir
in North America, shows mixed-wet behaviour towards the top of the geological structure
while more water-wet behaviour is observed near the water-oil contact [177]. In sandstone
reservoirs, the vertical position has a significant effect on the relative permeabilities, and oil
recovery is highly correlated with the absolute permeability [139]. However, in mixed-wet
carbonate reservoirs, the residual oil saturation seems to be independent of the initial oil
saturation and absolute permeability even for extremely low residual oil saturation values
[238]. Mixed-wet systems do not show the usual correlations found in sandstone reservoirs.
Many attempts have been made to correlate the static geological description of the reservoir
(i.e., depositional facies) with flow properties [238, 292, 375].

Generally, the mineralogy in sandstone rocks creates mixed-wet systems with fractional-
wet behaviour. (Section 2.5.3 will discuss the concept of heterogeneous wettability, such as
fractional-wet behaviour). Hamon [138] found that none of 26 wettability measurements at
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Fig. 2.5 Variation of wettability (measured by wettability indexes) with depth in a carbonate
reservoir. Figure taken from [294].

different heights above the water oil contact in a sandstone reservoir showed fractional-wet
behaviour despite the increasing amount of kaolinite, which is believed to be responsible
for producing more oil wetness. The authors posed the question of whether the presence of
kaolinite clay modifies the pore shape. Therefore, the pore shape might have more effect on
the wettability than the presence of kaolinite in producing fractional-wet behaviour [138].

Mixed-wet carbonate reservoirs also show counterintuitive behaviour of other proper-
ties, such as water-flooding entry pressure and connate water saturation. It might be intuitive
to think that a medium with higher hydraulic conductance will allow better displacement of
the fluids saturating the porous media. The oil displacing water from the porous media in
quasistatic conditions (i.e., drainage capillary pressure) shows a correlation with the abso-
lute permeability. In contrast, in mixed-wet carbonates, very low connate water saturation
has been observed even for absolute permeabilities of 1 mD [375]. Furthermore, water-
flooding entry pressure seems to be independent of the absolute permeability of porous
media [238, 375]. The above considerations suggest that the wettability at the pore level are
important during water-flooding [257].

To obtain a correct result it is necessary to incorporate capillary pressure for convergence
of the macroscopic equations that model flow in porous media at the reservoir scale [166].
capillary pressure and relative permeabilities are petrophysical properties and depend on the
direction of saturation changes (i.e., hysteresis). Field-scale reservoir simulators are fitted
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with empirical hysteresis models that incorrectly predict hysteresis patterns compared with
authentic hysteresis predicted from pore-scale modelling, leading to underestimation of the
predicted oil recovery. Pore-scale modelling is a useful tool to calculate correct scanning
curves. These curves depend on the initial water saturation, which depends on the vertical
height from the water oil contact [166].

Network modelling is a process-based method that can incorporate any of the various
pore-scale phenomena, track the processes as they happen, examine the consequences, and
generate capillary pressure and relative permeabilities to supply field-scale reservoir simula-
tors that integrate the pore scale with macroscopic geological features. Moreover, Buckley-
Leverett analyses using pore scale simulated relative permeabilities curves showed that the
most efficient displacement actually takes place in a system containing approximately 50
percent of oil-wet pores [257]. This is in line with core floods results indicating that the
most efficient immiscible displacement is obtained with both, oil and water, capable of
spontaneously imbibing into the porous media [254]. Pore-scale modelling can determine
the combined conditions to understand laboratory experiments.

The ability to model a physical process at the pore scale can provide a way of cali-
brating field-scale reservoir models, screening and planning EOR strategies, and designing
meaningful laboratory experiments.

2.3 Characterisation of Pore-Network Model the Structure

In this section we review the use of lattice network models combined with indirect mea-
surements of real samples as an approach to characterise pore-network model structures
[33, 163, 221, 252, 269, 314, 319, 378, 379, 381, 383, 384]. Hereafter, we will refer to
these approaches as indirect methods. However, few studies using this approach have made
predictions of data that are not used as matching data. All of these indirect approaches in-
corporate the wide range of pore sizes in the pore-size distribution, and the results agree
well with mercury intrusion capillary pressure (MICP) measurements. Most of these in-
direct methods have combined additional data with the MICP, and do not confirm that the
obtained pore-network model parameters are unique. However, in general, the main prob-
lem with using lattice pore-network models and pore-network models is the uniqueness of
the estimated pore-network model parameters [51, 160, 360]. Capillary pressure measure-
ment predictions are not sufficient to predict the relative permeabilities, because the data
being predicted are used to characterise the network model. Additionally, few studies have
reported relative permeabilities predictions from experimental data.
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2.3.1 Indirect Methods

MICP

Fitting the MICP, porosity, and absolute permeability using a network-model simulator does
not guarantee uniqueness of the solution to predict the transport properties [207, 255]. Even
manually fitting simulated data generated by the network model can produce multiple out-
comes [255]. Fitting is an important part of direct methods and usually involves fitting the
MICP. Forced intrusion of mercury into a porous material is usually used to characterise
the pore-space microstructure. Washburn [403] suggested a method to obtain a pore-size
distribution from measurements of the volume injected versus the pressure applied, and this
methodology became routine after the work of Drake and Ritter [93] [329]. Purcell [316]
introduced the procedure to the petroleum industry. Since then, reservoir engineering cal-
culations routinely use MICP curves measured for reservoir rock samples.

However, pore-size distributions derived from MICP will always overestimate small
pores. On its way to the interior of the rock, mercury is likely to come across smaller
pores than some of the pores in the interior. Larger pores are therefore only invaded at high
capillary pressure, and are hence incorrectly assigned to the small pores in the pore-size
distribution. Thus, the number of pores entered through small pores will be overestimated.
Quantitative evidence of this effect is provided by comparing pore-size distributions ob-
tained by photomicrographic (two-dimensional (2D) photomicrographs also do not provide
the true pore-size distribution) techniques with pore-size distributions determined from mer-
cury injection pressures [97].

The usual method to determine a pore-size distribution from MICP data assumes that
the pore volume invaded after a particular pressure increment is contained in pores of radius
equal to that of a cylindrical capillary that would be invaded at the given pressure (Chapter
4 will introduce a variation of this method). Geologists commonly use Thomeer hyperbola
curves to match the MICP and describe different porous systems in carbonates [71]. The
classic experiment is very rapid and simple. The amount of mercury injected into a sam-
ple increases as the pressure of mercury is increased step-wise. At each step, mercury is
pushed against the capillary forces into progressively smaller pore cavities. This is known
as pressure-controlled measurement of MICP.

Volume-controlled experiments seem to provide more information to characterise porous
media than pressure-controlled experiments [417]. Another interesting mercury intrusion
experiment consists of keeping the pressure constant and observing the fluctuation in pres-
sure owing to Haines jumps [125, 133, 273]. When the volume is kept constant, the shape
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of each mercury meniscus adjusts to accommodate the pore shape and pressure difference.
The capillary pressure follows the Laplace equation, which is inversely proportional to the
mean radius of curvature of the mercury meniscus. Fluctuations in the curvature cause
fluctuations in the capillary pressure, and modelling these fluctuations provides a good de-
scription of the porous media structure [376]. Unfortunately, this experiment has received
little attention in industry and it is not routinely performed as a counterpart to conventional
pressure-controlled mercury porosimetry.

There is extensive literature on mercury intrusion simulators and retraction experiments
[15, 66, 163, 183, 191, 253, 314, 323, 380, 382]. However, these simulators have been used
to study the effect of network parameters without considering the uniqueness of the solution.
Few of these studies have made forward prediction of data that are not used as matching
data. Analytical calculations using parameterised pore-size distributions and power-law-
type volume relationships along with fully accessible porous media readily show that the
volume and pore-size distribution can compensate each other to produce similar capillary
pressure behaviour [258].

Application of Indirect Methods to Real Rock Samples

Adding additional constraints may reduce the number of possible outcomes. Some inves-
tigators have assumed that the pore-size distribution follows a Weibull probabilistic distri-
bution function (PDF) [33, 163]. This choice may be related to the fact that the Weibull
distribution offers some flexibility despite it being a parametric PDF. These studies only
looked at a few simulations (five simulations). The network model had similar parameters
to the ones that are going to be introduced in Chapter (4). Although this approach is inter-
esting, it does not account for the distribution of coordination numbers and the variation of
the volume exponent (which will be introduced in Chapter 4). They focus on investigating
the effect of the relationship between the formation factor and the selection of the pore-size
distribution for a given wettability.

Microporosity plays an important role in the capillary pressure [416], although it is of-
ten ignored. There are various definitions of microporosity. Here, we define microporosity
as the porosity associated with pores less than 10 µm in diameter. This is related to the
maximum resolution to reliably determine pores in 3D µ-CT images. Scanning electron
microscope (SEM) images can reach sub-micrometer resolution. Youssef et al. [416] de-
termined the microporosity from high-resolution SEM images and incorporated it as an
embedded analytical virtual network connected to the nodes of the macroporosity lattice
network constructed based on the pore-size distribution from 3D µ-CT images.
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Increasing the number of parameters increases the solution space, requiring robust meth-
ods to obtain reliable parameters. While MICP relates pressures and volumes, the accessi-
bility function is a parallel concept in terms of the fraction of pores available for invasion
at each mercury pressure level. Thus, the accessibility function and MICP are linked and
convey information about the connectivity [163, 221, 252, 314, 381, 383]. Tsakiroglou et al.
[378] proposed multistep iterative workflow for matching of the MICP and nitrogen sorp-
tion (Fig. 2.6 shows the workflow). They stressed that the critical point is the initial guesses,
which are the bottle neck for the performance and the quality of the results. A parameterised
analytical accessibility function incorporates a polygonal description of the pores in which
the pore wall angularity is one of the parameters to optimise. The pore volume follows a
power law (which will be introduced in Chapter 4). The optimisation step is determinis-
tic (a commercial package for nonlinear parameter estimation is ATHENA [364]) and it is
performed via the parameterised accessibility function. The parameters are the percolation
threshold and the accessibility function slope after the percolation threshold.

Deterministic methods are not able to guarantee that the global minimum is found, which
is why they are highly dependent on the initial guesses. In addition, they lack a mechanism
to escape from local minima [21, 343]. Despite their shortcomings, deriving pore-size distri-
butions from MICP and nitrogen adsorption has been widely applied to obtain initial guesses
for analytical models based on parameterised accessibility functions.

Previous work on carbonates has been limited to assessing the quality of the proposed
approach on the basis of matching the MICP [31, 164]. Dual-porosity structures are char-
acterised by the primary (matrix) porosity and secondary porosity consisting of vugs or
fractures. Lattice network models take into account the matrix by average values of its
properties and a virtual network linking the macropore network. The volume exponent is
assumed to be equal to zero (Chapter 4 will introduce this parameter). Therefore, the pore
volume is constant regardless of the size. The vug lattice network is constructed by ran-
domly placing vugs using the pore-size distribution obtained from the procedure described
above. The vug network is attached throughout the virtual network, representing the ma-
trix with homogeneous capillary pressure and conductance calculated from the mean radius
[31].

There is often a tendency to classify as unimodal pore-size distribution to bell shape
MICP based pore-size distribution. The variety of mercury intrusion derived pore-size dis-
tributions indicate that there is a diversity of possible shapes in which the predominance of
microporosity or macroporosity or both along with the range of pore size and diagenetic
processes will produce a typical character. However, the common pattern of bell shapes in-
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Fig. 2.6 Workflow for the multistep optimisation process to obtain network model parame-
ters from MICP data and nitrogen sorption. Figure taken from [378].

a
b

Fig. 2.7 (a) Pore-size distribution derived by combining simultaneous measurements of the
capillary pressure; (b) nuclear magnetic resonance (NMR). Figures taken from [31].
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dicates shielding effect of small pores as mercury percolates in the media before reaching the
percolation threshold ( Section 4.2 expands on this subject). Therefore, whether the under-
lying pore-size distribution is uniform or unimodal, the MICP based pore-size distribution
will always be unimodal between some bounds in the porous media. If the underlying dis-
tribution is bimodal and the modes are separated enough, the bimodal pattern in the MICP
based pore-size distribution is preserved however one of the modes may be shifted due to
the shielding effect. In Chapter 6 we will test our method for a wide uniform distribution.

Fig. 2.8 Diagram showing the variability in petrophysical properties for carbonates and
sandstones as function of the measurement scale [75].

Carbonates are mainly characterised by a strong diagenetic footprint introducing large
variability in all length scales compared with sandstones (Fig 2.8). This variability chal-
lenges the deterministic characterisation of carbonates. The missing scale in carbonates
(patterns of variability similar in all scales Fig. 2.8) compared with sandstones points to-
wards a scale invariance which appears often in nature. Scale invariance indicates that the
patterns or amplitude of variability repeat itself with similar features at all length scales.
This makes appropriate the transformation of the estimator in the pore-size distribution and
shape factors distribution, one of which will be introduce in Section 4.2.1. On the contrary,
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in sandstones there seems to be different patterns of variabilities for different scales (Fig
2.8).

The major advantage of NMR and also µ-CT (Section 2.3.2 discusses this method)
is that both are nondestructive techniques. Moreover, different fluids and particles can be
added to the fluids to study some interactions with the porous media and monitor the changes
in the porous media.

NMR interpretation of pore-size distribution could turn out to be very difficult. While
mercury intrusion capillary pressure depends strongly on throat size, the distribution of the
relaxation time of the fluid in the porous media so-called T2 distribution depends on volume
to surface ratio and surface roughness. T2 distribution is often scaled to match the MICP
based pore-size distribution estimator (Section 4.1 will introduce these estimators).

Carbonates are very complicated pore structures originated from living organisms and
very often with a strong diagenetic footprint that can strongly influence the T2 distribution
due to phenomena called pore coupling [118]. The important thing about these combined
phenomena is that information from MICP, petrography and expertise on the subject is re-
quired to identify and possibly correct the T2 distribution.

The advantage could be to use NMR as additional information to capillary pressure.
Simultaneously measuring the NMR response and capillary pressure data at different sat-
urations makes it possible to relate both measurements (Fig. 2.7) [269]. The pore-size
parametric distribution is taken as the fitting parameter to match the MICP.

There has been little discussion about the treatment of wettability (Fig. 2.10) Note the
large jumps in the capillary pressure (Fig. 2.10) and relative permeabilities (Fig. 2.10).
There is a tendency to assume that macropores are more oil-wet (larger advancing contact
angles) than micropores. Both micropores and macropores control the shape of the capil-
lary pressure (Fig. 2.9a , 2.10) and relative permeabilities (Fig. 2.11) curves. The oil-wet
character and the dual-porosity structure (early water breakthrough through the intercon-
nected vuggy structure) causes the intersection of relative permeabilities at rather low water
saturation (Fig. 2.11) (less than 17%).

Tsakiroglou et al. [379] reported one of the first studies to draw attention to the multi-
scale problem and combined two techniques used in petrology to qualitatively analyse the
microstructure of rocks. The combination of backscattering SEM (BSEM) and small-angle
neutron scattering (SANS) images was used to combine the large scale (BSEM) and the
small scale SANS [319, 379]. However, the method involves making a number of assump-
tions. They adopted a spherical pore shape. The small pores adopt a fractal model (power
law) with exponent equal to the slope of the MICP versus mercury saturation in the high
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a b

Fig. 2.9 (a) Imbibition capillary pressure in negative logarithmic vertical coordinates and
(b) imbibition relative permeabilities for the matrix and vugs networks of a carbonate rock.
Only one contact angle is assumed for both micropores and macropores, inducing a large
jump in the capillary pressure. Figures taken from [31].

Fig. 2.10 Oil/water capillary pressure of a dual-network for different contrast of permeability
and different wettability of the matrix. Modelling assumes that there is a superposition
of effects. The microspores act as a separate system. Macropores are more oil-wet than
micropores. Figures taken from [31].
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a b

Fig. 2.11 (a) Oil relative permeability and (b) water relative permeability of a dual-network
for different contrast of permeability and different wettability of the matrix. Figures taken
from [31].

pressure range. The pore-size distribution follows a linear combination of two log-normal
functional forms, one that characterises the fractal behaviour and one for the BSEM scale
behaviour. A second set of a linear combination of log-normal distributions was used to
model the macropores. The parameters that characterise these distributions, along with the
mathematical expression for the accessibility function, were tuned to match the MICP. They
used mathematical models of the accessibility function to simulate the MICP and the com-
mercial package ATHENA [364] for nonlinear parameter estimation [378]. They found a
significant overlap of the pore- and throat-size distributions (Fig. 2.12) and there seemed
to be a gap between the micropore and macropore distributions, which may be a conse-
quence of the initial assumption that the macropores are filled first and small pores are only
accessible through macropores.

The Euler number describes the spatial connectivity in image analysis. Vogel et al. [400]
proposed a size-dependent Euler number. This function relates the 3D Euler number to the
smallest pore radius derived from a 3D µ-CT image. The Euler number as a function of
the smallest pore radius describes the connectivity of the pore space on a size basis. The
process starts with the largest pores and locates them in the lattice network such that the
Euler number in the network agrees with the Euler number calculated in the 3D µ-CT 3D
image, and then continues following decreasing pore sizes. This method has been recently
implemented in the generation of a multiscale stochastic pore-network model [180]. The
contribution of the different scales is a tuning parameter.
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Fig. 2.12 Pore- and throat-size distributions obtained by the procedure proposed by
Tsakiroglou et al. [379]. There is considerable overlap between the pore and throat size
distributions. Figure taken from [379].

2.3.2 Direct Methods

Computed Tomography

The success of CT in medical tomography, has led to a higher resolution technique known
as X-ray µ-CT for small pieces of materials [99]. µ-CT produces cross-sectional slices of
the porous media that are combined using mathematical algorithms to generate a 3D image
of the porous media [72]. The maximum resolution of the 3D images is about 1 µm. The
maximum sizes of porous media data sets are around 20003 voxels [199].

In addition to being a nondestructive technique, a major advantage of µ-CT is that it
provides 3D visualization and characterization of the rock. It also allows time lapses to see
the changes in the porous media as given treatment takes place and allows correlation of the
changes with the rock textures [123]. However, the main disadvantage lies in the REV ver-
sus resolution problem. The REV of carbonates is usually larger than sandstones, because
of heterogeneities at all length scales. In addition there is a large fraction of microporosity,
which requires submicron resolution. For the sake of argument, one can consider capturing
small features with a single voxel, thus the voxel resolution should be around 0.05 microns.
On the other hand if the large pores have a diameter of between 100-400 microns, the data
set should be larger than 80003 voxels. It is challenging in all the different steps along the
workflow to acquire, process and manipulate a 3D image of this size.

The porosity, permeability, formation factor, NMR, and drainage capillary pressure in
strongly water-wet conditions can be directly calculated on the 3D image domain [141].
Moreover, the 3D image is a realistic computational domain for solving Navier–Stokes
equations [2, 36] and for Lattice-Boltzmann simulations [110, 339]. The method is non-
invasive, so the sample can be used for further tests [341]. µ-CT allows visualisation of the
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saturation changes as displacement occurs [73].
Pharmaceutics has also looked at the multiscale problem because the body accesses

drugs in tablets through percolation. µ-CT suggests that the majority of porosity is located
in large pores. In contrast, the pore-size distribution derived from the MICP (using the vari-
ation of the usual formula proposed by Ritter and Drake, Chapter 4 will explain variations
of the Ritter and Drake method) method seems to indicate that the majority of porosity is
located in small pores (Fig. 2.13). The majority of porosity in the pore-size distribution
derived from MICP is below µ-CT resolution. This appears to suggest that mercury has to
penetrate into pores smaller than 7µm to reach an internal cluster of large pores [104]. A
major drawback of these comparative calculations is that there is always a bias in the Ritter
and Drake method because of the many orders of magnitude variation in the pore sizes (this
issue will be discussed in Chapter 4).

a b

Fig. 2.13 (a) Pore-size distribution showing equivalent volume logarithmic differentiation
(variation of the usual Ritter and Drake method) using the µ-CT signal. (b) Actual volume
logarithmic differentiation using the MICP data for the same sample. The MICP has a peak
at around 0.2µm, which is below the resolution of µ-CT. The pore-size distribution from
µ-CT shows only the large pores. Figure taken from [104].

Numerical Reconstruction

Statistical parameters derived from thin-sections and photomicrographs combined with math-
ematical algorithms can produce 3D images of porous media, such as the ones measured
with µ-CT. The geological processes that produce sandstones are easier to describe than
those that produce carbonates rocks. Bryant et al. [55], and Bakke and Øren [19] developed
algorithms to simulate sedimentological and diagenetic processes, namely, process-based
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modelling (PBM), that generate 3D images of the pore space without the need for µ-CT.
Microporosity in carbonate rocks is the result of many complex geological processes. Car-
bonate rocks are different in genesis to clastics. Carbonate rocks are the final product of
many different processes that can involve living organisms. Moreover, there are lots of di-
agenetic processes that change the original porosity in carbonates. These two phenomena
are responsible for the microporosity in carbonate rocks that µ-CT cannot resolve. This has
motivated efforts to develop algorithms that derive statistics from the microstructure imaged
by high-resolution SEM beams [20, 205, 227, 229, 293, 331, 407].

One of the main issues in the application of numerical reconstruction to carbonate rocks
is the reconstruction of a 3D image with a REV capable of integrating the various orders of
magnitude to include macroporosity and microporosity. In the field of geostatistics, multi-
point statistics are used to describe spatial features. Okabe [293] applied multipoint statistics
to reconstruct 3D images of carbonate rocks, the multipoint statistic model is derived from
a subset (512× 512 pixels) of a BSEM image. The template (9× 9 pixels) propagates the
statistics to generate the 3D image. The size of the final image is a cube of 1283 voxels.
This represents total dimensions of 45 µm in each direction. However, the work does not
report any pore-size distributions. This readily shows that the volume reconstructed is small.
The merit of the method was assessed by comparing the simulated and measured absolute
permeabilities.

SEM images of carbonate rocks readily show the presence of paleo-organisms that create
the porous space. Object-based reconstruction is able to reconstruct these features with great
detail [42–44, 210]. However, it focuses on comparing two-point correlation functions of
the reconstructed images with those calculated from µ-CT or SEM images, and pore-size
distributions and capillary pressure are not reported.

Network Extraction

In general, the methods described in the previous section show good agreement with bulk
properties such as porosity (some methods use porosity as an initial parameter). However,
pore-size distributions are rarely reported. Performing two- and three-phase calculations of
3D images is computationally demanding (for a recent review of the methods applied to 3D
images see Meakin and Tartakovsky [263]). This computational complexity has motivated
the use of simplified networks models extracted from the void space in 3D images.

Before obtaining a network model from the void space of a 3D image (µ-CT or mathe-
matical reconstruction), the raw images need to go through a set of image processing rou-
tines that clean the images and make them suitable for further calculations. µ-CT and
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process-based reconstruction require the grey scale to be divided into a binary domain com-
posed of solids and voids. This is not a trivial step, ad hoc assumptions have to be made,
and often much information is lost [341]. Some techniques apply histogram equalisation to
increase the grey scale distance or contrast between the phases. Interpolation with indicator
kriging and two threshold values in the grey scale distinguishes between voids and solids
more clearly [291]. When the 3D image is in a binary domain, there are then morphologi-
cal operations that smooth the image to make it ready for network extraction from the void
space.

Even in homogeneous rock such as Berea sandstone, µ-CT and numerical reconstruc-
tion show discrepancies (Fig. 2.14). Network extraction techniques produce a single voxel
skeleton from the porous media. The discrepancies between extraction methods are greater
for carbonate rocks (Fig. 2.15) than for sandstones (Fig. 2.14) [91].

Fig. 2.14 For a simple porous media such Berea, µ-CT and the network model differ when
used to calculate the NMR response. The abbreviations are as follows: Process-based re-
construction method (PBM) and maximal ball (MB).Figure taken from [369].

Fig. 2.15 In carbonates, the differences between µ-CT and the network model are greater
than those of sandstones. Figure taken from [369].
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The samples tested were sandstones and carbonate rocks with narrow pore- and throat-
size distributions (Figs. 2.16 and 2.17).

Fig. 2.16 Throat-size distributions for various network extraction methods (medial axis
(MA), maximal ball (MB), grain-recognition-based algorithms (GR) and velocity-field-
based algorithm (VF) ) . Nearly all of the sizes are concentrated within less than one order
of magnitude. Figure taken from [91].

Fig. 2.17 Associated pore-size distribution (medial axis (MA), maximal ball (MB),grain-
recognition-based algorithms (GR) and velocity-field-based algorithm (VF) ). The pore-size
distribution is very similar to the throat-size distribution shown in Fig. 2.17. Figure taken
from [91].

In high-porosity carbonate rocks, the greatest discrepancy in the network extraction
methods is in describing low coordination values (Fig. 2.18).

Absolute permeability is the property used to assess the quality of reconstructions. Fur-
ther studies of carbonates using multipoint statistics [293] highlighted that the REV does
not capture the complete range of pores sizes [7]. Usually, there is no indication of how the
image is divided into black and white. The image is small (54.1 µm) in the order of the size
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Fig. 2.18 Distribution of coordination numbers calculated from the extracted networks
showing that coordination numbers above 6 account only for less than 15% of all con-
nections. Medial axis (MA), maximal ball (MB), grain¬recognition-based algorithm (GR),
and velocity-field-based algorithm (VF). Figure taken from [91].

of one single macropore. There is a difference in magnitude of seven between the largest
and the smallest pore (Fig. 2.19). The coordination number distribution is usually skewed
to the right (Fig. 2.20) with few large values that are usually associated with artefacts [7].

Fig. 2.19 Pore-size distribution obtained from reconstruction followed by network extrac-
tion. More than 80% of the capillary elements have sizes in a narrow range (1.25–3 µm).
Figure taken from [7].
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Fig. 2.20 Coordination number distribution for the reconstruction of porous media followed
by network extraction shown in Fig. 2.19. 50% of the values are above 6. However, the
distribution is skewed to the right and concentrated between 3 and 5 [7]. Figure taken from
[7].

2.3.3 Comparative Studies

Methods for characterising and simulating flow in porous media have tended to focus on
how to translate measurements into model parameters. They have not investigated whether
adding additional parameters to the characterisation of flow affects the results. Scaling
theory states that the behaviour of certain properties is independent of how the systems are
characterised. For example, at a phase transition (percolation process), physical quantities
diverge (infinitive) and it is not possible to simulate a large enough system to characterise
the quantity with a given characteristic length of the system.

The product of the critical probability (or percolation threshold) times the coordination
number shows dimensional invariance. It depends only on the dimensionality and is inde-
pendent of the type of structure being considered [89, 419]. Even for high values of the
coordination number (e.g., 42) the relation still holds [351]. Furthermore, this not only
holds for lattices, but also for amorphous structures that are not regular lattices [345].

In the literature, there are examples in which simplified 3D networks have given good
predictions for steady state relative permeabilities (Section 2.5.5 will explain the difference
between steady and unsteady state relative permeabilities) in sandstones (Talash and Berea
sandstones) [115, 144]. However, 2D networks will give incorrect results for real porous
media irrespective of the complexity added into them [115].

The influence of the average coordination number on the percolation process seems to be
entirely captured by the average value for the porous medium [176, 178, 179]. Both lattice
and Voronoi random networks give nearly identical relative permeabilities. The Voronoi
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network has a distribution of coordination numbers varying from 3 to 12 [178]. Similar
observations have been made in studies of networks with different geometric structures, for
example, hexagonal and ditetragonal [66, 178].

Two networks with different complexity can give predictions with similar accuracy. For
a similar lattice network to the one used in the present thesis [367], fitting the lattice network
to two-phase data capillary pressure and relative permeabilities gave reasonable quantita-
tive predictions of three-phase relative permeabilities with the same accuracy as predictions
made using more complex network models [311]. There are other studies in which capillary
pressure and relative permeabilities were first both matched to predict other data that was
either more difficult to obtain [256, 396] or because the mechanical conditions of the rock
meant that some laboratory measurements were unreliable (carbonates and friable rocks)
[411].

Three pore-scale methods with large differences in complexity gave similar results, al-
though the work was applied to a rather homogeneous and small volume sample [400]. It is
worth comparing calculations using the lattice-Boltzmann model, a full-morphology model
(defining the mean curvature in the 3D image and calculating the capillary pressure at each
step, see references in [400]), and a pore-network model for determining the capillary pres-
sure. The predictions using these three methods are very similar (Fig. 2.21).

Fig. 2.21 Predictions using three pore-scale techniques of very different complexity to sim-
ulate drainage capillary pressure: lattice-Boltzmann (thick dashed line), full-morphology
model (solid line), and pore-network model (20 realisations shown as grey lines). Figure
taken from [400].
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2.4 Pore-Network Model Structure Parameter Estimation
Methods

Alternatively, a probabilistic formulation can be used to solve the issue of uniqueness in
the parameter estimation problem. The probabilistic model (explained in detail in Section
4.3) gives a general statistical equation for the parameter estimation problem, which is typi-
cally referred to as the posterior distribution of the model parameters. The general statistical
equation can be deterministically solved if it is assumed that there is a Gaussian distribu-
tion that describes the problem and there is a linear relationship between the parameters
and the system dynamic response [371]. The solution is a multivariate gaussian posterior
distribution of model parameters subject to some observations.Methods to determine the
model parameters that correspond to the maximum in the multivariate gaussian posterior
distribution include maximum likelihood point estimation and the steepest descent method
(see [116, 117, 343, 372] for reviews of the methods).

The Kalman filter (KF) is a parameter estimation method that works as a noise filter
for the multivariate gaussian posterior distribution. This method can automatically control
dynamical systems for problems in which new observables become available over time,
for example, weather, hydrology, and oil field development applications. The ensemble
KF (EnKF) is an improvement of the KF that attempts to treat the nonlinearities of these
types of problems [102, 103]. The algorithm updates each of the multiple models in a
linear fashion using the KF algorithm. The EnKF assumes that the prior distribution of the
model parameters and the distribution that relates the model parameters to the observed data
(likelihood) are Gaussian (strong assumption). However, these assumptions break down in
most cases [349]. Violation of the Gaussian assumption leads to various inconsistencies
between the vector (XXX) of observed data and the updated model parameters (θθθ ) [4, 418].
A number of methods have been proposed to improve the EnKF in nonlinear conditions
[34, 35, 153, 211, 232, 365].

The EnKF has been applied to pore-network model parameter estimation [151]. How-
ever, the pore-size distributions were narrow, and the variation was limited to one order of
magnitude. Additionally, the shape of the pore-size distribution was restricted. In pore-
network model simulations, all of the data are available simultaneously. Therefore, we can-
not reduce the computation time using the EnKF. Thus, any update in the model parameters
requires that the entire model be restarted from scratch to update the multivariate gaussian
posterior distribution.

The above methods have problems when attempting to solve a model-parameter-solution
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space for nonlinear problems that have multiple local minima. Arguments in favour of these
methods state that if the nonlinearities are not too severe then the methods can still be applied
under the assumption that the problem is approximately linear in the vicinity of the solution.
However, the vicinity of the solution is typically unknown. Therefore, these methods are
not considered to be robust because they may not be able to solve difficult problems [282].

Most optimisation methods for parameter estimation are based on a misfit function that
compares the observed (MICP data) and simulated values. This means that the methods
are dependent on good initial guesses. Moreover, local minima can result in ineffective
exploration of the solution space.

The Bayesian approach has been used extensively for inverse problems in subsurface
studies such as reservoir history matching and seismic inversion [17, 22, 26, 27, 38, 39, 63,
69, 78, 101, 131, 222, 223, 228, 270, 344, 366, 409]. Solving these problems involve a
great deal of uncertainties and integration of information. The forward problem used in the
inversion problem already has lots of assumptions about finer scale models used to interpret
raw data making it a very intricate and very complex problem to be solved.

It is beyond the scope of this work to discuss in detail the different methods that use
Bayesian approach. However, the information entropy method as considered by Jaynes
[173] emphases making weak assumptions with respect to the data. In that sense, little
research to date has focused on formulating the inverse problems from well logs that lead to
well correlations. It is frequently seen in integrated subsurface projects that two geologists
using the same raw well log data arrive at very different well log correlations leading to
completely different maps of properties regardless of the sophistication of the algorithm
used for mapping.

2.5 Wettability Evaluation

As well as water-flooding relative permeabilities, wettability alteration is related to the sur-
factant concentration and the initial contact angle [187]. Indeed, the change in the contact
angle during surfactant injection has a strong influence on the recovery factor [147]. To
identify the mechanism, it is important to design effective EOR surfactant formulations.
The surfactant formulation required to reduce the recovery factor to the optimum value for
maximising oil recovery will differ depending on the initial contact angle [67].

Reservoir wettability is one of the most important pieces of information for the efficient
design of any oil recovery process [190]. Many methods have been proposed to measure
wettability on a qualitative or quantitative basis (see [11, 76] and the references therein).
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a b

Fig. 2.22 Contact angle hysteresis is the variation of the contact angle between water-
advancing and water-receding contact angles. (a) Small hysteresis. (b) Large hysteresis.
Figure taken from [276].

Wettability is defined by the contact angle between the liquid and the solid when a drop
of liquid is placed in contact with a solid surface immersed in a second immiscible liquid
(Fig. 2.22). The contact angle is the most quantitative indication of wettability. For pure
liquids on smooth surfaces, there is a unique equilibrium value of the contact angle (intrinsic
contact angle) bounded by relatively reproducible maximum and minimum values.

The maximum angle is obtained by pushing a liquid over the surface, while the minimum
angle is obtained by pulling the liquid back from its equilibrium state. These two angles
are referred to as the advancing and receding contact angle, respectively. Contact angle
hysteresis is almost always observed for crude-oil/brine/rock systems, and can be greater
than 60° [182].

Receding contact angles are generally low (< 30°) and seldom exceed 60°, whereas
advancing contact angles show a wide range of variation (Fig. 2.22). The conditions pre-
vailing in reservoirs are very difficult to reproduce in the laboratory. Therefore, it is difficult
to determine the contact angle under reservoir conditions with the same complexity, het-
erogeneity, roughness of the rock surface, and chemical composition found in the reservoir.
Generally, when the angle is small, the surface is water-wet; when the angle is about 90°,
the surface is neutral-wet; and when the angle is large, the surface is oil-wet.

The majority of reservoirs are not water-wet under water-advancing conditions (imbibi-
tion) (Fig. 2.23), which is relevant for water-flooding purposes. Treiber et al. [377] used
an extensive data set to measure contact angles of crude-oil and simulated reservoir brine at
reservoir temperature and ambient pressure with polished quartz and calcite, which domi-
nate the mineral composition of reservoir rocks. There are obvious limitations representing
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the rock surface by a single mineral. However, this is an important finding, especially for
carbonate rocks because calcite is present in high quantities.

a b

Fig. 2.23 Advancing contact angles for (a) crude-oil/brine/quartz and (b) crude-
oil/brine/calcite systems. The figure shows that strongly water-wet and water-wet systems
are very rare especially for systems with a calcite substrate. The majority of systems are
neutral and oil-wet. Figure taken from [276].

2.5.1 Wettability Indices

Wettability indices characterise wettability. These indices use the imbibition and secondary
drainage capillary pressure cycle. The oil industry widely uses two indices: the Amott index
([10]) and USBM wettability indices determined using the method proposed by Donaldson
et al. [90].

The Amott index (IAH) is the subtraction of so-called oil and water indices (Fig 2.24) and
it is calculated with the formulae here below. In the Amott test, water is first displaced by oil
by centrifuging. The aim is to reach the initial water saturation (Swi in the reservoir before
oil migration (Swi is difficult to estimate [277]). The crude oil is then left for a period of 2
to 4 weeks at reservoir temperature to mimic the change of the initial wettability through
ageing during geological time.

The core at Swi is then immersed in water to allow spontaneous imbibition. Spontaneous
imbibition of water ceases at some change in water saturation (∆Sws). Then, water is forced
until a given minimum capillary pressure producing a change in water saturation of ∆Swt .
The wettability index to water (Iw) is given by Iw = ∆Sw/∆Swt . Similarly, the wettability
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Fig. 2.24 Graphical explanation of how to calculate wettability indices. Figure taken from
[352].
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index to oil is Io =∆So/∆Swt . The difference Iw− Io is used to characterise the wettability by
a single number (known as the Amott index, IAH). The exact conditions when the capillary
pressure is zero are difficult to assess, especially in mixed-wet systems [404]. The index
varies from −1 (strongly oil-wet) to 1 (strongly water-wet).

The USBM index takes into account the area under the capillary pressure curve as a
measure of the change in energy because of wettability alteration. The wettability number is
defined as Nw =log(A1/A2), where A1 is the area under the secondary water-drainage curve
(drainage from residual oil) and A2 is the area under the imbibition curve falling below the
zero capillary pressure axis. The areas are shown in Fig. 2.24.

2.5.2 Wettability and Roughness

Research on contact angle hysteresis has demonstrated that there are various types of contact
angles depending on whether the water is advancing or receding and the relative surface
energies of the phases [279]. The intrinsic contact angle (ϑ T

ow) is the angle measured on
smooth low energy surfaces under static conditions. The advancing and receding operative
contact angles (ϕadv

ow and ϕrec
ow ) are calculated from capillary pressure measurements at the

core scale and depend on the displacement direction. The advancing and receding apparent
contact angles (ϑ adv

ow and ϑ rec
ow ) are the angles measured on rough surfaces at the pore scale.

The apparent contact angle seems to be dominated by the effect of roughness. Morrow
[274] examined the effect of roughness on the hysteresis behaviour of the contact angle
using polytetrafluoroethylene (PTFE) tubes and a wide range of fluid systems to cover the
complete range of possible intrinsic contact angles. PTFE was used because it allows repro-
ducible results to be obtained and thus the effect of surface roughness can be investigated.
Real rock surface are high energy surface that introduce variability in the results and might
complicate the analysis. It was found that for a given intrinsic contact angles below 45°, the
apparent advancing contact angle was lower than the intrinsic contact angle. Conversely, for
a given intrinsic contact angle above 45°, the apparent contact angle was greater than the
intrinsic contact angle [274]. These observations are in agreement with [120].

Moreover, a study of synthetic cores has suggested that the contact angle hysteresis is
the same as that of roughened cylindrical tubes [279]. This suggestion contradicts calcu-
lations of the entry pressure for different pore shapes [65, 264, 309, 317, 415]. Morrow
[275] observed remarkably close agreement between operative contact angles at the core
scale (ϕadv

ow and ϕrec
ow ) and apparent contact angles on rough surfaces (ϑ adv

ow and ϑ rec
ow ). It

is unclear whether roughness or pore shape is dominant determining the intrapore contact
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angle. Chapter 3 will present similar observations made for the carbonate samples in this
study. However, average apparent contact angles may be associated to significantly different
distribution at the intrapore level.

The impact of pore shapes on wettability has three aspect linked together, pore shape
geometry, pore wall curvature, pore size, contact angle and wetting-films. There is complex
interplay between that makes our approach especially suitable to address the interaction
between these pore-network model parameters. This interplay leads to a multiplicity of
configuration. We will show later that grain shapes may be responsible for microporosity
wettability.

2.5.3 Heterogeneous Wettability: Experimental Observations

There are counterintuitive behaviours in wettability, such as a core initially saturated with
water will imbibe oil, whereas the same core initially saturated with oil will imbibe water.
This is not expected in porous media in which the wettability is the same throughout its
surfaces [13, 56, 138, 177]. When water-flooding for long periods of time, some native pre-
served cores spontaneously imbibe water and reach very low residual oil saturation, while
the same core rendered strongly water-wet shows much higher residual oil saturation [325].

The concept of heterogeneous wettability seeks to explain such counterintuitive be-
haviour. The experimental work of various investigators seems to indicate that compo-
nents of crude oil interact differently with the different minerals present in reservoir rocks
[129, 177, 184, 332]. This produces another type of wettability in which different parts of
the rock surface have different affinities for water and oil, suggesting that intrapore varia-
tion of wettability can also occur [54]. There are two possible underlying distributions of
surface wettability: fractional wettability when the wettability is uncorrelated with pore size
and mixed wettability when there is a correlation between wettability and pore size.

In initially strongly water-wet reservoir rocks, oil first invades large pores during oil mi-
gration. This scenario makes it likely that large pores will change their wettability towards
oil, while small pores that remain water-filled will persist as water-wet pores [338]. This sce-
nario is known as mixed wettability and explains the spontaneous displacement of both oil
and water [60]. There are other studies that confirm the higher recovery in weakly water-wet
media compared with strongly water-wet media, but they do not confirm the spontaneous
imbibition of both fluids [278, 305, 322, 401].

For an increasing fraction of oil-wet grains, the capillary pressure in fractionally wet
sand packs are parallel and the Swc values are almost the same (Fig. 2.25) [107]. The connate
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water saturation seems to be independent of the fraction of oil-wet pores. When the oil-wet
pores are correlated with the grain sizes, the capillary pressure curves are no longer parallel
and crossover the water-wet capillary pressure curve (Fig. 2.25b) [370]. Similar behaviour
has been observed for water-wet cleaned versus native state plugs [225, 335, 347, 406].

a b

Fig. 2.25 (a) Effect of fractional wettability on capillary pressure. For increasing fraction
of oil-wet grains, the capillary pressure curves are parallel. (b) Behaviour of a mixed-wet
system. A small fraction of the pores are oil-wet. Figures taken from [12].

In Fig. 2.26, the native state capillary pressure curve is lower than the cleaned water-
wet curve at low capillary pressure. The native-state capillary pressure curve then crosses
over with a higher Swc, which is in better agreement with the Swc measured by oil flooding
a native-state core [325, 338]. In contrast, Swc for a neutral or fractionally-wet core is the
same or slightly lower than Swc when the core is water-wet (Fig. 2.24). The proposed
interpretation is that oil first enters large oil-wet pores, explaining the lower entry pressure
compared with cleaned water-wet cores. The oil bypasses water in small water-wet pores.
Large pores filled with water may be surrounded by small water-wet pores, explaining the
crossover that leads to higher Swc (Fig. 2.26) [347].

There is a threshold in pressure beyond which the thickness of water-wetting films
reaches a lower limit and they collapse. This lower limit is related to the displacement
pressure for pores of a given size. When the films collapse, the surface is available to de-
velop mixed wettability [265]. A large number of studies on mixed-wet carbonates have
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Fig. 2.26 Two drainage capillary pressure curves measured in native and cleaned states.
Because of the scale of geological time, it may be an incorrect assumption to consider that
the fluids are still vertically distributed, as an strongly water-wet condition predicts. Figure
taken from Anderson [12].

shown similar behaviour [237]. This similarity suggests that secondary oil flooding in aged
rock may correspond to the capillary behaviour in native plugs.

2.5.4 Characterising Heterogeneous Wettability

McDougall and Sorbie [257] systematically studied heterogeneous wettability using a pore-
network model and varying the percentage of oil-wet pores in an initially fully oil-saturated
network (direct water-flooding at 100% oil saturation) for both fractional- and mixed-wet
models. They found that both the percentage of oil-wet pores and the type of heterogeneous
wettability model (fractional-wet or mixed-wet) affected the capillary pressure and relative
permeabilities differently. The next two sections describe the differences.
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Fractionally-Wet Systems

In the fractionally-wet model, the fraction of oil-wet pores is not correlated with the pore
size. Fractionally-wet systems have shown to spontaneously imbibe more oil than strongly
water-wet systems when the fraction of oil-wet pores exceeds the fraction of pores needed
for the system to percolate (Fig. 2.27) [257].

a b

Fig. 2.27 (a) Imbibition oil–water capillary pressure for both strongly water-wet and
strongly oil-wet conditions. (b) Fractionally-wet systems with various fractions of oil-wet
pores. Fractionally-wet systems can spontaneously imbibe more oil than strongly water-
wet systems. There is a jump when the process switches from invading water-wet pores to
invading oil-wet pores. Figure taken from [257].

Mixed-Wet Systems

In mixed-wet systems, less spontaneous imbibition is observed with increasing percentage
of oil-wet pores. Opposite to fractionally wet systems, the imbibition capillary pressure
in mixed-wet systems always comes to an abrupt end (Fig. 2.28). The Amott index is an
unreliable indicator of the water wetness because it includes spontaneous imbibition, which
can be greater in fractionally wet systems than in strongly water-wet systems [257].

Despite its shortcomings, the Amott index has been widely used to tune the distribution
of contact angles in network model studies [28]. Other approaches to predict relative perme-
abilities in fractionally wet and mixed-wet systems depend on tuning the contact angles to
match the residual oil saturation [6, 19, 47, 296, 311, 312, 386]. Distributions of advancing
and receding contact angles allow distinction between strongly and weakly wetted pores in
the network model [86] to account for the large differences between advancing and receding
contact angles seen in laboratory experiments [275]. There are more complex approaches
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a b

Fig. 2.28 (a) Imbibition capillary pressure for three fractionally wet system. (b) Imbibition
capillary pressure for three mixed-wet system. The jump shifts to the left in the mixed-
wet system compared with the fractionally wet system because water-wet pores have less
volume. The jump is more abrupt followed by a displacement at lower relative pressures
because the pores remaining to be invaded are larger and have greater volume. Figures taken
from [257].

that make use of the individual Amott indices, namely, water and oil indices [86]

2.5.5 Methods to Measure Relative Permeabilities

The Laplace equation describes the different displacement mechanisms fairly well [218].
Understanding the effect of wettability on the relative permeabilities is more difficult be-
cause it involves an additional parameter (pore conductance). Relative permeabilities ex-
periments are one of the more complex experiments to carry out. There are a number of
initial conditions, such as core plug homogeneity, initial reservoir water saturation, and
capillary end effects, that can make it difficult to derive relative permeabilities before con-
sidering the wettability [142]. There are three main core analysis methods to obtain relative
permeabilities, which are described below.

Steady State Method

This experiment is very time consuming. The pressure drop across the plug establishes a
constant flow of the two phases that determines the fractional flow. Stabilising the flow and
pressure at each fractional flow saturation is very time consuming (1–2 days or more). In
general, high flow rates (25–100 ft/day) are used to reduce experimental times and ensure
the accuracy of the measured pressure gradients.
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Regardless of the high flow rates used in the experiments (more than ten times greater
than the rates in the reservoir), the method seems to reproduce the dynamics of capillary
dominated flow. [126, 266, 302]. This might indicate that there is a capillary equilibrium at
the microscopic level [53, 100].

Measuring reliable relative permeabilities requires controlled conditions (Fig. 2.29).
The effect of the flow rate on the relative permeabilities is different under different wetta-
bility conditions. However, steady-state relative permeabilities are independent of the flow
rate and fluid viscosity [90, 324].

Fig. 2.29 Measuring steady state relative permeabilities is difficult and sometimes measure-
ments are hindered by laboratory noise. Figure taken from Heaviside [142].

Unsteady State Method

This method is faster that the steady state method and involves injecting one phase and
measuring the production of both phases and the pressure drop. The Buckley–Leverett
model is used to interpret the raw data. There is a discontinuity in the saturation at the
shock front. Therefore, saturation values below the shock front cannot be measured.

Centrifuge Method

The centrifuge method can measure very low wetting-phase relative permeabilities. The
centrifugal force produces the flow. This method is usually conducted on small core plugs.
A greater number of assumptions are needed to interpret the data. The rate of desaturation
at each rotation speed is measured and interpretation of this data can provide wetting-phase
relative permeabilities.
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2.6 Pore-Network Model Wettability Parameter Estima-
tion Methods

The wide range of pore sizes is the main problem in modelling carbonate rocks, and this is
linked to wettability. Because the effect of not characterising the entire pore size distribution
remains unclear, changes in the wettability depend on water film rupture. Water film rupture
also depends on the maximum pressure during the first oil flooding [24, 37, 74, 121, 152,
165, 202, 206, 356, 357].

Wettability is a crucial parameter for predicting relative permeabilities using pore-network
models. This involves assigning a contact angle to every pore for each process (i.e., drainage,
imbibition, and secondary drainage). In the last decade, research on pore-network mod-
els has included considerable effort into rigorously modelling the coexistence of multiple
phases in a single pore [46, 92, 111, 146, 249, 311, 312, 337, 388, 393, 394]. Regularly
shaped pores with angular cross-sections (e.g., square and triangles) have been proposed as
more realistic conceptualisations of actual pore space [201, 300].

These models have progressively captured more of the physics of the pore-scale dis-
placement mechanisms. However, no study has addressed the issue of characterising the
wettability parameters. The probability of nonuniqueness may increase if more complex
representations of the displacement conditions are used.

Contact angles (i.e., water advancing and water receding) are often measured outside
the porous medium [272]. pore-network model studies typically use measurements outside
the porous medium to populate the pore-network model. These simplified assumptions for
characterising the contact angles may be acceptable as initial attempts to modelling new
situations.

However, the prediction capability of pore-network models is the subject of debate in
the pore-network model community [51, 160, 360]. Some pore-network model studies have
claimed to predict relative permeabilities. These predictions are mainly for Berea and Bern-
heimer sandstone , which are rather homogeneous rocks. These rock samples are used
because they are common rocks for benchmarking.

The usual approach is to tune the bounds of a uniform distribution of contact angles to
match the residual oil saturation and wettability indices [168, 387]. From the viewpoint of
the inverse problem, the prediction is incomplete because residual oil is used, which is part
of the information being predicted. It can be argued that estimation of the relative perme-
abilities is more complicated than just matching the residual oil saturation and wettability
indices for lattice pore-network models [29, 33, 113, 256, 258, 320, 367, 396, 399], which
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contain additional parameters to define the pore-network structure along with the wettabil-
ity parameters. No studies have predicted imbibition relative permeabilities without using
drainage relative permeabilities to tune some of the lattice network parameters. Combining
the capillary pressure and relative permeabilities can provide a reasonably narrow estima-
tion of the network structure and pore conductance [259]. However, this method requires
the use of both the capillary pressure and relative permeabilities.

Other studies have used parameters that correlate with relative permeabilities, such as the
resistivity index, to constrain the lattice network parameters [29, 33]. However, although the
effect of a single contact angle for each population within the pore size distribution has been
investigated using sensitivities , the resulting capillary pressure behaviour does not seem
comparable with real data [32]. There have been attempts to characterise the wettability at
the pore scale using the USBM and Amott indices for wettability [80, 84, 85, 150]. However,
it is challenging to determine a one-to-one relationship with the contact angles because the
wettability indices exhibit considerable scatter, which indicates that there are additional
parameters that are not controlled.

Stochastic inversion with gaussian assumptions and a genetic algorithm have been used
to solve the inverse problem of pore-network model parameter estimation [151, 169]. How-
ever, either no relative permeabilities for imbibition were reported [151], or the relative
permeabilities for drainage were used in the optimisation algorithm [169]. In highly non-
Gaussian (nonlinear) inverse problems, the approach used by Holm et al. [151] can cause
the posterior probability density to be poorly represented by a mean model and covariance
matrix. For practical reasons, allowing departures from the assumed Gaussianity may be
relevant, so we should look for alternative estimators that are less sensitive to such depar-
tures.

Studies on contact angle hysteresis [275, 279] (Section 2.5.2) have led to analytical mod-
els of the hysteresis between advancing and receding contact angles [280]. These analytical
models have been implemented in pore-network models [387].

Using contact angles measured outside porous media does not include the nonlinear
effect of roughness on the contact angle [24, 57, 58, 148, 157, 216, 280, 333, 342] or the
change of roughness because of the change in wettability cause by asphaltenes [342].

There has been little investigation into predicting relative permeabilities for carbonate
imbibition. A small-size pore-network model (a reconstructed pore-network model that
was a few tens of microns long) was used to predict relative permeabilities for imbibition
[8]. The imbibition relative permeability for oil was fairly well predicted. However, the
imbibition relative permeability for water was underpredicted. This may be because the
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maximum drainage capillary pressure was less than the experimental value before the start
of imbibition. Water-wetting films rupture, and the minimum capillary pressure during
imbibition depends on the maximum capillary pressure during primary drainage.

In models with more complex treatment of the wetting films but simplified geometries
(triangular, square, circular, and star cross-sections), the question of uniqueness is more
problematic, and fits of similar quality can be obtained even with a single contact angle. This
leads to underestimation of the range of receding and advancing contact angles. Therefore,
further in-depth analyses of the concept of uniqueness of the inverse problem are needed.

The ability to implement additional physics at the pore scale has not kept pace with the
ability to characterise the wettability parameters. Estimation of pore-network wettability
parameters is considerably less developed. Attempts to establish a link among the wettabil-
ity indices and define the distribution of contact angles and pore-space fraction with a given
distribution are currently inconclusive. No study has predicted relative permeabilities for
imbibition without using relative permeabilities for drainage to tune some lattice network
parameters.

There has been little discussion on the distribution of contact angles. Characterisation
of porous media involves the interplay of parameters that are convoluted in the capillary
pressure behaviour. There has been observed the same patterns of contact angle hysteresis
in two systems with different geometrical complexity but with the same systems of fluids
and solid substrate [274]. The interaction of pore structure and wettability opens a number of
multiple solutions. Despite efforts made in identifying wettability models and quantifying
the wettability behaviour wettability indexes are not reliable. The distribution of contact
angles influence the spontaneous imbibition and have effects that are difficult to interpret
directly from two-phase capillary pressure ([86, 237, 257] ). A carbonate piece of rock with
a pore-size distribution of 4 to 5 orders of magnitude might well contain both expression of
heterogeneous wettability.



Chapter 3

Description of the Data

This chapter describes the experiments on carbonate rock samples from the Middle East that
were made available for this study. It consists of a subset of the extensive data set that was
comprehensively studied by Masalmeh and Jing [242].

Mercury intrusion data can be used to determine the model parameters that describe
the structure of porous media, namely the pore-size distribution, coordination number, and
pore-size versus pore-volume relationship. Chapter 4 will address the specific analysis of
the pore-size distribution. The oil–water centrifuge capillary pressure curves show the effect
of wettability for the different directions of saturation changes, and they will be used to infer
the pore-network model wettability. Centrifuge capillary pressure is often used to calculate
the wettability indices, which were discussed in Chapter 2 in relation to the estimation of
the fraction of oil-wet pores in pore-network models [86].

To facilitate the exposition, the process in which oil displaces water independently of the
underlying wettability starting from 100% water saturation will be referred to as drainage,
the process in which water displaces oil from the porous media starting from connate water
saturation will be referred to as imbibition or water-flooding. The aim of this chapter is to
familiarise reader with the data used in this study.

3.1 Special Core Analysis Data

Special core analysis groups reservoir rock types based on their mercury intrusion capillary
pressure (MICP) behaviour [244]. The rock types follow a petrophysical classification that
describes the pore space in terms of its fabric, namely, organisation of the pore space (Lu-
cia classification [224]) and the Dunham classification [98], which takes into account the
paleoenvironment where the sediments that made the rocks were deposited.
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Table 3.1 Thermodynamic properties of the set of fluids used in the experiments. σow , and
σHga are oil/water and mercury/air IFT respectively.

System IFT [mN/m]
σow 27
σHga 470

Table 3.2 Summary of all of the properties of the three samples. φ is porosity, K is absolute
permeability, Amott and USBM are the wettability indices, Sobs

wc is the observed connate
water saturation, and Sobs

or is the observed residual oil saturation.

Rock Type (Sample) φ [%] K [mD] Amott USBM Swc [frac] Sor [frac]
RT–I (S 28) 29.1 78.09 0.038 0.297 0.03 0.0548

RT–II (S 2 4) 28.7 13.5 0.015 -0.263 0.05 0.07
RT–III (S 2 20) 21.6 1.9 -0.01 -0.408 0.08 0.055

The interfacial tension (IFT) values of the oil/water (σow) and mercury/air (σHga) sys-
tems used in all of the experiments are given in Table 3.1

Table 3.2 summarises the petrophysical properties and wettability indices that are going
to be presented in this chapter.

3.2 Rock Type I - Sample 28

Rock type I (RT-I) is a fine to coarse grainstone associated with a high energy shoal and
beach paleoenvironment. The porosity is mainly of the intergrain type with grain texture
[224]. The range of absolute permeabilities is 40–800 mD with very low capillary entry
pressure. RT-I has the best reservoir quality in terms of absolute permeability. Table 3.3
gives the bulk properties of sample 28 (S 28), which is a member of RT-I. The MICP curve
for S 28 has low entry pressure that can be related to the presence of macropores, although
the absolute permeability is not particularly high.

3.2.1 MICP of S 28

The MICP will be used to characterise the pore-network model structure. The MICP is
routinely measured for small plugs or chips. It is a destructive experiment, so oil/water
capillary pressure and relative permeabilities are performed in adjacent plugs.
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Fig. 3.1 MICP of S 28.
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Fig. 3.2 Oil/water drainage capillary pressure of S 28.
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Fig. 3.3 Oil/water imbibition capillary pressure of S 28.
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Figure 3.1 shows the MICP for S 28. Because the capillary pressure spans around, five
orders of magnitude, a wide range of pore sizes is anticipated. Notice that multiple slopes
(see Fig. 3.1), suggesting a bimodal pore-size distribution.

3.2.2 Oil/Water Drainage Capillary Pressure of S 28

The plugs were cleaned to render them strongly water-wet. Figure 3.2 shows the primary
drainage oil-water capillary pressure.

3.2.3 Oil/Water Imbibition Capillary Pressure of S 28

After primary drainage, the core was aged with crude oil at reservoir temperature to restore
the wettability to the conditions that presumably occur in the reservoir. Water was then
injected in the aged core and the capillary pressure was measured. Figure 3.3 shows the
capillary pressure curve. A more detailed description of the laboratory procedure is given
in [247].

The first imbibition capillary pressure value was (Sobs
wc = 8.01%, Pobs

c,ow = 0.0) given that
the last saturation value in drainage at positive capillary pressure was Sobs

wc = 3% (see Fig.
3.2). Small spontaneous imbibition was evident. Stochastic inversion of this data will de-
termine the distribution of the advancing contact angles at the pore level.

In Fig. 3.3, the medium seems to have become entirely oil-wet as shown by all the
displacement for a negative capillary pressure during water-flooding. Unlike the studies in
bimodal samples discussed in Chapter 2, where the data followed distinctive trends, because
of the contrast between macroporosity and microporosity, there are no such trends evident
among the data for the imbibition capillary pressure. The residual oil saturation was very
low (Sobs

or = 5.6%).

3.2.4 Oil/Water Secondary Drainage Capillary Pressure of S 28

After the first water flooding, a second drainage curve was determined. Oil enters the core
plug at residual oil saturation with the same wettability as water flooding. Hardly any spon-
taneous oil invasion was observed (Fig. 3.4).

Figure 3.5 compares the capillary pressure curve for primary drainage (water-wet con-
ditions) and secondary drainage (altered wettability), where oil invades an aged medium at
residual oil saturation. Section 2.5.3 discussed heterogeneous wettability, and examples of
capillary pressure curves for heterogeneous wettability from the literature were shown.
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Fig. 3.4 Oil/water secondary drainage capillary pressure of S 28.
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Fig. 3.5 Comparison between oil/water drainage and secondary drainage capillary pressure
of S 28

As can be seen in Fig. 3.5 additional trapping of water occurs during secondary drainage,
possibly indicating that the displacement mechanism is different from the one occurring
during primary drainage. Similar to the capillary pressure data in native cores (Chapter 2),
the secondary drainage capillary pressure in Fig. 3.5 crosses over the water-wet primary
drainage capillary pressure curve.

In Section 2, we discussed how the choice of a drainage curve in an mixed-wet system
will affect the assessment of the transition zone in the reservoir. Figure 3.5 shows that if
the primary drainage curve is used in reservoir engineering calculations, which is usually
the case, the height of the transition zone will be overestimated compared with the vertical
distribution of the fluids at the actual wettability conditions in the reservoir. It could be
argued that oil migration into the reservoir rock took place at strongly water-wet conditions
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and the reservoir remained in a metastable state until it was discovered. However, the timing
factor is an important variable given that a a number of geological events could have taken
place during geological time that produce the disturbance needed to move the metastable
saturation distribution to the stable configuration.

3.2.5 Oil/Water Imbibition Relative Permeabilities of S 28

Figure 3.6 shows the steady-state imbibition relative permeabilities for S 28. The end-point
relative permeabilities of oil and water are similar. The water saturation at the intersection
of relative permeabilities is slightly lower than 50%. From the plotted data, the relative
permeability at the intersection is low, indicating a high multiphase interference effect.
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Fig. 3.6 Oil/water imbibition relative permeabilities of S 28.

3.2.6 Wettability Indices of S 28

Table 3.3 gives the USBM (United States Bureau of Mines wettability index) and Amott
indices calculated using drainage and imbibition capillary pressure curves

3.2.7 Estimation of Contact Angles from SCAL Data

This work focuses on three samples. The complete data, including more than 100 samples,
has been studied in detail and published in a vast number of articles [236–246]. However,
most of the samples do not have a complete data set (mercury intrusion capillary pressure,
full flooding cycle oil/water capillary pressure and steady state relative permeabilities). It
has been noted that imbibition seems to be a mirror image of primary drainage shifted by
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a saturation value given by the difference between the connate water and the residual oil
saturation, and it is also affected by the ratio of the cosine of the average apparent contact
angles. Based on that observation, Masalmeh and Jing [242] proposed an analytical method
(similar to the method discussed in Chapter 2) to calculate the average apparent advancing
contact angle by fitting both curves with an analytical equation. The method assumes that
after ageing, the change of the wettability is such that the pore filling sequence is the same
as primary drainage.

Observations in micromodel experiments show that the distribution of residual water af-
ter primary drainage makes additional routes available for water to invade the porous media
compared with oil invading the porous media at 100% water saturation. This will affect the
filling sequence of pores [213, 215, 218].The method also assumes that the intrinsic con-
tact angle during primary drainage is less than 60°. Therefore, the average apparent contact
angle is 0°[250, 279].

Wettability data was obtained by fitting an analytical model to drainage and imbibition
capillary pressure [242]. The model has the receding and advancing contact angles as free
parameters and assumes an invasion sequence of pore sizes. The method produces contact
angle distributions.

Figure 3.7 shows two empirical cumulative distribution functions (ECDFs) of the contact
angles, summarizing the values reported by Masalmeh and Jing [242]. When they applied
the method to bimodal samples, such as the one grouped in RT-I, two contact angles were
needed to fit different portions of the imbibition capillary pressure (Fig. 3.7), suggesting
different behaviour in the bimodal pore-size distribution samples compared with unimodal
samples.

3.2.8 Visual Features in Scanning Electron Microscope Multiscale Im-
ages of S 28

All carbonate reservoirs have undergone one or more different diagenetic processes that
produce complex visual patterns. Therefore, in this section we summarise some of most
general patterns in scanning electron microscope images at three magnifications scales (Fig.
3.10). However, this presentation is not intended as a deep petrographical analysis.

Carbonate rocks have diverse components, the most general classification (Foks’s clas-
sification) considers two groups of components: transported calcium carbonate grains such
as ooids (clast nucleus wrapped with concentric layer of calcium carbonate) and bioclast.
These grains are analogous to grains in sandstone. They are usually transported large dis-
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Fig. 3.7 Cumulative distribution function of the average apparent advancing contact angles.
Bimodal pore-size distribution samples [242]. (a) Small pores. (b) Large pores. The red
line indicates the median.

tances before being deposited [315]. The description of the images will be based on the
different porosity types which are shown in Figure 3.8.

On the other hand, the second group of calcium carbonate crystals are created in situ:
(1) microcrystalline calcite matrix, or micrite, which is fine-grained (finer than 4 microns
in diameter) carbonate mud; (2) microcrystalline sparry cement, or spar, is relatively clear
interlocking crystals of calcium carbonate, analogous to cement in sandstone [315]. Note
that spar can be primary cement or secondary recrystallisation of micrite into spar [315].
Figure 3.9 shows schematic representation of the second group. Calcium carbonate cement
is very important since recent cryogenic electron microscope images have shown that wetta-
bility alternation depends on the type of calcium carbonate crystal shape [235] which further
influence pore shapes [188].

In rock type I, grains form the framework of the rock, though grains are not always
obvious because of dissolution and further micritic cement around grains [88].

Figure 3.10a shows that sample S 28 is very well connected, very heterogeneous with
some cement patches, micritic cement around grains.There is very good intergranular poros-
ity and secondary mouldic porosity created by remotion of preferential elements from sedi-
ments [88].

Cementation is very important because it could strongly influence pore shapes and there-
fore intrapore wettability. Basically, if crystals forming cement can grow freely they develop
well defined crystal faces. This is know as euhedral calcite or micrite grain. However, of-
ten it is more common to find interlocked crystal faces forming an irregular mosaic type of



3.2 Rock Type I - Sample 28 58

b)

e)c) d)

f) g)

a)

h)

Fig. 3.8 Classification of the different porosity types in carbonates. Figure taken from [52].



3.2 Rock Type I - Sample 28 59

Fig. 3.9 Classification of dolomite crystal shapes. Figure take from [230].

cementation [61, 119], such as seen in Fig. 3.10c.
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Microporosity is well connected 
and it is also well connected 
with the macropores
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d)

Cement: Nonplanar 
interlocked anhedral 

Fig. 3.10 Multiscale scanning electron microscope images of S 28. (a) 50x. (b) 200x. (c)
200x. (c) 1000x.
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3.3 Rock Type II - Sample 2 4

The second sample is S 2 4 and is classified as rock type II (RT-II). Table 3.3 gives the
bulk properties of this sample. The mercury entry pressure is higher than S 28 and the
absolute permeability is lower. Figures 3.11, 3.12, 3.13, and 3.14 show the MICP, drainage,
imbibition and secondary drainage capillary pressure.

3.3.1 MICP of S 2 4

Unlike S 28, the MICP of S 2 4 does not develop multiple slopes (see Fig. 3.11), suggesting
a unimodal range of pore sizes.
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Fig. 3.11 MICP of S 2 4.

3.3.2 Oil/Water Drainage Capillary Pressure of S 2 4

The connate water saturation is slightly higher than that of S 28 but is still a low value,
despite S 2 4 appearing to be a tight rock given the capillary entry pressure in Fig. 3.12.

3.3.3 Oil/Water Imbibition Capillary Pressure of S 2 4

Spontaneous water imbibition is rather small. The curve is flat (see Fig. 3.13) and it is
similar to the imbibition capillary pressure curve for S 28. The residual oil saturation is
slightly higher than S 28 (see Fig. 3.13)
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Fig. 3.12 Oil/water drainage capillary pressure of S 2 4.
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Fig. 3.13 Oil/water imbibition capillary pressure of S 2 4.

3.3.4 Oil/Water Secondary Drainage Capillary Pressure of S 2 4

Like previous sample, S 28, no spontaneous oil invasion of the core at residual oil saturation
was observed. Comparison of Fig. 3.14 and primary drainage Fig. 3.12 interestingly shows
that secondary drainage lies below primary drainage crossing over the primary drainage
capillary pressure close to the initial connate water saturation. In addition, the residual
water saturation after the second oil flooding is lower than for S 28.

3.3.5 Oil/Water Imbibition Relative Permeabilities of S 2 4

Figure 3.16 shows the steady-state imbibition relative permeabilities for S 2 4. The end-
points oil and water relative permeabilities are similar to those of S 28. However, the water
saturation at the intersection of the relative permeabilities is slightly lower than 40% (more
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Fig. 3.14 Oil/water secondary drainage capillary pressure of S 2 4.
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Fig. 3.15 Comparison between Oil-Water drainage and secondary drainage capillary pres-
sure of S 2 4

oil-wet than S 28).
Similar to S 28, the relative permeability at the intersection is low indicating a high

multiphase interference effect. It is worth noting that the water relative permeability curve
is less concave and steeper than that of S 28 (Fig. 3.16).

3.3.6 Wettability Indices of S 2 4

The Amott index, Section 2.5.1, of S 2 4 (0.015) is less than half that of S 28 (0.038), and
the USBM index is similar in magnitude but negative (–0.263 for S 2 4 and 0.297 for S28).
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Fig. 3.16 Oil/water imbibition relative permeabilities of S 2 4.

3.3.7 Estimation of Contact Angles from SCAL Data

Figure 3.17 shows the ECDF of the average apparent advancing contact angles derived from
capillary pressure data [242] for unimodal pore-size distribution samples (RT-II and RT-III).
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Fig. 3.17 Distribution of average apparent advancing contact angles for unimodal pore-size
distribution derived from capillary pressure data [242].

3.3.8 Visual Features in Scanning Electron Microscope Multiscale Im-
ages of S 2 4

Figure 3.18 shows the scanning electron microscope image of S 2 4. S 2 4 is packstone to
grainstone. At the largest image magnification scale (50x) Fig 3.18a S 2 4 looks hetero-
geneous. Cementation is weak to moderate with grain coating of irregular micrite cement.
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Dolomite crystals are visible filling some pores [88]. Moderate intergranular porosity, with
sparse oversized pores, up to 200 microns across probably indicate dissolved peloids [88].
There are sparse distributed vuggs (300 microns in size) with a significant contribution of
microporosity in between the precipitated spar and dolomite calcite [88].

Large intraclast surrounded by micrite matrix

Infill of dissolution dolomite rhombs and authigenic 
pyrite (white patches)

Intraparticle porosity embedded within 
micrite matrix of micropores

Vuggy pores poorly connected system 
due to the presence of micrite

Microporosity in the micrite matrix

a)

b) c)

d)

Fig. 3.18 Multiscale scanning electron microscope images of S 2 4. (a) 50x. (b) 200x. (c)
200x. (c) 1200x.
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3.4 Rock Type III - Sample 2 20

Table 3.3 shows the bulk properties of Sample S 2 20. S 2 20 belongs to rock type III (RT-
III) and has the lowest absolute permeability of the three samples. Figures 3.19, 3.20, 3.21
and 3.22 show the MICP, drainage, imbibition, and secondary drainage capillary pressure
of S 2 20, respectively.

3.4.1 MICP of S 2 20

S 2 20 shows a high entry pressure for mercury and the MICP curve (Fig. 3.19) is similar to
that of S 2 4, but different from that of S 28.
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Fig. 3.19 MICP of S 2 20.

3.4.2 Oil/Water Drainage Capillary Pressure of S 2 20

The connate water is greater for S 2 20 than S 2 4 (Fig. 3.20). It seems that connate water is
correlated with the decrease in absolute permeability.

3.4.3 Oil/Water Imbibition Capillary Pressure of S 2 20

Similar to the previous two samples, little spontaneous water imbibition was observed. The
residual oil was lower than in the previous samples which have higher absolute permeabili-
ties. It seems that there is no link between absolute permeability and residual oil saturation.
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Fig. 3.20 Oil/water drainage capillary pressure of S 2 20.
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Fig. 3.21 Oil/water imbibition capillary pressure of S 2 20.

3.4.4 Oil/Water Secondary Drainage Capillary Pressure of S 2 20

In a similar way to the previous two samples, there is spontaneous invasion of oil in the core
at residual oil saturation (Fig. 3.22) However, the residual water saturation is greater than
in the previous rock types.

Similar to RT-I, the secondary drainage capillary pressure crosses-over the primary
drainage capillary pressure curve (Fig. 3.23). However, the maximum secondary drainage
capillary pressure is about two times smaller than the primary drainage capillary pressure,
while the maximum capillary pressure values are comparable to those of RT-I (Fig. 3.5).
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Fig. 3.22 Oil/water secondary drainage capillary pressure of S 2 20

0.0 0.2 0.4 0.6 0.8 1.00e
+

00
4e

+
05

8e
+

05

Sw

P
co

w
 [P

a]

S 2 20

Dra
SDra

Fig. 3.23 Comparison between Oil-Water drainage and secondary drainage capillary pres-
sure of S 2 20

3.4.5 Oil/Water Imbibition Relative Permeabilities of S 2 20

Figure 3.24 shows the steady-state imbibition relative permeabilities for S 2 20. The end-
point relative permeabilities of oil and water are similar to those for RT-I and RT-II. The
intersection of relative permeabilities is close to the middle at 50%. The relative permeabil-
ity at the intersection is low and the relative permeability curve is more concave than the
curves for RT-I and RT-II indicating a higher multiphase interference effect.

3.4.6 Wettability Indices of S 2 20

Table 3.3 gives the wettability indices of S 2 20. The USBM and Amott indices suggest that
S 2 20 is more oil-wet than the other two samples. This contradicts the average apparent
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Fig. 3.24 Oil/water imbibition relative permeabilities of S 2 20.

advancing contact angles derived in [242] for RT-II and RT-III and the water saturation value
at the intersection, and shows that it is difficult to estimate pore-network model wettability
using wettability indices.

3.4.7 Estimation of Contact Angles from SCAL Data

RT-III and RT-II share the same ECDF of average apparent advancing contact angles derived
from capillary pressure data [242] (Fig. 3.25).
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Fig. 3.25 Distribution of average apparent advancing contact angles for unimodal pore-size
distribution derived from capillary pressure data [242].
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3.4.8 Visual Features in Scanning Electron Microscope Multiscale Im-
ages of S 2 20

Figure 3.26 shows scanning electron microscope images of S 2 20. Rock type III is tighter
than the two previous rock types. It has structure similar to rock type II. However, the
strong micritization makes it more wackestone type. Macropores are present in the pack-
stone structure. There are dolomite crystals Figs. 3.26c,e and mouldic pores Fig. 3.26b.
Microporosity is the dominant porosity [88].

Microporosity in the micrite matrix

Strongly micritized and dolomitized which 
has further reduced interconnectivity 

Isolated Mouldic Pores

a) b)

c2)

d)

c1)

Fig. 3.26 Multiscale scanning electron microscope images of S 2 20. (a) 50x. (b) 200x. (c)
200x. (c) 1200x.
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3.5 Summary of Observations

A comparison of the results mentioned above is given in Table 3.3. There is an inverse
correlation between the mercury entry pressure and the absolute permeability. The connate
water is inversely correlated with the absolute permeability. The residual oil does not seem
to be correlated with any of the other properties.

The inverse correlation suggests that little vuggy porosity is present in these carbonates
[224]. There is a type of grainstone described by Lucia [224] (ooid grainstone type) that
presents bimodal behaviour similar to S 28, in which the low entry capillary pressure is
because of the intergrain pore space and the higher capillary pressure relate to the intragrain
microporosity, which accounts for the majority of the porosity.

There have been attempts in the literature to derive the wettability type and the fraction
of oil and water-wet pores using a combination of both indices in a cross-plot [81, 150].
However, the scatter in the cross-plots suggests that additional variables are not controlled,
and that they strongly affect the indices. One could estimate that RT-I may fit a mixed-wet
large model, RT-II may fit a fractionally-wet model, and RT-III may fit a mixed-wet small
model by the positions of the indices in the cross-plots in [81, 150] and Fig. 3.27 . The
cross-plots also suggest that the three samples are weakly oil wet.

Table 3.3 Summary of all of the properties of the three samples. φ is porosity, K is absolute
permeability, Amott and USBM are the wettability indices, Sobs

wc is the observed connate
water saturation, and Sobs

or is the observed residual oil saturation.

Rock Type (Sample) φ [%] K [mD] Amott USBM Sobs
wc [frac] Sobs

or [frac]
RT–I (S 28) 29.1 78.09 0.038 0.297 0.03 0.0548

RT–II (S 2 4) 28.7 13.5 0.015 -0.263 0.05 0.07
RT–III (S 2 20) 21.6 1.9 -0.01 -0.408 0.08 0.055
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a b
Fig. 3.27 Cross plots of USBM wettability index versus Amott-Harvey index from literature
data (a) Experiments performed on twin core plugs of the same rock type. (b) Experiments
performed on the same plug. The correlations in (b) are derived from pore-network model
simulations. MWL refers to mixed-wet large wettability model where large pores are oil-
wet; MWS refers to mixed-wet small wettability model where small pores are oil-wet and
FW refers to fractional wettability model where the wettability is uncorrelated with pore
size. Figure taken from [83].



Chapter 4

Methods

4.1 Introduction

In the first part of this chapter, we derive a parameterisation of the pore-size distribution
using information theory. This method uses the entropy of the pore-size distribution as
guidance for determining the bin partitions of the sizes in the pore-size distribution. The
second part starts with a detailed description of the inversion method proposed to estimate
pore-network model parameters, and involves molecular dynamics with stochastic steps. Fi-
nally, we present the pore-network model. While describing the features, the specifications
of the structural and wettability parameters, which were used for the inversion, are also
presented.

4.2 Methods: Pore-Size Distribution Parameterisation

Previous work on the prediction of petrophysical properties using lattice networks has not
investigated in depth how to incorporate prior information derived from data. Predictions
using stochastic methods or Bayesian analysis usually resort to simple assumptions for con-
venience. Prior information, if available, can be used to constrain the solution to the inverse
problem.

A first estimate of the pore-size distribution is typically derived using the Ritter and
Drake method [93, 328, 329]. This method is highly dependent of the range of pore sizes.
In the following section, we propose a transformation of the Ritter and Drake method that
produces an initial estimate of the pore-size distribution that is independent of the scale of
the problem (range of pore sizes).
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The Ritter and Drake method assumes that the cumulative volume of mercury intruded
(mercury saturation SHg) is a probabilistic cumulative distribution function of the pore radius
(r). There is an implicit one-to-one relationship between the cumulative volume of mercury
intruded and the number of pores invaded.

The Ritter and Drake method is defined as

f̂ (r) =−
dSHg

dr
, (4.1)

where f̂ (r) is an estimator of f (r), which is the pore-size distribution function, and

r =
2σ cosϑHga

Pc,Hga
, (4.2)

where σHga, ϑHga, and Pc,Hga are the mercury–air interfacial tension, contact angle, and
capillary pressure, respectively.

The Young–Laplace equation (Eq. (4.2)) includes the MICP, giving the estimator of the
pore-size distribution

f̂ (r) =
P2

c,Hga

2σHga cosϑHga

dSHg

dPc,Hga
. (4.3)

The classical Ritter and Drake method is still used as the main source of prior informa-
tion to characterise the porous media in indirect methods of pore-network model parameter
estimation. This is one of the simplest models for porous media. However, the relationships
between the Ritter and Drake method and other measurements of the pore-size distribution
are not clear. These other measurements include the relaxation time in nuclear magnetic res-
onance, measurements from petrographic image analysis, gas adsorption and the volumetric
form of the pore-size distribution [23, 195–198].

The problem with models like Eq. (4.3) is that they are scale dependent. For the sake of
argument, consider using Eq. (4.3) with the MICP measured in two porous media with
exactly the same characteristics (same average coordination number, same pore-volume
to pore-size relationship) but two logarithmic uniform distributions of different pore-size
ranges. This will result in completely different pore-size distribution estimators ( f̂ (r)). As
the maximum MICP increases, the pressure square factor heavily skews the distribution
towards the right, even though the intrusion sequences in both porous media are the same.

Estimating the pore-size distribution from mercury percolation underestimates the num-
ber of large pores, because accessible pores are invaded first and mercury continues invading
small pores that shield some of the large pores. There are at least two possible underlying
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microstructures that produce very similar mercury intrusion-based pore-size distributions.
(1) The first possibility is that the underlying pore-size distribution is nonuniform with

a peak at the pore size rpt . As mercury invades the porous media, some pores larger than rpt

are invaded. When the process starts invading pores of size rpt , there are some larger pores
that are shielded by pores of size rpt . These pores are spontaneously invaded. Therefore,
the volume of the shielded large pores will be assigned to rpt , increasing the frequency of
this peak relative to the true underlying frequency of the pores of size rpt .

(2) The second possibility is that the pore-size distribution is uniform. In this case, the
pore-size distribution frequency will also peak at the pore size of the percolation thresh-
old. Similarly, the volume of the shielded large pores will be assigned to the percolation
threshold pore size, which coincides with the peak in the pore-size distribution function.

4.2.1 Transformation of the MICP

No complete agreement on Eq. (4.3) remains. Some studies have put forward arguments
in favour of choosing the logarithmic derivative dSHg/d(logdPc,Hga) = Pc,HgadSHg/dP to
give [214]

f̂ (r) ∝ Pc,Hga
dSHg

dPc,Hga
. (4.4)

Note that we can integrate Eq. (4.3) to give dimensionless units in agreement with
probability units, which is not true for Eq. (4.4).

To make the estimator independent of the absolute pressure level, we propose the loga-
rithmic transformation

P∗c,Hga = log
PcHga

Pre f
(Pre f = 1[Pa]), (4.5)

which gives the scale-independent probability density function (PDF) estimator [354]

f̂ (r) =
Pre f (P∗)2

c,Hga

2σ cosϑHga

dSHg

dP∗c,Hga
. (4.6)

A general conceptualisation of the scale invariant prior information has been explained in
detail in [173], and it has been fully applied to seismic inversion [371]. There are also
heuristic arguments about the benefits of the log transformation [149].
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4.2.2 Approximation of the Pore-Size Distribution

For numerical applications, the typical approach is to choose a parametric PDF to approx-
imate the pore-size distribution estimator and tune the parameters to fit the MICP assum-
ing an unknown functional form of the pore-size distribution. In this work, we propose a
weak constraint on the functional form and a parameterisation that can produce different
functional forms to avoid hindering the stochastic inversion algorithm. A robust statistical
approach is to use nonparametric methods [16, 135, 155, 226, 355].

We use the histogram as the nonparametric estimator of the PDF. The optimisation al-
gorithm samples the posterior distribution of the bin probabilities given the MICP data to
give a distribution of bin probabilities. This type of distribution is known in the statistical
domain as a Dirichlet process [109]. A Dirichlet process has no restriction on the width of
the bins, meaning that the class boundaries can be freely defined [16]. Any Dirichlet pro-
cess, regardless of the number of bins, follows a discrete treatment of the bin probabilities
[45, 109] (i.e., ∑

n
i=1 f̂i = 1).

We apply Eq. (4.6) to real MICP data using a finite difference approximation for
the derivative (SHgi+1− SHgi−1)/(P

∗
c,Hgai+1− P∗c,Hgai−1). This generates an ensemble

of frequencies, namely, the histogram FA =
{

f̂1, f̂2, . . . , f̂k, . . . , f̂N

}
with a set of events

A = {A1,A2, . . . ,AN}, where Ai = {r : ri < r ≤ ri+1}. The next section presents the param-
eterisation of this histogram.

4.2.3 Pore-Size Distribution Parameterisation by Information Theory

Normal MICP data has 70 to 100 values. Therefore, Eq. (4.6) usually gives a set (A )
of a large number of bins (Ai). We aim to reduce the number of bins while maximising the
information. We propose to parameterise the pore-size distribution with the bin probabilities
so that each bin width accounts for the same amount of information.

The entropy of an event Ai with some probability of occurrence P(Ai) = pi is given by

h(pi) = log
1
pi
. (4.7)

The entropy of a set of events in A = {A1,A2, . . . ,AN}with frequencies in P = {p1, p2, . . . , pN}
is given by

H(P) =
N

∑
i=1

pi log
1
pi
, (4.8)

Equation (4.8) is known as Shannon’s theorem [350]. The entropy is usually interpreted
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as a measure of information. For example, if event Ai has a very small probability of occur-
ring (P(Ai)), then occurrence of event Ai is unusual, and it is difficult to detect and quantify
its impact. However, if P(Ai) is large, that is, Ai is a probable event, then it is anticipated
that event Ai will occur.

The new parameterisation A ∗ has a set of events A ∗ = {A∗1,A∗2, . . . ,A∗n}, where n <<

N and f̂ ∗i =
{

r : r∗i < r ≤ r∗i+1
}

with F ∗
A ∗ =

{
f̂ ∗1 , f̂ ∗2 , . . . , f̂ ∗k , . . . , f̂ ∗n

}
. This parameterisa-

tion adds entropy to the initial estimator ( f̂ (r j)). The difference can be calculated by the
Kullback–Leibler distance (KLD):

KLD =
N

∑
i=1

f̂ (r j) log
f̂ (r j)

f̂ ∗(r j)
, (4.9)

which is also known as the relative entropy or the distance between two probabilistic dis-
tribution functions. This new parameterisation T (A )−→A ∗ groups the bins (bin widths)
in the original set (A ) so that the bin probabilities in A ∗ are equal, with each bin having
the same entropy or the same information. This maximises the entropy of the set H(A ∗)

(Eq. (4.8)). Replacing the original set A by A ∗ results in an increase of entropy (i.e.,
H(P∗)> H(P)).

Sampling the transformed pore-size distribution estimator ( f̂ ∗) generates a sequence of
values represented by the random sample of size Yj( j = 1,2, . . . ,m). This random sample
is sorted in the initial binning (A ), giving FhA =

{
f̂h1, f̂h2, . . . , f̂hk, . . . , f̂hN

}
. We can use

Jensen’s inequality [18, 200] to prove that KLD≥ 0, where the equality holds only when
f̂ = f̂ ∗. This demonstrates that the proposed parameterisation increases the entropy.

Because mercury capillary pressure is normally used to derive pore size rather than pore
shape pore, shapes in carbonates do not affect the parameterisation.

4.2.4 Sampling the Histogram - Stratified Sampling

Sampling from the nonparametric pore-size distribution, F ∗
A ∗ , is carried out on two strata

[189]. Stratification ensures that a number of observations from each stratum end up in the
sample, rather than allowing distribution of samples across strata to be random. The sample
is less variable, and so gives more stability. This is important because we used small net-
works (9x9x9) for the inversion to speed up the calculations. Simple random sampling has
greater variability in small network therefore the inversion algorithm will be more affected
by random noise from taking different seeds. The synthetic data was generated in large
network (20x20x20) and we recovered the true pore-network model parameters performing
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the HMC inversion in a small network.
On the top level it samples F ∗

A ∗ by the inverse sampling method as follows:

f̂ (r) =
n

∑
i=1

f̂ ∗i y(r), (4.10)

P∗(r) =
n

∑
i=1

f̂ ∗i = 1, (4.11)

P∗−1(y) = {(r−,r+) : r−,r+ ∈ A ∗} , (4.12)

which uses a realisation of a uniform distributed random variable y in the interval U (0,1)
to move to the sampling at the next level:

P∗(r−)< y≤P∗(r+). (4.13)

The second stratum of sampling focuses on the interval (r−,r+). It is important to
choose a function in the second stratum that correctly represents the state of knowledge
of the variable that is going to be sampled. The stratified sampling in the second stratum
continues by generating another random number x from U (0,1). We then use the inverse
sampling method to obtain a realisation of the random variable radius (r):

y = F(x) =
1

ln(rmax/rmin)

∫ lnr

lnrmin

1
x

dx, (4.14)

ln(r) = F−1(y) = ln(rmin)+ x ln
(

rmax

rmin

)
, (4.15)

r = exp
(

ln(rmin)+ x ln
(

rmax

rmin

))
. (4.16)

4.3 Methods: Parameter Estimation Problem with Lim-
ited Information

The solution space contains all of the possible combinations of the parameters and their as-
sociated misfit with the observations (hereafter referred to as the energy). As the dimension
of the problem increases, the region of the solution space that contributes the most to statis-
tical solution to the inverse problem concentrates in a small hypervolume [127, 330, 334].
This problem is called the curse of dimensionality, and makes it difficult to sample the so-
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lution space.
When the gaussian assumptions do not hold, the posterior distribution of model param-

eters given the observables has multiple local minima and therefore the methods discussed
in Chapter 2 cannot find the global minimum. The initial conditions strongly affect the
estimates of the pore-network model parameters [378].

4.3.1 Hamiltonian Monte Carlo

When the information is incomplete, multiple sets of parameters are possible for a given set
of data. In this context, probability theory can be applied to pore-network model parameter
estimation to quantify the several local minima. Fundamentally, this means that there are
degrees of incomplete information that lead to different numbers of solutions that agree with
the information at hand. The problem of determining the network model parameters can be
formulated as

G(θθθ) = XXX , (4.17)

where θθθ is the vector of model parameters (pore-network model parameters) and XXX is
the vector of observables ( capillary pressure at a given saturation). G represents the forward
problem, and contains a numerical description of the mathematical model that describes the
real physical system. G is the implicit function that represents the pore-network model
simulator (nonlinear operator), which does not have a mathematical closed form.

The statistical solution to the inverse problem (SSIP) is the posterior distribution π(θθθ |XXX)

over the space of all possible solutions constrained to observables XXX , in which each point
in the solution space is a model θθθ j with model parameters as entries in θθθ . Each model has
probability π(θθθ j|XXX), which indicates how likely it is that it will predict the observables XXX in
Eq. (4.17). The SSIP is the posterior distribution of the model parameters. An explicit for-
mulation of π(θθθ |XXX) is rarely achievable, although alternative sampling methods can solve
these problems.

In the approach proposed in this work, the SSIP follows Gibbs’s methodology, in which
the network model parameters are analogous to the molecule positions in Gibbs’s inference
problem. In particle physics, it is convenient to transform the Lagrangian formulation of
the equations of motion to the Hamiltonian formulation, because it simplifies the system
of equations to a first-order system [128]. The Hamiltonian formulation introduces the
conjugate momentum (ppp), leading to two desirable properties: the Hamiltonian is invariant
under motion or the first integral [134] and the isolines of the constant Hamiltonian have a
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periodic topology, which reduces the number of samples required to derive reliable posterior
distributions.

Markov Chain Monte Carlo methods based on the Metropolis random walk algorithm
are sensitive to large changes in the model parameters. The chain slowly explores the solu-
tion space making it difficult to capture the variability.

In the approach proposed in this work, the trajectory exploring the space defined by the
momentum and positions (augmented space known as the phase space) follows Hamiltonian
dynamics, which theoretically means that the acceptance probability of the proposed state is
one because of Hamiltonian conservation. Thus, the algorithm can travel long deterministic
distances and better capture the variability and generate a final state that is theoretically
certain to be accepted. In real applications, there are numerical integration errors that reduce
the acceptance probability.

Since the pioneering work of Duane and Kogut [95],who applied Hamiltonian Monte
Carlo to quantum chromodynamics the use of HMC was limited to a few cases [5, 64, 94,
132, 136, 140, 154, 170, 194, 287, 373]. Lately, HMC has gained much attention [9, 62,
175, 204, 268, 271, 288, 303] in parameter estimation problems.

The SSIP in statistical physics relates molecular microstates to thermodynamic macro-
scopic quantities [171, 172, 174]. The distribution of molecule locations (molecular con-
figuration) in light of some macroscopic observables π(θθθ |XXX) follows an exponential dis-
tribution of the energy (misfit between the forward problem and the observations) E(θθθ)

associated with the configuration θθθ .
The pore-network model simulator is an implicit operator, G Eq. 4.19, that takes param-

eters θθθ and outputs capillary pressure as function of saturation XXX Eq. 4.18.

X = Psim
c,αβ

=
{

Psim
c,Hga,P

sim
c,owDra

,Psim
c,owImb

}
(4.18)

where α = Hg,oil and β = air,water respectively for each experiment eg mercury in-
trusion, oil-flooding and water-flooding.

G(θθθ) = XXX , (4.19)

There are many measures of discrepancy of the forward model to the observed data. It is
important to define the misfit function in relation to the problem at hand. In this study, from
the data (Chapter 3) we can expect that pore-size distributions of our carbonate samples
vary over many orders of magnitude then the capillary pressure will also vary many orders
of magnitude. Therefore, we define the misfit of the pore-network model output (capillary
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pressure for a given flooding cycle, eg mercury intrusion, oil-flooding, water-flooding) to
the observed capillary pressure data as defined in Eq. 4.20.

The likelihood model is defined in terms of the misfit. There are more complex non-
gaussian likelihood models [68, 161]. However, the choice of one particular model becomes
based on some empirical tests [161]. We have found that Eq. 4.20 works very well in our
problem as shown by the validation using the synthetic case in Chapter 6. Also, a similar
definition of the misfit has been used in other pore network studies [251].

E(θθθ) = Misfit =
Nobs

∑
i

(
sgn(Pobs

c,αβ
)log(

∣∣∣Pobs
c,αβ

∣∣∣)− sgn(Psim
c,αβ

)log(
∣∣∣Psim

c,αβ

∣∣∣)2
(4.20)

We sample the Gibbs canonical distribution (Eq. (4.21)) using the Markov Chain method
[267] with transition probability (Eq. (4.22)).

π(θθθ |XXX) =
exp
(
−E(θθθ)

β

)
∫

exp
(
−E(θθθ)

β

)
dθθθ

(4.21)

PAcc(θθθ
′
|θθθ t) = T (θθθ

′
← θθθ

t) = min

(
1,

π(θθθ t |XXX)

π(θθθ
′
|XXX)

)
(4.22)

where t indicates the current time (current state along the Markov Chain) and PAcc is the
probability of accepting the proposed sample (θθθ

′
). Equation (4.22) is used in the Metropolis

algorithm, and it is the ratio of two unknown probabilities. Thus, the denominator in Eq.
(4.21) (called the partition factor) cancels out in Eq. (4.22), which means that the Markov
Chain method explores the Gibbs distribution without knowing the full target probability
density (Eq. (4.21)). Assuming that the solution to the inverse problem uses the Gibbs
equation, which is a mild assumption, Eq. (4.22) then becomes

PAcc(θθθ
′
) = min

(
1, exp

(
−(E(θθθ

′
)−E(θθθ t))/β

))
. (4.23)

Equation (4.23) is called the acceptance rule. It is a key step in the algorithm because
it ensures the detailed balance, which means that the Markov Chain will converge to the
posterior distribution.

Equation (4.23) contains the energy difference as an explicit term. If the Markov Chain
is initialized at θθθ

t0 or is θθθ
t at a given time, large changes in the model parameters (θθθ

′
) result

in large changes in the energy (E(θθθ
′
)). It follows that the acceptance probability is sensitive
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to large energy changes. Thus, the chain slowly explores the solution space.
The Hamiltonian formulation is given by

d ppp
dτ

=−∂H

∂θθθ
, (4.24a)

dθθθ

dτ
=

∂H

∂ ppp
, (4.24b)

−∂L

∂τ
=−∂H

∂τ
. (4.24c)

where H is the Hamiltonian and L is the Lagrangian. In the Hamiltonian formulation,
the kinetic energy (K(ppp)) only depends on ppp, and E(θθθ) only depends on θθθ [128], that is,

H = K(ppp)+E(θθθ). (4.25)

The system evolves along trajectories of constant H , which are invariant under the
movement. For a system of many-body particles, these equations are integrated with respect
to time, moving the particles from an initial to a final spatial position. This is known as the
molecular dynamics step. Duane [96] introduced the pseudo-time τ discretised in time steps
∆τ:

τn+1 = τn +∆τ, (4.26)

which makes deterministic movements of the parameters in the solution space. At the
end of a molecular dynamics step, the system has travelled to a new phase space coordinate
(θθθ
′
, ppp
′
) that conserves H . Therefore, the new sample comes from a joint distribution of the

energy and the momentum.
The molecular dynamics step is unable to visit all possible energy states. K exchanges

energy with E, because H is constant along the trajectory. However, this energy exchange
does not ensure that all possible energy states E(θθθ) are visited by the molecular dynamics
steps. To satisfy the ergodicity condition, we must perturbate H . The distribution should
be independent of the particles’ spatial positions. A multivariate normal distribution (white
noise) with a mean of zero and an identity covariance matrix satisfies these requirements.

This means that, in the long run, the Markov Chain will converge to the joint distribution.
Therefore, the SSIP takes on the joint posterior distribution.

π(θθθ |XXX)N (0,I ) ∝ exp
(
−E(θθθ)

β

)
exp
(
−ppppppT

β

)
. (4.27)
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The full process for generating a new candidate θθθ
′
is to draw an initial momentum vector

from the multivariate normal distribution

ppp←N (0,I ), (4.28)

and then

H = pppT ppp+E(θθθ t). (4.29)

The second-order leapfrog or Stormer–Verlet method [212, 281, 340] is a symplectic
integration scheme for calculating the numerical approximation of the ordinary system of
differential equations. This integration scheme moves the system forward in time and solves
Eq. (4.24) for the period of time T = nsteps∆τ . The following equations are developed for
one parameter, but they can be generalized for multiple parameters. The algorithm consists
of an initial half-step for the momentum variable

p
(

δτ

2

)
= p(τ0)−

δτ

2

(
dE
dθ

)
τ0

. (4.30)

Followed by full steps (nsteps)

θ(τ +δτ) = θ(τ)+δτ · p
(

τ +
δτ

2

)
, (4.31)

p(τ +δτ) = p
(

τ +
δτ

2

)
− δτ

2

(
dE
dθ

)
ττ

. (4.32)

Finally, to ensure that both variables finish at the same total time (T = nsteps∆τ), there
is a half-step for the momentum variable

p
(

δτ

2

)
= p(τ0)−

δτ

2

(
dE
dθ

)
T
. (4.33)

Integrating Hamilton’s equations into each molecular dynamics step defines a trajectory
in the phase space (θθθ(τ), ppp(((τττ)))), which conserves H . Therefore, the trajectory starts at
(θθθ(τ0), ppp(((τττ000)))) and finishes at (θθθ(T ), ppp(((TTT )))). The probability of accepting the new state,

Pacc ((θθθ(τ0), ppp(((τττ000))))→ (θθθ(T ), ppp(((TTT ))))) = min(1,exp−∆H ), (4.34)
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is based on

∆H = H (θθθ
′
, ppp
′
)−H (θθθ t , pppt). (4.35)

The Hamiltonian is invariant under the movement, which makes Eq. (4.34) theoretically
equal to one. In this way, the algorithm is able to travel long deterministic distances, gener-
ating a final state that is theoretically certain to be accepted. The chain is reversible because
the pseudo-time can take negative values.

There are a number of methods to obtain the gradient in Eq. (4.30). In this study the
gradient is calculated using the Richardson extrapolation method [326]. We extrapolate the
finite difference ∆E(θ)/∆θ to ∆θ = 0 where ∆θ is an increment in a given parameter. The
method calculates two approximations of the gradient using backward finite differences at
two progressively smaller increments of a given parameter (eg. ∆θi =∆θ1 and ∆θi =∆θ1/5)
. It is widely used in many applications, it is easy to implement and there are several
modification to achieve higher accuracy [156]. However, the calculations can be affected
by the local irregularities of the energy landscape. We mitigate this source of error by
controlling the conservation of the Hamiltonian at the end of each leapfrog step. If the
Hamiltonian is not conserved the gradient is recalculated with a higher accuracy. And in
the case that gradient recalculations do not achieve Hamiltonian conservation, the chain
is stopped and rejected. If the Hamiltonian is not conserved at each leapfrog step there
is the risk that there is some compensations of errors between the steps that lead to final
conservation of Hamiltonian, while trajectories may be incorrect.

There are other approaches which create an analytical proxy model or surface of re-
sponse by using experimental design. These approaches accelerate the calculation. How-
ever, there is no guarantee of a one to one relationship between phase space mappings of the
HMC trajectories and the true mappings. There is a more flexible approach that uses proxy
model with kernels to control the degree of smoothing over the energy landscape [231].

There is another method, the so-called adjoint method, in which gradient equations and
the forward problem are formulated together. The adjoint method is often used for macro-
scopic finite difference models of flow in porous media. A linear system can be formulated
adjoining the gradients to the differential equations which define the forward problem. This
system can be solved at a computational cost of the same order as performing a single for-
ward simulation [290]. However, the method is difficult to formulate and implement [140].

We introduced above the solution space in which E(θθθ) is a function of θθθ . The proba-
bility distribution defined over this space is the SSIP. In the Hamiltonian formulation, H is
a function of both θθθ and ppp. Therefore, H is a 2N-dimensional (N is the number of param-
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eters) set consisting of all possible combinations of θθθ and ppp of the particles (parameters in
the statistical context). The sampling in the phase space is more efficient than in the solu-
tion space. The majority of algorithms, such as the Metropolis algorithm, sample over the
position space by “walking” on the energy landscape.

The Hamiltonian formulation samples in the phase space along Hamiltonian trajecto-
ries or contour lines, in which the jumps between “orbits” are independent of the energy.
Chapter 6 discussed this aspect in more detail when considering the synthetic case. At
the beginning of each sample generation, the momentum vector ppp is refreshed from the
multivariate normal distribution (Eq. (4.28)). Therefore, the new trajectory generating the
proposed sample, θθθ

′
has a new value of H given by Eq. (4.29). This is shown in Chap-

ter 5 6 in two numerical example validating the method with analytic and synthetic data.
Hamiltonian systems show phase space periodic cycles (orbits) that assist sampling because
the periodicity repeats itself at different Hamiltonian levels and is independent of the energy
(misfit).

As an example, consider an energy landscape with two valleys separated by a high en-
ergy barrier. The Metropolis algorithm has a very low probability (Eq. (4.23)) of over-
coming the barrier. However, Hamilton dynamics occur in the augmented phase space, in
which contour lines of a high Hamiltonian can readily connect the two energy valleys and
effectively remove the energy barrier. In contrast to the Metropolis random walk algorithm,
a high Hamiltonian is much more likely to occur, because the Hamiltonian is set at the be-
ginning of each sample generation step (Eqs. (4.28) and (4.29)) and is independent of any
probability.

4.4 Methods: Pore-Network Model

The pore-network model simulator is the operator G. A more in-depth discussion of the
implementation of the pore-level displacement inside the network model simulator can be
found in [391]. We modelled the porous medium using a three-dimensional cubic lattice
network of interconnected capillary elements that represent the pores (bonds in the lattice
). The lattice had dimensions Nx, Ny, and Nz. The capillary number was < 1× 10−5, and
under this condition it is reasonable to assume that fluid flow is quasistatic and takes place
through small pressure changes, which controls the distribution of phases by the local entry
conditions at the pore level (Jerauld and Salter [178] and the references therein). This was
modelled by an invasion percolation process [405]. The capillary elements were cylinders
of constant length and cross-section, with radius defined by the pore-size distribution. A
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cylinder does not allow the explicit treatment of wetting films. However, thresholds in
the contact angle within the pores determine the existence of wetting films. The physical
features related to modelling the MICP are discussed in the following sections.

4.4.1 Volume–Size Relationship

The model parameter ν defines the relationship between the volume of a capillary element
V and the inscribed radius r j according to

V (rm) ∝ rν
j j = {1, . . . ,M}M = number of capillary elements, (4.36)

where M is the number of capillary elements. The power law is a convenient parameter-
isation because both fractal and Euclidean geometries can occur.

4.4.2 Connectivity

Lattice bonds (Fig 4.1) can be removed to produce an average coordination number (Z). The
local coordination number Z is defined as the number of bonds leaving each site.

4.4.3 Pore-Size Distribution

When a number of bonds are removed for a given average coordination number, radii are
assigned to the bonds that remain open to flow according to Section 4.2.3.

4.4.4 Conductance

The modified Poiseuille Law that defines the conductance of each capillary element filled
with phase α [3, 289] is given by

gα(r j) =
r̂3−λ π rλ

j

8µα

j = {1, . . . ,M} M = number of capillary elements. (4.37)

where r̂ is the average radius in the pore-size distribution, r j is a given pore, λ is the
conductance exponent and µα is the viscosity of phase α .
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The phases are assumed to be incompressible, so at each node

Zk

∑
j
= qα

i j. (4.38)

There is a balance of the volumetric flow rate of phase α between the nodes i j for a given
local coordination number (Z j) at node j. The modified Poiseuille Law has been used in
other studies [80, 82, 84, 85, 113, 261, 289, 320].

Determination of λ

One drawback of the previous works that used lattice pore-network models is that λ is
determined from drainage relative permeabilities [87, 259, 260, 262, 368]. Therefore, the
approaches of those studies are not entirely predictive. We propose to determine the con-
ductance exponent from the Brooks–Corey (BC) pore-size distribution index

Pc,Hga = Pcc,Hgath(S
∗)−1/Λ (4.39)

In Eq. (4.39), where Pc,Hgath is the entry pressure, S∗ is the normalised saturation (Eq.
(4.40)) and Λ is the pore-size distribution index

S∗ =
Sair−Sr

1−Sr
(4.40)

in Eq. (4.40), Sair is the air saturation, Sr is the residual air saturation. This choice of
conductance determination makes the proposed approach useful for prediction. Based on
the relationship between the pore-size distribution index, the saturation and the conductance
exponent en the BC model we proposed the the following relationship between the pore-size
distribution index and pore conductance exponent as follows:

λ = ν (3+2/Λ) (4.41)

where ν is the volume exponent, which is determined by inverting the pore network
structure Chapter 7 [185] ; Λ is determined by fitting the BC model to the MICP; and λ is
the conductance exponent applied to each pore according to Eq. (4.37). In the Chapter 7,
we show that the proposed method turned out to predict relative permeabilities fairly well
[186].

Equation 4.41 is proposed in this work to estimate the conductance exponent in Eq.
4.37. Brooks and Corey established a power law relationship between saturation (volume)
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and conductance using the pore-size distribution index derived from the mercury intrusion
capillary pressure. In an analogous manner, we propose multiplying the volume exponent
(because our pore network model assumes that the volume of a pore follows a power law
relationship with the pore radius Eq. 4.36) by the pore-size distribution index from Brooks
and Corey’s model. This is based on the argument that pore conductance follows a power
law or has an exponential relationship with the volume of the pore, as demonstrated in [159].
Similar arguments have been used in Schlueter et al. [346], Friedman and Seaton [122] and
Moulu et al. [286].

4.4.5 Wettability Models

The term drainage refers to the first oil-flooding, and imbibition refers to the first water
flooding.

Drainage (Oil Displacing Water)

Initially, the network is fully saturated with water, and oil is the displacing phase. Drainage
is modelled using a fractional wet model that allows the fraction of two populations of pores
(Population A and Population B) fw to vary between a lower and an upper bound:

θθθ =
{

ϑ
A−rec
owMIN

,ϑ A−rec
owMAX

, fw,ϑ
B−rec
owMIN

,ϑ B−rec
owMAX

}
, (4.42)

ϑ
rec
own

=

{ [
ϑ A−rec

owMIN
,ϑ A−rec

owMAX

]
if n is in Population A[

ϑ B−rec
owMIN

,ϑ B−rec
owMAX

]
if n is in Population B

Imbibition (Water Displacing Oil After the First Oil Flooding)

After the first oil flooding, the rock is aged to attempt to restore the wettability present in the
reservoir. This process is modelled using a mixed-wet (MW). For the MW, the additional
parameter rwet is introduced, which is the threshold radius in the pore-size distribution that
separates two populations of pores with different wettabilities (Population A and Population
B). This parameter can take values in the full range of pore sizes between the minimum and
the maximum radii in the pore-size distribution. The wettability parameters are

θθθ =
{

ϑ
A−adv
owMIN

,ϑ A−adv
owMAX

,rwet1,ϑ
B−adv
owMIN

,ϑ B−adv
owMAX

}
(4.43)
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x y

z

Fig. 4.1 The top figure shows the lattice network. The black pores offseting the cube rep-
resent the inlet pores. The bottom figure shows a typical junction in which the branch are
cutted to vary the coordination number.
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ϑ
adv
own

=

{ [
ϑ A−adv

owMIN
,ϑ A−adv

owMAX

]
if n is in Population A[

ϑ B−adv
owMIN

,ϑ B−adv
owMAX

]
if n is in Population B

Wetting Films

We define two contact angles (ϑ ww
owT h

and ϑ ow
owT h

) that are threshold values for the existence
of water-wetting and oil-wetting films, respectively. Thus, wetting films will exist in pores
with contact angles satisfying one of the inequalities ≤ ϑ ww

owT h
or ≥ ϑ ow

owT h
.



Chapter 5

HMC Benchmark

5.1 Introduction

This chapter is a numerical illustration showing the solution of a problem using the method
proposed in Chapter 4 for a case in which the analytical multivariate posterior distribution
is known. It also benchmarks the Hamiltonian Monte Carlo (HMC) against the classical
Markov chain Monte Carlo (MCMC) method .

5.2 Hamiltonian Sampling Strategy

This section uses a simple numerical example to explain the HMC strategy to produce sam-
ples. The energy function is defined as

E(θ) =
θ 2

2σ2 , (5.1)

This is a single parameter (θ ) problem and it is possible to visualise the two-dimensional
(2D) phase space (θ , p). The conjugate momentum has a gaussian distribution with µ = 0
and σ2 = 1 (Eq. (5.2)).

pi←N (0,1). (5.2)

The momentum lacks physical meaning, although it has the important role of ensuring
that all possible configurations of the system are attainable; i.e., ergodicity. This enables the
system to jump from one orbit to another orbit with different values of the Hamiltonian.
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The associated Hamiltonian has the form

H (θ , p) = E(θ)+
p2

i
2
. (5.3)
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Fig. 5.1 Description of the dynamics in the phase space. The vertical axis is the momentum p
and the horizontal axis is the parameter coordinate θ . The momentum coordinate augments
the parameters/solution space constituting the phase space. The arrows on the curve indicate
the trajectory followed by the particle, namely, parameter θ . Each trajectory tracks an orbit
of constant total energy, namely, the Hamiltonian (labels below the arrows). The jumps are
the momentum refreshment steps that allow different orbits to be visited. The labels on top
of the arrows show the energy (misfit), which is related to the total energy by Eq. (5.3).

To advance the parameter in phase space, the algorithm solves the differential equations
(Eq. 4.24). Figure 5.1 shows a single trajectory. The parameter starts at an initial position
in the phase space (θ j, p j) and integration of Hamilton’s equations define the trajectory of
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the fixed Hamiltonian. The numbers on the graph indicate the value of the Hamiltonian (Eq.
(5.3)) and the energy (Eq. (5.1)).

The momentum refreshment step (update) takes place at the beginning of a new trajec-
tory and gives a new value for pi←N (0,1). This step changes the value of the Hamiltonian
(Eq. (5.3)), which takes the integration of Hamilton’s equations to a different orbit. Figure
5.2 shows how the sampling proceeds in different orbits.

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

θ

p

Fig. 5.2 Dynamics of the exploration of the phase space. Superposition of various orbits
that sample the phase space gives the solution to the inverse problem. The forward model
produces the energy. The ensemble of all of the trajectories is the solution to the inverse
problem. The individual trajectories are not particularly meaningful.
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5.3 Analytical Case A

The energy function is defined as

E(θ1,θ2) = 12.6265 θ
2
1 −24.747 θ1θ2 +12.6265 θ

2
2 . (5.4)

with two parameters θ1,θ2. The associated Hamiltonian takes the following form

H (θθθ , ppp) = E(θθθ)+
ppp2

2
. (5.5)

The momentum vector at the beginning of each trajectory is drawn from the normal
gaussian distribution for each element:

p1←N (0,1), (5.6a)

p2←N (0,1). (5.6b)

The HMC algorithm has two parameters: the time-step size (Eq. (4.26))

τn+1 = τn +∆τ (5.7)

and the number of time steps in Eq. (4.31). Both quantities determine how much of the
phase space is explored by the trajectory.

The step size depends on the system under consideration, and will be limited by the
reasonable numerical stability of the Hamiltonian along the trajectory, which will affect the
acceptance rate defined by the Metropolis rule (Eq. (4.34)).

The time discretisation of Hamilton’s equations using the leapfrog algorithm moves the
system forward a number of time steps along the trajectory in the phase space (T = nsteps∆τ).
When the step size is significant for the conditions of the system under investigation, the
Hamiltonian will not be conserved within a tolerance, and it will increase and the trajectory
will be rejected. However, it is desirable to take the largest possible time step.

An exploration run can give insight into the time-step size and the number of time steps.
For example, we can take different values for the time step from U (0,2) and different
number of time steps for each molecular dynamics step from U (1,14) and monitor the
numerical stability of the Hamiltonian, which ultimately affects the acceptance rate.

Figure 5.3 shows the relationship between the time step (ts) and the number of time
steps (# of ts). For the samples generated, the blue circles are the rejected samples based
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Fig. 5.3 Two scatterplots of the time-step size against the number of time steps for the
exploratory run. The pink dots indicate the accepted trajectories based on the Metropolis
rule (Eq. (4.34)). The blue dots are the rejected trajectories. The picture shows that there
is a maximum time step above which the time integration of the equation does not conserve
the Hamiltonian.

on the Metropolis rule evaluated at the end of the trajectory (Eq. (4.34)). Figure 5.3 shows
that there is a limiting maximum time step (∼0.3) that is independent of the number of time
steps.

Figure 5.4 shows the percentage of accepted samples for different time steps and number
of time steps. The number of time steps is given above each histogram. Taking the largest
number of time steps will allow better exploration of the phase space and less correlation be-
tween successive samples in the Markov chain because two consecutive samples are further
apart. For the case of 14 time steps (top right histogram), the maximum feasible time-step
size seems to be in the range 0.15–0.2.

5.3.1 Autocorrelation

It is reasonable to compare the HMC method with the classical MCMC method based on the
same computing time rather than the same number of samples. Figure 5.5 shows histograms
for both parameters (θ1 and θ2) for HMC and classical MCMC. HMC and classical MCMC
are both close to the true probability density function (black line). For the same computing
time, the two methods generate a different total number of samples. This is reflected in the
number of bins in the histograms, which follows Scott’s rule [348] or the averaged shifted
histogram rule.



5.3 Analytical Case A 96

Accepted Samples

time step

P
er

ce
nt

 o
f T

ot
al

0
40
80

0.0 0.1 0.2 0.3 0.4 0.5

 : # of steps 1  : # of steps 2

 : # of steps 3

0
40
80

 : # of steps 4
0

40
80

 : # of steps 5  : # of steps 6

 : # of steps 7

0
40
80

 : # of steps 8
0

40
80

 : # of steps 9  : # of steps 10

 : # of steps 11

0
40
80

 : # of steps 12
0

40
80

 : # of steps 13

0.0 0.1 0.2 0.3 0.4 0.5

 : # of steps 14

Fig. 5.4 Histograms of the accepted trajectories in the exploratory run (Fig. 5.3) for different
time steps and different number of time steps. The Hamiltonian integration depends only
on the time-step size and not on the number of time steps.
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The optimal sampling performance for the classical MCMC acceptance rate should be
around 0.23 to 0.27, which means that ∼75% of the samples are rejected. The chain pro-
gresses through small steps, and thus shows highly correlated behaviour.
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Fig. 5.5 Set of model parameter posterior distributions as a solution to the inverse problem.
The top row of histograms shows the HMC solution. The bottom row shows the classical
MCMC solution. The superimposed solid lines are the analytical solutions. The coarseness
of the histograms is related to the number of samples generated by HMC and MCMC. HMC
produces statistically equivalent results to MCMC with a smaller number of samples.

Successive states along the Markov chain are correlated. Therefore, a much larger num-
bers of samples are required compared with an uncorrelated sampler that draws independent
identically distributed samples from a distribution.

The dependency between successive values of θ
(t)
i for different lags l of the chain is
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measured by the autocorrelation function:

ρ(l) =
Cov(θ (t)

i ,θ
(t+l)
i )

Var(θi)
. (5.8)

The lower the autocorrelation, the better the variability is captured. Figure 5.6 shows the
autocorrelation function for both samplers. In the case of HMC, autocorrelation becomes
negligible below 5 l, while classical MCMC is still highly correlated for 30 l. The very low
correlation between the samples generated by HMC is remarkable. The algorithm is able to
thoroughly explore the phase space with far fewer samples than classical MCMC.

Figure 5.7 summarizes the aforementioned concepts. The graph shows the sampling
behaviour of both algorithms. For the example in Fig. 5.7, point 1 on the left graph has
three red segments. This means that before making the next move to nearby point 2, three
moves were rejected. In contrast, HMC on the right graph travels long distances with few
rejections and captures better the variability. Figure 5.8 shows the complete sampling for
both methods.

HMC is able to travel long distances with high efficiency, which is an important capabil-
ity to create models that are more likely to be far apart. As the dimensions and difficulty of
the problem increase, the correlated behaviour in classical MCMC is more acute, and there
may be numerous rejections before one nearby state is accepted.

The solution to the inverse problem shown in Fig. (5.9) is

πE(θ) =
1

(2 π)D/2det(ΣΣΣ)0.5
exp
(
−1

2
θ

T
ΣΣΣ
−1

θ

)
(5.9)

with the covariance matrix

ΣΣΣ =

(
1 0.98

0.98 1

)
(5.10)

The correlated multivariate gaussian distribution (Eq. (5.9)) shows the analytical func-
tion that both methods successfully sampled in two dimensions D = 2. As discussed in
Chapter 4, the normalization constant ( partition function (2 π)D/2det(ΣΣΣ)0.5) does not have
to be known to perform HMC and MCMC.
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Fig. 5.6 Autocorrelation function (ACF) plotted against lag distance (l) . The top row of
histograms corresponds to the HMC solution and the bottom row corresponds to the clas-
sical MCMC solution. The top ACFs decay immediately, indicating uncorrelated samples.
In contrast, the bottom ACFs are correlated even at distances greater than 30 l, indicat-
ing highly correlated samples, that is, sample i+ 30 still remembers sample i. Correlation
between the samples increases the total number of samples required to obtain a reliable
posterior distribution of the parameters.
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Fig. 5.7 HMC and MCMC algorithms sampling the solution space. The left graph shows 12
steps of the classical MCMC algorithm sampling the solution space. To avoid overplotting,
each time a sample is rejected the iteration stays where it is and an additional segment is
added at an angle. The right plot shows 6 steps of the HMC algorithm. The samples are
far apart, showing why the autocorrelation function in Fig. 5.6 suddenly decays for HMC,
unlike MCMC. The trajectories on the left show that exploration takes place along the region
of maximum probability density.
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Fig. 5.8 Scatterplots of the two parameters θ1 and θ2 of the inverse problem plotted on the
solution space. The graph on the left shows classical MCMC sampling the solution space,
while the graph on the right shows HMC. The MCMC slowly explores the solution space
because many samples are rejected. Hence, many samples are repeatedly obtained (crosses).
The scales on the graphs are different from those in Fig. 5.7 to better show the overplotting.
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Fig. 5.9 Contours representing the statistical solution to the inverse problem: a) True solu-
tion drawn from Eq. (5.9). b) Solution obtained using the samples generated by HMC.

5.4 Analytical Case B

An energy function is defined as

E(θ1,θ2) =
(
θ

2
1 +θ2−11

)
+
(
θ1 +θ

2
2 +−7

)
(5.11)

with two parameters θ1,θ2. Eq. 5.4 has four local minima at (3,2) , (−2.81,3.13),
(−3.78,−3.28) and (3.58,−1.85) where E(θ1,θ2) = 0.

We compare the performance of HMC to the Classical MCMC Metropolis on the basis
of same number of function evaluation as HMC is more computational expensive. Therefore
, to generate NHMC = 10.000 we used 9 leapfrog steps and 3 function evaluation per leapfrog
step to compute the gradient. This equates to NMCMC = NHMC× 9× 3 = 270.000 samples
for the Classical MCMC. We started the chains at the point (0,0) and we generated 10.000
samples for HMC and NMCMC = 270,000 of ∆τ = 1.2.

Figure 5.11a shows the fundamental problem described in Section 4.3.1 of the Metropo-
lis based MCMC. The proposed moves are local and determined by the energy la function
landscape. The chain slowly explores the solution space making it difficult to capture the
variability. As we can see in Fig. 5.11a, the chain finds one of the minima at (3,2) and
suffers local trapping due to the high energy barrier between local minima not being able to
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Fig. 5.10 (a) 3D surface of Eq. 5.4. (b) Contours representing the true statistical solution .

find the other three in 200.000 samples generated because random walk Metropolis based
MCMC is sensitive to large changes in the model parameters. On the other hand HMC was
able to find the four minima Fig. 5.12.
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Fig. 5.11 a) Heat map for classical MCMC of the two parameters θ1 and θ2. The black
dots shows the four local minima of the inverse problem plotted on the solution space; b)
Bivariate scatter plots of θ1 and θ2 parameters.Colour grading is used to contrast the regions
of high density (white) with those of low density (green). Below the diagonal, the same pair
of parameters is represented by a contour plot. This represents the density of points, which
is an estimator of the probability density. The diagonal shows the marginal histogram (Fig.
6.3) with a kernel smoother on each parameter.
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Fig. 5.12 a) Heat map for classical HMC of the two parameters θ1 and θ2. The black
dots shows the four local minima of the inverse problem plotted on the solution space; b)
Bivariate scatter plots of θ1 and θ2 parameters.Colour grading is used to contrast the regions
of high density (white) with those of low density (green). Below the diagonal, the same pair
of parameters is represented by a contour plot. This represents the density of points, which
is an estimator of the probability density. The diagonal shows the marginal histogram (Fig.
6.3) with a kernel smoother on each parameter.



Chapter 6

Synthetic Data

6.1 Introduction

This chapter applies the Hamiltonian Monte Carlo (HMC) algorithm described in Chapter
4 to estimate the network model parameters of synthetic data. The output of the HMC
algorithm was two vectors: a vector of parameters and a momentum vector with the number
of components equal to the number of parameters. Each vector of parameters represents a
point (a sample) in the solution space.

The parameters vector θθθ can be marginalised along each of its parameters. It can analyse
the distributions and median statistics, and determine whether the output from the HMC
reflects the true values used to generate the synthetic data.

In this study, the carbonate samples had pores varying in size by three to five orders of
magnitude. The capillary pressure was the only available data. We first applied the method
to a synthetic mercury intrusion capillary pressure (MICP) case where the pore sizes varied
by up to five orders of magnitude. The uniform shape of the pore-size distribution ensured
that at least two pore-size distributions were plausible, exacerbating the problem of multiple
minima. The next section discusses the synthetic case.

6.2 Validation Using Synthetic Data

The pore-network model parameters used to simulate the synthetic MICP were average
coordination number Z = 4.1 and volume exponent ν = 0.5 (Eq. (4.36)). Figure 6.1a shows
the histogram of the pore sizes in the network model (log-uniform pore-size distribution
ranging from 1× 10−9 to 1× 10−4 m) that was used to generate the synthetic MICP data
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(Fig. 6.1b). The network model had a lattice defined by Nx = 20, Ny = 20, and Nz = 20 (short
form lattice constant L = 20), which contained 24,400 pores (3×Nx×Ny×Nz+Ny×Nz). It
is reasonable to assume that air can completely escape from the medium because its wetting
characteristics are stronger than those of mercury.

Table 6.1 Range of variation of the pore-network model parameters.

Parameter Minimum value Maximum value

ν 0 2
Z̄ 3 6
p∗1 0.001 0.6
p∗2 0.001 0.6
p∗3 0.001 0.6
p∗4 0.001 0.6
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Fig. 6.1 (a) Histogram showing the input pore-size distribution to generate the synthetic
MICP. The histogram is normalised so that the sum of the bins is one. (b) Synthetic MICP
data generated using the true values of the pore-network model parameters.

Unless stated otherwise, for the remainder of the text all of the histograms are normalised
so that the sum of the discrete bins is equal to one. We compared the different pore-size
histogram realisations by including a line at the centre of each class to give a continuum
expression for easy comparison (e.g., Fig. 6.4). The gradient in the leapfrog algorithm (see
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Section 4.3.1 in Chapter 4) was calculated by extrapolating to ∆θ = 0 using the Richardson
method [326]. The tolerance of the relative error of Hamiltonian conservation during the
time integration was 2%. Applying Eqs. (4.6) and (4.5) to the MICP data (Fig. 6.1b)
produced the pore-size distribution estimator shown in Fig. 6.2a. The kernel technique
smoothed out the noise (Fig. 6.2b). Each of the discrete points in Fig. 6.2b has a Shannon
information content given by Eq. (4.7). Each bin in Fig. 6.2c is a parameter in the pore-size
distribution parameterisation. The bins have different widths so that they contain the same
amount of information (Fig. 6.2c).

The HMC algorithm performed the stochastic inversion of p∗i , ν , and Z. The inversion
took approximately 16 h (on an Intel Xeon W5590 3.33 GHz processor) to accumulate
a sufficient number of posterior samples to stabilize the acceptance rate and produce the
correct posterior distributions. The misfit between the simulated MICP and the synthetic
MICP is the energy in the Hamiltonian formulation (Eq. (4.25)). The aim was to use small
networks (L = 8) in the calculation of the SSIP, and then perform forward predictions of
the relative permeability in large networks. The effect of the network size on the stochastic
inversion of the network parameters was negligible (Section 6.3f will show the effect of
network size on the inversion results).

Small network models (L = 8) estimated the network parameters well. We stopped
sampling when the medians of all of the parameters were unchanged after twice as many
samples were generated. For the synthetic case, 2500 samples were sufficient. The re-
ported carbonate sample results are from 10,000 samples generated by the HMC method.
In statistical physics, the temperature (β ) in Eq. (4.27) is specified. However, within the
statistical context of this thesis the temperature behaves as a variance or a scaling parameter.
If the temperature is high, there is more uncertainty in the observed measurements. Random
numbers were used to sample the pore-size distribution and remove bonds to attain a given
average coordination number. This introduces a certain level of noise or fluctuations into
the simulated MICP. Thus, if the temperature is below the noise level, the noise dominates
the solution. We used several realisations of the MICP generated with the true parameter
values to estimate the noise level.

The HMC medians obtained from the SSIP reflected the true parameters (Figs. 6.3 and
6.4). The marginal histograms were the output from HMC sampling. HMC sampling pro-
duced an ensemble of vectors with network parameters entries in θθθ . Figure 6.3a shows the
volume exponent posterior histogram. The bin with the highest frequency almost coincides
with the true value. The histogram is skewed to the left, because the majority of the sam-
ples are around the true value. However, the spread indicates that other values are possible.
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Fig. 6.2 (a) Raw frequency polygon obtained by applying Eq. (4.6) to the MICP data in Fig.
6.1b. (b) Further application of kernel smoothing to the graph shown in (a). We placed a
gaussian function over each of the points in the frequency polygon (small bell-shaped curves
shown on the graph). Then, the contribution of each of the Gaussian functions was added
to produce the smooth curve (dot and line curve). (c) Parameterisation of the pore-size
distribution, in which the entropy is maximised with respect to the pore-size distribution
obtained by the transformation introduced earlier and shown in (b). The widths of the bins
were chosen so that each bin contained the same amount of information (Chapter 4).
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The median of the average coordination number in Fig. 6.3b is also around the true value.
The histogram is skewed to the right with more spread than the histogram for the volume
exponent. The volume exponent histogram is less uniform than the coordination number
histogram, which could indicate that the volume exponent has more influence on the misfit
than the average coordination number. As discussed above, the bin probabilities (Fig. 6.2c)
are entries in the vector of model parameters θθθ that produced the associated pore-size dis-
tribution for each realisation (Fig. 6.4a). The median pore-size distribution agrees with the
known true pore-size distribution (Fig. 6.4a).
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Fig. 6.3 (a) Marginal histogram of the volume exponent (ν). (b) Marginal histogram of the
average coordination number (Z). The vertical red line indicates the median of the samples
and the black line indicates the true value of the parameter.

In a number of samples, the pore-size distributions were concentrated in a relatively
narrow range of pore sizes (Fig. 6.5a). These distributions are different from the true distri-
bution shown in Fig. 6.1. A reasonable explanation why nonuniform pore-size distributions
were identified as local minima is related to the percolation phenomena. Figure 6.5a shows
a nonuniform pore-size distribution with a peak around 1 µm, and Fig. 6.5b shows the
corresponding MICP simulations and true MICP. The MICP data produced by nonuniform
(e.g., unimodal) and log-uniform pore-size distributions are similar. This is because at the
percolation threshold there are pores that are spontaneously invaded that are larger than the
pores currently being invaded. The additional volume contribution from the spontaneously
invaded pores results in similar MICP behaviour to a rock sample with a high proportion
of pore sizes around the size at which the percolation threshold occurs (unimodal pore-size
distribution). The nonuniform pore-size distribution described above is evidence of multiple
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Fig. 6.4 (a) Pore-size distributions corresponding to the two histograms of the parameters
shown in Fig. 6.3. The red line indicates the median of the samples and the black line
indicates the true pore-size distribution. (b) MICPs associated with the combination of
pore-size distribution, volume exponent, and coordination number.

minima. It could be argued that the parameterisation causes the emergence of the unimodal
function as a possible solution. However, the nonuniform distribution is a possible solution.
Therefore, the parameterisation should allow the nonuniform distribution to emerge.
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Fig. 6.5 (a) Pore-size distribution that had a peak around 1 µm. (b) MICP simulation of the
pore-size distribution in (a) (evidence of multiple minima).

For each case, we have included a matrix of all pairs of parameters (Fig. 6.6). We
included both the upper and lower triangles to compare all of the variables by rows and
columns. There is a nonlinear correlation between pairs of parameters (Fig. 6.6). The
trend lines in the upper triangle cross-plots indicate that the marginal histograms are non-
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Gaussian. If there were Gaussian relationships between the parameters, the HMC sample
distribution would have a Gaussian elliptical shape in each cross-plot and an even spread
around a linear trend Chapter 5). The regions of low energy (high posterior probability/low
misfit) are located in narrow regions (Fig. 6.6, white regions). Figure 6.6 shows a graphical
representation of the variance–covariance matrix. The variance–covariance matrix is an
input for some of the methods discussed in Chapter 2 that assume a linear relationship
between the energy and the parameters, and between the parameters themselves.

The volume exponent shows a nonlinear correlation with the bin probability of the small
pores (p∗1) in the pore-size distribution (Fig. 6.6). Apart from the nonlinear correlation, there
are no consistent linear trends among the data that can justify linear Gaussian models. There
are multiple local minimum energy regions. The cross-plots are projections of the solution
space, and the topography of these projections suggests that the solution space landscape is
complex. Projections like the ones shown in Fig. 6.6 demonstrate many of the difficulties
that the methods discussed in Chapter 2 face when trying to thoroughly sample the solution
space. The work discussed in Chapter 2 did not verify if the assumptions of linearity and
homogeneity of variance were justified. Therefore, these methods are very much dependent
on the initial estimates of the parameters.

Figure 6.7 shows the concepts of Chapter 4, Section 4.3.1, where the HMC sampling
takes place on the phase space along trajectories of the constant Hamiltonian. These trajec-
tories show periodicity in the phase space, making the sampling independent of the energy
(misfit). Figure 6.7 shows that the trajectory can generate a new sample at the other end of
the bounds of the parameter in a single step. Although the misfit is a term in the Hamil-
tonian (Eq. (4.25)), the value of the Hamiltonian for the trajectory being sampled depends
on the initial sampling of the momentum in Eq. (4.28) (note the jump from H = 4.9 to
H = 1.2 at ν = 0.5). The graph shows two trajectories along the ν− p plane that produced
two samples. The orbits preserve the periodic pattern, regardless of the Hamiltonian value
(Fig. 6.7).

The reduction of the misfit with steps along the Markov chain is shown in Fig. 6.8.
Looking closely at some tipical parts of the Markov chain it can be seen that the HMC is
capable to generate samples from high to low misfit.
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Fig. 6.6 Matrix of all pairs of parameters. Each grid cell shows a cross-plot of two param-
eters, with an overlaid locally weighted regression fit to visualise a possible trend. Colour
grading is used to contrast the regions of high density (white) with those of low density
(green). Below the diagonal, the same pair of parameters is represented by a contour plot.
This represents the density of points, which is an estimator of the probability density. The
diagonal shows the marginal histogram (Fig. 6.3) with a kernel smoother on each param-
eter. The magnified cells show examples of multiple minima and the correlations between
low values of ν and a small contribution from small pores in the pore-size distribution,
corresponding to parameter p∗1.
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Fig. 6.7 Phase plane showing momentum (p) versus position of the volume exponent (ν).
The numerical values of the Hamiltonian (H ) and the energy (E) have been rounded to
the first decimal place to avoid overplotting. As the trajectory moves forward along the
deterministic molecular dynamics steps, H is invariant whereas E changes. Along a single
step, the molecular dynamics step could propose a sample that is located at the other end of
the parameter variation range.
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Fig. 6.8 Misfit along the Markov Chain. The subplot in the top right shows that HMC is
capable of generating samples of very different misfit from high to low misfits even in one
step of the chain.

6.2.1 Comparison with Another Type of Pore-Size Distribution Param-
eterisation

This section compares the parameterisation proposed in Chapter 4 with a regular parame-
terisation of the pore-size distribution with logarithmically equidistant bins (Fig. 6.9b).

First, Fig. 6.10a shows the marginal posterior histogram of the volume exponent for
the entropy based parameterisation and Fig. 6.10b for the logarithmically equidistant bin
parameterisation. From these figures it is clear that there is Fig. 6.10b is biased towards
low volume exponent values and the median does not reflect the true value. The logarith-
mically equidistant parameterisation has two bins in the range of small pores, whereas the
parameterisation proposed in this work has only one (Fig. 6.9a). Low values of the volume
exponent are correlated with small contributions of small pores to the pore-size distribution.
Therefore, the volume exponent in the logarithmically equidistant parameterisation is more
strongly influenced by the correlation with the contribution of small pores in the pore-size
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Fig. 6.9 (a) Parameterisation proposed in this work, where the widths of the bins are deter-
mined so that each contains the same information, as measured by information entropy. (b)
Logarithmically equidistant bin parameterisation.

distribution (parameters p∗1 and p∗2, Fig. 6.13).
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Fig. 6.10 (a) Marginal histogram of the volume exponent (ν) using the parameterisation
proposed in this work. (b) Marginal histogram of ν using the logarithmically equidistant
bin parameterisation. The vertical red line indicates the median of the samples and the
black line indicates the true value of the parameter.

In Fig. 6.11 the marginal posterior histograms of the average coordination numbers are
presented. It can be seen that the median for the average coordination number in both the
entropy based and the logarithm equidistant binning are close to the true value. However,
the marginal posterior histogram of our proposed entropy based parameterisation shows a
greater concentration of values around the true value (Fig. 6.11a).
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Figure 6.6 and Fig. 6.13 shows in the diagonal marginal posterior PDFs of the volume
exponent, coordination number and the bins probabilities for our proposed entropy based
parameterisation and for the logarithmic equidistant parameterisation respectively.
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Fig. 6.11 (a) Marginal histogram of the average coordination number Z̄ using the proposed
parameterisation. (b) Marginal histogram of Z̄ using the logarithmically equidistant bin
parameterisation. The vertical red line indicates the median of the samples and the black
line indicates the true value of the parameter.

A clear trend can be observed in the pore-size distribution: small pores are underesti-
mated because the equidistant bin parameterisation is more affected by strong correlation
with the volume exponent (Fig. 6.12b).
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Fig. 6.12 (a) Marginal pore-size distributions using the proposed parameterisation. (b)
Marginal pore-size distributions using the logarithmically equidistant bin parameterisation.

Contrary to the case of our proposed parameterisation (Fig. 6.6, the marginal PDF for
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the volume exponent for the case of logarithmically equidistant bin parameterisation does
not reflect the true value(Fig. 6.11b and Fig. 6.13).

Table 6.2 summarises the mean squared errors (MSEs) of ν and Z̄ with respect to the
true values as a measure of the quality of the estimates:

MSE = (median(θ)−θtrue)
2 (6.1)

For the pore-size distribution, Table 6.2 also gives the Kullback–Leibler distance

KLD(ppp) =
N

∑
i=1

p̂(r j)true log
p̂(r j)true

p̂∗(r j)
, (6.2)

which measures the quality of an estimator of a probability density function. Visual
inspection of Figs. 6.10–6.12 and the measures of quality reported in Table 6.2 indicate
that the proposed parameterisation performed better than the logarithmically equidistant
bin parameterisation. This is reflected in the topography of the solution space (Fig 6.13).
Comparing the contours between Figs 6.6 and 6.13, the proposed parameterisation is more
effective: the sampling reaches the posterior solution more quickly. In contrast Fig. 6.13 is
more patchy: the sampling wanders more and discovers more local minima, and therefore
the posterior histograms show bias for the same number of samples generated.

Table 6.2 Comparison of the quality of the two parameterisations in terms of the error.

Parameter Irregular binning Logarithmically equidistant binning

ν 0.018 0.05
Z̄ 0.723 0.846
KLD(ppp) 0.107 0.307

In the oil industry, cumulative percentile/quantile is a probabilistic concept brought from
evaluation of hydrocarbon reserves. In reservoir modelling probability it is linked to the
nonuniqueness of subsurface scenarios with percentiles of cumulative probabilistic distri-
bution - P10, P50 and P90 [327]. Thus, the cumulative distribution of misfit between data
and simulation during the calibration phase can be used to select model parameters cor-
responding to P10, P50 and P90. These sets of model parameters are used as a basis for
forward prediction. However, there is no guarantee that one of these models will be the true
model or that the three models will envelope the true predictions [130]. Note that P50 model
parameters might be different than the median from each individual parameter as it is in this
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Fig. 6.13 Matrix of all pairs of parameters using the logarithmically equidistant bin param-
eterisation. The magnified cells show the strong correlations between small contributions
from the small pores and the pore-size distribution (bins probabilities p∗1, p∗2 ). The mag-
nified cells on the edge of the matrix show that ν is strongly correlated with p∗1 and p∗2.
The logarithmically equidistant parameterisation creates a more complex topography of the
solution space than the parameterisation proposed in this work.
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synthetic case. Tables 6.3 and 6.4 and Fig. 6.14 show the model parameters for P10, P50
and P90 for the two type of parameterisations.
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Fig. 6.14 HMC inversion results: M10 is the pore-size distribution corresponding to the
P10 quantile model (grey), M10 is the pore-size distribution corresponding to the P50 per-
centile model (blue) and M90 is the pore-size distribution corresponding to the P90 per-
centile model (magenta).a) Irregular binning, proposed parameterisation based on equal in-
formation per bin ; b) Logarithmically equidistant binning.

Table 6.3 Volume exponent from P10,P50 and P90 models for the two parameterisations.

Percentile Irregular binning Logarithmically equidistant binning True Value

P10 0.485 0.162 0.5
P50 0.427 0.53 0.5
P90 0.432 0.309 0.5

Figures 6.15, 6.16 and 6.17 show parallel coordinate plots for P10, P50 and P90 respec-
tively. Parallel coordinate plot are useful to investigate the clustering and correlations of
model parameters around the P10, P50 and P90. The plots are constructed by laying out
the axes in parallel, each HMC sample (vector of model parameters) is represented by a
line connecting the misfit quantile (Q axis) with the coordination number and the volume
exponent .

Using P10, P50 and P90 model may not be representative of the models around this
quantiles as shown by the parallel plots in Figs. 6.15, 6.16 and 6.17. The parallel plots show
that the models in the neighbourhood of each quantile can be very different though they
have a very similar misfit value.
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ZvQ

P10

Fig. 6.15 A parallel coordinate plot for quantiles, volume exponent and coordination num-
ber. The model parameters, volume exponent and coordination number, for the models in
the neighbourhood of the P10 model are connected by a line between all the axes.

ZvQ

P50

Fig. 6.16 A parallel coordinate plot for quantiles, volume exponent and coordination num-
ber. The model parameters, volume exponent and coordination number, for the models in
the neighbourhood of the P50 model are connected by a line between all the axes.
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Table 6.4 Average coordination number from P10,P50 and P90 models for the two parame-
terisations.

Quantile Irregular binning Logarithmically equidistant binning True Value

P10 5.51 4.687 4.1
P50 3.229 3.69 4.1
P90 3.672 5.94 4.1

ZvQ
P90

Fig. 6.17 A parallel coordinate plot for quantiles, volume exponent and coordination num-
ber. The model parameters, volume exponent and coordination number, for the models in
the neighbourhood of the P90 model are connected by a line between all the axes.

6.3 Effect of Network Size

This section investigates the effect of network size on the network parameter inference. The
objective is to use smaller networks in the calculation of the statistical solution to the inverse
problem and then perform forward prediction of the relative permeability in larger networks.
For all of the cases with different network sizes, the stochastic inversions were performed at
the same temperature and with the same number of molecular dynamics steps and step size.

ν , Z, and pore-size distribution are shown for a lattice with almost seven times more
pores (lattice constant L= 15) in Figs. 6.18–6.20. The posterior histograms are only slightly
affected by the variation in the lattice size. The bivariate plots show the same features, but
the local minima are different. However, the inversion for lattice with L = 8 and 15 compare
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favourably with the true parameters, and show no sign of systematic deviations.
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Fig. 6.18 Marginal histogram of the volume exponent ν using the parameterisation proposed
in this work for a network size of lattice constant L = 15. The vertical red line indicates the
median of the samples and the black line indicates the true value of the parameter.
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Fig. 6.19 Marginal pore-size distributions using the proposed parameterisation for a network
size of lattice constant L = 15.
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Fig. 6.20 Matrix of all pairs of parameters using the logarithmically equidistant bin param-
eterisation. The magnified cells show the strong correlations between small contributions
from the small pores and the pore-size distribution (bins probabilities p∗1, p∗2 ). The mag-
nified cells on the edge of the matrix show that ν is strongly correlated with p∗1 and p∗2.
The logarithmically equidistant parameterisation creates a more complex topography of the
solution space than the parameterisation proposed in this work. Graph equivalent to Fig. 6.6
but for a network size of 15×15×15.
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6.4 Effect of Statistical Temperature

This section includes studies of the effect of temperature on the network parameter infer-
ence. As was mentioned in Chapter 4, the temperature (β in Eq. 4.25) behaves as a variance
or a scaling parameter.

The posterior histograms show a less defined shape (Fig. 6.21–6.22) with respect to
the previous section. However, the differences are almost the same for all of the network
sizes (L = 7,9,11, and 15). The qualitative difference in these histograms with respect
to the previous section is because β in Eq. (4.25) behaves as a variance that controls the
variability in the exploration of the total Hamiltonian levels. As expected, the variance in
the posterior histograms increased, although the true parameters can be inferred from the
median statistics for all network sizes (Fig. 6.21–6.23).
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Fig. 6.21 Marginal distributions of the volume exponent for different network sizes: L = 7
(bottom left), L = 9 (bottom right), L = 11 (top left), and L = 15 (top right). The vertical
red line indicates the median of the samples and the black line indicates the true value of the
parameter.

Chapter (4) introduced the concept of bias (bias = m̂−m), which describes the deviation
of an estimator from the true value. The median of each distribution shown in Figs. 6.21–
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Fig. 6.22 Marginal distributions of the coordination number for different network sizes:
L = 7 (top left), L = 9 (bottom left), L = 11 (bottom right), and L = 15 (top right). The
vertical red line indicates the median of the samples and the black line indicates the true
value of the parameter.

6.23) is represented by m̂, and m is the true value of each parameter. In the case of a
distribution, the discrepancy between the known and the estimated pore-size distribution is
calculated with the KLD. Figure 6.24 shows a statistical summary of the parameters as a
function of network size. In the plots of ν and Z, the medians are free from any systematic
bias toward network size, otherwise a systematic deviation would have been observed in the
plots. The pore-size distribution shows a weak dependence on the network size because the
KLD in the pore-size distribution plot decreases from 7 to 8.

The samples in the chain were grouped in continuous p sub-blocks, and a median and
variance was calculated for each sub-block. Following this methodology, with increasing
number of blocks, the correlation of the samples decreases and the sample variance estima-
tor better approximates the true variance of the parameter [41]. The correlation time can be
calculated by

κ =
σ2

block/Nblock

σ2/N
(6.3)
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Fig. 6.23 Marginal distributions of pore-size distributions for different network sizes: L = 7
(top left), L = 9 (bottom left), L = 11 (bottom right), and L = 15 (top right).

Calculating κ for various blocks shows that the behaviour follows a positive slope and
levels off. This is seen in Fig. 6.25 in the intersections TauCnu–Size and TauZ–Size. The
network size seems to affect the correlation time (bottom two cells in the first column of
Fig. 6.25, which is expected to be because a larger network is less affected by seed noise
and slightly larger time steps can be taken, reducing the correlation. The behaviour seems
to fluctuate and there is no clear pattern to indicate that using a large network model with
L = 15 will considerably improve the solution to the inverse problem. The effect of lattice
size on estimation of the structural network parameters by the statistical solution to the
inverse problem is practically negligible in the range of lattice sizes considered.
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Fig. 6.24 Median statistics as a function of network size. From left to right, volume expo-
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Fig. 6.25 The diagonal panels show box-and-whisker plots, where the thick black bar within
the box is the median. The left and right edges of the box are the first and third quantiles.
The cross-plots below the diagonal compare all pairs of parameters, namely, network size,
volume exponent batch median, coordination number batch median, KLD, pore-size distri-
bution (psd), volume exponent median deviation (indicator of spread instead of the standard
deviation when the median is used), coordination number median deviation, volume expo-
nent correlation time, and coordination number correlation time. In each bivariate plot there
is an overlay with a smoother to help visually identify any trend in the data.
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6.5 Summary of the Chapter

In this chapter, we applied the method developed in Chapters (4) to a synthetic case and
the output of HMC reflects the true parameters. The first section investigated the effect
of different parameterisations of the pore-size distribution on the estimation of the median
network parameters and the results suggested that the proposed parameterisation performed
better. In the second part the effect of network size and the temperature was investigated.
The results suggested that the network size has a minor influence on the statistical solution
to the inverse problem. Thus, it is viable to obtain the statistical solution to the inverse
problem with relatively small networks and perform the relative permeability calculations
with relatively large networks.

This simulation not only shows that the method can obtain the true values, but also
provides a check of the correctness of the program.

The statistical solution to the inverse problem is a hyperspace with dimensions N +1.
The energy ( misfit) is the landscape, or the equivalent probability. The low-energy regions
are equivalent to high-probability regions. The last section investigated two-dimensional
projections of the solution space. It appears that the regions of high probability are concen-
trated. The relation between the energy and the parameters is nonlinear. There are multiple
maxima, and in some projections the regions of high probability are separated by valleys.



Chapter 7

Carbonate Rock Samples

7.1 Pore-Network Model Structure

This chapter discusses the application of the theory developed in Chapter 4 to three car-
bonate reservoir samples from the Middle East introduced in Chapter 3. The samples were
classified into rock types I (RT-I), II (RT-II), and III (RT-III) in order of decreasing reservoir
quality. The three rock type samples are a subset of the extensive data set that was stud-
ied by Masalmeh [241] [244]. The reservoir quality refers to two basic geologic properties
of the rocks: porosity and permeability [358]. The reservoir quality is determined by the
depositional and postdepositional characteristics of the rock.

RT-I, RT-II, and RT-III follow a petrophysical classification that describes the pore space
in terms of its fabric, namely, the organisation of the pore space (Lucia classification [224])
and Dunham’s classification [98], which takes into account the paleoenvironment where the
sediments that made the rock were deposited).

RT-I is a fine to coarse grainstone associated with a high energy shoal and beach pa-
leoenvironment. Therefore, it is an intergrain dominated porosity rock with grain texture
[224]. The range of absolute permeabilities is 40–800 mD with very low capillary entry
pressure. RT-II is a fine to coarse grain-dominated packstone. The paleoenvironment ranges
from high-energy shoal to lagoonal. This sample shows intergrain porosity, but there is also
intergrain space filled with mud [224]. The range of absolute permeabilities is 2–5 mD. RT-
III is a medium to poorly sorted wackestone to packstone rock, and the paleoenvironment is
lagoonal.

Figure 7.1 summarizes the workflow on which the pore-network model parameters are
based on. In this section we focus in the HMC inversion of pore-network model structure in
(1).
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Fig. 7.1 Hamiltonian Monte Carlo Inversion Workflow

7.1.1 Pore-Network Model Structure of RT-I S 28

RT-I fits into the group of grainstones in Dunham’s classification system. As shown in
Fig. 7.2a, the Ritter and Drake estimator of the pore-size distribution (Eq. (4.3)) overesti-
mates the number of small pores, masking the bimodal shape of the pore-size distribution.
The logarithmic derivative (LogDerivative) estimator (Eq. (4.4)) is better than Eq. (4.3)
at showing bimodal behaviour, although it overestimates mid- to large-sized pores. Our
proposed estimator (Eqs. (4.5) and (4.6), Fig. 7.2a) provides a better balance of all pore
sizes. Parameterisation of the pore-size distribution was performed by applying Eq. (4.6)
to the mercury intrusion capillary pressure (MICP) data. Equation (4.6) produced the raw
histogram shown in Fig. 7.2a (this work). Then, we joined the bins in the raw histogram
while ensuring that they all had the same entropy to produce the parameterisation of the



7.1 Pore-Network Model Structure 131

pore-size distribution shown in Fig. 7.2b.
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Fig. 7.2 (a) Pore-size distribution estimators applied to S 28 MICP data: Eqs. (4.3) (RD),
(4.4) (LogDerivative), and (4.6) (this work). (b) Parameterisation of the pore-size distribu-
tion with equal entropy in each bin.

The bimodality was sufficiently captured using six bins. The parameterisation used
these six bins (based on Eq. (4.6)) to model the pore-size distribution (Fig. 7.2b), volume
exponent ν , and coordination number Z (Chapter 4.4). The process described in Chapter
4.2.3 split the distribution into a set of bins with equal entropy while maximizing the total
entropy. This produced a coarser pore-size distribution than the other methods, as shown
in Fig. 7.2a. The total entropy was maximised with respect to the initial entropy of the
pore-size distribution estimator (Fig. 7.2a (this work) and Eq. (4.5)).

Figure 7.3 shows the marginal histograms (ν and Z̄) and Fig. 7.4 the bivariate scatterplot
for all pairs of parameters for S 28. Both marginal histograms are positively skewed. From
Fig. 7.3a, the median estimator obtained by Hamiltonian Monte Carlo (HMC) inversion is
greater than the usual assumption that the volume exponent is zero.

The medians of the bin probabilities in the parameterisation of the pore-size distribution
(Fig. 7.5a, red solid line) have two well-defined populations: large pores (≥ 2 µm) and
small pores (< 2 µm). Because of the known limitation in SEM images to capture the real
size of 3D pores, large pores of the sizes seen in Fig Fig. 7.5a cannot be seen. However, it is
clear from the SEM images that there is a bimodal distribution. Consistent with Fig. 7.5a.

Figure 7.5b shows a comparison between the MICP measurements (black solid line) and
the MICP simulated using the median parameters estimators obtained by HMC inversion
(red line). The predicted MICPs based on the median parameters agree well with the data.

Figure 7.5c shows the kernel estimator of the pore-size distribution. Using the sampling
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Fig. 7.3 Sample S 28: (a) Marginal posterior histogram of the volume exponent (ν), (b)
Marginal posterior histogram of the average coordination number (Z̄) (red lines indicates
the median values).

Scatter Plot Matrix

ν0.4

0.6

0.8
0.40.60.8

0.0

0.2

0.4

0.00.20.4

Z
5

6
5 6

3

4
3 4

p*10.05

0.100.05 0.10

0.00

0.05
0.00 0.05

p*20.2
0.3
0.40.2 0.4

0.0
0.1
0.2

0.0 0.2

p*3
0.4

0.6
0.4 0.6

0.0

0.2
0.0 0.2

p*4
0.4

0.6 0.4 0.6

0.0

0.20.0 0.2

p*5
0.4

0.6 0.4 0.6

0.0

0.20.0 0.2

p*60.4

0.6 0.4 0.6

0.2

0.4

0.2 0.4

Fig. 7.4 Sample S 28: Bivariate scatter plots of all pairs of parameters. The bivariate scat-
terplots show the complexity and local minima of the solution space.
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Fig. 7.5 (a) Posterior distribution of the probability associated with each bin in the parame-
terisation shown in Fig. 7.2b (red line indicates the median probabilities for each bin). (b)
MICP simulations associated with the HMC realisations corresponding to the parameters
in the graph in (a) (grey) and to the graphs in Fig. 7.3. (c) Comparison of the pore-size
distribution after HMC inversion with the estimator derived using the MICP (Eq. (4.6)).



7.1 Pore-Network Model Structure 134

method discussed in Chapter 4.2.2, the median bin probabilities and the pore-size distribu-
tion parameterisation generated a set of pore-size observations. Then, we applied the kernel
density estimator to produce the density function shown in Fig. 7.5c (this work, inversion
median). We can use this procedure to easily compare the initial estimators (Eq. (4.6)),
which are used to define the parameterisation. The curves were normalised so that the inte-
gral in the logarithmic transformation of pore sizes was equal to one. It should be noted that
the median pore-size distribution obtained from the HMC inversion had more large pores
than the initial estimation with Eq. (4.6). The overlay of the estimator of the pore-size dis-
tribution (Eq. 4.3) indicates that a large number of large pores above the small size mode
have appeared. This is consistent with the shielding effect caused by the percolation pro-
cess. The pore-size distribution is bimodal (Fig. 7.5c). It is also interesting to note that the
estimator proposed in this work (Eq. (4.6)) almost overlays the results of the inversion in
the range of pore sizes below 1 µm. It is important to note that both the Ritter and Drake
and LogDerivative methods do not predict the data well.

We assume that the narrower the pore-size distribution, the stronger the correlation be-
tween the pore radius and the pore volume. S 28 has a wide bimodal pore-size distribution,
because there might be a strong contribution from two families of pores (bimodal behaviour)
with different characteristics. Thus, ν is low, indicating that there is a weak correlation with
both families of pores as a whole.

7.1.2 Pore-Network Model Structure of RT-II S 2 4

The Dunham classification of RT-II is pack–grainstone (mixture of packstone and grainstone
dominated by grainstone). RT-II is poorer in quality than RT-I. The pore-size distribution
estimator has similarities to that of the synthetic case (Chapter 6). This suggests that the
distribution could be either uniform or unimodal (Fig. 7.6a). Similar to RT-I S 28, the
classical Ritter and Drake method positively skews the pore-size distribution estimator.

The resulting parameterisation using the method described in Chapter 4.2.3 has a similar
shape to the synthetic case. However, p∗1, p∗2, and p∗3 are higher than their equivalents in
the synthetic case. Although the shape of the pore-size distribution estimator (Fig. 7.6a)
is similar to the one in Fig. 6.2b, the parameterisations are different because the bins were
joined based on the calculations of the entropy for the real data (discrete points that represent
the data).

Figure 7.7 shows the posterior histograms of volume exponent and average coordination
number. In contrast to Fig. 7.3, the median of the volume exponent is two times greater
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Fig. 7.6 (a) Pore-size distribution estimators applied to S 2 4 MICP data: Eqs. 4.3 Ritter and
Drake (RD), 4.4 (LogDerivative), and 4.6 (this work). (b) Parameterisation of the pore-size
distribution with equal entropy in each bin.

than for the RT-I case. Although (Z̄) median values are similar, the distribution for RT-II is
positively skewed with a cluster of data around four.
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Fig. 7.7 Sample S 2 4: (a) Marginal posterior histogram of volume exponent (ν). (b)
Marginal posterior histogram of average coordination number (Z̄) (red lines indicate the
median values).

Fig. 7.8 shows the general structure of the sample space of RT-II S 2 4. Microporosity
(p∗1 and p∗2 ) correlates with the volume exponent.

The HMC inversion indicates that the pore-size distribution is uniform, although there
are slightly more pores in the small pore-size range (Fig. 7.9a and c). It is also interesting
to note that, for this case (the explanation extends to the RT-III sample), the initial estimator
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Fig. 7.8 Sample S 2 4: Bivariate scatterplots of all pairs of parameters. The bivariate scat-
terplots show the complexity and local minima of the solution space.

proposed in this work (Eq. (4.6)) underestimated the pore-size distribution in the range of
pore sizes below 0.5 µm. However, the Ritter and Drake still overestimates that region of the
pore-size distribution. This is expected because the error in Eq. (4.6) increases as the pore-
size distribution becomes more uniform. The closer the pore sizes are to the percolation
threshold, the greater the expected error in Eq. (4.6). However, the Ritter and Drake method
is unaffected by the percolation threshold. It always produces similar pore-size distribution
estimators and only varies in the range of pore sizes (Figs. 7.2a Ritter and Drake, 7.6a Ritter
and Drake, and 7.10a Ritter and Drake). However, the estimator proposed in this work gives
consistent information about the invasion sequence and is independent of the range of pore
sizes. For the sake of argument, if one could tend to the limit of a bundle of tubes in which
the pore-volume versus pore-size relationship is unknown, the Ritter and Drake would still
depend on the range of pore sizes, while Eq. (4.6) would give a very good estimate of the
pore-size distribution.
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Fig. 7.9 Sample S 2 4: (a) Posterior distribution of the bin probabilities in the parameter-
isation shown in Fig. 7.6b (red lines indicate the median probabilities for each bin). (b)
Simulated MICP using the median parameters. (c) Comparison of the pore-size distribution
after HMC inversion with the estimator derived using the MICP (Eq. (4.6)).

7.1.3 Pore-Network Model Structure of RT-III S 2 20

RT-III has poorer reservoir quality than RT-II. RT-III is a wackestone–packstone (mixture of
wackestone and packstone, where packstone dominates) in the Dunham classification. The
pore-size distribution estimator is similar to the synthetic case, although the distribution is
more symmetrical and the tails are different. For small pore sizes, there is a gradual decrease
in the frequency with decreasing pore size, while there is a sharp decrease for pore sizes
greater than the maximum value. In the case of the Ritter and Drake estimator, the peak is
flatter compared with the other two samples, making the distribution more positively skewed
(Fig. 7.10a).

As explained in the previous examples, the entropy (Eq. (4.8)) was calculated for each
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Fig. 7.10 (a) Pore-size distribution estimators applied to S 2 20 MICP data: Eqs. 4.3 Ritter
and Drake (RD), 4.4 (LogDerivative), and 4.6 (this work). (b) Parameterisation of the pore-
size distribution with equal entropy in each bin.

of the values of the curve (Fig. 7.10a). The parameterisation of the pore-size distribution
for sample RT-III 2 20 (Fig. 7.10b) was then calculated by joining the pore-size coordinates
of the points to obtain four intervals with the same total entropy.

HMC inversion produced the posterior histograms in Fig. 7.11. The ν histogram is
slightly more positively skewed than the corresponding histogram for RT-II S 2 4, and the
median is twice the median of RT-I S 28. The average coordination number shows a similar
shape to the one for RT-II S 2 4, but it is slightly more positively skewed. It is expected that
the right-skewness is related to the rock type.

The medians of each of the posterior histograms of the bin probabilities are shown in
Fig. 7.12 (red line). As with the previous cases, we used the sampling method discussed in
Chapter 4.2.2 with the median bin probabilities to produce a set of pore-size observations.
We then applied the kernel density estimator to produce the density function shown in Fig.
7.12c (’this work inversion median’). The pore-size distribution appears to be similar to
RT-II S 2 4, although the contribution of the small pores is greater in RT-III S 2 20 than in
RT-II S 2 4.

The general structure of the sample space of RT-III S 2 20 (Fig. 7.13) is similar to that
of RT-II S 2 4 . Microporosity (p∗1 and p∗2 ) also correlates with the volume exponent.
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Fig. 7.11 Sample S 2 20: (a) Marginal posterior histogram of the volume exponent (ν). (b)
Marginal posterior histogram of the average coordination number (Z̄) (red lines indicate the
median values).
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Fig. 7.12 Sample S 2 20: (a) HMC realisation data for the bin probabilities in the parame-
terisation of the pore-size distribution (red line indicates the median probabilities for each
bin). (b) MICP simulations associated with the HMC realisation data that correspond to the
parameters in the graph in (a) and Fig. 7.11. (c) Comparison of the pore-size distribution
after HMC inversion with the estimator derived using MICP data (Eq. (4.6)).
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Fig. 7.13 Sample S 2 20: Bivariate scatterplots of all pairs of parameters. The bivariate
scatterplots show the complexity and local minima of the solution space.
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7.2 Qualitative Comparison of Structural Inversion Pat-
terns with Scanning Electron Microscope Images

Based on the visual patterns on scanning electron microscope images in Chapter 3, we will
attempt to make qualitative links with the trends seen in the results presented above about
the pore-network model structure parameters. Figures 7.14a1,b1,c1 shows with red outline
the porosity and pore shapes identified in the SEM images.
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Fig. 7.14 (a1) Scanning electron microscope image of S 28 showing the structure of grains
at the largest scale. (a2) Sample S 28 marginal posterior histogram of the volume exponent
(red lines indicate the median values). (b1) Scanning electron microscope image of S 2 4
showing the structure of grains at the largest scale. (b2) Sample S 2 4 marginal posterior
histogram of the volume exponent (red lines show the median values). (c1) Scanning elec-
tron microscope image of S 2 20 showing the structure of grains at the largest scale.(c2)
Sample S 2 20 marginal posterior histogram of the volume exponent (red lines show the
median values).

Figures 7.14a1,b1 and c1 show 50x magnified SEM images for rock types I, II, and III
and Fig. 7.14a2,b2 and c2 show the posterior histogram of volume exponent for rock type
I, II and III respectively. It can be seen that there is correlation between the skewness of the
posterior histogram and the patterns in images. Consistent with the complex pore shapes
seen in the images, we find that volume exponents for the three rock types are smaller than
one. Figure 7.14a2 shows that the volume exponent for rock type I is lower than for the other
two rock types. In rock type I, the two sets of pores and the dissolution process create a pore
structure more irregular reducing the correlation between pore volume and pore radius than
the other two samples.

The posterior histograms of the average coordination number, presented in Figs. 7.15a2,
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Fig. 7.15 (a1) Scanning electron microscope image of S 28 showing the structure of grains at
the largest scale. (a2) Sample S 28 marginal posterior histogram of the average coordination
number (Z̄) (red lines indicate the median values). (b1) Scanning electron microscope image
of S 2 4 showing the structure of grains at the largest scale. (b2) Sample S 2 4 marginal pos-
terior histogram of the average coordination number (Z̄) (red lines show the median values).
(c1) Scanning electron microscope image of S 2 20 showing the structure of grains at the
largest scale. (c2) Sample S 2 20 marginal posterior histogram of the average coordination
number (Z̄) (red lines show the median values).

b2, c2, show a strong correlation with the visual pattern of connectivity in the porosity of
Figs 7.15a1, b1, c1.

Comparison of Figs 7.16a, c, d with the pore-size distribution obtained from the HMC
inversion (Figs 7.16b) shows that the bimodalilty is consistent with the images.

As observed in the median pore-size distribution obtained from HMC for sample S 2 4
and S 2 20 Fig. 7.17e and Fig. 7.18g respectively, there is more microporosity than in. The
images in Figs 7.17a,b,c,d,e and Figs7.18a, b, c, d, e, f seem to confirm that there is more
microporosity in relation to macroporosity. But still a few large pores greater than 100 µm

can be seen in Figs. 7.16a, 7.17a and 7.18a.
In general, very good agreement is found between visual features in scanning electron

microscope images and the structural pore-network model parameters for the three samples.
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Fig. 7.16 Images of Sample S 28 across multiple scales. (a) 50x. (b) Pore-size distribution
from inversion. (c) 200x . (d) 1200x.

However, the images are statistically unrepresentative because there is a lot of heterogeneity
in a very small scale (area of the images) and also images are not entirely 2D as there is a
third dimension manifested in the grey scale that allows identification of features within the
pores.
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7.3 Inversion of Pore-Network Model Wettability

The pore-network model structural parameters for the three carbonate samples (i.e., pore-
size distribution, volume exponent, and average coordination number) were taken from the
inversion given in the previous section [185], and the HMC algorithm was used to invert the
wettability parameters. The relative permeabilities were then predicted using the full set of
pore-network model parameters.

Parameterisation pore-size distribution,ν , Z

(1) HMC Inv.
PNM Structure

Median Structural Parameters From (1)

(2) HMC
Inv. Drainage

Wettability

Median Structural Parameters From (1) Median Drainage Wettability From (2)

(3) HMC Inv.
Imbibition
Wettability

Median Structural Parameters From (1)

Median Drainage Wettability From (2)

Median Imbibition Wettability From (3)

Conductance Exponent From BC Model using MICP

Prediction RP

Fig. 7.19 Hamiltonian Monte Carlo Inversion Workflow

Figure 7.19 summarizes the workflow on which the pore-network model parameters
are based on. This section focuses in the HMC inversions (2) and (3). The pore radius
is assigned to each capillary element in the network according to the nonparametric PDF
with the bins probabilities inferred in Section 7.1, which are also reported in Table 7.1. The
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volume of each pore is taken according to the proportionalities introduced in Section 4.4.1
Eq. (4.36) and the average coordination number according to Section 4.4.2 (Fig. 4.1).

As numerical estimator of the volume exponent and the coordination number it seems
reasonable from the synthetic case to use the estimated posterior median which were in-
ferred in Section 7.1, also they are reported in Table 7.1, 7.4 and 7.6 for each rock type.
These pore-network structure parameters were used throughout the inversion of wettability.

The results are organised as follows. For each rock type (RT-I S 28, RT-II S 2 4, and RT-
III S 2 20), we applied the HMC algorithm to invert the drainage and imbibition wettability
models (Eqs. 4.42 and 4.43, respectively). The results for each of the samples will be
presented in separate sections.

To investigate the advancing contact angle owing to ageing, we first performed stochas-
tic inversion of the receding contact angles because this established the oil occupancies and
therefore the pores in which wettability alteration could occur. The laboratory procedure
for a flooding cycle involved rendering the rock sample under the strongly water-wet con-
ditions predominant in the reservoir during oil migration (a more detailed description of the
laboratory procedure is given in [247]).

The second inversion started at the maximum drainage capillary pressure, which was a
boundary condition taken from the experimental data. The rock samples were aged at 100
bar and 70 °C for 4 weeks. The HMC algorithm was then used to invert the imbibition
wettability model (Eq. (4.43)).

We performed the inversion considering two wetting film threshold cases to investigate
the effect of the wetting film criteria on wettability. The two cases are as follow: ϑ ww

owT h
= 5°

and ϑ ww
owT h

= 30° for water-wet pores (contact angles below 90°) and ϑ ww
owT h

= 175° with
ϑ ow

owT h
= 150° for oil-wet pores (contact angles above 90°). For example, a given pore was

assumed to contain water-wetting films whenever the pore had a contact angle ≤ 5° and ≥
175° to contain oil–wetting films. The approach was the same for ϑ ww

owT h
= 30° and ϑ ow

owT h
=

150°. The oil–water interfacial tension was σow = 27 mN/m.
The ranges of variation of the pore-network model parameters were ϑ A−rec

owMIN
∈ [0,90],

ϑ A−rec
owMAX

∈ [0,90], fw ∈ [0,1], ϑ B−rec
owMIN

∈ [0,180], and ϑ B−rec
owMAX

∈ [0,180] for drainage wettability
inversion (Eq. (4.42)), ϑ A−adv

owMIN
∈ [0,180], ϑ A−adv

owMAX
∈ [0,180], and RWet ∈ [rMIN ,rMAX ] in the

pore-size distribution of each sample, and ϑ B−adv
owMIN

∈ [80,180] and ϑ B−adv
owMAX

∈ [80,180] for
imbibition wettability inversion (Eq. (4.43)).

The aim was to use small networks in the calculation of the SSIP, and then perform the
forward predictions of the relative permeabilities in large networks. Small network models
estimated the network parameters well Chapter 6 [185]. We stopped sampling when the
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medians of all the parameters were unchanged (’equilibrium’) after twice as many samples
were generated. We also made multiple HMC runs to check the reliability of the estimates.

Each sample is a network model. The network model had a lattice defined by Nx =

8, Ny = 8, and Nz = 8 (short form lattice constant L = 8), which contained 2268 pores
(3×Nx×Ny×Nz +Ny×Nz). There are problems in plotting bivariate scatterplots of the
contact angles versus pore size (posterior joint distribution of contact angles in the pore-
size distribution). The regions of high density appear as black spots with a huge numbers
of points plotted on top of one another. We resorted to an image plot (referred to as a
heat map), which is useful when many points overlap. The blue region is the background
where the density is calculated, and in the white region outside the background there are no
density calculations. The red regions represent high density and the blue regions represent
zero density.

The predicted relative permeabilities for water flooding based on the inversion results
are presented at the end of each rock sample section, and they were calculated for Nx = 20,
Ny = 20, and Nz = 20 (L = 20) lattices, which contained 24,400 pores.

The usual approach in pore-network modelling is to stop invasion–percolation at the ob-
served connate water saturation (Sobs

wc ) value. The experimental data in this study is pressure-
controlled capillary pressure data. The residual, namely connate water saturation and resid-
ual oil saturation (Sobs

wc and Sobs
or ) and maximum and minimum capillary pressure (Pobs

c,owMAX
and Pcobs

c,owMIN) are the capillary pressure end points. The usual approach in pore-network
modelling is to stop invasion–percolation at the observed critical connate water saturation
(Sobs

wc ) value. Therefore, we set Pobs
c,owMAX as the main boundary condition and evaluated the

merits of the simulations in predicting Sobs
wc , Sobs

or , and Pobs
c,owMIN .

As described previously in Section 7.1, the use of random numbers in the HMC intro-
duces noise in the simulations. Because of the change in random numbers when construct-
ing the pore-network model structure and populating the contact angles, any two simulations
with the same pore-network model parameters could have different values of residuals (Sobs

wc

and Sobs
or ) and maximum and minimum capillary pressure (Pobs

c,owMAX and Pobs
c,owMIN). There-

fore, throughout the following sections, we will use the term ’match’ in the sense of being
within a prespecified tolerance (± 20% tolerance in the degree of match) in matching the
residuals (Sobs

wc and Sobs
or ) and the maximum and minimum capillary pressure (Pobs

c,owMAX and
Pobs

c,owMIN).
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7.3.1 Pore-Network Model Wettability of RT-I S 28

RT-I is a rock with a bimodal pore-size distribution, as shown in Fig. 7.20a. Table 7.20
lists the inverted structural parameters taken from the inversion of the structural parameters,
which were fixed for inverting the pore-network model wettability parameters.
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( 5 )

( 6 )

a

Table 7.1 RT-I : Structural Parame-
ters

Parameter Value

ν 0.22
Z̄ 4.43
p∗1 0.01
p∗2 0.04
p∗3 0.13
p∗4 0.34
p∗5 0.07
p∗6 0.29

Fig. 7.20 (a) Pore-size distribution of S 28. The numbers identify the ranges of pore sizes
that are associated with the pore-size distribution parameters (p∗) in Table 7.1. (b) pore-
network model structural parameters of S 28 Section 7.1 [185] . ν is the volume exponent
in Eq. (4.36), Z̄ is the average coordination number in Chapter 4.4.2, and p∗i are the pore-
size distribution parameters Section 7.1 [185] .

RT–I S 28: Determining Drainage Wettability Parameters for Water-wetting Films
with a 5° Threshold

Figure 7.21a shows that few realisations matched Sobs
wc at the maximum capillary pressure

(Pobs
c,owMAX ) (referred to as drainage capillary pressure end-point), whereas others overesti-

mated Sobs
wc at Pobs

c,owMAX .
For strongly water-wet conditions, we expected a combination of any fraction ( fw) with

similar values for the minimum and maximum bounds ϑ A−rec
owMIN

(Fig. 7.22a) ≈ ϑ B−rec
owMIN

(Fig.
7.22c) and ϑ A−rec

owMAX
(Fig. 7.22b) ≈ ϑ B−rec

owMAX
(Fig. 7.22d)). As can be seen in the graphs, Fig.

7.21b shows a posterior uniform histogram and the two sets of histograms have comparable
bounds (Fig. 7.22a with Fig. 7.22c, and Fig. 7.22b with Fig. 7.22d).

Figure 7.23 shows a scatterplot of the receding contact angle versus the pore radius
for all of the pores and all of the realisations. Red represents regions of high density. As
expected, small receding contact angles have high density (warmer colours). Notice the
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Fig. 7.21 Sample S 28 drainage HMC inversion results for drainage with ϑ ww
owT h

= 5°. (a)
Posterior HMC realisations (grey lines). The measurements are shown as black filled circles.
(b) Posterior marginal histogram of the fraction of pores whose contact angles were assigned
to each population in Eq. (4.42). The line in (b) indicates the median.

nonuniform distribution of colours. This spatial information (or size-correlation) within the
pore-size distribution concerning the receding contact angle has not been accounted for in
previous works. This may have an important effect on the phase occupancies and therefore
on the capillary pressure and relative permeabilities.

RT-I S 28: Determining Drainage Wettability Parameters for Water-wetting Films
with a 30° Threshold

To investigate the potential effects that the existence criteria for wetting films (represented
here by thresholds in the contact angles) may have on the determination of wettability, the
same procedure was followed for a wider range of receding contact angles for the existence
of water-wetting films (≤ 30°). We obtained qualitatively similar results (Figs. 7.24 and
7.25) to those of the previous section, although the case ϑ ww

owT h
= 30° led to better matching

of the drainage capillary pressure end-point.
Because the receding contact angle range for water-wetting films is wider than with

ϑ ww
owT h

= 5°, there is slightly less dispersion of the outlier points (Fig. 7.26).

RT-I S 28: Determining Imbibition Wettability Parameters for 5° and 175° Thresholds
for Water- and Oil-Wetting Films

In the following two sections, we use the posterior distribution of receding contact angles
obtained in the previous sections (Figs. 7.23 and 7.26). The pore-network model was pop-
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Fig. 7.22 Sample S 28 drainage HMC inversion results for drainage with ϑ ww
owT h

= 5°. Poste-
rior histograms of the wettability parameters (Eq. (4.42)): (a) lower bound (ϑ A−rec

owMIN
) and (b)

upper bound (ϑ A−rec
owMAX

) for population A, and (c) lower bound (ϑ B−rec
owMIN

) and (d) upper bound
(ϑ B−rec

owMAX
) for population B. The red line in each histogram indicates the median.

ulated with receding contact angle p-quantiles for each region in the pore-size distribution
(i.e., regions (1)–(6) in Fig. 7.20) calculated from each posterior drainage heat map shown
in Figs. 7.23 and 7.26.

Oil-flooding was stopped at the Pobs
c,owMAX value obtained from the experimental data.

Oil-filled pores can then change their contact angle according to the wettability model in
Eq. (4.43). Water-flooding started from the final configuration of oil and water in the
pore-network model at the end of oil flooding. The HMC algorithm was used to invert
the wettability model (Eq. (4.43)).

Figures 7.27–7.29 show the results from the HMC inversion of the wettability param-
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Fig. 7.23 Sample S 28 drainage heat map for drainage with ϑ ww
owT h

= 5°. This is a bivariate
density representation of the posterior distribution of contact angles in the pore-size distri-
bution. The red regions represent high density and the blue areas represent zero density.
The colour intensities indicate a nonuniform distribution.
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Fig. 7.24 Sample S 28 drainage HMC inversion results for drainage with ϑ ww
owT h

= 30°. (a)
Posterior HMC realisations (grey lines). The measurements are shown as black filled circles.
(b) Posterior marginal histogram of the fraction of pores whose contact angles were assigned
to each population in Eq. (4.42).The line in (b) indicates the median.

eters (Eq. (4.43)). There were a few realisations that reached Sobs
or at (Pobs

c,owMIN) (referred
to as the imbibition capillary pressure end-point), which indicates that the range of contact
angles for the existence of wetting films may need to be widened, oil-layer are needed or a
more complexity in the implemented physics is required.

Figure 7.29 shows the posterior heat maps for imbibition and drainage. The advancing
contact shows a high concentration of points in the range 90°–135°. A less concentrated
region is located in the range 0°–90°below 1×10−6 m. In addition, there are few pores with
advancing contact angles in the range 90°–150°below 1×10−7 m (white spotty areas).
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Fig. 7.25 S 28 drainage HMC inversion for drainage with ϑ ww
owT h

= 30°. Posterior histograms
of the wettability parameters (Eq. (4.42)): (a) lower bound (ϑ A−rec

owMIN
) and (b) upper bound

(ϑ A−rec
owMAX

) for population A, and (c) lower bound (ϑ B−rec
owMIN

) and (d) upper bound (ϑ B−rec
owMAX

) for
population B. The red line in each histogram indicates the median.

RT–I S 28: Determining Imbibition Wettability Parameters for 30° and 150° Thresh-
olds for Water- and Oil-Wetting Films

The HMC inversion of the imbibition pore-network model parameters for S 28 wetting
films with ϑ ww

owT h
= 30° and ϑ ow

owT h
= 150° gave similar estimates to those with ϑ ww

owT h
= 5°

and ϑ ow
owT h

= 175°.
The posterior histograms of the wettability parameters are only slightly affected by the

wider range of conditions for the existence of water- and oil-wetting films (Figs. 7.30b,
7.31a, 7.31b, 7.31c, and 7.31d). Figures 7.30b, 7.31a, 7.31b, 7.31c, and 7.31d are qualita-
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Fig. 7.26 Sample S 28 drainage heat map for drainage with ϑ ww
owT h

= 30°. This is a bivariate
density representation of the posterior distribution of contact angles in the pore-size distri-
bution. The red regions represent high density and the blue regions represent zero density.
The colour intensities indicate a nonuniform distribution.
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Fig. 7.27 S 28 imbibition HMC inversion results for imbibition with ϑ ww
owT h

= 5° and ϑ ow
owT h

=
175°. (a) Posterior HMC realisations (grey lines). The measurements are shown as black
filled circles. (b) Posterior marginal histogram of the radius that separates the two pore
populations. The contact angles were assigned to each population in Eq. (4.43). The line in
(b) indicates the median.

tively similar to Figs. 7.27b, 7.28a, 7.28b, 7.28c, and 7.28d, respectively. However, more
realisations reached Sobs

or at Pobs
c,owMIN (Fig. 7.31a), and many more reached Sobs

or at a much
lower capillary pressure than Pobs

c,owMIN .
Figure 7.32a and 7.32b show the imbibition and drainage heat maps for all realisations,

respectively. The following figures will compare imbibition heat maps conditional on those
realisations matching (1) the imbibition capillary pressure end-point, (2) only Sobs

or , and (3)
only Pobs

c,owMIN .
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Fig. 7.28 S 28 imbibition HMC inversion results for imbibition with ϑ ww
owT h

= 5° and ϑ ow
owT h

=
175°. Posterior histograms of the wettability parameters (Eq. (4.43)): (a) lower bound
(ϑ A−adv

owMIN
) and (b) upper bound (ϑ A−adv

owMAX
) for population A, and (c) lower bound (ϑ B−adv

owMIN
)

and (d) upper bound (ϑ B−adv
owMAX

) for population B. The red line in each histogram indicates the
median.

The drainage heat maps for the two cases are similar (Figs. 7.23 and 7.26). However,
there are significant differences in the conditional imbibition heat maps given those realisa-
tions matching the imbibition capillary pressure end-point (Sobs

or and Pobs
c,owMIN) (Fig. 7.33).

There are still significant differences in the conditional heat maps for the two wetting
film cases given those realisations matching only Sobs

or regardless of the Pobs
c,owMIN value (Fig.

7.34). This indicates that inferring the wettability at the pore level may be strongly affected
by the criteria for the existence of wetting films.

In contrast, the conditional posterior heat maps show similar features for the two wetting
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Fig. 7.29 Sample S 28 heat maps for ϑ ww
owT h

= 5° and ϑ ow
owT h

= 175°. (a) Imbibition and
(b) drainage heat maps. This is a bivariate density representation of the posterior distribu-
tion of contact angles in the pore-size distribution. The red regions represent high density
and the blue regions represent zero density. The colour intensities indicate a nonuniform
distribution.

films cases given those realisations matching only Pobs
c,owMIN regardless of the Sobs

or value (Fig.
7.35). However, there are still significant differences between the two heat maps.

7.3.2 RT-I S 28: Prediction of Relative Permeabilities for Water-Flooding
and Comparison with Experiments

Using our network model, described in Chapter 4, we predict the imbibition relative per-
meabilites with the network parameters obtained from the HMC inversion. The structural
network parameters of Table 7.2 were obtained from HMC inversion using the mercury
intrusion capillary pressure.

The inversion of wettability using the HMC was derived in the previous sections. Heat
maps for wettability inference showed complex patterns. Therefore, in order to reproduce
the resulting variability we have calculated the experimental cumulative distribution func-
tion (ECDF) for each of the regions in the pore-size distribution (Fig. 7.33b). The ECDFs of
receding and advancing contact angles for each region in the pore-size distribution derived
are shown in Figs 7.37 (1), (2), (3), (4), (5), (6) were obtained from the conditional posterior
heat maps of receding and advancing contact angles given matching of Sobs

or and Pobs
c,owMIN

for
the case with ϑ ww

owT h
= 30° and ϑ ow

owT h
= 150° for wetting films.

The last parameter required to predict the relative permeabilities is the conductance ex-
ponent (Chapter 4). We derived the conductance exponent from the Brooks–Corey (BC)
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Fig. 7.30 S 28 imbibition HMC inversion results for imbibition with ϑ ww
owT h

= 30° and
ϑ ow

owT h
= 150°. (a) Posterior HMC realisations (grey lines). The measurements are denoted

by black filled circles. (b) Posterior marginal histogram of the radius that separates the two
pore populations. Their contact angles were assigned to each population in Eq. (4.43). The
line in (b) indicates the median.

relationship using the MICP. The volume exponent was multiplied by the pore-size distri-
bution index from the BC model to determine the conductance exponent.

S 28 is a bimodal sample. Various BC models could be fitted to the different segments of
the MICP curve. However, they are similar. Thus, we used a single pore-size distribution in-
dex derived by matching the MICP to the BC model (Λ= 0.53330) and the volume exponent
(ν from Table 7.1) to estimate the pore-network model conductance exponent λ = 1.14533
(Eq. (4.41)).

Note that none of the parameters in our pore-network model could be adjusted or tuned
in relation to the relative permeabilities. We used a 20×20×20 lattice network to predict
the relative permeabilities. The predictions agree well with the steady-state experimental
data (Fig. 7.36a).

Figure 7.37 summarises the predictions and wettability alteration. The cumulative prob-
ability (distribution) functions (ECDFs, labels (1)–(6) in Fig. 7.37) show the hysteresis in
the contact angle from receding to advancing (black, grey lines in Fig. 7.37(1)–(6)). The
small pores that remained water-wet caused overlapping of the black and grey lines in Fig.
7.37(1)–(2). The large pores have large advancing contact angles. However, the mid-sized
pores (microporosity) (Fig. 7.37(3)–(4)) are more oil-wet than the larger pores (Fig. 7.37(5)
and (6)) and the ECDF in Fig. 7.37(4) shows an abrupt increase from zero to one. The
cumulative probability at 0.5 (i.e., the median) is just above 135°in Fig. 7.37(3)–(4).

The medians in Fig. 7.37(5)–(6) are extremely close to the average value determined by
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Fig. 7.31 Sample S 28 imbibition HMC inversion results for imbibition with ϑ ww
owT h

= 30°
and ϑ ow

owT h
= 150°. Posterior histograms of the wettability parameters (Eq. (4.43)): (a)

lower bound (ϑ A−adv
owMIN

) and (b) upper bound (ϑ A−adv
owMAX

) for population A, and (c) lower bound
(ϑ B−adv

owMIN
) and (d) upper bound (ϑ B−adv

owMAX
) for population B. The red line in each histogram

indicates the median.

the analytical method in previous work [241]. Contrary to our results, the mid-sized pores
(Fig. 7.37(3)–(4)) in [241] were estimated to be in the range 96°–108°, and were less oil-wet
than large pores.

It is apparent from the relative permeability data shown in Fig. 7.37 that the behaviour of
water relative permeability is not qualitatively consistent with the behaviour of mixed-wet
large pore-network model simulations in bimodal systems, such as the one in [30, 33] in
which there is an abrupt increase in the water relative permeability.

A full exploration of prediction of relative permeabilities under uncertainty in the pore-



7.3 Inversion of Pore-Network Model Wettability 160

Pore Size [m]

C
on

ta
ct

 A
ng

le
 [d

eg
]

1e−9 1e−8 1e−7 1e−6 1e−5 1e−4

0
45

90
13

5
18

0

a

Pore Size [m]

C
on

ta
ct

 A
ng

le
 [d

eg
]

1e−9 1e−8 1e−7 1e−6 1e−5 1e−4

0
45

90
13

5
18

0

b

Fig. 7.32 Sample S 28 heat maps for ϑ ww
owT h

= 30° and ϑ ow
owT h

= 150°. (a) Imbibition and
(b) drainage posterior heat maps. These are bivariate density representations of the poste-
rior distribution of contact angles in the pore-size distribution. The red regions represent
high density and the blue regions represent zero density. The colour intensities indicate a
nonuniform distribution.
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Fig. 7.33 Conditional imbibition posterior heat maps given matching the imbibition end-
point Sobs

or and Pobs
c,owMIN . (a) ϑ ww

owT h
= 5° and ϑ ow

owT h
= 175°, and (b) ϑ ww

owT h
= 30° and ϑ ow

owT h
=

150°.

network model parameters would imply taking each of the samples generated by HMC in
the inversion step to prediction mode. This would be computationally much more expensive
than the HMC inversion, as large pore-network models are needed to carry out reliable
calculations of relative permeabilities. CPU challenges are common in earth sciences in
which after stochastic history matching it is impossible in most practical cases to perform
many tens of costly production forecasts. Therefore, three models, namely P10, P50 and P90
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Fig. 7.34 Conditional imbibition posterior heat maps given matching only Sobs
or : (a) ϑ ww

owT h
=

5° and ϑ ow
owT h

= 175°, and (b) ϑ ww
owT h

= 30° and ϑ ow
owT h

= 150°.
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Fig. 7.35 Sample S 28 conditional imbibition posterior heat map given matching Pobs
c,owMIN :

(a) ϑ ww
owT h

= 5° and ϑ ow
owT h

= 175°, and (b) ϑ ww
owT h

= 30° and ϑ ow
owT h

= 150°.

are often used to assess the uncertainty in the prediction response. Previously, in Section
6.2.1 we discussed P10, P50 and P90 model parameters in the context of the synthetic case.
And we show that there is no guarantee that the ’true’ predictions will fall in between P10
and P90 models.

For completeness we show the P10, P50 and P90 relative permeability predictions in
which we focus on a few statistics of the distribution of misfit values, namely, a low value
(P10, tenth lowest), P50 (a middle value), and P90 (representing a high misfit). We run the
pore-network model with the model parameters corresponding to the quantiles P10, P50,
and P90 in the cumulative distribution function of the misfit. In Fig. 7.38 we plot the
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Table 7.2 RT-I : Structural Parameters

Parameter Value

ν 0.22
Z̄ 4.43
p∗1 0.01
p∗2 0.04
p∗3 0.13
p∗4 0.34
p∗5 0.07
p∗6 0.29
λ 1.14533
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Fig. 7.36 Predicted S 28 imbibition relative permeabilities and capillary pressure. (a) Pre-
dicted imbibition relative permeabilities using HMC posterior statistics given matching Sobs

or
and Pobs

c,owMIN for a network size of 20×20×20, and (b) imbibition capillary pressure cor-
responding to the relative permeabilities in (a).
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Fig. 7.37 Predicted S 28 imbibition relative permeabilities, capillary pressure, and hystere-
sis for advancing and receding contact angles. Top row, from left to right, predicted rela-
tive permeabilities for imbibition using HMC posterior statistics given matching Sobs

or and
Pobs

c,owMIN for a network size of 20× 20× 20, and ECDF of contact angles in pore-size re-
gions (1)–(3). Bottom row, from left to right, predicted imbibition capillary pressure using
conditional HMC posterior statistics given matching Sobs

or and Pobs
c,owMIN for a network size

of 20× 20× 20, and ECDF of contact angles in pore-size regions (4)–(6). The marks just
above the x axis for (1)–(6) show the median. In (1)–(6), the black line is the water-receding
contact angle, and the grey dashed line is the water-advancing contact angle after ageing.

quantiles predictions. Notice that the model parameters P10 and model parameters P90
envelopes do not enclose the measurement data and also the P10, P50 and P90 are not
ordered. As we discussed in Section 6.2.1 there is no guarantee that one of these models
will be the true model or that the three models will envelope the true predictions or they will
be ordered [130].

7.3.3 Pore-Network Model Wettability of RT-II S 2 4

In the following sections, the same procedure was applied to two additional carbonate rock
type samples (RT-II S 2 4 and RT-III S 2 20). They both have relatively uniform pore-size
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Fig. 7.38 Predicted S 28 imbibition relative permeabilities for inputs taken from the P10
(M10), P50(M50) and P90(M90) model parameters.

distributions (Fig. 7.41a).
Similar to the previous sample, the structural parameters were fixed taken from the

Hamiltonian Monte Carlo inversion of structural parameters (Table 7.2 ).
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Table 7.3 Structural Parameters of
RT-II S 2 4.

Parameter Value

ν 0.51
Z̄ 4.24
p∗1 0.001
p∗2 0.001
p∗3 0.001
p∗4 0.001

Fig. 7.39 Sample S 2 4: (a) Pore-size distribution of RT-II S 2 4 Section 7.1 [185]. The
numbers identify the ranges of pore sizes, which are associated with the pore-size distribu-
tion parameters (p∗) in Table 7.2. (b) pore-network model structural parameters of RT-II S
2 4 Section 7.1 [185]. ν is the volume exponent (Eq. (4.36)), Z̄ is the average coordination
number (Chapter 4.4.2), and p∗i are the pore-size distribution parameters .

RT-II S 2 4: Determining Drainage Wettability Parameters for Water-Wetting Films
with a 5° Threshold

In this section, we performed the same calculations as for S 28. As shown in Fig. 7.41a, the
simulation was evenly distributed around the experimental connate water saturation. The
posterior histogram of the fraction of pores in each population is slightly skewed to the left
(Fig.7.41b).

Figure 7.41 shows that the maximum bounds (Fig. 7.41b and d) spread over larger
receding contact angles than RT-I S 28.

The drainage heat map (Fig. 7.42) shows that the receding contact angles are concen-
trated in a wider range (0°–22°) than the corresponding case for RT-I S 28.

RT-II S 2 4: Determining Drainage Wettability Parameters for Water-Wetting Films
with a 30° Threshold

In contrast, the posterior histogram of the fraction of pores in each population for ϑ ww
owT h

=

30° shows a distinct right-skewed trend (Fig. 7.43b) even for similar matching in the connate
water saturation (Fig. 7.43a).

The posterior drainage heat map (Fig. 7.45) strongly depends on the water-wetting film
criteria, as shown by the different concentration regions in Fig. 7.45 compared with Fig.
7.42. In Fig. 7.45, the receding contact angles show a wider distribution.
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Fig. 7.40 Sample S 2 4 drainage HMC inversion results for drainage with ϑ ww
owT h

= 5°. (a)
Posterior HMC realisations (grey lines). The measurements are shown as black filled circles.
(b) Posterior marginal histogram of the fraction of pores whose contact angles were assigned
to each population in Eq. (4.42). The line in (b) indicates the median.

RT-II S 2 4: Determining Imbibition Wettability Parameters for 5° and 175° Thresh-
olds for Water- and Oil- Wetting Films

The realisations of imbibition inversion for ϑ ww
owT h

= 5° and ϑ ww
owT h

= 175° are shown in Fig.
7.46a. The minimum capillary pressure values of all of the realisations are more than two
times greater than Pobs

c,owMIN (Fig. 7.46a), which is expected from the posterior drainage heat
map (Fig. 7.42). The receding contact angles are concentrated in the range 1°–5°(Fig. 7.42).
Thus, the absolute value of the minimum possible imbibition capillary pressure will most
likely be close to the maximum drainage capillary pressure. The posterior histogram of Rwet

moved to the left (smaller radius) compared with the RT-I S 28 sample (Fig. 7.46b). It is
clear that the evaluation of wettability is dependent on the drainage conditions.

Figure 7.48a shows the posterior imbibition heat map. The values are concentrated in
the range 150°–180°.

RT-II S 2 4: Determining Imbibition Wettability Parameters for 30° and 150° Thresh-
olds for Water- and Oil- Wetting Films

The realisations for S 2 4 with ϑ ww
owT h

= 30° and ϑ ow
owT h

= 150° show that the minimum
imbibition capillary pressure reached close to Pobs

c,owMIN (Fig. 7.49). The posterior histogram
of Rwet is wider than the case with ϑ ww

owT h
= 30° and ϑ ow

owT h
= 150° (Fig. 7.49b). However, it

is similar to the case with ϑ ww
owT h

= 30° and ϑ ow
owT h

= 150° and the medians are similar.
Figure 7.50 shows the posterior histograms of the wettability model parameters in Eq.
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Fig. 7.41 Sample S 2 4 drainage with ϑ ww
owT h

= 5°. Posterior histograms of the wettability
parameters (Eq. (4.42)): (a) lower bound (ϑ A−rec

owMIN
) and (b) upper bound (ϑ A−rec

owMAX
) for popu-

lation A, and (c) lower bound (ϑ B−rec
owMIN

) and (d) upper bound (ϑ B−rec
owMAX

) for population B. The
red line in each histogram indicates the median.

4.43 for each pair of bounds that defined populations A and B. The graphs are different from
their ϑ ww

owT h
= 5° and ϑ ow

owT h
= 175° counterparts. The posterior histograms of the bounds of

population B spread towards lower contact angles (Fig. 7.50c and d) than the ϑ ww
owT h

= 5°
and ϑ ow

owT h
= 175° case.

The minimum imbibition capillary pressure is closer to Pobs
c,owMIN (Fig. 7.49b) than the

case with ϑ ww
owT h

= 5° and ϑ ow
owT h

= 175°. The residual oil saturation is slightly lower than
Sobs

or (Fig. 7.49a). The entry pressure in capillary dominated flow follows the Young–Laplace
equation. Therefore, for a given maximum entry pressure, the greater the receding contact
angle, the smaller the pores that could be invaded by oil during drainage. Thus, wettability



7.3 Inversion of Pore-Network Model Wettability 168

Pore Size [m]

C
on

ta
ct

 A
ng

le
 [d

eg
]

1e−9 1e−8 1e−7 1e−6 1e−5 1e−4

0
45

90
13

5
18

0

Fig. 7.42 Sample S 2 4 drainage heat map for drainage with ϑ ww
owT h

= 5°. This is a bivariate
density representation of the posterior distribution of contact angles in the pore-size distri-
bution. The red regions represent high density and the blue regions represent zero density.
The colour intensities indicate a nonuniform distribution.
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Fig. 7.43 Sample S 2 4 drainage HMC inversion results for drainage with ϑ ww
owT h

= 30°.
(a) Posterior HMC realisations (grey lines). The measurements are shown as solid black
circles. (b) Posterior marginal histogram of the fraction of pores whose contact angles were
assigned to each population in Eq. (4.42). The line in (b) indicates the median.

alteration (Fig. 7.51b) could eventually lead to the magnitude of the minimum imbibition
capillary pressure being higher than that of the drainage capillary pressure (Fig. 7.49a).

The conditional posterior imbibition heat map given those realisations matching the im-
bibition capillary pressure end-point (Sobs

or and Pobs
c,owMIN) is shown in Fig. 7.52a along with

the drainage heat map (Fig. 7.52b). There is slightly higher density for pores in the size
range 6×10−8 to 1×10−7 m (Fig. 7.52a), which were invaded by oil during drainage (Fig.
7.52b). Note the similarities between Fig. 7.48a (ϑ ww

owT h
= 5° and ϑ ow

owT h
= 175°) and Fig.

7.52a (ϑ ww
owT h

= 30° and ϑ ow
owT h

= 150°) (conditional heat map given matching imbibition
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Fig. 7.44 Sample S 2 4 drainage with ϑ ww
owT h

= 30°. Posterior histograms of the wettability
parameters (Eq. (4.42)): (a) lower bound (ϑ A−rec

owMIN
) for and (b) upper bound (ϑ A−rec

owMAX
) for

population A, and (c) lower bound (ϑ B−rec
owMIN

) and (d) upper bound (ϑ B−rec
owMAX

) for population B.
The red line in each histogram indicates the median.

capillary pressure end-point).

7.3.4 RT-II S 2 4: Prediction of Relative Permeabilities for Water-
Flooding and Comparison with Experiments

We repeat the same methodology as before for RT-I. Using the BC pore-size distribution
index (Λ = 1.17) from fitting the MICP and the volume exponent (Table 7.2), we estimated
the pore-network model conductance exponent λ = 2.437 (Eq. (4.41)). And similar to RT-I,
the structural network parameters of Table 7.4 along with the ECDF of receding and ad-
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Fig. 7.45 Sample S 2 4 drainage heat map for drainage with ϑ ww
owT h

= 30°. This is a bivariate
density representation of the posterior distribution of contact angles in the pore-size distri-
bution. The red regions represent high density and the blue regions represent zero density.
The colour intensities indicate a nonuniform distribution.
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Fig. 7.46 S 2 4 imbibition HMC inversion results for imbibition with ϑ ww
owT h

= 5° and ϑ ow
owT h

=
175°. (a) Posterior HMC realisations (grey lines). The measurements are shown as solid
black circles. (b) Posterior marginal histogram of the radius that separates the two pore
populations. The contact angles were assigned to each population in Eq. (4.43). The line in
(b) indicates the median.

vancing contact angles for each region in the pore-size distribution which are shown in Figs
7.541,2,3,4 were used to predict the relative permeabilities shown in Fig. 7.53a. The ECDFs
of receding and advancing contact angles were obtained from the conditional posterior heat
maps of receding and advancing contact angles given matching of Sobs

or and Pobs
c,owMIN

for the
case with ϑ ww

owT h
= 30° and ϑ ow

owT h
= 150° for wetting films.
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Fig. 7.47 S 2 4 imbibition HMC inversion results ϑ ww
owT h

= 5° and ϑ ow
owT h

= 175°. Posterior
histograms of the wettability parameters (Eq. (4.43)): (a) lower bound (ϑ A−adv

owMIN
) and (b)

upper bound (ϑ A−adv
owMAX

) for population A, and (c) lower bound (ϑ B−adv
owMIN

) and (d) upper bound
(ϑ B−adv

owMAX
) for population B. The red line in each histogram indicates the median.

Table 7.4 Structural Parameters of RT-II S 2 4.

Parameter Value

ν 0.51
Z̄ 4.24
p∗1 0.001
p∗2 0.001
p∗3 0.001
p∗4 0.001
λ 2.437



7.3 Inversion of Pore-Network Model Wettability 172

Pore Size [m]

C
on

ta
ct

 A
ng

le
 [d

eg
]

1e−9 1e−8 1e−7 1e−6 1e−5 1e−4

0
45

90
13

5
18

0

a

Pore Size [m]

C
on

ta
ct

 A
ng

le
 [d

eg
]

1e−9 1e−8 1e−7 1e−6 1e−5 1e−4

0
45

90
13

5
18

0

b

Fig. 7.48 Sample S 2 4 heat maps with ϑ ww
owT h

= 5° and ϑ ow
owT h

= 175°. (a) Imbibition and
(b) drainage heat maps. These are bivariate density representations of the posterior distribu-
tion of contact angles in the pore-size distribution. The red regions represent high density
and the blue regions represent zero density. The colour intensities indicate a nonuniform
distribution.

Figure 7.54 summarises the predictions and wettability alteration. The ECDFs (Fig.
7.54 (1)–(4)) show the hysteresis in the contact angle from receding to advancing (black
and grey lines in Fig. 7.54(1)–(4), respectively). The small pores that remained water-wet
caused the overlapping of the black and grey lines in Fig. 7.54(1). The large pores had
larger contact angles. However, the mid-sized pores (Fig. 7.54(2)) showed a distinct pattern
compared with larger pores (Fig. 7.54(3)–(4)). The cumulative probability at 0.5 for (2)–(4)
(i.e., the median) is 180°. This shows that the sample was strongly oil-wet.

This is consistent with the relative permeability intersection being shifted to the left
towards lower water saturation. This strong wetting characteristic is somewhat contrary
to the average value determined by analytical methods in a previous study of this data set
[241], presumably because this sample is suspected to have cleaning problems.

Predictions using model parameters for quantiles P10,P50 and P90 shows less variability
between the models in Fig. 7.55. This is caused by the strong wetting characteristics inferred
by the HMC inversion.

7.3.5 Pore-Network Model Wettability of RT-III S 2 20

The same HMC inversions were repeated for RT-III S 2 20. This rock type shows structural
parameters very similar to RT-II with the only difference being that the magnitude of the
minimum capillary pressure is similar to the maximum value for drainage. The connate
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Fig. 7.49 S 2 4 imbibition HMC inversion results for imbibition with ϑ ww
owT h

= 30° and
ϑ ow

owT h
= 150°. (a) Posterior HMC realisations (grey lines). The measurements are shown

as solid black circles. (b) Posterior marginal histogram of the radius that separates the two
pore populations. Their contact angles were assigned to each population in Eq. (4.43). The
line in (b) indicates the median.

water and residual oil saturation are similar to the values for the other two samples.

RT–III S 2 20: Determining Drainage Wettability Parameters for Water-Wetting Films
with a 5° Threshold

The set of graphs is shown in Figs. 7.57–7.59. The results obtained for the case with
a ϑ ww

owT h
= 5° for water-wetting films are qualitatively similar to those for the other two

samples.

RT–III S 2 20: Determining Drainage Wettability Parameters for Water-Wetting Films
with a 30° Threshold

The case with a ϑ ww
owT h

= 30° shows similar behaviour to RT-II S 28. The histogram of
the fraction of pores in populations A and B is strongly skewed to the left (Fig. 7.60b).
The skewness is opposite to that for RT-II S 28. However, it led to a similar pattern in the
drainage heat map to RT-II S 2 24 (Fig.7.45), although with smaller receding contact angles
concentrated in two narrow regions close to each other (Fig. 7.62).
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Fig. 7.50 Sample S 2 4 imbibition HMC inversion results for imbibition with ϑ ww
owT h

= 30°
and ϑ ow

owT h
= 150°. Posterior histograms of the wettability parameters (Eq. (4.43)): (a)

lower bound (ϑ A−adv
owMIN

) and (b) upper bound (ϑ A−adv
owMAX

) for population A, and (c) lower bound
(ϑ B−adv

owMIN
) and (d) upper bound (ϑ B−adv

owMAX
) for population B. The red line in each histogram

indicates the median.

RT–III S 2 20: Determining Imbibition Wettability Parameters for 5° and 175° Thresh-
olds for Water- and Oil- Wetting Films

Figure 7.63 shows the imbibition capillary pressure realisations along with the posterior
histogram of Rwet , which separates populations A and B in Eq. (4.43).

Figure 7.65a shows that above 1×10−6 m the advancing contact angles are concentrated
in the range 90°–135°, and the concentration slowly decrease towards 180°. Below 1×10−6

m, there is an additional region from 0°to 22°with a high concentrate of values.
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Fig. 7.51 Sample S 2 4 Heat maps with ϑ ww
owT h

= 30° and ϑ ow
owT h

= 150°. (a) Imbibition and
(b) drainage heat maps. These are bivariate density representations of the posterior distribu-
tion of contact angles in the pore-size distribution. The red regions represent high density
and the blue regions represent zero density. The colour intensities indicate a nonuniform
distribution.

RT–III S 2 20: Determining Imbibition Wettability Parameters for 30° and 150° Thresh-
olds for Water- and Oil-Wetting Films

For the case of S 2 20 with ϑ ww
owT h

= 30° and ϑ ow
owT h

= 150°, the data are similar to the data
for RT-I S 28, but the Rwet posterior histogram is slightly shifted to the left towards smaller
pore sizes (Fig. 7.66b).

Figure 7.67 shows the posterior histograms of the model parameters. The general shapes
of Fig. 7.67a and b are similar to the equivalent graphs for RT-I S 2 20 and RT-II S 2
24. In contrast to the other two samples, the posterior histograms in Fig. 7.67c and d are
concentrated around 90°and 180°, respectively.

The posterior imbibition heat map (Fig. 7.68a) is slightly different from the other two
samples. There is a high density in a slightly wider range of pore sizes (6×10−8 to 1×10−6

m) than for RT-I S 28. The next section will show that the mid-sized pores have a similar
median advancing contact angle to the large pores. However, they are moderately less oil-
wet in the sense that the ECDF of the advancing contact angles has 10% water-wet pores
while the ECDF of the large pores has only 1%.
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Fig. 7.52 Sample S 2 4 heat maps with ϑ ww
owT h

= 30° and ϑ ow
owT h

= 150°. (a) Imbibition heat
map conditional to matching of Sobs

or and Pc,obs
owMIN , and (b) drainage heat map. These are

bivariate density representations of the posterior distribution of contact angles in the pore-
size distribution. The red regions represent high density and the blue regions represent zero
density. The colour intensities indicate a nonuniform distribution.
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Fig. 7.53 Predicted S 2 4 relative permeabilities and capillary pressure for imbibition. (a)
Predicted imbibition relative permeabilities using HMC posterior statistics given matching
Sobs

or and Pobs
c,owMIN for a network size of 20×20×20, and (b) imbibition capillary pressure

corresponding to the relative permeabilities in (a).

7.3.6 RT-III S 2 20: Prediction of Relative Permeabilities for Water-
Flooding and Comparison with Experiments

As outlined for the two previous samples, we calculated the conductance exponent in the
power-law using the BC model and the volume exponent (Table 7.3). The pore-size distri-
bution index derived by matching the MICP to the BC model was Λ = 1.335 and the volume



7.3 Inversion of Pore-Network Model Wettability 177

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sw

K
re

l I
m

bi
bi

tio
n

Predictions
S 2 4 data 

0.0 0.2 0.4 0.6 0.8 1.0
Sw

P
co

w
 [P

a]
−

2.
5e

6
−

5.
0e

5
1.

5e
6 Predictions

S 2 4 data 

θ [deg]
C

um
ul

at
iv

e 
pr

ob
ab

ili
ty

 (
1)

0 45 90 135 1800.
00

1
0.

01
0.

1
0.

5
θ [deg]

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty
 (

2)

0 45 90 135 1800.
00

1
0.

01
0.

1
0.

5
θ [deg]

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty
 (

3)

0 45 90 135 1800.
00

1
0.

01
0.

1
0.

5

θ [deg]

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty
 (

4)
0 45 90 135 1800.

00
1

0.
01

0.
1

0.
5

Advancing
Receding

Fig. 7.54 Predicted S 2 4 imbibition relative permeabilities, capillary pressure, and hystere-
sis for advancing and receding contact angles. Top row, from left to right, predicted imbibi-
tion relative permeabilities using HMC posterior statistics given matching Sobs

or and Pobs
c,owMIN

for a network size of 20×20×20, and ECDF of the contact angles in pore-size regions (1)
and (2). Bottom row, from left to right, predicted imbibition capillary pressure using con-
ditional HMC posterior statistics given matching Sobs

or and Pobs
c,owMIN for a network size of

20× 20× 20, and ECDF of the contact angles in pore-size regions (3) and (4). The black
line is the water-receding contact angle, and the grey dashed line is the water-advancing
contact angle after ageing. The red lines on the horizontal axes for (1)–(4) show the median
values.

exponent (ν from Table 7.3) resulted in the conductance exponent λ = 2.3 (Eq. (4.41)). We
used the conditional posterior distribution of receding and advancing contact angles given
matching of Sobs

or and Pobs
c,owMIN

for the case with ϑ ww
owT h

= 30° and ϑ ow
owT h

= 150° for wetting
films.

The structural network parameters of Table 7.4 along with the ECDF of receding and
advancing contact angles for each region in the pore-size distribution which are shown in
Figs 7.70 labels (1), (2), (3) and (4) were used to predict the relative permeabilities shown in
Fig. 7.69a. The predictions closely agree with the steady-state experimental data, as shown
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Fig. 7.55 Predicted S 2 4 imbibition relative permeabilities for inputs taken from the P10
(M10), P50(M50) and P90(M90) model parameters.

in Fig. 7.69a.
Similar to the two other rock types, the small pores remained water-wet (overlapping

curves in Fig. 7.70(1)). The mid-sized pores (Fig. 7.70(2)) showed a different trend in the
advancing contact angle ECDF compared with the larger pores (Fig. 7.70(3)–(4)). Figure
7.70(2) shows around 10% water-wet (less than 90°) pores while Fig. 7.70(3)–(4)) shows
only 1%. However, the medians in Fig. 7.70(2)–(4) are around 112°–115°, which agrees
very well with the average value determined with the analytical method in [241].
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Table 7.5 Structural Parameters of
RT-III S 2 20.

Parameter Value

ν 0.45
Z̄ 3.96
p∗1 0.041
p∗2 0.236
p∗3 0.434
p∗4 0.290

Fig. 7.56 Sample S 2 20: (a) Pore-size distribution of RT-III S 2 20 Section 7.1 [185].
The numbers identify the ranges of pore sizes, and they are associated with the pore-size
distribution parameters (p∗) in Table 7.3. (b) pore-network model structural parameters of
RT-III S 2 20 Section 7.1 [185]. ν is the volume exponent (Eq. (4.36)), Z̄ is the average
coordination number (Chapter 4.4.2), and p∗i are the pore-size distribution parameters.
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Fig. 7.57 Sample S 2 20 HMC inversion results for drainage with ϑ ww
owT h

= 5°. (a) Posterior
HMC realisations (grey lines). The measurements are shown as solid black circles. (b)
Posterior marginal histogram of the fraction of pores whose contact angles were assigned to
each population in Eq. (4.42). The line in (b) indicates the median.

Figure 7.71 shows the quantiles relative permeabilities predictions. Notice that models
P10 and P90 envelop all measurements for water relative permeability except for high water
saturations.
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Fig. 7.58 Sample S 2 20 drainage case with ϑ ww
owT h

= 5°. Posterior histograms of the wetta-
bility parameters (Eq. (4.42)): (a) lower bound (ϑ A−rec

owMIN
) and (b) upper bound (ϑ A−rec

owMAX
) for

population A, and (c) lower bound (ϑ B−rec
owMIN

) and (d) upper bound (ϑ B−rec
owMAX

) for population B.
The red line in each histogram indicates the median.

Table 7.6 Structural Parameters of RT-III S 2 20.

Parameter Value

ν 0.45
Z̄ 3.96
p∗1 0.041
p∗2 0.236
p∗3 0.434
p∗4 0.290
λ 2.3
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Fig. 7.59 Sample S 2 20 drainage heat map for drainage with ϑ ww
owT h

= 30°. This is a bivariate
density representation of the posterior distribution of contact angles in the pore-size distri-
bution. The red regions represent high density and the blue regions represent zero density.
The colour intensities indicate a nonuniform distribution.
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Fig. 7.60 Sample S 2 20 HMC inversion results for drainage with ϑ ww
owT h

= 30°. (a) Posterior
HMC realisations (grey lines). The measurements are shown as solid black circles. (b)
Posterior marginal histogram of the fraction of pores whose contact angles were assigned to
each population in Eq. (4.42). The red line in (b) indicates the distribution median.
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Fig. 7.61 Sample S 2 20 drainage with ϑ ww
owT h

= 30°. Posterior histograms of the wettability
parameters (Eq. (4.42)): (a) lower bound (ϑ A−rec

owMIN
) and (b) upper bound (ϑ A−rec

owMAX
) for popu-

lation A, and (c) lower bound (ϑ B−rec
owMIN

) and (d) upper bound (ϑ B−rec
owMAX

) for population B. The
red line in each histogram indicates the median.
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Fig. 7.62 Sample S 2 20 heat map for drainage with ϑ ww
owT h

= 30°. This is a bivariate density
representation of the posterior distribution of contact angles in the pore-size distribution.
The red regions represent high density and the blue regions represent zero density. The
colour intensities indicate a nonuniform distribution.
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Fig. 7.63 S 2 20 HMC inversion results for imbibition with ϑ ww
owT h

= 5° and ϑ ow
owT h

= 175°. (a)
Posterior HMC realisations (grey lines). The measurements are shown as solid black circles.
(b) Posterior marginal histogram of the radius that separates the two pore populations. The
contact angles were assigned to each population in Eq. (4.43). The red line in (b) indicates
the median.
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Fig. 7.64 S 2 20 imbibition HMC inversion results for imbibition with ϑ ww
owT h

= 5° and
ϑ ow

owT h
= 175°. Posterior histograms of the wettability parameters (Eq. (4.43)): (a) lower

bound (ϑ A−adv
owMIN

) and (b) upper bound (ϑ A−adv
owMAX

) for population A, and (c) lower bound
(ϑ B−adv

owMIN
) and (d) upper bound (ϑ B−adv

owMAX
) for population B. The red line in each histogram

indicates the median.
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Fig. 7.65 Sample S 2 20 heat maps with ϑ ww
owT h

= 5° and ϑ ow
owT h

= 175°. (a) Imbibition and
(b) drainage heat maps. These are bivariate density representations of the posterior distribu-
tion of contact angles in the pore-size distribution. The red regions represent high density
and the blue regions represent zero density. The colour intensities indicate a nonuniform
distribution.
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Fig. 7.66 S 2 20 HMC inversion results for imbibition with ϑ ww
owT h

= 30° and ϑ ow
owT h

= 150°.
(a) Posterior HMC realisations (grey lines). The measurements are shown as solid black
circles. (b) Posterior marginal histogram of the radius that separates the two pore popula-
tions. Their contact angles were assigned to each population in Eq. (4.43). The red line in
(b) indicates the median.
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Fig. 7.67 Sample S 2 20 imbibition HMC inversion results for imbibition with ϑ ww
owT h

= 30°
and ϑ ow

owT h
= 150°. Posterior histograms of the wettability parameters (Eq. (4.43)): (a)

lower bound (ϑ A−adv
owMIN

) and (b) upper bound (ϑ A−adv
owMAX

) for population A, and (c) lower bound
(ϑ B−adv

owMIN
) and (d) upper bound (ϑ B−adv

owMAX
) for population B. The red line in each histogram

indicates the median.
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Fig. 7.68 Sample S 2 20 heat maps for ϑ ww
owT h

= 30° and ϑ ow
owT h

= 150°. (a) Imbibition and
(b) drainage heat maps. These are bivariate density representations of the posterior distribu-
tion of contact angles in the pore-size distribution. The red regions represent high density
and the blue regions represent zero density. The colour intensities indicate a nonuniform
distribution.
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Fig. 7.69 Predicted S 2 20 imbibition relative permeabilities and capillary pressure. (a)
Predicted imbibition relative permeabilities using HMC posterior statistics given matching
Sobs

or and Pobs
c,owMIN for a network size of 20×20×20, and (b) imbibition capillary pressure

corresponding to the relative permeabilities in (a).
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Fig. 7.70 Predicted S 2 20 imbibition relative permeabilities, capillary pressure, and hys-
teresis for advancing and receding contact angles. Top row, from left to right, predicted
imbibition relative permeabilities using HMC posterior statistics given matching Sobs

or and
Pobs

c,owMIN for a network size of 20× 20× 20, and ECDF of contact angles in pore-size re-
gions (1) and (2). Bottom row, from left to right, predicted imbibition capillary pressure
using conditional HMC posterior statistics given matching Sobs

or and Pobs
c,owMIN for a network

size of 20×20×20, and ECDF of contact angles in pore-size regions (3) and (4). The black
line is the water-receding contact angle, and the grey dashed line is the water-advancing
contact angle after ageing. The red line on the horizontal axes for (1)–(4) show the median
values.
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Fig. 7.71 Predicted S 2 20 imbibition relative permeabilities for inputs taken from the P10
(M10), P50(M50) and P90(M90) model parameters.
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7.4 Qualitative Comparison of Inversion Wettability Pat-
terns with Scanning Electron Microscope Images

In this section, we attempted to identify patterns in the scanning electron microscope im-
ages that can explain the inversion of wettability, described in the light of recent cryogenic
high resolution scanning electron microscope images of carbonate wettability [235]. Our
observations indicated that the shape of calcite crystals in the microporosity appear to allow
for the coexistence of large and small advancing contact angles in small pores. These ob-
servations are conjectures, because the scanning electron microscope images shown in Fig.
7.72 are not sufficient to draw strong conclusions.

Figure 7.72 contains very high resolution SEM images of the microporosity of the three
rock samples. The microstructure of the calcite has shapes similar to the pattern in Fig.
7.72d4. The calcite crystals intrude on one another so there are no regular shapes as the
one shown in Fig. 7.72d1. The intercrystal pore space of the microporosity in contact with
the anhedral irregular structure has been associated with large advancing oil/water contact
angles [235]. Consistent with Fig. 7.72a2, b2, c2, our inferences using the HMC inversion
also show large angles for the advancing oil/water contact angles in the micropores.
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Fig. 7.72 Relationship between microporosity visual structure and wettability. The images
show a detailed view of the microporosity in Samples 28, 2 4, and 2 20 shown in Figs.
7.72a2, 7.72b2, and 7.72c2. The structure of the grains suggests anhedral shapes (d4),
which appear to be responsible for the large contact angles in the micropores. (a1) Pore-
size distribution of RT-I S 28 Section 7.1 [185]. (a2) Microporosity of RT-I S 28 at high
resolution in a SEM image. (b1) Pore-size distribution of RT-II S 2 4 Section 7.1 [185]. (b2)
Microporosity of RT-II S 2 4 at high resolution in a SEM image. (c1) Pore-size distribution
of RT-III S 2 20 Section 7.1 [185]. (c2) Microporosity of of RT-III S 2 20 at high resolution
in a SEM image. (d1), (d2), (d3) and (d4) Different possible crystal configurations that form
the microporosity; (a2), (b2) and (c2) resemble that of anhedral configuration.
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7.5 Discussion

Previous studies have attempted to characterise pore-network model imbibition wettability
using Amott/USBM indices or measuring the water-advancing contact angle outside porous
media [8, 80, 84, 85, 150]. The common approach to characterise pore-network model im-
bibition wettability is to tune a fixed-width uniform distribution of water-advancing contact
angles to match the imbibition residual oil saturation [8, 29, 33, 113, 256, 258, 320, 367,
396, 399]. Previous studies using lattice pore-network models have used additional data
such as relative permeabilities for drainage or resistivity indices to tune the pore-network
model parameters [29, 33, 113, 256, 258, 320, 367, 396, 399].

The main problem with using pore-network models is the nonuniqueness of the esti-
mated pore-network model wettability parameters. The distribution of water-receding con-
tact angles and the maximum oil-flooding invasion pressure influence the locations where
wettability alteration takes place during ageing. The residual oil saturation depends on the
wetting films, which depend on the criteria by which they are assigned based on the pore
shape and the contact angles inside the pore. Therefore, uniqueness is not guaranteed (and
in fact nonuniqueness is almost always guaranteed).

Recently, research has focused on implementing more complex physics coupled with
simplified geometries of pore elements to link wettability with pore shape to define the
existence of wetting films. The nonuniqueness of wettability characterisation is more crit-
ical when the complexity of the pore-network model increases, because there is complex
interplay between different pore-network model parameters. Furthermore, porous media
reconstruction methods are not able to capture the full pore-size distribution, and some au-
thors have chosen to ignore microporosity under the assumption that it may not play a large
role in the relative permeabilities for water-flooding.

We used the HMC algorithm for inversion of the full set of pore-network model param-
eters using only capillary pressure to condition the solution based on the misfit function.
HMC inversion is a probabilistic approach to deal with the nonuniqueness problem. This
method avoids the linearity assumption between the misfit and pore-network model param-
eters implemented in other studies. The procedure has two parts. The first part involves
drainage wettability inversion. The resulting posterior distribution of receding contact an-
gles (drainage heat map) is used to derive p-quantiles for each region in the pore-size dis-
tribution. The second part involves drainage wettability inversion starting at the fluid con-
figuration in the network after oil injection under the p-quantile posterior distribution of
receding contact angles for each region in the pore-size distribution. This step generates a
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second p-quantile posterior distribution of advancing contact angles for each region in the
pore-size distribution (imbibition heat map). The calculated heat maps are then used to de-
rive posterior statistics from the posterior models given matching of the observed drainage
and imbibition capillary pressure end-point. To predict the relative permeabilities for imbi-
bition, the pore conductance is determined by fitting a BC model to the MICP. The product
of the pore-size index from the BC model and the volume exponent is used to define the
conductance exponent in the power-law model.

Although our results are more complete in terms of providing a distribution of receding
and advancing contact angles to populate the pore-network model and predict relative per-
meabilities, it is worthwhile to compare our results with those obtained by other methods.
Previous work on these carbonate samples has estimated single values for the advancing
contact angles based on analytical methods [241]. For RT-I, the single value of the advanc-
ing contact angle from the analytical method is consistent with the population median for
the larger pores (regions (5) and (6) in the pore-size distribution). In contrast, the analytical
method estimated smaller advancing contact angles in mid-sized pores (regions (3) and (4)),
while our results showed larger advancing contact angles than the ones in the larger pores
(regions (5) and (6)).

RT-II and RT-III have similar structural parameters. However, their respective wettabil-
ity parameters and relative permeabilities are different. RT-II is oil-wet, while RT-III tends
to be weakly oil-wet with a median receding contact angle close to the value estimated by
analytical methods. We cannot exclude the possibility that the cleaning problems of RT-II
could lead to more oil-wet conditions. However, in the literature, some studies have indi-
cated that cleaning problems before ageing do not change the final wettability alteration.
Indeed, cleaning problems could modify the occupancies during drainage, and therefore the
location of wettability alteration.

These findings demonstrate that the relative permeabilities for imbibition in carbonates
can be predicted using robust stochastic inversion constrained only to capillary pressure
data. Our results also confirm that the implementation of progressively more complex pore-
scale phenomena demands robust pore-network model parameter estimation methods.

The findings indicate the importance of accounting for the whole pore-size distribution,
because mid-sized pores (microporosity) may have higher contact angles than larger pores,
which could strongly influence the invasion sequence, and therefore the relative perme-
abilities. This could indicate that for deriving the wettability from the capillary pressure
and predicting relative permeabilities, it is more important to match the maximum oil- and
water-flooding pressures than to force the wettability to match the residuals (connate water
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and residual oil saturations).
Our estimates of the water relative permeability are more accurate than those in [8]. Our

results provide evidence of the importance of accounting for the whole pore-size distribution
in carbonates because mid-sized pores play an important role in the connectivity.

It is customary to assume that carbonates follow a mixed-wet large model of wettability.
As shown in the imbibition heat maps, the overall behaviour is that of a mixed-wet large
(considering the whole range in the pore-size distribution) model. However, there is high
degree of variability and mid-sized (micropores invaded by oil) pores seem to show higher
contact angles than the larger pores. This local mixed-wet small behaviour provides addi-
tional shielding of the larger pores. We suggest that previous approaches underestimated
the water relative permeability for water-flooding because the pore-network model wetta-
bility was derived by matching the residual oil saturation and that might have led to larger
advancing contact angles and less variability.

To the best of our knowledge, this is the first study to estimate relative permeabilities
for imbibition in carbonates based on stochastic inversion of the complete set of lattice pore
network parameters constrained only to the capillary pressure.

In addition, HMC could be applied to pore-network models that capture more of the
physics of pore-scale displacement mechanisms to obtain more robust estimates of the link
between the residual oil saturation and contact angles.

These results may indicate that measurements outside porous media, such as the average
apparent contact angle and analytical models of contact angle hysteresis, are very limited
in their ability to characterise the variability in wettability at the pore scale to supply distri-
butions to pore-network models. Note that explicit treatment of wetting films conductance
may improve the relative permeability predictions.



Chapter 8

Conclusions

This chapter summarizes the findings of the thesis. In this thesis, we have explored the
prediction of imbibition relative permeabilities for carbonates using stochastic inversion of
lattice pore-network model parameters using Hamiltonian dynamics.

The thesis involved three subjects: (a) Hamiltonian inversion of pore-network model
structure parameters, (b) Hamiltonian inversion of pore-network model wettability parame-
ters, and (c) comparison of relative permeabilities predictions using the full set of inverted
pore-network model parameters with steady-state experimental imbibition relative perme-
abilities data for carbonates.

8.1 Summary

This thesis took a top-down approach to characterise lattice pore-network model parameters
using routinely acquired capillary pressure data. This was accomplished using Hamiltonian
Monte Carlo stochastic inversion, which can give valuable insight into pore-network model
parameters and may be a useful approach for future modelling. This will also improve our
ability to analyse and interpret experimental data.

Pore-network models cover a wide range of pore structures and physical phenomena.
This study focussed on lattice pore-network models under capillary-dominated flow. Pore-
network models easily match the data and multiple solutions are found. The data used to
characterise pore-network model parameters is often static while the data to be predicted is
dynamic. This type of problem is difficult to solve.

Various methods for probing porous media directly generate unstructured pore-network
models, which facilitate the process only for narrow pore-size distributions. Moreover, the
various methods for producing unstructured pore-network models, such as microcomputed
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tomography and different algorithms, find it difficult to generate pore-size distributions con-
taining all length scales. This means that it is difficult to generate amenable pore-network
models with all length scales (representative elementary volumes) for carbonate reservoirs.

Lattice pore-network models were chosen because they allow the flexibility to integrate
the multiple length scales that occur in carbonate rocks. The inverse problem of pore-
network model parameter characterisation was solved using a stochastic inversion strategy,
which tackled the systematic problem of multiple minima when characterising the pore-
network model parameters. The stochastic inversion used routinely acquired laboratory
data.

• The main finding of this thesis is that stochastic inversion of lattice pore-network
model parameters combined with Hamiltonian dynamics is capable of predicting im-
bibition relative permeabilities with good accuracy using only routinely obtained data,
such as mercury intrusion capillary pressure and oil/water capillary pressure.

• Micropores play an important role in wettability because they are more or equally as
oil-wetting as large pores, leading to a gentle water relative permeability curvature.

• The method proposed in this thesis is important because a large percentage of the
porosity in carbonates is microporosity.

8.2 Conclusions

1. Pore-size distribution parameterisation

• We have proposed an estimator for the pore-size distribution using mercury in-
trusion capillary pressure data that is independent of the range of pore sizes. A
wide range of pore sizes introduces scale dependency in the usual Ritter and
Drake pore-size distribution estimator, because small pores produce a strongly
right-skewed distribution. Carbonate rocks often show three to five orders of
magnitude variation in pore sizes. Thus, when the Ritter and Drake method is
applied to mercury intrusion capillary pressure data, the pore-size distribution is
dominated by small pores.

• Our intention was to develop an estimator that overcomes the usual problem
of right-skewed pore-size distributions while being weakly constrained. In this
study, we used information entropy concepts to parameterise the pore-size dis-
tribution. The method is based on partitioning the pore sizes into bins of equal
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information content. This partitioning increases the entropy with respect to the
initial pore-size distribution estimator derived from mercury intrusion capillary
pressure data. However, we do not suggest that the underlying true pore-size
distribution in the porous media has this form. The parameterisation only makes
weak assumptions of the functional form of the pore-size distribution from the
prior information at hand, unlike other approaches.

• The proposed parameterisation was compared with a natural choice of a non-
parametric parameterisation for this problem using logarithm uniform bin widths
for a synthetic case. Bias was observed in the posterior distribution of the vol-
ume exponent and the pore-size distribution, whereas our proposed parameter-
isation is unbiased. This is important because we found that there is a strong
correlation between the pore size in the range of microporosity and the volume
exponent. This correlation shifts the posterior distribution towards low values of
the volume exponent and there is a smaller contribution from microporosity.

2. Hamiltonian stochastic inversion: Synthetic case

• We used a synthetic case to test the method on a system with multiple minima.
Despite the difficulty of the problem, the Hamiltonian Monte Carlo posterior
statistics agreed well with the true parameters. Analysing the multivariate re-
lationships of the parameters in the synthetic case, we found that low values
of the volume exponent (close to zero) decreased the fraction of small pores.
This sheds light on why low volume exponents were used in previous lattice-
type pore-network models applied to carbonates, which may lead to erroneous
pore-size distributions. Our findings suggest that the volume exponent parame-
ter is correlated with the amount of small pore sizes. This is important because
other studies of carbonate rocks have assumed that the volume exponent is zero
or close to zero, which produces a very good match with the mercury intrusion
capillary pressure but may not correctly predict flow properties. Unlike other
pore-network model parameter estimation approaches, we successfully applied
the Hamiltonian Monte Carlo algorithm to a difficult synthetic case with pore
sizes that varied by up to five orders of magnitude.

3. Hamiltonian stochastic inversion: Carbonate samples

• We implemented a stochastic inversion algorithm that uses deterministic molec-
ular dynamics combined with stochastic steps by Hamiltonian dynamics to esti-
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mate pore-network model parameters. The Hamiltonian Monte Carlo algorithm
allows large moves in the phase space, making use of the periodicity caused by
the Hamiltonian formulation. Thus, large changes in the model parameters are
possible. This improves the effectiveness in capturing the variability in the pos-
terior distribution of pore-network model parameters compared with classical
Metropolis algorithms.

• The method was applied to three carbonate samples of different complexity. In
the case of pore-network model structure Hamiltonian Monte Carlo inversion,
the volume exponent estimates were greater than zero. This has important im-
plications in the prediction of relative permeabilities.

• The results for the three carbonate samples suggest that as the rock quality de-
creases from rock type I to rock type III, the coordination number skews to the
right. The more right-skewed the pore-size distribution of the porous media, the
greater the difference between the pore-size distribution of the porous media and
the estimator calculated from mercury intrusion capillary pressure data.

• More than 50 % of the pore-size distribution from the pore-network model pa-
rameter inversion is in the microporous range. This indicates that it is important
to account for the complete range of pore sizes in the parameterisation. The
strong correlation between the amount of microporosity and volume exponent
suggests that when microporosity is ignored the volume exponent will system-
atically tend to be strongly underestimated (values close to zero). This may
produce a very poor prediction of the relative permeabilities.

• The output of the Hamiltonian Monte Carlo parameter estimation is the structure
of the pore-network model. Using this pore-network model structure, the second
step involved estimating the posterior distribution of receding and advancing
contact angles subject to oil/water capillary pressure.

4. Hamiltonian stochastic inversion: pore-network model wettability

• We found that intermediate wettability causes mid-sized pores (microporosity)
range to be invaded at the same level of pressure as larger pores. The coexis-
tence of these events reduces the tendency for preferential flow through large
pores, resulting in more uniform flow at the pore scale compared with the case
in which flow is restricted to only large pores. This could explain the more con-
cave curvature of the imbibition water relative permeability compared with the
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generally assumed mixed-wet large wettability model, in which mid-sized pores
are weakly oil-wet and large pores are more oil-wet.

• Microporosity (mid-sized pores) has an important effect on the connectivity be-
cause they could have higher contact angles than larger pores. Therefore, they
do not spontaneously imbibe and shield larger pores, improving water-flooding
displacement.

• The importance of the maximum and minimum observed capillary pressure is
directly connected to accounting for the full pore-size distribution. The common
assumption that microporosity can be ignored is unsatisfactory. The existence of
wetting films depends on the maximum capillary pressure during drainage, and
thus affects wettability alteration during ageing.

• Our results suggest that matching both connate water at the maximum drainage
capillary pressure before ageing and residual oil at the minimum imbibition cap-
illary pressure leads to better estimation of the advancing and receding contact
angles and more reliable predictions of the relative permeabilities. In contrast,
the imbibition water relative permeability was not well-predicted using poste-
rior distributions of contact angles based on models not matching the capillary
pressure end-points.

• The distribution of advancing contact angles for the three samples are associ-
ated with a high degree of variability in wettability, as shown by the heat maps.
The existing methodology in pore-network model tunes the wettability to match
the observed residual oil saturation. However, wetting films are linked to the
capillary pressure and ignoring the maximum drainage capillary pressure before
ageing and the minimum imbibition capillary pressure could cause the advanc-
ing contact angles to be overestimated.

• Heat maps for rock type I and rock type III suggested a weakly-oil wettability.
This is in agreement with observation in which the low values of connate water
and residual oil saturations are associated to weakly-oil conditions [203]. In the
case of rock type II, the lower imbibition capillary pressure end-point is related
to a slightly more oil-wetness and residual oil saturation. These trends has been
seen in more complex pore-network models [336].

• The ranges of advancing and receding contact angles obtained from the inversion
were wider than the ranges of apparent advancing contact angles obtained with
analytical determinations in previous studies of these samples in the literature,
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and in one case our results were contradictory to the analytical determination.
It follows that the variability in the advancing and receding contact angles is
not reflected in the apparent contact angle data outside porous media. Appar-
ent contact angle data outside porous media cannot completely characterise the
wettability in pore-network models because the data do not capture the contact
angle variability in porous media.

• Core cleaning problems may result in stronger oil-wetting conditions after age-
ing. Hamiltonian Monte Carlo wettability inversion for rock type II showed
larger advancing contact angles and less variability in the heat maps than the
other two samples. This was in agreement with the relative permeabilities inter-
section point being at lower water saturation.

5. Prediction of imbibition relative permeability

• Hamiltonian Monte Carlo stochastic inversion provided reliable estimates of the
lattice pore-network model parameters. This was demonstrated by applying the
method to three carbonate samples from the Middle East. Lattice pore-network
models supplied with Hamiltonian Monte Carlo estimates for the pore-network
model parameters predicted the experimental steady-state imbibition relative
permeabilities for the three carbonate samples with good agreement.

• The relative permeability data in the literature from pore-network models for
weakly wetting conditions are for pore sizes assigned to microporosity that are
much larger than the pore sizes identified from mercury intrusion capillary pres-
sure, while the relative permeabilities generated here cover the full range from
mercury intrusion capillary pressure. Furthermore, the microporosity range of
pore sizes is often assumed not to contribute to flow. The water invasion of
mid-sized pores could explain the more concave curvature of the water relative
permeability. This result suggests that, water-flooding displacement could be
better than the usual assumption that the flow only takes place along the inter-
connected large pores present in carbonates.

8.3 Future Work

• One of our short-term research goals is to investigate whether the wettability may
change once oil layers and wetting films are assigned to each pore based not only on
the contact angle, but also on the pore shape.
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• The wettability at the minimum residual oil saturation and how it relates to the pore
sizes are not fully understood. It would be interesting to determine the combined
effect of oil layers and pores sizes on the wettability of carbonate rocks and how they
affect the relative permeabilities.

• Using volume-controlled mercury intrusion data as an observable for pore-network
model structure characterisation might also lead to a deep understanding of the con-
nectivity in tight rocks, such as the rocks in unconventional reservoirs. In these types
of rocks, it is not only challenging to characterise the network structure, but also the
dominant physics are also not clear.

• The phase space is characterised by flow maps. It may be possible to transform each
parameter depending on its position in the phase space and anticipate the flow to
provide an adaptive scheme that is consistent with the detailed balance.



Appendix A

Chapter 6: Posterior Density Functions

A.1 Synthetic Case
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Fig. A.1 (a) Marginal posterior PDF of the volume exponent for the proposed parameterisa-
tion. (b) Marginal posterior PDF of the volume exponent for the logarithmically equidistant
bin parameterisation.
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Fig. A.2 (a) Marginal posterior PDF of the average coordination number for the proposed
parameterisation. (b) Marginal posterior PDF of the average coordination number for the
logarithmically equidistant bin parameterisation.

A.2 Carbonate Rock Samples: Pore-Network Model Struc-
ture

A.2.1 RT-I S 28
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Fig. A.3 Sample S 28: (a) Marginal posterior PDF of the volume exponent (ν), (b) Marginal
posterior PDF of the average coordination number (Z̄) (red lines indicate the median values).
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A.2.2 RT-II S 2 4
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Fig. A.4 Sample S 2 4: (a) Marginal posterior PDF of the volume exponent (ν), (b) Marginal
posterior PDF of the average coordination number (Z̄) (red lines indicate the median values).

A.2.3 RT-III S 2 20
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Fig. A.5 Sample S 2 20: (a) Marginal posterior PDF of the volume exponent (ν), (b)
Marginal posterior PDF of the average coordination number (Z̄) (red lines indicate the me-
dian values).
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A.3 Carbonate Rock Samples: Pore-Network model Wet-
tability
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Fig. A.6 S 28 imbibition HMC inversion results for imbibition with ϑ ww
owT h

= 30° and ϑ ow
owT h

=

150°. PDF of the wettability parameters (Eq. (4.43)): (a) lower bound (ϑ A−adv
owMIN

) and (b)
upper bound (ϑ A−adv

owMAX
) for population A, and (c) lower bound (ϑ B−adv

owMIN
) and (d) upper bound

(ϑ B−adv
owMAX

) for population B and (e) Posterior density function of the radius that separates the
two pore populations. Their contact angles were assigned to each population in Eq. (4.43).
The red line indicates the median.
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Fig. A.7 S 2 4 imbibition HMC inversion results for imbibition with ϑ ww
owT h

= 30° and
ϑ ow

owT h
= 150°. PDF of the wettability parameters (Eq. (4.43)): (a) lower bound (ϑ A−adv

owMIN
)

and (b) upper bound (ϑ A−adv
owMAX

) for population A, and (c) lower bound (ϑ B−adv
owMIN

) and (d) up-
per bound (ϑ B−adv

owMAX
) for population B and (e) Posterior density function of the radius that

separates the two pore populations. Their contact angles were assigned to each population
in Eq. (4.43). The red line indicates the median.
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Fig. A.8 S 2 20 imbibition HMC inversion results for imbibition with ϑ ww
owT h

= 30° and
ϑ ow

owT h
= 150°. PDF of the wettability parameters (Eq. (4.43)): (a) lower bound (ϑ A−adv

owMIN
)

and (b) upper bound (ϑ A−adv
owMAX

) for population A, and (c) lower bound (ϑ B−adv
owMIN

) and (d)
upper bound (ϑ B−adv

owMAX
) for population B and (e) Posterior density function of the radius that

separates the two pore populations. Their contact angles were assigned to each population
in Eq. (4.43). The red line indicates the median.
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RT-I S 28: Prediction of Relative
Permeability considering volume
exponent equal to zero
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Fig. B.1 Predicted imbibition relative permeabilities using HMC posterior statistics given
matching Sobs

or and Pobs
c,owMIN for a network size of 20×20×20 using volume exponent ν = 0
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MCMC versus HMC: RT-I

RT–I S 28: Determination of Imbibition Wettability Parameters for Wetting Films
with ϑ ww

owT h
= 30° and ϑ ow

owT h
= 150°

Figure C.1 shows the conditional imbibition heat maps given those realisations matching the
imbibition capillary pressure end-point (Sobs

or and Pobs
c,owMIN) for MCMC and HMC methods.

MCMC method while showing similar features to HMC, the variability in the advancing
contact angle heat map (Fig. C.1a) is less captured than with HMC (Fig. C.1b) .
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Fig. C.1 These heat maps convey the idea of the variability in the solution to the inverse
problem. Conditional imbibition posterior heat maps given matching the imbibition end-
point Sobs

or and Pobs
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