HERIOT

Reinforcement Learning for Trading
Dialogue Agents in Non-Cooperative
Negotiations.

Doctoral Dissertation by

loannis Efstathiou

Submitted for the Degree of Doctor of Philosophy in Computer
Science

Interaction Lab

School of Mathematical and Computer Sciences

Heriot-Watt University

2016

The copyright in this thesis is owned by the author. Any quotation from the report or
use of any of the information contained in it must acknowledge this report as the source
of the quotation or information.

“You can discover more about
a person in an hour of play
than in a year of
conversation.”

PLATO, 429 - 345 B.C.
LINGARD, 1598 - 1670
ANONYMOUS

Declaration

I, Ioannis Efstathiou

hereby declare that the composition of this thesis submitted for examination
has been made by myself and the words are personally expressed. Any exceptions,
including works taken from any other authors, are all stated in my text and are also
included in my references list. Furthermore, this document has not been submitted

for any other qualification or degree.

Abstract

Recent advances in automating Dialogue Management have been mainly made in
cooperative environments -where the dialogue system tries to help a human to meet
their goals. In non-cooperative environments though, such as competitive trading,
there is still much work to be done. The complexity of such an environment rises
as there is usually imperfect information about the interlocutors’ goals and states.
The thesis shows that non-cooperative dialogue agents are capable of learning how
to successfully negotiate in a variety of trading-game settings, using Reinforcement
Learning, and results are presented from testing the trained dialogue policies with
humans. The agents learned when and how to manipulate using dialogue, how to
judge the decisions of their rivals, how much information they should expose, as well
as how to effectively map the adversarial needs in order to predict and exploit their
actions. Initially the environment was a two-player trading game (“Taikun”). The
agent learned how to use explicit linguistic manipulation, even with risks of expo-
sure (detection) where severe penalties apply. A more complex opponent model for
adversaries was also implemented, where we modelled all trading dialogue moves as
implicitly manipulating the adversary’s opponent model, and we worked in a more
complex game (“Catan”). In that multi-agent environment we show that agents
can learn to be legitimately persuasive or deceitful. Agents which learned how to
manipulate opponents using dialogue are more successful than ones which do not
manipulate. We also demonstrate that trading dialogues are more successful when
the learning agent builds an estimate of the adversarial hidden goals and preferences.
Furthermore the thesis shows that policies trained in bilateral negotiations can be
very effective in multilateral ones (i.e. the 4-player version of Catan). The findings
suggest that it is possible to train non-cooperative dialogue agents which success-
fully trade using linguistic manipulation. Such non-cooperative agents may have
important future applications, such as on automated debating, police investigation,

games, and education.

vi

Acknowledgements

Initially I would like to thank my first Supervisor, Professor Oliver Lemon, who
offered me the chance to work in the intriguing areas of Reinforcement Learning and
Pragmatics. He motivated me to study the strategic negotiations that can be learned
by intelligent agents in Natural Language Dialogue systems, through the application
of various interesting Reinforcement Learning algorithms and techniques. Without
his expertise, patience, valuable guidance and experienced suggestions this document
would lack content and aim. Each of our meetings was a unique experience which
not only enhanced my current knowledge but significantly widened my perspective
on academic thinking.

My second Supervisor, Professor David Corne, who as my second mentor now
and teacher in the past on several lessons, during my MSc course in Artificial In-
telligence, elegantly guided me through various fascinating paths of this area and
kept reinforcing my passion towards it through his ingenuity and broad experience.
The Heriot-Watt University and its Library department, for providing me all the
required knowledge and the flexible means respectively to effectively seek resources
and produce this work. The postgraduate students Wenshuo, Aimilios and Nida who
showed interest in our research by extending parts of our work now towards their
unique goals. Furthermore, everyone involved in the Interaction Lab and especially
in the STAC project for their suggestions in our meetings and valuable advice. Last
but not least my family, partner and friends for their continuous support and deep

understanding of my effort.

vii

Contents

2

1 Introduction
1.1 Motivation L
1.1.1 Example dialogues
1.2 Robotic deception ethics L.
1.3 Research Questions L.
1.4 Requirements
1.5 Contributions
1.6 Publications Lo
1.7 Thesis outline
Background
2.1 Reinforcement Learning L.
2.1.1 Exploration and Exploitation
2.1.2 Markov Decision Processes
2.1.3 Policy Value Function
214 Q-Learning
2.1.5 Temporal-Difference Learning
2.1.6 SARSA(0) and SARSA(N\)
2.2 Non-Stationary MDPs oo
2.3 Game Theory
2.3.1 Pure and Mixed Strategy
2.3.2 Cooperative and Non-cooperative games
2.3.3 Nash Equilibriumo 00000
2.3.4 Pareto Optimality
2.3.5 Dominant Strategy L.
2.3.6 Perfect and Imperfect Information Games
2.4 RL in Dialogue Systems
2.4.1 Reinforcement Learning in Non-Cooperative Games

2.5

2.6

2.4.2 Reinforcement Learning in Negotiation Dialogue Management
CP-NETs e
2.5.1 CP-NETs in Dialogue Acts

Pragmaticso

2.6.1 Gricean Maxims and Implicature 41

2.6.2 Gricean Maxims and Non-cooperative Dialogues 43
2.7 Conclusion 43
3 Initial model: Taikun 45
3.1 Asimplegame 46
3.1.1 Game’s characteristics 46
3.1.2 Actions (Trading Proposals) 47
3.1.3 Additional actions (Deception - Scalar Implicatures) 48
3.1.4 The Learning Agent 49
3.1.5 The Adversaries 50
3.1.6 History log of the played games 51
3.2 Algorithms 52

3.2.1 Similarities between the LA’s first (custom SARSA(0)) and
second algorithm (SARSA(N)) 52

3.2.2 Differences between the learning agent’s first (custom SARSA(0))

and second algorithm (SARSA(N)) 53

3.2.3 More details on the first algorithm’s implementation (custom
SARSA(0)) 53

3.2.4 Details and parameters of the second algorithm’s implemen-
tation (SARSA(N)) 57
3.2.5 Advantages and disadvantages of the two algorithms / Results 58
3.2.6 Q-Learning and Value iteration not suitable for Taikun 60
3.3 Experiments backgroundo o000 60
3.3.1 Adversary’s strategy in Experiment 1 / Baseline strategy . . . 61

3.3.2 Adversary’s strategy in Experiment 2 / Manipulated strategy 61

3.3.3 Why is the adversary’s manipulated behaviour based on sound

TEASONINE?To 62

3.3.4 Restrictive adversaries o0 63
3.3.5 Exposing (detective) adversaries 64
3.3.6 Hidden Mode MDP triggered by manipulative actions 64
3.3.7 Hybrid strategy Lo 65

3.4 Conclusion 67
4 Taikun: Manipulation 68
4.1 Strict adversary 69
4.1.1 Changing the exploration rate 71

4.2 Manipulation 76
4.3 Hybrid strategyo 80
4.4 Significance L 83
4.5 Summary 84

ix

5 Manipulation detection 85

5.1 Strict adversary Lo 86
5.2 Manipulation 87
5.3 Restriction 88
0.4 Exposure. 90
5.4.1 Refusal of trading 90
5.4.2 Instant win 91

5.5 Significanceo 92
5.6 Parameterso 94
5.7 One manipulation oo 94
5.7.1 Dual-mind cognition 96
5.7.2 When to manipulate? L 97
573 Results. 97
574 Conclusion 97

5.8 Deception detection Lo 99
5.8.1 Detection cases L 99
5.8.2 The adversaries and the LA 100
583 Results. 100

5.9 Conclusion 101
6 Taikun and humans 103
6.1 Human vs. Agent 103
6.1.1 Game questionnaire 104
6.1.2 Overall questionnaire 105
6.1.3 Questionnaires’ results and discussion 106
6.1.4 Human comments on the manipulative agent 107

6.1.5 Human comments on the non-manipulative agent (goal-oriented

only) 108

6.1.6 Discussion and conclusion 109

6.2 Human vs. Human 110
6.2.1 Questionnaire 110

6.2.2 What did people say during trading? 111
6.2.3 Conclusions on human game-play in Taikun 112

7 Main model: Catan 114
7.1 RLAs and upgraded SARSA(N\) 115
7.2 Design L 115
7.2.1 Actions (Trading Proposals) 116
7.2.2 The RL Agents (RLA) 117
7.2.3 Reward function 117
7.2.4 Training parameters L. 117

7.2.5

State Encodingo

7.3 Experiments backgroundo o000

8 Catan: Opponent models

8.1 Imitial Experiments Lo

8.2 Manipulation

8.2.1
8.2.2
8.2.3
8.2.4
8.2.5
8.2.6
8.2.7
8.2.8
8.2.9
8.2.10
8.2.11
8.2.12
8.2.13
8.2.14
8.2.15

Corpus analysis
Actions (Trading Proposals)
The Adversary and its Opponent model
The Honest Reinforcement Learning Agent - “The Good” . . .
The Dishonest Reinforcement Learning Agent - “The Bad” . .
The Naive Hand-Crafted Learning Agent - “The Ugly”

Naive HCA vs. Adversary: Experiment 1 (Baseline)
Honest RLA vs. Adversary: Experiment 2
Dishonest RLA vs. Adversary: Experiment 3
Results o
Naive HCA: Experiment 1 results
Honest RLA: Experiment 2 results
Dishonest RLA: Experiment 3 results
Discussion: a Non-Stationary MDP problem

Discussion: Discourse Studies

8.3 Preferences

8.3.1
8.3.2
8.3.3
8.3.4

Actions (Trading Proposals)
The State Encoding Mechanism
State representing adversary’s preferences
The Adversary and the Preference RLAs

8.3.5 Experiments and Results
8.3.6 BRLA vs. Adversary: (Baseline)
8.3.7 PPRLA vs. Adversary
8.3.8° NPRLA vs. Adversary
83.9 Conclusion.
8.3.10 Adversary with finite resources
84 CP-NETs
8.4.1 New extended state representation

8.4.2
8.4.3

CPNET RLA vs. Adversary
CP-NETS and finite resources

8.5 Significance

8.6 Conclusion

X1

9 JSettlers environment 143

9.1 [Initial Experiments 144
9.1.1 The original STAC Robot (“Bot”) 145
9.1.2 Our trained RL agent (goal-oriented) 145
9.1.3 Trained RL agent vs. 3 Bots 145
9.1.4 The Bayesian agent (“Bayes”) 146
9.1.5 Trained RL agent vs. 3 Bayes 146

9.2 Manipulation oo 147
9.2.1 'Trained Dishonest RL agent vs. 3 Manipulated Bots 147
9.2.2 Trained Dishonest RL agent vs. 3 Manipulated Bots (weights

based on building plan) 148
9.2.3 Trained Dishonest RL agent vs. 3 Manipulated Bots (weights

based on building plan and resource quantity) 149
9.2.4 Trained Dishonest RL agent vs. 3 Bayes 150

9.3 Significance 151

9.4 Preferences 152
9.4.1 Our trained NPRLA Settlers agents 153
9.4.2 Trained NPRLA (infinite resources) vs. 3 Bots 153
9.4.3 Trained NPRLA (finite resources) vs. 3 Bots 154
9.4.4 Related worko 154

9.5 Conclusion L 155

10 Catan and humans 156

10.1 Pilot sessionso 157
10.1.1 Information given to the player 157
10.1.2 The score e 158
10.1.3 Lessons from the pilot study 160

10.2 Main experiments 161
10.2.1 Revisedrules L oo 161
10.2.2 Session’s questionnaire 163
10.2.3 Overall questionnaire 164
10.2.4 Comments on agents 164
10.2.5 How did the players win? 165
10.2.6 Results and discussion 166

10.3 Conclusion L 168

11 Conclusion 170
A range of research issues was explored: 170

11.1 List of contributions L 171

11.2 Personal evaluation and reflection 173

11.3 Future worko 174

Xii

11.3.1 RL negotiations generalisation 174

11.3.2 Outlook 175

A Appendix 186
A.1 Preliminary work 186
A.1.1 Q-Learning example on a grid-world 187
A1.2 Tic-Tac-Toe 187
Notes about the LA’s algorithm (1st PhD year) 188

A13 Poker 190

A2 Algorithms. 191
A2.1 “Tic-tac-toe”: LA’s algorithm 191
A.2.2 Poker: LA’s algorithm and notes 192
Further notes (1st PhD year) 193

A.2.3 “Taikun”: LA’s algorithm (custom SARSA(0)) 195
A.2.4 “Taikun” LA’s algorithm (SARSA (A)) 199

xiii

List of Figures

1.1 The structure of the thesis. 12
2.1 Value Iteration algorithm on the Grid-World. 17
2.2 The Value Iteration algorithm. 18
2.3 An example of a sub-optimal policy during a value iteration algorithm
inagrid-world. 18
2.4 Q-values of actions in a grid-world. 19
2.5 Updating the approximation of Q-value. 20
2.6 Q-learning algorithm taken from [94]. 20
2.7 SARSA(0) learning algorithm taken from [95]. 22
2.8 SARSA()) learning algorithm taken from [96]. 23
2.9 Preference relations for the “picture drawing” example. 38
2.10 CP-NET of the “picture drawing” example. 39
2.11 Induced preference graph of the “picture drawing” example. 39

4.1 Learning Agent’s and Adversary’s performance in 160,000 training

games of Experiment 1.. 0oL 69
4.2 Learning Agent’s reward-victory graph in 160k training games of Ex-

periment 1.o 70
4.3 Learning Agent’s reward-victory graph in 1.6 million training games

of Experiment 1. 70
4.4 Learning Agent’s and Adversary’s performance after 3.5 million train-

ing games of Experiment 1. 0L 71
4.5 Learning Agent’s reward-victory graph in 3.5 million training games

of Experiment 1. 72
4.6 Learning Agent’s reward-victory graph in 350 thousand training games

of Experiment 1. 72
4.7 Learning Agent’s and Adversary’s performance in 3.5 million training

games of Experiment 1 with gradual decrease of the exploration rate. 73
4.8 Learning Agent’s reward-victory graph in 3.5 million training games

of Experiment 1 with gradual decrease of the exploration rate. 73
4.9 Learning Agent Actions Pie Chart in Experiment 1 74
4.10 Learning Agent Responses Pie Chart in Experiment 1 75

4.11

4.12
4.13

4.14

4.15
4.16
4.17

4.18
4.19
4.20
4.21
4.22
4.23
4.24

0.1

5.2

5.3

0.4

2.5

2.6
5.7

6.1

8.1

8.2

8.3

Learning Agent’s and Adversary’s performance in 350,000 training
GAINECS. .« © v vt e e e e e e e 7
Learning Agent’s reward-victory graph in 350k training games. 77
Learning Agent’s and Adversary’s performance after 3.5 million train-
ing games of Experiment 2. o000 78

Learning Agent’s reward-victory graph in 3.5 million training games

of Experiment 2. 78
Learning Agent Actions Pie Chart in Experiment 2 79
Learning Agent Responses Pie Chart in Experiment 2 80
Learning Agent’s manipulative actions frequency graphs in 3.5 million

training games of Experiment 2. 81
Test 1 Hybrid Results in 20k testing games 81
Test 2 Hybrid Results in 20k testing games 81
Test 3 Hybrid Results in 20k testing games 82
Test 1 Hybrid Graph in 3.5m training games 82
Test 2 Hybrid Graph in 3.5m training games 82
Test 3 Hybrid Graph in 3.5m training games 83

Best performances observed in 3.5 million training games and 20k

testing games. Lo oL 84

Learning Agent’s reward-victory graph in 1.5 million training games

of Experiment 1. 87
Learning Agent’s reward-victory graph in 1.5 million training games

of Experiment 2. Lo 88
Learning Agent’s reward-victory graph in 150 thousand training games

of Experiment 4.1.1 91
Learning Agent’s reward-victory graph in 1.5 million training games

of Experiment 4.2. 93
Table of various tested A values. 95
One time manipulation in exploration: frequencies of actions. 98
The winning rates (%) of the different exposing adversaries. 101
“Taikun” version of human player vs. trained RL agent.. 104

Learning Agent’s reward-victory graph in 500 thousand training games
of Initial Experiment: building a city, cooperative adversary. 121
Honest RLA’s reward-victory graph in 3 million training games (ex-
periment 2). Yellow horizontal line = Baseline performance (Naive
HCA). . . 128
Dishonest RLA’s reward-victory graph in 3 million training games
(experiment 3). Yellow horizontal line = Baseline performance (Naive
HCA). . . 129

XV

8.4
8.5
8.6
8.7
8.8
8.9
8.10

9.1

10.1
10.2

Al

A2

A3

Baseline Agent’s reward-victory graph in 250 thousand training games.134

PPRLA’s reward-victory graph in 250 thousand training games. . . . 135
NPRLA’s reward-victory graph in 250 thousand training games. . . . 136
CPNET RLA’s reward-victory graph in 250 thousand training games. 138

CP-NET RLA’s reward-victory graph in 1.5 million training games. . 139
CP-NET RLA’s reward-victory graph in 2.5 million training games. . 139
CP-NET RLA’s reward-victory graph in 5 million training games. . . 140

Example board of the game “Settlers of Catan” using the JSettlers

interface 144
The trading phase of the game “Trading in Catan™ 158
The building phase of the game “Trading in Catan” 159

Learning Agent’s performance after 80,000 testing games of “tic-tac-

17034 188
Total reward/value graph for each of the 80,000 training games of
“tic-tac-toe”. 189

Representation of the player’s and the agent’s states as they are

recorded in the array list in “tic-tac-toe™ 189

XVvi

List of Tables

4.1

4.2

5.1

5.2

2.3

8.1

8.2

8.3

8.4

Frequencies of actions of the learning agent (Exp.1), in 20k testing
games, after 3.5m training ones.
Frequencies of actions of the manipulating learning agent (Ezp.1), in

20k testing games, after 3.5m training ones.

Frequencies of actions of the non-manipulative learning agent (Exp.1)
and of the manipulative one (Exp.2), in 20k testing games, after train-
ing. Bold numbers indicate the trading proposals that were mostly used
by the LA and were accepted by the adversary.
Frequencies of actions of the manipulative learning agent versus the
adversary which refuses to trade (Exp.4.1.1, exp.4.1.2 is similar) and
versus the adversary which instantly wins the game (Ezp.4.2), when
exposure occurs. LA actions in 20k testing games, after training. . . .
Performance (% wins) of the discussed learning agents and adver-
saries, in 20K testing games, after training. (*= significant improve-
ment over baseline [Exp. 1] in bold text, p <0.05)

Performance (% wins) of the discussed learning agents in 20 K test-
ing games, after training. (*= significant improvement over baseline
[Ezp. 1] in bold text, p < 0.05),
Success rate of the Learning agent who considers the adversary’s pref-
erences. Adversary with infinite/finite resources. Performance (%
wins) in 20K testing games, after training (*= significant improve-
ment over baseline [BRLA cases] in bold, p < 0.05).
Wins of the CP-NET Learning Agent. Performance (% wins) in 20
K testing games, after training. (*= significant improvement over
baseline [BRLA cases] in bold, p <0.05).
Training for longer (infinite resources): Wins of the CP-NET Learn-
ing Agent. Performance (% wins) in 20 K testing games, after train-
ing. (*= significant improvement over baseline [BRLA (1) case with

infinite adversarial resources, Table 8.3/, p<0.05).

92

9.1

9.2

Wins of our RL trained policies in the JSettlers environment. The
baseline performance is 25% for both Baseline 1 and 2 which are in
bold text. The performances (% wins) above are after 10K games
(*= significant improvement over baseline, which is 25%, p < 0.05).
The above cases which involve Bots as adversaries are compared to
Baseline 1 and those which involve Bayes as adversaries are compared
to Baseline 2.
Wins of our NPRLA trained policies in the JSettlers environment.

The baseline performance is 25%.

xviil

151

Abbreviations

ASR Automatic Speech Recognition

BP Building Plan

BRLA Baseline Reinforcement Learning Agent
CcP Cooperative Principle

CP — NET Conditional Preference Network

DM Dialogue Manager

HCA Hand Crafted Agent

HCI Human Computer Interaction
HMMDP Hidden Mode Markov Decision Process
HRI Human Robot Interaction

LA Learning Agent

LC Locutionary Cooperation

MA Manipulative Action

MDP Markov Decision Process

NLG Natural Language Generation

NLP Natural Language Processing

NPRLA Negative-Positive Preferences Reinforcement Learning Agent
OM Opponent Model

PC Perlocutionary Cooperation

PCP Perlocutionary Cooperative Principle

POMDP Partially Observable Markov Decision Process

PPRLA Positive Preferences Reinforcement Learning Agent

RL Reinforcement Learning

RLA Reinforcement Learning Agent
SARSA State Action Reward State Action
SLU Spoken Language Understanding
TS Text To Speech

Xix

Chapter 1
Introduction

Remarkable work has been done in cooperative dialogue systems over the past
years. Many interesting results bring human users even closer to computers -
especially when it comes to interacting with them through speech. Research in
automated conversational systems has almost exclusively focused on the case of co-
operative dialogue though, where a dialogue system’s main goal is to assist humans
in specific tasks, such as buying airline tickets [109] or finding a place to eat [113].
Furthermore, apart from Human-Computer Interaction (HCI), impressive results
have been reported in the field of interaction between intelligent agents when the
task’s goal is common and they learn how to collectively work towards it [103]. In all
those cases the agents (artificial or human) try to maximize their combined utility

in a cooperative environment [114].

1.1 Motivation

The complexity of dialogue increases when the interaction has a non-cooperative
basis and especially when the information of the participants is imperfect. There
are still many unexplored paths to be investigated and many models are still in-
sufficient for that type of interaction [101]. Practical and theoretical interest [38]
on non-cooperative dialogues has been shown, where an agent may act in order to
achieve its own goals rather than those of its interlocutors. Some examples where it
is beneficial for an automated agent not to be fully cooperative are: i) in an attempt
to gather information from a human or another artificial agent, ii) when the agent
is trying to persuade, argue, or debate, iii) when attempting to sell something, iv)
in an effort of detecting illegal activity (for example on internet chat sites during
police investigation), or v) in the area of believable characters in video games and
educational simulations [38, 90]. A very important field in which non-cooperative

dialogue behaviour is desirable is in negotiation [101, 77, 35], where hiding informa-

CHAPTER 1. INTRODUCTION 1.1. MOTIVATION

tion (and even outright lying) can be advantageous [26]. Deception is considered
to be an essential part of successful military operations. According to Sun Tzu
“All warfare is based on deception” and Machiavelli clearly states in The Discourses
that “Although deceit is detestable in all other things, yet in the conduct of war it
is laudable and honourable” [2]. Indeed, according to Dennett [19] deception is a
required capability for higher-order intentionality in Artificial Intelligence.

In a language task modelled through the application of Decentralised Partially
Observable Markov Decision Processes [103], it has been suggested that multi-agent
decision theory triggers Gricean cooperative principles [39]. In another related work
[104], agents maximised their joint utility using conversational implicature. Re-
cently, methods drawn from the field of Machine Learning were applied in order
to optimise cooperative dialogue management, where the decision of the next dia-
logue move to make in a conversation is on focus in an attempt to maximise an
agent’s overall long-term expected utility. That usually translates as meeting a
user’s goals [113, 84]. With the particular research it has been argued that robust
and efficient dialogue management strategies can be learned from data, but only the
case of cooperative dialogue was taken into consideration. Those Machine Learning
methodologies used Reinforcement Learning (RL). As we will discuss in Section 2.1,
RL uses a reward function that gives positive feedback to the agent when it meets
a goal, which was that of the user in the above cooperative case.

The goal of the current work is to provide answers to questions originating from
non-cooperative negotiation environments with imperfect information. In this case,
distinct personal objectives usually do not promote the agents’ mutual support but
-in contrast- they build up competition. Furthermore, the players do not have a clear
picture of their opponents’ states or goals. Thus miscommunication, complication
and even failure of the dialogue process is often observed due to a system’s limited
capabilities of identifying, managing and recovering from an unnecessary long series
of non-cooperative dialogue acts [43].

We define as linguistic manipulation all those dialogue actions (utterances)
that aim for personal gain. Those actions may be either deceptive (i.e. lies) or
persuasive (i.e. via repetition of truth), and we will see later that deception and

persuasion, which are based on the °

‘nature” of the negotiator, might both serve
manipulation. In the current thesis they are both learned and used by our RL agents,
during trading negotiations, where the environment is non-cooperative. As we have
mentioned earlier, that means each participant may act to satisfy his/her own goals

rather than those of other participants because the goals diverge or conflict.

CHAPTER 1. INTRODUCTION 1.1. MOTIVATION

1.1.1 Example dialogues

A real dialogue example of this kind that we model, taken from the “Settlers of
Catan” (nowadays known as “Catan”) game corpus (STAC project, http://www.irit
.fr/STAC/), is provided below:

1. - A: Do you have rock?

2. - B: I've got lots of wheat [in fact, B has a rock]

3. - A: I'll give you 2 clay for a rock

4. - B: How about 2 clay for a wheat? [B insists on offering wheat]
5. - A: T'll give 1 clay for 3 wheat

6. - B: Ok, it’s a deal.

In this work, reinforcement learning algorithms mainly based on SARSA [97]
have been developed, in an attempt to learn how to successfully confront adversarial
trading strategies in non-cooperative environments. Thus at the beginning of this
research, a simple, sequential, non-cooperative, non-zero-sum game with imperfect
information was invented between two players called “Taikun”, serving as a toy-
model of real-world trading negotiations. An example of the type of non-cooperative
dialogue behaviour which we are generating in our simple trading game “Taikun” is
given by agent B in the following dialogue. It demonstrates the power of the explicit
manipulation (implicature) through the “I really need X” utterances, where X is a

particular resource:

1. - A: T will give you a sheep if you give me a wheat
2. - B: No

3. - B: I really need rock [B actually needs wheat)]

4. - A: OK

5. - A: T'll give you a wheat if you give me a rock

6. - B: OK

Here, A is deceived into providing the wheat that B actually needs, because A
believes that B needs rock rather than wheat or sheep.

After “Taikun”, we worked in a more complex model (the game “Catan”) that
led us to a more advanced type of non-cooperative dialogue behaviour, where all of

the trading proposals have manipulative effects (implicit manipulation):

CHAPTER 1. INTRODUCTION 1.1. MOTIVATION

1. - A: “I will give you a wheat and I need 2 clay”[A lies - it does not need clay
but it needs wheat]

2. - B: “No”

3. - A: “I'll give you a rock and I need a clay”[A lies again and it actually needs

rocks too, but it does not have any rocks to give]

4. - B: “No”

ot

. - A: “T’ll give you a clay and I need a wheat

6. - B: “Yes”

Here, B is deceived into providing the wheat that A actually needs, because B
believes that A needs clay (A asked for it twice) rather than wheat and rock (that
it offered). Similar human behaviour can be observed in the Catan game corpus
[1]: a set of on-line trading dialogues between humans playing Settlers of Catan.
We analysed a set of 32 logged and annotated games, which correspond to 2512
trading negotiation turns. We looked for explicit lies, of the form: Player offers to
give resource X (possibly for Y) but does not hold resource X - such as in turn 3. in
the above example. 11 turns out of 2512 were lies of this type!. Since this corpus
was not collected with expert players, we expect the number to be larger for more
experienced negotiators. Other lies such as asking for a resource that is not really
wanted, cannot be detected in the corpus, since the player’s intention would need
to be known.

In the experiments that will follow we will also see that a Reinforcement Learning
Agent (RLA) improves its performance by maintaining the adversarial preferences
in its state representation, using different models for that reason. Considering the
history of the trades (during the dialogue), the RLA manages to significantly out-
perform one which does not do that. We will also evaluate our policies with humans
and show that manipulation is effective against them. We will conduct experiments
with agents which detect manipulation based on logical contradictions in dialogue
and show that learned RL policies are still capable of winning more often than
these adversaries, highlighting the importance of such detection for our society and
demonstrating that these adversaries are harder to manipulate though. Finally we
will transfer and test our learned policies from bilateral to multilateral negotiations
of the multi-agent game “Catan”. We will see that trained RL is still very successful

there, even if it is trained versus one opponent, as it then treats them all as one.

Unfortunately, information regarding the result was not available.

CHAPTER 1. INTRODUCTION 1.2. ROBOTIC DECEPTION ETHICS

1.2 Ethical issues in Robotic deception

Nowadays robots are considered to be a closely related subject to our human
society. Human Robot Interaction (HRI) rapidly progresses but various parties have
already expressed their worries about their potentially harmful behaviour, such as
even an impending revolution [55, 89]. It is crucial to analyse the term deception
though that artificial intelligent agents are capable of using, not only with its possible
dangers but with its benefits to the society too. According to Bond and Robinson [9]:
“deception simply is a false communication that tends to benefit the communicator”.
However, when the benefit of the communicator harmlessly serves a personal goal
and even matches that of a greater good then it is considered to be a virtuous act.
According to the current outcome of this thesis and the work of other researchers
[33] [107], robotic deception is currently amongst us, it can be established between
robots as well as between a robot and a human, but this should be achieved for
at least a harmless -if not a solely righteous- purpose. It certainly deserves our
immediate attention and is already under criticism due to its potential nefarious
uses. However, as this criticism is still on early stages, Shim and Arkin [90] recently
attempted to classify the robotic deception and to provoke deeper consideration on
this field in order to investigate both of its aspects [2].

The research in this particular area is slow-paced and a few but significant steps
have been made so far from a behavioural angle. Floreano et al [33] suggest that
deception is evolutionary developed in heterogeneous individual robots in their at-
tempt to secure their own “food” source. Wagner and Arkin, in their attempt to
examine when [107] a robot should deceive and how [108]? through the use of games
theory and interdependence theory, provide insightful results with the creation of an
algorithm that identifies social situations that confirm the need of robotic deception.
It focuses on the appropriate actions to be taken, beliefs and fitting communication
but from a sociological perspective rather than conversational that our research is
based on. Hence partner modelling through the creation of dependent and indepen-
dent outcome matrices and theory of mind played a significant role in their work.

The trust between a robot and a human [106] is an essential element of coop-
eration. Research in automated conversational systems, that this work studies, has
almost exclusively focused on the case of cooperative dialogue as we have discussed.
However, non-cooperative dialogues such as those that are produced through this
work, where an agent may act to satisfy its own goals rather than those of other
participants, are also important. It would be advantageous for the society if auto-
mated agents were capable of manipulating and detecting illegal activity in a chat

room for instance, during police investigation, through non-cooperative negotiation.

2When and how to deceive (i.e. manipulate) where questions that “followed” us throughout our
whole work as we will see from Chapter 3 onwards.

CHAPTER 1. INTRODUCTION 1.3. RESEARCH QUESTIONS

Deception may be born of pre-existing trust. Humans have an innate need of show-
ing trust, of being cooperative [39]. That suggests though that they are also in
danger of being deceived for nefarious purposes, and therefore deception detection
is also a significant matter. Related work based on that has been made in Chapter
5 (and especially in Section 5.8) of the thesis, as deception and its detection should
be both used for the society’s well being. One of the main goals of this research is
to demonstrate though that deception in non-cooperative environments can effec-
tively be (and should be) learned by artificial intelligent agents, providing that its

intentions are harmless for the humans and -even better- aim for the common good.

1.3 Research Questions

This work has developed Reinforcement Learning (RL) algorithms that learned
how to form successful opposing strategies according to those of their adversaries.
The goal was to negotiate with the adversaries optimally in non-cooperative trading
scenarios. In detail, the RL agents learned how to manipulate their adversaries by
persuading, hiding information, lying, bluffing and mapped their needs in a way
that allowed exploitation. The development of this idea started by verifying the

following simple questions:

1. Reinforcement Learning: Is it possible to create a Reinforcement Learning
algorithm based on Temporal-Difference that can learn how to win in a simple

non-cooperative game with perfect information (such as “tic-tac-toe”)?

2. Reinforcement Learning: Will the above learning procedure require the same
amount of training games with that of other successful methodologies? How

successful is this algorithm?

After that we proceeded by attempting to provide precise answers to the following

-more sophisticated- questions:

1. Reinforcement Learning: Will the above algorithm be able to also model suc-
cessfully an adversary in a Markov Decision Process (MDP) environment of
a more complex, non-cooperative game with imperfect information such as
poker? Or do we have to follow other routes (such as POMDPs) in order to
efficiently handle this partial information only? How successful can an MDP

framework be for a bilateral non-cooperative negotiations environment?

2. Game Theory: Which is the most simplified, strategically functional and
promising trading game that we can use in order to achieve non-cooperative
trading negotiation? Do we need to perhaps create one by ourselves for the
sake of time by avoiding unnecessary complexities of rules and mechanisms

that known games have and do not fit exactly to our interests?

CHAPTER 1. INTRODUCTION 1.3. RESEARCH QUESTIONS

3. Game Theory & Pragmatics: By deciding to invent a new trading game, how
can we fulfil all of the above set of requirements (simplified, strategically func-
tional and promising for our researching needs) efficiently? What kind of rules
does this game need to have in order to promote the trading element between
two artificial intelligent agents up to a specific desirable point? Can interest-

ing® dialogue policies be formed by playing this game?

4. Pragmatics: With the assumption that we have already implemented a promis-
ing learning algorithm and a trading game that has the potential to answer
precisely our scientific questions, what kind of dialogue policies do the ad-
versaries need to follow in order for us to learn how to produce interesting

opposing ones?

5. Pragmatics & Reinforcement Learning: Would our learning algorithm be able
to learn how to use linguistic manipulation to beat its opponents -through de-
ception for example? Would manipulation provide an advantage to its strat-
egy? How should the linguistic manipulation be expressed and used by a RL

dialogue agent?

6. Reinforcement Learning: By assuming that manipulation is advantageous and
a dialogue agent can successfully learn how to use it, how can we detect it? Is

it possible to develop agents which are able to detect it?

7. Pragmatics & Philosophy & Psychology: What are the possible ways to ma-
nipulate through discourse and when is the best moment to do that? Can a
RL dialogue agent learn how and when to do that in a non-cooperative trading

negotiation?

8. Reinforcement Learning: How can we optimize the Reinforcement Learning
algorithms that we use in order to reduce their running times and increase

their performances?

9. Reinforcement Learning: Given that a RL dialogue agent maintains the history
of its opponents’ moves in its state representation, is it possible to increase its
trading performance? What kind of methods can we use in order to capture

the adversarial preferences effectively?

10. Reinforcement Learning: Will our RL trading dialogue policies be successful
in multilateral non-cooperative negotiations? Can we learn policies in bilateral
negotiations which will be also successful in multilateral negotiations of the

same domain? The reason would be to avoid learning unnecessary information

3Interesting for the areas of Pragmatics mainly, as well as Philosophy, Game Theory and Psy-
chology.

CHAPTER 1. INTRODUCTION 1.4. REQUIREMENTS

(noise) from the multilateral negotiation that would affect the RL agent’s

trading performance.

11. Reinforcement Learning: Will our trained RL dialogue policies (especially the

manipulative ones) be successful against humans?

12. Reinforcement Learning: How can we generalise our non-cooperative dialogue
agents to successfully negotiate with other agents or humans in real-world
trading negotiation scenarios? Will our findings be applicable to trading ne-

gotiations only or to other non-cooperative negotiation domains too?
Overall, the main research question that the thesis pursued is:

e Can dialogue agents learn how to successfully trade in non-cooperative nego-

tiations?

1.4 Requirements

There is a unique, required target from this work as its title suggests: effec-
tive Reinforcement Learning of non-cooperative dialogue management for trading
agents. Various paths were investigated in order to achieve that, involving elements
drawn from different fields such as Philosophy, Psychology, Game Theory, Dialogue
Management, Machine Learning and Pragmatics. Hence effort was put to initially
understand in depth different aspects of those fields that would eventually allow us
to effectively compose our learning algorithms piece by piece. The first stage was
expected to develop algorithms that would be able to confront different adversarial
strategies in non-cooperative trading games with imperfect information. The second
stage was expected to teach to the intelligent agent how to manipulate (e.g. deceive)
its opponents, enriching its language by using Natural Language efficiently (with fo-
cus on Pragmatics), according to the rules of those games. The third step would
eventually generalise our agent(s) by reaching a higher and more complex level, re-
sulting to a non-cooperative manipulative trading negotiator which would become
capable of successfully negotiating in real-world scenarios. The interlocutors would
be either intelligent agents which take human decisions or (even better) humans
themselves. As we will see in detail through this thesis, most of our requirements

were met and new, unexpected challenges arose.

CHAPTER 1. INTRODUCTION 1.5. CONTRIBUTIONS

1.5 Contributions

Here we will discuss the contributions that this work has led to. The reader
may also want to refer to Section 11.1 where these contributions are listed themat-
ically. The present thesis investigates the capabilities and limits of traditional tab-
ular Reinforcement Learning, as in a Markov Decision Process (MDP) framework,
in games where there is hidden information about the adversarial goals, states and
preferences. Despite the fact that the imperfect information suggests the use of a
partially-observable Markov Decision Process (POMDP), and much work has been
made on that area, our results suggest that an MDP is capable of successfully deal-
ing with hidden knowledge (to some extent) in our case. That occurs even in the
cases where the environment’s dynamics continuously change, therefore making the
problem a non-stationary MDP [17, 91, 36], as we will see in most of our experiments
due to the dialogue actions and the game rules. We will also show that the normal
trading actions have a stochastic effect (that of a possible trade) and a deterministic
one (that of linguistic manipulation), as we will examine in detail in Section 8.2,
resulting to non-stationary MDP dynamics and corresponding successful policies
[28].

Our agents also show that through Reinforcement Learning in an MDP they
are able to learn how to efficiently use explicit manipulation [25, 26] in Chapters 4,
5 and implicit manipulation in Chapter 8 (either through deception or persuasion
[28] in Section 8.2) as well as Chapter 9 (where we evaluate the deceptive policy
in a multi-agent environment), to improve their performance. With the realistic
assumption that a trading adversary can be affected by implicature, and it can
demonstrate a hindering trading strategy (i.e. boycott) against an agent which
insists on particular trades, such agents learn how to successfully manipulate even
when there are severe penalties associated with risks of exposure [27] (Sections 5.4.1
and 5.4.2). Adversaries which detect deception based on logical contradictions are
harder but still able to be manipulated by our algorithms [105] (Section 5.8).

In the field of discourse studies and Philosophy, our Reinforcement Learning
agents bring an important argument of Van Dijk [20] to light, according to which
there is an everyday conventional inference of dishonesty from manipulative acts.
That negative effect cannot be taken for granted though as manipulation according
to Dillard and Pfau [21], as well as O’Keefe [78] also occurs through legitimate
persuasion. This is what our Reinforcement Learning work suggests too with the
similar performances of our deceptive and persuasive agents [28] in Section 8.2.
Hence we emphasise the significance of Attardo’s perlocutionary cooperation [6]
through the agents’ dialogue actions, that we examine in Section 3.1.3.

We also present a novel way of encoding the state space of trading dialogues

that reduces its size to 0.5% of the original [28] in Section 7.2.5. Hence it reduces

CHAPTER 1. INTRODUCTION 1.5. CONTRIBUTIONS

the training times dramatically and overcomes problems related to high memory
demands in the traditional tabular Reinforcement Learning. This method automat-
ically converts all of the numeric states to a significantly smaller number of states
(compressed representation). It takes into consideration the distance from goal, the
availability of the resource as well as its quality (goal or non-goal resource) and uses
a few different characters. The performance of this method is nearly as high as that
of the tabular representation.

This thesis also shows that trading dialogues are more successful when the learn-
ing agent builds an opponent model — an estimate of the (hidden) goals and prefer-
ences of the adversary — and learns how to exploit them in Section 8.3. Conditional
preference networks (CP-NETs in Section 8.4) [11] have been implemented and used
in our agents’ state representation resulting in higher performances than those of
agents which did not include them [29]. In Chapter 9, our previous RL trained
policies played games against agents in a multi-agent environment where there were
3 opponents and their strategies varied. Results there showed that the policies were
capable of winning significantly more games than their adversaries, and the manip-
ulation was successful, even if they were trained in a different, simpler, bilateral
negotiations environment.

Manipulation was not effective only against rule-based agents, but against Bayesian
agents too which simulated human behaviour (Chapter 9). In the same chapter, the
adversarial preference representation of the trained RL policies that were used there
resulted to decent performances too. Finally, important information about human
play and negotiation reasoning, was collected in games that humans played in our
game “Taikun” (Chapter 6), against our trained RL agents. The agents managed
to win half of the games and the manipulation affected the human players through
confusion. In Chapter 10 humans played our game “Trading in Catan” versus our
trained RL dialogue policies and lost most of the games. We show there that RL dia-
logue agents can be very successful in non-cooperative negotiations against humans.
The manipulative agent’s policy was effective too, resulting to nearly the same num-
ber of wins as those of the goal-oriented (non-manipulative) agent’s policy, in the

same number of rounds?.

4The number of rounds was the same for both the manipulative and the non-manipulative
agents. Despite the fact that the manipulative agent is not trying to reach the goal numbers of
resources as soon as possible (in contrast to the non-manipulative goal-oriented agent), because it
uses manipulation (e.g. lies) and therefore it “wastes” rounds for this, it still wins nearly the same
number of games.

10

CHAPTER 1. INTRODUCTION 1.6. PUBLICATIONS

1.6 Publications

This work has resulted in the following publications:

1.

Efstathiou, I. and Lemon, O., 2014. Learning non-cooperative behaviour for
dialogue agents. Proceedings of the 21st European Conference on Artificial In-
telligence (ECAI). Prague, Czech Republic, pp.999-1000. (results from Chap-
ter 4 of this thesis)

. Efstathiou, I. and Lemon, O., 2014. Learning non-cooperative dialogue be-

haviours. Proceedings of the 15th Annual Meeting of the Special Interest
Group on Discourse and Dialogue (SIGDIAL). Philadelphia, PA, U.S.A; pp.60-
68. (results from Chapter 5 of this thesis)

. Efstathiou, I. and Lemon, O., 2014. Learning to manage risks in non-cooperative

dialogues. Proceedings of the 18th Workshop on the Semantics and Pragmat-
ics of Dialogue (SemDial 2014 - DialWatt). Edinburgh, Scotland, pp.173-175.
(results from Chapter 5 of this thesis)

Vourliotakis, A., Efstathiou, I. and Rieser, V., 2014. Detecting Deception
in Non-Cooperative Dialogue: A Smarter Adversary Cannot be Fooled That
Easily. Proceedings of the 18th Workshop on the Semantics and Pragmatics
of Dialogue (SemDial 2014 - DialWatt). Edinburgh, Scotland, pp.252-254.
(results from Chapter 5 of this thesis)

. Efstathiou, I. and Lemon, O., 2015. Learning non-cooperative dialogue policies

to beat opponent models: “The good, the bad and the ugly”. Proceedings of
the 19th Workshop on the Semantics and Pragmatics of Dialogue (SemDial
2015 - GoDial). Gothenburg, Sweden, pp.33-41. (results from Chapter 8 of
this thesis)

. Efstathiou, I. and Lemon, O., 2016. Learning better trading dialogue policies

by inferring opponent preferences. To be presented: Proceedings of the
15th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2016). Singapore. (results from Chapter 8 of this thesis)

1.7 Thesis outline

In this document, along with relevant work of various researchers which is thor-

oughly studied in the Background Chapter 2, the reader will find information about

11

CHAPTER 1. INTRODUCTION 1.7. THESIS OUTLINE

the design of our initial model, the game “Taikun” in Chapter 3. Various experiments
based on linguistic manipulation, manipulation detection, and the corresponding de-
tailed results are covered in Chapters 4 and 5, while in Chapter 6, we investigate the
human factor in the game. In Chapter 7 and 8 the reader will find the design of our
main model, the game “Catan”, along with corresponding experiments on opponent
models (i.e. based on adversarial preferences) and their results which are presented
there respectively. In Chapter 9 we discuss experiments and results mainly based
on multi-agent manipulation and preference representation in the JSettlers research
environment. Chapter 10 discusses human experiments on Catan. The range of
topics that was covered will hopefully convince the reader that our expectations
have been mostly met in Chapter 11, which is the Conclusion. In that chapter we
also provide a personal evaluation of the produced work, we report possible future
applications of our findings and we further discuss the vision of this work. After
that the references of this thesis follow. Finally the reader will find the Appendix,

including some of our preliminary work and more details of the various implemented

algorithms.
v k4
Initial Model: Taikun Main Model: Catan
(Chapter 3) (Chapter 7)
—
Introduction v ¥ Conclusion
(Chapter 1) D (Chapter 11)
Manipulstion Catan: Opponent
(Chapter 4) Models (Chapter 8)
T a i un Catan
& ¥ v dr
Manipulation Jsettlers
Background . . :
(Chapter 2) Detection Environment Appendix
{Chapter 5) (Chapter 9)
|
b h A
Taikun and Humans Catan and Humans
(Chapter &) {Chapter 10)

Figure 1.1: The structure

of the thesis.

12

Chapter 2
Background

In this chapter we will examine in detail all those different areas that have mo-
tivated and inspired the current work. In Section 2.1 we will discuss Reinforcement
Learning and analyse the important elements that directly relate to this work, such
as exploration and exploitation in Section 2.1.1, Markov Decision Process (MDP) in
Section 2.1.2, Temporal-Difference Learning in Section 2.1.5 and SARSA learning
algorithms in Section 2.1.6. Section 2.2 describes the non-stationary nature of our
MDP environment examining relevant work.

Game Theory in Section 2.3 has also been taken into consideration when we
implemented our games (“Taikun” and our version of “Catan”). Hence we cre-
ated environments that were suitable for our research and reflect real life scenarios.
Sections 2.3.2 (Cooperative and Non-cooperative games), 2.3.3 (Nash Equilibrium),
2.3.5 (Dominant Strategy) and 2.3.6 (Perfect and Imperfect Information Games)
have mainly inspired our work in Chapter 4, about our game “Taikun”. However
Game Theory was not the main component of this research. Reinforcement Learn-
ing in Dialogue Systems (Section 2.4), Reinforcement Learning in Non-Cooperative
games (Section 2.4.1) and especially Reinforcement Learning in Negotiation Dia-
logue Management (Section 2.4.2) as well as CP-NETs (Section 2.5) and Pragmatics
(Section 2.6) proved to be the main components of the final work. Thus the reader

will find experiments based on these subjects from Chapter 4 onwards.

2.1 Reinforcement Learning

According to Sutton and Barto [98] the general concept of learning is naturally
connected to the interaction with the environment. From its early stages, the human
being interacts with the world and develops an understanding of the cause and effects
of its own actions, and learns to make plans that provide it with particular results.

This information, that is stored in the form of knowledge, is then carried over to

13

CHAPTER 2. BACKGROUND 2.1. REINFORCEMENT LEARNING

later stages of life and provides miscellaneous plans (policies) of acting in various
circumstances (states).

Our behaviour is directly affected by the environment which —as a teacher- pro-
vides us with positive or negative rewards depending on our actions. In this way,
a very active area of Machine Learning which is Reinforcement Learning, takes an
agent through a series of different states and actions in order to eventually provide
it with the optimal policy that dictates the most secure and effective (reward-wise)
way of achieving its goal. This goal-oriented learning process is solely based on
interaction with an uncertain environment through mathematical analysis. In Com-
puter Science an intelligent agent is defined as an autonomous entity (i.e. a software
program) that has the capability of learning through a computational approach as
is discussed by Russell and Norvig [87]. Such an agent will be our main focus of this
Reinforcement Learning study.

As we will discuss in detail in Section 2.1.2, the environment in RL is typically
considered to be a Markov Decision Process and therefore it is fully observable.
That means there is no hidden information that is taken into consideration by the
learning agent. While learning, the agent is in a state s; at a particular time point ¢.
Through an action a; that it performs, it traverses onto a new state s;;; in the next
time point ¢t + 1. It then receives a reward r; from the environment at the particular
state s;11. Simply stated, the “quality” (value) of the reward eventually defines
that of the state’s action as we will examine later and therefore we typically assign
positive rewards to states which are desirable and negative ones to those which are
not desirable. In this way, when the learning process stops, the agent by selecting
the highest in value actions (i.e. those of the optimal policy) eventually traverses to

the most desirable state. This is where the reward is the highest.

2.1.1 Exploration and Exploitation

In a Reinforcement Learning problem, a unique important factor that requires
early consideration is the ratio between exploration and exploitation, also known as
e-greedy behaviour. The learning agent with the use of exploration uncovers new
aspects of the environment, by performing different actions that could potentially
become the optimal for the currently studied learning problem in the future. Ex-
ploitation, on the other hand, assists the agent on maintaining a knowledge base
capable of dictating to it the best (so far) action that should be taken (given a
current state) in order to retrieve a reward and eventually reach its goal. In this
way the agent avoids repetitive failures over sets of states-actions that have been
reached before and learns the optimal policy [98].

The above dilemma between exploration and exploitation affects the time as

14

CHAPTER 2. BACKGROUND 2.1. REINFORCEMENT LEARNING

well as the quality of the Reinforcement Leaning process and therefore has been
thoroughly studied by Tokic [100] who applied a probability in the agent’s explo-
ration based on the Temporal-difference error obtained from value-function records
on a multi-armed bandit [56] application. Furthermore, Ishii et al. [53] introduced
a balancing method between exploration and exploitation that was based on ran-
dom actions variation and observations on environmental changes and performed
well on maze tasks. The probabilities of the state transitions were approximated by
Bayesian inference (including a “forgetting” factor) and the Reinforcement Learning
process is based on that.

According to the work of Kearns and Singh [60] the trade-off between explo-
ration and exploitation is of significant importance as the restriction of exploration
could mean the lack of convergence to the optimal policy. On the other hand, the
redundancy of the exploration could mean poor performance results in long peri-
ods of time. In order to successfully confront these issues they proposed a method
that attempts a multi-step policy of actions when visiting an unseen so far state
through a specified probability. This was in contrast to the typical view of e-greedy
exploration at that time where with certain probability only a single action could be
attempted. In this work we mainly use 20% exploration (and 80% exploitation) at
the beginning of training, as we will see from Chapter 4 onwards, which is gradually

decreased to 0% at the end of training (where there is 100% exploitation).

2.1.2 Markov Decision Processes

A Markov Decision Process (MDP) is a mathematical framework where an agent
performs a set of actions a over a space of states s, traversing through them in
discrete time t. It is a fully-observable environment meaning that the agent’s sensors
provide access to every aspect of each state, on any given time point. It is important
to note that in an MDP framework the next state is only dependent on the current
state and action selected, and therefore conditionally independent from the history
of the states so far. This is known as the Markov Property and therefore a state of

a specific time point s; is considered to be Markov if and only if:
Plsty1]si] = Plstyals1, - - -, i

[81]

In Reinforcement Learning the environment is typically considered to be a Markov
Decision Process and it is stochastic. Thus the state transition probability, for a
current state s given its following state s, Pss’ is defined as: Pss’ = P|[s'|s]. Hence

we define the state transition matrix from each current state s to any other following

15

CHAPTER 2. BACKGROUND 2.1. REINFORCEMENT LEARNING

state s’ as:

to
[7)‘11 7?1“]
P =from | :
P ..o Pm

Each row of the above matrix sums up to 1. A Markov decision process is a
sequence of states that have the Markov property and is defined as a tuple: < S, P >
where S is a finite states set and P is a state transition probability matrix, Pss’ =
P[s'|s] [81]. In general, the MDP can be defined as a 5-tuple: < S, A, P,R,~y >,
where S is the set of states, A is the set of actions, P the probability that an action a
will change a state s to s/, R is the immediate reward that will be received after the
state transition occurs and « is the discount factor which indicates how important
the future rewards are for our problem.

According to Mitchell [71], in a Reinforcement Learning setting the agent at any
given time point ¢ observes a state s, performs an action a, receives a reward r, and
the next state s;; follows. Based on the Markov property that we saw previously,
the Markov Reward assumption is also: P(r|ss, ag, Si—1,a4-1,...) = P(re|se, az).
Then the task of the agent is to learn a policy 7 : S — A where it chooses actions

that maximise the expected reward: E[r; +yri 1 + 7?ripe + ...], where 0 < vy < 1,

over P(ry|s;, a;) and P(s441]8¢,a;) for every initial state.

2.1.3 Policy Value Function

Following Mitchell’s discussion [71], given a policy 7 : S — A we define as the

value function for this policy 7:
V7i(s) = E[Z V7]
t=0

r; is the immediate reward on a specific time point ¢ and v, where 0 < v < 1,
is a discount factor that exponentially decreases the future rewards. However, the

goal is to find the optimal policy 7*, where:
T = argmax V™(s), (Vs)

Therefore there is an optimal value V* of a state s of the optimal policy 7*
that will be just abbreviated as V*(s). Such an optimal policy exists for every
Markov Decision Process framework according to Mitchell [71]. So, for example,

by considering that the agent is located in a grid-world that consists of 6 cells (as

16

CHAPTER 2. BACKGROUND 2.1. REINFORCEMENT LEARNING

represented in Figure 2.1) and one of them is the goal state GG, given the immediate

reward values below the task is to find the shortest route towards the goal state.

b il ol ¢ 90 100 P G
N H—H—+H

.l.l': i g1 = 90 J% 100

Immediate Rewards W¥ziwvalues

An optimal policy

Figure 2.1: Value Iteration algorithm on the Grid-World. Using the immediate
reward values the V*(s) values are calculated and then the optimal policy’s inference
eventually occurs. The task, as is being indicated by the optimal policy, is for the
agent to reach the goal state G following the shortest route. The image is taken from
[71] and is modified according to our example.

Using a value iteration algorithm (Figure 2.2) on the above example and always
assuming that P(s;11|s:, a¢) is known, V (s) is being initialised randomly. The agent
then traverses through the environment arbitrarily and until there is enough con-
fidence that it has visited every state s from the set of states S while performing
every action a from the set of actions A and the policy is solid, this procedure is
being repeated by initialising the V'(s) again and so on. This is how the optimal
policy is eventually being reached. Nevertheless, using the algorithm’s execution,
many sub-optimal policies are being obtained (one is shown in Figure 2.3.) until
convergence has been reached (i.e. the best policy was found, there is no more

learning to occur).

17

CHAPTER 2. BACKGROUND 2.1. REINFORCEMENT LEARNING

Initialize V' arbitrarily, e.g.,V (s) =0, for all s € §*

Repeat
A — 0
For each s € S:
v Vi(s)

I'I’{S} — MaxX, Z.q" Piﬁ" [RSS" + TLE{SI}]
A — max(A, |[v — V(s)])
until A < 6 (a small positive number)

Output a deterministic policy, w, such that

m(s) = argmax, >, P2, [Rffﬁ, + 7 ‘[f’[.*;'}]

Figure 2.2: The Value Iteration algorithm. Taken from [97].

73 C—;? 311 2 (@

0 m\{/

—p—

bb -a— S0 -I-? 100

Figure 2.3: An example of a sub-optimal policy during a value iteration algorithm in
a grid-world. Values of states and chosen actions are marked with red. The image
is taken from [71] and is modified according to our example.

2.1.4 Q-Learning

We have seen so far the way to obtain the optimal policy in the case where we
know P(s¢|st—1,a:—1). According to Mitchell [71], a further question is what happens
when we do not know this probability. The answer comes from Q-Learning [110]. A

new function is defined:

V*(s) = Elr(s,7(s))] + 7Es|m(5) [V (5)]

18

CHAPTER 2. BACKGROUND 2.1. REINFORCEMENT LEARNING

Q(s,a) = Elr(s,a)] + 7Eya[V7(5)]

Please note that the above function is similar to the V* that we have seen
before. The Q)(s,a) defines the value of an action a in a particular state s. As the
P(s¢|s¢—1,a;_1) is not needed any more by the agent, it can learn the optimal policy
just by knowing the Q(s, a) and -most important- it can learn the @ value without

the knowledge of P(s|s;_1,a;-1) (i.e. “model-free”).

7(s) = arg max Q(s,a)

V*(s) = max Q(s,a)

I.-

C;D &
EX
1
Y
%@ <
I
Figure 2.4: Q-values of actions in a grid-world. The best policy is being obtained
by simply selecting the highest Q-values (marked with red ink) of each of the 6 state

actions, as shown on the above picture. Image is taken from [71] and is modified
according to our example.

As there is a strong relation between the () and V*, () can be written by recursion

as:

Q(ss, ar) =1(se,a1) +YV*(0(st,a0)) = r(ss, ar) + 7 max Q(st11,a)

That leads to the approximation of) as:
Q (s,a) < r+ymaxQ (s, a)

In the above equation, s and a are the current state and action respectively while
s" and d' is the following state and action (after applying action a in the state s).

The algorithm for using Q-Learning in a deterministic environment starts by
initialising all the @ values of the states actions to 0 (can be random too). Then
starting with a random state, an action is selected, executed and a reward is re-
ceived. This action traverses the agent to a new state, the approximate () value of
the previous state and action is updated as shown in the equation below and the

procedure is being repeated by visiting all of the states until convergence has been

19

CHAPTER 2. BACKGROUND 2.1. REINFORCEMENT LEARNING

reached (that is, the Q-actions obtain the highest value) [71].

Q (s,a) < r+ymaxQ (s, d)

-:'55“@ - E gar:LtHL

[
FJ - *EJ
Action'a'is

mowe right

Initial state 's1' Mew state 's1"

Figure 2.5: Updating the approzimation of Q-value. The agent moves right and the
update changes the value from 72 to 90. Image is taken from [71] and is modified
according to our example.

Initialize Q}(s.a) arbitrarily
Repeat (for each episode):
Initialize s
Repeat (for each step of episode):
Choose a from s using policy derived from @ (e.g., e-greedy)
Take action a, observe r, &'
Q{S'. GFJ — QLSJ ﬂ-} + o [?' + 7 maxy Q(SI’: ﬂl'} - Q[:S! lljl}
5 +— s

until s is terminal

Figure 2.6: Q-learning algorithm taken from [9).

Q™ (51, Gright) 7+ ymax Q (s},a") < 0+ 0.9max{63,81,100} + 90

Apart from the deterministic case, Q-Learning applies to non-deterministic cases
too and the approximation of @ successfully converges to @ as proved by [111]. The

training formula is then modified to:

Qy(5,a) (1= an)Qp 1 (s,0) + an[r + maxQ,_,(s',d’)]

where

1
14 visits,(s, a)

0

20

CHAPTER 2. BACKGROUND 2.1. REINFORCEMENT LEARNING

2.1.5 Temporal-Difference Learning

The difference between two successive Q-value estimates is being reduced effi-
ciently due to Q-Learning as we have seen in the previous section. However, ac-
cording to Mitchell [71], when we need to expand this difference to more than one
time step (that is more than two successive estimates) then Temporal Difference

Learning is useful. Its learning formula is therefore calculated and defined as:

QW (s,) =1y + Ymax Q (si+1, a)

(Difference for one time step)

QP (s, ar) = 7+ i1 + Y2 max Q (si40, @)

(Difference for two time steps)

Q(n)(3t> ap) =1+ Y1+ F Y e + " max Q" (St4n, @)

(Difference for n time steps)

Thus, we have:

QMst,a) = (1 = N [QW (s, ar) + ANQP (54, ar) + N2QP (54, ar) + ...

(Temporal Difference Learning formula by combining all the above together [93])

Equivalently it can be written as:

QM sty a0) = 1 +[(1 = X) max Q (51, ar) + AQ (St41, ar41)]

The constant 0 < A < 1 blends the estimates from the applied look-ahead
distances. Temporal Difference Learning calculates current estimates using previous
learnt ones.

Based on the book of Sutton and Barto [97] where they study a “tic-tac-toe”
example, the applied formula of our preliminary work (Section A.1.2) that is based

on Value iteration is:
V'(s) = V(s)+ax(V(s')—V(s)), where:

« is the learning rate, 0 < a < 1,

21

CHAPTER 2. BACKGROUND 2.1. REINFORCEMENT LEARNING

s" and s the current and previous states respectively,

V" and V are the current and previous values.

2.1.6 SARSA(0) and SARSA())

SARSA [95] is an on-policy control learning method and is based on Temporal
Difference. On-policy means that the algorithm’s current behaviour (actions) is di-
rectly connected to the updated policy, in contrast to Q-Learning (that we examined
previously), which is an off-policy learning method. The name originates from the
State-Action-Reward-State-Action sequence that is used to update the Q-values of
its state-action pairs. This sequence suggests that a learning agent which is currently
on state s, takes an action a, receives a reward r, its state changes to s’ and then
it takes a new action a’. The benefit of using SARSA compared to Q-Learning is
that, due to that sequence, it creates optimal policies that are highly affected by the
exploring mode of the learning agent. Based on what we examined in the previous
sections and according to the authors of the book [97], the algorithm of SARSA(0)

is as follows:

Initialize €)(s.a) arbitrarily
Repeat (for each episode):
Initialize s
Choose a from s using policy derived from) (e.g., s-greedy)
Repeat (for each step of episode):
Take action a, observe r, s
Choose a' from s using policy derived from @ (e.g., e-greedy)
Q(s,a) — Q(s,a) + alr +1Q(',a’) — Q(s,a)]
s— 80— a;

until s is terminal

Figure 2.7: SARSA(0) learning algorithm taken from [95].

SARSA(A) [96] introduces the use of eligibility traces (denoted by e(s, a)) to the
SARSA(0) method that provide us with a dynamic degree of strengthening previous
state-actions. In detail, eligibility traces are temporary records that indicate how
often each state-action pair has been visited and how “valuable” their roles are for
our problem. Therefore they are used through the application of the parameter
A, which in combination with ~ (discount factor), regulate the above degree of

strengthening. For very stochastic problems, low values of A are suggested (i.e.

22

CHAPTER 2. BACKGROUND 2.2. NON-STATIONARY MDPS

0.4) as they have proved to be effective in appropriate examples [96], while in more
deterministic cases higher ones (i.e. 0.9) are used. According to Sutton and Barto
[97], the algorithm for SARSA(A) can be seen in Figure 2.8.

Initialize ()(s,a) arbitrarily and e(s,a) = 0, for all s,a
Repeat (for each episode):

Initialize s. a

Repeat (for each step of episode):

Take action a, observe r, '

Choose o' from s" using policy derived from @ (e.g., e-greedy)
5 —r+4Q(sd) — Q(s,a)
e(s,n) «— e(s,a)+ 1
For all 5. a:

Q(s,a) « Q(s,a) + ade(s. a)

e(s.a) — v Xe(s,a)
s—sra+—a

until s is terminal

Figure 2.8: SARSA(X) learning algorithm taken from [96].

In this thesis we use the above algorithms (especially SARSA())) and we in-
vestigate various combinations of the A\ and v parameters as we have cases with
both stochastic and deterministic actions. Furthermore, the algorithms’ update rule
applies to the whole history of the game’s state-action pairs that the learning agent

currently plays.

2.2 Non-Stationary MDPs

A very interesting problem that arises when an agent learns in an MDP en-
vironment which suddenly changes its dynamics (parameters of the transition 7'
and reward R functions), is that of “non-stationarity”. The case where this sudden
change is based on an unknown factor which can’t be perceived by the learning
agent has been studied by Silva et al. [91]. In non-stationary environments, tradi-
tional reinforcement learning algorithms are forced to constantly re-learn the policy
in their attempt to exploit current dynamics (or contexts according to the authors).
Hence, Silva et al. implemented a method called RL-CD (Reinforcement Learning
with Context Detection) which solves this problem and is also effective in noisy sce-
narios. In more detail, they argue that their RL-CD algorithm performs better in

this kind of environment than a frequently used model-free one (Q-Learning), which

23

CHAPTER 2. BACKGROUND 2.2. NON-STATIONARY MDPS

does not know a priori how the environment works, as well as better than a popular
model-based one (Prioritized Sweeping), which already holds information about the
transition function 7" and the reward function R. It is important to mention here
though that these algorithms were created to learn in stationary MDP environments,
as standard Reinforcement Learning considers that no change in the framework’s
dynamics ever takes place.

RL-CD assumes that the system consists of distinct partial models and each
one of them belongs to different dynamics of the environment. Each of these partial
models is capable of predicting when the environment changes (by detecting context
changes) and only one of them (the one with the highest prediction quality [92]) is
activated at any given time until another of a better prediction quality is found in
an evolutionary manner. Each of these partial models include transition and reward
functions that through the process of standard reinforcement learning eventually
lead to a local optimal policy. Update of the transition and reward functions takes
place based on previous experience tuples including current state, action, next state
and reward. The authors of this work clearly state that the transition of the en-
vironments’ dynamics does not depend on the learning agent’s actions though and
therefore we conclude that our case is a relevant, but quite special, subclass (the
environment’s dynamics change only due to some of the learning agent’s actions) as
we will examine in depth later.

Choi et al. [17] suggest the use of MDP for non-stationary cases such as ours
(multi-agent environment where the learning agent’s action affects its dynamics),
in controlling the mode transition process. The mode, which is considered as an
MDP, is a fundamental part of their non-stationary model that they call hidden-
mode Markov decision process (HMMDP). This subclass of non-stationary MDP
environments assumes that the dynamics of such an environment are restricted to
a limited number of hidden modes. As there is no relation between the control
system’s responses and the modes’ transition, which is completely stochastic in
their work, they propose that a Markov chain evolves these modes with time. The
main point was to introduce a specific variable to hold the current mode (a distinct
MDP) that the environment is in. According to the authors, the HMMDP model
is a specialised POMDP (Partially Observable Markov Decision Processes) case
that in non-stationary environments proves to be faster and less complex than a
POMDP. Learning is mainly focused on model-based Reinforcement Learning where
an environmental model is initially obtained and then the optimal policy can be
found. It occurred through the use of a custom Baum-Welch algorithm and the

following environmental properties were considered:

e The non-stationary environment consists of a number of modes which hold
specific environmental dynamics. Each one of these modes is considered to be

a stationary environment that requires its own policy and only one expresses

24

CHAPTER 2. BACKGROUND 2.3. GAME THEORY

the environment in any time point.

e The modes are hidden, they cannot be directly identified but only approxi-

mately by observing the sequence of the previous states and actions.

e The control system’s response does not affect the modes’ transition. The latter

are stochastic events which may happen due to external factors.
e Modes do not change frequently.
e The modes’ number is usually significantly smaller than that of the states.

The HMMDP model does not require the two last properties whatsoever and
therefore it is quite flexible in capturing real world applications. However the number
of modes must be known in advance. This interesting, model-based RL work focused
only on learning the non-stationary environmental model but not on deriving the
optimal policies of each mode. Thus, issues such as exploration-exploitation were not
taken into consideration. Due to the fact that -again- the learning agent’s actions
do not affect the environmental dynamics and our approach is also relying on a
model-free basis (where learning occurs while interacting with the environment), we
only keep the future use of a special variable to characterize our current hidden
mode (MDP) during the learning process, that indicates whose turn it is to propose

a trade or respond to one (Chapters 3, 4 and 5).

2.3 Game Theory

Game Theory or “Games of Strategy” as stated by the pioneers of the field Neu-
mann and Morgenstern [74] is the mathematical analysis of cooperative and com-
petitive strategies resulting from the interaction of entities. These entities, common
in Computer Science as agents, can be programs, robots, individuals, teams, com-
panies etc. The goal is to infer and predict optimal actions in order to maximize
the success of these policies and therefore the accumulated profit. According to
Neumann-Morgenstern, an essential question when it comes to studying a game -for
the sake of classification- is whether or not the sum of the players’ payments at the
end results in zero. If the answer is yes, then the game is called zero-sum game
(e.g. poker). In the opposite case, the game is known as non-zero-sum game (e.g.
“Catan” board game) [74].

In a game, the plan that a player may have in advance is defined as strategy.
It includes specific choices that the player will make over a set of potential states,
given that the rules of the game are known before-hand and the information re-

mains consistent. This shouldn’t be considered though as a constraint. As stated

25

CHAPTER 2. BACKGROUND 2.3. GAME THEORY

by Neumann-Morgenstern: “ ..if we require each player to start the game with a
complete plan of this kind, i.e. with a strategy, we by no means restrict his freedom
of action. In particular, we do not thereby force him to make decisions on the basis
of less information than there would be available for him in each practical instance in
an actual play.” [75]. The concept of strategy is instead a thoughtful mental weight,

reinforcing the player’s insight and functions as a goal-driven assisting utility.

2.3.1 Pure and Mixed Strategy

Neumann and Morgenstern [74], studying at length the concept of strategy, di-
vided it into two categories. They defined as strict or pure strategy of a game the
set of deterministic actions (or moves) that a player will wholly choose in every dis-
tinct situation. On the other hand, a mixed strategy is characterized by probability
distributions of its stochastic actions focusing on the frequencies of their selection.
The need of choosing a mixed strategy arises from the uncertainty of “picking” be-
tween pure strategies. In the cases where the player would like to trigger adversarial
prediction, a mixed strategy is highly suggested (such as in a two-person zero-sum

game as suggested in [57]).

2.3.2 Cooperative and Non-cooperative games

From the early stages of the history of Game Theory, the concept of the game
was separated into two distinct categories. One of them, the so called “cooperative
games” (as stated by John Nash [73]), included the games where the players create
various forms of affiliations in order to collectively reach often shared goals. The
book of Neumann and Morgenstern [74] suggests a theory based on this category
as discussed by [73]. The second category, includes non-cooperative games, where
affiliations between players do not exist as they carry on independently towards
personal targets. The lack of communication® is common in this kind of games that
played a significant role in the study of the founder of these two terms, John Nash
[73]. Examples of popular non-cooperative games are backgammon, chess, tic-tac-
toe, rock-paper-scissors, poker. Our game Taikun as well as the Catan board game

(they will be both examined in depth later in the thesis) are also non-cooperative

IThe lack of communication was a major issue that we experienced in our experiments with
humans (Chapters 6 and 10). The human players are very cautious in non-cooperative games and
avoid trading quite often in our cases. The reasons will be analysed in the corresponding Chapters
6 and 10.

26

CHAPTER 2. BACKGROUND 2.3. GAME THEORY

games where the players trade resources in order to win, but they also involve

communication.

2.3.3 Nash Equilibrium

John Nash was the first to introduce the idea of the equilibrium point in his Ph.D.
thesis [72] in 1950, as the main element of his theory about non-cooperative games.
According to his work [73], this point -that is nowadays known as Nash equilibrium-
expresses opposing “good” strategies during a game. The key concept is that if a
player decides to change his/her strategy then, given the fact that the strategy of
the adversary remains the same, there is no way of increasing his/her performance.
Hence, each one of these strategies is considered to be optimal versus those of the
other players. There is at least one equilibrium point in any finite non-cooperative

game according to John Nash [73].

2.3.4 Pareto Optimality

The idea behind Pareto Optimality originates from the Italian economist Vilfredo
Pareto [76], known for his income distribution study as well as his analysis based on
individuals’ preferences. Influenced by the view of Economics [7], a game’s solution
is considered to be Pareto Optimal if it provides the best possible outcome to all of
the players. Thus, it is not possible to improve a player’s state without worsening
the state of any of the others and therefore it is a solution that is preferred by all of
them. Usually Pareto Optimality is treated as a Nash Equilibrium (Section 2.3.3).
However, this equality ceases to exist in the case where the players’ pay-offs can all
be increased. Then there is still Nash Equilibrium but not Pareto Optimality any

more as there would be still space for improvement.

2.3.5 Dominant Strategy

In his same work [73] as we saw above, John Nash suggested that a strategy is
dominant if it provides the largest pay-off to its player when compared to those of
her adversaries. No matter what patterns of actions the other players will perform
and what any other strategies they may adopt, there can be absolutely no better

strategy than a dominant one. Hence all of the other strategies are defined as

27

CHAPTER 2. BACKGROUND 2.4. RL IN DIALOGUE SYSTEMS

dominated and their meaning is the opposite of that of the equilibrium point, where
opposing “good” strategies exist. In a deeper analysis, a strictly dominant strategy
presupposes that it provides a higher pay-off than any other strategy while on the
other hand, a weakly dominant strategy provides a pay-off at least as high as any
of those of the other strategies. Following the same reasoning, a strictly dominated
strategy is defined as a strategy which is dominated by any other one while a weakly

dominated is the strategy which is as dominated by at least one of the others [34].

2.3.6 Perfect and Imperfect Information Games

The prisoner’s dilemma game [23] is a game of imperfect information and the
reason is because the criminals cannot communicate and therefore each one of them
does not have knowledge about the other’s actions. Based on that example, the
imperfect information game as discussed by Neumann and Morgenstern [74] is the
sequential game where the players do not have complete information about their
opponents’ actions up to any given point. An example of an imperfect game is
poker. On the other hand, a perfect information game is the one where, at any
given time point, each player knows exactly the moves that his opponents have
made and we further consider that in this game only one player action happens
at a time. Examples of perfect information games are: chess, backgammon, tic-
tac-toe. Our “Taikun” and the “Catan” board games that we will examine from
Chapter 3 onwards are both imperfect information games as the players cannot see

the available resources that their opponents have and their goals are unknown.

2.4 RL in Dialogue Systems

Many researchers such as Rieser and Lemon [82], Georgila and Traum [38] or
Williams and Young [112], argue that holding a conversation through the use of
machines is a challenging task. Humans naturally obtain and develop the required
skills in order to communicate with each other through time. For a machine though
and specifically a dialogue system, there is often a dialogue designer to expertly
dictate specific actions that the system should perform under specific conditions.
The machines’ skills then are being obtained and developed under this dictation
of actions that is also known as “dialogue strategy”. This strategy is an essential
component of the Dialogue Manager (DM) that automatically determines the whole

system’s behaviour.

28

CHAPTER 2. BACKGROUND 2.4. RL IN DIALOGUE SYSTEMS

The dialogue system consists of three general modules: input, output and control
module respectively. Automatic Speech Recognition (ASR) and Spoken Language
Understanding (SLU) are components that comprise the input module. The output
module includes the Natural Language Generation (NLG) component as well as a
Text-to-Speech (TTS) system. The control model is in fact the Dialogue Manager
which follows a specific dialogue strategy. ASR performs the conversion of the
user’s speech to text. The SLU is a parser that analyses input text from ASR and
generates a string of various features that have specific meanings for the system,
such as Speech Acts. This string is then being processed by the DM (which also
considers the dialogue history) and it finally selects the optimal action to perform
based on its dialogue strategy. The output module through the use of the NLG
system initially interprets these actions to text and then, via the TTS engine, it
converts this text to audio for the human user.

The authors above [83] further discuss that the concept of a Natural Language
dialogue is similar to that of a board game, requiring constant strategic planning
under uncertainty. Thus, they characterised dialogue as temporal, meaning that the
value of an action depends on the quality of the dialogue’s further progression. That
means, action selection in a dialogue strategy requires careful, long term planning
and it is heavily affected by the current state of the agent in the environment as
well as by the future deeds. Being in a specific state, it is hard to tell whether or
not a current specific action is the ideal due to the fact that the future is unknown.

However, it is feasible to determine whether or not the performance of a whole
dialogue has been adequate (by user ratings or task success) and then with the use
of Reinforcement Learning consider and apply appropriate values to those actions
that led to the current result. The sequential decision nature of RL with the use of
delayed rewards (can be positive or negative as mentioned in Section 2.1) at the end
of the dialogue is able to provide a precise characterisation to each of the dialogue
actions overcoming local minima. An action that rationally might be considered
wrong for the current state of the game (or dialogue) might be eventually proven to
be the optimal for success in the long run, following a specific potential strategy.

Rieser and Lemon [83] further characterise dialogue as dynamic. That means
the interaction takes place in a stochastic environment where unpredicted events
may happen. For instance in a dialogue, the human participant might make state-
ments that would change the rest of the dialogue flow in an entirely unforeseen
way. Thus the dialogue strategy must be robust, providing successful actions in
such unpredicted circumstances. The exploration phase of Reinforcement Learning
(Section 2.1.1) plays a significant role in adaptive dialogue systems and is known
as evaluative feedback, where the environment provides feedback to actions whose
value cannot be predefined. This feedback can be either good or bad, in a form of a

positive or negative reward. The learning agent (dialogue system in this case) learns

29

CHAPTER 2. BACKGROUND 2.4. RL IN DIALOGUE SYSTEMS

how to adapt to the environment according to that, by maximising the incoming
positive rewards and minimizing the negative ones (penalties).

The dialogue can be considered as a Markov Decision Process (details in Section
2.1.2). A dialogue strategy consists of mappings from dialogue states to actions
in a RL framework, where the learner traverses through these dialogue states as
through the nodes of a supposed network. The dialogue is dynamic, as has been
previously mentioned (non-deterministic environment) and therefore the transitions
are stochastic. The learning agent performs a dialogue action and changes the
future dialogue states along with their actions (alters the environment) of the rest
of the dialogue. Hence, the states of a dialogue in an MDP framework are mainly
represented as dialogue history information, including specific features of the past,
current user input action features (user’s speech act and confidence value given by
the speech recogniser), and task-oriented features (such as user’s goal). The dialogue
actions in an MDP are typically represented as requests, confirmations, or reports

of relevant information.

2.4.1 Reinforcement Learning in Non-Cooperative Games

Several studies of various researchers have taken place in the past about Re-
inforcement Learning in non-cooperative games, as is being studied in this work,
although they do not consider dialogue. In this section though we will discuss ap-
proaches which are mainly focused on Game Theory. According to Ishibuchi et al.
[52], in a multi-agent non-cooperative repeated game based on a custom rule-set,
a Fuzzy Q-Learning algorithm performed better compared to other strategies. In
more detail, the game involved competition over a number of markets and the goal
was to optimally select the market where a product would sell higher due to its
increased demand -because of short supply- at that specific market. Thus, the price
of a product in a specific market was driven from all of the agents’ actions. Random
strategies, optimal strategies as well as simple Q-Learning strategies were applied
and suggested that Reinforcement Learning and in particular Fuzzy Q-Learning is
a successful method to work with in a similar framework.

Focused on market games again, Erev and Rapoport [30] reported that even
minimal given information in a simple Reinforcement Learning model is able to
provide with an equilibrium point (as discussed in Section 2.3.3) rapidly. Qualitative
alterations between features of various different learning processes may not play
the most important role in this kind of games as they are proven to not affect
significantly the approximation of optimal behaviours in such environments. These
features cannot be ignored though. Amongst other conclusions that are purely

directed to Game Theory and market games, we generally maintain from this work

30

CHAPTER 2. BACKGROUND 2.4. RL IN DIALOGUE SYSTEMS

the fact that simple RL models are able to successfully capture collective behaviours
in stochastic games?. The work of Vishnu and Tapas [102] is also based on markets.
With the use of a stochastic approximation based RL methodology they provide
solutions to market concepts (represented in their work as matrix games of many
players) where there can be large sets of actions. Their approach is able to obtain
Nash equilibrium from this kind of market game models through the use of a Value
learning function in an MDP framework.

Littman [68] argues that in a two-player non-cooperative game, where the ad-
versary is considered to be a part of the MDP environment (as in our case again)
from the perspective of the learning agent, Reinforcement Learning and in particu-
lar an algorithm influenced by Q-Learning can successfully form the optimal policy.

9

The “max” operator during the update step of the Q-Learning was replaced by a
“minimax” operator that assists on the smooth convergence of the agent’s policy to
a fixed and “safe” strategy. However, such an agent would be vulnerable to an ad-
versary which would attempt to deceive it. Hence this specific part requires further
work as it is of high significance. Two-player games based on the MDP framework
are a restricted class according to Littman and therefore are considered to be an
interesting case, as in this thesis. Especially the part where manipulation arises will
be studied later thoroughly.

Extending Littman’s work, Hu and Wellman [48] developed a multi-agent algo-
rithm based on Q-Learning and provided proof of its convergence to a Nash equi-
librium. According to their findings, in the case where one only Nash equilibrium
exists, the algorithm is able to retrieve the optimal strategy under specific restric-
tions. If more than one equilibrium exists then they suggested that their algorithm
should be combined with other learning methods in order to obtain optimal poli-
cies. The above convergence does not depend on the sequence of actions that the
learning agent has chosen during its learning process but it is a matter of whether
or not each of the state-actions has been attempted. Furthermore, exploration and
exploitation need further work according to their statements as the Reinforcement
learning method in their multi-agent environment requires an infinite amount of
trials to converge. The trade-off between the exploration and exploitation is also
being investigated cautiously in our research.

Leslie and Collins [66] introduced a model free algorithm based on a stochastic
approximation of two time-scales (according to Borkar’s theory [10]). Along with
the application of a normal reinforcement learning algorithm they proved that both
of them were able to obtain a Nash equilibrium for the cases of two-persons zero-sum

games as well as multi-player cooperative games. However, in the cases of two non-

2This was an interesting point. We will see in Chapter 9 that our RLA, trained versus a single
opponent, can still be successful versus many, showing that RL is capable of capturing adversarial
“collective” behaviour even in a bilateral negotiations environment by treating them all as one.
However in the work of [30] the learning process occurred while playing against many opponents.

31

CHAPTER 2. BACKGROUND 2.4. RL IN DIALOGUE SYSTEMS

cooperative games (the Shapley’s rock-scissor-paper game and the N-player match-
ing pennies game) they were incapable of doing so. By extending their stochastic
approximation to more than two time-scales, and therefore achieving learning pro-
cesses for each player at different rates, they managed to solve the above issue by
reaching Nash equilibrium in all of their tested games (including the non-cooperative
ones).

Camerer and Ho [15] through what they called experienced-weighted attraction
learning (EWA) combined features from belief-based models with those of reinforce-
ment learning and developed a model that assigns “attraction” values to a number of
strategies according to their initial probabilistic tendencies towards selection. Their
update then depends on their performance in a stochastic game (they experimented
on 3 different ones) and these strategies affect other hypothetical ones that haven’t
been used so far and are based on their potential pay-offs in a game. Thus, the rein-
forcement weight parameter o expresses the strength of these hypothetical strategies
which is also taken into consideration (along with attraction discount factors and a
strategy experience weight) when it comes to select the optimal policy. The EWA
model performed better than the pure reinforcement models in all of their tested
cases and in most of them, it performed better than the belief models too. RL
along with belief-based models (and in particular opponent models) influenced us
in Section 8.3, as the experiments there address cases where the RLA maintains
adversarial preferences in its state representation and successfully learns from them.
All of the work of this section shows that RL is a promising method to handle

non-cooperative games.

2.4.2 Reinforcement Learning in Negotiation Dialogue Man-

agement

This thesis takes into account non-cooperative negotiation but a significant
amount of work that has been made by other researchers is based on cooperative
negotiation as we will see. Heeman [45] was one of the first researchers to use RL
for cooperative negotiation dialogue. He investigated various types of information
that should be included in the state representation in order to produce optimal
policies, while maintaining the state space reasonable in size. He suggested that by
tracking the decisions of the system and by utilising them in a way that restricts
its future dialogue behaviour, we can represent the strategy that it uses piece by
piece. This method results to good cooperative negotiation policies according to
the author [45]. Other important findings that are discussed below mainly originate

from RL and dialogue management in various negotiation scenarios (not necessarily

32

CHAPTER 2. BACKGROUND 2.4. RL IN DIALOGUE SYSTEMS

trading ones as in our case), and they were the main inspiration for the current
thesis. Georgila and Traum [37, 38] used three different types of cultures (individu-
alist, collectivist and altruist) to tweak accordingly hand-crafted agents, which they
called Simulated Users as they simulate the behaviour of real ones. They were based
on a dialogue corpus which was not specific to any cultural dimension, and with the
use of Reinforcement Learning, they learned culture-oriented negotiation policies in
a “one-issue” negotiation scenario. The corpus included dialogues of a florist and a
grocer who have different goals and kinds of arguments, based on four issues: the
rent, the temperature, the design of the space and the advertising policy.

The produced RL policies accounted for argumentation and persuasion, in con-
trast to most of the related work that was made up to that point which was based
on slot-filling applications (i.e. finding a restaurant). The authors [37, 38] argue
that their approach managed to learn and evaluate RL policies for specific cultural
dimensions based on information which was not focused on any particular culture.
Overall they suggest that RL is a promising method for learning argumentation
policies in negotiation domains. In more detail, they used a SARSA()) algorithm
with an initial exploration rate of 30% in [37], 20% in [38] (similar to our case that
we will examine from Chapter 5 onwards) and 20,000 training iterations. The state
representation ended up consisting of 8 features, that led from 864 to 4374 states,
and 12 actions.

Based on the above, Georgila [35] used a variety of hand-crafted agents (Simu-
lated Negotiators) in order to generate corpora for two RL agents to be trained on.
The Simulated Negotiators (SNs) used different goals and arguments (strong and
weak ones) in the process of persuading each other, performing irrational actions
too for the sake of negotiation variety in the corpus. The negotiation scenarios that
were tested now were “two-issues” ones. The goal was for the RL agent to learn
policies that persuade the other agent to agree on its preferences. The author [35]
shows that the RL agents learned to perform equally with the hand-crafted SNs
(which made only reasonable dialogue moves) and sometimes outperformed them,
by successfully persuading their interlocutors on their preferences (food type to be
served and day of the week that a party should take place). The state representa-
tion included 15 features (8 were binary), leading to 786,432 states, and 13 actions
were used. The Least Squares Policy Iteration (LSPI) [65] was applied, as it can
learn directly from a dialogue corpus, with linear function approximation [70] of the
Q-function with 1,680 manually selected features.

Georgila et al. [36] also used single-agent and multi-agent RL techniques to train
two agents which simultaneously learn dialogue policies. In the trading negotiation
scenario that was used, the two resources change ownership according to the agents’
preferences. The non-stationary environment due to the agents’ change of prefer-

ences as well as due to the fact that both of the agents learn concurrently causes

33

CHAPTER 2. BACKGROUND 2.4. RL IN DIALOGUE SYSTEMS

problems to the single-agent RL algorithm (Q-Learning), which does not converge
(it does only in the case where the state space is small). On the other hand, the
two applied multi-agent RL techniques both converge and suggest that the tradi-
tional single-agent RL versus a simulated user, or a corpus to learn from is not
needed. These interesting results bring to light the difficulty of single-agent RL to
deal with non-stationary MDPs (that we examined in Section 2.2) once again and
therefore provide a strong indication of how difficult it is in our case to train a RL
agent which learns how to successfully trade using linguistic manipulation. Its effect
constantly changes the adversarial behaviour and therefore makes the environment
non-stationary. However our learning algorithms still manage to successfully learn
how to use linguistic manipulation in this kind of environments, as we will see later
from Chapter 3 until the end of the thesis.

A multi-issue negotiation policy in a two-agent environment was learned by Pa-
pangelis and Georgila [79]. A Q-learning method with function approximation was
used to train against a hand-crafted negotiation dialogue agent. The trained policy
was aimed to be used in negotiations with agents whose behaviour has not been
observed before, and in particular humans. The authors [79] report that the learned
policy is also designed to work against behaviours that change during the same
interaction, resembling our learning cases of non-stationary MDP environments,
discussed in the Sections 3.3.6 and 8.2.14 of the thesis. The hand-crafted dialogue
negotiation agent was based on the agenda-based paradigm [88] which was used for
restaurant recommendation and has been used for dialogue management [86] too.
The goals and the preferences of the agents are not known by their interlocutor. The
state space consisted of 10 features (some are binary) and their work considered a
part of the full state space, which they call summary state space and holds a more
abstract representation. Five batches of 20,000 training iterations each were used
to train the learning algorithm.

The reward function took into consideration the case of non-agreement (a penalty
was applied there) and, in the case of an agreement, the distance® between the
agent’s preferences and the agreed ones. It also included the best (possible) achiev-
able score that the policy could result in, assuming that the opponent is absolutely
cooperative. For the evaluation phase, the RL agent interacted versus the hand-
crafted one (agenda) for 20,000 episodes and humans also rated the negotiations
between the RL agent and the hand-crafted one. Both of the agents used 9 actions
(those of the agenda rule-based agent). On the evaluation part, the performance
of the RL was better than that of the hand-crafted one and humans rated the RL
one higher. This work showed that RL is capable of learning successful negotiation
policies with the use of argumentation (e.g. persuasion) in multi-issue negotiation

scenarios, as it was designed to work against interlocutors whose behaviours have

3The notion of distance in the reward function was taken into consideration in our work too,
that is discussed in the Section 7.2.3 of the thesis.

34

CHAPTER 2. BACKGROUND 2.4. RL IN DIALOGUE SYSTEMS

not been observed before (i.e. the RL agent was not trained on them).

Based on cooperative negotiation again, Hiraoka et al. [47] used Reinforcement
Learning (Neural fitted Q iteration) in a Partially Observable Markov Desicion Pro-
cess framework, in order to learn persuasion policies to an agent from a negotiation
corpus. It consisted of persuasion dialogues between a salesperson who was the per-
suader and a customer, the persuadee. The persuasion was based on framing [51],
that is the use of emotionally charged statements to affect the persuasiveness of a
dialogue. According to the authors [47], an example of positive framing would be:
“(Camera A is) able to achieve performance of comparable single-lens cameras and
can fit in your pocket, this is a point”. The goal of the salesperson was to persuade
the customer to buy a particular camera, out of five available. The user simula-
tor in this case is the customer (persuadee), who is based on an order one Markov
Chain and uses a Bayesian network? and the salesperson is the Reinforcement Learn-
ing agent which learns how to successfully persuade the customer with the use of
framing. The reward function took into consideration the user satisfaction, the per-
suasion success (i.e. whether the customer decides to buy the particular camera or
not) and the naturalness indicator from real users [69]. There are 13 actions, which
consist of pairs of framing statements and general-purpose functions (GPF) [54].

The belief state of the RL agent includes the features of the reward function and
the reward that was calculated at the previous turn. The evaluation took place with
the simulated user and real ones. In detail, the RL policy was based on a random
one (there was obviously no learning there), a non-framing and a framing one. After
10,000 training dialogues and testing on 1,000, the authors state that learning greatly
improves the performance and framing is somewhat effective to the user simulator.
Corresponding comparisons occurred between the random policy and the framing or
the non-framing one. Furthermore, the first author (wizard) evaluated the system
by selecting the actions (and introducing a new policy called “human”) according
to the Wizard of Oz framework [62] along with 13 more participants (evaluators).
The results from all the 4 policies that were used by the evaluators and the wizard
suggested that framing is a significant factor for persuasion and it is effective with
real users in persuasion dialogues.

Hiraoka et al. [46] recently showed that in non-cooperative multi-party trading
scenarios, three RL algorithms were capable of successfully trading against random
and rule-based policies. The rewards that were given to the LAs incrementally,
proved to assist the applied learning algorithms significantly more than those that
were given at the end of the dialogue (as in our cases). Furthermore, the use of
a multi-layered perceptron to approximate the Q-function resulted in the best per-
formance, compared to a classic Q-learning algorithm with function approximation

and a least squares policy iteration [65]. There the Q-function is again calculated

4That resembles our case in Section 9.1.4, where our trained RL agent plays the “Catan” game
against a Bayesian agent which acts based on a corresponding trading dialogue corpus.

35

CHAPTER 2. BACKGROUND 2.4. RL IN DIALOGUE SYSTEMS

through a linear function approximation [70]. The authors emphasise the fact that
even in simple scenarios of multi-agent dialogues, successfully learning to negotiate
is a very hard problem.

Recently, Keizer et al. [61] used RL in a multi-agent (4-player) non-cooperative
trading game “Catan” and successfully learned how to outperform three expert rule-
based opponents (called Bots in Section 9.1.1) as well as three Supervised Bayesian
agents (called Bayes in Section 9.1.4)°. Training, testing and evaluation took place
in the JSettlers research environment [99], an open source client-server system which
allows playing the game with human players through a graphical interface but also
includes artificial ones. The artificial players which are expert hand-crafted agents
(Bots) use advanced building strategies and complex rules for their trading negoti-
ations with their opponents. Focus, such as in our work, was given on the trading
part and therefore the RL agent had to learn how to successfully trade by following
the same building plan with that of the Bots. According to the same game play
reasoning, the Bayesian agents’ trading logic was based on a corpus collected by
[1]. It consisted of annotated human player data, with focus on the trading part,
and the Bayesian agent simulated that behaviour. The authors reported that the
RL agent, which was learning by playing training games against three of those two
different kinds of agents, resulted to better performances (more than the expected
25% level) than those of the Bots or the Bayes agents. 40,000 training games were
played and then they were tested on 10,000 ones. Overall, the Monte Carlo Control
(MCC) method that was used for optimising the MDP learning policies proved to be
successful after training on human trading dialogue data. Thus hand-crafted trading
policies are suggested to be a less successful approach. This work though did not
investigate manipulation in Catan, which will be discussed in Sections 8.2 and 9.2
of this thesis for the cases of bilateral and multilateral negotiations respectively.

In the area of persuasion dialogues and with focus on opponent modelling, Had-
jinikolis et al. [42] proposed a technique for augmenting the opponent model (OM)
of an agent with information likely related to that which is already contained in it.
The inferred information is based on the knowledge about other agents with similar
beliefs and on our current assumption about the opponent’s belief. The agent’s
history of dialogues® is taken into account and in particular the times that certain
arguments follow other specific ones. The authors consider those arguments related
if they belong in the same dispute line of the dialogue (i.e. they support each other
semantically). Thus it is suggested that an agent’s policy is more effective when

the agent relies on how often particular arguments follow specific others. The con-

50ur RL policies have been also tested against those opponents in the same environment, as
we describe in detail in Chapter 9.

6Similar cases will be discussed in Sections 8.3 and 8.4, where our RL agent takes into consid-
eration the history of the adversarial preferences in its state representation, and successfully learns
based on those. We take into account not the frequency, as the authors do, but the quality (i.e.
the type of the preferred resource) of the preferences and the conditional relations between them.

36

CHAPTER 2. BACKGROUND 2.5. CP-NETS

tribution of their work includes a method for creating a corresponding relationship
graph that represents those arguments within a specific semantic context. It also
consists of a technique for updating and augmenting the agent’s beliefs about its
opponent’s ones, according to the arguments’ relations in the same dispute line, and
the definition and analysis of a Monte Carlo [44] simulation methodology where the
augmentation takes place and converges. The augmentation technique calculates
the likelihood of the consecutive arguments according to observations on the agents
behaviour in dialogue, through Monte Carlo simulations. Through sampling, they
infer the probability values that indicate the occurrence of an argument following a
previous one in the same dispute line.

This section described work that has inspired the current thesis the most. Sim-
ilarly to Georgila and Traum [37, 38|, we implement LA’s based on RL, and in
particular SARSA()), to learn how to successfully negotiate. As in [38], our ini-
tial exploration rate from Chapter 5 onwards is 20%, which is gradually decreased
to 0% at the end of the training. Our LAs learn how to negotiate versus hand-
crafted agents which demonstrate various behaviours, not based on corpora as in
[37, 38] but on other empirical studies (based on Pragmatics, Philosophy, Psychol-
ogy) as we will examine in detail from Chapter 3 onwards. The same authors used
argumentation and persuasion (as we saw in [47] too), which motivated us to use
linguistic manipulation (which can be persuasion too as we will se in Chapter 8) in
our non-cooperative environments.

Preferences played a significant role in Georgila’s work [35, 36] as we have ex-
amined above. The same occured in our case where we used opponent modelling
(as in [79]). Similarly with [42] our RLAs take into consideration the history of
the adversarial preferences, but based on the quality (i.e. the type of the preferred
resource) of the preferences and the conditional relations between them (CP-NETs
that we will discuss in the next section). Our reward function from Chapter 7 on-
wards resembles that of [79], where the distance is addressed. Keizer et al. [61] work
was important for us too as we experimented (Chapter 9) in the same multi-agent
environment using our trained policies from our bilateral negotiations (Chapter 8).

Unlike [61], we applied linguistic manipulation there too.

2.5 CP-NETs

Boutilier et al. [11] introduced the Conditional Preference Networks (CP-NETS)
as a means of representing graphically preference relations that are being formed
naturally in people’s everyday life. Based on the Ceteris Paribus interpretation that

means “all else being equal”, CP-NETs are capable of specifying various types of

37

CHAPTER 2. BACKGROUND 2.5. CP-NETS

relations between preferences in a structured, compact and direct way. Avoiding
the concept of uncertainty in actions or states and focusing exclusively on a world’s
setting similar to that of the MDP (Section 2.1.2, where everything is observable, the
information is complete and there is a finite number of distinct states and actions),
they apply a typical preference ranking over a set of action outcomes. For example,
ol > 02 means that the outcome 1 is more desirable than the outcome 2 and
xlz2 > yly2 (or x1 A 22 > yl A y2) means that the outcomes of x1 and x2 are
preferred than those of y1 and y2 etc.

According to Boutilier et al. [11] definition of CP-NETs: “A CP-net over vari-
ables V = Xy,..., X, is a directed graph G over X1, ..., X,, whose nodes are anno-
tated with conditional preference tables C PT'(X;) for each X; € V. Each conditional
preference table C' PT(X;) associates a total order with each instantiation U of X;’s
parents Pa(X;) = U

Despite the fact that the CP-NET’s semantics allow reference to variables that
belong to arbitrary finite domains, the following example that is inspired by those
of Boutilier et al. [11] and will be studied thoroughly uses binary variables: Let’s
assume that an artist’s preferences for drawing a picture includes three variables, P,
C, and Q) that are pen, pencil and quill respectively. She strictly prefers using black
than green colour for both the pen’s ink and the pencil, regardless of the quill’s ink
colour. However, the choice between the red and the green quill ink is affected by
the combination of pen and pencil colours. In the case where the pen’s ink colour
and the pencil’s colour are the same, then the green quill ink is not of her taste and
therefore she prefers the red quill ink. In the case where the pen’s ink colour and the
pencil’s colour are different, then the red quill ink is not of her taste and therefore
she prefers to use the green quill ink. The Figures 2.9, 2.10 and 2.11 represent the

details of the preference relations between the variables of the example above.

Pb — Pg Ch—Cg
Pb /\Ch Qr >~ Qg
Pg /\ch Qg = Qr
Pb/\ Cg Qg - Qr
Pg A\ cg Qr— Qg

Figure 2.9: Preference relations for the “picture drawing” example. The choice of
the pen’s ink colour and that of the pencil affects the colour choice of the quill’s ink.

Boutilier et al. [11] classical view of CP-NETs as well as of the induced prefer-
ence graphs considers them as a network where each of the nodes has at least one
connection to another one and belongs to a distinct level of preference, as can be
seen in the Figures 2.10 and 2.11. Figure 2.9 represents analytically the preference

relations of the variables that are discussed in the above “picture drawing” example.

38

CHAPTER 2. BACKGROUND 2.5. CP-NETS

Ill/-d-q‘\lll
Figure 2.10: CP-NET of the “picture drawing” example. The quill’s ink colour is

conditionally dependant (equally) by both the colours of the pen’s ink and that of the
pencil.

—_—
| Pen g A ag

\\Pa/\cg A ar

.

b A ar | Lph/\r.g/\q.-]

[(Por e Aae) [Penc

S

LPb/\C

I ~

| peA Ch/\QrJ
L

Figure 2.11: Induced preference graph of the “picture drawing” example. The highest
in preference node Pb A Cb N Qr is at the bottom of the tree and all of the others
follow in a hierarchical manner.

In Figure 2.10, the CP-NET of the example considers P and C to have the same
(highest) level of preference while the Q is conditionally dependant (equally) by both
the P and C. Thus, in the inferred graph of Figure 2.11 there are six distinct levels
of preference and the highest in preference node (that is at the bottom of the tree)
includes the expression Pb A Cb A Qr that stands for: black pen’s ink and black
pencil and red quill’s ink. This is the highest in preference node. All of the other
preference nodes follow in a hierarchical manner based on the example’s description

and the representations of the Figures 2.9 and 2.10.

39

CHAPTER 2. BACKGROUND 2.6. PRAGMATICS

2.5.1 CP-NETs in Dialogue Acts

Asher, Bonzon and Lascarides [3] based on Boutilier’s classical view of CP-NETs,
proposed a methodology for modelling the preferences that affect the discourse dur-
ing a dialogue act. It resulted to the concept of a partial CP-NET, where relations
between preferences in a discussion are represented and computed, allowing also dis-
course expressions that sometimes do not belong in a specific degree of preference
and therefore are left unranked. That happens because the expressed preferences in
Natural Language may be vague. Hence, partial CP-NETs may lead to more than
one optimal outcome as they can be acyclic.

In Natural Language Processing (NLP), preference retrieval and representation
from texts is a complex task that according to the authors [3] can be accomplished
through partial CP-NETs. They initially analyse the discourse into rhetorical related
units that consist of a set of labels (such as plan-elaboration, explanation, question
answer pairs etc.) based on their theory of discourse interpretation (SDRT). After
that, they gradually compose them then back to form a partial CP-NET by following
a recursive manner, inspired by Game Theory techniques that are able to deal with
non-aligned preferences.

The ERC project STAC (http://www.irit.fr/STAC/) aims to develop models
based on strategic non-cooperative negotiation. Due to the fact that its relevance
to the current thesis’ subject is high, our findings contribute to STAC project.
Furthermore our work is inspired by the challenges and motivations of that project
and is considered to be a part of it. STAC makes use of the multi-player board game
“Catan” and in particular a relevant research environment called “JSettlers” [99]. In
Chapters 8, 9 and 10 we focus our attention on that game as well as the “JSettlers”
environment and conduct experiments. “Catan” data that have been accumulated so
far from games between human players have been annotated by Asher, Bonzon and
Lascarides with the use of partial-CP-NETs [3], leading to very interesting results as
we saw above. Hence, CP-NETs play a significant role in our work and experiments
which utilise them in Reinforcement Learning have been conducted as we will see in
Section 8.4.

2.6 Pragmatics

Pragmatics is the area of linguistics that studies the use of language in context,
along with its various mechanisms that we use to express potential actions or events.
Grice’s cooperative principle marked the birth of Pragmatics in linguistics and has

been the subject of many scholars [41]. It was stated as follows: “Make your con-

40

CHAPTER 2. BACKGROUND 2.6. PRAGMATICS

versational contribution such as is required, at the stage at which it occurs, by the

accepted purpose or direction of the talk exchange in which you are engaged” [39].

2.6.1 Gricean Maxims and Implicature

Four categories (known as Gricean Maxims) emerge from the above statement:
Quantity, Quality, Relation and Manner. Quantity characterises the amount of
information that needs to be contributed to the conversation. The sub maxims that
result from that are two: First, the contribution needs to hold the required amount
of information and second, this information must not be more than is required as it
would result in a waste of time and misdirection. Quality refers to the truthfulness
of the information. There are two related maxims again here. The communicator
must not say that she believes not to be true and that she lacks adequate evidence
for. Relation refers to the need of information to be relative and Manner to the way
that the information is said, as the talk should be regulated, brief and clear.

Some of the above maxims may be more essential than others in maintaining
the cooperative behaviour of a dialogue, and all require that of Quality. Grice also
argues that there are other maxims, such as social, moral, or aesthetic ones that
belong to a secondary level. However the four that have been mentioned above
along with the conversational implicatures which are generated from them are the
most important in discourse. People naturally learn and behave based on these
principles since childhood when engaged in dialogues with their interlocutors. That
means it would require effort to invent for instance a lie than to speak the truth.
Hence it is reasonable and easy for us to follow these rules in order to ensure co-
operative dialogue. According to Grice, this kind of dialogue is characterised by a
common, immediate aim. It is also based on mutually dependent talk and mutual
understanding regarding the communication’s finalisation as well as its flow [39].

A sentence’s suggestion which resides between the points of literal expression and
that of the clear implication is called implicature according to Grice. It is related to
the uncertainty of the maxims’ violation and its notion can be categorised in three
distinct kinds:

e Conversational implicature
e Scalar implicature

e Conventional implicature

The conversational implicature is divided into three cases. The first case covers

the situations where the communicator disregards a maxim on purpose, for the

41

CHAPTER 2. BACKGROUND 2.6. PRAGMATICS

sake of a non-literally expressed context. An example might be: “He took up the
gauntlet” as a response to “How did Brian respond to Jeremy’s challenge?”. The
second case studies situations where the speaker through a maxim (i.e. Relation)
“directs” her interlocutor to the correct interpretation. For example, “There is a
screwdriver next to you” could be the response for “Do you know how can I dismantle
this console?”. The third case includes the situations where the communicator makes
use of conflicting maxims (i.e. Quantity and Quality) in order to imply that she
does not have the evidence of the correct answer. For instance, “It is next to you or
next to the lamp.” might be the response for “Do you know where the screwdriver
is?” that explains this.

Scalar implicature covers the cases where used words have conventional meanings
(e.g. “some”; “all”, “none”). Its functionality suggests that all of the other similar
but more informative utterances would be false as the communicator does not use
a more powerful term (Maxim of Quantity) on the same scale intentionally. An
example would be “I have repaired some of your bicycle” implying that the bicycle
is not fully repaired yet. The Gricean Maxims do not affect the third category of im-
plicatures though, the Conventional implicature, which resides in every statement’s
agreed meaning and is invoked through the use of the word “but”. For instance, the
utterance “I just had lunch but I am hungry” is a suitable example which implies
that being hungry right after lunch is contradictory. Gricean cooperative principles
have been shown to emerge from multi-agent decision theory, in a language task
modelled using Decentralised Partially Observable Markov Decision Processes [103],
and in related work conversational implicature was argued to be a by-product of
agents which maximise joint utility [104].

During dialogue, people are very likely to accept implicature subconsciously as a
natural attempt of cooperation, despite the fact that the discourse may have a non-
cooperative character. According to Grice: “it is just a well-recognized empirical
fact that people DO behave in these ways; they have learned to do so in childhood
and not lost the habit of doing so” [39]. Furthermore, Ladegaard based on that
states: “The Gricean approach to cooperation does acknowledge, however, that the
CP may be violated. But what may appear to be an example of a non-cooperative
activity is in fact, when analysed at a deeper level, to be seen as an example of
cooperation, because the point of the violation is to create an implicature. This
means that a seemingly irrelevant response will still be interpreted as cooperative at
a deeper level, because we will look for a meaning beyond what is expressed. In other
words, because the CP applies, the interlocutor knows that the speaker’s seemingly

irrelevant remark was made with the intention of generating an implicature” [64].

42

CHAPTER 2. BACKGROUND 2.7. CONCLUSION

2.6.2 Gricean Maxims and Non-cooperative Dialogues

Apart from the cases of cooperative dialogue though, Grice’s view of the Maxims
seems to be non-applicable to those which lack cooperation. Non-Gricean behaviour
is being analysed from a game-theoretical perspective [4]. According to various
researchers [6, 5], Grice had little to say for non-cooperative dialogue. Hence Attardo
[6] argues that the Cooperative Principle (CP) of Grice [39] should be decomposed
into two distinct cooperation levels in order to locate the exact meaning of some
implicatures too, which otherwise would be impossible for us to decode. The first
one, locutionary cooperation (LC), expresses the amount of cooperation that the
dialogue’s participants must put into their utterance so that its intended meaning
will be successfully deciphered. The second level, perlocutionary cooperation (PC),
expresses the amount of cooperation that the dialogue’s participants must put into
their utterance so that its intended effect will be successfully achieved for the benefit
of everyone. In other words, the PC focuses on whether the communicator’s goal
was achieved through her utterance or not, by serving a common good cause (by
being cooperative). This is where the Perlocutionary Cooperative Principle (PCP)
is based on according to Attardo (the example that he gives here is: “be a good
Samaritan!”). On the other hand, deception is considered to be cooperation on the
LC level and non-cooperation on the PC level [6], such as in our case that we will
analyse in later chapters.

Ladegaard [64], based on dialogue examples between students and teachers, ar-
gues that sometimes the goal of the dialogue is to miscommunicate. In fact, miscom-
munication in terms of non-cooperation may be preferred than Gricean cooperation
as it can be the core of a successful discourse strategy. According to Grice, people
will naturally attempt to cooperate and produce a successful dialogue that is ulti-
mately based on negotiable solutions. However the social context is missing from
his theory. Hence, Ladegaard points out that in cases where an individual is forced
into a social circumstance which requires appropriate behaviour, the conversation’s

failure may be the preferred option.

2.7 Conclusion

Motivated by all of the above work and findings, in the rest of the thesis we are
going to implement and use Reinforcement Learning (RL) in an MDP framework
to train trading dialogue agents in non-cooperative negotiations. We expect RL to
outperform complex hand-crafted agents. We will create our own non-cooperative

game and experiment on that, as well as on other more complex environments. We

43

CHAPTER 2. BACKGROUND 2.7. CONCLUSION

will verify whether RL in MDPs is capable of effectively handling hidden information
regarding the adversarial goals and states. We are also aware that we are going to
deal with non-stationary MDPs as we will use linguistic manipulation (e.g. through
implicature), inspired by concepts in Pragmatics, which will affect the adversarial
behaviour. We will verify whether it will increase the performance of traditional
RL, as well as focus on its detection for ethical reasons. We will include in RL
information regarding the adversarial preferences and evaluate whether it can learn
more successful policies based on that, given that the environment is noisy due to
its non-stationary character and hidden information. In our attempt to generalise
our findings and consider them applicable to negotiation domains outside trading,
we will focus on using empirical analysis based on Pragmatics mainly, as well as
Philosophy and Psychology. The analysis of the main research will commence in
the next chapter, where we will discuss the non-cooperative trading game “Taikun”

that we created in order to start experimenting with the above ideas.

44

Chapter 3

Initial model: Taikun

To initially investigate non-cooperative dialogues in a controlled setting we cre-
ated a 2-player, sequential, non-zero-sum game with imperfect information called
“Taikun”. Motivated by the principle of Occam’s razor and being inspired by the
game-theoretical subjects that we discussed in Chapter 2, we shaped this game as
simply as possible, while including key features of a non-cooperative resource trading

game. Some of these features include:

e the goals’ divergence
e a resource is wanted by both sides to promote competition

e there are resources that are only needed by one side to force trading as lack of

communication is a common problem (we have seen this in Section 2.3.2 too)

e possibility of creation of Nash Equilibrium (discussed in Section 2.3.3) through

the game’s strategies

e imperfect information

The goal was also to implement mechanisms that are not restrictive for the
future of this research and therefore can be flexibly extended to capture different
aspects of trading and negotiation. We call the 2 players the “adversary” and the
“learning agent” (LA). The two players can trade three kinds of resources (wheat,
rocks, sheep) with each other sequentially, in a 1-for-1 manner, in order to reach a
specific number of resources that is their individual goal. The player who attains
their goal resources wins. Both players start the game with one resource of each
type (wheat, sheep, and rock). At the beginning of each round the game updates
the number of resources of both players by either removing one of them or adding
two of them, thereby making the opponent’s state (i.e. the cards that they hold)
unobservable. Thus, in the long run, someone will eventually win even if none will
ever trade. However, trading is highly promoted by the mechanisms of the game as

its efficient use can provide faster victory.

45

CHAPTER 3. INITIAL MODEL: TAIKUN 3.1. A SIMPLE GAME

3.1 A simple game

Taikun is a game that has been invented with the purpose of resembling any
simple non-cooperative negotiation between two individuals who seek personal gain
through equal unforeseen opportunities (i.e. the game’s random update turn). As
in a real-world scenario, some trading resources may be currently needed by either
both sides (i.e. the wheat in our case) or only one. The LA does not know though
which of the resources are common as the opponent’s goal is hidden. However the
common resource (wheat) is a secret link between their needs that emphasises the
importance of the non-cooperative negotiation and enhances its competitiveness.
Each Taikun game attempts to capture fragments of a generic, real-world trading
session where one party only manages to achieve its goal first and then proceeds to
the next session having the experience of the previous one. We consider the game
as a toy model for real-world negotiations.

Initially we will examine the game’s characteristics (Section 3.1.1), the actions
(trading proposals and responses) that the players can use (Section 3.1.2) and those
which manipulate, and the learning agent’s architecture as well as those of its ad-
versaries. We will discuss the details about the non-cooperative dialogue that we
generate and the implicature that is used. Finally we will examine the history logs
of played games, the learning algorithms that were used and the background of the

experiments and the adversaries, that follow in the next two Chapters.

3.1.1 Game’s characteristics

Important details and rules of the game are listed below:

e Sequential, non-cooperative/competitive, non-zero-sum' game, with imperfect

information
e 2 players
e 3 different resources to trade (wheat, rocks, sheep)

e Each player starts with either 0 or 1 of each resource (for Chapter 4 only,
this was changed to only 1 of each resource for both of the players in the

experiments of Chapters 5 and 6)

1By adding up all of the players’ gains and then subtracting from them all of their losses, what
remains is not equal to zero. This is because of the update turn at the beginning of the round
which may add or remove resources, as we will examine later in this Section.

46

CHAPTER 3. INITIAL MODEL: TAIKUN 3.1. A SIMPLE GAME

e The goal is to reach 4 and 5 of two specific resources respectively (4 wheat
and 5 rocks in the case of the learning agent and 4 wheat and 5 sheep in the
case of its adversary). There is a resource (wheat) that both of the players

need while the other one is needed only by one player.

e The players might start with the same kind and number of resources because

the resource initialization mechanism is random?.

e Each round consists of an update on the resources turn, the LA’s trading
proposal turn (and adversary’s acceptance or rejection) and finally adversary’s
trading proposal turn (and LA’s acceptance or rejection). Wins or draws are

calculated at the end of the round.

e The update changes one only of the resources at random by +2 or -1. If the
resource is 0 then the -1 cannot be applied and therefore the resource will
remain 0. If the resource is 4 then only the 42 can be applied on it. However,
due to the update rule that occurs at the beginning of each round, one of the

resources may be also “capped” (please see below).

e When a resource is “capped”, that is its number is 5 or more, then no change
of the update rule can be applied to it. Trade can still change its quantity
though.

e The update turn promotes the trades and “pushes” both of the players to-
wards their goals too. During the update turn the actions that may occur
(their probabilities are uniformly distributed) from the game are: +2 wheat,
-1 wheat, +2 rocks, -1 rock, +2 sheep, -1 sheep. Only one of these 6 actions
will be performed (if applicable) by the environment (game) to the players.

This action does not have to be the same for both.

3.1.2 Actions (Trading Proposals)

Trade occurs through specific trading proposals that may lead to acceptance

from the other player. These proposals are:

In update turn: No trading proposals or responses can be taken during this

turn from any of the two players.

2The resource initialization mechanism is random only for the experiments of Chapter 4 though,
in Chapters 5 and 6 both of the players start with 1 of each resource.

47

CHAPTER 3. INITIAL MODEL: TAIKUN 3.1. A SIMPLE GAME

In learning agent’s turn: only one “1 for 1” trading proposal may occur from

the learning agent or nothing (7 actions in total), that is:

1. T will do nothing

2. I will give you a wheat if you give me a rock
3. I will give you a wheat if you give me a sheep
4. T will give you a rock if you give me a wheat
5. I will give you a rock if you give me a sheep

6. I will give you a sheep if you give me a wheat

\]

. I will give you a sheep if you give me a rock

The adversary responds by either saying “OK” or “No” in order to accept or

reject the learning agent’s trading proposal.

In adversary’s turn: The same seven trading actions may occur from the
adversary and the learning agent now responds in the same way by either accepting

or rejecting the adversary’s trading proposal.

3.1.3 Additional actions (Deception - Scalar Implicatures)

In our second (Section 4.2) and third experiment (Section 4.3) of Chapter 4 (as
well as in Chapter 5 as we will see), three manipulative actions® have been added

only to the learning agent’s set of actions:

1. “I really need wheat”
2. “I really need rock”

3. “I really need sheep”

The adversary believes these statements?, resulting in modifying the probabilities
of making certain trades (discussed in Sections 4.2 and 5.2) as it will start hindering
the LA’s strategy by restricting resources which the LA has stated that it needs and
offers the others more. Hence the manipulating actions always affect the adversary,

in contrast to the trading ones which depend on the adversary’s response. Note that

3Through the thesis these explicit manipulative actions are either expressed as “I really need
X” or “I need X”, where X is a resource. There is no difference between them in our work.
4The reasons are discussed in Section 3.3.3.

48

CHAPTER 3. INITIAL MODEL: TAIKUN 3.1. A SIMPLE GAME

in the current model we assume that only these 3 manipulative actions potentially
have an effect (explicit manipulation) on the adversary’s reasoning about the game.
An alternative would be to allow all the normal trading utterances to have some
manipulative power (implicit manipulation), as we do from Chapter 7 onwards. For
example the LA’s utterance “I will give you a wheat if you give me a rock” could
lead the adversary to believe that the LA currently needs rock. For the time being,
we prefer to separate out the manipulative actions explicitly, so as to first study
their effects in the presence of non-manipulative dialogue actions. From Chapter 7
onwards, we will examine the case where all trading proposals can cause adversaries
to change their game strategy. Each one of the above three manipulative utterances
imply that “I don’t really need any of the other two resources”, as both of the
players are fully aware that three different resources exist in total and more than
one is needed to win the game, and therefore they serve as scalar implicatures [104].

Our trading dialogues are linguistically cooperative (according to the Gricean
Cooperative Principle [39]) and are based on Attardo’s Locutionary Cooperation
(LC) [6], since their linguistic meaning is clear from both sides and successful in-
formation exchange occurs. Non-linguistically though, where the communicator’s
intention is on focus, they are non-cooperative, since they they aim for personal
goals. Hence they violate Attardo’s Perlocutionary Cooperative Principle (PCP),
according to which someone acts by being a good Samaritan, as is suggested by
the author. Deception according to Attardo is cooperation on the LC level and
non-cooperation on the Perlocutionary Cooperation (PC) level such as in our case.
We will show that the LA learns how to include scalar implicatures in its dialogue
to successfully deceive its adversary by being cooperative on the locutionary level
and non-cooperative on the perlocutionary level. It chooses to act in that way in-
stead of using only normal trading proposals which -despite the fact that they are
non-cooperative on the perlocutionary level- lack the effect of manipulation (i.e.

deception) and result on a much lower performance.

3.1.4 The Learning Agent

The game state can be represented by the learning agent’s set of resources,
its adversary’s set of resources, and a trading proposal (if any) currently under
consideration. In Chapters 4 and 5 the learning agent (LA) plays the game and
learns while perceiving only its own set of resources and the turn of the game (e.g.
adversary’s trading proposal). Hence we track up to 19 of each type of resources,
along with the turn of the game which is indicated by a binary value, and therefore
we have 20 x 20 x 20 x 2 (=16,000) states. This initial state space is later extended

with elements of history (previous dialogue moves in the same episode as will be

49

CHAPTER 3. INITIAL MODEL: TAIKUN 3.1. A SIMPLE GAME

discussed in Section 3.2.3, for the experiments of Chapter 4 only). Estimates of the
other agent’s state (e.g. beliefs about what the adversary needs) will be included in

the LA’s state later as we will see®

. The LA is aware of its winning condition (to
obtain 4 wheat and 5 rocks) in as much as it experiences a large final reward when
reaching this state. It learns how to achieve the goal state through trial-and-error
exploration while playing repeated games. It learns how to successfully propose
trades and respond to the adversary’s trades.

The LA is modelled as a Markov Decision Process [97]: it observes states, selects
actions according to a policy, transitions to a new state (due to the adversary’s move
and/or a update of resources), and receives rewards at the end of each game. This
reward is then used to update the policy followed by the agent. The rewards that
were used in the experiments of Chapters 4 and 5 were 1,000 for the winning case,
500 for a draw and -100 when losing a game. The winning and draw cases have the
same goal states and that would initially suggest the same reward but they can be
achieved through different strategies. Experiments that we have conducted using
either the above rewards or the same rewards for win and draw have verified this.
The learning agent’s performance is slightly better when the reward for a win is
1000 and 500 for a draw.

The LA was trained using a custom SARSA(0) for the experiments of Chapter
4 and SARSA(A) learning method [97] for the experiments of Chapter 5, with an
initial exploration rate of 0.2 that gradually decays to 0 at the end of the training
games. After intense experimentation with the learning parameters of SARSA ()
we found that with A equal to 0.4 and v equal to 0.9 we obtain the best results for
our problem and therefore these values have been used in all of the experiments of
Chapter 5.

3.1.5 The Adversaries

We investigated performance with several different adversaries. As a baseline,
we first need to know how well a LA which does not have manipulative moves at
its disposal can perform against a rational rule-based adversary. Our hypothesis is
then that a LA with additional manipulative moves can outperform this baseline
case when the adversary becomes somewhat gullible, even in the cases (see experi-
ments of the Sections 5.4.1 and 5.4.2) where it can detect them and severe penalties
will be applied. A “gullible” adversary is one which believes statements such as “I
really need rock” and then acts so as to restrict the relevant resource(s) from the

LA (hindering behaviour). Our experiments with the restrictive adversaries (see

5In Chapters 8 and 9 we use learning agents which maintain information in their state repre-
sentations about the adversary’s preferences based on previous trades.

20

CHAPTER 3. INITIAL MODEL: TAIKUN 3.1. A SIMPLE GAME

experiments of Section 5.3) show that this gullible behaviour may originate from
sound reasoning (the results of Section 6.1.3 suggest that too). The adversary con-
fronts in this case a very important dilemma. It suddenly does not know if it should
stay with its goal-oriented strategy (baseline) or instead it should boycott the LA’s
stated needed resources. A priori, both of these strategies sound equally successful,

and we will show that their performances are indeed very close to each other.

3.1.6 History log of the played games

A detailed history log of the played games was implemented. That allowed us
to extract important information of the strategies that are followed by the learning
agent and its adversary as well as check their “soundness” during implementation.
Below is an example of a testing game selected at random, where the LA tests its
learned policy and no learning occurs any more (agent is being 100% exploitative,
using RL terms). The LA is the non-manipulative one and the adversary is the rule-
based “strict” one that we will see in the next chapter (Section 4.1). The actions
are not in the range of 1-7, as we saw in Section 3.1.2, but in the range of 0-6. For

example, “I will do nothing” is action 0 in this case and not action 1:

New game: 3500001

Agent’s action: 6, Round: 1, State: 111
Adversary’s response: 1, Round: 1, State: 10 2
Adversary’s action: 0, Round: 1, State: 1 0 2
Agent’s response: 0, Round: 1, State: 120

Agent’s action: 1, Round: 8, State: 5 4 2
Adversary’s response: 1, Round: 8, State: 2 5 4
Adversary’s action: 3, Round: 8, State: 2 5 4
Agent’s response: 0, Round: 8, State: 4 5 2
Agent won, Round: 8, State: 4 5 2

The actions have been discussed in Section 3.1.2. The responses are “1” in case
of “OK” and “0” in case of “No”. The state is represented by the number of available

resources (wheat, rocks, sheep).

o1

CHAPTER 3. INITIAL MODEL: TAIKUN 3.2. ALGORITHMS

3.2 Algorithms

The learning algorithm (custom SARSA(0)) that is used in the experiments of
Chapter 4 is based on that of the tic-tac-toe game (discussed in Section A.1.2) as
well as on SARSA(0). It was created for the following reasons:

e Memory efficiency.
e Learn both the trading proposal part and the response part of Taikun.

e Learn to respond to the adversarial trading proposals without taking them
into consideration (e.g. include them in the state representation) during the

learning process.

In Chapter 5 the algorithm is exclusively based on SARSA () though. The reason is
that we needed a “guaranteed” algorithm® which leads to more accurate policies and
faster training times, as the representation is tabular, even if the memory demands
are higher as we will see. We use SARSA algorithms due to the “State-Action-
Reward-State-Action” sequence that they use to update the Q-values of their state-
action pairs. The updates through this sequence (rather than considering only the
current state-action-reward) result in very accurate policies and therefore seemed to
be ideal for the stochastic character of Taikun (as well as that of Catan that we will

examine from Chapter 7 onwards).

3.2.1 Similarities between the LA’s first (custom SARSA(0))
and second algorithm (SARSA()\))

Fundamental similarities between the two algorithms that were used are listed

below:

e Theoretical or forward algorithms: in each observed state the learning agent

looks forward in time when it comes to optimally combine future rewards.

e Tabular: all of the estimates of the states’ values are saved in the computer’s

main memory (i.e. in an array).

e On-line updating: the updates of the state values occur on each time step, as

soon as the increments of the Q-values are calculated.

Sin contrast to our custom SARSA(0) algorithm, which was developed in the beginning of this
research and therefore it is very “experimental” as we will see.

02

CHAPTER 3. INITIAL MODEL: TAIKUN 3.2. ALGORITHMS

3.2.2 Differences between the learning agent’s first (custom
SARSA(0)) and second algorithm (SARSA()))

Custom SARSA(0):

e The algorithm’s implementation considers the history of a round, which is the
whole sequence of states-actions since the system’s update turn (which occurs
first in a round, Section 3.2.3), when it follows its policy while it is exploiting

(in order to respond to adversarial trading proposals).

e It is based on Temporal Difference(1-step) or TD(0), with bootstrapping’.

Update occurs by back-propagating the value to the previous state-action only.

e It is inspired by SARSA(0) but it is still quite different. The exact way that

this algorithm works is discussed in Section 3.2.3.
SARSA(M):

e The algorithm’s implementation considers only the current observed state-

action when it follows its policy while it is exploiting.

e It is based on Temporal Difference()\), with bootstrapping as above, but the
update occurs by back-propagating values to all of the previous state-actions
that led to the LA’s current state.

e It works in exactly the same way as that in Section 2.1.6. In other words, it
is a SARSA()) algorithm as is defined by [97].

3.2.3 DMore details on the first algorithm’s implementation

(custom SARSA(0))

This algorithm (used in Chapter 4, the pseudocode is in Section A.2.3 of the
Appendix) is based on SARSA(0) and the value iteration algorithm that we used
in the “tic-tac-toe” game (discussed in Section A.1.2 of the Appendix). When it
is exploiting, it chooses the action in a game state (or simply called here as state®,
discussed below) that has currently the highest value, in contrast to the case of “tic-

tac-toe” where it simply locates the following state with the highest value and then

" All TDs have bootstrapping in contrast to Monte Carlo. That means that they update previous
values based on existing estimates and they do not wait until the end of the episode.

8In this Section only, by state we mean the game’s state (e.g. LA’s turn) because we were
influenced by the “tic-tac-toe” example. Hence we refer to the LA’s state (which consists of its
current resources and the game state id) as LAstateld, for example LAstate0.

23

CHAPTER 3. INITIAL MODEL: TAIKUN 3.2. ALGORITHMS

it figures out what the action to perform is by comparing them. This algorithm has
been further modified according to the ideas that follow.

Each one of the game’s rounds includes the update turn (state 0)° which con-
sists of the LA’s state (LAstate0) and trading proposal (action 0). The round also
includes the LA’s turn (state 1) which consists of the LA’s state (LAstatel) and
response (action 1). Finally the game’s round includes the adversary’s turn (state
2), where the game’s random update of the resources will occur (the LA’s algorithm
does not take this action into consideration though) and consists of the LA’s state
(LAstate2). The LA plays the game and learns while perceiving these states from its
own perspective. This is how it considers and stores them in its array list. Accord-
ing to this perspective, the update state (state 0 or U) already contains information
about the actions of the system (i.e. random changes to the LA’s and to the adver-
sary’s resources) and this is where the LA proposes a trade (takes action 0) as we
mentioned. This state U is the root of a “tree” which will be recorded in the array
list.

The LA’s turn (state 1 or G) is next. It includes information about the previous
action (LA’s trading proposal, action 0) that has been taken. In this state, the LA
is now called to select a response action (action 1) to the trading proposal of its
adversary. The adversarial trading proposal is not taken into consideration by the
learning algorithm when it responds. Hence, it considers both the previous state
(U) and the current state (G) in order to respond (while it is exploiting). In this
way, which captures the history of the current round of the game, the LA gains
some information regarding the adversary’s proposal based on the resources that
the LA had in the previous turn, its trading proposal there and the resources that
it currently has available!®. The LA’s response action (action 1) along with the LA
state (LAstatel), which both consist the state 1 or G, are inserted in the list next
to the previous state-action (state 0 or U) that occurred. They are considered to
be one of the four alternative states (due to the two different adversary’s responses
and then to the two different LLA’s responses) which follow after the previous state 0
(or U) that we examined. After the G state, next comes the adversary’s turn (state
2 or D). It includes information about the previous action (response) of the LA. In
this state the game is now called to take an action, by updating the resources of
both the agent and its adversary, which eventually leads to another update state

(state 0 or U). This will follow again the same reasoning that we discussed above,

9As we mentioned above, we do not mean in this section the LA’s state in “MDP” terms. We
mean the game’s state or turn from the LA’s perspective, which consists of the LLA’s state and the
LA’s action.

10Tn other examples (where the following idea might apply), it would be also useful to assume
in this point that the previous trading proposal of the LA has affected to some degree the adver-
sary’s proposal (this was one of the points which influenced us to think of linguistic manipulation,
discussed in Section 3.1.3). In our current case we only assume though that the LA’s previous
trading proposal and resources, along with the LA’s current resources provides some information
about how to respond to the adversary’s trading proposal, without knowing what it will be.

o4

CHAPTER 3. INITIAL MODEL: TAIKUN 3.2. ALGORITHMS

continuously, until learning stops:
LAstateQ + action0 — LAstatel + actionl — LAstate2

which is equivalent to:
stateQ) — statel — state2

or

U—-G—D

The learning agent stores in its array list “trees” that have always update states
(state 0 or U) as their roots. After a U state, four G states follow (they are not im-
mediately sequential). Similarly, after each G state, several immediately sequential
D states (their actions are not considered by our algorithm as they are performed
by the game) follow in the array list, as they result from the LA’s responses to many

different adversarial proposals. An example is given below:
\U|G|D|D|G|D|D|D|\U|G|D|U|... — ArrayList

The formula that we used is based on value iteration, which was used in the

“tic-tac-toe” example (discussed in Section A.1.2):

Vi(s) <= V(s) + ax (V(s') = V(s)) where,

« is the learning rate (0 < o < 1), it reduces gradually to 0 at the end of the
training games for the sake of convergence,

s and s are the current and previous!! states respectively,

V" and V are the current and previous values. Due to the fact that this algorithm
actually considers the LA’s state-actions though as we saw (despite the fact that
we refer to them as game states, or simply states), the above formula is further
inspired by that of SARSA(0) (discussed in this section). Hence the formula that

the algorithm uses to update is:

Q'(s,a) < Q(s,a) + ax (r+Q(s',ad') — Q(s,a)) where,

« is the learning rate (0 < o < 1), it reduces gradually to 0 at the end of the
training games for the sake of convergence,

r is the reward (it is set to 5 for unobserved states where there is no win, draw
or loss),

s’ and s are the current and previous LA’s states respectively,

HFor the algorithm’s easier comprehension (as discussed in Section 3.2.3) we refer to these states
as current and previous rather than the typical new and current.

25

CHAPTER 3. INITIAL MODEL: TAIKUN 3.2. ALGORITHMS

@' and @ are the current and previous Q-values of the LA’s state-actions (game
states) respectively.

Thus this algorithm uses a simplified formula of SARSA(0), hence the name
custom SARSA(0) as it uses the sequence state-action-reward-state-action to update
too. As we have also seen in Section 2.1.3, the learning agent according to what
happens in the game assigns values (which in our case are Q-values of the LA’s
state-action pairs) to the above states and then it back propagates them to their
previous states. In detail, when the LA updates on its trading proposal turn, then
the algorithm locates the same U state!? in the list and back-propagates the values
to the previous state (D), which is somewhere in the list (it normally performs an
exhaustive search to find it). In the case where the LA updates on its response turn
(adversary’s trading proposal), then it locates the same G state in the list, along with
the same U state which preceded the G state, and back-propagates the values to the
previous state (U). In state D, which is the next one, according to the result of the
game (i.e. win, draw, nothing so far) the corresponding reward is back-propagated
to both of the previous states G and U (this is why it resembles SARSA(0), in some
cases it considers the state-action-reward-state-action chain when it updates, as we
saw in Section 2.1.6).

When it proposes a trade while exploiting, it selects the action whose state has
the highest value in the list (policy), by checking for identical beginnings (“roots”)
of “trees” (states 0 or U). When it responds to an adversarial trading proposal while
exploiting, it selects the action whose state (G) has the highest value in the list
(policy) by checking for two first identical parts of the “trees” (state 0 or U and
state 1 or G), in other words the history of the round. Thus, every state (which
is in fact a typical RL state-action pair as we have mentioned before) has a value
(Q-value) indicating its importance in the game. The agent learns to pick only the
highest in value game states, in order to find the best action to take, and that’s
how it learns various successful strategies. The e-greedy behaviour of the learning
agent is based on a gradual reduction in the exploration’s percentage -game after
game- that resulted in doubling its learning performance as we will see in the next
chapter. The rewards (converted to game state values or even better, Q-values of
LA’s state-actions) that were used were 1,000 for the case of the learning agent’s
win, 500 for the draw and -100 for the case of a loss. Checks for possible win are
performed at the end of state 2 (D). As the number of the training games reached
very high amounts (up to 3.5 million games) the graphs that were produced at the
end of testing (discussed in the next chapter) are based on cycles of games as we will
see. Each one of these cycles refers to a specific predefined (in the code) amount of
training games.

Some more details that help to understand the algorithm which can be found in

12To clarify again, by same state we mean the same game’s state, which consists of the same
LA’s state and same action.

26

CHAPTER 3. INITIAL MODEL: TAIKUN 3.2. ALGORITHMS

the Appendix (Section A.2.3) are:

e In the greedy cases for state 1 (G), we still investigate whether or not the
state 1 exists in the list after the action 0 (LA’s trading proposal), because
the adversary might or might not have accepted the LA’s trading proposal. If
it does not exist then the algorithm instead explores, and then adds the state
(LA’s state along with the action) to the list.

e The actions that can be either performed at random (because of exploration)
or greedily (because of exploitation) require availability of a resource to be
checked. That means a random action that cannot be performed because the
(giveable) resource is not available will be generated at random again and
again until the resource is available. In this way, when the agent greedily will
select an action from an identical state in the list, that action will always refer

to a resource which is available.

3.2.4 Details and parameters of the second algorithm’s im-
plementation (SARSA()))

The second algorithm is exclusively based on the typical implementation of
SARSA()) that we saw in Section 2.1.6, shaped in a way that allows the sequen-
tial flow of Taikun’s game-play'®. As we have discussed there, in SARSA(A), A is
the eligibility trace, « is the learning rate and in combination with A they alter
together the learning process according to the problem’s nature. In our algorithm
a is gradually being reduced to 0 during the training process to provide flexibility
to the learning process and eventually force convergence. The LA’s state consists
of its resources and the game’s turn (e.g. LA’s turn). The actions are discussed in
Sections 3.1.2 and 3.1.3.

By studying Sutton and Barto book [97] (in particular Chapter 7) we concluded
that we should set A\ to 0.4, mainly due to our game’s stochastic level that resembles
that of relevant examples of the book, such as the “19-state random walk task”
(in Sutton and Barto book!* [97] in Chapter 7). The examples there suggest that

low A values should be used with problems which include stochastic actions (e.g.

13The adversary’s trading proposal turn follows that of the LA. That means the LA learns how
to propose trades and how to respond to trades. These actions are discussed in Section 3.1.2.

1The book’s graphical representations (Figures 7.6, 7.9, 7.17) of various Temporal-Difference
algorithms in the “19-state random walk task” example suggested that we should probably set A
to 0.4. These graphical representations showed the root mean-squared errors (RMSE) obtained
from different A and a values. The errors represented the difference between the states’ true values
and those that the learning methodologies have found. A equal to 0.4 seemed to be a good overall
choice for our case.

57

CHAPTER 3. INITIAL MODEL: TAIKUN 3.2. ALGORITHMS

“19-state random walk task”). On the other hand, high A\ values should be used
in cases where the actions are deterministic (e.g. 0.9 in the grid-world example,
Figure 7.12 of [97]). Our experiments in Section 5.6 with different tested values of
A suggested that A equal to 0.4 was indeed successful. As Taikun’s stochasticity
is high, due to the actions and the system’s random update, A equal to 0.4 was
considered to be a wise initial choice, and especially in our baseline case, where the
learning agent’s six trading actions (proposals) are stochastic (their effect is based
on the adversary’s response). From Chapter 7 onwards we will use a higher value of
A though, which will be 0.9 as we will see. We will do that because all of the normal
trading proposals will also manipulate the opponent, and the manipulation effect is

deterministic (always affects the adversary as we saw in Section 3.1.3).

3.2.5 Advantages and disadvantages of the two algorithms
/ Results

We have seen in Section 2.1.2 that a state has the Markov Property (in an MDP)
by containing all the information needed to choose the next action. Our first (custom
SARSA(0)) algorithm “extends” the above statement by considering sometimes a
part of the whole round!®, or in other words the history of a round, during learning
(as we examined in Section 3.2.3). The main reason that we did that though was to
confront the problem of learning to respond to adversarial trading proposals without
considering them (i.e. representing them in the LA’s state). If we would represent
them in the LA’s state the problem might become hard and unsolvable for RL, and
therefore we wanted to deal with it as simply as possible at the beginning of this
research. Another reason that the custom SARSA(0) algorithm sometimes considers
the history of a round, was to make the learning process as accurate as possible, as
the round’s history provides more information to the learning process than a single
game’s state (turn). The round’s history is taken into consideration by the LA while
it is exploiting or updating whenever it responds, as we discussed in Section 3.2.3.
The updates after a win, loss, or draw are also back-propagated through this history.
Furthermore, as Taikun consists of the LA’s trading proposal turn, where the LA
chooses one of the seven actions to take, and the adversary’s trading proposal turn,
where the LA chooses one of the two responses to take, an effort was made with
both of our algorithms to make one policy only (instead of two, one for the trading
proposals and one for the responses) which would successfully propose trades and
respond to adversarial trading proposals too.

The SARSA ()) implementation (our second algorithm) is fully consistent with

15In Taikun each round consists of the update turn, the LA’s turn and the adversary’s turn.

o8

CHAPTER 3. INITIAL MODEL: TAIKUN 3.2. ALGORITHMS

the Markov Property though. Each state contains all of the information needed to
chose the next action. Hence the hypothesis now was that this is enough for our
problem and it may outperform our first algorithm. SARSA () required all states
s and actions a initially to be defined (included in the list) while our first algorithm
adds them in the list while playing the game. That means in SARSA (\) we give
an approximation that might be wrong, it might require more (or less) memory
than it is really needed. Our first algorithm seems to be better on that aspect as it
works better in problems where we cannot pre-define the initial state action space.
It dynamically adds states actions in the list while observing them for the first time.
In contrast to SARSA (), it does not always wait for the next action of the next
state to occur when it comes to update but once the next state is reached then
the value of the state (game’s state where we consider the LA’s state along with
an action) is back-propagated. From Chapter 7 onwards though, where the Catan
experiments are discussed, the SARSA(\) algorithm has been further modified to
dynamically add state-action pairs in the list while observing them for the first time.
Hence it uses the exact amount of memory that is really required.

Our custom SARSA(0) requires less memory to run the training games, despite
the fact that the memory management that it performs is not effective (as those
“trees” of alternative game states with actions contain states and actions which are
repeated in other “trees”). Even an old desktop PC though with 4GB RAM was able
to provide results in all of our cases that will be examined in Chapter 4, where the
number of the training games reached 3.5 million. The results were slightly worse
than those that SARSA(A) produced though and required much longer times. The
long running times was the main reason that our second algorithm was implemented.
It is faster in every case but it requires higher amounts of RAM. This is mainly due
to its back-propagating mechanism which updates all of the state-actions that led to
the current state, constantly requiring a long temporary list for that to hold them.
Another reason was that it created at the beginning of the training a list including
a large number of (estimated) states and actions!®. It learns faster (fewer training
games and time) and the results are slightly better than those of our first algorithm.

The first algorithm is a “lite” version that could solve similar in complexity
problems (up to this point) requiring only a desktop PC with low RAM (6GB
RAM is recommended). Our second algorithm, given that a high RAM machine is
available (at least 20GB of RAM), performs slightly better and it is much faster. To
conclude by introducing numbers, our first learning agent (custom SARSA(0)) wins

more often than the strict adversary (the one which was used only in Chapter 5'7)

16 As we have mentioned, this from Chapter 7 onwards changed to a dynamic memory allocation
method, which adds state-action pairs in the list while observing them for the first time.

1TThe strict adversaries of Chapter 4 and 5 are not exactly the same as we will see. The adversary
of Chapter 5 is more difficult to beat because it has additional rules. Hence we compare here both
of our learning agents (custom SARSA(0) and SARSA())) against the strict adversary of Chapter
5.

29

CHAPTER 3. INITIAL MODEL: TAIKUN 3.3. EXPERIMENTS BACKGROUND

after approximately 350,000 training games. Our second learning agent (SARSA()))
requires approximately 100,000 training games. The manipulative cases require
approximately 35,000 training games from the custom SARSA(0) agent, to start
winning more often, and approximately 10,000 training games from the SARSA(\)

one.

3.2.6 (Q-Learning and Value iteration not suitable for Taikun

In Q-Learning we need to initially apply rewards to the actions of all those states
that would immediately either reach a goal state (wins, which could be also draws)
or other non-desired states (for example defeats). In Taikun, this is not possible as
it is not clear to the LA when the defeats occur by considering only its own state.
Moreover, we can only approximately determine when the wins or the draws will
occur, as a win could be in fact a draw. Winning states can be states of draws too,
as both the LA and the adversary can be in winning states on the same time point
(turn) and this is considered by the game’s rules to be a draw. The same problems
apply to the Value iteration algorithms too. Hence, both of these Reinforcement
Learning methods were considered to be not suitable for a learning agent in Taikun
and therefore we concluded on a SARSA () algorithm. With this algorithm (as with
our custom SARSA(0) too) we could still back-propagate the reward from each of
the game’s final events (e.g. loss) rather than from a single state. Other reasons

that convinced us to use SARSA have been mentioned in Section 3.2.

3.3 Experiments background

In this part we will discuss the background of the Taikun experiments that will
follow in Chapter 4 and 5. Experiment 1 and Experiment 2 refer to the first and
second experiments of the Chapter 4 and 5 as they are similar in logic. First the
RLA plays against an adversary which follows a strict rule-based strategy (baseline).
Then we include manipulating moves in its action set and the RLA plays against
the adversary which starts by following the strict strategy but it is also susceptible
to the RLA’s manipulating actions. All of the improvements in performance that

will be reported in the thesis are absolute unless stated otherwise.

60

CHAPTER 3. INITIAL MODEL: TAIKUN 3.3. EXPERIMENTS BACKGROUND

3.3.1 Adversary’s strategy in Experiment 1 / Baseline strat-
egy

This strategy was designed to form a challenging (strict) rational adversary for
measuring baseline performance and the details of the experiment will be discussed
in Chapters 4 and 5. It cannot be manipulated at all, and non-cooperative dialogue
moves will have no effect on it — it simply ignores statements like “I really need
wheat”. The strict rule-based strategy of the adversary will never ask for a resource
that it does not need (in this case rocks). Furthermore, if it has an available non-goal
resource to give then it will offer it. It only asks for resources that it needs (goal
resources: wheat and sheep). If it does not have a non-goal resource (rocks) to offer
then it offers a goal resource only if its quantity is more than it needs, and it asks
for another goal resource if it is needed (this applies only to the strict adversary of
Chapter 5, therefore making the strict adversary more difficult there).

Following the same reasoning, when replying to the LA’s trading proposals, the
adversary will never agree to receive a non-goal resource (rock). It only gives a non-
goal resource (rock) for another one that it needs (wheat or sheep). It also agrees to
make a trade in the special case where it will give a goal resource whose quantity is
more than it needs for another one that it still needs (as above, this applies only to
the strict adversary of Chapter 5). This is a strong strategy that wins a significant
number of games. In fact, it takes about 100,000 training games before the LA
(based on our SARSA()), Section 5.1) is able to start winning more games than
this adversary, and a random LA policy loses 66% of games against this adversary.
It is a strategy that has the potential to win. Our learning agent is not fully aware
of its own goal state and by interacting with the environment (the adversary is a
part of it) tries to form an optimal policy (winning strategy). On the other hand,
the adversary is fully aware of its own goal and rational trading actions and that

makes its strategy initially dominating.

3.3.2 Adversary’s strategy in Experiment 2 / Manipulated
strategy

The adversary in Experiment 2 of Chapter 4 (and Chapter 5 as we will discuss) re-
tains the above strict baseline policy but it is also susceptible to the non-cooperative
moves of the LA. For example, if the LA utters “I really need rock”, weights of ac-
tions which transfer rock from the adversary will decrease, and the adversary will
then be less likely to give rock to the LA. Conversely, the adversary is then more

likely to give the other two resources to the LA. In this way the LA has the potential

61

CHAPTER 3. INITIAL MODEL: TAIKUN 3.3. EXPERIMENTS BACKGROUND

to mislead the adversary into trading resources that it really needs. Details of these
experiments will be discussed in Chapter 4 and 5, where the same logic applies.

In detail, the adversary’s action set includes only actions (0-6)/responses (0-
1) and their manipulation weights. Its goal is to perform actions (or responses)
that have the highest weights. These weights are being modified by the three ma-
nipulative actions of the agent. The adversary fills in the actions’ list with all of
the possible actions/responses along with their weights and as long as the learning
agent uses the three manipulative actions, these weights change accordingly (details
in Sections 4.2 and 5.2)[25] [26].

3.3.3 Why is the adversary’s manipulated behaviour based

on sound reasoning?

In this section we will examine the reasons that might explain the adversarial
“gullibility” and hindering behaviour as in a real world trading scenario. The ad-
versary believes the learning agent’s manipulating utterances (i.e. “I really need
sheep”) and therefore trades only those resources that aren’t currently stated as
needed (i.e. wheat and rocks) in order to make things harder for it (hinders the LA)

and eventually win the game. The reasons behind this behaviour are:

1. Our initial assumption: The adversary is gullible by nature. For example,
previous experience (familiarity) or even a social bond might explain that,

such as friendship where there is trust.

2. Based on our results from the restrictive adversaries (experiments in Section
5.3): The adversary confronts a very important dilemma (“should I keep fol-
lowing my goal or should I now take advantage of my opponent’s need?”). 50%
of the people who participated in a related experiment have this dilemma (as
we will see in Section 6.1.3). The adversary then makes the -rational- decision
(which is actually a very successful strategy as we will show in our restrictive
adversaries experiments in Section 5.3 too) of starting to restrict (boycott) the

LA’s needed resources to make things even harder for it.

3. Based on Pragmatics: The LA uses scalar implicature to its adversary (i.e. “I
really need wheat”). The adversary is very likely to accept that subconsciously
as a natural attempt of cooperation from the LA despite the non-cooperative
character of the game. As we have seen in Section 2.6.1 too, according to Grice:
“it is just a well-recognized empirical fact that people DO behave in these ways;
they have learned to do so in childhood and not lost the habit of doing so”
[39]. Furthermore, Ladegaard based on that states: “The Gricean approach

62

CHAPTER 3. INITIAL MODEL: TAIKUN 3.3. EXPERIMENTS BACKGROUND

to cooperation does acknowledge, however, that the CP may be violated. But
what may appear to be an example of a non-cooperative activity is in fact,
when analysed at a deeper level, to be seen as an example of cooperation,
because the point of the violation is to create an implicature. This means that
a seemingly irrelevant response will still be interpreted as cooperative at a
deeper level, because we will look for a meaning beyond what is expressed. In
other words, because the CP applies, the interlocutor knows that the speaker’s
seemingly irrelevant remark was made with the intention of generating an

implicature.”[64]

4. Based on other non-cooperative games: Opponent models (OM) with hin-
dering abilities (i.e. the adversary’s boycott) have previously been shown to
be important in non-cooperative negotiation games such as the “Machiavelli”

card game [8].

Hence the adversary’s manipulated behaviour due to the interlocutor’s implica-
ture is observed in humans too and the findings of the successful RL trading policies
that the agents have learned can be used in real-world trading negotiations. As
scalar implicature can be used in other contexts too and not only during trading,
it is suggested that those findings might be effective in a variety of non-cooperative
negotiation environments (e.g. a political debate) where such a “gullible” behaviour
can be expected for the above reasons and may lead to a hindering behaviour. Those
findings in regard to when and how should linguistic manipulation (i.e. implicature)
be used in order to be effective, will be examined in the experiments that will follow
later in the thesis (Chapters 4, 5 and 8).

3.3.4 Restrictive adversaries

In Chapter 5 we investigate performance against adversaries which cannot be
manipulated, but their strategy is to always restrict the LA from gaining a specific
type of resource. We need to explore how well a manipulated adversary (for ex-
ample one which will no longer give rocks that only its opponent needs) performs.
This will show us the potential advantage to be gained by manipulation and most
important, it will generalise our problem by showing that the restriction (boycott)
of a resource that only the opponent needs, or of a resource that both of the players
need, are actually reasonably good strategies compared to the baseline case. Hence,
the manipulated adversary has indeed a reason for choosing to restrict resources
(hinder the LA) rather than staying with its rule-based strategy (as we mentioned
in the previous section). In other words it has a rational reason to become gullible

and fall in the learning agent’s trap.[25]

63

CHAPTER 3. INITIAL MODEL: TAIKUN 3.3. EXPERIMENTS BACKGROUND

3.3.5 Exposing (detective) adversaries

In Chapter 5 we also extend the problem to include possible negative conse-
quences of manipulative LA actions. The adversary begins each game with a proba-
bility of detecting manipulation, which increases after every one of the LA’s manip-
ulative actions. In more detail, every time the LA performs a manipulation, there is
an additional chance that the adversary notices this (starts at 1-in-10 or 1-in-20 and
increases after every manipulative move, up to 100% in the case of the 10th or 20th
respectively manipulative attempt). The consequences of being detected (exposed)
are either that the adversary will refuse to trade with the LA any further in that
game, or that the adversary automatically wins the game. In the former case the
LA confronts a medium penalty of exposure as the game still goes on while in the
latter case the penalty is the highest possible (immediate loss). In these two cases
there is always a high risk associated with attempting to manipulate, and the LA

has to learn how to balance the potential rewards with this risk [25].

3.3.6 Hidden Mode MDP triggered by manipulative actions

In the Background Chapter 2 we discussed Non-Stationary Markov Decision
Processes [17, 91] and analysed relevant work. Our case of learning against a gullible
adversary which starts by following the baseline strategy and then switches to that
of the restriction, whenever a manipulative action occurs, is a similar case. This
adversary demonstrates different behaviours. Thus the same state in our game is
studied from different perspectives because we have different MDPs (with different
dynamics). A reasonable question is: “What is the best action for the LA to choose
when it does not ‘know’ in which MDP it is?” In other words, the LA does not take
into consideration when the manipulation occurred!®. It just averages both of these
MDPs when it is about to select the most optimal action and it still successfully
learns in this non-stationary environment. Hence one important difference in our
case is that manipulative actions change the mode, while in HMMDPs [17] modes
change stochastically and are independent of the control system’s response. However
in our case, the end of turns (LA’s proposal - adversary’s proposal) change the mode
too, and this is now independent of the control system’s response, as in HMMDPs.
Taikun in fact consists of two “games”: the LA’s turn where the LA proposes trades
and the adversary responds and the adversary’s turn, where the adversary proposes

trades and the LA responds. The LA successfully learned how to propose trades

18We preferred to see whether or not tabular RL would be capable of learning in this case, rather
than considering the manipulation in the state representation.

64

CHAPTER 3. INITIAL MODEL: TAIKUN 3.3. EXPERIMENTS BACKGROUND

and how to respond to trades as we will see, in this non-stationary environment.

3.3.7 Hybrid strategy

The adversary’s algorithm here considers both of the outcomes of the baseline
and the manipulated (i.e. restriction of resources) strategies, that were previously
discussed, when it comes to decide which response to give and which action to
perform (as we will see in detail in the corresponding experiments of Chapter 4). If
the two actions of the two different strategies agree on the offered and/or the wanted
resource (i.e. the resources are the same) then the manipulated action will occur. If

not, then “Do nothing” will be chosen. The actions are:

1. Do nothing

2. Give 1 wheat for 1 rock

3. Give 1 wheat for 1 sheep

4. Give 1 rock for 1 wheat

5. Give 1 rock for 1 sheep

6. Give 1 sheep for 1 wheat

7. Give 1 sheep for 1 rock

If the action of the strict, goal-oriented strategy (Experiment 1 of Chapter 4)
is, for example, 2 and the action from the manipulated strategy (Experiment 2 of
Chapter 4) is also 2 then the adversary will decide to perform action 2 because both
the offered and the wanted resources are the same (therefore these 2 actions agree).
If instead the actions were 2 and 7 respectively then the adversary would perform the
second action (i.e. action 7) as they both ask for the same material (rock) from the
agent and the logic of the manipulated strategy has always a higher impact and will
be chosen. That means it would perform action 7. On the other hand, if the actions
were 2 and 3 respectively, then the agent would again perform action 3 as they
both have in common the offered material (wheat) and the second action (from the
manipulated strategy) has always a higher impact on the adversary’s decision as we
have already mentioned. From these examples we understand that there are specific
groups of actions where the agent would definitely perform an action (i.e. that of
the manipulated strategy). However, if the actions of the first (goal-oriented) and
second (manipulated) strategies do not belong in the same groups 1, 2 or 3 which are
based on the offered resource, or 1, 2 or 3 which are based on the wanted resource

(as can be seen below) then the adversary will do nothing.

65

CHAPTER 3. INITIAL MODEL: TAIKUN 3.3. EXPERIMENTS BACKGROUND

Groups of actions:

-based on the offered resource-

1.

2.

3.

(a) Give 1 wheat for 1 rock
(b) Give 1 wheat for 1 sheep

(a) Give 1 rock for 1 wheat
(b) Give 1 rock for 1 sheep

(a) Give 1 sheep for 1 wheat
(b) Give 1 sheep for 1 rock

-and based on the wanted resource-

1.

2.

3.

(a) Give 1 wheat for 1 rock
(b) Give 1 sheep for 1 rock

(a) Give 1 wheat for 1 sheep
(b) Give 1 rock for 1 sheep

(a) Give 1 rock for 1 wheat
(b) Give 1 sheep for 1 wheat

In other words, we have 6 groups of “agreement” between the actions 2-7 (shown

below). Action 1 is not included because it is “Do nothing”. 3 of the groups are

based on the offered resource and 3 are based on the wanted resource according to

the syntax: (strict strategy action, manipulated strategy action). In detail we have:

1.

2.

D.

6.

(2,3) where 3 would be chosen, or (3,2) where 2 would be chosen
(4,5) where 5 would be chosen, or (5,4) where 4 would be chosen

(6,7) where 7 would be chosen, or (7,6) where 6 would be chosen

and
(2,7) where 7 would be chosen, or (7,2) where 2 would be chosen
(3,5) where 5 would be chosen, or (5,3) where 3 would be chosen

(4,6) where 6 would be chosen, or (6,4) where 4 would be chosen

that is 12 sets.

The adversary’s responses have again the same logic. If both of them are “OK”

for a common offered and/or wanted resource of the LA’s trading proposal then the

adversary will perform accordingly, for the sake of the manipulated strategy. If not,

then the adversary will just say “No” to the agent’s trading proposal (action).

66

CHAPTER 3. INITIAL MODEL: TAIKUN 3.4. CONCLUSION

3.4 Conclusion

In this chapter we discussed in detail our game “Taikun”, presenting its charac-
teristics and actions. We also examined the mechanisms of our LA’s and adversaries
in the experiments that will follow. The LA learns how to exploit its adversary’s
trading actions in order to win most of the games in all three of our different kinds
of experiments in Chapter 4. The adversary there follows a rule-based strict strat-
egy in the first experiment. Then its strategy can be affected by three additional
manipulating actions of the LA in the second experiment. In the third one, the LA
manages to win most of the games versus the adversary which uses the hybrid strat-
egy that we saw previously. Following a similar reasoning in regard to manipulation,
the experiments of Chapter 5 show again that the LA successfully learns how to win
most of the games. We conduct experiments there where the adversaries can also
restrict particular resources. Others can even expose (detect) the LA’s manipulation

by applying severe penalties as we will examine.

67

Chapter 4

Experiments in Taikun:

Manipulation

All of the experiments of this chapter are based on our custom SARSA(0) learning
algorithm as we have mentioned earlier. The first experiment of Section 4.1 was
conducted (as we have discussed in Chapter 3) in order to examine whether or not
our learning agent would manage to learn how to defeat the strict adversarial rule-
based strategy in most of the games. In general, the adversary in this experiment
does not accept a resource that it does not need (in this case rocks or another that
its number has reached the goal number) and it offers only the unwanted resource
(rocks) in order to receive another that it needs. It is a strategy that has the
potential to win. Our learning agent is not aware of its goal state and by interacting
with the environment (the adversary is a part of it in our MDP setting) tries to
form an optimal policy (winning strategy). On the other hand, the adversary has a
goal-directed strategy and that makes its position easy.

In the second experiment of Section 4.2 the adversary believes the learning
agent’s additional trading manipulative proposals and tries to restrict the resources
that the learning agent has declared as “needed” from it. It was very important
here to investigate whether or not the learning agent would learn how to use these
manipulative actions in order to deceive its adversary and “direct” it where it wants.
The third experiment of Section 4.3 examines the case where the adversary com-
bines the logic of the two previous strategies and, still being manipulated, reaches
a decision only if the two strategies agree up to a point. In this case it follows the
manipulated trading proposal or response. Otherwise, it does nothing as we have
seen previously.

Statistical significance results are discussed and presented at the end of this
chapter. As this is the first chapter where experiments are presented, much detail
will be given on our methodology to give the reader a clear view of our reasoning.

For instance we will see that several, small in number training games always start

68

CHAPTER 4. TAIKUN: MANIPULATION 4.1. STRICT ADVERSARY

first to check the soundness of our algorithms, or that there is always a number
(usually 20,000) of testing games that follows the training ones in order to check
our policy. As the experiments’ general methodology remains the same in the next
chapters, some details will not be mentioned again there for the sake of space and

avoiding repetition.

4.1 Strict adversary

The first experiment (also called Experiment 1) started by running specific (ini-
tially low, such as 1k) numbers of training games in order to learn a policy for the
learning agent and then we applied that on an even smaller number of testing games.
The adversary’s algorithm was based on the hand-crafted strict strategy (studied
previously in Section 3.3.1) in all of the parts of this experiment. As a first step,
starting with small numbers of training games (that gradually reached 160k, Figure
4.1 and 4.2) we quickly realised that the adversary’s strict strategy was successful
enough to provide it with a big difference on its winning performance over that of

the learning agent’s.

£ StNeg % (Qrun 3 stateAd 3

Output - striegleV46 (run) $|
ﬁgent's action: O

m

Agent's response: 0
Agent's actiomn: 0
|:| Agent's response: 0
3 Agent's action: 2
w{% Final Score:
Lgent: 8858 (~44%)
- 2dversary: 10037 (~50%)
Draws: 1105 (~5%)

Figure 4.1: Learning Agent’s and Adversary’s performance in 160,000 training
games of Experiment 1. Trained on 160,000 games and then tested on 20,000 more
our learning agent’s performance is 6% worse than that of its adversary. Screen-
shots will be provided in similar cases as they refer to the actual research environment
where the experiments were conducted and offer a part of the original experience.

However, the adversary’s performance was becoming worse while the number of
the training games were increasing. The second step led us to 1.6 million training
games. At that point we noticed that the learning agent had finally managed to
increase its winning performance to 48%, resulting in a 2% positive difference now
for the first time from its adversary which scored 46%. The graph had a similar but

smoother view as we can see in Figure 4.3.

69

CHAPTER 4. TAIKUN: MANIPULATION 4.1. STRICT ADVERSARY

1-victory per training cycle

Average reward-victory

75,000 50,000 75,000
Training cyde
=

Figure 4.2: Learning Agent’s reward-victory graph in 160k training games of Fax-
periment 1. The learning agent wins more and more training games over time by

receiving better rewards on each training cycle.

Average reward-victory per training cycle

Training cycle
=

Figure 4.3: Learning Agent’s reward-victory graph in 1.6 million training games of
FExperiment 1. Similar but smoother trend compared to that of 160k games above.

During the third step, the difference between the winning performance of the

learning agent and that of the adversary was gradually increasing for the sake of the

LA, as the number of training games was increasing and we stopped at 3.5 million

training games (Figures 4.4 and 4.5). The learning agent scored 49%, having a

positive difference of 5% compared to that of the adversary, but the compiling times

and the memory requirements reached very high levels and therefore set an initial

obstacle.

70

CHAPTER 4. TAIKUN: MANIPULATION 4.1. STRICT ADVERSARY

4.1.1 Changing the exploration rate

As a fourth step, considering the above results thoroughly we concluded that
the e-greedy ratio (discussed in Section 2.1.1) of the agent could be altered in a way
that would make the learning process faster. Thus we decided to gradually decrease
the exploration percentage, game after game, from 20% (which was constant) to
0. This method, with a hope of locating a plateau in the average reward-victory
graph, indeed provided us with better results throughout all of our tests in the first
experiment.

In detail, at only 350,000 training games and 20,000 more testing games the
learning agent managed to win by 3% more often than its adversary. It is important
here to mention again that a similar winning difference in their performances has
been previously observed at 1.5 million games (that was in fact even less, 2%), before
the exploration’s gradual reduction took place. A detailed screen shot is provided
in Figure 4.6 with the results and the graph.

Similarly, the tests gradually reached again 3.5 million training games where the
difference between the learning agent’s winning performance and that of its adver-
sary’s increased to 9%, in contrast to 5% that used to be before the exploration’s
gradual reduction took place. Results and screen shots are given in Figure 4.7 and
4.8 respectively. The exploration’s gradual reduction almost doubled the winning
performance of the learning agent (reached approximately 10%) but it has also dou-
bled the compiling times in all of the various tests that have been conducted as part
of the first experiment. Hence, the running time of the 3.5 million training games
it requires now almost a day while it used to be approximately 12 hours before the
exploration’s reduction, in a machine with 4GB of RAM.

Throughout all of the stages of the first experiment we were also collecting data

regarding the learning agent’s actions and responses in order to retrieve detailed

<

m

Output - strNegleV46 (run)
Agent s response:I U

Agent's action: 3
Agent's response: 0
RAgent's action: 3
Agent's response: 0

25 [0

Final Score:

Agent: 9527 (~49%)

- Adversary: 88399 (~44%)
Draws: 1174 (~5%)

Figure 4.4: Learning Agent’s and Adversary’s performance after 3.5 million training
games of Experiment 1. Trained on 3.5 million games and then tested on 20,000
more our learning agent’s performance is 5% better than that of its adversary.

71

CHAPTER 4. TAIKUN: MANIPULATION 4.1. STRICT ADVERSARY

Average reward-victory per training cycle

]

2

CIEI I I

8

Average reward-victory
Ho¥

El

o B % ¥ B W B

1,000,000 1,500,000
Training cycke

=

Figure 4.5: Learning Agent’s reward-victory graph in 8.5 million training games of
Experiment 1.

Average reward-victory per training cycle

Average reviard-victory
o b8 d ERBESENBIERBEEGE S EN H

i 50,000 100,000 150,000 200,000 250,000 300,000 350,000
F'- 51 "'
|80 cyceTotvaue : double
|- By dataset: xrseresCatiection
1By dataceta ; x¥EeriesCollection
80 eps_grad_redu : douide
B eoson : doutle
| @ games it
| + Gamelogdp Rgunt: 9794 [~45%)
E ! ﬂ‘*-“ l Rewarsazy: BO030 (=48%)
il Draws: 1176 i(~5%)

Figure 4.6: Learning Agent’s reward-victory graph in 350 thousand training games
of Experiment 1. The LA won 3% more games than the Adversary in 20k testing
games that followed after training.

72

CHAPTER 4. TAIKUN: MANIPULATION 4.1. STRICT ADVERSARY

Output - strNegleV4s (run) % |
aAgent’'s acticn: £

Agent's response: 0
Agent's acticn: 2
Agent's response: 0
Agent's acticn: €
Final Score:

Agent: 10205 (~51%)
- Adversary: 8567 (~42%)
Draws: 1228 (~€%)

g 0 ¥ 9

Figure 4.7: Learning Agent’s and Adversary’s performance in 3.5 million training
games of Experiment 1 with gradual decrease of the exploration rate. Trained on 3.5
million games and then tested on 20,000 more our learning agent’s performance is
9% better than that of its adversary.

r

Figure 4.8: Learning Agent’s reward-victory graph in 3.5 million training games of
Experiment 1 with gradual decrease of the exploration rate.

information about the exact strategies that it uses. Therefore we have gathered
action datasets from each testing phase. Surprisingly, we found out that in all
of our tests so far the learning agent insists on using one specific strategy that
becomes clearer as the number of training games increases. In detail, the learning
agent uses as little as possible the actions 6. and 7., restricting the sheep resource
from its adversary as much as possible and on the other hand it proposes a suitable
trade that requires it (action 3.). Here it is important to remember that only the
adversary needs 5 sheep to win. This successful, unique strategy might be part of a
Nash Equilibrium (discussed in Section 2.3.3) and provide a unique solution to the
adversary’s constant, rule-based strict strategy. Evidence for that is provided in the
figures below after 3.5 million training games.

The learning agent’s strategy focuses on restricting the sheep from the adversary

73

CHAPTER 4. TAIKUN: MANIPULATION 4.1. STRICT ADVERSARY

Learning Agent Action’s
Actions frequency

1. Do nothing 113617 (34.4%)
2. Give wheat for rock | 19555 (5.92%)
3. Give wheat for sheep | 64347 (19.48%)
4. Give rock for wheat | 62017 (18.78%)
5. Give rock for sheep | 54089 (16.38%)
6. Give sheep for wheat | 10826 (3.28%)
7. Give sheep for rock | 5787 (1.75%)

Table 4.1: Frequencies of actions of the learning agent (Exp.1), in 20k testing games,
after 3.5m training ones.

as we can see on the Table 4.1 (for example action3 > action6 > action7). It is
also interesting to notice the lower frequencies (than that of action 3) of the actions
4. and 5. which result to rejection (adversary never accepts rock), therefore having
the same effect as 1 (“Do nothing”). These results are illustrated in the pie chart of
Figure 4.9.

1l
m2

m4
E5

m7

Figure 4.9: Learning Agent Actions Pie Chart in Ezperiment 1

Learning Agent Actions Priority
1-3-4-5-2-7-6

Learning Agent Responses

1. No

74

CHAPTER 4. TAIKUN: MANIPULATION 4.1. STRICT ADVERSARY

2. Yes

Learning Agent Response Frequencies

1. 252368 (83.77%)

2. 48894 (16.23%)

Learning Agent Response Priority

1-2

Figure 4.10: Learning Agent Responses Pie Chart in Fxperiment 1

The rejections of the adversary’s trades dominate the acceptances as our learning
agent wants (learns) to mainly deny the trading actions of its adversary and prohibit

its strategy.

75

CHAPTER 4. TAIKUN: MANIPULATION 4.2. MANIPULATION

4.2 Manipulation

We started this experiment (Experiment 2) by including three manipulative
actions in the set of the learning agent’s trading actions (as we have discussed in
Sections 3.1.2 and 3.1.3). The adversary, being affected and deceived by those
manipulative actions, changes the probabilities of its own actions and responses
accordingly in order to provide the learning agent with resources that it believes
the LA does not need. In other words, the adversary tries to boycott (restrict)
resources that the LA stated that it needs by not offering them. In more detail, the
probabilities (weights) that represent the adversary’s willingness to give (i.e. through
trading proposals or responses) each of the three resource types start equally (each
one is 33.3%) at the beginning of the training games. When the LA uses one of the
three manipulative actions (e.g. “I need sheep”) then the adversary’s probability of
giving the LA’s needed resource (e.g. sheep) decreases by 5%! and the probabilities of
offering the other two resources increase accordingly (i.e. equally, each one increases
by 2.5%). Therefore the adversary is slightly less likely to offer sheep (or respond
“yes” to a trade that asks for sheep) to the LA. The more the LA keeps asking for a
particular resource the less likely it is for the adversary to offer it -but instead- it will
probably offer one of the two other resources. It does that through corresponding
trading proposals or responses to the LA’s trading proposals.

The first step of this experiment started by running 350,000 training games and
then 20,000 more testing games. It was important for us to investigate whether or
not the agent’s learning algorithm would be able to learn successful strategies in
order to win more games than its adversary. A significant question here for us was:
would the learning agent be able to learn how to use its manipulative actions as part
of a strategy in order to “direct” its opponent to a desirable way of thinking? The
results of the first step were promising. Below (Figure 4.11 and 4.12) are the details
of the performances and the graph, as were similarly used for the Experiment 1 too.

As we had no solid indication that the algorithm was learning yet (Figure 4.12),
we increased the number of games to 3.5 million (already knowing that at that point
the computational memory limit would still allow us to run normally from the first
experiment) and tested the learning agent’s policy in 20,000 games as previously.
The results now were very satisfactory (Figure 4.13). According to the graph of the
Figure 4.14 we notice that the learning agent suddenly started to insist on using
a specific pattern of trading actions (probably one in particular) that increased its
winning performance dramatically after 1.5 million games.

The data that we had collected so far were not enough though to give us precise

IThe percentages accumulate over multiple turns. These small % changes reflect that the
adversary is not dramatically influenced by manipulation. If the percentages were much larger
(e.g. 30%) then the results presented below would be more extreme.

76

CHAPTER 4. TAIKUN: MANIPULATION 4.2. MANIPULATION

Ly | Bl

Output - strNegleV51 (run) &
Agent's rzesponse: U

Agent's action: 3
Agent's response: 0
Agent's action: 3
Agent's respcnse: 0
Final Score:

Agent: 10351 (~54%)

- Adversary: 8664 (~43%)
Draws: 385 (~1%)

w0 ¥ 9

Figure 4.11: Learning Agent’s and Adversary’s performance in 350,000 training
games. Trained on 350,000 games and then tested on 20,000 more our learning
agent’s performance is 11% better than that of its adversary.

Average reward-viclory per training cycle

werage reward-victory

H

E
¥

-
|
-
.
-

000 2000
Training cyde
=1

Figure 4.12: Learning Agent’s reward-victory graph in 350k training games. The
learning agent’s average reward-victory graph (left graph) has not shown any signs
of learning yet.

details about the learning agent’s winning strategy. Therefore, as a second step, we
worked again (as in the first experiment) with the dataset of the learning agent’s
actions and responses that were generated from these tests in order to analyse their
frequencies. The produced data is the following:

Agent’s strategy focuses on action 9 (Table 4.2). That makes the adversary more
likely to give wheat and sheep to our learning agent, which hides information from

it (i.e. through “I need rocks”, as rock is one of the two goal resources).

Learning Agent Actions Priority
1-9-7-10-6-8-3-5-4-2
Learning Agent Responses

1. No

2. Yes

7

CHAPTER 4. TAIKUN: MANIPULATION 4.2. MANIPULATION

I e

~ | | output - striiegleVs1 (run) % |
» Egent s response: 1
Agent's action: 4

» Agent's response: 1
ﬁ Agent's action: 4
Agent's respcnse: 1
% Final Score:

Agent: 17740 (~28%)

- Adversary: 222é (~11%)
Draws: 34 (~0%)

Figure 4.13: Learning Agent’s and Adversary’s performance after 3.5 million train-
ing games of Experiment 2. Trained on 3.5 million games and then tested on 20,000
more our learning agent’s performance is T7% better than that of its adversary.

Average reward-victory per training cycle

o 500,000 1,000,000 1,500,000 2,000,000 2,500,000 3,000,000 3,500,000
Training cycle
=

Figure 4.14: Learning Agent’s reward-victory graph in 3.5 million training games of
Experiment 2.The learning agent suddenly increased its winning performance dra-
matically at the point of 1.5 million games and then follows a slightly upward trend.

Learning Agent Response Frequencies

1. 149291 (32.74%)

2. 306697 (67.26%)

Learning Agent Response Priority

2-1

The acceptance of the adversary’s trades dominates in this experiment the rejec-

tions. That was good evidence for us to underline the fact that our learning agent

78

CHAPTER 4. TAIKUN: MANIPULATION 4.2. MANIPULATION

Learning Agent Action’s
Actions frequency

1. Do nothing 62003 (13.53%)
2. Give wheat for rock | 27505 (6%)

3. Give wheat for sheep | 41050 (8.96%)
4. Give rock for wheat | 30738 (6.71%)
5. Give rock for sheep | 34302 (7.49%)
6. Give sheep for wheat | 45876 (10%)

7. Give sheep for rock | 59575 (13%)

8. I need wheat 44321 (9.67%)
9. I need rock 60827 (13.27%)
10. I need sheep 52017 (11.35%)

Table 4.2: Frequencies of actions of the manipulating learning agent (Exp.1), in 20k
testing games, after 3.5m training ones.

Figure 4.15: Learning Agent Actions Pie Chart in Experiment 2

is of course eager to accept these trades because it has triggered them by itself,
by initially deceiving its adversary. It was a reasonable piece of information that
reinforced the validity of our results.

The outcome so far was positive and offered to us strong evidence that the
learning agent has indeed learnt how to manipulate its adversary. Running another
test with 3.5 million training games again provided us with similar positive results.
However, in this case the agent would use more frequently the manipulative action
10. (“I need sheep”) than the 9. Obviously in this case the agent learnt how to lie
(as sheep is not a goal resource) to its opponent and showed to us that in the second
experiment there can be more than one successful winning strategies (as opposed to
the Experiment 1 where only one exists).

As a third step in the second experiment, by showing that the frequency of
specific manipulative actions is gradually being increased, it would provide evidence
that the agent is indeed learning how to hide information or lie. Therefore in our

previous example, where in 3.5 million training games our learning agent learnt how

79

CHAPTER 4. TAIKUN: MANIPULATION 4.3. HYBRID STRATEGY

Figure 4.16: Learning Agent Responses Pie Chart in Fxperiment 2

to hide information (by mainly asking for rocks via “I need rocks”), we analysed its
manipulative actions in order to verify whether or not the trend of the graph for
the action 9 (and perhaps for the other two) would move upwards. We plotted the
frequencies of those actions from our action dataset, game after game (Figure 4.17)2.
Despite the fact that the trends of the actions 8 (“I need wheat”) and 10 (“I need
sheep”) showed no upward trend, that of the action 9 (“I need rock”) did (as there
are more higher blue dots at the end of the curve than the beginning), supporting

our conclusion regarding hiding information.

4.3 Hybrid strategy

In this third experiment (Experiment 3) the adversary’s logic is affected by
both of the strategies of the two previous experiments, as we discussed in detail
in the previous chapter (Section 3.3.7). Hence, the learning agent is called now to
learn how to confront a very efficient and stricter strategy compared to those of the
previous tests (experiments). We were very curious to see if the algorithm of our
learning agent would be able again to learn how to win more games than the hybrid
adversary. This time we preferred to run three identical tests of 3.5 million training
games each outright (having the knowledge from the previous experiments). The
results (in 20 thousand testing games that followed) along with the graphs can be
seen in Figures 4.18, 4.19, 4.20, 4.21, 4.22 and 4.23.

The learning agent managed to learn how to win most of the 20,000 testing
games (trained on 3.5 million) in all of our 3 different tests. However the learning
process proved to be harder in this experiment compared to those of the previous

experiments. Still, its algorithm was able to confront the adversarial strategy once

2Plotted by Voyant (http://voyant-tools.org/)

80

CHAPTER 4. TAIKUN: MANIPULATION 4.3. HYBRID STRATEGY

#9 #10 =38

+'I |1y
|
|
|

| ﬁ / *
WAL IS4 7 \\ﬁ |'| V 1)\ A AL

Raw Freguencies
£

B R R e

Figure 4.17: Learning Agent’s manipulative actions frequency graphs in 3.5 million
training games of Experiment 2. The learning agent uses more and more the action
9. (“I need rock”) in order to hide information from its adversary and direct it to
a specific state of belief. The trend of its graph presents higher points at the end
of the training games than the beginning as the agent uses it more and more due

to learning. On the other hand, the actions 8. and 10. seem to be unaffected, as
expected.

L

Output - strNegleV61 (run) &
= H/ Agent"s action: S

Agent's response: 0

W |Agent's action: 4
Agent's response: 0

B Agent's action: 2

‘3% Final Score:

Agent: 9873 (~49%)

-~ Adversary: 9570 (~47%)
Draws: 557 (~2%)

Figure 4.18: Test 1 Hybrid Results in 20k testing games

Output - strNegleV61 (run) =]
u> Agent's response: U
Agent's action: 2

{/{/ Agent's response: 0
Agent's action: 3
Agent's response: 1
%8| =
Final Score:
Agent: 10137 (~50%)
- Adversary: 9530 (~47%)
Draws: 333 (~1%)

Figure 4.19: Test 2 Hybrid Results in 20k testing games

again, with much difficulty though as the differences between the learning agent’s

81

CHAPTER 4. TAIKUN: MANIPULATION 4.3. HYBRID STRATEGY

Output - stregleVé1 (run) #2 % -
» €nt s action:
Agent's respcnse: 0
» Agent's action: €
E Agent's respcnse: 0
Agent's action: S
% Final Score:
Agent: 9923 (~49%)
- Adversary: 9644 (~48%)
Draws: 433 (~2%)

Figure 4.20: Test 8 Hybrid Results in 20k testing games

Average reward-victory per training cycle

Training cycle
=

Figure 4.21: Test 1 Hybrid Graph in 3.5m training games

Average reward-victory per training cycle

Tralning cycle
=

Figure 4.22: Test 2 Hybrid Graph in 3.5m training games

82

CHAPTER 4. TAIKUN: MANIPULATION 4.4. SIGNIFICANCE

Average reward-victory per training cycle

500,000 1,000,000 1,500,000 2,000,000 2,500,000 3,000,000 3,500,000
Trainirg cyche
=

Figure 4.23: Test 3 Hybrid Graph in 3.5m training games

performance and that of the adversary are in the range of 1-3%. Overall results of

all the conducted experiments so far can be found in Figure 4.24.

4.4 Statistical significance

We performed Z-tests® between the winning learning agent sample of our baseline
case (wins of the LA in Experiment 1) and that of each one of our other cases (Figure
4.24). By considering only the wins of the LA from the baseline case (Experiment 1)
and those of the other two cases we performed Z-tests between their distributions to
prove that they are statistical significant. The result of Experiment 2 was significant
at p < 0.05, but that of the Experiment 3 was not. Hence we can confidently say
that the results of the Experiment 2 reject the null hypothesis? (Figure 4.24). In
more detail, the total number of (testing) games that were taken into consideration
in every case were 20,000. The total number of wins from the Experiment 1 were
10,205, and from the Experiment 2 were 17,740. The LA’s wins in Experiment 2
have higher score than those of the LA in the Experiment 1 (z = 82.1065, p = 0).
The total number of wins from the Experiment 3 were 10,137. The LA’s wins in
Experiment 3 do not have higher score than those of the LA in the Experiment 1
(z = —0.6801, p = 0.4965).

3

using an online tool (http://www.socscistatistics.com/tests/ztest/Default2.aspx)
4The null hypothesis states that the LA’s wins in Experiment 2 are not statistically significant
compared to those of the LA in Experiment 1.

83

CHAPTER 4. TAIKUN: MANIPULATION 4.5. SUMMARY

4.5 Summary

We developed an algorithm inspired by SARSA(0) to train a RLA in our game
Taikun. The RLA managed to learned how to win a strict adversarial policy, re-
sulting in a possible Nash-equilibrium, proving that the game is solvable by RL in
an MDP framework despite the hidden information of the adversarial resources and
goal. Furthermore, by using explicit linguistic manipulation with the form of scalar
implicature, the RLA managed to win more often against adversaries which com-
bined the strict strategy with the effect of the manipulation in various ways (e.g.
our hybrid approach) that made its task harder. As we will see in the next chapter
too, the effect is based on realistic reasons that might apply to human reasoning. In
more detail, in this chapter we presented learned policies that successfully deceive
or hide information, often falsely asking for resources, dramatically increasing the
performance compared to that which does not manipulate. The next chapter will
offer more evidence of the effectiveness and importance of linguistic manipulation in
RL, presenting deeper connections with Pragmatics and Psychology, through various

corresponding experiments.

Best Performances Experiment 1 Experiment 2 Experiment 3

(rule-based strict (manipulative actions) | (Hybrid adversarial
adversanal strategy) strategy)
Baseline .

3.5 million training Agent: 51.025 % Agent 88.7 % Agent: 50.687 %

Optimal Strategy:
Unique (Restriction of
the adversary’s sheep

Optimal Strateqy: At
least two (Hiding
information about the

games / 20k testing Adversary. 42.635 % Adversary. 11.13 % Adversary. 47.65 %
games Draws: 6.14 % Draws:; 0.17 % Draws: 1.665 %

Optimal Strateqy:
Currently unknown

resource) rocks resource and
lying about the sheep

resource)

Figure 4.24: Best performances observed in 3.5 million training games and 20k
testing games. In Experiment 1 the agent’s unique dominating strateqy of restricting
the sheep resource from its adversary provides it with a difference in its winning
performance of almost 10%. In Experiment 2 the adversary, being deceived by the
learning agent’s various manners (2 different strategies have been observed here),
loses by T7% more often than the learning agent. The adversary’s strategy in the
Experiment 3, still loses from that of the learning agent by 3%. The LA’s wins in
Ezperiment 2 have significant improvement (*) over baseline (wins of the LA in
Ezperiment 1), p < 0.05. The LA’s wins in Ezperiment 3 do not have significant
improvement over baseline (Ezperiment 1).

84

Chapter 5

Experiments in Taikun:

Manipulation detection

A new learning algorithm was implemented for all the experiments of this chap-
ter, based on SARSA()\) that we have examined in Section 2.1.6. Hence, most! of
the experiments of the previous chapter were re-conducted using the new SARSA())
learning agent, along with others. In particular, the first experiment (Section 5.1)
uses again the rule-based adversary (which is more difficult to beat in this case than
that of Chapter 4) and the second experiment (Section 5.2) uses the gullible ad-
versary which is able to be manipulated (and then it hinders the LA by restricting
resources). This adversary always starts playing the game by following the “strict”
strategy of the previous rule-based one. The third experiment (Section 5.3) consists
of 3 different cases: the LA plays against an adversary which always restricts the
wheat resource, or against an adversary which always restricts the rock resource, or
against an adversary which always restricts the sheep resource. The fourth experi-
ment (Section 5.4) studies the cases where the adversary of the second experiment
has the additional capability of exposing the LA every time it uses one of the ma-
nipulative actions. This property is based on a probability which varies as we will
see below. Furthermore, the penalty for being “caught” while deceiving also varies.
The reader will also find information about our corresponding statistical significance
tests (Section 5.5), the parameters that we used in our learning algorithm (Section
5.6), as well as experiments with one manipulation only (Section 5.7) to check when
is the best time to manipulate. Finally, experiments with adversaries which detect
manipulation based on logical contradictions (Section 5.8) will be presented. For
reasons of available space, not the whole sequence of experiments will be included
below (as they were literally hundreds) but only those which provide a clear picture

of what has been done and the corresponding motivation.

'We did not use the third experiment with the hybrid adversarial strategy (Section 4.3) because
our findings there were sufficient.

85

CHAPTER 5. MANIPULATION DETECTION 5.1. STRICT ADVERSARY

5.1 Strict adversary

This strategy was designed to form a challenging rational adversary for measuring
baseline performance. It is similar to that of Section 4.1, but now it is more “strict”
as we will see in an attempt to make the RL task harder than before. It cannot
be manipulated at all, and non-cooperative dialogue moves will have no effect on
it — it simply ignores statements like “I really need wheat”. The strict rule-based
strategy of the adversary will never ask for a resource that it does not need (in this
case rocks). Furthermore, if it has an available non-goal resource to give then it will
offer it. It only asks for resources that it needs (goal resources: wheat and sheep).
In the case where it does not have a non-goal resource (rocks) to offer then it offers
a goal resource only if its quantity is more than it needs, and it asks for another
goal resource if it is needed?. Following the same reasoning, when replying to the
LA’s trading proposals, the adversary will never agree to receive a non-goal resource
(rock). It only gives a non-goal resource (rock) for another one that it needs (wheat
or sheep). It also agrees to make a trade in the special case where it will give a
goal resource of which it has more than it needs for another one that it still needs
(this rule is also used only by the adversary of this chapter, and not from the strict
one of Chapter 4). This is a strong strategy that wins a large number of games. In
fact, it takes about 100,000 training games before the LA is able to start winning
more games than this adversary, and a random policy loses 66% of games against
this adversary (See Table 5.3, LA policy “Random?”).

The LA scored a winning performance of 49.5% against 45.6% for the adversary,
with 4.9% draws (Table 5.3), in the 20 thousand test games that followed after 1.5
million training games (Figure 5.1). This represents the baseline performance that
the LA is able to achieve against an adversary which cannot be manipulated at all.
This shows that the game is “solvable” as an MDP problem, and that a reinforcement
learning agent can outperform a strict hand-coded adversary. Here, the learning
agent’s strategy mainly focuses on offering the sheep resource that it does not need
for the rocks that does need (for example action7 > action2 > action6 > action3,
Table 5.1). It is also interesting to notice that the LA learnt not to use action 3 at
all (gives 1 wheat that they both need for 1 sheep that only the adversary needs).
Hence its frequency is 0. The actions 4 and 5 are never accepted by the adversary so
their role in both of the experiments is similar to that of the action 1 (do nothing).
The rejections of the adversary’s trades dominate the acceptances with a ratio of 94
to 1 as our learning agent learns to become negative towards the adversarial trading

proposals and therefore to prohibit its strategy.

2This rule is used only by the adversary of this chapter, and not from the one in Chapter 4.
Thus the strict adversary of this chapter is more difficult to beat than that of Chapter 4.

86

CHAPTER 5. MANIPULATION DETECTION 5.2. MANIPULATION

Average reward-victory per training cycle

500

& 225
gz

.
350
325 HHHEH
ol
£ 500 ‘ ‘ It
¥ ‘
B 27 il | |
‘ ‘ ‘ |

$ 200
E

150|‘|‘

|‘|
-

P
8

Figure 5.1: Learning Agent’s reward-victory graph over 1.5 million training games
of Experiment 1.

5.2 Manipulation

Here the adversary retains the above strict base-line policy but it is also suscep-
tible to the non-cooperative moves of the LA, as explained above. For example, if
the LA utters “I really need rock”, weights of actions which transfer rock from the
adversary will decrease, and the adversary will then be less likely to give rock to the
LA in an attempt to hinder it. Conversely, the adversary is then more likely to give
the other two resources to the LA. In this way the LA has the potential to mislead
the adversary into trading resources that it really needs. The weights of actions
change in exactly the same way as that which was discussed in Section 4.2. The
only difference here is that the weights reset (i.e. all become equal) at the beginning
of each new game, therefore making the learning task harder.

In this experiment the learning agent scored a winning performance of 59.2%
against only 39.75% of its adversary, having 1.1% draws (Table 5.3), in the 20
thousand test games that followed after 1.5 million training games (Figure 5.2).
Similarly to the previous experiment, the LA’s strategy focuses again mainly on
action 7, by offering the sheep resource that it does not need for rocks that it needs
(Table 5.1). However in this case we also notice that the LA has learnt to use action
2 very often, exploiting cases where it will win by giving the wheat resource that they
both need for a rock that only it needs. This is a result of its current manipulation
capabilities. The high frequency manipulative actions 8 (“I really need wheat”)
and especially 9 (“I really need rock”) assist in deceiving its adversary by hiding
information (as they are used on their own), therefore significantly reinforcing its
strategy as they both indirectly result in gaining sheep that only the adversary

needs.

87

CHAPTER 5. MANIPULATION DETECTION 5.3. RESTRICTION

Average reward-victory per training cycle

1,000,000 1,250,000 1,500,000

250,000 500,000 750,000
Training cycle

=

Figure 5.2: Learning Agent’s reward-victory graph in 1.5 million training games of
Experiment 2.

Rejections to adversarial trading offers over the acceptances were again the ma-
jority in this experiment. However in this case they are much fewer than before,
with a ratio of only 2.5 to 1, as our learning agent is now more eager to accept
some trades because it has triggered them itself by appropriately manipulating its

adversary.

5.3 Restriction

Here we investigate performance against adversaries which cannot be manipu-
lated, but their strategy is to always restrict the LA from gaining a specific type
of resource by never offering it. We need to explore how well a manipulated adver-
sary (for example one which will no longer give rocks that only its opponent needs)
performs. This shows us the potential advantage to be gained by manipulation and
most important, it will generalise our problem by showing that the restriction (boy-
cott) of a resource that only the opponent needs, or of a resource that both of the
players need, are actually reasonably good strategies compared to the baseline case
(first experiment). Hence, the manipulated adversary has indeed a reason for choos-

ing to restrict resources (second experiment) rather than staying with its rule-based

88

CHAPTER 5. MANIPULATION DETECTION 5.3. RESTRICTION

Action Exp.1 Exp.2

number frequency frequency

1. Do nothing 81060 (20.33%) | 144727 (27.23%)
2. Give wheat for rock | 8077 (2.89%) 46028 (8.66%)
3. Give wheat for sheep | 0 (0%) 10358 (1.95%)
4. Give rock for wheat | 80578 (28.83%) | 62874 (11.83%)
5. Give rock for sheep | 78542 (28.1%) | 55627 (10.46%)
6. Give sheep for wheat | 6429 (2.3%) 24687 (4.64%)
7. Give sheep for rock | 23888 (8.58%) | 31132 (5.86%)
8. I really need wheat |- 68974 (12.98)
9. I really need rock - 87123 (16.39%)
10. I really need sheep | - 18 (0.003%)

Table 5.1: Frequencies of actions of the non-manipulative learning agent (Exp.1)
and of the manipulative one (Exp.2), in 20k testing games, after training. Bold
numbers indicate the trading proposals that were mostly used by the LA and were
accepted by the adversary.

strategy. In other words it has a rational reason to hinder the LA (being gullible)
and fall in its trap.

In this (third) experiment the LA uses no manipulative actions. It is the same
LA as that of the first experiment. It is trained and then tested against 3 different
types of restrictive adversaries. The first one (Experiment 3.1) never gives wheat,
the second one (Experiment 3.2) never gives rocks, and the third one never gives
sheep (Experiment 3.3). They all act randomly regarding the other 2 resources
which are not restricted. In the first case (adversary restricts wheat that they
both need), the LA scored a winning performance of 50.015% against 47.9% of its
adversary, having 2.085% draws (see Table 5.3) in the 20 thousand test games. In
the second case (adversary restricts rocks that the LA only needs), the LA scored
a winning performance of 53.375% against 44.525% of its adversary, having 2.1%
draws in the 20 thousand test games. In the third case (adversary restricts sheep
that only itself needs), the LA scored a winning performance of 62.21% against
35.13% of its adversary, having 2.66% draws in the 20 thousand test games. These
results show that restricting the resource that only the opponent needs (i.e. LA only
needs rocks) or the resource that they both need (i.e. wheat) can be as effective as
the strategy followed by the rule-based adversary (see Table 5.3). The difference in
the performances for the former case (rock) is +8.85% and for the latter (wheat)
only +2.115%3. That means the adversary has indeed a reason to believe that
boycotting its opponent’s resources could be a winning opposing strategy, motivating
its gullibility and hindering behaviour in experiment 2 of Chapters 4 and 5 (Sections
4.2 and 5.2 respectively).

3Further experiments showed that having the same number of goal resources (i.e. both need 4
of their own goal resources, rather than 5) still produces similar results.

89

CHAPTER 5. MANIPULATION DETECTION 5.4. EXPOSURE

5.4 Exposure

In this part we extend the problem to include possible negative consequences of
manipulative LA actions [27]. The adversary begins each game with a probability
of detecting manipulation, which increases after every one of the LA’s manipulative
actions. In more detail, every time the LA performs a manipulation, there is an
additional chance that the adversary notices this (starts at 1-in-10 or 1-in-20 and
increases after every manipulative move, up to 100% in the case of the 10th or
20th respectively manipulative attempt*). The consequences of being detected are
either that the adversary will refuse to trade with the LA any further in that game
(Experiment 4.1, which consists of 4.1.1 and 4.1.2, of Section 5.4.1), or that the
adversary automatically wins the game (Experiment 4.2 of Section 5.4.2). In the
former case the LA confronts a medium penalty of exposure as the game still goes
on, while in the latter case the penalty is the highest possible (immediate loss). In
these two cases there is always a high risk associated with attempting to manipulate,

and the LA has to learn how to balance the potential rewards with this risk.

5.4.1 Refusal of trading

In this case when the LA is exposed by the adversary then the latter does not
trade for the rest of the game. We have explored two different cases here, one
with a 10% chance of exposure (Experiment 4.1.1) which gradually increases to
100% at the 10th attempt and another one (Experiment 4.1.2) with a chance of 5%
which gradually increases to 100% at the 20th attempt. The LA scored a winning
performance of 50.86% against 46.33% for this adversary, having 2.81% draws in
the 20 thousand test games of Experiment 4.1.1. In the second case (Experiment
4.1.2), the LA scored a winning performance of 51.785% against 45.595% for this
adversary, having 2.62% draws in the 20 thousand test games. In both cases the 20k
test games followed 150k training ones (Figure 5.3). Lower risk provided a slightly
better performance to our LA in the second case, which was more successful than
that of the first case by +1.66%.

The results showed (Table 5.2) that the LA managed to locate a successful
strategy that balances the use of the manipulative actions and the normal trading
actions with the risk of exposure. In more detail, the strategy that the LA uses
here in both of the cases makes frequent use of the manipulative actions 9 (“I really

need rock”) and 10 (“I really need sheep”) which mainly result in the collection

4Nothing particularly hinges upon these numbers. Detection would be much more “rapid” if
the percentages were higher.

90

CHAPTER 5. MANIPULATION DETECTION 5.4. EXPOSURE

Average reward-victory per training cycle

50,000 75,000 100,000

Training cycle
1

Figure 5.3: Learning Agent’s reward-victory graph in 150 thousand training games
of Experiment 4.1.1. The graph of the experiment 4.1.2 looks similar due to the
strong connection between the two experiments and therefore has been omitted.

of wheat that both need to win. These two manipulative actions hide information
and lie respectively. Restriction of a resource that both of the players need is a
very successful strategy (as our third experiment, Section 5.3 suggests) and the LA
managed to locate that and exploit it. The next highest frequency action (excluding
actions 4 and 5 that lead to rejection from the adversary as it also follows its rule-
based strategy) is 7 (“I will give you a sheep if you give me a rock”) that is exclusively
based on the LA’s goal and along with 6 they “selectively” give back the sheep for
goal resources. Rejections to adversary’s proposals over the acceptances were in a
ratio of approximately 17 to 1 in the first case and 13 to 1 in the second one. The
LA is quite eager (in contrast to the baseline case of experiment 1) to accept the

adversary’s proposals as it has already triggered them by itself through deception.

5.4.2 Instant win

In this case if the LA becomes exposed by the adversary then the latter instantly
wins the game. Here we also have a 10% chance of exposure which gradually in-
creases to 100% at the 10th attempt. The LA scored a winning performance of
49.7% against 46.225% for the adversary, having 4.075% draws in 20 thousand test

games that followed after 1.5 million training ones (Figure 5.4). As was expected

91

CHAPTER 5. MANIPULATION DETECTION 5.5. SIGNIFICANCE

from our previous work [26], the LA performed similarly to the baseline case (first
experiment, Table 5.3) and learned never to use manipulative actions since they are
so dangerous. The LA has so far managed to locate a strategy that is similar to
that of our baseline case. The frequencies of the actions are shown in the Table 5.2.
According to Figure 5.4 we notice that the LA gradually learns how to reach the
baseline policy (i.e never use manipulation). Rejections to the adversary’s proposals
over the acceptances were in a ratio of approximately 59 to 1, meaning that the
LA is again quite eager to reject the adversary’s trading proposals as its cautious

behaviour is similar to that of the baseline case (first experiment, Section 5.1).

Action Exp.4.1.1 Exp.4.2
number frequency frequency

1 Do nothing 83563 (28.5%) 109504 (39.32%)
2 Give wheat for rock | 10195 (3.47%) 7780 (2.8%)

3 Give wheat for sheep | 1985 (0.68%) 16 (0.005%)

4 Give rock for wheat | 53684 (18.3%) 78851 (28.31%)
5 Give rock for sheep | 29162 (9.94%) 57126 (20.51%)
6 Give sheep for wheat | 8700 (2.96%) 1896 (0.68%)

7 Give sheep for rock | 27716 (9.45%) 23323 (8.37%)
8 I really need wheat 19826 (6.76%) 0 (0%)

9 I really need rock 31755 (10.86%) | 0 (0%)

10 I really need sheep | 26807 (9.14%) | 0 (0%)

Table 5.2: Frequencies of actions of the manipulative learning agent versus the adver-
sary which refuses to trade (Exp.4.1.1, exp.4.1.2 is similar) and versus the adversary
which instantly wins the game (Ezp.4.2), when exposure occurs. LA actions in 20k
testing games, after training.

5.5 Statistical significance

Similarly to Section 4.4, we performed Z-tests® between the winning learning
agent sample of our baseline case (Exp. 1) and that of each one of our other cases
(Table 5.3). By considering only the wins of the LA from the baseline case (Exp.
1) and those of the other cases we performed Z-tests between their distributions to
prove that they are statistically significant. Every result was significant at p < 0.05,
apart from the cases of restriction of the wheat (Exp. 3.1) and exposure with penalty
of instant win (Exp. 4.2), p = 0.3 and p = 0.68 respectively, with results similar

to that of the baseline. Hence we can confidently say that those cases (Exp. 2,

Shttp:/ /www.socscistatistics.com /tests/ztest /Default2.aspx

92

CHAPTER 5. MANIPULATION DETECTION 5.5. SIGNIFICANCE

3.2, 3.3, 4.1.1, 4.1.2) reject the null hypothesis® (Table 5.3). In more detail, the
total number of (testing) games that were taken into consideration in every case
were 20,000. The total number of wins from the Experiment 1 were 9,900, and from
the Experiment 2 were 11,834. The LA’s wins in Experiment 2 have higher score
than those of the LA in the Experiment 1 (z = 19.4131, p = 0). The total number
of wins from the Experiment 3.2 were 10,675. The LA’s wins in Experiment 3.2
have higher score than those of the LA in the Experiment 1 (z = 7.7532, p = 0).
The total number of wins from the Experiment 3.3 were 10,675. The LA’s wins
in Experiment 3.3 have higher score than those of the LA in the Experiment 1
(z = 25.5961, p = 0). The total number of wins from the Experiment 4.1.1 were
10,172. The LA’s wins in Experiment 4.1.1 have higher score than those of the LA
in the Experiment 1 (z = 2.72, p = 0.00652). The total number of wins from the
Experiment 4.1.2 were 10,357. The LA’s wins in Experiment 4.1.2 have higher score
than those of the LA in the Experiment 1 (z = 4.5704, p = 0). The total number of
wins from the Experiment 3.1 were 10,003. The LA’s wins in Experiment 3.1 have
higher score than those of the LA in the Experiment 1, but they are not significant
(z = 1.03, p = 0.30302). The total number of wins from the Experiment 4.2 were
9,940. The LA’s wins in Experiment 4.2 have higher score than those of the LA in
the Experiment 1, but they are not significant (z = 0.4, p = 0.68916).

Average reward-victory per training cycle

1,250,000 1,500,000

250,000 500,000 750,000 1,000,000

Training cyele
=]

Figure 5.4: Learning Agent’s reward-victory graph in 1.5 million training games of
Experiment 4.2.

6The null hypothesis states that the LA’s wins from these experiments are not statistically
significant compared to those of the LA in Exp. 1.

93

CHAPTER 5. MANIPULATION DETECTION 5.6. PARAMETERS

’ Exp. \ Learning Agent policy \ Adversary policy H LA win \ Adversary ‘
Random Baseline (strict) 32% 66%

1 SARSA Baseline (strict) 49.5% 45.555%

2 SARSA + Manipulation | Baseline (strict)+Gullible 59.17%* | 39.755%

3.1 SARSA Restrict wheat 50.015% | 47.9%

3.2 SARSA Restrict rock 53.375%* | 44.525%

3.3 SARSA Restrict sheep 62.21%* | 35.13%

4.1.1 | SARSA-+Manipulation Basel.+ Gull.+Expos(10%).(no trade) 50.86%* | 46.33%

4.1.2 | SARSA+Manipulation Basel.+ Gull.+Expos(5%).(no trade) 51.785%* | 45.595%

4.2 SARSA-+Manipulation Basel.+ Gull.+Expos(10%).(win game) || 49.7% 46.225%

Table 5.3: Performance (% wins) of the discussed learning agents and adversaries,
in 20K testing games, after training. (*= significant improvement over baseline

[Ezp. 1] in bold text, p < 0.05)

5.6 Parameters

We conducted a number of experiments to verify that A=0.4 is indeed a wise
choice as we discussed in Section 3.2.4. Experimenting exclusively with the baseline
case and testing different values for A\, we produced the following table which shows
the difference in the performance between the learning agent and that of the baseline
adversary. Negative numbers indicate that the LA had more losses than wins (Figure
5.5).

The numbers in the parentheses indicate the number of games that we averaged in
order to produce the final result, which is in the same cell. On some cases the results
were the lowest that have been ever observed so one test was enough to convince
us (or sometimes two). We see that A produces good results in the range between
0.4 and 0.7. As most of our testing cases had already used the value 0.4 though
(according to our discussion in Section 3.2.4) and the results were still impressive,
we decided to use that value in the future since the next three values didn’t have
much difference. It was a long process as each test consisted of 3.5 million training
games and then 20 thousand more testing games. Each required almost a day to

finalise.

5.7 One chance at manipulation

Let’s imagine the following example: a human trader negotiates for the first time
ever with another trader. An arbitrary use of manipulative actions would not be a
wise choice, as it would be risky (based on Section 5.4 too), but instead a cautious

(or conservative) use of these actions sounds more appropriate. In this part we

94

CHAPTER 5. MANIPULATION DETECTION 5.7. ONE MANIPULATION

allow only one manipulative action to occur in each game during the exploration
phases of the LA’s learning process. The main reason that we did that (apart from
investigating when is the best time to manipulate, Section 5.7.2) is due to human
intuition: a human trader would never risk using a manipulative move too much
(i.e. more than once) when she is unsure of its chance of exposure due to lack of
previous experience (LA’s exploration phases). This assumption is related to the
dual-mind cognition theory of Section 5.7.1 that we will examine below. She would
never risk that especially if she knew that exposure would cost the end of all future
negotiations with the particular adversary. That is a case that might happen due
to the lack of trust [85] that such an exposed behaviour might have caused. In
the experiments of the Section 5.4.1 we considered though that when the adversary
exposes the LA then it stops trading in the current training game only, as there was
no emphasis on the trust factor there. It resumes trading though in the next one
and so on. By making the assumption that Reinforcement Learning resembles the
human learning, then we can claim that the RL’s exploration phase (when a new
action is used for the first time in a particular state) and exploitation phase (when
the most successful action in the particular state is used again) are followed by a
human during a real life trading scenario.

Hence the idea for our learning agent to use one manipulation (i.e. “I really need

7 was born.

wheat”) only during the exploration learning phases of a Taikun game
There were several purposes that led us towards that direction. One of them was
to avoid getting exposed in a real life trading scenario, such as the above, with the
human traders and the “trust” factor. There a second manipulative action which
is attempted for the first time in a particular state (as in exploration phase) might
mean the end of any future trading negotiations with the particular adversary. Ex-

posure might easily occur due to logical contradictions between dialogue moves as

"more than one manipulating actions may be used when the LA is exploiting though (e.g.

during the testing games after the training ones), as it has “safely” learned how to use them.

BASELINE 3.5m Training Games

Our choice for the value of the A parameter
A 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1% 3.4% 4.5% 4.7% 4.7% 5% 4.7% 3.9% 2.4% -1.4%

(4) (3) (2) (2) (2) (2) (2)

Figure 5.5: Table of various tested A\ values. The percentages indicate the averaged
difference in the performance between the learning agent and that of the baseline
adversary. Numbers in parentheses represent the number of experiments, whereas
no parentheses and number means that only one experiment has been conducted for
that case (i.e. only one difference has been considered). Negative numbers indicate
that the LA had more losses than wins.

95

CHAPTER 5. MANIPULATION DETECTION 5.7. ONE MANIPULATION

we have shown on relevant work [105] and we will discuss in Section 5.8. One contra-
diction between two manipulative actions may be enough for that. In Sections 5.4.1
and 5.4.2 we have also seen that the manipulative agent was trained against ad-
versaries which were able to expose it based on an accumulative probability which
was formed according to the frequency of the agent’s manipulative actions. The
agent there was using the manipulative actions arbitrarily during the exploration
phase, but what if exposure would mean the end of any future trading negotiations
with the particular adversary? One manipulative action during the uncertain mo-
ments (agent’s exploration phases) sounds the safest option that might still learn the
agent how to safely (and successfully) trade. Hence it was interesting to see what
can RL do in the case where manipulation cannot occur more than once during the
exploration phases of training in each game.

Another important reason that we allowed the LA to use only one manipulative
action during its exploration phases was to see whether RL would be capable of
learning a policy that would be more conservative in using manipulation (keeping a
possible risk lower) and on the same time perform successfully. By saying “perform
successfully” we mean compared to the case of Section 5.2, where manipulative
actions do not have a restriction in number while the agent is exploring during
its learning process. Another purpose was to increase the trading proposals and
therefore trades that occur in the game, as instead of using a manipulative action
more than once, the agent now would be forced to select only an action from the

set of the normal trading proposals.

5.7.1 Dual-mind cognition

Dual mind cognition according to Evans [31, 32] suggests that humans have two
minds which they use in every day life (i.e. when they take decisions): the old mind
and the new mind. Simply stated, the old mind is based on experience (what we
also call wisdom, driven by behaviours which succeeded in the past) and the new
mind is based on decision making regarding novel problems and reasoning about the
future. By saying “novel problems” we assume that we don’t have a solution ready
for them and therefore we need to experiment (by using what we call intelligence).
Experimentation though means risk and -according to the human intuition and our
above “penalty due to exposure” assumption- only the necessary amount of risk (i.e.
one manipulation only) that will allow us to gain sufficient experience for the old
mind to hold. In RL we assume that these two minds are the exploitation and the
exploration phases of the agent respectively. Thus the agent should manipulate only
once during the exploration phases (new mind) as it is unaware about the future

consequences (penalties) of this action.

96

CHAPTER 5. MANIPULATION DETECTION 5.7. ONE MANIPULATION

5.7.2 When to manipulate?

By using the above reasoning the agent managed to learn how and when to
effectively use manipulation and keep performing as successfully as it did in Section
5.2, where manipulation would happen arbitrarily during the exploration phases
without paying attention to possible penalties that such a behaviour could cause. It
is now based on the dual mind reasoning that we examined above. By doing that
it also learns how to safely manipulate during the exploitation phases (old mind),

when manipulation occurs more than once.

5.7.3 Results

We conducted an experiment where a LA, which uses one manipulative action
only in each game during its exploration phases, played 350 thousand training games
against the adversary of the Section 5.2 and then its policy was tested in 20 thou-
sand games that followed. It managed to win 9.87% more games than those of the
adversary. We compared this result with that we obtained from a LA which uses
manipulative actions arbitrarily during its exploration phases (as in Section 5.2)
and played 350 thousand training games against the same adversary. Its perfor-
mance was similar, 10.295%. In Figure 5.6 we see that manipulation happens less
frequently in the case of the LA which uses one manipulation only in its exploration
phases during its training. The LA learned to manipulate at the beginning of the
game according to the frequencies of the manipulative actions that we have collected
(Figure 5.6). According to the game’s mechanisms, this is a wise choice as it will
lead to the win faster and safer. That is because the adversary will be manipulated

at the beginning and it will lose track of its goal early.

5.7.4 Conclusion

Our above results align with the psychological theory of the Section 5.7.1. In
other words, we offer to the RL agent a human reasoning (or even better, constraint)
on how to learn to manipulate by one time only during exploration. It learns to
do that wisely (it uses it whenever it succeeded in the past, that is at the begin-
ning of the games) in the exploitation phases by resulting in a similar performance
with that of an agent which manipulates arbitrarily without considering possible

consequences. That is without using its new mind in a “human way”, as a human

97

CHAPTER 5. MANIPULATION DETECTION 5.7. ONE MANIPULATION

considers the risk of an action in a new state. Thus in a real life scenario it would risk
getting exposed way too much. Hence the question is: why should the agent keep
manipulating arbitrarily during the exploration phases (new mind) when we obtain
similar performance from an agent which manipulates safely (only once) during the
exploration phases and evidently learns how to do that mostly at the beginning of a
trading scenario? The answer is: it shouldn’t keep manipulating arbitrarily, if there
is an ethical bond (e.g. trust) between the traders which plays an important role in

the particular negotiation, and it has to be preserved.

) manipulatio.. = SRS | manipulation ... = =| 2 Jmanlpulatlonsfre._lim Jl

S —r P File Edit Format View Help File Edit Format View Help | File Edit Format View Help

Help 7 - o 0 . 0
q e

Round 1 round 1. O round 1. rRound 1: 0

rRound 2. 3348 round 2. 1696 round 2. 1626 rRound 2: 3386 <<< MAX

Round 1. 1160 Round 3. 766 Foind 3. 3461 <<< max Round 4. 1333

round 5. 1690 Round 4. 1424 round 5. 21 round 5: 2165

round 6. 1818 Round 5. 1238 round 6. 2168 round 6+ 2124

Round 7. 1853 Round 6. 1586 round 7. 2401 <<< Round 7: 2180
f|round 8. 1a25 Round 7. 1758 round 8. 2293 round &: 2051

round 9. 1936 Round 8. 1790 9. round 9: 1888

round 10, 1921 Round 1864 G round 10° 1738

round 11. 1897 Round 10. 1866 round 11: 1479

Round 12. 1886 Round 11. 1830 round 12: 1224

Round 13. 1928 Round 12. 1863 Round 13: 1142

Round 14. 1939 Round 13. 1760 Round 14: 953

Round 15. 1942 J{|Round 14. 1728 Round 15: 804

. Round 15. 1646

round 16. 1914
Round 17. 1970
Round 18. 1924
Round 19. 1844
round 20. 1859

~
EEE]
coo
Scc
3233
aaa
e
oo~ o
I
BB
wmo
E-Tm

=
=]

]

3

=%
[
o
[
w
)
=)

Round 20. 1280

f_ = 8 5_
round 1 round 1: 0
Round 1. 0 :

Egdgg % g%gg Round 2. O gg:gg é: 23’8 <<
Wround 2. 3367 Round 3. 2180 round 4: 3439

Round 5. 3125 Round 4. 2486 Round 5: 3443

Round 6. 3310 Round 3. 3279 Round 6: 3517

round 7. 3381 Round 6. 3334 Round 7+ 3532 <<< MAX
¥ round é 3329 Round 7. 3361 rRound é: 3331 =<<<

round 9. 3258 Round 8. 3378 round 9° 3052

oun round 9. 3168 oun : |

Round 10. 3284
Round 11. 3192
round 12. 2995
round 13. 2781
|Round 14. 2638
round 15. 2502
Round 16. 2354
Round 17. 2235
round 18. 2084
round 19. 1943

EEE]
coa
Ecc
332
aaa
e
M= O
[Sp
oo
@
e

EEEEEE]
coogooo
EECccECE
322333
aoaaaa
e
o= Ne W, I C VE)
R R R
O~ 0O
e
===

=
o

c

3

=%
=
=1
=
',
w0
&

~ | l|round 20. 1209

,_
S
oy

Figure 5.6: 2 lists on the left: frequencies of manipulative actions 7 and 8 in two
sessions of 20k testing games each (which occurred after 350k training games) of
normal manipulation (Section 5.2). 2 lists on the right: same as left but one ma-
nipulation only was allowed in the exploration phases of each training game. The
LA learns to manipulate mainly at the beginning of the games, as we can see from
the distributions of the frequencies in the 2 lists on the right. These frequencies are
high in the first rounds (<<< indicates that) and then they gradually decrease as
we can see on the figure.

98

CHAPTER 5. MANIPULATION DETECTION 5.8. DECEPTION DETECTION

5.8 Deception detection

As we mentioned in the Section 5.7, exposure of the manipulative actions (MA)
might be also due to identification of logical contradictions. Here we show that
by introducing an adversary which detects deception based on those contradictions
[105], the performance of our learned policy from the Section 5.2 drops when the
penalty is automatic (instant) win for the adversary. In the experiments of the
Section 5.2 the LA learned how to win more “Taikun” games against an adversary
whose strategy was initially goal-oriented until it would hear the LA’s manipulative
action (i.e. “I really need sheep”). Then it was acting in a gullible way. That case
is now considered our Baseline case for the experiments that will follow. Despite
the fact that we did not have the opportunity to re-train that LA against the three
adversaries which detect deception based on the three cases that follow, the results
are still interesting as we will see below. The experiments that we conducted in the
Section 5.4.1 and 5.4.2, where the probability (likelihood) of detection (exposure) by
the adversary is increased after each MA, is called in this section Frequency-based

approach.

5.8.1 Detection cases

The detection of deception (manipulation) in the experiments that follow are
based on a model of semantic inconsistencies amongst the LA’s dialogue actions. The

following example shows the way that deception can be detected by the adversaries:

1. - LA: I really need wheat. (MA)

2. - ADV: I will give you rock and I need wheat.
3. - LA: OK! (Contradiction)

4. - (Game update)

5. - LA: I will give you wheat and I need sheep. (Contradiction)

According to the above dialogue, the following cases are considered in our ex-

periments by the exposing adversaries:

Case 1: Lies in the same trading phase (Plain lies). In the above dialogue
and in particular in 1. the LA falsely announces that it needs wheat (it is a MA)

and in its following dialogue turn (3.) it clearly contradicts itself by accepting to

99

CHAPTER 5. MANIPULATION DETECTION 5.8. DECEPTION DETECTION

give wheat to the adversary. The adversary in this case detects those lies of the

same trading phase.

Case 1+2: Lies in consecutive trading phase (Naive turn-based approach).
Here in addition to Case 1, the adversary also takes into consideration logical in-
consistencies that occur between a MA and a subsequent LA dialogue action in the

next trading phase, as in 5. of the above dialogue.

Case 1+3: Likelihood of consecutive lies (Probabilistic turn-based ap-
proach). In this case in addition to Case 1, the adversary takes into consideration
the game update (4.) where the players either gain or lose resources at random (as
we have examined in the Section 3.1.1) and therefore the probability that the MA is
still valid decreases by 1/3 (nothing particularly hinges upon this number). Once a
MA is discovered, there are two different ways that the exposure may be penalised
by the adversary (as in Section 5.4.1 and 5.4.2): with either refusal to trade for the

rest of the game or instant win.

5.8.2 The adversaries and the LA

The three adversaries are all based on the model of the adversary of the Section
5.2, where it starts the game being goal-oriented and when a MA occurs then it
becomes gullible. Furthermore, they are all detecting the LA’s manipulation based
on each of the three cases that we mentioned above. The penalty that is applied
after they successfully detect the LA’s manipulation, is either refusal to trade for
the rest of the game or automatic win. We have conducted experiments for each of
these cases. The LA uses the successful trained policy that we have analysed in the

Section 5.2 and it has not been re-trained against them.

5.8.3 Results

According to Figure 5.7, we initially notice that all of the LA wins against
the three different adversaries are lower compared to those of the Baseline case
(as well as to the Frequency-based approach), when the penalty is automatic win.
This is due to the fact that with the refusal to trade, the LA still has the chance
of winning the game with the updates of the system only, which provides equal

opportunities to both of the players though. Hence that case forces both of their

100

CHAPTER 5. MANIPULATION DETECTION 5.9. CONCLUSION

results closer to 50%, as no trades occur due to the adversary’s penalty. The most
effective of the three adversaries is the one which is based on the Case 1+2 (Naive
turn), which is near to the Case 143 (Probabilistic turn) where the adversary takes
into account environmental uncertainty (game’s update) too. Case 1 (Plain lie) has
a noticeable difference from the other two, as they introduce additional ways of
effectively detecting the deception of the LA.

Our frequency-based adversaries of Sections 5.4.1 and 5.4.2 are better when the
penalty is refusal to trade. On the other hand their performance is much worse
than that of the adversaries which detect deception based on inconsistencies when
the penalty is automatic win. The LA’s already trained policy seems to have many
weaknesses in that case. It was important for us though to evaluate how successful
our trained policy of Section 5.2 was against these adversaries which identify logical
incosistencies. Given the fact that the policy was not trained against an adversary
with exposing capabilities, the results are positive for the Reinforcement Learning in
generalised cases. Surprisingly, the LA trained policy of Section 5.2 performs much
better versus the adversaries of this section compared to those of our Frequency
based approach when the penalty is refusal to trade. Still there cannot be direct
comparison though as the LA of the Frequency based approach was trained against
those adversaries (of the Sections 5.4.1 and 5.4.2).

Scenario LA wins ADV wing Draws

Baseline (no detection) 59.170 39.755 1.075

Detection by: Refusal to trade | Automatic win | Refusal to trade | Automatic win | Refusal to trade | Automatic win
Casel: Plain Lies 35725 39.996 42.295 58.895 1.980 1.110
Casel+2: Naive Turn 54.035 35.950 43920 62.945 2.045 1.105
Casel+3: Probabilistic Turn 54275 36.985 43.810 62.025 1.915 0.990
Frequency-based 50.86 49.7 46.33 46.225 2.81 4.075

Figure 5.7: The winning rates (%) of the different exposing adversaries. All of the
LA wins are lower compared to the Baseline case (as well as to the Frequency-based
approach) against the three different adversaries when the penalty is automatic win.
Please note that the LA uses a trained policy (that of Section 5.2) though. Image
taken from [105].

5.9 Conclusion

We developed a new algorithm based on SARSA()) that is able to produce
better policies than those of our previous one (Chapter 4), although it requires
more memory, in our trading game Taikun. Our environment is non-stationary
(discussed in Section 3.3.6), as its dynamics change due to the agent’s actions (i.e.

manipulation) and due to the game-play mechanisms (i.e. trading proposal phase

101

CHAPTER 5. MANIPULATION DETECTION 5.9. CONCLUSION

- response phase - trading proposal phase etc.). However we produced RL policies
which effectively learned in such noise, as the RLA was actually trained in two
games in one: the “learning how to trade” game and the “learning how to respond”
to the adversary’s trades game. Our explicit linguistic manipulation based on scalar
implicature dramatically improves the RLA’s performance against a hand-crafted
strict adversarial strategy with the realistic assumption that the adversary has a
reason to be affected by it. Games versus restrictive agents and empirical analysis
support that reason (Section 3.3.3).

Furthermore we learned successful RL policies against agents who can expose
(i.e. detect) the RLA’s manipulative moves and apply severe penalties. Even in such
risky environments RL is capable of effectively using manipulation and win more
often. When the risk is too high, policies have learned not to use manipulation at all
and win without the risk. Apart from how, we showed that the RLA learned when
is the right time to use manipulation and still be successful, thus avoiding excessive
use that might result to detection. Finally, we tested our manipulative learned RL
policy against more advanced adversaries who detect manipulation based on logical
contradictions, and not on its frequency as before. We argued that these adversaries
can be very successful at detection, and presented results regarding our trained RL
policy’s performance that were promising for the future in terms of generalisation.
In the next chapter we will evaluate our trained policies against human players, in

our game Taikun.

102

Chapter 6

Evaluating learned trading

dialogue policies with humans in

Taikun

We conducted experiments using human players in our game “Taikun”. Two
different kinds of experiments were conducted: the first one included human versus
human games and the second one human against two different types of our trained
RL agents. Those were either the manipulative one (from the Section 5.2) or the
non-manipulative one (from the Section 5.1). Corresponding questionnaires were
completed by the human players at the end of each experiment in order to collect
valuable information for the future of this research, as we will see in more detail

below.

6.1 Human vs. Agent

These experiments were very important because they offered us the opportunity
to evaluate how efficient the RL trained policies were against human players. Hence
a version of the game Taikun was programmed in Java where a human player can
play the game versus either our trained non-manipulative RL agent or versus our
trained manipulative one (Figure 6.1). In this experiment 10 people! participated
and 60 games in total were played. Each of the players played 3 games versus the
manipulative agent and 3 games versus the non-manipulative one.

None of the players knew how many different agents they were playing against

or which of the agents they were playing against, as the first game was versus an

IThe participants were all students, undergraduates and postgraduates.

103

CHAPTER 6. TAIKUN AND HUMANS 6.1. HUMAN VS. AGENT

agent at random. After that, the next game would involve the other agent and then
the one of the first game and so on. We made sure to have thirty games where the
non-manipulative agent would start first, and thirty games where the manipulative
one would begin first. At the end of each of the six games the players completed
a game questionnaire and then, after all six games were played, they completed an

overall questionnaire that we will examine below.

| £ *** Taikun +0.0001 Ioannis Efstathicu - Human Player vs. Trained Agent - EI@

. -— Round #6
Do nothing
Pl offers 1 sheep for 1 wheat

Give wheat for rock | .
gent rejects

Give wheatforsheep |noent offers 1 rock for 1 wheat

Give rock for wheat Pl rejects

Give rock for sheep

Give sheep for wheat

Give sheep for rock

‘| really need Wheat' |

'l really need Rock'

'l really need Sheep’ |
P1 RESPOND

1 Il | [»
SYTEM UPDATE CHANGED YOUR RESOURCES, PLEASE CHECK THEM.
P1 responded, P1 please trade (click one of the ten trade buttons on the left of the game's window)

Figure 6.1: “Taikun” version of human player vs. trained RL agent.

6.1.1 Game questionnaire

The questionnaire below was completed by each of the players after playing each

of the six games:

104

CHAPTER 6. TAIKUN AND HUMANS 6.1. HUMAN VS. AGENT

. Did you win the game? (Yes/No)

. Please rate the difficulty of this opponent (1 for easiest to 10 hardest):

. How would you describe this opponent in terms of the strategy that it used?
. Did you use any of the announcements (i.e. “I really need sheep”) and why?

. Please explain your strategy during the game (e.g. initially I was focused on

reaching my goal resources, then I would never give a specific resource etc.)

. Did you understand what goal resources your opponent needs? If yes, please

write them.

Would your strategy be different in a future game with the same goal resources

and opponent? If yes, what would you change?

6.1.2 Overall questionnaire

The questionnaire below was completed by each of the players after playing all

of the six games:

1.

Did you believe your opponent when it said that it really needs a resource?

. If you thought it was lying, why did you think that?

. When (if ever) did you start to disbelieve your opponent?

7

Did the “I really need <resource>...” announcement of the adversary cause
you a dilemma as to whether you should keep following the same strategy or

perhaps change it in order to win?

. If the answer to question 1 was “yes”, did you change your strategy? Please

explain how.

. Do you think that by exclusively aiming to reach your goal is an equally

successful strategy with that of exclusively boycotting one specific resource?
If yes, please write which resource you think that is. Why do you give this

answer?

Any other comments:

105

CHAPTER 6. TAIKUN AND HUMANS 6.1. HUMAN VS. AGENT

6.1.3 Questionnaires’ results and discussion

According to the questionnaires that the ten players completed while participat-

ing in the experiment, the results can be found below.

Objective measures:

e Agents have 31 wins and humans 31 (2 draws included).

e Manipulative agent has 15 wins and non-manipulative has 16.

e No one guessed correctly what kind of resources the agents really need (wheat and
rocks) (humans though seemed to infer easier what their human opponents needed
as we will see later) according to their answers (Question 6. Section 6.1.1). This
is an advantage point for the agents as the manipulative one seems to confuse the
human players. That might be one of the reasons for their successful (50%) win
rate. Frustration has been previously observed by Kraus et al. [63], as people do
not always follow equilibrium strategies and the “fixed” behaviour of the agent (in
our case caused by following the RL optimal policy) sometimes confused them and
resulted to the negotiation’s termination with no agreement. In our manipulative
case, the frustration that was caused due to repetitions of particular actions (as
in Kraus case) and contradictions (for the sake of manipulation) was a significant
reason that the humans lost games, as they failed to follow and exploit the agent’s
trading patterns.

e 4/10 people thought that the agents need wheat (Question 6 of Section 6.1.1 and
3/4 of them won at least 50% of the games (2/4 won 66%).

Subjective measures:

e The total score? of the manipulative agent is 157 and of the non-manipulative one
157 ((Question 2. Section 6.1.1)).

e 1/10 people thought the manipulative agent never lied (Question 1 of Section
6.1.2).

e 7/10 people thought the manipulative agent sometimes lied (Question 1 of Section
6.1.2).

e 2/10 people thought the manipulative agent always lied (Question 1 of Section
6.1.2).

e 3/6 (50%) people answered “yes” to the dilemma question of the adversary’s
manipulation and 3/6 answered “no” (Question 4 of Section 6.1.2). This result mo-
tivates and explains the behaviour of the gullible adversary of Section 5.2, as we

have discussed in Section 3.3.3 (2nd reason).

2This rating was given by the human players to each of the agents at the end of the game
(Question 2. of the game questionnaire in Section 6.1.1) and indicates how hard each of them was
to play against.

106

CHAPTER 6. TAIKUN AND HUMANS 6.1. HUMAN VS. AGENT

® 2/4 people thought that the available announcements (i.e. “I really need wheat”)
actually helped them to win games and 2/4 people didn’t (Question 4. Section
6.1.1).

e 4/10 people thought that by aiming only to reach your resources is an equally
successful strategy with that of only boycotting one resource. 6/10 answered “no”
(Question 6 of Section 6.1.2). This result relates to those of the restrictive adver-
saries in Section 5.3 and shows that 60% of the people find it hard to believe that the
boycott of a resource can be as powerful as aiming only to reach the resources. Our
results there show that it is true though, agreeing with the 40% of the people who
believed that the two different strategies are equally powerful. These percentages,
which are close to each other (1 person made the difference), suggest again that the
the gullible adversary of Section 5.2 has a valid reason (like humans) of being in a
dilemma after it hears the manipulative dialogue action (e.g. “I really need sheep”)
and choosing to restrict (boycott) a particular needed resource.

e 8/10 of the people thought that the game is based on skill and 2/10 thought that
it depends entirely on luck (this information was mainly inferred from Questions 5
and 7 of Section 6.1.1 and Questions 3, 5 and 7 of Section 6.1.2). Taikun is heavily
based on luck (due to the random update of the resources turn) and it is surprising
that the human players did not realise that. It requires skill though too.

e 3/10 of the people in most of the cases thought the agent needed wheat and
sheep (Question 6 of Section 6.1.1, sheep was frequently used as a lie by the non-

manipulative agent so they are evidently affected by the manipulative agent).

6.1.4 Human comments on the manipulative agent

e “Confusing” (7 people)

e “He would mostly not trade or respond “no” to most trading proposals”
(6 people)

“Persistent on its requests” (4 people)

“Good strategic player with meaningful actions (3 people”)

“Focused on goal” (3 people)

“Obstinate” (3 people)

“Simple and normal” (2 people)

“Not willing to sacrifice resources” (2 people)

“Cheat” (2)

“He was giving resources that (author: they thought) it did not need”

“He seems to give in to opponent faking risks”

“Willing to give a win”

107

CHAPTER 6. TAIKUN AND HUMANS 6.1. HUMAN VS. AGENT

“Difficult to cheat”

“More lucky than me”

“It asks for specific resources”
“Difficult”

“Announced and offered a lot of times”

“It stole my two resources in the first two turns”

6.1.5 Human comments on the non-manipulative agent (goal-

oriented only)

“Rejects all proposals” (7 people)
“The least active on offers” (6 people)
“Clear strategy” (3 people)

“Quite honest” (3 people)

“No strategy” (3 people)

“Goal-oriented” (2 people)

“Relies on the random element” (2 people)
“Unpredictable ” (2 people)

“Persistent”

“No announcements”

“Active on offers”

“Normal”

“Offering different things to what I propose”
“Clever”

“Repetitive”

“Cannot be tricked”

“He is meant to win”

“Suggesting to trade same resources as [did”
“Would not trade anything else than rock”

“Wait for random gains”

“It offered each of the resources at the beginning”

108

CHAPTER 6. TAIKUN AND HUMANS 6.1. HUMAN VS. AGENT

6.1.6 Discussion and conclusion

The positive side from the above experiments was that the two agents were
as successful as the human players. The manipulative agent was characterised by
70% of the human players as confusing and that indicates that its implicatures (i.e.
“I really need sheep”) were successful against humans. The fact that none of the
players managed to guess correctly its resources suggests that too. The manip-
ulative agent was characterised as a good strategic player by 30% of the people,
while the non-manipulative one was characterised as having a clear strategy by the
same amount of people. Those results suggest that a significant amount of peo-
ple understood that there was intelligence behind both of the agent’s actions. The
non-manipulative agent showed its real goal-oriented behaviour as more than one
participant characterised it with “Clear strategy”, “Quite honest”, “Goal-oriented”.
The manipulative one, despite the fact that it mainly won by confusing the human
players (and that was intended as a result of the manipulation), managed to also
show its underlying sensibility that its implicature is based on, in some cases, by re-
ceiving characterisations such as “Persistent on its requests”, “Obstinate”, “Focused
on goal”.

On the negative side, it seems though that people who tried to win, lost most of
the time and then they soon decided to do nothing (i.e. stop trading) because that
was 50% successful (and they realised that quite early by human intuition). Taikun
is highly based on luck so even when someone plays a couple of games at random
versus our manipulative agent she/he will probably end up winning by 50%. Only
if they will play a significant amount of games we will be able to see difference in
the winning rates that would indicate that skill matters too. This is due to the high
noise (uncertainty) that the random resource update turn creates. We also wanted
to show that the manipulative agent wins the (gullible) human players more often
than the non-manipulative one: in this case the humans should behave in exactly
the same gullible way as that of the rule-based adversary that we have in Section
5.2.

From the questionnaires’ answers of Section 6.1.3 we saw that the above as-
sumption was not always the case though, as 60% of the people thought that being
goal-oriented and restricting a particular resource are not equally successful strate-
gies and 50% were actually in a dilemma as to what they should do after they
saw the agent’s manipulative action. However, even if that was the case and all
of the human players would behave in the gullible way and would start restricting
resources, luck highly affects the game and only after a significant amount of games
we could prove that. Unfortunately the (full) skill of the agents (manipulative one
and non-manipulative one) is not evident by just playing a few games and especially

when there is no trading. Furthermore the random resource update at the beginning

109

CHAPTER 6. TAIKUN AND HUMANS 6.2. HUMAN VS. HUMAN

of each new round is noisy and reinforces the luck factor. It was necessary though
because the initial number of resources was insufficient to reach the goal and it also
promotes trading. To conclude, more games should be played, we had to find more
ways of motivating the players to trade and also reduce the noise of the random
resource update (i.e. restrict the luck factor). These conclusions were taken into

deep consideration in Chapter 10.

6.2 Human vs. Human

Another version of the game was programmed with the aim of using it between
two human players only for data collection. We then decided though that it would
be even more natural and inspiring for the players to play between them using real
cards, dice and a human referee. In that way we were planning on transcribing the
human utterances. Ten human players® took part in this experiment and five sessions
of 30 minutes each (they usually consisted of 2-3 games) were played between each
two of them. All of their games were recorded as we wanted to investigate what
human players do and say while playing Taikun. The instructions that were given

to the subjects were the rules of the game (Section 3.1.1).

6.2.1 Questionnaire

The questionnaire below was completed by each of the ten players after playing

a number of games in thirty minutes:
1. How many games did you win and how many games did you play in total?

2. Did you make any remarks such as "I really need wheat”, “I've got lots of

rock” etc. other than only trading during the game? Please mention them.

If no, please proceed to question 3.
2a. If yes, why did you use them? Please explain.

2b. Do you think they had some kind of effect to your opponent’s strategy after
using them? Did his/her play style change?

2c. Is there anything else important that you would say to your opponent and the

above announcements do not express? If yes, please give examples.

3The participants were all students, undergraduates and postgraduates.

110

CHAPTER 6. TAIKUN AND HUMANS 6.2. HUMAN VS. HUMAN

3. Please now explain your overall strategy during the games (i.e. initially I was
focused on reaching my goal resources, after that I would never give a specific

resource etc.):

4. Did you understand what goal resources the other player needs? If yes, please

write them.

5. Would your strategy be different in a future game with the same goal resources

and opponent? If yes, what would you change?

6.2.2 What did people say during trading?

Here we have a list of interesting (from a linguistic perspective) human utterances

that were extracted from the recordings of each session:
Session 1

- Would you like to trade *resource® for *resource*? (This type of utterances in-
spired us to use implicit manipulation as we will see in Chapters 8 and 9. That
means manipulation through normal trading actions but not in a form of a question
though, as it is in the example.)

- I don’t have *resource™ (I don’t have any *resources™)

- Multiple *resources™ for multiple *resources® (usually people ask for more and give
less. This information was used in the trading actions of the agents in Chapters 8
and 9 where we include “give 1 for 2” actions.)

- I have nothing to trade with you

Session 2

- The same as before (repeats offer)

- I still want *resource*

- Any *resource® suggestions? (any trades that would involve *resource*?)

- I will give you *resource* for *resource® and when I will have an extra *resource*

I will give that extra to you, if you trust me...

Session 3

- What resources would you like?

- Would you like a *resource*?

111

CHAPTER 6. TAIKUN AND HUMANS 6.2. HUMAN VS. HUMAN

- Not now (response to a trade proposal)

- How about *resource® for *resource™ and *resource*?

- Sounds good but I will skip it this time (reply to a trade proposal)
- How about *resource® and *resource™® for *resource*?

- Maybe next time (reply to a trade proposal)

- 2 *resources® for 1 of each

Session 4

- Do you have anything you want to give me for free..? I don’t have anything to
give you back though...

- I am willing to give more than one *resource* for *resource* and/or *resource*

- I'll give you *resource A* for *resource® B. Answer is "No”. Ok, then I'll give you
*resource® C for *resource B*?

- T’ll give you *resource™ for anything you might want to give me?

Session 5

- I don’t think I want to ask for a trade

- Would you trade anything for *resource*? (same as the 2nd above) ...if you CAN
give me a *resource®...?

- Response: I can’t do that

- We both want *resource® by the sound of it..?

Most of the people mainly offered one resource for one other, they frequently
did nothing on their trading turn and in most of the games they tried to infer what
their opponents need. The above utterances were very helpful for the rest of this
work and some of the information was used in the experiments of Chapters 8 and 9

that follow, as we mentioned above.

6.2.3 Conclusions on human game-play in Taikun

Humans seemed to be very cautious when they play with each other and they
frequently did nothing. They avoided trading and especially accepting trading pro-
posals. They instead mostly preferred to be based on the system’s random factor
(luck), that updates the resources at the beginning of each round. The reason that
we implemented that though was because the initial number of resources was insuf-

ficient to reach the goal and it also promotes trading. The resource update slowly

112

CHAPTER 6. TAIKUN AND HUMANS 6.2. HUMAN VS. HUMAN

“pushes” the players towards the goal by producing more resources than it takes
(discussed in Section 3.1.1). When the humans proposed trades, they lied quite
often and tried to infer what the goal resources of their opponents were. The games
“versus the agents” had more trades than those between the human players and
that shows that humans were more comfortable trading with agents than with other
humans. Both humans and agents were more active with their trading proposals
and trade acceptances in the games against the agents. The agents have successfully
learned how to trade and they won equally with the human players, without using
the “Do nothing” action most of the time (as humans did in “human vs. human”
games). That required skill. The conclusions from Section 6.1.6 though would hope-
fully reveal the agents’ skill more in another future attempt. In Chapter 10 we had
the opportunity to test again trained policies versus humans and use the knowledge

that we gained from the experiments of this chapter.

113

Chapter 7

Main model: Catan

After the completion of our experiments in Taikun we proceeded by experiment-
ing in the (more complex than Taikun) non-cooperative board game “Catan”. To
investigate non-cooperative dialogues in a controlled setting we used a 2-player ver-
sion of the game first (experiments will be discussed in detail in Chapter 8), which is
a complex, sequential, non-zero-sum game with imperfect information. Our version
of the game is focused only on the trading part, as it is the main interest of this
research. We call the 2 players the “adversary” and the “Reinforcement learning
agent” (RLA) or the “hand-crafted agent” (HCA). The adversary is always used for
playing against the RLAs or the HCA.

At the beginning of the board game Catan, the four players place a couple of
settlements and roads on the board (map), which consists of hexagons. Each of
them represents one of the five different resources of the game, which are wheat,
wood (or timber), rocks, sheep and clay (or bricks). Each of the hexagons has its
own number (2-12), and by rolling the dice at the beginning of each turn all players
receive resources from the the hexagons whose number was rolled, providing that
they own settlements or cities which are next to these hexagons. The roads allow
the players to build more settlements in other areas of the board in order to expand
their controlled resources. The resources are represented by cards that the players
hold on their hands. They can trade them with other players. Trades happen
through dialogue, as the players usually state the number and type of resources that
they offer along with those of the resources that they need. The goal of the game
is to reach ten victory points. These are gathered by building constructions and
completing achievements (e.g. owning the longest road in the game).

The constructions that the players can build are four: a road, a settlement, a city
(which is an upgrade of the settlement) and a development card. The development
card is not exactly a construction but an action or feature that the player has
available to use in the game (e.g. soldiers, and the players who have the most

get extra victory points). The road requires 1 timber and 1 brick to be built, the

114

CHAPTER 7. MAIN MODEL: CATAN 7.1. RLAS AND UPGRADED SARSA(\)

settlement 1 wheat, 1 timber, 1 sheep and 1 brick, the city 2 wheat and 3 rocks and
the card 1 wheat, 1 rock and 1 sheep. At the beginning of Chapter 9, in Figure 9.1,
a screenshot of the game is shown in the JSettlers [99] research environment, which

is discussed in detail there.

7.1 RLAs and upgraded SARSA())

From this chapter onwards all of the experiments have been conducted using a
new, upgraded SARSA(\) algorithm for the RLAs. Based on previous experience
and results, we decided to keep using gradual decrease of the learning rate from 1 to
0, as it has shown to result in smooth training. Likewise, we also gradually reduce the
e-greedy ratio from 20% to 0% exploration for the LA, as it has also shown to result
in effective learning. We also decided to create dynamically the policy’s state-actions
while learning occurs, instead of fully creating them a priori, as that would require
a lot of memory for maintaining states which might not ever be used. Furthermore,
with the additional state compression methods that we added (Section 7.2.5) and we
will introduce from this chapter onwards, we achieved a huge reduction in running
times, less demanding memory requirements and policy performances which were

nearly as good as those of a numeric tabular RL state representation®.

7.2 Design

In our version of the game, the RLA or the HCA proposes trades to the adversary
sequentially and tries to reach a goal number of resources (in the case of a city: 3
rocks and 2 wheat) within seven? trading proposals. A game in our case is considered
to be a maximum of seven trading proposals along with the responses. The LAs
had to learn how to reach their goal resources (or as near as possible) within those
seven attempts. As we have discussed in the beginning of this chapter, there are
four different constructions (or mini-goals, as part of the main goal, which is to

collect 10 victory points) that can be built in the normal “Catan” game: a road,

I After the algorithm’s modification, where the states became compressed, brief experiments
were conducted. They showed that the difference of the policies’ performances between the normal
(numeric) states algorithm and the one with compressed states was not important, especially
considering the running times and memory requirements which improved dramatically after the
modification.

2Nothing particularly hinges upon this number. We decided to use seven trading proposals
mainly because it would not be very monotonous for a human player to respond and seven attempts
seemed to be challenging to reach the goal.

115

CHAPTER 7. MAIN MODEL: CATAN 7.2. DESIGN

a city, a settlement or buy a development card. Our non-manipulative RLA has
learned how to successfully trade in order to achieve all those “goals”® but most of
our experiments that will follow are based on the example case of the city. As we
have seen there are five different resources to trade (wheat, timber, rocks, sheep and
bricks) and the adversary only responds by either saying “Yes” or “No” to accept
or reject the trade respectively in our case. Initially we assume that the adversary
has all of the resources available to give so it is up to the RLA or the HCA to use a
successful strategy that will allow it to reach its goal. The learning agents start the
game with a random number of resources (up to 7 of each resource) and therefore
there are cases where the initial number of resources is insufficient to eventually
reach their goal. The agents still learn though how to get as close to the goal as

possible (due to the reward function which we will examine in Section 7.2.3).

7.2.1 Actions (Trading Proposals)

Trade occurs through trading proposals that may lead to acceptance or rejection
from the adversary, and have deterministic and stochastic effects. In an agent’s
proposal (turn) only one “give 1-for-1” or “give 1-for-2” trading proposal may occur,

or nothing (41 actions in total):

1. T will do nothing
2. I will give you a wheat and I need a timber

3. I will give you a wheat and I need a rock

40. I will give you a brick and I need two rocks

41. T will give you a brick and I need two sheep

The agents which use manipulation in the experiments that will follow, manipu-
late their adversaries through all of the above trading proposals (implicit manipula-
tion) as we will see in detail in Section 8.2.3. They do not use scalar implicature (e.g.
“I really need sheep”) any more, which is explicit manipulation, as we examined in

the previous chapters.

3We call the constructions goals because in our experiments we focus only on the trading part,
where the LA only aims to build one of them. We assume that there is already a build plan to use
which aims to gather 10 victory points by indicating which construction to build next, as we will
examine later.

116

CHAPTER 7. MAIN MODEL: CATAN 7.2. DESIGN

7.2.2 The RL Agents (RLA)

The game state is represented by the RLA’s encoded (Section 7.2.5) set of re-
sources. The RLA plays the game and learns while perceiving (initially) only its
own set of resources. It is aware of its winning condition in as much as it experiences
a large final reward when reaching this state. It learns how to achieve the goal state
through trial-and-error exploration while playing repeated games. Each game con-
sists of up to 7 trading proposals, but nothing particularly hinges upon this number
— we have experimented with a number of different length constraints, and obtained
similar results. The agent is modelled as a Markov Decision Process [97]: it observes
states, selects actions according to a policy, transitions to a new state (due to the
adversary’s response), and receives rewards at the end of each game. This reward is
then used to update the policy followed by the agent using the SARSA (M) algorithm
(discussed in Section 2.1.6).

7.2.3 Reward function

The reward function used in all the experiments takes into consideration the
number of trading proposals made and the distance from the goal, as well as trading
success. In detail, the distance is calculated by subtracting the achieved numbers
of the goal resources from the goal numbers, and then adding all of the results
together. The reward function that is used is: + 10,000 (if trading successful)
—(1,000* proposals) —(1,000* distance). It was created mainly based on the RL
experience that we had accumulated up to that point. The idea was to teach to
the RLA to get as close to the goal (i.e. to collect the goal number of resources) as
possible, because there were cases where it would start the game with an insufficient

amount of resources.

7.2.4 Training parameters

The agents were trained using a SARSA()) learning method [97] with an initial
exploration rate of 0.2, which gradually decays to 0, and a learning rate « of 1, which
also gradually decays to 0 by the end of the training phase. After experimenting
with the learning parameters we found that with A equal to 0.9 and ~ equal to 0.9
we obtain the best results for our problem and therefore these values have been used

in all of the experiments that follow.

117

CHAPTER 7. MAIN MODEL: CATAN 7.3. EXPERIMENTS BACKGROUND

7.2.5 State Encoding

To overcome issues related to long training times and high memory demands,
we implemented a state encoding mechanism that automatically converts all of our
trading game states to a significantly smaller number states in a compressed repre-
sentation. The new state representation takes into consideration the distance from
goal and the availability of the resource, as well as its quality (goal or non-goal
resource) and uses 7 different characters. The agent’s state consists of the quan-
tities of the five resources that it currently has available. In the case of the city,
it needs wheat and rocks. That means two out of five resources are goal resources
and therefore they can be represented by G (goal) when their number is equal to
the goal amount, N (null) when their number is 0, M (more) when their number is
more than the goal-quantity, and 1 or 2 when the distance from the goal quantity is
1 or 2 respectively. The 3 non-goal resources are represented by Z (zero) when they
are 0 and A (available) when they are more than 0.

For example, the state (1,4, 3,0, 2) would be encoded to (1, A, G, Z, A), assuming
that the numeric goal would be (2,0, 3,0, 0). The numeric state space of our problem
has 8 x 8 x 8 x 8 x 8 (=32,768) states (we track up to 7 of each type of resource)
that are encoded to only 4 x 2 x 5 x 2 x 2 (=160) states. This is reduced to
0.5% of the original size of the state space. With this method and despite the fact
that the representation still remains tabular, in all of our experiments of the next
chapter 3 million training games required only around 10 minutes to finalize. The
performances were very successful too as the logic is still based on the precision of

the RL tabular representation.

7.3 Experiments background

The experiments that will follow on the next two Chapters 8 and 9, are con-
ducted on our 2-player version of the game, and JSettlers [99] research environment
respectively. In Chapter 8 we initially present the results of experiments with the
assumption that the adversary is affected by all of the trading proposals of the
learning agents, in such a way that it tries to stop the learning agents from get-
ting the resources that they say they need. Intuitively, this is a basic aspect of
adversarial behaviour. It is a reasonable and very successful strategy that may
originate from sound reasoning as we have shown in our previous chapter with the
Restrictive Adversaries (Section 5.3). The reasons of this behaviour have been dis-
cussed in detail in Section 3.3.3. We then present the results of experiments between

non-manipulative RLAs. The point is to show that the RLAs which maintain the

118

CHAPTER 7. MAIN MODEL: CATAN 7.3. EXPERIMENTS BACKGROUND

adversarial preferences in their state space increase their performance compared to
an RLA which does not do that. In Chapter 9 we used JSettlers [99], which is a re-
search environment built using Java and it is based on the full version of the Catan
board game (multilateral negotiations environment). There we will test learned
RL policies from Chapter 8 (including a manipulative one) and show that they are
very effective, despite the fact that they were trained on a bilateral negotiations

environment.

119

Chapter 8

Experiments in Catan: Opponent

models

All of the experiments of this chapter are based on our 2-player version of the
board game “Catan” that we examined in the previous chapter. The adversary only
responds by either saying “Yes” or “No” to accept or reject the LA’s proposed trades
respectively which can be up to seven as we have mentioned before. Hence a game
in our case is considered to be a maximum of seven trading proposals along with
the responses. The LAs had to learn how to reach their goal resources (or as near
as possible) within those seven attempts. Initially we created a non-manipulative
(i.e. its actions do not have any manipulating effect) SARSA (A) RL agent which
learned how to successfully trade in the game. It learned how to do that for all of
the different goals (road, settlement, city and development card). The adversary
always accepts the agent’s trading proposals, it has initially an infinite amount of
resources and no goal. After that we created two RL agents which -through two
different kinds of implicit manipulation- play the game versus an adversary which
can be manipulated and hinders their strategies [28]. At the end of this chapter,
we present experiments where non-manipulative RL agents include the adversarial
preferences in their state space. They play our Catan game versus an adversary
which sets a random goal at the beginning of the game, and therefore its preferences

change according to that.

8.1 Initial Experiments

Before we examine the cases with manipulation and the adversary’s opponent
model, we first explore the case of learning a trading policy for adversaries that do

not have an opponent model and thus do not try to hinder the learning agent. This

120

CHAPTER 8. CATAN: OPPONENT MODELS 8.1. INITIAL EXPERIMENTS

adversary always accepts an agent’s trading proposal, and so this serves as an initial
proof-of-concept of the extent to which the game is winnable by the learning agents
if the adversary is being fully cooperative. We assume that this adversary has an
infinite amount of available resources. Here the (non-manipulative) RLA learned
how to successfully trade in the full version of the “Catan” game for every goal case.
These include building a road, a city, a settlement, or a development card. The
different goals are different numbers and types of resources that the RLA needs to
gather in order to win.

The RLA has located a successful policy for each one of those cases, showing
that the cooperative version of the game is solvable as an MDP problem. As we see
in Figure 8.1, in the case where the goal is to build a city it learns to win 96.8%
of the time (not 100% due to the cases with insufficient initial resources). It has
identified and taken advantage of the power of the “give 1-for-2” over the “give 1-for-
17 trades and therefore it uses them much more frequently (with a ratio of around
75% over 25% for the “give 1-for-17). The adversary that it plays against does not
have an opponent model, the learning agent’s trading proposals do not affect it, and
the adversary always accepts them. Hence we initially show that RL is capable of
successfully learning how to trade in this version of the game (with every different

goal) while learning to also exploit the “give 1-for-2” trading proposals.

Average reward-victory per training cycle

g

&

8

g % 8 & & o 8 @

Average reward-victory

50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000
Training cycle

=

Figure 8.1: Learning Agent’s reward-victory graph in 500 thousand training games
of Initial Fxperiment: building a city, cooperative adversary.

121

CHAPTER 8. CATAN: OPPONENT MODELS 8.2. MANIPULATION

8.2 Manipulation

In the following experiments we assume that all of the trading proposals (apart
from “I will do nothing”) affect the opponent model of the adversary (implicit ma-
nipulation). Hence a trading proposal may or may not lead to a trade (the ac-
tion’s stochastic effect), but it will definitely affect (action’s deterministic effect)
the adversary’s belief model (opponent model). Here we will discuss each action’s
deterministic effect. Each of the trading proposals consists of two parts: the offered
resource and the wanted one(s). The adversary’s opponent model is affected by
both of these parts — for example the more often the agent insists on asking for
wheat, the less the adversary will be eager to give it in an attempt to hinder the LA
(discussed in Section 8.2.3). Hence the agents need to learn how to appropriately
use this effect in order to successfully manipulate the adversary and reach the goal
number of resources. Manipulation changes the probabilities (weights) of actions in
the way that we will examine in Section 8.2.3 (which is similar to that in Section
5.2). However here the offered resource and the wanted resource of each of the LA’s
trading proposals increase and reduce respectively the corresponding weights of the

adversary’s responses.

8.2.1 Corpus analysis

An example of the type of human non-cooperative dialogue behaviour which we
are generating in this part is given by our (dishonest) trading player agent A in the

following dialogue:

Al: “I will give you a wheat and I need 2 clay”[A lies - it does not need clay but it
needs wheat]

B1: “No”

A2: “T’ll give you a rock and I need a clay”[A lies again and it actually needs rocks

too, but it does not have any rocks to give]

B2: “No”
A3: “T’ll give you a clay and I need a wheat
B3: “Yes”

Here, B is deceived into providing the wheat that A actually needs, because B
believes that A needs clay (A asked for it twice) rather than wheat and rock (that it
offered). Similar human behaviour can be observed in the Catan game corpus [1] a

set of on-line trading dialogues between humans playing Catan. We analysed a set of

122

CHAPTER 8. CATAN: OPPONENT MODELS 8.2. MANIPULATION

32 logged and annotated games, which correspond to 2512 trading negotiation turns.
We looked for explicit lies, of the form: Player offers to give resource X (possibly
for Y) but does not hold resource X - such as in turn A2 in the above example.

11 turns out of 2512 were lies of this type. Since this corpus was not collected with
expert players, we expect the number to be larger for more experienced negotiators.
Other lies such as asking for a resource that is not really wanted, cannot be detected

in the corpus, since the player’s intention would need to be known.

8.2.2 Actions (Trading Proposals)

Trade occurs through trading proposals that may lead to acceptance or rejection
from the adversary, and have deterministic and stochastic effects. The action’s
stochastic effect is whether or not the trade proposal (action) will be accepted. In
an agent’s proposal (turn) only one “give 1-for-1” or “give 1-for-2” trading proposal
may occur, or nothing (41 actions in total for the case of the dishonest RLA):

1. I will do nothing
2. I will give you a wheat and I need a timber

3. I will give you a wheat and I need a rock

40. I will give you a brick and I need two rocks

41. T will give you a brick and I need two sheep

In contrast to the case of the dishonest RLA, the cases of the honest RLA and
the naive HCA that we will examine consist of 17 of the above actions because they
ask only for goal resources (rock and wheat). The adversary responds by either
saying “Yes” or “No” to accept or reject the learning agent’s proposals. Each of

these actions affects the adversary’s opponent model as described below.

8.2.3 The Adversary and its Opponent model

The adversary remains the same in all of our experiments. We assume that it
has an infinite amount of available resources, like the adversary which is discussed
in Section 8.1. It is in fact the same adversary, with a further implementation of
the intuition that a rational adversary will act so as to hinder other players in re-

spect of their expressed preferences. Opponent models (OM) with hindering abilities

123

CHAPTER 8. CATAN: OPPONENT MODELS 8.2. MANIPULATION

have previously been shown to be important in games such as the “Machiavelli” card
game [8]. Hence our adversary is using an opponent model that is based on hindering
the LA’s preferences, as the LA expresses its preferences through trading proposals
and this is the only information that the adversary receives. Since opponent mod-
elling is focused on using knowledge about other agents to improve performance, the
adversary therefore hinders the LA’s announced preferences (trading proposals).
Our model is based on this approach to OM and uses knowledge (from the LA’s
announcements) in an effort to improve its performance. Unlike the OM [16, 49,
50] or the PrOM search model of [24] though, it does not explicitly predict the
moves of the LA, but the history of those moves are used to direct the adversary’s
future responses. The adversary therefore uses an opponent model which directs its
responses to the other agent’s (RLA or HCA) trading proposals. Every time that an
agent utters a trading proposal, probabilities of the adversary giving resource types
change accordingly (as we will see below), and therefore the adversary becomes
more or less eager to give some resources than others. It does this because it tries
to hinder the other players from acquiring the resources that they ask for. For
instance, if an agent insists on asking only for wheat then the probability that it
will be given becomes very low (the adversary considers it now as valuable), but the
relative probability that it will get one of the other four resources increases.
However here the adversary also takes into consideration what the agent offers
to give, so the more an agent keeps offering a resource the more likely it becomes
for the adversary to give it too (it considers the resource as less valuable). In
detail, at the beginning of each game the probabilities (weights) that represent the
adversary’s willingness to give (i.e. through responses to the LA’s trading proposals)
each of the five resource types start equally (each is 20%). When the LA asks for a
resource then the adversary’s probability to give that particular resource (through
its responses) is reduced by either 4% or 6% (if it is a “give 1-for-1” or “give 1-
for-2” trade proposal respectively), and the probabilities of giving the four other
resource types increase accordingly (i.e. equally, each increases by either 1% or 1.5%
respectively). The probability of giving the LA’s offered resource also increases by
4% and those which give the other resources decrease accordingly (i.e. equally, each
one decreases by 1%). As the adversary responds only to the LA’s trading proposals,

[4

these probabilities actually apply to the various adversary’s responses (i.e. “yes” or
“no”) to the LA’s proposals. We experimented with a variety of different increments,
and similar results were obtained to those presented below, so nothing particularly
hinges on the 4% figure!. Due to this opponent model, it is possible to manipulate
the adversary into eventually giving resources that are needed, if the right trading

proposals are made.

Manipulation would be much more “rapid” if the percentage was for example 30%, instead of

1%.

124

CHAPTER 8. CATAN: OPPONENT MODELS 8.2. MANIPULATION

8.2.4 The Honest Reinforcement Learning Agent - “The
Good”

The honest RLA only asks for resources that it really needs (therefore it is
restricted to 17 out of the 41 actions). It is a sincere RLA and it only proposes a
trade after it has checked that the offered resource is indeed available. However, the
fact that it still learns how to successfully manipulate (legitimately persuade) the
adversary under those honest constraints, and in a continuous non-stationary MDP
environment due to the ever-changing adversarial belief model (i.e. the environment’s
dynamics can change after an action is selected), makes the outcome surprising. In
the experiments that follow we will see that it locates a honest way of persuading
its adversary (e.g. it says “I will give you 1 timber for 1 rock”, and it needs rock as

its goal is to gather 2 wheat and 3 rocks and build a city).

8.2.5 The Dishonest Reinforcement Learning Agent - “The
Bad”

The dishonest RLA can ask for resources that it does not need (therefore it uses
all of the 41 actions). It can also propose trades without checking if the offered
resource is available. If such a deceitful trading proposal gets accepted by the
adversary, the RLA then refuses to actually make the trade. Thus its learning
process is a harder Reinforcement Learning task than that of the honest RLA (since
it has more actions). However, it still learns how to successfully manipulate (deceive)
the adversary under those dishonest conditions, and in a continuous non-stationary
MDP environment due to the ever-changing adversarial opponent model as above,
resulting on a surprisingly equal performance with that of the honest RLA. As we
will see in the experiments that follow, its strategy is based on the use of lies (e.g.
it says “I will give you 1 timber for 1 sheep”, but it does not need sheep as its goal

is to gather 2 wheat and 3 rocks and build a city).

8.2.6 The Naive Hand-Crafted Learning Agent - “The Ugly”

This agent is not a learning agent but instead uses a hand-crafted naive strategy.
In detail, it uses a reasonable way of proposing trades by checking the availability
of the resources that it does not need and offers them for those that it needs in

an equi-probable manner. The reason that we call it naive (as well as “ugly”) is

125

CHAPTER 8. CATAN: OPPONENT MODELS 8.2. MANIPULATION

because it does not take into consideration the fact that its trading proposals affect
the adversary’s opponent model and -instead of learning that- it just keeps following
the same naive rule-based strategy. This agent is a baseline case and despite the
fact that its strategy is quite sensible, we show that it is significantly worse than
that of the two manipulative RLAs.

8.2.7 Naive HCA vs. Adversary: Experiment 1 (Baseline)

The naive HCA played 3 million games against the Adversary in Experiment 1.
This is our baseline case for comparison. The agent’s trading proposals affect the
opponent model of the adversary but the agent is unaware of that and therefore
it does nothing about it. It just keeps playing the game based on the naive but

reasonable strategy discussed in Section 8.2.6.

8.2.8 Honest RLA vs. Adversary: Experiment 2

In this experiment we trained the honest RLA against the adversary in 3 million
games. The RLA’s trading proposals affect the opponent model of the adversary
and we show that, despite the honest constraints, the honest RLA can learn how
to successfully manipulate the adversary. Ultimately we show that the performance
is better than that of the baseline case in Experiment 1. The performance of the

Honest RLA before training (i.e. random action selection) is about 21% (win rate).

8.2.9 Dishonest RLA vs. Adversary: Experiment 3

In this experiment we trained the dishonest RLA against the adversary in 3
million games. The RLA’s trading proposals again affect the opponent model of
the adversary and we show that the dishonest RLA can learn how to successfully
manipulate it. As above, we show that the performance is better than that of the
baseline case in Experiment 1. Furthermore, we explore how well this deceitful RLA
performs compared to the previous honest one, which legitimately persuades. The
performance of the Dishonest RLA before training (i.e. random action selection) is
about 4% (win rate).

126

CHAPTER 8. CATAN: OPPONENT MODELS 8.2. MANIPULATION

8.2.10 Results

The RLAs were trained on 3 million games against the Adversary. Their policies
were then tested in 20,000 games. The HCA played 3 million games too against the
same adversary. As there was no learning in this case, no testing games were played
because its performance remained stable throughout the 3 million games as we will

see below.

8.2.11 Naive HCA: Experiment 1 results

The naive HCA has a win rate of only 25.3%. This is shown by a yellow horizontal
line in the graphs below. Its strategy, 50% of the time focuses on asking for wheat
by offering each one of its available unwanted resources in turn, and 50% of the time

asking for rocks using the same technique.

8.2.12 Honest RLA: Experiment 2 results

The honest RLA scored a winning performance of 35.8%, see Figure 8.2, starting
from 21.1% (which is the performance of random action selection). Its strategy
focuses on asking initially for either wheat, until it gathers rocks, or for rocks until
it gathers wheat that needs to build a city (2 wheat and 3 rocks are required). It
also mainly offers resources that it needs (goal ones) -and has available- instead of
non-goal ones as it will become then easier to get them back. This honest persuasive

strategy proved to be very effective against the adversarial hindering policy.

8.2.13 Dishonest RLA: Experiment 3 results

The dishonest RLA scored a winning performance of 36.2% after 3-million train-
ing games (see Figure 8.3), starting from only 4.2%. That clearly shows that its
task was much harder than that of the honest RLA in Experiment 2, which started
from 21.1%, as it has to understand how to effectively manipulate through all of
the 41 actions (rather than the 17 honest actions which ask for goal resources only).
Nevertheless its very effective learned strategy mainly focuses on the use of lies. It
asks especially for resources that it does not need only for the sake of manipulation

(deception) and it offers resources that it does not have for the same purpose. The

127

CHAPTER 8. CATAN: OPPONENT MODELS 8.2. MANIPULATION

Average reward-victory per training cycle

,000
OO
500 ‘ H‘
it thet

Figure 8.2: Honest RLA’s reward-victory graph in 8 million training games (exper-
iment 2). Yellow horizontal line = Baseline performance (Naive HCA).

type of the offered resources in this case are mainly goal ones again (as above) and
the fact that this RLA can lie about their availability makes such offers even more
frequent than before. This dishonest strategy proved to be equally effective with
that of the honest RLA though.

Both of the RLAs (as we saw in Experiment 2 too) managed to learn successful
strategies despite the fact that there are cases where the initial resources are insuf-
ficient to reach the goal within 7 trading proposals. They both realized again (as in
our Initial Experiment, Section 8.1) the power of the “give 1-for-2” over the “give 1
for-1” trades and they used them more often. Hence, in some cases they managed to
approach their goals even with insufficient initial resources. By comparing the two
manipulative cases to that of Experiment 1 we show that manipulation (through le-
gitimate persuasion [Experiment 2] or deception [Experiment 3|) can be successfully

learned by our RLAs and outperform by 11% a naive but reasonable strategy.

’ Exp. H Learning Agent policy \ Adversary policy H Agent’s wins
Initial || SARSA Accepts every trade 96.8%
Random Honest actions Hinders agent’s preferences 21%
Random Dishonest actions Hinders agent’s preferences 4%
1 Hand-Crafted Naive Honest (Baseline) | Hinders agent’s preferences || 25.3%
2 SARSA + Honest actions Hinders agent’s preferences 35.8%*
3 SARSA + Dishonest actions Hinders agent’s preferences 36.2%*

Table 8.1: Performance (% wins) of the discussed learning agents in 20 K testing
games, after training. (*= significant improvement over baseline [Exp. 1] in bold
text, p < 0.05)

128

CHAPTER 8. CATAN: OPPONENT MODELS 8.2. MANIPULATION

Average reward-victory per training cycle

R

|
if
150

ra

9

|
i

|
|‘

cycle

|
inin

| =

Figure 8.3: Dishonest RLA’s reward-victory graph in 8 million training games (ex-
periment 3). Yellow horizontal line = Baseline performance (Naive HCA).

8.2.14 Discussion: a Non-Stationary MDP problem

Our Experiments 2 and 3 also show that RL is capable of learning successful
policies even in the case where the environment’s dynamics change (maximum of 7
times per game due to the maximum number of trading proposals which is 7) and
each action (trading proposal) has a stochastic effect (that of a possible trade) and
a deterministic effect (that on adversary’s opponent model because of the manip-
ulation). Every time the honest or dishonest RLA proposes a trade, the opponent
model of the adversary changes as we have seen. That means the environment
changes too (as the adversary is a part of it according to the RLA’s perspective)
and therefore makes our problem a non-stationary MDP [91]. Despite the fact that
only the RLA’s actions are responsible for those changes and so the problem may be
solved by recasting it into a stationary one through state augmentation [17], our case
is more complex. This is because our RLA’s actions affect the environment in two
different ways (through their stochastic and deterministic effects). We also chose
not to enrich the state representation because we wanted to see if RL is capable of
handling our non-cooperative case with no further augmentations. Enriching the
state is not always a good solution as we will see in Section 8.4, where the CP-NET
RLA whose state representation consists of 25 slots, will not manage to outperform
the NPRLA whose state representation has 10 slots. The state may include too
much noise for the RL to handle and result in a good policy. In the above example
of the CP-NET RLA, we will see that the state augmentation makes its task harder.
However we have enriched in the past (e.g. Chapter 4) the LA’s state representation
with a feature that maintains information about the turn of the game (i.e. trading

proposal turn or response turn). When necessary, state augmentation is advised.

129

CHAPTER 8. CATAN: OPPONENT MODELS 8.3. PREFERENCES

In our case, the environment (adversary) responds to trading proposals based on
the history of the deterministic effects of the actions (trading proposals’ manipulative
effect on adversary’s belief) up to that point. In other words, the same action
(trade) may have different effects due to the deterministic effects on the environment
(changes of the adversary’s opponent model) of the actions that preceded it. There
are successful combinations between these two different kinds of effects that the RLA
has managed to identify and learn how to effectively use, originating from the multi-
dimensions (manipulative dimensions) of the problem. It is therefore an interesting
multi-dimensional non-stationary MDP case that we have shown to be solvable by
RL, which suggests that trading proposals in dialogue evoke non-stationary beliefs
in our everyday negotiations. We demonstrated that phenomenon with the realistic
assumption that the adversary’s opponent model is affected by all normal trading

actions.

8.2.15 Discussion: Discourse Studies

Our results also bring an important argument of Van Dijk [20] to light, according
to which there is an everyday conventional inference of dishonesty from manipulative
acts. That negative effect cannot be taken for granted though as manipulation
according to Dillard and Pfau [21], as well as O'Keefe [78] also occurs through
legitimate persuasion. This is what our RL work suggests too. Hence we emphasize

the significance of Attardo’s perlocutionary cooperation [6] as before (Section 3.1.3).

8.3 Preferences

The experiments that follow in this section and the next one (Section 8.4) show
that trading dialogues are more successful when the learning agent builds an oppo-
nent model — an estimate of the (hidden) goals and preferences of the adversary —
and learns how to exploit them. We explore a variety of state space representations
for the preferences of trading adversaries, including a representation based on the
Conditional Preference Networks (CP-NETS) (in the next section 8.4) that have
previously been discussed in Section 2.5. We will show that representing adversary

preferences leads to significant improvements in trading success rates.

130

CHAPTER 8. CATAN: OPPONENT MODELS 8.3. PREFERENCES

8.3.1 Actions (Trading Proposals)

Trade occurs through trading proposals that may lead to acceptance or rejection
from the adversary, In an agent’s proposal (turn) only one “give 1-for-1” or “give
1-for-2” trading proposal may occur, or nothing (41 actions in total) as we have seen

previously:

1. T will do nothing

2. I will give you a wheat and I need a timber
3. I will give you a wheat and I need a rock
4. T will give you a wheat and I need a sheep
5. I will give you a wheat and I need a brick

6. I will give you a timber and I need a wheat

40. I will give you a brick and I need two rocks

41. T will give you a brick and I need two sheep

The adversary responds by either saying “Yes” or “No” to accept or reject the

learning agent’s proposals.

8.3.2 The State Encoding Mechanism

As we have seen in Section 7.2.5, to overcome issues related to long training
times and high memory demands, we implemented a state encoding mechanism
that automatically converts all of our trading game states to a significantly smaller
number of states in a compressed representation. The new state representation
consists of 10 slots (only the first 5 slots are used for the baseline LA which does not
represent estimated adversary preferences) and takes into consideration the distance
from goal and the availability of the resource, as well as its quality (goal or non-goal
resource), and uses 7 different characters (A, G, Z, N, M, 1, and 2 described below)
for the first 5 state slots. These represent the five resources that it currently has
available. For example, in the case of building a the city, it needs 2 wheat and 3
rocks. That means that two out of five resources are goal resources and therefore

they can be represented by G (goal) when their number is equal to the goal amount,

131

CHAPTER 8. CATAN: OPPONENT MODELS 8.3. PREFERENCES

N (null) when their number is 0, M (more) when their number is more than the goal-
quantity, and 1 or 2 when the distance from the goal quantity is 1 or 2 respectively.
The 3 non-goal resources are represented by Z (zero) when the agent has 0 of them
and A (available) when the agent has more than 0. For instance, the game state
(1,4,3,0,2) would be encoded to (1,A,G, Z, A). The state space of the agent’s
resources therefore has 8 x 8 x 8 x 8 x 8 (=32,768) states that are encoded to only
4x2x5x2x 2 (=160) states. This is reduced to 0.5% of the original size of the
state space. With this method all of our experiments (apart from those with the

CP-NETs that we will see later) require only a few minutes to run on a multi-core
CPU with 128GB RAM.

8.3.3 State representing adversary’s preferences

The next 5 state slots are used to refer to the adversary’s preferences, based on
the history of the adversary’s acceptances and/or rejections of particular resources.
Information regarding previous interactions has been taken into consideration in
the past by agents such as the AutONA negotiation agent of Byde [13], who used
a rule-based agent though, or those of Katz [58, 59], where RL is applied and three
categorical databases (one general and two additional gender-oriented) are used
to hold information about previous interactions in “Cliff Edge” environments (e.g.
simultaneous auctions). Our 5 state slots are used only by the two RLAs which keep
track of the adversarial preferences.

One of the two RLAs uses 2 different characters to represent whether or not the
adversary wants a particular resource (i.e. accepts it), and the other RLA uses 3
characters because it also considers resources that the adversary does not want (i.e.
it rejects that resource). Hence in these two cases we use 3 different characters,
E (empty character) for a resource that we do not know if the adversary wants,
X for a resource that we know that the adversary wants (it has accepted it before
in the current game) and O for a resource that the adversary has rejected. This
mechanism results in a series of 5 additional characters in the state representation
for the two RLAs who estimate the adversary’s goal. The RLA must figure out for
itself the relationship between these 5 state variables and the first 5 (which represent
the cards/resources that it holds). It therefore has to learn how these state variables
relate to possible successful trading actions that it can take.

Based on the previous example, where the 5 first state slots represent the LA’s
current resources, an example state would be: (1, A, G, Z, A, X, E,O,E, X). The 5
last characters of this example mean that the adversary has a preference for wheat,
we don’t know if it wants timber or sheep, it does not have a preference for rocks, and

it also wants bricks. Note that a full representation of the conditional preferences

132

CHAPTER 8. CATAN: OPPONENT MODELS 8.3. PREFERENCES

(using CP-NET) of the adversary (e.g. “I will give sheep for rock, but not for wheat”)

is used in Section 8.4.

8.3.4 The Adversary and the Preference RLAs

The challenging non-cooperative Adversary sets a random goal, which is always
to either build a city, or a settlement, or a development card, or a road, at the be-
ginning of each new trading game. Hence its preferences (and therefore its responses
to the learning agent’s trading proposals) will change according to the current goal.
As before, we assume that the adversary has an infinite amount of resources to give.

We investigate several different learning agents playing against this Adversary:

e The Baseline Reinforcement Learning Agent (BRLA).
e The Positive Preferences RLA (PPRLA)

e The Negative-Positive Preferences RLA (NPRLA)

The Baseline RLA plays the game against the adversary who sets a random
goal at the beginning of the new game. It does not keep track of the adversar-
ial preferences and therefore it does not estimate the adversary’s goal. Its state
representation consists only of the resources that it currently has available, as we
discussed in Section 8.3.2.

The PPRLA plays the game against the same adversary (as above) who sets
a random goal at the beginning of the new game. It keeps track of the adversarial
preferences and estimates the adversary’s goal based on what resources the adversary
has accepted in the trading dialogue so far. Its state representation consists of
the resources that it currently has available plus the adversarial preferences, as we
discussed in Sections 8.3.2 and 8.3.3. Those preferences though do not represent
rejected resources. Hence this RLA infers the adversarial preferences based on the
accepted trades only.

The NPRLA keeps track of the adversarial preferences as above but it rep-
resents rejected resources too. Hence this RLA infers the adversarial preferences

based on the accepted and the rejected trades.

8.3.5 Experiments and Results

All agents are compared in respect of their win rates (or to rephrase this, trade

success rate), which is the percentage of trading games in which they achieve their

133

CHAPTER 8. CATAN: OPPONENT MODELS 8.3. PREFERENCES

goal (in this case, to get the resources required to build a city), within a sequence
of 7 trading proposals (moves). A city is quite difficult to achieve, since it requires
3 rocks and 2 wheat. The y-axes of the graphs that follow represent the trade

success rate (which we also refer to as “success rate”, “reward-victory”, or simply

“win rate”).

8.3.6 BRLA vs. Adversary: (Baseline)

The Baseline RLA (i.e. with no opponent modelling) played 250 thousand train-
ing games against the Adversary. This is our baseline case for comparison. The agent
then played 20 thousand testing games and scored a 28.1% success rate (Figure 8.4,
see Table 8.2).

Average reward-victory per training cycle

] 25,000 50,000 75,000 100,000 125,000 150,000 175,000 200,000 225,000 250,000
Training cycle

=

Figure 8.4: Baseline Agent’s reward-victory graph in 250 thousand training games.

8.3.7 PPRLA vs. Adversary

Here we also trained the Positive Preferences RLA against the adversary over
250 thousand training games. The agent then played 20 thousand testing games
and had a 44.2% success rate (Figure 8.5, see Table 8.2).

134

CHAPTER 8. CATAN: OPPONENT MODELS 8.3. PREFERENCES

Average reward-victory per training cycle

V o 25,000 50,000 75,000 100,000 125,000 150,000 175,000 200,000 225,000 250,000
Training cycle

=

Figure 8.5: PPRLA’s reward-victory graph in 250 thousand training games.

8.3.8 NPRLA vs. Adversary

Here we trained the Negative-Positive Preferences RLA against the adversary
over 250 thousand training games. Over 20 thousand testing games the agent

achieved a success rate of 52.5% (Figure 8.6, see Table 8.2).

8.3.9 Conclusion

In this part we showed that a RLA which keeps track of adversarial preferences
outperforms one which does not by 24.4%. Furthermore, a RLA which takes into
consideration the accepted and rejected trades in opponent modelling (i.e. positive
and negative preferences) outperforms one which considers only the accepted trades
by 8.3%. Note that these preferences are inferred during learning since the begin-
ning of each new game and they are not given to the RLA a priori. Thus the RLA
is learning how to estimate and exploit the preferences of its opponent in its trad-
ing behaviour within 7 trading proposals. In the next section we will extend this
approach to use conditional preference information [14]. In this chapter we also
presented a novel way of encoding the state space for RL of trading dialogues that
reduces the state-space size to 0.5% of the original, and so reduces training times

dramatically.

135

CHAPTER 8. CATAN: OPPONENT MODELS 8.3. PREFERENCES

Average reward-victory per training cycle

55.0

525

50.0
475
45 0
42.5 1
400
375
3 |
|
- ‘ il
et
:
' il
(i
|
| |
| |
|

|
|

w o

wverage reward-victory
hoE s B ou

200

A
o

- ‘ it
| _M

| f
WWWM (

0 25,000 50,000 75,000 100,000 125,000 150,000 175,000 200,000 225,000 250,000
Training cycle

=

Figure 8.6: NPRLA’s reward-victory graph in 250 thousand training games.

[LA Name | Learning Agent opponent model || Success Rate (infinite) | Success Rate (finite) |
BRLA No preferences considered 28.1% 15.4%
PPRLA Trade acceptance considered 44.2%* 19.1%*
NPRLA Trade acceptance and rejection considered 52.5%* 22.5%*

Table 8.2: Success rate of the Learning agent who considers the adversary’s prefer-
ences. Adversary with infinite/finite resources. Performance (% wins) in 20K test-
ing games, after training (*= significant improvement over baseline [BRLA cases]
in bold, p < 0.05)

8.3.10 Adversary with finite resources

So far we have assumed that the Adversary’s resources are infinite, so the ex-
periments were conducted again against the same Adversary which now has a finite
random number of each resource (between 0 and 7, like the learning agents) at the
beginning of each new game. We suspected that the task would be much harder for
the agent to learn but we wanted to see exactly what the difference would be and
approach real scenarios, because human players have a limited number of resources
to trade. Hence there are cases where the opponent refuses to make a trade for two
reasons: he/she does not need the resource or he/she does not have the resource to
give. The ratios of the results are similar with the above, but the actual numbers
are all much lower. In more detail, in 250k training games and after 20k testing
games the performances of the agents were 15.4% for the BRLA (versus was 28.1%
before), 19.1% for the PPRLA (versus 44.2% before) and 22.5% for the NPRLA
(versus 52.5% before) — see Table 8.2.

136

CHAPTER 8. CATAN: OPPONENT MODELS 8.4. CP-NETS

8.4 CP-NETs

We now extend the previous experiments to the cases where the RLA uses a Con-
ditional Preference Network — CP-NET [11] — to model the adversary’s preferences.
The Adversary and the actions remain the same. The state encoding mechanism is
extended, to encode the CP-NET reasoning in an MDP state. As far as we know
this is the first time CP-NETs have been used with RL [29]. We will show that
representing adversary preferences with CP-NETs leads to over 24% improvement

in win rate.

8.4.1 New extended state representation

A CP-NET expresses conditional preferences between events in a ceteris paribus
paradigm (i.e. all else being equal) in a very informative, hierarchical manner which
allows easy interpretation of complex preferential dialogue acts as we have discussed
in the Background Chapter 2. We want to see whether RL is capable of inferring
how to effectively use the CP-NET’s functionality to increase the agent’s trading
performance. In our case we use it to keep track of the adversary’s preferences,
through the history of its accepted and rejected trades during a game. The history
consists of a maximum of 7 RLA trading proposals and the corresponding adversary’s
responses as we have seen previously. The CP-NET resides in the RLA’s state
representation and consists of all those pairs that are formed by expressing the
adversarial preference of one giveable resource over a receivable other one (there is
a total of 5 resources). For example “I will give you wheat for sheep” expresses a
preference for receiving sheep over giving wheat. Hence, the RLA has now a state
representation which consists of 25 features, that is: 5 for the resources (which are
encoded as we have seen before in Section 8.3.2) and 20 for the CP-NET adversarial
preferences.

An example of such a feature (preference) might be s — r, that is the adversary’s
preference for sheep over rocks. This would be inferred from the acceptance of
the RLA’s proposal: “I will give you sheep and I need rocks”. Rephrasing this in
CP-NET terms would be an acceptance to: “Given that I will give you sheep I
need rocks”, or from the adversary’s perspective: “Given that I will receive sheep
from you, I will give you rocks”. So in other words we capture the adversarial
conditional preferences between a giveable resource over a receivable one. We use
again 3 different characters to represent the RLA’s knowledge about the adversary’s
preference for each of the CP-NET’s 20 possibilities, with £ (empty preference)

for a preference that we do not know if the adversary has, X for a preference that

137

CHAPTER 8. CATAN: OPPONENT MODELS 8.4. CP-NETS

we know that the adversary has, and O for a preference that the adversary has
rejected. Thus the RLA must figure out again for itself the relationship between
these 20 state variables and the first 5 (which represent the cards/resources that it
holds). It therefore has to learn how these state variables relate to possible successful

trading actions that it can take as we have examined before.

8.4.2 CPNET RLA vs. Adversary

Initially we trained the CP-NET RLA against the adversary (with infinite re-
sources) over 250 thousand games. After 20 thousand testing games this RLA
achieved a success rate of 36.1% (Figure 8.7 and Table 8.3). The performance is
significantly better than that of the BRLA (28.1%, discussed in the previous Section
8.3), proving that the CP-NET improves the Reinforcement Learning procedure, but
it is worse than that of the PPRLA (44.2%) and that of the NPRLA (52.5%) for the
same number of training games. We presume that the reason was the significantly
larger state representation that the CP-NET RLA uses, which consists of 25 slots
rather than 10 for the PPRLA and NPRLA. It would probably require many more
training games to achieve higher performances than those of its rivals (PPRLA and
NPRLA). Hence we ran another experiment for 1.5 million training games (Fig-
ure 8.8), and in the following 20k testing games the CP-NET RLA’s performance
increased to 46.9%.

Average reward-victory per training cycle

|

Figure 8.7: CPNET RLA’s reward-victory graph in 250 thousand training games.

T
\"',

| |
0,000

il
|
|

i

c

That result was better than that of the PPRLA in 250K testing games but not as
high as that of the NPRLA in 250k testing games. Thus we ran another experiment

for 2.5 million training games (Figure 8.9) to verify whether the improvement in

138

CHAPTER 8. CATAN: OPPONENT MODELS 8.4. CP-NETS

Average reward-victory per training cycle

250,000 500,000 750,000 1,000,000 1,250,000 1,500,000
Training cycle

=

Figure 8.8: CP-NET RLA’s reward-victory graph in 1.5 million training games.

performance would be as important as previously. In 20k testing games the perfor-
mance of the CP-NET RLA was 50.3%. A final experiment (which required a very
long running time) for 5 million training games (Figure 8.10) and 20k testing ones
resulted in 52.4% performance. Even within this long training range the CP-NET
RLA did not manage to perform better than the NPRLA which was trained for 5m
games, resulting to a similar performance with that of the NPRLA trained for 250k

games. See Table 8.4 for a summary of the results for longer training times.

Average reward-victory per training cycle

ERZS
£
£
'3 300
-
8275
H
S50
o
?225

< 200

500,000 1,000,000 1,500,000 2,000,000 2,500,000

Training cycle

=

Figure 8.9: CP-NET RLA’s reward-victory graph in 2.5 million training games.

139

CHAPTER 8. CATAN: OPPONENT MODELS 8.4. CP-NETS

Average reward-victory per training cycle

45.0 “
|

40.0

:
%2

f

Figure 8.10: CP-NET RLA’s reward-victory graph in 5 million training games.

’ Experiment H Learning Agent policy \ Adversary resources H Agent’s wins
BRLA (1) SARSA (250k games, baseline) | co 28.1%
CP-NET RLA || SARSA + CP-NET (250k games) 00 36.1%*
BRLA (2) SARSA (250k games, baseline) | finite 15.4%
CP-NET RLA || SARSA + CP-NET (250k games) finite 18.1%*

Table 8.3: Wins of the CP-NET Learning Agent. Performance (% wins) in 20 K
testing games, after training. (*= significant improvement over baseline [BRLA
cases/ in bold, p < 0.05)

’ Experiment H Learning Agent policy \ Adversary resources H Agent’s wins ‘
CP-NET RLA || SARSA + CP-NET (1.5m games) | oo 46.9%*
CP-NET RLA || SARSA + CP-NET (2.5m games) | oo 50.3%*
CP-NET RLA || SARSA + CP-NET (5m games) 00 52.4%*

Table 8.4: Training for longer (infinite resources): Wins of the CP-NET Learning
Agent. Performance (% wins) in 20 K testing games, after training. (*= significant
improvement over baseline [BRLA (1) case with infinite adversarial resources, Table

8.3], p < 0.05)

8.4.3 CP-NETS and finite resources

As we did in Section 8.3.10, we initially assumed that the Adversary’s resources
are infinite. The above experiment for 250k training games was conducted again
against the same Adversary but now with a finite random number of resources at
the beginning of each new game. As expected the result is now much lower than
before. In 250k training games and after 20k testing games the CP-NET RLA scored
a performance of 18.1%, compared to 36.1% against the Adversary with an infinite

amount of resources (see Table 8.3). The performance was still better than that of

140

CHAPTER 8. CATAN: OPPONENT MODELS 8.5. SIGNIFICANCE

the baseline though with a difference of 2.7%.

8.5 Statistical significance

Similarly to Sections 4.4 and 5.5, we performed Z-tests? between the winning
learning agent samples of our baseline cases (agent’s wins) and that of each one
of our other cases (Tables 8.1, 8.2, 8.3 and 8.4). By considering only the wins of
the agent from the baseline cases and those of the other cases we performed Z-tests
between their distributions to prove that they are statistical significant. Every result
with an asterisk (%) on the above tables was significant at p < 0.05. Hence we can
confidently say that these cases reject the null hypothesis®.

In more detail, the total number of (testing) games that were taken into consid-
eration in every case were 20,000. According to Table 8.1 the total number of wins
from the Exp. 1 were 5,060, and from the Exp. 2 were 7,160. The LA’s wins in Exp.
2 have higher score than those of the LA in the Exp. 1 (z = 22.7954, p = 0). The
total number of wins from the Exp. 3 were 7,240. The LA’s wins in Exp. 3 have
higher score than those of the LA in the Exp. 1 (z = 23.6208, p = 0). According to
Table 8.2, for the infinite cases, the total number of wins from the BRLA were 5,620,
and from the PPRLA were 8,840. The PPRLA’s wins have higher score than those
of the BRLA (2 = 33.5113, p = 0). The total number of wins from the NPRLA were
10,500. The NPRLA’s wins have higher score than those of the BRLA (z = 49.7451,
p = 0). According to Table 8.2, for the finite cases, the total number of wins from
the BRLA were 3,080, and from the PPRLA were 3,820. The PPRLA’s wins have
higher score than those of the BRLA (z = 9.7932, p = 0). The total number of wins
from the NPRLA were 4,500. The NPRLA’s wins have higher score than those of
the BRLA (z = 18.1166, p = 0).

According to Table 8.3, for the infinite cases, the total number of wins from the
BRLA (1) were 5,620, and from the CP-NET RLA were 7,220. The CP-NET RLA’s
wins have higher score than those of the BRLA (1) (2 = 17.1357, p = 0). For the
finite cases, the total number of wins from the BRLA (2) were 3,080, and from the
CP-NET RLA were 3,620. The CP-NET RLA’s wins have higher score than those
of the BRLA (2) (z = 7.2304, p = 0). According to Tables 8.3 and 8.4, the total
number of wins from the BRLA (1) (Table 8.3) were 5,620, and from the CP-NET
RLA for 1.5m games (Table 8.4) were 9,380. The CP-NET RLA’s wins for 1.5m
games have higher score than those of the BRLA (1) (z = 38.8331, p = 0). The total
number of wins from the CP-NET RLA for 2.5m were 10,060. The CP-NET RLA’s

http:/ /www.socscistatis tics.com/tests/ztest/Default2.aspx
3The null hypothesis states that the LA’s wins from these experiments are not statistically
significant compared to those from the corresponding baseline cases.

141

CHAPTER 8. CATAN: OPPONENT MODELS 8.6. CONCLUSION

wins for 2.5m games have higher score than those of the BRLA (1) (z = 45.4735,
p = 0). The total number of wins from the CP-NET RLA for 5m were 10,480. The
The CP-NET RLA’s wins for 5m games have higher score than those of the BRLA
(1) (z = 49.5512, p = 0).

8.6 Conclusion

In this chapter we showed that implicit linguistic manipulation through decep-
tion or persuasion, based on all of the normal trading proposals, can be successfully
learned via RL and significantly increases the performance of agents in a more com-
plex trading environment than Taikun. We brought to light philosophical arguments
by demonstrating through RL that manipulation is not (and should not) be only
translated as deception, it can be performed through persuasion too, as our hon-
est (persuasive) agent resulted in a similar performance with that of the dishonest
one versus the same hindering adversary. At this point though, interesting future
work might cover cases where there will be detection of multiple refusals to make a
trade. These refusals may occur by the dishonest RLA after it has made a trading
proposal which has been accepted by the adversary. We have seen that sometimes
the dishonest agent does not really have the proposed resource to give, it lies when
it offers it and therefore it refuses to trade it if its offer gets accepted. Detection in
such cases could occur by agents similar to those of Sections 5.4 and 5.8.1. Also in
our version of the game Catan, the agents learned how to successfully trade through
larger state spaces than before, using many more actions that made the environment
non-stationary due to their deterministic effect (i.e. that of manipulation). Further-
more we saw that RLAs which include the adversarial preferences (e.g. through
CP-NETs) in their state representation based on the trading history can learn how
to win more often than RL agents which don’t represent that information. Finally
we presented novel compression methods for representing the states in ways that
reduces the size to 0.5% of the original, and therefore reduces the training times
dramatically. In the next chapter our findings will be used in the more complex,

multi-agent, full version of the game Catan.

142

Chapter 9

Evaluating learned trading
dialogue policies in the JSettlers

environment

The experiments of this chapter are all conducted using JSettlers [99], a research
environment built using Java that captures the full multi-player (4-player) version
of the game Catan (see Figure 9.1). The goal of the game is to collect 10 victory
points, mostly by building different pieces on the board (discussed in the beginning
of Chapter 7). The completion of each goal from the building plan!, that is the
construction of a piece (e.g. settlement), gives a particular number of victory points
(e.g. city=2, settlement=1). JSettlers was another step, higher in complexity than
that of our simpler generic version of the game that we examined in the previous
chapter, where the players were two (instead of four?) and all of the agents were
implemented by us. In addition, the goal is now to win the overall game (via trading
and building), rather than succeed in each trading dialogue (i.e. a series of trading
proposals and responses) only.

Here we had the opportunity to test the trained trading policies of the Negative-
Positive RL agent (NPRLA) of the previous chapter, for both of the cases with
infinite and finite adversarial resources, against other hand-crafted rule-based agents
[40] (which we call “Bots”) which use complex heuristics to trade and to build pieces
on the board. Further modifications were also made to those agents in order to verify
other previous findings, such as the successful use of linguistic manipulation through
deception for instance. Despite the fact that our tested policies were trained in our
simpler generic version of Catan, most of the results met our expectations as we

will see. That proved that an explicit model of the full game is not required for

!The building plan indicates the next piece to build (e.g. city) and is used by the original STAC
robot (Section 9.1.1).

2In this chapter we made the transition from bilateral to multilateral negotiations [67], therefore
making our task more challenging in an attempt to generalise our learned policies.

143

CHAPTER 9. JSETTLERS ENVIRONMENT 9.1. INITIAL EXPERIMENTS
o000 Settlers of Catan Game: test g
debug * robot2 got niothing. robot3
ﬁ . *robob1 got 1sheep, 1wheat. U .
Foints | 2 * debugmade an offerto trade. Foints |2
*debugtraded 1 sheepfar 1 waoodfram 1 .
bat3.
I [o]a]ola] night e v
| Get: m mm Foads:
Stims:
Bank/Port | Cities:
Clay: .
Ore: |I|
Sheep .
Wheat: m
Wifaad: |I| knights: IE‘ Roads
Resourzes: IE‘ Unler | Stimts
| it | | Rmen || pone | Dew. (o] cities: [4]
g robot] g robot2
Foints Faints
No thanks. el No thanks.
Road 0 WP (longest road =2
cost [
Settlement 1
cest [1][T[1][T] J—
City ZWF receives Zx
Knights: m Roads Cost E I:l Knights: IE‘ Roads
Resources: Unlor | Stimts Resaurces: | Unlor | Stimts
" Card WP (largest army =2 "
Drew, IE‘ Cities: e n. II' Drew. Cities: E/
1

Figure 9.1: Example board of the game “Settlers of Catan” using the JSettlers
interface [99].

successful RL trading policies to be learned. Ultimately, it suggested that a generic
model of a complex trading scenario may be enough for effective RL, providing that

efficient selection of the state representation and of the actions has been made.

9.1 Initial Experiments

In our first set of experiments we used a trained agent based on our four (for
the development of city, road, development card and settlement) non-manipulative
Reinforcement Learning policies of Section 8.1 against the Bots, discussed in the
Section that follows. After that we used the agent against Bayesian agents [61] (also
called “Bayes”).

different goals (road, settlement, city, development card) of the game as we have

Each one of our agent’s policies was trained for each of the four

discussed earlier.

144

CHAPTER 9. JSETTLERS ENVIRONMENT 9.1. INITIAL EXPERIMENTS

9.1.1 The original STAC Robot (“Bot”)

The Bot is based on the original expert rule-based agent of the research frame-
work JSettlers [99] which is further modified to improve its winning performance.
This agent (the Bot), which is the “benchmark” agent described in [40], uses complex
heuristics to increase performance by following a dynamic building plan according
to its current resource needs and the board’s set-up. Hence its trading proposals,
responses to offers, building plan and placement of constructions on the board along
with other movements (such as the placement of the robber) are all affected based
on those needs and set-up. This is a rule-based, hand-crafted agent, developed by
experts in the Catan game. It is therefore interesting to find out how well an agent

trained in a simulation environment can perform against it.

9.1.2 Our trained RL agent (goal-oriented)

Our trained RL agent is in fact an original STAC Robot (Bot) which has been
modified to make offers based on one of our four learnt policies of Section 8.1. That
means it has already learnt how to make trading proposals towards a particular goal
in order to reach it as soon as possible (goal-oriented). For example, if the goal
is to build a city, that is to gather 2 wheat and 3 rocks, and the agent has only
1 wheat and 1 sheep then it has learned that it should offer the sheep for either
wheat or rock(s). It has also learnt through those policies to mainly use trading
proposals that ask for two resources rather than one. However it has not learned
how to respond to opponents’ offers, as modifying the Bot takes a long time and it
was not necessary for our experiments. Hence in the current experiment our trained
RL agent (which is a modified Bot) responds in exactly the same way as the Bots.
In more detail, whenever it proposes trades then it follows our corresponding policy
depending on the current goal, that is a part of its building plan. In other words,
apart from the trading proposals, everything else such as the responses, the building
plan, the placement of constructions on the board and other movements are those
of the original STAC Robot that are followed.

9.1.3 Trained RL agent vs. 3 Bots

Initially we evaluated our trained RL agent versus three identical hand-crafted

agents, the Bots that we mentioned above. Our trained RL agent played 10 thousand

145

CHAPTER 9. JSETTLERS ENVIRONMENT 9.1. INITIAL EXPERIMENTS

games versus the Bots and resulted in a performance of 32.66% (Table 9.1), while
those of the Bots were 22.9%, 22.66% and 21.78% respectively. The results show that
our trained RL policies by exploiting the power of “give 1 for 2” trading actions and
by being exclusively goal-oriented perform better than the best Bot by nearly 10%.
It also suggests that if our trained agent had learnt how to respond towards a goal
too, i.e. by additionally taking the advantage of proposals that offer two resources
in exchange of one, then its performance would be even better. This result was
interesting because it proved that our generic 2-player version of the game (Chapter
8) was enough to train a successful policy for the multi-player version of the game,
by considering all three opponents as one. Hence our RLA proposed only public
trades (e.g. “I give 1 timber and I need 2 sheep, anyone?”), without referring to
someone in particular. Furthermore the 32.66% performance of our RL agent was
around 7% better than that of [61] (discussed in Section 2.4.2), who trained it in
the real multilateral negotiations environment (i.e. full Catan game in JSettlers)
and resulted in a performance a bit higher than 25% against the same opponents
(i.e. Bots). This result provided evidence that it was much more effective to train
a RLA in a bilateral negotiations environment and then test it on the multilateral

one, as noise from the full game probably made RL a harder task there.

9.1.4 The Bayesian agent (“Bayes”)

This agent [61] is a Bot whose trading proposals are modified based on the human
corpus that was collected from Afantenos et al. [1]. As we have seen before, the
trading proposals, responses to offers, building plan and placement of constructions
on the board along with other movements are those of the Bot. However the trading
proposals are based on Bayesian sampling of 60 human games which were played
during a tournament that was arranged, as part of the STAC research. In more
detail, the Bayesian agent was 65.7% accurate with human moves (F-Measure score

= 0.656). The human players though were not expert “Catan” players.

9.1.5 Trained RL agent vs. 3 Bayes

In this experiment we used our trained RLA (Section 8.1) versus three of the
above Bayesian agents. After playing 10 thousand games, our trained agent scored
a performance of 36.32% (Table 9.1), which is much higher than those of the three
Bayes agents. Their performances were 21.43%, 21.02% and 21.23% respectively.
The difference of our agent’s performance, which is nearly 15% higher than the best

of the Bayes agents, suggests that the human players’ trading skill is lacking com-

146

CHAPTER 9. JSETTLERS ENVIRONMENT 9.2. MANIPULATION

pared to the trained RL policies. They have probably not taken the full advantage
of trades which ask for more than they offer and they were not as focused on goal
as our trained RL agent. That could be explained by considering the beginner sta-
tus of the human players, which is also reported in the Afantenos et al. work [1].
By introducing trained RL policies which have learnt how to respond to offers, we
expect the result to become much higher, as the current responses of our trained
RL agent are those of the Bot as we have mentioned. The Bayes agents’ responses
though are also those of the Bot.

9.2 Manipulation

In this part we evaluated our trained manipulative Reinforcement Learning poli-
cies® from Section 8.2.9 (dishonest) against the Bots and the Bayes agents. The Bots
were modified in such a way that every time the manipulative policy makes a trading
proposal then the Bots are affected (manipulated). That means the weights of the
resources that they offer and ask for change according to the trained manipulative
RL proposals, in the same fashion as we have previously examined in Section 8.2.3.
We modified only the adversarial trading proposals to be affected by the policy’s
manipulation and not the responses, as modifying the Bot takes a long time and
it was not necessary for our experiments. On the other hand the Bayesian agents
(Bayes) remained unmodified. The purpose was to verify whether they would be
affected on their own by the trained manipulative policies or not, as we were sus-
pecting that human players might be affected and the same might happen then to
the Bayes agents too.

9.2.1 Trained Dishonest RL agent vs. 3 Manipulated Bots

The policy of the trained Dishonest RL agent (Section 8.2.13) played 10 thou-
sand games against 3 Bots which were affected by the agent’s trading proposals (in
exactly the same way as discussed in Section 8.2.3). At the beginning of the games
the probabilities (weights) that represent the Bot’s willingness to give (i.e. through

trading proposals) each of the five resource types start equally (each one is 20%).

3 A policy for the city (2 wheat and 3 rocks) only was trained for the experiments of Section 8.2.9,
as we have discussed. For the experiments of this chapter, we also trained three more dishonest
policies in our 2-player generic version of the game, for settlement, road and development card, as
the full version of the game in JSettlers requires all of them. The results were similar to those of
the city and therefore they have not been reported again.

147

CHAPTER 9. JSETTLERS ENVIRONMENT 9.2. MANIPULATION

Whenever the RLA makes a trading proposal the algorithm first considers the give-
able resource. The Bot’s probability of giving the LA’s offered resource increases
by 4% (therefore the Bot’s trading proposals which have this resource as giveable
become slightly more likely to be selected by the Bot) and those which give the other
resources decrease accordingly (i.e. equally, each one decreases by 1%). Then the
algorithm takes into consideration the receivable resource(s) of the RLA’s trading
proposal. The probability for the Bot to give that particular resource (through its
trading proposals) is reduced by either 4% or 6% (if it is a “give 1-for-1” or “give
1-for-2” RLA’s trade proposal respectively), and the probabilities of giving the four
other resource types increase accordingly (i.e. equally, each increases by either 1%
or 1.5% respectively). In the current experiment, the Bot’s receivable resources of
its trading proposals are not taken into consideration when it comes to propose a
trade. It chooses only based on the giveable resources. Hence the Bot will probably
choose one of the trading proposals at random whose giveable resource’s weight is
the highest. Furthermore, the responses of the manipulated Bots are not affected.
That means they are exactly the same as those of Section 9.1.3, which are those
of the Bots. The results were: the 3 Bots won by 21.44%, 20.79% and 21.42% re-
spectively. Our trained Dishonest RL agent won by 36.35% (Table 9.1), having a
positive difference of nearly 15% from the best Bot, showing that manipulation is
very effective towards the manipulated Bots of the JSettlers environment (i.e. full

multi-player version of Catan).

9.2.2 Trained Dishonest RL agent vs. 3 Manipulated Bots
(weights based on building plan)

The policy of the trained Dishonest RL agent played 10 thousand games against
3 Bots. The probabilities (weights) that represent the Bot’s willingness to give (i.e.
through trading proposals) each of the five resource types start equally (each one
is 20%), as we mentioned in the previous section too, but they are then adjusted
further according to the building plan (BP) in this case. That means the Bots are
initially biased towards specific resources, as the BP indicates the next piece to
build (e.g. city). These resources depend on the BP and every time the BP changes
then the weights change accordingly too. An example would be: let’s assume that
the Bot was planning on building a city (that’s what the BP indicates). The goal
resources of a city are 2 wheat and 3 rocks. In that case the manipulated Bot will
start the game with all of the weights that represent the Bot’s willingness to give
(i.e. through trading proposals) each of the five resource types equally (each one is
20%) but those which give wheat and rocks will be further slightly decreased (by

148

CHAPTER 9. JSETTLERS ENVIRONMENT 9.2. MANIPULATION

6%* in the case of giving wheat and 7% in the case of giving rocks). All of the rest®
will be further slightly increased accordingly (i.e. equally - for those four which are
affected by the wheat each one will increase by 1.5%, and then for those four which
are affected by the rocks each one will increase by 1.75%). That makes the job of the
Dishonest RL agent’s policy even harder than before. The results of this experiment
were still satisfying: the 3 Bots won by 22.53%, 21.47% and 21.8% respectively. Our
trained Dishonest RL agent won by 34.2% (Table 9.1), having a difference of nearly
12% from the best manipulated Bot of this case, which were clearly a bit harder

now.

9.2.3 Trained Dishonest RL agent vs. 3 Manipulated Bots

(weights based on building plan and resource quan-
tity)

In this experiment, the policy of the trained Dishonest RL agent played again
10 thousand games against 3 Bots. This case is identical to the above (Section
9.2.2) but the weights (probabilities) are additionally adjusted according to the goal
resource quantity. For example, we saw previously that in the case of a city 2 wheat
and 3 rocks are needed. These two goal resources adjust the weights in a way that
the Bot initially offers them less often. What happens now is that the Bot also
checks to see whether or not the current goal resource quantities are more than the
goal quantities. If yes, then it slightly increases (e.g. by 4% if it has one more than
needed, by 6% if it has two and by 7% if it has three or more) the probability that
represents the Bot’s willingness to give the particular resource whose quantity is
more than the goal one, in order to offer it more often, because it has more than
it needs. On the other hand, the weights of offering the other resources decrease
accordingly (i.e. equally - as described in the previous section). If the current goal
resource quantities are not more than the goal quantities, then nothing else happens.

The results of this experiment for the trained Dishonest RL policy were as good
as the above: the 3 Bots won by 21.72%, 21.5% and 22.47% respectively. Our
trained Dishonest RL agent won by 34.33% (Table 9.1), having a positive difference
of nearly 12% again from the best manipulated Bot. This result, along with the
two above ones (Sections 9.2.1 and 9.2.2), suggested that the RL agent’s dishonest

manipulative policy was very effective against the Bots of the multi-player version

41 needed goal resource is represented by 4%, 2 resources by 6% and 3 resources are represented
by 7%. As before, all these small % changes reflect that the adversary is not dramatically influenced
by manipulation. If the percentages were much larger (e.g. 30%) then the results presented below
would be more extreme.

5The rest of the resources will be: timber, rocks, sheep and bricks which are affected by the
wheat, and then wheat, timber, sheep and bricks which are affected by the rocks.

149

CHAPTER 9. JSETTLERS ENVIRONMENT 9.2. MANIPULATION

of the game, showing that our transition from a bilateral negotiation environment
to a multilateral one was effective. Furthermore, by comparing the results of the
trained dishonest agent against the manipulated Bots (Sections 9.2.1, 9.2.2 and
9.2.3) with those of the trained non-manipulative agent against the non-manipulated
Bots (Section 9.1.3), we show that linguistic manipulation is still successful even

versus multiple opponents, as the positive differences are in the range of 1.5%-3.5%.

9.2.4 Trained Dishonest RL agent vs. 3 Bayes

The policy of the trained Dishonest RL agent played 10 thousand games against
the 3 Bayes agents that we examined in Section 9.1.4. We suspected (and that
was our hypothesis) that the human players® might have been affected by their op-
ponents’” manipulation (if any) in their games’, and therefore we wanted to verify
that by using our Dishonest policy. The results of this experiment proved our hy-
pothesis: the 3 Bayes agents won by 21.97%, 20.58% and 21.64% respectively. Our
trained Dishonest RL agent won by 35.81% (Table 9.1), having a positive difference
of nearly 14% from the best Bayes agent. That result was an evidence of the fact
that the Bayes agents were indeed affected by manipulation (and now by the Dis-
honest RL agent’s manipulative policy too) and its success resulted to almost 14%
more winning games. This difference is similar (nearly 15%) to that of the Section
9.1.5. The policy there does not use any manipulation at all though and aims for
the goal as soon as possible. Despite the fact that the policy of this section uses
manipulation, through repetition or false use (lies) of the trading proposals for ex-
ample, and does not exclusively aim for reaching the goal as soon as possible, like the
non-manipulative policy there does, it is still nearly as successful. This is interesting
because the manipulative policy of the dishonest RLA is “wasting” time (rounds)
for the sake of manipulation. That verifies that the manipulation is effective on the

Bayes agents, showing that it might be successful on human players too.

6Their behaviour is simulated by the Bayes agent.
"As we have discussed in Section 9.1.4, these games were played during a tournament that was
arranged as part of the STAC research.

150

CHAPTER 9. JSETTLERS ENVIRONMENT

9.3. SIGNIFICANCE

Exp. LA’s policy Adversaries LA’s wins
Baseline 1 || Bot 3 Bots 25% (approx.)
Baseline 2 || Bayes 3 Bayes 25% (approx.)
Section 9.1.3 || Bot + SARSA (No Manip.) | 3 Bots 32.66%*
Section 9.1.5 || Bot + SARSA (No Manip.) | 3 Bayes 36.32%*

Section 9.2.1 || Bot + SARSA (Dishonest) | 3 Manip. Bots 36.35%*
Section 9.2.2 || Bot + SARSA (Dishonest) | 3 Manip. Bots (BP) 34.2%*

Section 9.2.3 || Bot + SARSA (Dishonest) | 3 Manip. Bots (BP & resource quan.) || 34.33%*
Section 9.2.4 || Bot + SARSA (Dishonest) | 3 Bayes 35.81%*

Table 9.1: Wins of our RL trained policies in the JSettlers environment. The base-
line performance is 25% for both Baseline 1 and 2 which are in bold text. The
performances (% wins) above are after 10K games (*= significant improvement over
baseline, which is 25%, p < 0.05). The above cases which involve Bots as adver-
saries are compared to Baseline 1 and those which involve Bayes as adversaries are
compared to Baseline 2.

9.3 Statistical significance

Similarly to previous chapters, we performed Z-tests®. By considering only the
wins from the baseline cases (Baseline 1 and 2) and those of the other cases we
performed Z-tests between their distributions to prove that they are statistically
significant (Table 9.1). Every result with an asterisk (%) on the above table was
significant at p < 0.05. In general, the above cases which involve Bots as adver-
saries are compared to Baseline 1 and those which involve Bayes as adversaries are
compared to Baseline 2. Furthermore, regarding the cases with manipulation, the
results of Sections 9.2.1, 9.2.2 and 9.2.3 are significant compared to those of the
baseline case of Section 9.1.3, and show that manipulation gives an advantage (Ta-
ble 9.1). However the results of Section 9.2.4 compared to those of the baseline case
of Section 9.1.5 are not significant (Table 9.1). Hence we can confidently say that
all of the other cases reject the null hypothesis®.

In more detail, the total number of (testing) games that were taken into con-
sideration in every case were 10,000. According to Table 9.1 the total number of
wins from the Baseline 1 were 2,500, and from the Experiment of Section 9.1.3
were 3,266. The LA’s wins in Experiment of Section 9.1.3 have higher score than
those of the Baseline 1 (z = 11.9576, p = 0). The total number of wins from the
Experiment of Section 9.2.1 were 3,635. The LA’s wins in Experiment of Section
9.2.1 have higher score than those of the Baseline 1 (z = 17.4038, p = 0). The
total number of wins from the Experiment of Section 9.2.2 were 3,420. The LA’s
wins in Experiment of Section 9.2.2 have higher score than those of the Baseline 1

(z = 14.2508, p = 0). The total number of wins from the Experiment of Section

8by using a web tool (http://www.socscistatistics.com/tests/ztest/Default2.aspx)
9The null hypothesis states that the LA’s wins from the above experiments are not statistically
significant compared to those from the corresponding baseline cases.

151

CHAPTER 9. JSETTLERS ENVIRONMENT 9.4. PREFERENCES

9.2.3 were 3,433. The LA’s wins in Experiment of Section 9.2.3 have higher score
than those of the Baseline 1 (z = 14.443, p = 0). The total number of wins from
the Baseline 2 were 2,500, and from the Experiment of Section 9.1.5 were 3,632.
The LA’s wins in Experiment of Section 9.1.5 have higher score than those of the
Baseline 1 (z = 17.3601, p = 0). The total number of wins from the Experiment of
Section 9.2.4 were 3,581. The LA’s wins in Experiment of Section 9.2.4 have higher
score than those of the Baseline 2 (z = 16.6169, p = 0).

The total number of wins from the Experiment of Section 9.1.3 (baseline) were
3,266, and from the Experiment of Section 9.2.1 were 3,635. The LA’s wins in Ex-
periment of Section 9.2.1 have higher score than those of the Section 9.1.3 (baseline)
(z = 5.4887, p = 0). The total number of wins from the Experiment of Section 9.2.2
were 3,420. The LA’s wins in Experiment of Section 9.2.2 have higher score than
those of the Section 9.1.3 (baseline) (z = 2.3083, p = 0.02088). The total number
of wins from the Experiment of Section 9.2.3 were 3,433. The LA’s wins in Exper-
iment of Section 9.2.3 have higher score than those of the Section 9.1.3 (baseline)
(z =2.502, p = 0.01242). The total number of wins from the Experiment of Section
9.1.5 (baseline) were 3,632, and from the Experiment of Section 9.2.4 were 3,581.
The LA’s wins in Experiment of Section 9.2.4 do not have higher score than those

of the Section 9.1.5 (baseline) (z = —0.751, p = 0.45326).

9.4 Preferences

Here we had the opportunity to test the trained trading policies of the Negative-
Positive RL agent (NPRLA, Section 8.3.4), for both of the cases with infinite and
finite adversarial resources, against the Bots (discussed in Section 9.1.1) [40]. We
chose to evaluate the NPRLA policies in JSettlers because it was our best-performing
trading agent which considers adversarial preferences. The NPRLA agent’s policies
were trained for each of the four different goals (road, settlement, city, development
card) of the game, for both of the cases with infinite and finite adversarial resources,

as we discussed earlier.

152

CHAPTER 9. JSETTLERS ENVIRONMENT 9.4. PREFERENCES

9.4.1 Our trained NPRLA Settlers agents

Both of our trained NPRLA agents'? are in fact a JSettlers Bot modified so as to
make offers based on the NPRLA learned policies, instead of using those of the Bot.
Responses and all of the other moves (such as positions on the board) are those of
the Bot though and the Bot also computes a building plan which indicates which
piece (e.g. city) to build next as we have discussed. The NPRLA maintains a history
of all the opponents’ (Bots) resource preferences during the game, therefore treating
them all as one adversary!!, using the representation that we discussed in Sections
8.3.2 and 8.3.3, based on the accepted and rejected trades that occurred in the past.
Whenever the NPRLA is about to propose a trade, it matches the game’s trading
history and its own current resources with a particular state of one of its learned
policies (according to the current goal, e.g. city) and retrieves the dialogue action
to take. This dialogue action is a trading proposal that aims for the current goal,
that is a part of the Bot’s building plan. We investigate whether RL preferential
policies trained in a generic bilateral negotiations environment would increase the
Bot’s performance in JSettlers, which is a multilateral negotiations environment and

captures all the game-play details of the board game Catan.

9.4.2 Trained NPRLA (infinite resources) vs. 3 Bots

In this experiment we used our NPRLA agent which was previously trained for
one adversary with infinite resources (Section 8.3.8), versus three identical hand-
crafted agents (Bots). Our trained agent played 50 thousand games versus the 3
Bots and resulted in a win rate of 25.19% (Table 9.2), while those of the 3 Bots were
24.96%, 25.24% and 24.61% respectively. In 10 thousand games the performances
were 24.98% for the NPRLA, and 24.8%, 24.4% and 25.82% for the 3 Bots. The
similarity of the results suggests that all of the agents know how to trade towards a
particular goal. It also shows that the preferences that were collected from all of the
opponents in this case, and were matched to those of our trained policies, offered no

important advantage.

0These agents were trained against the same adversary (discussed in Section 8.3.4), which had
either infinite or finite available resources, for all the four different goals of the game. These goals
are to build a city, a settlement, a road, or a development card and they require a different number
and types of resources to be gathered. Hence we had 4 trained NPRLA policies to use for each of
the two agents.

1Tt was important for us to see here whether the learned preference policies from one opponent
would be successful in a multi-opponent environment, as it would hopefully hold important infor-
mation such as the overall resource values (due to the board’s initial resource placement) for the
particular game.

153

CHAPTER 9. JSETTLERS ENVIRONMENT 9.4. PREFERENCES

9.4.3 Trained NPRLA (finite resources) vs. 3 Bots

The NPRLA agent of this experiment was previously trained against the adver-
sary which had finite resources (Section 8.3.10). It was tested versus three of the
hand-crafted agents (Bots). In 10 thousand games the results were 25.11% (Table
9.2) for the NPRLA, and 24.98%, 25.15% and 24.79% for the 3 Bots. Again we see
that the trained agent has a very similar win rate, in terms of the overall game,
with the 3 Bots, even though it was not trained specifically to beat them. However,
the trained NPRLA in this case is not as successful as the trained agents in table
9.1. The reason was that its previously learned policies in the bilateral negotiations
environment did not hold accurate enough preference information in regard to the

preferences of the JSettlers Bots.

Exp. LA’s policy Adversaries LA’s wins

Bot 3 Bots 25% (appr.)

Sect. 9.4.2 || Bot + SARSA(NPRLA) (trained vs. infinite res.) | 3 Bots (50k games) || 25.19%

Sect. 9.4.2 || Bot + SARSA(NPRLA) (trained vs. infinite res.) | 3 Bots (10k games) || 24.98%

Sect. 9.4.3 || Bot + SARSA(NPRLA) (trained vs. finite res.) 3 Bots (10k games) || 25.11%

Table 9.2: Wins of our NPRLA trained policies in the JSettlers environment. The
baseline performance is 25%.

9.4.4 Related work

RL applied to strategic negotiations includes the work of [80], who proposed
hierarchical RL for automatic decision making on object-placing and selecting trade
actions in Catan. This work uses built-in knowledge for learning the behaviours
of the game quicker, and suggests that the combination of learned and built-in
knowledge is able to beat human players. More recently, as we have discussed
in Section 2.4.2, [61] implemented an MDP model for selecting trading proposals,
trained and tested in the JSettlers environment (where 4 players play the full version
of Catan) but this work did not take into account any preference modelling or

manipulation.

154

CHAPTER 9. JSETTLERS ENVIRONMENT 9.5. CONCLUSION

9.5 Conclusion

We found that our trained RL trading policies performed as well as (i.e. the
case of preference agents) or even better (i.e. the cases of goal-oriented and ma-
nipulative agents) than the hand-crafted agents (Bots) in JSettlers, suggesting that
data-driven policy training can result in very competitive trading strategies, without
expert hand-crafting. Furthermore we showed that an explicit multilateral model of
the game “Catan” is not required for successful RL trading policies to be learned.
Indeed, our RLA (Section 9.1.2) which was trained in our bilateral negotiations en-
vironment was around 7% better (Section 9.1.3) than that which was trained in the
real tested multilateral negotiations environment (i.e. full Catan game in JSettlers),
according to the results of [61]. To our knowledge this is the first time that poli-
cies trained in bilateral negotiations performed better in multilateral negotiations
than those which were trained on them, by considering all opponents as one. Ulti-
mately, it is suggested that bilateral training environments (e.g. our generic version
of Catan in Chapter 8) may suffice for complex multilateral non-cooperative trading
scenarios (e.g. full version of the game in JSettlers) for effective RL, providing that
efficient selection of the state representation and of the actions has been made. In
this chapter our work showed that RL with (or without) preference learning, or with
manipulation, trained versus a single opponent in a generic two-player version of a
non-cooperative trading game (i.e. Catan), is also effective versus many opponents,
treating them all as one, in the more complex full version of the game. In the next
chapter we will evaluate some of our learned RL trading policies against human

players in trading scenarios of the game Catan.

155

Chapter 10

Evaluating learned trading
dialogue policies with humans in

Catan

In this chapter we will discuss the experiments that we conducted with human
players in trading scenarios of the game Catan. Having the knowledge from hu-
man trials of Chapter 6, we were now planning on restricting the luck factor that
“obscured” the agents’ skill, play more games than before and focus on motivating
the players to trade. In general, the goals that we set were: i) to investigate how
successful our trained RL policies were against humans, ii) to verify whether the
manipulative policy is better than the goal-oriented (non-manipulative) policy or
not, and iii) to investigate further if the current manipulative agent! is effective
versus humans and how. In detail, the humans played a game that we implemented
and focuses only on the trading dialogue part (as this is where the main inter-
est of this research is on) of Catan against our two trained policies from Sections
8.1 (non-manipulative goal-oriented RLA policy) and 8.2.5 (manipulative dishonest
RLA policy).

We compare these two learned trading dialogue policies because they were the
best performing policies that we had. Furthermore, we wanted to investigate the
effect of implicit manipulation, which is used by the dishonest agent in the form of
deception, on humans. The honest agent which uses persuasion would be interesting
to be evaluated too, but the deception (as well as its detection) are of higher priority
(due to ethical concerns, discussed in Section 1.2) and therefore we decided to use
the dishonest agent against humans. A session consisted of 2 games during our pilot

experiments and 4 games during our main experiments. Each game consisted of 14

In Chapter 6 we discussed experiments with human players in Taikun. The manipulative agent
there used explicit manipulation (e.g. “I really need sheep”). In this chapter the manipulative agent
uses implicit manipulation (i.e. through normal trading proposals) and it was important for us to
see how humans would react to that.

156

CHAPTER 10. CATAN AND HUMANS 10.1. PILOT SESSIONS

rounds during the pilot experiments and 20 rounds during the main experiments. A
round includes the agent’s trading proposal and the human player’s response. More

details about the mechanisms of the game are given below.

10.1 Pilot sessions

In order to play only the trading dialogue part of Catan we developed a game
in Java which is called “Trading in Catan” (Figure 10.1). In this game the players
only trade the five resources of Catan, which are wheat, timber, rocks, sheep and
bricks. We implemented this game to evaluate the agents’ trading abilities. The
human only responds to the trading proposals of each agent (which tries to build
a city). They both started with 1 of each resource during the pilot sessions. The
player did not know what resources the agent currently had and what its goal was.
During our pilot sessions, each of the experiments included two sequential games
between a human player and the non-manipulative agent, and two sequential games
between the same human player and the manipulative agent. The human players
did not know with which agent they played against each time. Also two of them
played with the manipulative agent first and two played with the non-manipulative
one first. When the application begins, the human was informed about the rules of

the game that we will examine in depth below.

10.1.1 Information given to the player

The human plays two games against each trained agent. She responds to its
trading proposals in order to exchange resources. The goal is to collect more score
points than the agent. The player collects a particular number of score points every
time she builds something (Figure 10.2). To build something she needs to collect a
specific number of resources. Information regarding the constructions to build along
with the required resources are given to her?. The agent’s resources are unknown to
the human and vice versa. It tries to get a number of resources to build something.
The agent may eventually build through the player’s trades or trades that it may
do “secretly with others” (i.e. each of its resources randomly change in the range of
-2 to +2 at the end of each round). The human only interacts (i.e. trade resources)

with the agent. When the agent builds something the game ends and then the next

2Road requires 1 timber and 1 brick and gives 20 points. Card requires 1 wheat, 1 rock and 1
sheep and gives 30 points. Settlement requires 1 wheat, 1 timber, 1 sheep and 1 brick and gives
40 points. City requires 2 wheat and 3 rocks and gives 100 points.

157

CHAPTER 10. CATAN AND HUMANS 10.1. PILOT SESSIONS

|2 ** Trading in Catan, Ioannis Efstathiou - Human Player vs. Trained Agent - = EI@

P1 RESPOND

Round #1 --- Game #1
Rgent offers 1 brick for 1 rock

Pl rejects

Round #2Z —--- Game #1

................... Rgent offers 1 brick for 2 sheep
Pl accepts

Round #3 —--- Game #1

2gent offers 1 brick for 2 rock
p1g Pl rejects

AGENT: 0 Round #4 —--- Game #1

Zgent offers 1 brick for 2 sheep

PLEASE CHECK YOUR RESOURCES, CONSIDER THE AGENT'S TRADE PROPOSAL AMD RESPOMD.
Agent offers 1 brick for 2 sheep of the P1, P1 please respond (click one of the two respond buttons on the left of the game’s window)

Figure 10.1: The trading phase of the game “Trading in Catan”. We notice that the
manipulative agent in this example lies (i.e. asks for sheep.) in order to manipulate
the human player.

one begins. The game also ends when 14 rounds have been played and the agent
did not manage to build anything. The player can build constructions at the end
of each game. She can keep her resources and build everything at the end of the
second game if she likes. In the beginning of the first game the player and the agent
both start with one of each resource. In the beginning of the second game, they

both gain 1 of each resource.

10.1.2 The score

The agent tries to build a city only. Every time it manages to do that it scores
100 points. The human on the other hand can build all 4 different constructions
(road, city, settlement, development card) and gains a corresponding amount of
score points every time she does that. In the case of the road the human gets 20
points, 30 points for a card, 40 points for a settlement and 100 for a city (same
for the agent). The score for a city was previously 50 but we changed it to 100 to

promote trading and “penalise” the players for not trading. The problem was that

158

CHAPTER 10. CATAN AND HUMANS 10.1. PILOT SESSIONS

the players were rejecting everything and were still able to build roads and cards
and gather 100 points total with the resources they had (at the end of the second
game they had 2 of each resource which were given to them by the two games). The
agent, only with random changes on its resources and no trades, sometimes would
get 50 points (if lucky) and it would lose with no trades ever happening. As we will
discuss later, the change of the city’s points to 100 was not capable of solving the
problem though as it introduced others. The human can build a construction only
after the end of each game. The game ends when either the agent manages to build
a city or 14 trading proposals have been made and the agent did not manage to
build. The score points that have been gained in the first game are transferred to
the second one. Whoever gathers more total score points at the end of the second

game (which includes the score points of the first) wins.

£ = Player builds == EIIEI

{111/~

UNDER CONSTRUCTION

P1BUILD Required rescurces and score polints:

Foad: 1 timber, 1 brick - 20 points

Card Development Card: 1 wheat, 1 rock, 1 sheep - 30 points

Seftlement |scttlement: 1 wheat, 1 timber, 1 sheep, 1 brick - 40 points
City City: 2 wheat, 3 rocks - 50 points

PIRESHEICES:) currently have,

wheat: 1, timber: 2, rocks: 1, sheep: 1, bricks: 2
If you exit then you will not hawve another chance to build

in this game.

vou build a settlement! You get 40 points!

Vou now have a total of 40 points in this game!

Points of this game will be added to the other one.

If you exit then you will not hawve another chance to build

in this game.

Please click the construction buttons to build.

Figure 10.2: The building phase of the game “Trading in Catan”.

159

CHAPTER 10. CATAN AND HUMANS 10.1. PILOT SESSIONS

10.1.3 Lessons from the pilot study

Based on the above information, first we conducted four pilot experiments be-
tween the two agents and four human players. The feedback that we obtained from
the history of the games that they played and the questionnaires (similar to those of
Sections 10.2.2 and 10.2.3) that they completed was very useful. We saw that with
the current set-up of the evaluation, the players mostly rejected the agents’ trading
proposals. This is an issue that we confronted in Taikun experiments of Chapter
6 too. However the game mechanisms there promoted and allowed more trades.
The players mostly rejected offers because they are quite cautious (we saw that in
Taikun’s case too) and because the initial number of resources allowed them to keep
them and achieve a decent number of score points (50 in each game by building a
road and a card). Even in the cases where the agent achieved 100 points by building
a city from its random resource update only, the players would still not trade after
that. Thus we had to change the number of initial resources for both of the players
by randomizing them (each one 0, 1, or 2) in order to promote trading. We also
reduced the points of the city to 50 (again) because 100 was too tempting for the
players. That was another reason that they mainly aimed for building that and they
rejected all of the agents’ trades too. By reducing the points of the city to 50 we
now offered again the same “magnitude” to each resource, as for example a road
which requires two resources gives 20 points, a card which requires three resources
gives 30 points and so on. Thus the game became more balanced.

We also examined the case where it would be easy for the players to understand
whether or not the agents lie. In other words, we wanted to see what would happen
when the lies were obvious. Two of the four players were informed at the beginning
of the session that the agent wants to build only a city (therefore by asking for
anything else apart from rocks and wheat would be a lie). The problem then was
that they were rejecting the agent’s proposals which were asking for wheat and rocks
to prevent it from building that. Hence in this case, where the player knows that
the agent wants to build a city at the beginning of the session, the agent’s lies may
be obvious but their effect was useless because the player knows that they are lies
(as she knows that the agent wants to build a city only and therefore it should ask
for only wheat and rocks). Our assumption on manipulation though was that the
human player might believe the lie, thinking that it is the truth, and she might start
boycotting (restricting) the corresponding resources and give others that the agent
really needs. Thus we decided in our main experiments not to inform the player
at the beginning of the game about the fact that the agent only aims to build a
city, as the obvious lies offered nothing interesting. However we were still planning
on checking whether the players think the agents lied or not, without making their

lies obvious though. We wanted to see if the manipulative agent’s deceitful strategy

160

CHAPTER 10. CATAN AND HUMANS 10.2. MAIN EXPERIMENTS

would be still identified by some players (hence the questions 6. and 7. of the
session’s questionnaire of Section 10.2.2).

Another issue which promoted the rejections was that the agents had previously
(Chapter 8) successfully learned to ask for two resources but the human players
often did not have two to give them. Hence that caused even more rejections. That
was another reason that we decided to initialise the resources at the beginning of
the first game at random and give 0, 1, or 2 of each resource to both. Finally, the
experiment’s goal was to have the humans evaluate the agents’ trading skill. That
initially suggested a plain evaluation with no rules, no game in other words. Due
to the fact that it might be monotonous for the players to only evaluate the agents’
trading skill though we decided to do that through playing a game. However we had
a few complaints that the game was not balanced and fair. That might be true but
it was outside the scope of evaluation. The players though expected fair play, no
matter what the goal of the experiment was. Hence at some point we were thinking

of making an evaluation without having the form of a game.

10.2 Main experiments

By taking into consideration all of the above we decided to leave the evaluation
in the form of a game, as it would be entertaining for the participants, and focus on
making it as fair as possible (Section 10.2.1). 20 of them?® played 2 sessions each,
which consisted of 4 sequential games against an agent. The goal, as announced
to the players, was to gather as many score points as possible and -if possible-
more than the agents. To motivate them further we decided to give to the highest
scorer a special gift, apart from the normal compensation they would receive for
participating. At the end of each of the two sessions, each player completed a
questionnaire about the agent that she played against (Section 10.2.2). At the
end of the experiment each participant completed an overall questionnaire (Section

10.2.3).

10.2.1 Revised rules

The conclusions of Section 10.1.3 led us to make some important changes to
the rules of the game as well as to its overall mechanisms. The revised rules, as

announced to the twenty participants, were the following:

3The participants were all students, undergraduates and postgraduates.

161

CHAPTER 10. CATAN AND HUMANS 10.2. MAIN EXPERIMENTS

e You will play 4 games against one opponent (agent). You will respond to its
trading proposals and exchange resources. Your goal is to collect more total

score points.
e You collect a particular number of score points every time you build something.
e To build something you need to collect a specific number of resources.

e The constructions to build along with the required resources will be given to

you.
e The agent’s resources are unknown to you.

e The agent wants to get a number of resources to build something. This can be
done through your trades. Each of its resources may further change at random
by -1 or +1.

e When the agent builds something the game continues normally.
e The game ends when 20 rounds have been played.

e You only build constructions at the end of each game. You can keep your
resources and you can build everything at the end of the session (i.e. the end

of the 4th game) if you prefer.
e You both start the first game with either 0, 1 or 2 of each resource (random).

e In the beginning of a new game, you both gain 1 of each resource.

An interesting question that needs to be answered before we proceed to the ques-
tionnaires is: is the game now fair? Considering that both of the players (humans
and agents) start the game with random resources and at the beginning of each
new game they both gain 1 of each type of resource, the answer so far would be
“yes”. However there are some features that the agent only has and some others
that the player only has. In detail, the human player only responds to the agent’s
trading proposals and that makes his role harder. However the participant has the
advantage of building any of the four constructions (i.e. road, card, settlement and
city) while the agent on the other hand aims to build only cities. This is a big dis-
advantage for the agent, especially considering that it builds them during the game
and the player soon realises that it aims only for that and can exploit that?.

By considering the fact that the agent builds during the game while the player
can build only at the end of the game we cannot find a reason to say that the agent
has any advantage in this case, as the score points are eventually carried over to the
5

end of the 4th game anyway. Finally the random update of the agent’s resources” is

4This information was collected from the players themselves.
5Each resource may change in a uniformly distributed way by -1 or +1 or not change at all.

162

CHAPTER 10. CATAN AND HUMANS 10.2. MAIN EXPERIMENTS

not an advantage either. The reason that we did that was to offer a variety of trading
proposals to the RLA, because if we would keep the state constant it would always
make the same trading proposals providing that no trades have happened®. Hence
we believe that the game is fair, despite the fact that it is not balanced (analogous)
in terms of game-play for both of the sides. With the following questionnaires we
wanted to see what the results were and what do people think about it too. As we

will see in Section 10.2.5, people found many ways to win.

10.2.2 Session’s questionnaire

This is the questionnaire that each participant completed at the end of each

session (i.e. after playing 4 sequential games with an agent):
1. Was your score higher than that of your opponent?
2. What was the reason that made you win/lose?

3. “This was a difficult opponent”
(not agree) 123456789 10 (agree)

4. Please describe the opponent’s strategy (e.g. It mainly asked for timber, I
think it wanted to build a road...)

5. Please describe your strategy (e.g. I accepted everything because I needed all

of the resources...)

6. “The opponent always asked for resources that it needed”

(not agree) 123456789 10 (agree)

7. If you think that the opponent lied (i.e. asked for resources that it did not
need), please explain what you did then. Did you change your strategy?

8. Would your strategy remain the same if you would play again versus the same

opponent? If no, what would you change?

6 Another reason that we implemented the random update of the agent’s resources was to moti-
vate the players to trade because in some games they rejected all of the agent’s trading proposals.
In this case though the agent still managed to build a city sometimes, therefore making them think
that they should probably start trading.

163

CHAPTER 10. CATAN AND HUMANS 10.2. MAIN EXPERIMENTS

10.2.3 Overall questionnaire

The two questions that follow consist the overall questionnaire that each partic-

ipant completed at the end of the experiment:

1. By comparing the first with the second opponent, which one do you think was

the smartest trader?

2. Why do you think that?

10.2.4 Comments on agents

In this section we will examine what the players thought about the agents. This
will offer a “taste” about their overall strategies. We begin by mentioning first the
most frequent comments based on the participants’ questionnaires.

About the manipulative agent:

e Changed its proposals very often compared to the other opponent

e Hard to understand what the goal is

e Trading proposals always benefited the opponent more

e [t accumulated its resources smarter than the other one

e [t was too lucky

e It asked for 2 resources

e Sometimes it asked for something other than rocks or wheat

e [t would keep itself from offering more often

e [t did not give a good offer for the resources

e It was better than the other because it offered more viable trades (1-for-1)

e The opponent’s offers were unfavourable trades but sometimes it wants 1-for-1

e [hoped it would propose one of the trades I wanted

e [t cheated

e It had all that he needed yet faked by asking for what he needed not

164

CHAPTER 10. CATAN AND HUMANS 10.2. MAIN EXPERIMENTS

e [rejected hoping that he would make a good offer yet he never did

e It had everything he needed and was only tricking me to keep his resources at

the end of the game for maximum points

e It offered less valuable resources (sheep and bricks) for more valuable ones
(rocks wheat)

About the non-manipulative agent:
e Aggressive / persistent
e Too greedy
e Trading proposals always benefited the opponent more
e It asked for 2 resources
e [t did not give a good offer for the resources
e Offered more 1-for-1 to increase chances of trade
e Offers not worthwhile
e Offered me more realistic options / things I might need

o [t always goes for equal or unfair trades, it usually demands more res for an

item that you want
e [t offered more favourable deeds
e It asked for the same resources lots of times

e [t tried harder to get what it wanted offering alternative trades for the items
it needed

10.2.5 How did the players win?

In this part we will examine the methods that the players think they used to
beat the agents. In other words, we will see what the players answered in question

2 of the session’s questionnaires (Section 10.2.2) in the case of win:

e [won because I was considering other things than cities

165

CHAPTER 10. CATAN AND HUMANS 10.2. MAIN EXPERIMENTS

I won because I aimed for equal resources distribution”

I won because I aimed to accept only 1-for-1 trades and only those which

moved me closer to balanced resources (i.e. same as above)

e [won because I hoarded resources until the last round and then I made notes
of my resources and constructions (thus finding which resource I had an abun-

dance of) and only accepted trades which advantaged me
e [worked options to trade

e [hoarded resources until the last round and then traded resources which I had

abundance of

e (I understood that every resource is worth the same) + (not accepting unfair
trades) + (luck)

e Lucky
e With one good trade

e With good initial resources

I tried to hinder my opponent by rejecting most of his offers

Once I gathered resources to build something I did not trade them

10.2.6 Results and discussion

According to the questionnaires that the twenty players completed during the

experiment and the analysis of their logged games, the results are discussed below.

Objective measures:

e Out of 20 participants no one managed to beat both of the agents. This shows
that the agents were skilful.

e 40 sessions (4 games each) were played and agents won 29 (72.5%) of them. Players
only won 10 and there was 1 draw. As above, these results strongly suggest now
that the agents were skilful.

e The manipulative agent had 14 wins (out of 20 sessions) and the non-manipulative
(i.e. exclusively goal-oriented) had 15 wins (out of 20 sessions). These results suggest

that the agents were (nearly) equally skilful.

"Surprisingly only a few people noticed that the road and the card (which both give 50 score
points) both require only one resource of each type to be built. Hence a strategy that aims for
a balanced number of resources is a very successful one, as it results in many score points by
targeting roads and cards only.

166

CHAPTER 10. CATAN AND HUMANS 10.2. MAIN EXPERIMENTS

e 5 players only (out of 20, 25%) managed to have a higher total score (from both
of the sessions) than the agents. This result also suggests that the agents are skilful.
e 8 human players accepted more trades of the manipulative agent than those of
the non-manipulative. 6 of them (75%) lost. The manipulative agent seemed to
promote trading, compared to the non-manipulative one where 5 people accepted
its trades more, and most of the players who traded lost. That indicates skill and
a possible effect of manipulation as “lies” (i.e. trading proposals which ask for
resources which are not really needed) serve the same purpose. The remaining 7
participants accepted the same number of trades from both of the agents.

e 14 human players (out of 20, 70%) thought that the manipulative agent might
have lied during the games (6th question of the questionnaire in Section 10.2.2). 11
of those 14 (i.e. 78.57%) lost against the manipulative agent. This result strongly
suggests that manipulation might be responsible for their loss. Of those 11 players, 3
of them changed their strategy (7th question of the questionnaire in Section 10.2.2)
after they thought the agent lied (motivating our assumption about “gullibility” and
hindering strategy as effects of manipulation, discussed in Section 3.3.3), 3 did not
change their strategy and the rest 5 did not answer the question. These results show
that the effect of confusion that manipulation (lies) causes® might have led to their

loss.

Subjective measures:

e The manipulative agent was rated with 146 points total (avg. 7.3/10) and the
non-manipulative with 147 points total (avg. 7.35/10) from the 3rd question of the
session’s questionnaires (Section 10.2.2). As we saw above, this result suggests again
that the agents are skilful and, in fact, (nearly) equally skilful.

e According to the answers that the participants gave in the 1st question of the
overall questionnaires (Section 10.2.3) the agents were equally smart. Half of the
human players thought the manipulative agent was smarter while the other half
thought that the non-manipulative agent was smarter.

e By considering the participants’ ratings to the 6th question of the session ques-
tionnaires (Section 10.2.2) we saw that the manipulative agent receives 151 points
of “honesty” (out of 200, that is completely agree that the agent always asked for
resources that it needed) and the non-manipulative agent received 171 points out of
200. The manipulative agent’s deceitful strategy was identified by some people but

it was not very obvious®.

8We saw that in Taikun too, people did not know how to proceed as they were in a dilemma,
observed and discussed in Section 6.1.3, 7th bullet point.

9In some games the manipulative agent never lied, as its policy does not contains only lies, and
therefore some people did not see any lies.

167

CHAPTER 10. CATAN AND HUMANS 10.3. CONCLUSION

10.3 Conclusion

According to the above comments and results, it is evident that the agents were
skilful. We restricted the luck factor in this chapter to the point where this can now
be easily observed!?. The luck (random) factor is designed to favour equally all of the
interlocutors (agents and humans), in all of our experiments. We have noticed that
whenever this factor was low, then the task of RL would become easier, as less noise
would be then “captured” during the learning process. The manipulative agent had
more trades accepted than the non-manipulative one and this was expected. The
goal-oriented strategy of the non-manipulative agent makes it harder for humans
to accept its proposals. We observed that in Chapter 6 too. On the other hand,
the manipulative agent is more flexible in terms of offering, as it includes lies too
(i.e. asks for other resources than only rocks and wheat, Figure 10.1), and therefore
people trade with it more often. It was interesting to notice in this point that 75%
of them though lost. The effect of manipulation as well as its success is evident
here. The same is suggested by the fact that 78.57% of the people who thought
that the agent might have lied, lost the games too. These results suggest that the
third goal that we set at the beginning of the chapter was met: the manipulative
agent through implicit manipulation was successful versus humans and affected them
(e.g. confused them). In fact, 3 of them changed their strategy too. As we have
mentioned, the two agents were very successful against the human players (won 75%
of the sessions) proving that the first goal that we set in the beginning of this chapter
was also met. Hence we show that trained (versus agents, Sections 8.1 and 8.2.5)
RL trading dialogue agents are capable of being very successful in non-cooperative
negotiations against human players.

The results also showed that the two agents were (nearly) equally successful,
meeting our second goal that we set at the beginning of this chapter. Their wins,
ratings from the participants along with their opinions about their “smartness”
strongly suggested that. It was not possible to prove in this chapter though that
the manipulative agent’s policy was better than that of the non-manipulative one
versus humans. However their performances agree with those that were discussed in
Sections 9.1.5 and 9.2.4, where the same two policies were tested in the multilateral
negotiations environment of Catan against the Bayes agents which simulated human
behaviour. This agreement!! suggests again that both policies are equally successful
versus humans, and a further direct comparison between the two might offer no more
information than that. It is important to recall at this point that the manipulative

policy was tested in 10 thousand games against the Bayes agents (Sections 9.1.5 and

10Tn contrast to Taikun’s case in Chapter 6, where the agent’s skill was not as obvious due to
the higher luck factor.

Tn Chapter 6 we also saw that the wins of the manipulative agent (which used explicit manip-
ulation there) were (nearly) equal to those of the non-manipulative one (Section 6.1.3).

168

CHAPTER 10. CATAN AND HUMANS 10.3. CONCLUSION

9.2.4). It would probably require a very large number of games to be played against
human players to investigate the full effect of the manipulation, regardless of using
the dishonest or the honest agent, like we did with the agents'?. The findings and
the results so far; along with the particular number of games and human participants
that were used in this chapter, suggested that we should probably refer to hundreds
of participants (if not thousands) to (possibly) show that manipulation affects a
significant amount of humans, in the ways that we have shown so far in our previous

chapters!s.

12Millions of training and thousands of testing games have been played versus agents as we have
seen in the thesis so far.

13Regardless of implicit or explicit manipulation, probably hundreds of human experiments are
required to be played in order to provide solid evidence that linguistic manipulation offers an
advantage versus humans, compared to a goal-oriented only (i.e. with no manipulation) strategy.

169

Chapter 11

Conclusion

This thesis has investigated the learning of trading dialogue policies in non-
cooperative negotiations. We developed learning agents which were based on a
custom SARSA(0) algorithm (Chapter 4) and mainly on SARSA()) (Chapter 5
onwards), as it resulted in more effective policies. Both met our expectations, as
the Reinforcement Learning agents managed to successfully learn how to trade,
especially through manipulation, with each algorithm having its own advantages
and disadvantages regarding the running time, memory demands and success of
the learned policy. The learning agents were capable of effectively trading with
various adversaries, some of which were simulating human behaviour (Sections 9.1.5
and 9.2.4), in three different non-cooperative environments', showing that they are
solvable by RL.

A range of research issues was explored:
e Bilateral negotiations (Chapters 3-8).
e Imperfect information about dialogue partners (Chapters 3-10)
e Non-stationary learning environments (Chapters 3-5 & 7-9)
e Use of explicit linguistic manipulation (Chapters 3-6)
e Use of implicit linguistic manipulation (Chapters 7-10)
e Adversaries who can detect manipulation (Sections 5.4 & 5.8).
e How and when to manipulate (Chapters 3-9 and Section 5.7 respectively).
e Methods of compressing the state space (Section 7.2.5)

e Models of adversarial preferences (Sections 8.3 & 8.4)

IThese environments were the bilateral negotiations games Taikun and our own version of
Catan, as well as the multilateral environment JSettlers.

170

CHAPTER 11. CONCLUSION 11.1. LIST OF CONTRIBUTIONS

e Multilateral negotiations (Chapter 9).
e Evaluation of RL policies against humans (Chapters 6 and 10)

In all of these areas, the thesis has demonstrated positive results.

11.1 List of contributions

The contributions of this research are the following:

1. Reinforcement Learning: Successful learning of tabular RL policies in bilateral
non-cooperative environments where there is imperfect information about the
participants’ goals, states and preferences. A variety of opponents where used
through the thesis (Chapters 3-5 and 7-8).

2. Reinforcement Learning: Successful learning in the above environments even
where their dynamics continuously change, therefore making the problem a
non-stationary MDP (Chapters 3-5 and 7-8).

3. Reinforcement Learning and Pragmatics: RL successfully learns to use explicit
(i.e. through scalar implicature, Chapters 4 and 5) and implicit (i.e. through
normal trading proposals, Chapters 7 and 8) linguistic manipulation and in-
creases its performance in the above non-cooperative environments (Chapters

3-5 and 7-9).

4. Reinforcement Learning, Pragmatics and Psychology: Our explicit and im-
plicit manipulating RL agents have demonstrated that they are capable of
learning how to beat manipulated adversaries which demonstrate signs of hu-
man behaviour (Chapters 3-5 and 7-9). These adversaries are gullible to the
RL agent’s manipulation and hinder the stated resources from the agent (based

on the reasons of Section 3.3.3).

5. Reinforcement Learning and Pragmatics: We have shown that our RL agents
have learned to manipulate by being cooperative on the Attardo’s [6] locution-

ary level and non-cooperative on the perlocutionary level (Chapters 3-5 and

7-9).

6. Reinforcement Learning: We have demonstrated that the above RL agents
learn how to successfully manipulate even in cases where there are risks of

exposure (detection) where severe penalties apply (Section 5.4).

171

CHAPTER 11. CONCLUSION 11.1. LIST OF CONTRIBUTIONS

7. Reinforcement Learning and Psychology: Adversaries which detect manipu-

10.

11.

12.

13.

lation based on logical contradictions have been implemented and have been
shown to be harder to beat than the above exposing ones. Manipulating RL
policies have been able to beat these adversaries during evaluation, even with-

out previous training against these adversaries (Section 5.8).

. Reinforcement Learning and Psychology: We have shown that RL trading

agents are capable of learning not only how, but also when is the best time to
(safely) manipulate, demonstrating human reasoning according to the dual-

mind cognition theory of Evans [31, 32] (Section 5.7).

. Reinforcement Learning and Philosophy: Our RL agents through implicit ma-

nipulation bring an important argument of Van Dijk [20] to light, according
to which there is an everyday conventional inference of dishonesty from ma-
nipulative acts. That negative effect cannot be taken for granted though as
manipulation according to Dillard and Pfau [21], as well as O’Keefe [78] also
occurs through legitimate persuasion. This is what our Reinforcement Learn-
ing work suggests too with the similar performances of our deceptive and

persuasive agents (Section 8.2).

Reinforcement Learning: We have presented a novel way of encoding the state
space of tabular RL trading dialogues which reduces its size to 0.5% of the
original (Section 7.2.5).

Reinforcement Learning: We have shown that trading RL agents are more
successful when they build an opponent model, an estimate of the hidden

goals and preferences of the adversary and learn how to exploit them (Section
8.3).

Reinforcement Learning: Conditional preference networks (CP-NETs) [11]
have been implemented and used for the first time ever in the RL agent’s
state representation, resulting in higher performances than those of RL agents
which did not use them (Section 8.4).

Reinforcement Learning: Our previously trained RL policies in bilateral ne-
gotiations environments have shown to perform successfully in multilateral
negotiations environments, by treating all of the opponents as one, performing
even better than the policies which were trained on these multilateral negoti-
ations environments (Section 9.1.3). Previous efficient selection of states and
actions in our 2-player version of the “Catan” game during training assisted
in that too. Hence we suggest that bilateral training environments may suffice

for complex multilateral non-cooperative trading scenarios, for effective RL
(Chapter 9).

172

CHAPTER 11. CONCLUSION1.2. PERSONAL EVALUATION AND REFLECTION

14. Reinforcement Learning and Pragmatics: Our RL agent with implicit linguistic
manipulation was successful too in the above multilateral environments, and
has been shown to beat Bayesian adversaries which simulate human behaviour
(Section 9.2).

15. Reinforcement Learning: Our above trained RL policies on bilateral negoti-
ations which maintained preferences in the state representation, resulted in
decent performances against the adversaries of the above multilateral negoti-

ations environment (Section 9.4).

16. Reinforcement Learning and Pragmatics: Our trading RL agents were success-
ful versus human players in our tested non-cooperative environments. Explicit
(Chapter 6) and implicit (Chapter 10) linguistic manipulation was effective
against the humans and our RL agents managed to win more games than
them.

11.2 Personal evaluation and reflection

The outcome of this thesis met most of our expectations. There is still important
work to be done though in order to enhance the agent’s trading capabilities, and es-
pecially to reach a level where it will be capable of successfully negotiating in other
non-cooperative negotiation domains than that of trading. Frankly, this is what
we aim for in the long term. Our results from experiments based on Pragmatics
provide evidence that generalisation to other non-cooperative negotiation domains
is possible, as we will discuss in more detail in the next section. Our Reinforce-
ment Learning in an MDP framework has shown that it is capable of learning how
to effectively negotiate by demonstrating similarity to human behaviour. We have
demonstrated for example that our RLA’s are able to learn how to successfully use
explicit manipulation through scalar implicature, or implicit manipulation through
the use of normal trading proposals by being persuasive or deceptive. However a
“multi-purpose” non-cooperative negotiations agent would need to consider even
more aspects of human behaviour (such as trust), in order to improve its manipu-
lative negotiating performance. By taking into account more human traits it will
probably affect a wider range of human behaviours, and therefore become applicable
to more negotiation domains.

Instead of using RL code that was already implemented by other researchers
we preferred to create our own, always following fundamental principles of RL.
The advantage of that plan was (apart from the enjoyment of creativity) that we

gained technical knowledge and the flexibility to create algorithms that fully served

173

CHAPTER 11. CONCLUSION 11.3. FUTURE WORK

our research needs, piece by piece. The disadvantage of that plan was probably
wasted time, as time was spend to initially investigate and experiment with trivial
problems (e.g. the RL solution of the tic-tac-toe game). However we now have a
learning algorithm that can easily be modified according to the problem’s needs and
after much trial and error has reached a decent level. Our transition from the simple
tic-tac-toe game to the complex multi-player Catan game eventually led us to that
level and we produced methodologies that made the use of the traditional tabular
RL easier (e.g. our compressed state space representation).

Empirical analysis and theories that were used in our work were mainly focused
on Pragmatics, some on Philosophy and some on Psychology. At the beginning of
this research time was dedicated to study Game Theory, but we soon realised that
we were more interested in researching the negotiation part of a game, as this is
where the dialogue management mainly occurs, rather than the overall game-play
strategies. However Game Theory inspired us to create the non-cooperative games
Taikun and our version of the game Catan?, in a way that could serve our research

needs.

11.3 Future work

In this section we will initially discuss how the current findings can be applied to
other areas in an attempt to generalise our work. We will also examine which areas
can be affected. At the end of this section we will provide an outlook discussing the

vision of this work.

11.3.1 RL negotiations generalisation

The findings of the current thesis can be useful and might be applied in many non-
cooperative negotiations scenarios and not only trading. Political debates, police
investigation, tutoring and court trials are some examples where our findings using
explicit linguistic manipulation, as is presented in the form of scalar implicature in
this work, could be learned by RLAs in order to lie or hide information. Despite
the fact that we were focused on trading, our resource exchange might also be used
for basic information exchange in these cases and our learning mechanisms would
still remain the same. Implicit manipulation, where the agent has learned how to

deceive or persuade through normal trading proposals, might also be applied in

2as well as conduct the evaluation of Chapter 10 through our newest game “Trading in Catan”.

174

CHAPTER 11. CONCLUSION 11.3. FUTURE WORK

other forms of negotiation, as the trading resource would be translated again to the
corresponding information that the particular negotiation focuses on.

Apart from how to manipulate, information regarding when would be also useful
to apply to other negotiation areas, as relevant theory in Psychology suggests and
we have previously discussed (Section 5.7). As the current thesis proposes though,
detecting manipulation is as important as manipulating. Thus, our methodologies
and findings on manipulation detection, with agents which identify it based on its
frequency or its logical inconsistency, are suggested and can be taken into consider-
ation in the agents’ functionality of various other negotiation areas, such as those
that we mentioned above. Manipulation and detection can be learned and used
by intelligent agents in other forms of negotiation, as our trade resources can be
translated to any other kind of information exchange. For example, the scalar im-
plicature’s effect (Section 3.1.3) from the sentence “I really need resource” that the
agent has learned to use at the beginning of this work, might also be triggered from
“I really need information”, as in a police investigation negotiation, and used for
exactly the same manipulative purpose that we have examined in the thesis. In both
of these cases the intelligent agent would use it in order to get other resources or

information than the one it says it needs, in such a non-cooperative environment.

11.3.2 Outlook

In this thesis we have provided a first investigation into a whole range of issues
in non-cooperative trading dialogue. In future we hope that our results are useful in
the new field of “Computational Pragmatics”, and could be extended for example to
use Deep Learning for non-cooperative dialogue management [18]. Ultimately, the
vision of this research is to eventually develop intelligent agents which will be able to
assist (or even replace) the user when (s)he comes to take important decisions in non-
cooperative negotiations with other humans or robots in various sectors. Examples
are the games/video-games sector, financial sector, political and diplomatic sector,

healthcare, police investigation, military operations and education.

175

Bibliography

1]

Stergos Afantenos, Nicholas Asher, Farah Benamara, Anais Cadilhac, Cedric
Degremont, Pascal Denis, Markus Guhe, Simon Keizer, Alex Lascarides,
Oliver Lemon, Philippe Muller, Soumya Paul, Verena Rieser, and Laure Vieu,
‘Developing a corpus of strategic conversation in The Settlers of Catan’, in
Proceedings of SemDial 2012, (2012).

R. Arkin, ‘The ethics of robotics deception’, in Ist International Conference

of International Association for Computing and Philosophy, pp. 1-3, (2010).

N. Asher, E. Bonzon, and A. Lascarides, ‘Extracting and modelling preferences
from dialogue’ submitted, 2009.

N. Asher and A. Lascarides, ‘Commitments, beliefs and intentions in dialogue’,

in Proc. of SemDial, pp. 35-42, (2008).

N. Asher and A. Lascarides, ‘Making the right commitments in dialogue’, in
University of Michigan Linguistics and Philosophy Workshop, (2008).

S. Attardo, ‘Locutionary and perlocutionary cooperation: The perlocutionary
cooperative principle’, Journal of Pragmatics, 27(6), 753-779, (1997).

N. Barr, Economics of the Welfare State (5th Edition), chapter 3.2.2: The
relevance of efficiency to different theories of society, 46, Oxford University
Press, 2012.

M.H.J. Bergsma, Opponent Modeling in Machiavelli, B.s. thesis, Maastricht
University, the Netherlands, 2005.

C.F. Bond and M. Robinson, ‘The evolution of deception’, Journal of Non-
verbal Bahavior, 12(4), 295-307, (1988).

V.S. Borkar, ‘Stochastic approximation with two time scales’, Systems Control
Letters, 29(5), 291-294, (1997).

C. Boutilier, R. Brafman, C. Domshlak, H. Hoos, and D. Poole, ‘CP-nets
: A Tool for Representing and Reasoning with Conditional Ceteris Paribus
Preference Statements’, Journal of Artificial Intelligence Research, 21, 135—
191, (2004).

[12]

[13]

[14]

[15]

[16]

[17]

[19]

[20]

[21]

22]

Michael Bowling, Neil Burch, Michael Johanson, and Oskari Tammelin,
‘Heads-up limit hold’em poker is solved’, Science, 347(6218), 145-149, (2015).

A. Byde, M. Yearworth, Y.-K. Chen, and C. Bartolini, ‘Autona: a system for
automated multiple 1-1 negotiation’, in Proceedings of the 2003 IEEE Inter-

national Conference on Electronic Commerce, pp. 59-67, (2003).

Analis Cadilhac, Nicholas Asher, Farah Benamara, and Alex Lascarides, ‘Com-
mitments to preferences in dialogue’, in Proceedings of the SIGDIAL 2011
Conference, pp. 204-215, Portland, Oregon, (June 2011). Association for Com-

putational Linguistics.

C. Camerer and T.H. Ho, ‘Experience-weighted attraction learning in normal
form games’, Econometrica, 67(4), 827-874, (1999).

D. Carmel and S. Markovitch, ‘Learning models of opponent’s strategies in
game playing’, in Proceedings AAAI Fall Symposium on Games: Planning
and Learning, pp. 140-147. The AAAI Press, (1993).

Samuel P. M. Choi, Dit-Yan Yeung, and Nevin L. Zhang, ‘Hidden-mode
markov decision processes for nonstationary sequential decision making’, in In
Sequence Learning - Paradigms, Algorithms, and Applications, pp. 264-287.
Springer-Verlag, (2001).

Heriberto Cuayahuitl, Simon Keizer, and Oliver Lemon, ‘Strategic dialogue
management via deep reinforcement learning., in NIPS Deep Reinforcement

Learning workshop, Canada, (2015).

Daniel Dennett, ‘When Hal Kills, Who’s to Blame? Computer Ethics’, in
Hal’s Legacy:2001°s Computer as Dream and Reality, (1997).

T.A.V. Dijk, ‘Discourse and manipulation’, Discourse € Society, 17(2), 359—
383, (2006).

James Price Dillard and Michael Pfau, The Persuasion Handbook: Develop-
ments in Theory and Practice, SAGE Publications, Inc., 2002.

Peng Ding and Tao Mao, ‘Reinforcement Learning in Tic-Tac-Toe Game and
Its Similar Variations’, Technical report, Thayer School of Engineering at
Dartmouth College, (2009).

R.V. Dodge, Schelling’s Game Theory, Oxford Scholarship Online, 2012.

H. H. L. M. Donkers, H. J. Van Den Herik, and J. W. H. M. Uiterwijk,
‘Probabilistic opponent-model search’, Information Sciences, 135, 123-149,
(2001).

177

[25]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

loannis Efstathiou and Oliver Lemon, ‘Learning non-cooperative behaviour for

dialogue agents’, in Proceedings of the 21st European Conference on Artificial
Intelligence (ECAI), pp. 999-1000, Prague, Czech Republic, (2014).

loannis Efstathiou and Oliver Lemon, ‘Learning non-cooperative dialogue be-
haviours’, in Proceedings of the 15th Annual Meeting of the Special Interest
Group on Discourse and Dialogue (SIGDIAL), pp. 60-68, Philadelphia, PA,
U.S.A, (2014).

loannis Efstathiou and Oliver Lemon, ‘Learning to manage risks in non-
cooperative dialogues.’, in Proceedings of the 18th Workshop on the Semantics
and Pragmatics of Dialogue (SemDial 2014 - DialWatt), pp. 173-175, Edin-
burgh, Scotland, U.K., (2014).

loannis Efstathiou and Oliver Lemon, ‘Learning non-cooperative dialogue poli-
cies to beat opponent models: “the good, the bad and the ugly”’, in Pro-
ceedings of the 19th Workshop on the Semantics and Pragmatics of Dialogue
(SemDial 2015 - GoDial), pp. 3341, Gothenburg, Sweden, (2015).

loannis Efstathiou and Oliver Lemon, ‘Learning better trading dialogue poli-
cies by inferring opponent preferences.”, in To be presented: Proceedings of the
15th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2016), Singapore, (2016).

I. Erev and A. Rapoport, ‘Coordination, “magic”, and reinforcement learning

in a market entry game’, Games and Economic Behavior, 23, 146175, (1998).

J.S.B.T. Evans, ‘Dual-processing accounts of reasoning, judgment, and social
cognition’, Annual Review of Psychology, 59(1), 255-278, (2008).

J.S.B.T. Evans, ‘Two minds rationality’, Thinking & Reasoning, 20(2), 129
146, (2013).

D. Floreano, S. Mitri, S. Magnenat, and L. Keller, ‘Evolutionary conditions for
the emergence of communication in robots’, Current Biology, 17(6), 514-519,
(2007).

D. Fudenberg and J. Tirole, Game Theory, chapter 1.1: Introduction to Games
in strategic Form and Iterated strict Dominance, 4-11, MIT Press, 1991.

Kallirroi Georgila, ‘Reinforcement learning of two-issue negotiation dialogue
policies’, in Proceedings of the 14th Annual SIGdial Meeting on Discourse and
Dialogue, pp. 112-116, (2013).

Kallirroi Georgila, Claire Nelson, and David Traum, ‘Single-agend vs. multi-

agent techniques for concurrent reinforcement learning of negotiation dialogue

178

37]

[38]

[39]

[41]

[42]

[43]

[44]

[45]

[46]

policies’, in Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics, pp. 500-510, Baltimore, USA, (September 2014).

Kallirroi Georgila and David Traum, ‘Learning culture-specific dialogue mod-
els from non-culture specific data’, in Proceedings of Universal Access in
Human-Computer Interaction, HCI International, Lecture Notes in Computer
Science, volume 6766, pp. 440-449. Springer Berlin Heidelberg, (2011).

Kallirroi Georgila and David Traum, ‘Reinforcement learning of argumen-
tation dialogue policies in negotiation’, in Proceedings of INTERSPEECH,
(2011).

H.P. Grice, ‘Syntax and semantics: Speech acts’, in Logic and Conversation,
eds., P. Cole and J.L.. Morgan, volume 3, 41-58, New York: Academic Press,
(1975).

Markus Guhe and Alex Lascarides, ‘Game strategies in the settlers of catan’, in
Proceedings of the IEEE Conference on Computational Intelligence in Games,
Dortmund, (2014).

A. Hadi, ‘A critical appraisal of grice’s cooperative principle’, Open journal of
Modern Linguistics, 3(1), 69-72, (2013).

Christos Hadjinikolis, Yiannis Siantos, Sanjay Modgil, Elizabeth Black, and
Peter McBurney, ‘Opponent modelling in persuasion dialogues’, in IJCAI ’13
Proceedings of the Twenty-Third international joint conference on Artificial
Intelligence, pp. 164-170, (2013).

Melita Hajdinjak and France Mihelic, ‘Information-providing dialogue man-
agement’, in Lecture Notes in Computer Science, eds., Petr Sojka, Ivan
Kopecek, and Karel Pala, volume 3206, 595-602, Springer, (2004).

J.M. Hammersley and D.C. Handscomb, Monte Carlo Methods, Methuen and
Co., London, and John Wiley and Sons, New York, 1964.

Peter Heeman, ‘Representing the reinforcement learning state in a negotiation
dialogue., in Automatic Speech Recognition € Understanding, pp. 450-455,
Merano, Italy, (2009).

Takuya Hiraoka, Kallirroi Georgila, Elnaz Nouri, David Traum, and Satoshi
Nakamura, ‘Reinforcement learning in multi-party trading dialog’, in Proceed-
ings of the SIGDIAL 2015 Conference, pp. 32—41, Prague, Czech Republic,
(September 2015).

179

[47]

[48]

[49]

[51]

[52]

[53]

Takuya Hiraoka, Graham Neubig, Sakriani Sakti, Tomoki Toda, and Satoshi
Nakamura, ‘Reinforcement learning of cooperative persuasive dialogue poli-

cies using framing’, in The 25th International Conference on Computational
Linguistics (COLING), pp. 17061717, (2014).

J. Hu and M.P. Wellman, ‘Multiagent reinforcement learning: Theoritical
framework and an algorithm’, in Proceedings of the Fifteenth International

Conference on Machine Learning, San Francisco, (1998).

H. lida, JW.H.M. Uiterwijk, H.J. van den Herik, and I.S. Herschberg,
‘Opponent-model search’, Technical report cs 93-03, Universiteit Maastricht,
(1993).

H. lida, J.W.H.M. Uiterwijk, H.J. van den Herik, and I.S. Herschberg, ‘Poten-
tial applications of opponent-model search. part 1: The domain of applicabil-
ity’, ICCA Journal, 16(4), 201-208, (1993).

Levin Irwin, Sandra L. Schneider, and Gary J. Gaeth, ‘All frames are not cre-

ated equal: A typology and critical analysis of framing effects., Organizational
behavior and human decision processes, 76(2), 149-188, (1998).

H. Ishibuchi, T. Nakashima, H. Miyamoto, and C. Oh, ‘Fuzzy g-learning for a
multi-player non-cooperative repeated game’, in Proceedings of the Sizth IEEE

International Conference on Fuzzy Systems, Barcelona, (1997).

S. Ishii, W. Yoshida, and J. Yoshimoto, ‘Control of exploitation-exploration
meta-parameter in reinforcement learning’, Neural Networks, 15, 665-687,
(2002).

[S024617-2, ‘Language resource management-semantic annotation frame work
(semaf), part2: Dialogue acts’, Iso, International Organization for Standard-
ization, (2010).

B. Joy, ‘Why the future doesn’t need us’, Wired, (April 2000).

L.P. Kaelbling, M.L. Littman, and A. Moore, ‘Reinforcement learning: A
survey’, Journal of Artificial Intelligence, 4, 243, (1996).

I. Kaplansky, ‘A contribution to von neumann’s theory of games’, Annals of
Mathematics, 46(3), 474-479, (1945).

R. Katz and S. Kraus, ‘Efficient agents for cliff-edge environments with a large
set of decision options., in Proceedings of the 5th International Conference on
Autonomous Agents and Multi-Agent Systems, pp. 697-704, (2006).

180

[59]

[62]

[64]

[70]

R. Katz and S. Kraus, ‘Gender-sensitive automated negotiators’, in Proceed-
ings of the 22nd National Conference on Artificial Intelligence, pp. 821-826,
(2007).

M. Kearns and S. Singh, ‘Near-optimal reinforcement learning in polynomial
time’, Machine Learning, 49, 209-232, (2002).

Simon Keizer, Heriberto Cuayahuitl, and Oliver Lemon, ‘Learning trade ne-
gotiation policies in strategic conversation’, in The 19th Workshop on the Se-
mantics and Pragmatics of Dialogue (SemDial 2015 - goDIAL), pp. 104-112,
(2015).

J.F. Kelley, ‘Cal, a natural language program developed with the oz paradigm:
Implications for supercomputing systems’, in First International Conference

on Supercomputing Systems, pp. 238-248, (1985).

S. Kraus, P. Hoz-Weiss, S. Wilkenfeld, D.R. Andersen, and A. Pate, ‘Resolv-
ing crises through automated bilateral negotiations., Artificial Intelligence,
172(1), 1-18, (2008).

H.J. Ladegaard, ‘Pragmatic cooperation revisited: Resistance and non-
cooperation as a discursive strategy in asymmetrical discourses’, Journal of
Pragmatics, 41(4), 649-666, (2009).

Michail G. Lagoudakis and Ronald Parr, ‘Least-squares policy iteration’, Jour-
nal of Machine Learning Research, 4, 1107-1149, (2003).

D.S. Leslie and E.J. Collins, ‘Convergent multiple-times-scales reinforcement
learning algorithms in normal form games’, The Annals of Applied Probability,
13(4), 1231-1653, (2003).

R. Lin and S. Kraus, ‘Can automated agents proficiently negotiate with hu-
mans?’, CACM, 53(1), 78-88, (2010).

Michael L. Littman, ‘Markov games as a framework for multi-agent reinforce-
ment learning’, in Proceedings on the Eleventh international Conference on
Machine Learning, pp. 157-163, (1994).

T. Meguro, Y. Minami, R. Higashinaka, and K. Dohsaka, ‘Wizard of oz evalu-
ation of listening-oriented dialogue control using pomdp’, in Automatic Speech
Recognition and Understanding (ASRU), 2011 IEEE Workshop, pp. 318-323,
(2011).

Francisco S. Melo, Sean P. Meyn, and M. Isabel Ribeiro, ‘An analysis of

reinforcement learning with function approximation’, in Proceedings of the

181

[80]

[83]

25th International Conference on Machine Learning, ICML 08, pp. 664671,
New York, NY, USA, (2008). ACM.

T. Mitchell, Machine Learning, chapter 13: Reinforcement Learning, 367388,
The McGraw-Hill Companies Inc., 1997.

J. Nash, Non-Cooperative Games, Princeton University, 1950.

J. Nash, ‘Non-cooperative games’, The Annals of Mathematics, 54(2), 286—
205, (1951).

J. Von Neumann and O. Morgenstern, Theory of Games and Economic Ba-
haviour (3rd Edition), Princeton University Press, 1953.

J. Von Neumann and O. Morgenstern, Theory of Games and Economic Be-
haviour, chapter 11.1.1: The concept of a strategy and its formalization, 79,

Princeton University Press, 1953.
B. Norberto, On Mosca and Pareto, Librairie Droz, 1972.

Elnaz Nouri and David Traum, ‘Initiative taking in negotiation’, in Proceedings

of SIGDIAL 2014, (2014).

Daniel O‘Keefe, Persuasion: Theory and research (2nd Edition), SAGE Pub-
lications, Inc., 2002.

Alexandros Papangelis and Kallirroi Georgila, ‘Reinforcement learning of
multi-issue negotiation dialogue policies’, in Proceedings of the SIGDIAL 2015
Conference, pp. 154-158, (2015).

Michael Pfeiffer, ‘Reinforcement learning of strategies for Settlers of Catan’, in
International Conference on Computer Games: Artificial Intelligence, Design

and Education, (2004).

M.L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic

Programming, Wiley, 1994.

V. Rieser and O. Lemon, Reinforcement Learning for Adaptive Dialogue Sys-
tems: A Data-driven Methodology for Dialogue Management and Natural Lan-
guage Generation, chapter 2: Background, 9-27, Springer, 2011.

V. Rieser and O. Lemon, Reinforcement Learning for Adaptive Dialogue Sys-
tems: A Data-driven Methodology for Dialogue Management and Natural Lan-
guage Generation, chapter 3: Reinforcement Learning, 29-52, Springer, 2011.

182

[84]

[85]

[36]

[92]

[93]

[94]

[95]

[96]

[97]

Verena Rieser and Oliver Lemon, Reinforcement Learning for Adaptive Di-
alogue Systems: A Data-driven Methodology for Dialogue Management and
Natural Language Generation, Theory and Applications of Natural Language

Processing, Springer, 2011.

W. Ross and J. LaCroix, ‘Multiple meanings of trust in negotiation theory and
research: a literature review and integrative model’, International Journal of
Conflict Management, 7(4), 314-360, (1996).

A. Rudnicky and W. Xu, ‘An agenda-based dialogue management architecture
for spoken language systems’, in Proceedings of the IEEE Automatic Speech
Recognition and Understanding Workshop (ASRU), (1999).

S.J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, chapter
2: Intelligent Agents, 34—61, Prentice Hall, 2003.

Jost Schatzmann and Steve Young, ‘The hidden agenda user simulation
model’, IEEE Transactions on Audio, Speech, and Language Processing, 17(4),
733-747, (2009).

N. Sharkey, ‘The ethical frontiers of robotics’, Science, 322, 1800-1801, (2008).

J. Shim and R.C. Arkin, ‘A Taxonomy of Robot Deception and its Benefits in
HRI’, in Proc. IEEE Systems, Man, and Cybernetics Conference, (2013).

B.C. Silva, E.W. Basso, A.L.C. Bazzan, and P.M. Engel, ‘Dealing with non-
stationary environments using context detection’, in Proceedings of the 23rd
International Conference on Machine Learning, Pittsburgh PA, (2006).

Bruno C. Da Silva, Eduardo W. Basso, Filipo S. Perotto, Ana L. C. Bazzan,
and Paulo M, ‘Improving reinforcement learning with context detection’, in

Fifth International Joint Conference on Autonomous Agents and Multi Agent
Systems - AAMAS 2006, (2006).

R. Sutton, ‘Learning to predict by the methods of temporal differences’, Ma-
chine Learning, 3(1), 9-44, (1988).

R. Sutton and A. Barto, Reinforcement Learning, chapter 6.5 Q-Learning:
Off-Policy TD Control, 185-188, MIT Press, 1998.

R. Sutton and A. Barto, Reinforcement Learning, chapter 6.4 SARSA: On-
Policy TD Control, 182-184, MIT Press, 1998.

R. Sutton and A. Barto, Reinforcement Learning, chapter 7.5 SARSA()), 226—
228, MIT Press, 1998.

R. Sutton and A. Barto, Reinforcement Learning, MIT Press, 1998.

183

(98]

[99]

[100]

[101]

[102]

103]

[104]

[105]

[106]

107]

108

R. Sutton and A. Barto, Reinforcement Learning, chapter 1: Introduction,
14-35, MIT Press, 1998.

R. Thomas and K. Hammond, ‘Java settlers: a research environment for study-
ing multi-agent negotiation’, in Proc. of IUI “02, pp. 240-240, (2002).

M. Tokic, ‘Ki 2010: Advances in artificial intelligence, karlsruhe, germany
2010. lecture notes in artificial intelligence’, in Adaptive e-greedy exploration
in reinforcement learning based on value differences, eds., R. Dillmann, J. Bey-
erer, U. Hanebeck, and T. Schultz, 203-210, Springer, (2010).

David Traum, ‘Extended abstract: Computational models of non-cooperative
dialogue’; in Proc. of SIGdial Workshop on Discourse and Dialogue, (2008).

N. Vishnu and D. Tapas, ‘A reinforcement learning algorithm for obtaining
nash equilibrium of multi-player matrix games’, IIE Transactions, 41(2), 158—
167, (2009).

Adam Vogel, Max Bodoia, Christopher Potts, and Dan Jurafsky, ‘Emergence
of gricean maxims from multi-agent decision theory’, in Proceedings of NAACL
2013, (2013).

Adam Vogel, Christopher Potts, and Dan Jurafsky, ‘Implicatures and nested
beliefs in approximate decentralized-pomdps’, in Proceedings of ACL 2013,
(2013).

Aimilios Vourliotakis, Ioannis Efstathiou, and Verena Rieser, ‘Detecting de-
ception in non-cooperative dialogue: A smarter adversary cannot be fooled
that easily’, in Proceedings of the 18th Workshop on the Semantics and
Pragmatics of Dialogue (SemDial), pp. 252-254, Edinburgh, Scotland, U.K.,
(September 2014).

A.R. Wagner and R.C. Arkin, ‘Analyzing social situations for human-robot
interaction’, Interaction Studies, 9(2), 277-300, (2008).

A.R. Wagner and R.C. Arkin, ‘Robot deception: Recognizing when a robot
should deceive’, in Proc. IEEE International Symposium on Computational
Intelligence in Robotics and Automation (CIRA-09), Daejeon, South Korea,
(2009).

A.R. Wagner and R.C. Arkin, ‘Acting deceptively: Providing robots with the
capacity for deception’, International Journal of Social Robotics, 3(1), 526,
(2011).

184

[109]

[110]

111]

112]

[113]

[114]

M. Walker, R. Passonneau, and J. Boland, ‘Quantitative and qualitative eval-
uation of DARPA Communicator spoken dialogue systems’, in Proc. of the An-
nual Meeting of the Association for Computational Linguistics (ACL), (2001).

C.J.C.H. Watkins, Learning from Delayed Rewards, Cambridge University,
1989.

C.J.C.H. Watkins and P. Dayan, ‘Q-learning’, Machine Learning, 8, 279-292,
(1992).

Jason D. Williams and Steve Young, ‘Partially observable markov decision
processes for spoken dialog systems’, Computer Speech and Language, 21(2),
393-422; (2007).

Steve Young, M. Gasic, S. Keizer, F. Mairesse, J. Schatzmann, B. Thom-
son, and K. Yu, ‘The Hidden Information State Model: a practical framework
for POMDP-based spoken dialogue management’, Computer Speech and Lan-
guage, 24(2), 150-174, (2010).

X. Zhang, V. Lesser, and R. Podorozhny, ‘Multi-dimensional, multistep nego-
tiation for task allocation in a cooperative system’, Autonomous Agents and
MultiAgent Systems, 10(1), 5-40, (2005).

185

Appendix A

Appendix

In this chapter we will initially discuss the preliminary work that preceded the
above research and offered practical experience, aim and motivation. The reader
will then find various algorithms that were used in the thesis and other draft notes

about the tic-tac-toe game, poker and Taikun.

A.1 Preliminary work

In this section we will examine the preliminary work that has been made. The
purpose of this work was to understand in depth the Reinforcement Learning pro-
gramming in an MDP framework. This allowed to initially deal with trivial problems
and effectively traverse to more complex ones. One of the trivial problems was to
successfully learn how to move in a grid-world environment to reach a goal point.
Along with the familiarisation with the Reinforcement Learning, another significant
reason that this preliminary work was conducted was to solve trivial problems in non-
cooperative games, such as the “Tic-tac-toe”. This offered fundamental knowledge
and a fist impression of how a more complex non-cooperative trading environment
should be created and dealt (i.e. Taikun). Initially we were thinking of working in
poker but -as we will see below- we soon changed our mind because the nature of
that problem did not fit exactly to our future plans and needs of the current re-
search. Hence we decided to create our own game “Taikun” that we have examined
in Chapters 3, 4, 5 and 6.

186

APPENDIX A. APPENDIX A.1. PRELIMINARY WORK

A.1.1 Q-Learning example on a grid-world

This program was implemented in Java using the NetBeans IDE 7.3 RC2. It
is a Reinforcement learning example that was based on Q-Learning in an MDP
framework. The knowledge that was gained from that assisted in the development
of the algorithms that followed. It used a 3x4 grid world (similar to the examples of
the Section 2.1.4) where the agent’s goal was to learn how to find the shortest route
towards a goal state. At the beginning of each episode (iteration), the agent always
“spawned” at the 3-1 (row-column) state and gradually learnt a policy of how to
effectively reach the goal state at 1-4 by following the shortest possible route. That
was achieved by constantly updating the Q-values of the state-action pairs while it
was traversing through the various states, by applying the appropriate formula for
the deterministic case (Section 2.1.3). The program starts by applying 2 rewards of
value 10 to the actions towards the goal state from the states 1-3 and 2-4, -1 reward
to every other action and 0 to the actions of the goal state. Once the agent reaches
the goal state then it automatically spawns again at the state 3-1 (beginning of next
learning episode) until convergence has been reached (Q-values of the actions do not
change any more).

This program covered both the cases (and therefore there are 2 different ver-
sions of the program) of deterministic and non-deterministic actions. Parameter a
(learning rate) is set to 1 in the former case while on the latter it has to change to
0.1 (recommended value). The non-deterministic case was programmed by applying
probabilities to the agent’s movements and then stop the execution of the iterations
to a number that we are confident with (we can be certain that the algorithm has
learnt the optimal policy there). In another case, where there can be no such con-
fidence, the formula that was used to update the Q-values of the state-actions is
that of the stochastic case and for the parameter a was used a specific formula too

(examined in detail at the end of Section 2.1.4).

A.1.2 Tic-Tac-Toe

This program was implemented in Java using the NetBeans IDE 7.3 RC2. The
reason that it was designed and implemented was to experiment with a custom made
Temporal-Difference learning agent based on value iteration in a non-cooperative
game with perfect information, such as the “tic-tac-toe”, in order to pass this knowl-
edge further to our future work. Inspired by the relevant example of [97], the learning
agent being in an e-greedy mode with a ratio of 80%/20% (greedy/exploring), ini-

tially managed successfully to learn how to play on a satisfactory level (after 40,000

187

APPENDIX A. APPENDIX A.1. PRELIMINARY WORK

training games) and then how to never lose a game (after 80,000 training games),
see Figures A.1 and A.2, against an agent that was playing at random. The result
was decent compared to others [22]. The rewards (converted to state values) that
were used were 0 for the case of adversary’s win, 8,000 for the case of a draw, 5,000
for any other case (of a normal state) and 10,000 for the case of the learning agent’s
win. The Temporal-Difference Learning method calculates current value estimates
using previous learnt ones. In this program, the applied formula that was used and

is based on Value iteration is:

V'(s) « V(s)+ax*x(V(s") —V(s)) where,

a is the learning rate (0 < « < 1), it reduces gradually to 0 at the end of the
training games for the sake of convergence,
s’ and s the current and previous states respectively,

V" and V are the current and previous values.

|| 2| Tic Tac Toe - Single playe
ngl

@ 0Ois Victorious!
Player: 0 Agent: 72011 Draw: 7991

Figure A.1: Learning Agent’s performance after 80,000 testing games of “tic-tac-
toe”. Trained on 80k games and then tested on 80k games versus an opponent which
plays at random (named above as “player”), our learning agent has learnt how to
never lose a game.

Notes about the LA’s algorithm (1st PhD year)

The game (environment) presents to the agent new states due to the player’s
“unpredictable” intervention (the agent is not aware of what the player is going
to play). Thus, the adversary is considered to be a part of the learning agent’s

environment. The states of the player and the agent are all recorded in an array

188

APPENDIX A. APPENDIX A.1. PRELIMINARY WORK

Total reward/value per training game

Figure A.2: Total reward/value graph for each of the 80,000 training games of “tic-
tac-toe”. The above graph provided to us evidence of the algorithm’s correct func-
tionality. The learning agent, while in greedy mode, learnt how to consider only
those state-actions that have the highest values, as the number of the training games
INCTeases.

list in the way that is explained in Figure A.3, where X is the state of the game
including the action (move) of the player (or adversary) who always starts the game

first). O is the state of the game including our learning agent’s action.

Each of the O’s updates value of X

Ve
IXI0]0]0]0IX]|0|00]OIX 00| OQ|OIX| OO 0|0 IX|0)0|0|OQX]|0|Q|. ... -= Amay List containing the
stailes

AN NN

X updates values of each of the O's

Figure A.3: X is the state of the game including the action (move) of the player (or
adversary, which always starts the game first). O is the state of the game including
our learning agent’s action (move).

We focused on storing structures such as |X|0]O|O|O] and not for example
|O|0| X | because we always investigate what needs to happen after the adversary
has played. When the game starts the adversary plays always first. The array
list accepts gradually whole “trees” that consist of a root, that is the state of the
adversary (that has just played) and then the alternative states of the learning agent
follow (including alternative played moves). In this way when the agent locates a
game state that it hasn’t seen before and occurred after the adversary played, it
directly records it in the list. Then it updates the previous one (that is a learning
agent’s state along with an action) accordingly, based on the formula which is at

the end of Section 2.1.5. The LA’s new states are placed next to it.

189

APPENDIX A. APPENDIX A.1. PRELIMINARY WORK

On the other hand, whenever the agent sees a state that is already recorded in
the list then it only updates the previous one by back-propagating its value in the
same way as before again. After each of the player’s (adversary’s) new move (action)
the learning agent searches in its array list to locate the next most valuable state
in order to act accordingly when it is in greedy mode. When it is in exploration
mode, then it just acts at random and if the new state after its recent action does
not exist in the list (next to those that are after the player’s action) then it inserts
it in the appropriate place. It was important for us to know in other words after
each player’s action (X is the current state of the game including this action) which
of the next states (O) that include alternative LA’s actions has the current highest
value. This is what it selects to play in greedy mode and in this way it learnt how to
play optimally and never lose a game. The success of this algorithm allowed us to
use a similar, advanced version in the case of the game “Taikun” that we examined
in Chapter 3.

A.1.3 Poker

Another game that we considered working on at the beginning of this research
was the Texas hold-em poker, as this version is the most popular amongst the various
ones of poker. The game offered many elements that were interesting for us, such
as its non-cooperative nature and imperfect information, as the player’s cards are
hidden and the history of the games is not fully observable. Code was implemented
in Java for a Texas hold-em version of the game between two players, planning on
making one of them a Reinforcement Learning agent. Hence a basic RL algorithm
was designed (but it was never tested) and can be found in the Appendix of the
thesis (Section A.2.2) along with relevant ideas (Section A.2.2). However due to
the fact that the negotiation between the players is not direct, as they do not trade
their cards between them and therefore it would not be (linguistically) interesting
enough for us, it was soon abandoned.

There was another important reason that made us abandon poker and proceed
with the creation of Taikun: the facial characteristics and the body language of
the players, that have a very important role in poker, suggested the use of learning
techniques that incorporate pattern recognition, visual perception and a high dosage
of empirical analysis based on Psychology in order to result to a strong solution.
Recent remarkable results in heads-up limit Texas hold’em poker [12] have shown
that the game is solvable, by a proposed new algorithm called “CFR”. The algorithm
uses a regret minimization method which is related to our research area, the Re-
inforcement Learning. However according to the authors of the above article, with

their proposed algorithm the game was essentially weakly solved. With the addi-

190

APPENDIX A. APPENDIX A.2. ALGORITHMS

tional application of the above visual techniques that would take into consideration
facial characteristics and body language, blended with theories of Psychology, the

solution might become even stronger.

A.2 Algorithms

A.2.1 “Tic-tac-toe”: LA’s algorithm

PLAYER’S TURN:

if game is not over
Player moves
else

new game

AGENT’S TURN:

if state does not exist

assign state to list

assign value to this state (LOW VALUE if it is one of the losing states or tie)

(if not the 1st state) update the value of the previous state (before the move)
based on the new state

(after the move) (LOW/HIGH VALUE if it is one of the winning/losing states)
using the formula V'(s) < V(s) + a[V (s") — V(s)]*

if the game is not over

agent’s random move (explore)

assign state to list

assign value to this state (HIGH VALUE if it is one of the winning states)

update the value of the previous state(before the move) based on the new
state(after the move) using the formula V' (s) < V(s) + a[V(s') — V(s)]*

// end if game is not over

else (game is over - loss/tie)

new game

// end if state does not exist

else if state does exist

(if not the 1st state) update the value of the previous state(before the move)
based on the new state (after the move) (LOW/HIGH VALUE if it is one of the
winning/losing states) using the formula V(s) < V(s) + a[V(s") — V(s)]x*

if the game is not over

191

APPENDIX A. APPENDIX A.2. ALGORITHMS

agent makes move

70% based on state after that which has the next higher value (greedy)

(OR)

30% random move (explore)

if this random move (new state) doesn’t exist

assign state to list after the player’s move (element), that is the previous state
(player’s) that we found it exists

assign value to this state

// end if the game is not over

update the value of the previous state(before the move) based on the new
state(after the move) (LOW /HIGH VALUE if it is one of the winning/losing states)
using the formula V(s) <= V(s) + a[V(s') — V(s)]*

else (if the game is over)

new game

// end else if the state does exist

* The variable a (learning parameter) begins with a value of 0.9 and as long
as more games are being played its value gradually decreases to 0 (for the sake of

convergence).

A.2.2 Poker: LA’s algorithm and notes

ALGORITHM based on Temporal-Difference Learning Method (STOCHASTIC
ACTIONS)

GOAL : TO INCREASE THE VALUE OF OUR HAND BY SWAPPING A SPE-
CIFIC NUMBER OF CARDS. WHAT SHOULD THIS NUMBER BE IN EACH
OF THE HAND’S INITIAL OCCASIONS?

AGENT’S TURN:

if state does not exist //5 new cards on hand that we haven’t had before

-assign state to list

-agent’s random action (explore) //change a random number of cards from your
initial 5 that aren’t in a pair, triplet or quad

-assign state to list exactly after the previous one that we found that it doesn’t
exist

-update the value of the current state based on the final state (evaluation after
the move), as well as on the value of the current hand (valueOfHandCards[0] in
code) using the formula V(s) < V(s) + a[V(s') — V(s)] (This evaluation state is
called V' (s') and is V'(s) + 1 if it has a larger value than the initial or 0 if it has the

same)

192

APPENDIX A. APPENDIX A.2. ALGORITHMS

// end if state does not exist

else if state does exist

-agent makes move

70-based on state after that which has the next higher value (greedy)®

(OR)

30-random move (explore)

if this random move (new state) doesn’t exist

-assign state to list after the previous state that we just found that it already
existed

// end if the game is not over

-update the value of the current state based on the final state(evaluation after
the move), as well as on the value of the current hand (valueOfHandCards[0] in
code) using the formula V(s) < V(s) + a[V(s') — V(s)] (This evaluation state is
called V' (¢') and is V (s) + 1 if it has a larger value than the initial or 0 if it has the
same)

// end else if the state does exist

Further notes (1st PhD year)
e Each state of the game is my hand of 5 cards
e Actions are the number of cards that I can exchange
e The goal state is a hand with better value
e Thus the goal is to increase the value of my hand

e So the optimal policy would swap a specific number of cards to increase the
value of my hand. This number of cards depends on my initial hand (what

kind of cards I currently have).

e There is a states’ transition between only 2 states in each game. Initial hand,

future hand.

e We need to enumerate statistically all the hands with their outcomes before
and after each swap to determine how many cards we should change on each
case in order to achieve the highest value. This simply can be stated as:
We train a number of times (play a number of games) and we store every
initial hand, number of cards that have been swapped and their future hands.

Each time that our future hand has a higher rank we increase a pointer that

IThis move is in fact choosing the suitable number of cards to be swapped depending on the
hand that has the highest value (afterwards in our list).

193

APPENDIX A. APPENDIX A.2. ALGORITHMS

indicates how many cards I swapped given my initial hand (state). At the
end the learning agent will be able to find each hand (state) and choose the
number of cards to exchange based on that counter. In other words, it will
be based on the number of cards that I swapped which gave to me a future
hand with a higher rank. Value iteration will work here. If my future hand
(state) has a higher rank then I will give it the highest reward and then I will
update the value of the previous state (hand, including the number of cards

that I planned on exchanging).

Stochastic actions, stochastic rewards (and Q-Learning can be applied).

After my action of swapping one card there is a ((4 - what I have observed
in play)/remaining cards in deck) chance of getting to a desired state (getting
the card that I need).

From the same state all of the actions can lead to a goal state

Higher future hands will have high rewards, lower future hands will have low

rewards and the same will have neutral rewards.

Diagram of the array list:

Current Hand — Current Hand with action (swap 0 cards) — Future Hands —
Current Hand with action (swap 1 card) — Future Hands — Current Hand with
action (swap 2 cards) — Future Hands — Current Hand with action (swap 3 cards)
— Future Hands — Current Hand with action (swap 4 cards) — Future Hands —
Current Hand with action (swap 5 cards) — Future Hands

Q(S,a) + (1 —a) * Q(S,a) + a* [r + gamma x maxQ(S’, a’)

For a future hand this will be :

Q(Initial Hand, swap number of cards) < (1-a)*Q(Initial Hand stored in my list
so far, swap number of cards) + a * [immediate reward + gamma * maxQ(Future
Hand, no future action)| that in fact is: Q(Initial Hand, swap number of cards) <
(1-a)*Q(Initial Hand stored in my list so far, swap number of cards) + a * immediate
reward.

The immediate reward is stochastic and therefore it will be high for a higher
hand, low for a lower one.

Similar with the formula from value iteration: V(s) < V(s) + a[V(s') — V(s)]
where:

V(s) is the Current Hand with action.

V(s') is the Future Hand.

In my array list I can just have each of the states (Current Hands) with their

distinct actions followed by a number of outcomes (Future Hands)?. My program

2The outcomes (future states) don’t have to be included in the list as they will grow its size
very much for no reason and therefore the algorithm’s complexity. Our focus is on the state-action
pairs of the current hand anyway.

194

APPENDIX A. APPENDIX A.2. ALGORITHMS

will search inside this list to locate the current state (Current Hand) and based on
all of the values of the states in there (that in fact are state-actions pairs) it will
select the one with the highest value. It will be the same recorded state as our
game’s current state with either the action of swapping 0 cards, 1 card, 2 cards, 3

cards, 4 cards or 5 cards.

A.2.3 “Taikun”: LA’s algorithm (custom SARSA(0))

if state with id 0 does not exist at all //can be winning state

if game is over //for state 0 because it is indeed a winning state
update value of previous state (state 2)

end game

assign state 0 to list

assign value /id 0 to this state 0

Perform a random action 0

assign this random action 0 to this state 0

<if not the 1st state of the game> update value of previous state (state 2)
if game is over //for state 1 because of action 0

update value of previous state (state 0)

end game

assign new state 1 to the list

assign value/id 1 to the new state 1

update value of previous state (state 0)

listen to adversary’s trade and perform random action 1

assign action 1 to state 1

if game is over //for state 2 because of action 1

update value of previous state (state 1)

end game

assign new state 2 to list based on the previous action

assign value/id 2 to this state 2

update previous state (state 1)

//end if state 0 does not exist

else if state with id 0 exists //that means it is definitely not a winning state
if greedy (70%) action //state 0

locate states’ 0 action 0 with highest value

perform that action 0

update value of previous state (state 2)

if game is over //for state 1 because of the action 0

195

APPENDIX A. APPENDIX A.2. ALGORITHMS

update the value of previous state (state 0)

end game

if greedy (70%) //state 1

if this state 1 from the previous action 0 exists

locate states’ 1 action 1 with highest value

perform that action 1

update value of the previous state (state 0)

//end if this state 1 from the previous action 0 exists

else //if this state 1 from the previous action 0 does not exist at all
random action 1 generation for state 1

assign this action 1 to state 1

assign state 1 to list exactly after the previous state 0

assign id/value to state 1

update the value of the previous state 0

perform action 1

//end else this state 1 from the previous action 0 does not exist at all
if game is over //for state 2 because of action 1

update the value of previous state (state 1)

end game

if the new state 2 exists

update the value of previous state (state 1)

else //if the new state 2 does not exist

assign state 2 to list (exactly after the previous state 1)

assign value /id 2 to this state 2

update the value of previous state (state 1)

////end if greedy state 1

else // if exploring (30%) state 1

random action 1 generation for state 1

if this state 1 with the new random generated action 1 exists
perform the previous random action 1

update the value of the previous state (state 0)

//end if this state 1 with the new random generated action exists
else //if this state 1 with the new random generated action 1 does not exist
perform the previous random action 1

assign state 1 to list exactly after the previous state 0

assign action 1 to this state 1

assign value /id 1 to this state 1

update the value of previous state (state 0)

//end if this state 1 with the new random generated action does not exist

if game is over //for state 2 because of action 1

196

APPENDIX A. APPENDIX A.2. ALGORITHMS

update the value of previous state (state 1)

end game

if the new state 2 exists

update the value of previous state (state 1)

else //if the new state 2 does not exist

assign state 2 to list

assign value /id 2 to this state 2

update the value of previous state (state 1)

//end else exploring (30%) state 1

//end if state 0 greedy

else //if exploring (30%) action 0 for state 0
random action 0 generation for state 0

if this state 0 with the new random generated action 0 exists
perform the previous random action 0

update the value of the previous state (state 2)

if game is over //for state 1 because of action 0
update the value of previous state (state 0)

end game

if greedy (70%) //state 1

if this state 1 from the previous action 0 exists
locate state action 1 with highest value

perform that action 1

update the value of previous state (state 0)

//end if this state 1 from the previous action 0 exists
else //this state 1 from the previous action 0 does not exist at all
random action 1 generation for state 1

assign this action 1 to state 1

assign state 1 to list

assign id/value to state 1

update the value of the previous state 0

perform action 1

// end else this state 1 from the previous action 0 does not exist at all
if game is over //for state 2 because of action 1
update the value of previous state (state 1)

end game

if the new state 2 exists

update the value of previous state (state 1)

else //if the new state 2 does not exist

assign state 2 to list

assign value /id 2 to this state

197

APPENDIX A. APPENDIX A.2. ALGORITHMS

update the value of previous state (state 1)

//end if greedy (70%) for state 1

else //if exploring (30%) action for state 1

random action 1 generation for state 1

if this state 1 with the new random generated action 1 exists

perform action 1

update the value of the previous state (state 0)

// end if this state 1 with the new random generated action exists

else //if this state 1 with the new random generated action 1 does not exist
assign state 1 to list

assign the random action 1 to state 1

assign value /id 1 to this state

perform the random action 1

update the value of previous state (state 0)

//end else this state 1 with the new random generated action does not exist
if game is over //state 2 because of action 1

update the value of previous state (state 1)

end game

if the new state 2 exists

update the value of previous state (state 1)

else //if the new state 2 does not exist

assign state 2 to list

assign value /id 2 to this state

update the value of previous state (state 1)

// end else exploring (30%) action for state 1

// end if this state 0 with the new random generated action exists

else //if this state 0 with the new random generated action does not exist
perform this action 0

assign state 0 to list

assign value /id 0 to this state

assign previous action 0 to this state 0

update the value of previous state (state 2)

if game is over //for state 1 because of action 0

update value of previous state (state 0)

end game

assign new state 1 that was based on the previous random action 0 to the list
assign value/id to the new state 1

listen to adversary’s trade and perform random action 1

update value of previous state (state 0)

assign this new random action 1 to state 1

198

APPENDIX A. APPENDIX A.2. ALGORITHMS

if game is over //for state 2 because of action 1

update value of previous state (state 1)

end game

assign new state 2 to list based on the previous random action 1

assign value/id to this state 2

update previous state (state 1)

//end else this state 0 with the new random generated action does not exist
//end else exploring (30%) action for state 0

//end else state 0 exists

A.2.4 “Taikun”: LA’s algorithm (SARSA ()))

Create list with all states actions and initial Q-Values
new game (initialize states of both agent and adversary)
while the adversary’s and the agent’s current states aren’t the goal ones
generate e-greedy behaviour for state 0

if greedy //state 0

locate states’ 0 action 0 with highest value

if(round!=1)

update the value of the previous states actions (ALL)
perform that action 0

if game is over //for the new state 1 because of action 0
update the value of the previous states actions (ALL)
end game

//end if game is over for state 1

generate e-greedy behaviour for state 1

if greedy //state 1

locate states’ 1 action 1 with highest value

//end if greedy state 1

else //exploring state 1

random action 1 generation for state 1

//end else exploring state 1

update the value of the previous states actions (ALL)
perform that action 1

if game is over //for the new state 2 because of action 1
update the value of the previous states actions (ALL)
end game

//end if game is over for state 2

199

APPENDIX A. APPENDIX A.2. ALGORITHMS

//end if greedy state 0

else //if exploring state 0

random action 0 generation for state 0

if(round!=1)

update the value of the previous states actions (ALL)

perform that action 0

if game is over //for the new state 1 because of action 0

update the value of the previous states actions (ALL)

end game

//end if game is over for the new state 1

generate e-greedy behaviour

if greedy //state 1

locate states’ 1 action 1 with highest value

//end if greedy state 1

else //exploring state 1

random action 1 generation for state 1

//end else exploring state 1

update the value of the previous states actions (ALL)

perform that action 1

if game is over //for the new state 2 because of action 1

update the value of the previous states actions (ALL)

end game

//end if game is over for state 2

//end else if exploring state 0

//end while the adversary’s and the agent’s current states aren’t the goal ones

NOTES: STATES 2 (GAME’S UPDATE) ARE NOT INCLUDED IN THE LIST
AT ALL, STATE 1 + ACTION 1 RESULT IN STATE 0 IN THIS IMPLEMENTA-
TION

200

