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ABSTRACT 

 

Internet usage increases every year and the need to estimate the growth of the generated 

traffic has become a major topic. Forecasting actual figures in advance is essential for 

bandwidth allocation, networking design and investment planning. In this thesis novel 

mathematical equations are presented to model and to predict long-term Internet traffic 

in terms of total aggregating volume, globally and more locally. Historical traffic data 

from consecutive years have revealed hidden numerical patterns as the values progress 

year over year and this trend can be well represented with appropriate mathematical 

relations. The proposed formulae have excellent fitting properties over long-history 

measurements and can indicate forthcoming traffic for the next years with an 

exceptionally low prediction error. In cases where pending traffic data have already 

become available, the suggested equations provide more successful results than the 

respective projections that come from worldwide leading research. The studies also 

imply that future traffic strongly depends on the past activity and on the growth of 

Internet users, provided that a big and representative sample of pertinent data exists 

from large geographical areas. To the best of my knowledge this work is the first to 

introduce effective prediction methods that exclusively rely on the static attributes and 

the progression properties of historical values.  
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CHAPTER 1 

Introduction 

 

"If we knew what it was we were doing, it 

would not be called research, would it?" 

- Albert Einstein 

This chapter describes a brief historical view of the main existing literature, some 

important achievements and its connection with the present studies. Reasons for 

motivation and potential contribution in furtherance of established models are also 

highlighted.  

1.1 Overview 

The Internet is one of the most complex technology infrastructures of modern 

civilization. Defined as a network of networks [Rfc1122], the Internet has been 

generally increasing every year in terms of usage and geographical range since the early 

days of its development [Mar2014]. Latest technology advances along with the global 

population growth have resulted in more bandwidth and access speed. Thus, the 

communication equipment and underlying technical issues for Internet Service 

Providers (ISPs) and backbones would have to be determined accordingly and, ideally, 

in advance. The total number of Internet users across the world increases every year 

[Iws2015], [Ils2015], [Stat2015], [ITU2015] and so does the aggregate traffic which 

they generate on a continent and on a global scale [Cis2013], [CisVNI], [Kor2013], 

[UoM1]. Therefore, modelling and predicting the growth aspects of Internet traffic is 

technically and economically important as well as challenging and has received wide 

attention from researchers mainly since the 1990s. 
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There are numerous different methods and approaches that have been applied in order to 

characterize traffic in a variety of applications in short time intervals, on a medium time 

scale and up to the long horizon. One of the most important achievements in traffic 

modelling ever came from Leland et al in 1994 [Lel1994], in which the authors have 

clearly demonstrated that Ethernet Local Area Network (LAN) traffic is statistically 

self-similar, its bursty characteristics and the impact this would have on network 

behaviour. On this basis, sophisticated models have been also proposed to support the B 

type ISDN (Integrated Services Digital Network) deployment at that time [Lel1994]. 

Proceeding to the more recent days, another example of successful characterization of 

Internet traffic, but in terms of aggregating volume over several years, is presented by 

Korotky (2013) at Bell Laboratories, Alcatel-Lucent [Kor2013]. 

Similar to modelling, forecasting figures has also been a main topic and numerous 

studies have been conducted to project the traffic that we expect for the future. The 

associated timeframe varies according to the approach and the research method. It may 

range from a few minutes and extends up to several years but the investigations have a 

variety of techniques and many of them are usually different for near term estimations 

when compared to the long run. In any case, the majority of the studies have very good 

prediction results such as the in-depth work from Papagiannaki et al (2003 and 2005) to 

project traffic for at least six months ahead [Pap2003], [Pap2005] and from leading 

networking company Cisco Systems which focuses more on longer timeframes for 

traffic volumes forecasting [CisVNI], [Cis2014a]. On similar macroscopic horizons, the 

author in [Kor2013] familiarizes the audience with regression analysis on historical 

volume traffic data and demonstrates the excellent capabilities of his model to predict 

traffic. 

In general, there are certain approaches that dominate the field of Internet traffic 

projections and which have been adopted by much of the relevant work for making 

traffic estimations. Historical measurements can be used to predict traffic on a 

networking link [Ber2009] but on a global scale too [Kor2013]. One of the most 

important and common approach is time series forecasting (TSF) by time series 

analysis, i.e. analysis of collected sequences of data points in the time domain. The 

methods used for this purpose vary depending on data type characteristics as well as the 

involved time intervals and the models can have many forms such as linear and non-

linear. A widely used model to predict Internet traffic is the Auto Regressive Moving 
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Average (ARMA). This primitive model has a range of generalizations including the 

Auto Regressive Integrated Moving Average (ARIMA) and the Fractional Auto 

Regressive Integrated Moving Average (FARIMA). One of the scientists to popularize 

the ARMA model was George E.P. Box in 1970 [Box1970], one of the greatest 

statisticians of the twentieth century, and the method known as “Box-Jenkins” model 

has been used since then in time series forecasting. Non-linear models are also a strong 

tool for predictions; a good example is the Auto Regressive Conditional 

Heteroscedasticity (ARCH) and its extension Generalized Auto Regressive Conditional 

Heteroscedasticity (GARCH). The latter is not only a computer science reference 

model, e.g. in [Ana2008], but has also been successfully introduced in the field of 

econometrics in the twentieth century to predict certain aspects in economics [Bol1986]. 

In addition, neural networks (NNs) and artificial neural networks (ANNs) have been 

also proposed to forecast traffic figures and they combine good modelling 

characteristics and reasonable prediction results such as the studies described in 

[Wan2008] and [Mig2012] respectively. 

However, apart from the aforementioned models, there are a number of further rigorous 

methods for modelling and forecasting of network behaviours and these tend to receive 

more attention in the last six years. Regression analysis, extrapolation and curve fitting 

are explicit examples of research in traffic characterization and future trends estimation. 

They are primarily based on recorded historical measurements mainly over long time 

periods from the past and some of them have prominent results in fitting historical 

trends and others operate with low prediction error. 

1.2 Current Situation and Motivation 

Forecasting Internet traffic is a fundamental concept in network provisioning and 

investing. The impact of traffic flow on networking configurations has technical and 

economic implications. In telecommunications, the planning usually accords with the 

long term trends and traffic predictions [Bab2006] and another important task is the 

precise and accurate measurements of the flow of Internet traffic generated from all 

connecting devices on a local and global scale [Vla2015]. The total mass of the global 

volume across the Internet increases on an annual basis and predicting forthcoming 

actual figures may be done a few to several years ahead. The aggregate traffic that 

crosses ISPs, major backbones and Internet exchange points (IXPs) is generally 
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increasing and it is important that the software, hardware and equipment needs must be 

determined well ahead. Companies would need to estimate the amount of capitals to be 

invested and network administrators must identify the relevant technical issues. 

Therefore, it is essential that all necessary arrangements must be made prior to 

proceeding to network infrastructure design and machine set-ups. Predicting the flow of 

the actual information that is expected to cross a large district or the whole Internet will 

reduce the time and funds to be spent for design and equipment needs. 

The hereby presented thesis investigates hidden numerical patterns in historical 

information over several years of traffic activity focusing on the aggregated traces of the 

total volumes rather than the more dynamic techniques of the popular methods, such as 

the ARMA, ARCH and NN models and their improvements. Capturing traffic data at 

certain locations can give a precise indication of the aggregated traffic volumes and 

future growth rates. In this way we are able to determine how much traffic we can 

expect in the next years and how this can influence the near and long term, macroscopic 

investments and network capacity planning. The measurements, nevertheless, may 

exclude some traffic that remains within a single service provider's network as well as 

traffic that is managed by private peering. This, in general, suggests that there is no way 

of a complete and accurate monitoring scheme of Internet traffic with absolutely precise 

figures and it is possible that this can result to considerable prediction errors. In other 

words, the diversity of traffic monitoring and the associated capturing techniques as 

well as the massive and distributed information that crosses the Internet would lead to 

imperfect measurements with an impact on future projections. But at the same time, a 

large and representative sample should give a good image of the future behaviour as 

long as the available data come from captured traces over large network areas. The 

initial hypothesis in a set of such pertinent data is to detect hidden relations over 

chronologically consecutive measurements and that those can be well characterized by 

proposed mathematical relations, which can indicate precise future figures. For instance 

in table 1, which is the largest available sample in terms of geographical range of 

Internet traffic volumes, there are certain properties in the numbers that appear in 

chronological order. The information in the table represents the global historical activity 

of Internet Protocol, wireline (fixed) and mobile traffic and it clearly shows that traffic 

increases in all categories as time progresses from the past on to the last year of which 

we have available information. Certain level of regression analysis and extensive 

experiments on detecting numerical properties have revealed that all captured aggregate 
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traces encapsulate hidden patterns in their values in chronological order. Here, one of 

the main goals is to detect those patterns, fit them accordingly and produce a set of 

formulae which would characterize the history trend and then provide accurate 

projections on future values. Apart from the global Internet Protocol (IP) traffic, the 

same goal applies to much of the relevant historical measurements that are publicly 

available such as the Amsterdam Internet exchange (IXP) traffic details. Further 

material to be extensively used in these studies comes from Cisco’s globally recorded 

measurements and from some important statistics for Internet users’ growth. If market 

and user trends do not change significantly, the hereby proposed equations are expected 

to provide fairly accurate projections with an average associated prediction error of no 

more than 10% - but ideally less than 5% - for the next three to four years ahead. 

However, the prediction error is to be calculated as soon as the measurements we are 

expecting for the future become available on the Web. 

 

Table 1: Historical volume data by three traffic types [Cis2013], [Wik2015a] 

Due to the huge aggregated volumes on a global scale, the traffic is usually given in 

Petabytes per month (PB/month or PB/mo). PB is a multiple unit of Byte expressed as 1 

PB = 10
15

 Bytes. However, because of the large distance between them, we usually 

relate the Petabyte to units at three orders of magnitude downwards, i.e. 1 PB = 10
3
 

Terabytes (TB). The latter is used to express aggregate traffic from sources that extend 

on a more local level rather than the massive global such as Internet exchange points. 
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In table 1, fixed and mobile traffic are part of the total IP and, according to forecast 

reports from Cisco Systems such as in [Cis2014a], the rest of the traffic refers to the 

managed IP part. If all three sub-categories are aggregated, the result equals to the 

overall IP traffic. Global volume is the totality of the traffic flow that has crossed the 

entire Internet. Since the early 1990s, the annual Internet Protocol traffic has been 

continuously increasing. However, numerical figures for respective annual growth 

indicate some level of decline in the last several years when we are to consider annual 

growth rate (AGR) figures. It is observed that the growth rate of the IP volumes in table 

1 is decaying and this observation will be part of the investigation later in the core 

chapters. The totality of IP traffic is, without doubt, growing year over year but the pace 

of this growth has been observed to slow down. Computing respective AGRs means to 

divide the volume of a given year with the volume of the year before. If the rate is 

calculated at exactly 1 this means no change at all. A result, however, that has doubled 

(AGR = 2) indicates a volume as twice as much related to the previous year; if the AGR 

is found at less than 1 and greater than 0 this means that traffic levels have shrunk. In 

any case, however, the captured measurements must be complete without data loss or 

inaccuracies in order to proceed to further studies and precise estimations. 

Certainly, the process of aggregating Internet traffic traces on a global – even on a local 

– scale is a difficult and time consuming task. The accuracy of the collected information 

of a specific network at one location is unlikely to be exactly the same with the 

measurements taken at another place, for the same network. In chapters 5 and 6 

investigated is the totality of global IP traffic and its progression characteristics rather 

than the traffic generated only by wireline (fixed) devices or by mobile users. The main 

reason is because the flows that are generated merely by mobile or fixed data are just 

part of the total global IP traffic and only the latter crosses the global hardware 

infrastructure as a whole. However, some advice for further investigation on the mobile 

part is given in the concluding chapter. Another important fact that must be mentioned 

is that it seems there is only one main source of measurements conducted and captured 

for the global IP data and they come from Cisco Systems. This is convenient in the way 

that a second historical set would probably be different but at the same time it can be an 

evidence of how difficult is to measure Internet traffic. Similarly, the statistics on 

mobile traffic come from the same source as well and are available from 2005. Before 

that year, the information and data collections on the mobile traffic category were 

probably insufficient and may had not been extensively modelled. Later, however, it is 
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observed that the overall mobile growth follows a similar trend to the rest of the traffic, 

even though the mobile characteristics seem to increase at a higher growth rate when 

compared to the fixed and the IP flow. To this end, all the information in table 1 

evidences the constant increase of the Internet but at the same time there is not much 

research on the implications of volume growth and the potential hidden privileges and 

properties behind the numbers. The needs of the fast growing Internet market and the 

rapidly increasing number of users pose many challenges and support the scope for 

further research. The following questions are therefore proposed and must be 

accordingly addressed: 

(i) Is there any numerical pattern in available consecutive historical measurements (for 

instance in table 1) to reveal some mathematical relation that is able to predict future 

traffic? If yes, is it exponential, linear or of some other algebraic form? 

(ii) If a promising equation can be proposed, is it the same for every geographical scale 

of measurements and predictions or does it slightly/significantly vary? 

(iii) How much level of dependence on the past can be assigned from the information 

and the variables of the produced formula(e) from (i) and (ii) above? In other words, is 

the forthcoming traffic indeed related to the past traffic activity and how strong is this 

dependence? 

(iv) How much information of the past must be used to maximize traffic predictability 

in the long term? 

(v) How is global Internet traffic growth related to the global Internet users? Is there a 

relation for this growth too? 

All issues (i) to (v) are fully investigated, analysed and answered in detail in this thesis. 

Certain mathematical equations are produced with very good fitting results and very 

good prediction attempts so far on traffic volumes. There is not much research effort to 

address those problems and the present studies can be the beginning of a new era to 

indicate Internet traffic evolution. Furthermore, proposing algebraic equations to 

estimate future aggregate volumes is a strong scientific tool. Well-known mathematical 
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relations are available for solving problems in all sciences: they are practical, straight-

forward and easy to use by everyone who possesses only the basics in their area. The 

present topic is a good opportunity to expand knowledge and establish more directions 

to traffic modelling and forecasting. But, at the same time, how much work has been 

done by others to address questions (i) to (v) and whose approach is similar to this 

thesis but different from popular time series models such as the Auto-Regressive and 

the Moving Average? 

1.3 Introducing Non-Dynamic Models 

In these studies, the term “non-dynamic” or “static” is used. It refers to the methods that 

rely on long term historical measurements that cannot be altered or repeated, from 

which available figures will be used for modelling and forecasting. Static techniques are 

probably not suitable for capturing the detailed characteristics of traffic such as 

burstiness and self-similarity, but they are appropriate for describing trends and 

predicting future figures based on regression analysis, curve fitting, interpolation, 

extrapolation and pattern detection. The investigation is also to indicate the degree of 

influence that long term traffic has over the past corresponding traffic. A considerable 

amount of related work using pioneering static-based techniques has been adopted by 

other scientific fields as well for the purpose of short term and macroscopic predictions, 

including certain subjects in economics, computational biology and airport traffic. In the 

field of Internet studies, even though such techniques could have been properly 

involved, it seems that extensive research came on the surface only by the end of last 

decade. Specifically in 2009, a different view of studies in the area of Internet traffic 

characterization has started to gain considerable attention when the University of 

Minnesota publicised how much traffic there is on the Internet in terms of volumes and 

for different regions across the globe. In particular, the Minnesota of Internet Traffic 

Studies (MINTS) released statistics and facts about the real nature of Internet exchange 

points (IXPs), their growth and some traffic estimates for the US and the world by the 

end of 2009 [UoM1], [UoM2]. In brief, their prediction for 2009’s traffic growth has 

been calculated at approximately 1.5 in relation to 2008, for both the States and 

globally. Moreover, there are volume statistics for traffic sources from one hundred 

traffic sources portrayed in precise numbers, most of which are data coming from major 

IXPs reporting incoming and outgoing traffic, peak flows and the associated historical 

timeframe of the acquired traces. Much of this information comes from past traffic 
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behaviour from several consecutive years, e.g. from 2005 or earlier up to January 2009, 

and all data all plotted on a X-Y axis co-ordinate system which clearly shows that trends 

can be characterized using fitting techniques and appropriate mathematical relations. 

Prediction attempts by employing this model are realistic. Some of the main outcomes 

of MINTS long time effort can be summarised as: 

(i) Fitting available traffic data from historical activity tends to be a curve with some 

level of dispersion. 

(ii) The historical trend of the aggregated IXP traffic can be well represented with 

appropriate exponential equations. 

The growth rate of the traffic sources and the Internet exchange points that have been 

observed are obtained by regression analysis and their methodology is to “look for an 

exponential fit” of the following form [UoM3]: 

y = 10
bx + d

          (1) 

Variable y is the volume and is expressed as a function of x, where x is the day on the 

X-axis. In the research conducted in this thesis, the methodology is similar to the 

MINTS except that the new proposed equations are produced with experimental pattern 

detection and are expressed as a function of ε, where ε refers to the year, rather than the 

day x in equation (1). The following graph and the information in table 2 include 

findings of the MINTS studies on curve fitting and details of the produced equations for 

the Amsterdam Internet exchange point, one of the largest and fastest growing IXPs in 

the world. 
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Figure 1: Incoming traffic volume (green) in bits/s and corresponding fitting curve for 

the Amsterdam IXP [UoM4] 

 

Table 2: Produced equations details for the Amsterdam IXP for the data of figure 1 

[UoM4] 

However, according to their website, MINTS have conducted no further research since 

2009 and most of the pages that contain those high-level studies have been last updated 

that same year. This work is one of the greatest efforts in modern traffic modelling and 

their novel approach of traffic data analysis was unique at that time and there was 
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probably no other study with the same level of achievements using similar methods by 

2009. It would be highly beneficial that we see further studies like this from other 

people who would give more knowledge to the static-adaptive ways of approaching 

Internet traffic modelling and forecasting. 

Evidently, it can be observed that the total volume of the traffic sources coming from 

MINTS research efforts is growing and this is happening at a rate of more or less equal 

to the total volume in the entire world. However, a more important observation is that 

this growth is constantly slowing down on an annual basis and the same trend continues 

until this very day. The mean annual growth rate (AGR) for all analyzed 100 sites as 

studied by the MINTS has been calculated at 1.511 for period 2002-2009 [UoM2] and 

today this rate has decayed down to approximately 1.35. This means Internet traffic is 

(still) increasing as a whole but in terms of growth the latter calculations confirm a 

slight but progressive drop-down when we are to compare the variation rates of 

consecutive annual growth. This subject is extensively investigated in respective 

chapters. 

Another great and rigorous effort in traffic characterization and forecasting is presented 

in a report from Bell Labs Technical Journal by Korotky (2013). The author performs 

linear regression analysis on global historical data for fixed Internet traffic available 

from company Cisco, to project aggregate volumes until 2020 using a “semi-empirical 

hyperbolic Compound Annual Growth Rate (CAGR) function” [Kor2013]. The model 

is an excellent representation not only for the history traffic but it also fits the near term 

forecasts up to 2016 (figure 2). Curve fitted projections to 2020 based on CAGR and 

proposed equations are further presented; they are discussed in the literature review and 

relevant chapters. 



Internet Traffic Volumes Characterization and Forecasting  

Nikolaos K. Vlachos  12 PhD Thesis 

 

 

Figure 2: Regression analysis results for global fixed data demonstrates excellent fitting 

[Kor2013] 

Another major and unique contribution to predictions on a variety of Internet traffic 

subjects comes from one of the leading networking companies, Cisco Systems. It is one 

of the main sources for near (NTF) and long term forecasting (LTF) not only in global 

and regional traffic, but also in a larger number of related categories, e.g. number of 

users and devices, access speeds, network connection and wireless technologies. An 

overview of their long time effort can be viewed in [CisVNIb] as well as in all detailed 

analyses through the next chapters. Cisco publicize a wide range of available 

measurements on their website and projections on frequently revised white paper 

reports, including the global volumes in table 1. However, their main approach to make 

predictions seems to be totally different than the other two techniques mentioned in this 

section, as they claim they rely on research from other companies and on a variety of 

analysis methods [CisVNIqa1]. In terms of how accurate their predictions are, the 

answer could be reasonable accurate and sometimes very good but at the same time they 

“have been characterized as conservative by some industry analysts and academicians” 

[CisVNIqa2]. Their future traffic estimates is a main subject in this thesis and are 

presented in depth. 
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1.4 Contribution of this Work 

Predicting facts before they actually happen is a difficult task with certain pitfalls. 

Therefore estimations always accommodate error rates, some of which tend to be 

excessive, especially if the timeframe has been set to more than three years as this will 

be demonstrated in chapters that follow. However, the present studies aim to introduce 

techniques to achieve very low forecasting error percentages as soon as these are 

compared with the actual traffic figures once the latter are released. Proposed are 

mathematical formulae to characterize and estimate the nature of the traffic growth and 

project total volume flow as precisely as possible. The format of the suggested 

mathematical formulae include the year which we want to predict the traffic for and of 

equal importance is that all expressions can be revised with minimum effort. Historical 

traffic volumes have been analysed over consecutive chronological intervals from 

different traffic sources as outlined herein and a set of relations is introduced to project 

traffic data in the next three to four years, based on: 

(i) The arithmetic relations of all values that can form explicit patterns coming from 

careful observations on all history measurements. 

(ii) The fitting and progression characteristics of the actual time series data points. 

Extensive analysis to extract hidden relations is performed on the actual historical 

figures based on the pattern scheme from (i) and how this trend is estimated to continue 

according to numerical experiments carried out in (ii). Then, appropriate variables and 

constants will be added to form the necessary equations and further numerical 

experiments are to select only those values that have optimum fitting results, i.e. the 

values calculated at the smallest error rate at the fitting stage. As a consequence, most of 

the fitting procedures have generally very low errors and this suggests successful 

estimates at the prediction stages for the available Internet traffic sources. Where 

already actual measurements have become available, the results are exceptional and it is 

expected that all proposed relations are to continue in the same line. The target is set to 

achieve prediction errors of less than 10% but the ideal situation would have values 

averaging below 5%. The latter percentage is indeed the case in most of the prediction 

evaluations, where available data are compared with the initial projections. The ideal 
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forecasting error rate of less than 5% has been achieved with most of the proposed 

equations when those are evaluated against the real data that have become available. For 

the rest of the measurements however, that are not available yet, coming up with 

prediction error at more than 10% should not be totally excluded, considering: 

(i) Similar high error rates by leading research are already a fact. 

(ii) The uncertainty of user trends and unexpected variations on the cost of IT services 

and devices. 

In general, the overall approach of this thesis can be described to have certain levels of 

similarities with the MINTS and Bell Labs studies, yet with different parameterized 

techniques which has not been given much attention when compared to the rest of the 

literature. This is probably the first work on the static-adaptive field that relies 

exclusively on fixed attributes of pure numbers and on pattern detection of time series 

traffic data, rather than on dynamical properties of changing signals or other similar 

techniques. Furthermore, the following contributions may be also regarded as 

significant, since they are primarily addressed in the present thesis, and their prediction 

timeframe extends to 2018 inclusive: 

(i) Characterization and projections of numbers of Internet users globally and how they 

relate to IP traffic volume growth. 

(ii) Forecasting traffic at the Amsterdam Internet Exchange Point (IXP). 

(iii) Introducing standard mathematical equations to predict the long-horizon aggregate 

traffic rather than for shorter time intervals that are limited to weeks or months. 

Effectively, the structure and parameters of the formulas can be updated with little effort 

and according to revised user trends, if and when it is indicated so.  

At this point it must be mentioned that the unique way of approach by MINTS, Cisco 

Systems and S.K. Korotky as well as the negligence on the topic by research so far, is 

another motivation to conduct these studies. 
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1.5 Structure of the Thesis 

The thesis contains ten chapters. The following part, chapter two, presents all relevant 

work in Internet traffic modelling and forecasting mainly since the 1990s, when the 

importance of the topic was raised, until the present days. The presentation starts with 

an historical overview of major traffic models and introduces the significance of making 

predictions in advance by analysing the Internet growth myths and facts and then 

proceeding to the details of the proposed forecasting techniques. Reported are the actual 

figures of the total Internet traffic worldwide, according to measurements published in 

different sources. Related studies on trends of global traffic are also highlighted along 

with their projections on future figures and growth. Emphasis is given to the literature 

that is more relevant with this thesis; the main achievements are described and certain 

problems are raised with some relevant observations and advices. 

Proceeding to the core part of the work, chapter three focuses on the details of the 

methodology employed in these studies and what material has been used for the 

purposes of the new model and its advantages to make predictions. It is clearly shown 

why the suggested method is important, on what certain conditions it can be applied and 

how it can lead to accurate Internet traffic projections. The proposed methods are then 

put to use in the main chapters that immediately follow. In chapter four presented is a 

method and equation to make future predictions for the Amsterdam IXP and those are 

probably the first projections so far. For 2015, a very low prediction error has been 

achieved. Chapter five investigates hidden patterns in figures of available global IP 

traffic volume statistics and proposed is a new mathematical relation, relating IP traffic 

to the IP volumes of previous years. It is shown that the formula can indicate future 

traffic in very precise figures when comparing numerical results to existing projections 

from other studies, according to some measurements that are already available. Chapter 

six presents an alternative method to model and forecast global IP traffic, by assigning 

more dependence to the past in a different way, which is part from studies by the great 

mathematician Leonard Euler. As with the main formula to predict global traffic, this 

model has been also proved successful. Predictions of chapters five and six come with 

accurate figures for the proposed 3-year time frame, even though results of formula in 

chapter six is slightly above 5%. Similarly in chapters seven and eight, projected are 

figures on Internet users in the world and how they are related to the global IP traffic 

presented earlier. Therefore, two more new equations are produced, one of which with 
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very precise results so far, and contributions are accordingly discussed. Next, in chapter 

nine, there is some further discussion on issues not entirely covered in the main part of 

the thesis and emphasis is given on some details. Finally, the epilogue chapter ten 

summarizes the proposed work. Important conclusions are highlighted and advice for 

ongoing work is given including research contributions from different disciplines. 

Appendices and the list of references are included at the end of the thesis. 
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CHAPTER 2 

Literature Review 

 

"Modelling is a form of abstraction and is a 

powerful tool in the lexicon of computer science" 

- Vinton G. Cerf 

This chapter is to describe the knowledge that exists in the area of characterization and 

prediction of Internet traffic. It provides a critical discussion of models and methods 

used and evaluates related achievements and contributions. 

2.1 Fundamentals and Early Characteristics of Network Traffic Modelling 

There are numerous extensive reports on the nature, applications, implications and 

growth of the Internet on a short, medium and long scale effect. Different proposed 

models and studies have initialized further in-depth research in Internet traffic since the 

decade of 1990. The self-similar characteristics of Ethernet traffic [Lel1994] and strong 

evidence of self-similarities on the World Wide Web (WWW) [Cro1997] were 

important achievements by that time. The narrower subjects of those novel studies 

triggered further investigation on closely related topics, including the establishment of 

appropriate models for certain scenarios but, simultaneously, updating some already 

existing facts. Regarding the latter, V. Paxson and S. Floyd (1995) have raised such an 

issue: even though network arrivals are well described with Poisson models, traces on 

Transmission Control Protocol (TCP) arrival sessions taken from 24 wide area network 

sources have revealed that these cannot be regarded as Poisson processes [Pax1995]. 

Furthermore, the primitive characteristics of network traffic, e.g. bursty nature, self-

similarity, short (SRD) and long range dependence (LRD) motivated further research 

which was more QoS-driven (Quality of Service). Delay analysis, IP routing 
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performance, queue lengths, inter-arrival times and distribution of packets at networking 

nodes are fine examples of complex QoS issues in traffic which can be well described 

using queueing systems. Theoretical queueing models proposed by Leonard Kleinrock 

for network analysis have been of major contribution [Cerf2012]. Principle concepts of 

queueing theory as analysed in [Kle1975], [Gro1998] and [LinFYS] outline basic 

characteristics of stochastic processes and calculations on memoryless models such as 

the simple M/M/1 and extending to more complex queue models. However, further 

studies in time raised numerous questions and proposed improved versions of the 

original models to address certain performance issues such as the analytic work by 

Kouvatsos (1986) reported in [Kou1986] and the distinct open queueing network 

models (QNMs) under three different traffic schemes as described in [Kou2003]. 

Moreover, when queueing systems are heavy utilized, studies by [Chen1993] suggested 

that functional central limit theorems can be employed to describe the associated service 

interruptions. Heavy tails are often observed in routes and paths generated from users 

sessions; a recent study described in [Arf2013] shows the Weibull distribution is able to 

model this feature at the inter-arrival level. More elegant characteristics of traffic 

behaviour have been further addressed such as the presence of LRD in time series 

[Taq1995], [Ber1994] and certain SRD issues by [Kou2000] and [Kru2000].  

 

2.2 Measuring, Profiling and Analysing Internet Traffic 

Traffic statistics can be categorized based on the timeframe in which they have been 

collected from. Depending on the scope, the time interval ranges from small samples 

during a day and may be extended up to weeks, months or years. For making 

predictions, the duration of measurements is critical while for some other purposes the 

volume of the sample can be flexible, such as the case for analysing the distribution of 

packet sizes in standard Ethernet connections. The distribution percentage of the sizes is 

roughly the same for numbers of packets in the order of millions. Such samples are 

observed at the Centre for Applied Internet Data Analysis (CAIDA), where statistics of 

monthly traces are captured within the USA at the Chicago and San Jose Internet data 

collection monitors that are with CAIDA and are each connected to a 10GigE (10 

Gigabit Ethernet) Tier1 ISP link [Caida1], [Caida2], [Caida3], [Caida4]. Figure 3 

illustrates the dispersion and the CDF (Cumulative Distribution Function) of the packet 

sizes captured at the Chicago traffic collection monitor on 15-10-2015, for 

approximately 1 hour and 2 minutes. The traces have been collected in direction A of 
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the link (equinix-chicago.dirA). The total number of packets is roughly 1 billion 

(1003525648) of which ~95% are IPv4 and the majority of the sizes is seen at 40, 52, 

1450 and 1500 bytes; all those packets together account for more than 60% of the total 

number [Caida2015a]. 

 

Figure 3: CAIDA statistics: IPv4/IPv6 and CDF fractions from approximately 1 hour of 

traffic [Caida2015b] 

The way the distribution sizes are ordered is not at random and apart from that sample, 

most of the other collections on traffic traces listed in the tables at [Caida1] tend to be 

similar to each other and to figure 3. Furthermore, traffic captured at other locations as 

studied in [Gar2007] and [Gar2008] reveal high levels of IPv4 packet concentration at 

specific sizes that are generally in line with the traces collected from CAIDA (figure 4). 

Similar results of packet distribution at a different high speed link are reported from 

Reviriego et al [Rev2010], where almost 25% of all packets are near to 1500 bytes 

(figure 5). This value is the maximum transmission unit (MTU) for standard Ethernet 

frames [Gar2007], [Gar2008], [Rev2010], and on most Ethernet systems [Smi2010], 

[Vla2013b] and has not changed until today. 
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Figure 4: IPv4 packets [Gar2007], [Gar2008] 

 

Figure 5: Ethernet packet sizes [Rev2010] 

Of more importance are statistics collected from regional networks because they 

represent user characteristics and tendencies for longer periods. Studies on traces from a 

CDMA (Code Division Multiple Access) Chinese network have shown high traffic 

utilization rates from P2P (Peer-to-Peer) activities and overall results indicate that about 

40% of the traffic volume and 50% of on-line time has been occupied by only 3-5% of 

the subscribers [Yan2011]. P2P applications and file-sharing software have evolved in 

the previous decade in both downloading and upstreaming. The traffic caused by P2P 
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activities is a main source of traffic and has impact on the Internet [Bol2008]. P2P flow, 

as reported in [Lab2011], caused a 30-40% traffic share of the total Internet traffic in 

2007, however its growth declined in 2007 to 2010. In contrast, nevertheless, a 

measurement scheme proposed by the authors in [Gio2013] has reported invisible P2P 

links from a total of 11 Internet exchange points (IXPs) and the number of these 

invisible links reaches 36000. 

The dominating nature of P2P file sharing is also addressed by J. Li et al [Li2012], 

whose studies come from long period measurements (June 2007 to May 2011) on a 

Swedish municipal network. One of the most important results is, for those 5 years, the 

daily average total traffic from end users has grown ~33% [Li2012, p.1]. The 

significance of this observation points to the long term evolution of Internet user trends, 

since the data sample comes from a long time effort. The primitive characteristic of the 

traffic captured for several consecutive years is that it can indicate future trends, which 

is the main topic in this thesis. Furthermore, of note is the analysis of traffic from an 

academic network in Lithuania of which traces have been captured with the NetFlow for 

two different intervals, one month and one semester (4 months), sorted by protocols 

[Gars2012]. The results (figure 6) show similar tendencies on the two timeframes even 

though they are different. 

 

Figure 6: Protocol distributions for (a) number of NetFlow (b) packets (c) volume of 

data [Gars2012] 
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It is obvious that the semester to month volume ratio for both TCP and UDP protocols 

in figure 6.C remain approximately the same and, considering the 4x relation of the 

associated periods (4 and 1 month), we can observe a close to 4x relation for the TCP to 

UDP ratio too. 

The macro trends and implications of long term traffic collections and the penetration of 

portables, smart TVs and mobile entertainment applications tend to receive more 

attention. Although certain user tendencies are known on medium scale timeframes, e.g. 

online behavior through a week, mainly in the last several years it has come to our 

attention to characterize activities over long periods. The sinusoidal shape for a typical 

day-to-day Internet traffic with maximum and minimum activity seen at daytimes and at 

night respectively is well known [San2014] but appears to be different than much of the 

long term year-to-year aggregates. Regional measurements across different countries 

and ISPs demonstrate the growing nature of the Internet, such as the 4-years trend of 

bandwidth usage in North America [San2014] and a 6-months traffic accumulation from 

5 observed ISPs [Ans2015]. The latter reports an average monthly growth of 41% 

(figure 7) but the respective peak growth rate is calculated at 80% [Ans2015, p24]. 

Although we can observe some decline within small periods, all the generated traffic is 

generally increasing. 

 

Figure 7: Traffic growth at five different ISPs [Ans2015] 
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On a similar basis but rather a longer trend illustration is the next graph which exhibits 

higher levels of growth. Web aggregated traffic is shown (figure 8) as a percentage of 

the total traffic in the United Kingdom from September 2009 until July 2011. More than 

50% of the traffic in the UK originated from i-phones, while the rest came from other 

devices like i-pads and blackberries [Tecm1]. The same company predicted that by 

January 2012 the mobile traffic will be more than 15% of the total UK, if the growth 

rate continues like that of previous six months [Tecm1, p.9]. Likewise, in the entire 

world, the traffic coming from smartphone users is on average ten times more than the 

traffic generated by other type of users [Sol2011]. In general, mobile traffic is becoming 

a significant part of the global flow as users increase in time. There are considerable 

efforts in networking updates and expansions, yet it is difficult to satisfy the large 

number of users with high traffic portions [Cui2014]. 

 

Figure 8: Mobile Web traffic in the UK [Tecm1] 

We can observe a slight change of the trend around October-November 2010 due to the 

technology advances in mobile devices and the dominating video sharing and real time 

entertainment streaming websites. Two of the finest examples, and responsible for large 

portions of generated traffic, are Netflix and YouTube [Hor2015]. In 2007, a three-

month observation on YouTube traffic reported almost 25 million transactions including 

over 600000 video downloads [Gil2007]. This massive video-generating service is the 
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leading traffic source all over the globe and accounts for a large share of the total 

mobile traffic as well [Hor2015]. Furthermore, in 2014 the Internet Protocol (IP) video 

traffic has been estimated at 67% of the entire IP activity on a global level [CisVNIb]. 

For wireless networks, nevertheless, there is often a need for stronger traffic 

management than for fixed infrastructures [Jor2011]. Mobile traffic is definitely 

growing at higher rates compared to the wired or total IP traffic as seen in table 1 

available from Cisco. Due to the interaction between unicast and multicast flow as well 

as with different types of IP versions, the necessary requirements must be addressed in 

Internet traffic engineering and the peculiarities of multiple traffic sources must be 

considered [WanN2008]. In order to address those issues, accurate traffic traces from all 

sources are essential. However, the dynamic characteristics of the Internet and the 

inconsistencies of the heterogeneous structure of traffic sessions raise a fundamental 

question: how precise are the measurements taken either for short or long time intervals 

and is there any information loss on the data captured? 

2.3 Are Measurements Accurate? 

Traffic modelling is a vital part of networking design and thorough analysis of historical 

traces and their models can maximise performance [Kar2004]. Certain measurements of 

Internet historical activity have been reported and are available from the University of 

Minnesota in [UoM1]. In addition, the aggregation of the flow of various traffic sources 

is likely to indicate accurate statistics of the totality of Internet traffic. Consecutive and 

successfully captured traces can give accurate estimates of Internet traffic volume 

growth which, in turn, can predict the short and/or long term global volumes [CisVNI], 

[UoM5]. Estimating Internet aggregate volumes growth ideally means we have absolute 

precise historical figures from pertinent measurements. Accuracy must be a prerequisite 

when performing estimations due to the significance of the issues involved such as IP 

networking updates, hardware resources planning, energy consumption and spending 

cuts. Computer science and economics are the major fields to benefit if the traffic-

capturing processes are performed on an accurate basis. But do measurements always 

come with precise figures? 

The process of forecasting worldwide traffic by investigating traffic from past years, 

means we have sufficient data of the historical Internet activity. Although the Internet is 

a large and complicated networking system connecting many smaller networks, there do 
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exist some historical data including important information as reported in [Kor2013], 

[Cis2013], [Wik2015a], [Vla2015]. All heterogeneous information that crosses the 

entire Internet along with the distributed infrastructure of most networks are undesired 

circumstances for accurate traffic capturing. Inevitably, certain loss of information may 

occur and this can lead to imperfect data collection. By looking carefully at all historical 

figures included in relevant tables from [Kor2013], [Cis2013] and [Wik2015a], we can 

observe different numbers on the aggregate traces of the worldwide fixed Internet 

volumes. But even though figures are not exactly the same, there are significant 

similarities which they are common in all tables. In particular: 

(i) There is a stable increase in the fixed Internet and the global IP volumes, as these are 

progressing in time. 

(ii) In terms of annual growth, i.e. year over year, the rate exhibits constant decaying 

characteristics especially in the last years. 

Observations derived from (i) and (ii) confirm the expected increase of the total global 

traffic on a yearly basis; however the respective growth rate tends to decline. The 

numbers presented in table 3 illustrate the totality of information of IP, fixed and mobile 

aggregated flow while table 4 shows the fixed Internet traffic part. Table 3 is an explicit 

sample of an extensive trace set taken from [Cis2013] and [Wik2015a] and table 4 is 

part of studies by Steven K. Korotky in [Kor2013]. According to those three sources, 

however, all the original information has been extracted from networking company 

Cisco. 
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Table 3: Global collected traces of IP, wired and mobile traffic [Cis2013], [Wik2015a] 

 

Table 4: Global fixed traffic [Kor2013] 

In spite of the variation of the fixed global part, the data certainly outline the increasing 

nature of the associated volumes and some decline on the AGRs is observed more or 

less in a stable pace. Company Cisco Systems is a leading research body in estimating 

traffic aspects which rely on different sources, e.g. on Internet connections, analysts, 

Internet Service Providers and various companies [Cis2014b]. Studies through their 

project named “Visual Networking Index” (VNI) provide regional and global forecasts 

on Internet traffic and numerous other related categories [CisVNI], [Cis2014b]. As far 

as relevant terms are concerned, “fixed Internet traffic” probably refers to all ISPs 

including residential and business services, cable connections etc., while “mobile 
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Internet traffic” is perhaps the generated flow coming from mobile phones and their 

ISPs [Wik2015a]. “IP traffic” probably includes all the networks and those that are 

closed, but use the IP such as IP television (IPTV) [Wik2015a]. As pictured in table 3, 

most of the worldwide IP traffic originates from wired technologies and this can be 

observed through all years until 2011. However, by taking a close look at the fixed 

Internet traces in tables 3 and 4 we can observe some considerable differences on the 

information in period 2009-2011 inclusive. In any case if there are different observed 

volumes for the same type of traffic, these must not be neglected in any way. As such, 

some important issues must be seriously taken into consideration: 

(i) The quality of the investigation on different historical information that should be 

almost identical. 

(ii) To what extent are inaccurate historical samples to adversely affect the precision of 

traffic we expect for the future.  

In tables 3 and 4 and for the fixed part of traffic, there are some significant deviations in 

the numbers that represent the volumes of the same years. If one produces an equation 

to make predictions based on the wrong patterns for the given data set, then there might 

be concerns regarding the efficiency of the formula. The variability of the data does not 

encourage research in order to produce one and only mathematical relation that would 

be based on the static nature of those measurements. In general, the measurement 

quality is a main factor and there are numerous studies of which subjects rely on 

accurate traces. In [Kih2010] it is stated that using Packet Logic, more than 95% of the 

traces can be identified to analyse traffic measurement from a broadband network, while 

Kundu et al raise traffic accuracy issues as well [Kun2009]. The latter propose a new 

traffic measurement scheme to collect specific traffic flows that are difficult to capture 

and this can be done with more or less 90% accuracy [Kun2009, p.112]. Consequently 

when considering those reports, a 100% absolutely precise sample of traffic may be 

difficult to achieve and at least some occasional loss of information does occur, even if 

state-of-the-art techniques are employed to capture the distributed traffic of the Internet 

of networked systems. 
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2.4 Modelling and Predicting Internet Traffic using the ARMA Models 

There are different studies presented by different forecast models with a variety of 

techniques and for different time scales. In [Cor2006], the authors mention there are 

four prediction horizons that are commonly accepted, starting from the shortest: real-

time, short-term, middle-term and long-term [Cor2006, p.2636]. The latter is the case of 

study in the present thesis. However, all definitions apply to related work in time series 

forecasting of which one of the most popular is the Auto Regressive Moving Average 

(ARMA) model and its variations, e.g. the Auto Regressive Integrated Moving Average 

(ARIMA). This stochastic model is used in statistical analysis of observed time series 

data and has very good prediction results in related studies such as the ARIMA 

proposed in [Szy2012] for bandwidth allocation. Real traffic every 15 minutes over a 

long period of 4 months has been collected from a major backbone in Europe and the 

proposed estimation algorithm operates at a success rate between 93% and 99% 

[Szy2012]. Pictured in figure 9 are results on forecasting traffic over 7 days compared 

with the actual data and we can see the almost perfect match. 

 

Figure 9: Actual (blue) and estimated (red) traffic in seven days period [Szy2012] 
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The same model is used for network traffic prediction named “Traffic Oblivious 

Routing and Scheduling” algorithm as studies by Prashanth et al (2009), where traffic is 

projected according to the information on the past activity [Pra2009]. Moreover, the 

ARIMA process is the reference model in a different study. Here, the subject is 

predicting certain trends and socio-economic aspects of Internet users in China, 

categorized by gender, age and income [Sin2011]. Internet traffic is generated mainly 

by users and it is very important to know how they behave in the market. It is suggested 

that modelling Internet traffic volumes requires a good understanding of the traffic 

coming from individual users [Det2003]. According to the authors in [Sin2011], the 

number of users is estimated to reach ~1.53 billion by 2015 and the following detailed 

information is reported in table 5, including corresponding errors in terms of Mean 

Absolute Percentage Error (MAPE). It is mentioned in [Sin2011] that, according to 

some other studies, if the MAPE is lower than 10% then the prediction result is accurate 

and between 10% and 20% forecast results are good. We can see this acceptable range 

of errors in five results on forecasts in table 5. 

 

Table 5: Demographic projection results of Internet users in China [Sin2011, p.80] 
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Predicting network traffic with ARIMA can be employed for smaller scale areas as well, 

such as for a mobile Wi-Max range and have also good performance in forecasting 

results [Kim2011]. However, an improvement over the primary ARIMA model is the 

topic of El Hag and Sharif (2007), who propose an Adjusted ARIMA (AARIMA). The 

model is able to capture the self-similar characteristics of network traffic while at the 

same time it does not exclude any of the elegant properties of the original ARIMA 

methodology [ElHa2007]. Results of the new proposal show considerable 

improvements in Mean Absolute Error (MAE) and self-similarity. However, regarding 

the latter, it is has been reported that the self-similar nature and its characteristics are 

often a disadvantage for traffic forecasting and can cause certain difficulties [Gar2007], 

[Min2005]. In a similar way, network congestion is another undesirable phenomenon 

which has a negative impact on certain issues such as packet loss increase and 

limitations on network services forecasts [Awd2002]. However, some high-quality 

studies like the following highlight important aspects of Internet traffic. 

A comprehensive work on a multiple timeframe scale on traffic predictions with a wide 

range of useful results comes from Papagiannaki et al (2005). The study uses collected 

traffic from simple network management protocol (SNMP) measurements from 1999 

until the end 2003 to perform estimations mainly for the long term [Pap2005]. The 

reference model is the ARIMA and the approach that has been employed calculates the 

average aggregate demand between any two points of presence (PoPs). Initial 

observations from three sets of traces, each between two neighbouring PoPs, show a 

steady-like increase of the average bandwidth demand in two out of three traces in the 

long term (figure 10). 
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Figure 10: Traffic trends of the average demand [Pap2005, p.1112] 

The sample of traces 1 and 5 in figure 10 suggest there is a certain rate of growth over 

the long term and if the trend continues more or less at this rate, then predictions on this 

basis can be accurate. In the next figure, however, pictured are the same traces but on a 

monthly scale (figure 11), that of May 2002 (1
st
 – 31

st
) in which there is strong evidence 

of diurnal patterns and persistent cycles [Pap2005, p.1113]. Those graphs, if extended 

horizontally, may have certain similarities with the day-to-day sinusoidal shape from 

several consecutive days’ traffic presented in [San2014] and the 24-hour activity shown 

in a UMTS report [Umts2011, p.63]. Moreover, it seems there are no signs of overall 

growth during the 31-days period and this may be due to the considerably smaller 

sample as opposed to the more representative and mass traces of figure 10. 
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Figure 11: Traffic trends during May 2002 [Pap2005, p.1113] 

At the final stage, prediction attempts are performed according to the historical trend of 

trace ID 5 of figure 10. The forecast horizon is set to six months and to one year and 

then estimates are evaluated with reference to the actual traffic. Figure 12 shows 

predictions over the next six months and figure 13 extends forecasts up to a year, each 

of them presented on the right hand part divided by the dotted vertical line. The error 

rates are reported on a short and long term basis. Over weeks the average forecast error 

is – 3.6%; for all five traces that have been used in the studies the absolute relative 

prediction error is calculated at less than 15% on average for the six-month horizon and 

17% on average for a whole year [Pap2005, p.1119-1120]. 
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Figure 12: 6-month traffic predictions and evaluation for trace ID 5 [Pap2005, p.1119] 

 

Figure 13: 1-year traffic predictions and evaluation for trace ID 5 [Pap2005, p.1119] 

Finally, extreme prediction cases are as well addressed in the same studies. In the next 

graph, additional forecasts on a 6 and 12 months’ timeframe are presented and added is 

a 95% confidence interval and a fitting line that characterizes the overall trend and has 

the following expression [Pap2005, p.1121]: 

y = α∙χ + b          (2) 
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We can observe the fluctuation spikes of the actual data and some extreme forecasts for 

June 2004: 

 

Figure 14: Linear trend line, confidence space and extreme values [Pap2005, p.1121] 

In further different studies, fractional ARIMA (FARIMA) methods give better 

forecasting performance than models based on Auto-Regressive methods such as in 

[Shu2001]. A combination of three models – the AR, the MA and the FARIMA – is 

presented in another reference, demonstrating the compound hybrid model has 

enhanced prediction accuracy [Wen2008]. A similar study uses combinations of the 

ARMA and FARIMA models to forecast traffic in a 3G mobile Chinese network 

[YuY2013]. The authors point out that the FARIMA fails to model the multifractal 

characteristics of Internet traffic and therefore the proposed combined model has very 

good results. Reported are considerably low errors: the MAPE has been computed at 

~2.25% and the highest APE is at 7.73%, both of them within the most acceptable [0%-

10%) error rate interval which is defined in many studies as “accurate”. 

Last but not least, a generalization of the genuine ARMA and ARIMA models is the 

Seasonal ARIMA (SARIMA). Studies by Syed et al (2010) propose a wavelet-based 

SARIMA suggesting better forecasting performance than ARIMA [Sye2010] while 

another study performs predictions based on traces from a backbone network. 

Specifically, the authors in [Oto2015] use three different methods (illustrated in (a) to 

(c), figure 15) to predict traffic on a several-hours basis, by employing both ARIMA 
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and SARIMA. The method uses the trained data from the collected traces to produce 

predictions. One packet out of every hundred packets is captured and the accumulated 

traffic is formed every five minutes, while the totality of measurements extends to four 

weeks. Numerical results show exceptionally low MAPE rates but it seems that the 

sudden spikes caused by users cannot be captured, thus resulting in higher forecast 

errors [Oto2015, p.43-44]. On the other hand, such peaks are not observed in larger 

flow samples but even if spikey flows are present, their impact is insignificant to large 

flows when the flow extends to a large number of users [Oto2015, p.44]. Concluding 

this important study, the authors claim SARIMA is suitable for long horizon predictions 

while the ARIMA can accurately capture near term traffic. Examples of their forecasts 

are as pictured in the following figure. 

 

Figure 15: Predictions using ARIMA and SARIMA vs. real traffic [Oto2015, p.43] 

2.5 Neural Network Models 

Precise traffic estimations is a hard challenge and Internet traffic is one of the most 

unpredictable aspects [Kam2014]. Through numerous high level studies, however, it is 

accepted that estimations on Internet traffic suggest considerable growth in the next 

years [Ard2012] [Cis2015] and the traffic generated by communication networks 

continues to grow on a global scale [Cis2015] [Kor2015]. Depending on the timeframe, 
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Neural Networks (NNs), or Artificial NNs (ANNs), are widely used models for traffic 

estimations. They are based on a large number of unknown inputs such as the incoming 

signals of traffic traces which can be well described using appropriate types of Neural 

Networks. Unlike the ARIMA model, which fits linear equations to stationary training 

data, ANNs are non-linear methods [Bab2015]. Predictions with NNs have very good 

results and high accuracy, such as the studies from Loumiotis et al in 4G networks 

[Lou2015]. They propose a new scheme able to predict the traffic aggregated at base 

stations (BSs) in mobile 4G technologies by employing ANNs, with a mean absolute 

percentage error (MAPE) calculated at around 10% for downlink traffic and ~19% for 

uplink traffic [Lou2015]. In terms of another type of error – the normalized mean square 

error – studies on forecasts on Ethernet traffic using “a Multiscale Bilinear Recurrent 

Neural Network with Adaptive Learning (M-BRNN-AL)” report higher prediction 

success than some other BRNN models [Par2010]. A different type of traffic, namely 

video traffic, is the subject investigated by Y. Liang (2004), where multiresolution 

learning can boost NN predictability performance and the suggested predictor has 

successful results in forecasting real time variable-bit-rate (VBR) video flows 

[Lia2004]. For Ethernet traffic, another NN-based study comes from Auld et al (2007) 

who introduce training data on a Bayesian neural network and provide traffic 

classification using efficient techniques in which packet access is not required 

[Aul2007]. 

Predictions using Neural Network techniques accommodate small errors and they are 

usually targeted for real time and short term estimates. An efficient high-accuracy 

forecasting model by a genetic algorithm is proposed by Lu, W. (2014) in which 

numerical experiments indicate an average relative error (ARE) as low as 2.322×10
-2

 

[LuW2014]. This value is achieved with a joint optimization model of two parameters 

and is nearly three times lower than the value calculated using the independent scheme 

[LuW2014, p.699]. Another genetic algorithm is proposed by Wang, C. et al (2008); 

however, here the error rate is higher but still remains at low levels and calculated at 

8.18% which is the best selected value [Wan2008]. In addition, a more accurate sample 

of error calculations on an improved BP Neural Network is performed to compare a set 

of predicted results with the actual traffic. For a set of traffic observations over ten 

consecutive days the error range has been calculated at 0.39% minimum to 3.81% 

maximum [LiZ2009]. However, the authors point out that for ongoing research bigger 

samples of traffic data are required [LiZ2009, p.38] and this may imply better prediction 
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accuracy could be achieved if studies are based on larger quantities of captured data. 

Furthermore, a wavelet NN is proposed by Zhao et al (2005) where the traffic dataset 

has been collected over two months. The suggested model is compared with a non-

wavelet NN and reported are a maximum relative error of 6.464% and a maximum 

average relative error at 11.2345% [Zha2005]. On the same path, a novel wavelet NN is 

presented in [Zhang2012], the Recurrent Wavelet Neural Network (RWNN), and a time 

series traffic is recorded over one week in September 2010. The performance of the 

proposed version is put into test with other NN models and results show RWNN has 

better error rates in terms of mean square error (MSE). Finally, very important results 

are also obtained in an aggregation of traffic data from JANET and a private ISP across 

eleven cities in Europe [Cor2006]. The paper presents a NN Ensemble (NNE) which is 

highly competitive to other models including the popular ARIMA. The associated 

forecasting performance is calculated using the Mean Absolute Percentage Error 

(MAPE) and almost all results have lower error rates, ranging from 1.43% (±0.01) to 

28.37% (±0.8) [Cor2006, p.2640]. Further observations of the results report very good 

prediction accuracy in real time traffic but higher deviations when expanding the 

forecast timeframe. Specifically, estimates for five minutes ahead have an error at 1%-

3% and this percentage climbs to 11%-17%. When the procedure switches to the short 

term, the error starts at 3%-5% for the 1 hour interval, increasing up to 12%-23% for 

24-hours target [Cor2006, p.2641-2642]. 

Regarding the overall performance of NNs/ANNs compared to the statistical models, it 

has been reported that traffic forecasting accuracy of NNs is as high as between 96.4% 

and 98.3% and the corresponding rate of statistical models, such as the FARIMA, is 

found at 78.5% to 80.2% [Gow2008]. Another more recent study suggests that the 

hybrid combination of FARIMA and NN models is the most efficient approach to 

predict Internet traffic [Kat2015]. The authors claim that this advantage is a result of the 

presence of non-linearity in those hybrid models. 

 

2.6 Further Studies on Modelling and Predictions 

Apart from statistical time series models, there is a wide range of studies using different 

techniques including hybrid processes and Markov models. The latter is a subject of 

Internet traffic analysis by Muscariello et al (2005) and a Markov Modulated Poisson 

Process (MMPP) is proposed to capture the LRD characteristics of network traffic and 
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the model can be used for IP planning and design purposes [Mus2005]. Furthermore, a 

Markov model is proposed for predicting Web users’ behaviour [Don2002] while in 

[Dai2008] a hidden Markov model (HMM) is able to estimate certain parameters at the 

packet level and indicate short term traffic. A more heterogeneous approach is presented 

in [Yao2006] and [Xie2015]. In the former, the proposed method is based on an 

integration of wavelet and NN, and is compared with a BP NN and an Auto-

Regressive(6) model. Results show it is more competitive than the other two models 

with reference to the Root Mean Square Error (RMSE). The later describes the traffic at 

a node a with Markov chain model and estimates traffic in a heterogeneous Carrier 

Sensing Multiple Access with Collision Avoidance (CSMA/CA) network using an 

ARMA particle filter, which outperforms current methods [Xie2015]. 

From a different approach, seasonal GARCH models are reported for Internet traffic 

prediction [KimS2011], a combination of fuzzy systems and NNs for traffic estimations 

[Cha2009] and a Kalman filter to predict traffic volume on the short term [Gong2013]. 

Finally, worth mentioning are the following two studies. In [Dai2014] an EMD-based 

(Empirical Mode Decomposition) multi-model Prediction (EMD-MMP) algorithm is 

proposed using history traffic and appears more efficient than the ARMA and the 

Support Vector Regression (SVR) models. Studies by Ganguly et al (2015) introduce a 

Lagrange polynomial and a regression formula to predict the position of Delay Tolerant 

Network (DTN) nodes; the regression equation is of the following expression and more 

details of parameters a, b and c are outlined in [Gang2015]. 

y = a∙x
2
 + b∙x + c         (3) 

2.7 Macroscopic and Very Long Term Projections 

This section is to demonstrate various attempts on Internet traffic forecasting, mainly in 

terms of total volumes or aggregate bandwidth demand, looking ahead for at least a few 

years. The self-similar characteristics and non-linear nature of Internet traffic may cause 

inaccurate forecasts [Wu2009]; however this usually occurs when making predictions 

on short time scales. Long term trends behave independently from the dynamic 

characteristics of the self-similarity and there is some evidence that year-over-year 

traffic variability tends to be smoother when compared to the changes that traffic 
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exhibits for short time periods. This feature is more evident when forecasts are 

performed for large geographical areas. Some reports and journalists have claimed the 

growth of Internet traffic around certain regions is described as exponential, but it was 

believed this was a myth as demonstrated by Odlyzko (analysed in section 2.8). 

Numerous studies or other sources of measurements suggest that annual growth has 

been slowing down over the last several years in many large geographical areas and 

globally. Moreover, the decrease of annual growth rates is estimated to continue in the 

future and remains a subject of research. The next figure shows projections on fixed 

Internet and managed IP traffic worldwide in aggregated volumes, with their respective 

growth rates (reddish brown line). 

 

Figure 16: Estimates on global Internet traffic volume [Mar2014] 

In general, IP traffic total volumes do increase on a global scale over time, with 

corresponding declining AGRs, and the traffic growth “is partly a function of an 

increase in the number of subscribers, and partly a function of an increase in traffic per 

subscriber” [Mar2014, p.26]. This may imply a hidden formula or a regression equation 

between two or more parameters for each of those functions. More or less, similar 

speculations on the growth towards year 2020 are displayed in figure 17, in terms of 

compound annual growth rate (CAGR). 
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Figure 17: CAGR for global fixed and mobile traffic [But2013, p.11] 

An important observation on both CAGRs of figure 17 when combined with the 

historical data of table 1 (chapter 1, section 2) is the even higher growth rates of the 

mobile traffic part compared to the fixed, even if the latter accounts for larger volumes. 

The usage of mobile devices and certain applications on smart phones, i-phones and 

portables are consuming more traffic than in the past. A relevant study has estimated 

that a 66% of the overall mobile activities will come from communications and video 

streaming by year 2016 [Sand2014]. IP video itself is responsible for a big portion of 

traffic in metro networks [Bell2013] and the growing tendency of video services seems 

to be a fact for the whole Internet mainly because of the popularity of traffic-consuming 

giants like YouTube and Netflix. However, the uncertainty of user trends may produce 

inaccurate predictions and, instead of giving projection with fixed numbers, ranges 

might be a safer option. In the next graph (figure 18) extrapolated are projections until 

2020 using a minimum and maximum limit and the estimated growth range indicated on 

the right may be the average of the highest and lowest forecasts. The graph comes from 

the ITU-R M.2290 report [Sand2014]. The assumptions of making (very) long term 

forecasts depend on the methodology and the approach. Different studies can give 

completely different results especially towards the far future as pictured in figure 19. 

We can observe results close to each other in short terms, even though the gap increases 

as we approach the final year. Cisco, Alcatel-Lucent and Morgan Stanley (2012 and 

2013) seem to be on the same line but projections for 2015 from the former two are 

quite different from others. 
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Figure 18: Extrapolated estimates [Sand2014, p.13] 

 

Figure 19: Forecasts from various companies [Sand2014, p.9] 

The complexity of the scaling behaviour that Internet traffic exhibits is very challenging 

for prediction studies [Mao2005]. Different market technologies and innovations add 

more to the challenge considering the technological advances in the last few decades. 

One of those advances is the bandwidth offer but research efforts rather focus on the 

bandwidth demand. Nielsen’s law of Internet bandwidth states a 50% growth from year 

to year in high-end user’s connection speed [Nie1998], [Hars2015] and is “10% less 

than Moore's Law for computer speed” [Nie1998]. Of more important note is the fact 

that the law fits respective bandwidth data from 1983 to 2014 on a X-Y coordinate 
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system of which the Y-axis is on a logarithmic scale and thus represents a straight line 

[Nie1998] shown in the following figure. 

 

Figure 20: Nielsen’s law: fitted data [Nie1998] 

However, the law states only the bandwidth that is offered and does not mention about 

the bandwidth demand itself [Hars2014]. Most of the studies make predictions (some of 

them using fitting procedures, extrapolations, regression analysis or equations) about 

the future demand or to estimate the traffic, either bandwidth or total volume. On the 

other hand, the fitting line in figure 20 is a good example of a situation where the future 

is strongly connected with its past and may imply this trend will continue (for how 

long?). Finally, it would be beneficial if more characteristics or properties of the fit are 

known such as the fitting error in terms of ARE or MAPE or a relevant indicator. 

2.8 How much is the Internet Growing? 

The study of the dynamic nature of the Internet has been given reasonable attention. 

From a more static point of view, nevertheless, progress is made below standard, given 

the continuously increasing traffic across different countries, ISPs, IXPs and the rapidly 

growing number of Internet users poses several geo-technical challenges and raises 

investment planning issues which must be known in advance. There are additional 

encounters on traffic engineering regarding the issues that affect the long term 

performance of networks rather than the short intervals based on dynamic assumptions. 

Of the main concerns was how much traffic growth there is on the Internet as a whole, 
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as soon as it was realised that aggregate traffic has been increasing at high rates before 

the 2000s. We seem to have some explicit figures of the aggregating traffic but, on the 

other hand, some of the prediction attempts on their growth have been either inaccurate 

or totally absent. As opposed to the traffic collected at a single location to model the 

bursty and fractal characteristics for short or very short periods, indications of the 

growth of Tier-1 level networks, IXP points, wide area networks (WANs) and the entire 

Internet require long time measurements from multiple locations.  

 

When the Internet was believed to grow rapidly, there was evidence that the WWW 

traffic alone was growing at exponential rates [Hub1999]. At the same time, K.G. 

Coffman and A.M. Odlyzko reported a rough doubling each year for the entire Internet, 

i.e. approximately 100% annual growth, and they predicted some time in 2002 the 

Internet traffic will overtake voice traffic, which was not the case until 1999 [Cof1999], 

[Cof2001]. Later, however – and as a matter of fact until today – the rate is still 

declining but the overall traffic continues to grow. Moreover, it was mentioned by 

Odlyzko that some press analysts believed the Internet traffic “doubles every three to 

four months, corresponding to annual growth rates of 700% to 1500%” [Odl1999, 

p.1870]. The author claims by that time AGRs of around 80-120% were realistic but 

were definitely not the ones that were usually cited by popular press accounts. In 

addition, Odlyzko demonstrated that such huge rates were misleading myths that 

originated from some press release talks in 1995 and 1996 [Odl2003]. The author 

continues with further similar reports from various sources of the “Internet doubling 

every 100 days” myth released until 2002 and concludes: 

“The moral of this story (and the reason it is covered in so much detail) is that bad ideas 

are often remarkably difficult to discredit, even when there is extensive evidence against 

them” [Odl2003, p.7]. 

Regarding predictions from 2003 and onwards, it was believed by some investment 

companies and market research that annual growth will be declining down to 50-60% 

by year 2006 or 2007, or it could be also the case that growth will continue at a rate 

close to 2 [Odl2003]. In a previous publication in 2001, the same author reports 

"technological forecasting has a poor track record" [Odl2001]. After almost 15 years, 

the situation seems to be getting better, as more studies come to shed light to the picture 

of the past and the expected traffic growth. 



Internet Traffic Volumes Characterization and Forecasting  

Nikolaos K. Vlachos  44 PhD Thesis 

 

The annual growth rate is calculated as the ratio of the aggregate traffic of a given year 

to that of previous year. Odlyzko made it clear that in the 1990s some reported 

“exponential” growth rates were wrong but a rate of around doubling year over year was 

realistic. In the decade of 2000s, the annual growth started to decay at a rate of less than 

2. The annual growth rate has been calculated at 1.879 in period 2002 to 2007 [UoM6] 

and at 1.511 when another two years have been added to the calculations, i.e. the 

chronological timeframe 2002-2009 [UoM2]. In the same way as the more recent past is 

further considered, the mean AGR of the IP volumes of table 1 has been computed at 

1.502. This suggests – and as a matter of fact confirms the previous assumption – that 

AGRs from recent years are highly likely to accommodate even lower rates when 

compared with the more distant past. This evidence is indeed correct as the respective 

AGR for the IP traffic in 2010 has been found at 1.401 and that of 2011 at around 1.36. 

Considering this consistent decline in the last years, are we to assume that traffic growth 

will continue with more or less the same trend over the next years? 

2.9 Cisco’s and Bell Labs high-level Studies 

Apart from the important studies on Internet traffic already described, there are further 

research efforts targeted to the long term behaviour.  In particular, an important study on 

future projections on fixed Internet, as well as on other types of traffic, is brought 

forward by Korotky (2013) at Bell Labs [Kor2013]. It is demonstrated that consecutive 

historical volume information cannot be precisely represented by using the 

mathematical logistic (sigmoid shape) function and it clearly illustrates that the trend is 

quite different than the logistic curve. Generally, logistic curves are often employed to 

characterize trends that exhibit significant growth at their early stages but later the trend 

tends to be smoother as it progresses in time [Wik2016]. The aforementioned function 

in [Kor2013] has been shown to have inadequate fitting properties when compared to 

historical Internet data but the author’s proposed hyperbolic compound annual growth 

rate (CAGR) does indeed represent the history trend almost perfect. The accuracy of 

Korotky’s proposed method makes his model a realistic tool to successfully indicate 

future traffic. The empirical CAGR values can be described with the following g(y) 

function for year y [Kor2013]: 

g(y) = 10
a
 (y − yo)

b
         (4) 
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Non-linear regression analysis has set parameters to be at approximately a = 3.02, yo = 

1993.9 year, b = −1.14 [Kor2013]. In addition, the report provides detailed projections 

for up to 2020 by application and markets segments and another important conclusion is 

that the volume growth decreases/is estimated to decrease over the decade 2010-2020 in 

terms of annual growth rate. Some of the results in [Kor2013] on fixed Internet traffic 

are presented in table 6. 

Further world-leading research on long time Internet traffic is as well a subject by Cisco 

Systems. Cisco is a global leading organization which has significant contribution to 

projections in a variety of traffic aspect and in many other technological advances. 

Forecasting traffic figures is part of Cisco’s work published in [Cis2012], [Cis2008], 

[Cis2008b], [Cis2013b], [Cis2014a] where important upcoming trends are observed. 

Their report in [Cis2014a] shows explicit details on global, fixed and mobile traffic 

projections by 2018 as well as other categories including estimates at different 

geographical regions. In a previous study, that of [Cis2012], volumes on global types of 

traffic in period 2011 to 2016 are presented when the original date of the report was in 

May of 2012. Furthermore, and 4 years earlier, Cisco had presented [Cis2008] and 

[Cis2008b] in June 2008, to make estimates in IP traffic volumes in the 7-year period 

2006 to 2012 inclusive as shown in table 7. Later, nevertheless, there are some revised 

studies from the same company, one that was published in May 2013 [Cis2013b] and a 

further report about one year later in June 2014 [Cis2014a]. Specifically, projections can 

be seen in [Cis2013b, p.6] and [Cis2014a, p.6] on which there are figures of different 

types of traffic, including the IP and the fixed part. At a close inspection on tables 6 and 

7, we are able to observe quite different forecasts. In particular, the numbers appear 

different when the common timeframes are compared separately for each table for the 

reports in [Cis2012], [Cis2013b], [Cis2014a]. But why do those projections come with 

fairly revised figures for those three years? 

One reasonable explanation might be the constantly changing trend. Obviously, when 

each of those studies has been conducted each in different year, there may have been 

different assumptions and/or user trend as well which could have affected the 

investigation and, consequently, the estimation procedure. In the next tables 6 and 7, 

forecasts from Cisco are presented according to the two types of traffic; relevant 

projections from [Kor2013] are also included. 



Internet Traffic Volumes Characterization and Forecasting  

Nikolaos K. Vlachos  46 PhD Thesis 

 

 

Table 6: Global fixed Internet traffic estimates (PB/month) 

 

Table 7: Global IP volume forecasts (PB/month) 
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The revised information in the tables raises some critical issues. One issue would be to 

compare Internet volumes of the past with the studies that have been done earlier to 

make estimations for those volumes. A satisfactory answer may help us to understand 

the reasons of each year’s revised predictions. Moreover, we might also be able to 

exclude some predictions and prioritize the possibility of some others to occur in the 

future. 

It is commonly accepted that forecasting actual facts before those happen is a difficult 

task and that some level of error is indeed unavoidable. However, when making 

predictions on Internet traffic, it is highly recommended that a consistent methodology 

be followed using the criteria defined in the relevant chapter to minimize associated 

errors. Furthermore, there are two necessary additional conditions in order to maintain a 

low forecasting error: 

(i) Accurate historical data. 

(ii) Up-to-date user trends. 

Condition (ii) may include some social and economic facts but those can be quite 

different from one year to another. Since those cannot be precisely speculated, any 

attempts on forecasting future aggregate volumes may appear different to the actual data 

once the latter become available. Estimations on future figures depend on the behaviour 

of Internet users and on technologies that are about to come on the market; this is as 

well a forecasting challenge. Therefore, the continuously fluctuating user trends might 

be a good reason as to why the recorded measurements of the worldwide IP volumes of 

table 1 come with different numbers than the projections in table 7 (1
st
 column) and in 

2011 (2
nd

 column). By performing some detailed analysis, Cisco’s associated 

forecasting error is relatively low if we observe the figures from the early years 2006 to 

2008. A possible explanation might be that this interval can be interpreted as the 

“nearer” long run target, in which potential market trends are well known compared to 

the more “distant” long run. In contrast, the next three years that immediately follow, 

i.e. the timeframe in 2009 to 2011, belong to the far future and more “unpredictable” 

chronological interval which may incorporate huge levels of uncertainty. As an 

evidence, error rates in period 2009-2011 are indeed higher: the highest prediction error 
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(notated as PrE expressed with the next equation) has been calculated at more or less 

20% and has occurred in 2011. The relation uses the absolute difference of the real 

(actual, act) minus the predicted (forecast, for) value and the result is then divided by 

the former variable: 

        (5) 

Relation as expressed with (5), or in a similar way, is sometimes used to indicate 

relative errors. It can also define the forecasting accuracy in a relevant way such as in 

the work described in [Yid2009] and has, actually, the same meaning with the MAPE 

and ARE even if the latter two are expressed in different ways to comply with each 

study’s methodology. Using again equation (5), the smallest error rate has been detected 

in the first interval – that of 2006 to 2008 – and has been computed at only 2.2% in 

2007 and is almost negligible. Overall, the company’s average computed prediction 

error considering the six year chronology is found at 11.56%. This rate is similar to the 

error range reported in [Tel2013], although the mathematical relation that was employed 

in that study is not given. In table 8, numerical results for the worldwide IP volumes 

forecasting errors of 2006 to 2011 are shown, according to the measurements in 

[Wik2015a] and the estimations in [Cis2008], [Cis2008b] as released in 2008. On the 

other hand, Cisco has predicted a fixed aggregate traffic at 31339 PB per month for 

2012 while the actual figure was 31338 PB per month, which is of almost 100% 

precision, i.e. nearly 0% error. Equation (6) calculates the Historical Average Prediction 

Error, HAPrE(k), for k numbers of years for the traffic predicted vs. the actual historical 

traffic, where k = 6. Cisco’s HAPrE(k) is at 11.56% and the more detailed figures are 

shown in table 8. The relation indicates the precision rate of forecasts over a certain 

timeframe. 

      (6) 

Looking at results of table 8, there is a strong conclusion that forecasting attempts on 

the first three years timeframe are more accurate than those for the far longer term, 

provided all historical activity has been measured with precise figures. There is a 

considerable difference between the average error rate of 2006-2008 and that of 2009-
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2011, as illustrated in table 8, suggesting that research on long term predictions must be 

limited to three years. Maybe one more year can be added but that should be only 

considered on special occasions, e.g. for very macroscopic investment plans. In this 

thesis a total number of four years estimates are usually presented and it is shown in 

core chapters that the three-year period is the optimum selection. Projections for the 

fourth year tend to be risky, however, and estimations beyond the proposed horizon are 

susceptible to high error rates. Several years or more can be only considered if there is a 

better understanding of the long term effect of user trends and only some general advice 

can be given such as projections using “guesstimates”. The latter term is used in a study 

in [Per2003] to indicate future outlooks in economics. 

 

Table 8: Cisco’s HAPrE on aggregate IP volumes according to [Wik2015a], [Cis2008], 

[Cis2008b] 

Jackson (2014) also raises some facts about Cisco’s reliability on future projections 

[Jack2014]. The author reports that Cisco has revised twice their initial forecasts on 

Consumer Internet traffic: both updated figures have been revised downwards and the 

maximum difference compared to the initial prediction is calculated at ~12700 PB per 

month [Jack2014]. This variation is definitely not to be neglected as the deviation in this 

case is relatively large. 

Furthermore, revisions are also observed in [Cis2012] included in table 7, where some 

initial predictions for 2011 and 2012 come with different figures. As illustrated in table 

7, the global IP volume for 2011 has been revised down to 30734 PB per month, where 
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the initial prediction several years ago (in 2008) had been originally reported at 32983 

PB per month [Cis2008], [Cis2008b]. Those slight updates are not a surprising fact 

considering the discussion in earlier sections. The variations of those two reports may 

be caused by the different trends at the time of their studies, as there is a chronological 

difference of four years between [Cis2012] and [Cis2008], [Cis2008b]. By performing 

the necessary calculations on error rates comparing actual measurements with 

predictions using relation (5), [Cis2012] revision in year 2012 has a forecasting error at 

only 11.8%, while this figure is increased to 20% in the initial predictions of 2008 as 

seen in [Cis2008], [Cis2008b]. If further error rates are to be calculated using all the 

available information so far of table 7 but also for the fixed traffic of table 6 as well, we 

can observe similar results in the common timeframes: most of the recent revisions tend 

to revise numbers downwards which may, in turn, accommodate lower error rates when 

compared to the initial older projections as soon as the actual measurements become 

available. This, again, confirms the uncertainty and the higher risk on prediction 

attempts for the longer term. It also justifies the need for up to date users trends and for 

setting prediction timeframes preferably to three years.  

2.10 More Sophisticated Approaches on Long Term Predictions 

Produced equations based on appropriate fitting of historical data have been further 

proposed.  Maybe the greatest effort of such studies is performed by MINTS which 

have thoroughly analyzed recorded activity of 100 major traffic sources around the 

world, including the largest IXPs [UoM2]. Incoming and outgoing traffic from several 

consecutive past years is characterized by a fitting trend and described are the historical 

traffic aggregates using equations that are expressed as mentioned in the introductory 

chapter, but more specifically are of the following form: 

y = 10
bx + d

 → y = 10
d
 ∙ 10

bx
        (7) 

The London Internet Exchange (LINX), one of the largest IXPs, has an average traffic 

of 6.400e+10 bps as observed between 4 February 2002 and 21 August 2009, an annual 

growth rate at 1.5971 for the total traffic and is characterized by the following equation 

(8), where x is the day and y the traffic in bps, and its data with the fitting curve are as 
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shown in figure 21 [UoM7]. All details for data, relations and analyses of this massive 

study can be found at the MINTS website.  

y = 10
3.5082

 ∙ 10
0.0006x

         (8) 

 

Figure 21: Fitted traffic data for the LINX [UoM7] 

Another study similar to MINTS, as referenced by Labovitz et al (2010), looks for an 

exponential fit of the following expression, where y is the traffic in bps and x is the day 

[Lab2010, p.84]: 

y = A ∙ 10
Bx

 x  [1, 365]        (9) 

The fitted curve over 365 daily collected traffic traces from May 2008 to May 2009 can 

be seen in the following figure: 
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Figure 22: Curve fit over a year’s traffic by an anonymous provider [Lab2010, p.86] 

In the same study, calculated is the total traffic volume for May 2008 at 9 Exabyte (EB), 

which matches with Cisco’s estimates and is also compared with MINTS figures 

[Lab2010, p.84-85] in the next table: 

 

Table 9: Labovitz et al results for May 2008 (first column) [Lab2010, p.85] 

Finally, more characterization studies are reported but specifically for mobile network 

traffic and according to device types and applications by Shafiq et al (2011). Aggregate 

and separate devices’ traffic have been observed for 1 week in which diurnal 

characteristics are present [Sha2011, p.308] similar to the sinusoidal-like shape of 

weekly and day-to-day traffic mentioned in previous sections. At the same time, of 

more importance are the traffic volumes generated by 3 types of mobile devices over a 

number of consecutive years for which a regression line is plotted for each type’s 

historical traffic [Sha2011, p.309] demonstrated in figure 23. The general expression of 

the regression equation is of the form: 

y(x) = a∙x + b          (10) 
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Figure 23: Regression lines for mobile devices trend characterization [Sha2011, p.309] 

The equation in figure 23.(b) characterizes the trend line quite accurately. However, 

most of the methods employed for long term modeling and prediction, are observed to 

have some level of dispersion at the characterization process which has been not clearly 

defined and can therefore lead to large fitting and even forecast error rates. In addition, 

the methods described as being more static do not seem to report the associated fitting 

error such as for figures 21, 22, 23 even if different techniques are employed in those 

studies. In this thesis, fitting errors are minimized to very low levels in order to produce 

suitable mathematical formulas to predict traffic volumes with precise figures. The 

following chapter takes into consideration these peculiar issues and demonstrates an 

effective methodology for the long term analysis and projections of network traffic. 
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CHAPTER 3 

Methodology 

 

“All is Number. 

Number rules the Universe”  

- Pythagoras 

The proposed method for long term Internet traffic modelling and forecasting is 

presented in this chapter. Based on four distinct conditions, rigorous characterization of 

massive historical measurements can successfully indicate future figures using novel 

mathematical formulae.  

3.1 Introduction 

As outlined, a considerable part of relevant research concentrates on popular statistical 

time series models, neural networks and analysis of the dynamics of the collected traffic 

traces. At the same time, another important part advances to more static techniques and 

use less dynamic assumptions making it more relevant to this thesis’ methodology, 

albeit with a different approach. The materials on which this investigation is based on 

are the collected actual historical data of available Internet volume figures from various 

traffic sources as well as the evolution of the number of Internet users worldwide. 

Furthermore, the methods that have been used herewith are to reveal how the numbers 

of the time series seen in this history traffic are connected to each other. Certain 

connection properties have been observed over continuous chronological intervals that 

can be represented with appropriate fitting curves which, in turn, can indicate the 

growth of the corresponding traffic volumes for the future. For most of the data, there 

are hidden patters and these have been successfully detected in chronological order. 
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Subsequently, it has been further observed those patterns can be described with 

mathematical equations which have never been proposed before. In most of the reported 

cases in core chapters, the proposed formulae (i) encompass prominent fitting 

characteristics with the values from respective historical measurements and (ii) are 

expected to provide very good prediction results for the next years with an expected 

average prediction error at far less than 10%. Namely in the case where some new 

traffic data are already released, the hereby proposed methods have lower prediction 

errors than projections coming from other research bodies, averaging a rate of less than 

5%. 

3.2 Selecting Appropriate Traffic Data: The 4 Criteria 

Predicting global or regional traffic for the next few years, either fixed or IP, means 

there are adequate traces from several previous years which can form the basis of high-

level studies for successful future projections. If data are not sufficiently collected or if 

they are just a small part of the total sample, prediction attempts may result in excessive 

error rates. In this thesis in order to successfully forecast traffic figures for the next 

years, “sufficient” or “adequate” can be defined as the following two criteria: 

Criterion 1: All available Internet traffic from at least four - but ideally more than four - 

consecutive years of the past must be taken into consideration to form the time series 

data. For example, to make estimations of the total volume for years 2014, 2015, 2016 

we need at least the traffic history in years 2010, 2011, 2012 and 2013. More efficiently, 

nevertheless, extensive traffic history for up to more than several years would be ideal 

to reveal any consistent long term trends, but this is not always possible. 

Criterion 2: The activity must come from a network of which traffic has either an 

impact on the total global flow or expands to a large geographical range. Therefore, 

good examples of appropriate networks are major backbones and large Internet 

exchange points such as the Amsterdam and London IXP. In contrast, small samples of 

traffic or measurements captured at random chronological intervals are not suitable. As 

such, traffic across a local node or a community (e.g. a University campus), the flow 

coming from a big city or even a whole country but with gaps in measurements are all 

excluded and therefore not considered for the purposes of this research. 
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Pattern detection can be only applied to data for large areas and with complete long 

term historical information to be defined as adequate, thus 1 and 2 must be satisfied. 

Modeling historical trends with an arbitrary pattern of some absent values is possible 

[Ban2010], but cases in the present studies exhibit different peculiarities and have other 

types of constraints. Also, studies in [Zhan2009] have shown that enlarging data does 

not really enhance prediction accuracy. In this thesis, however, there are different 

assumptions for making predictions, thus enlarged and representative samples of 

pertinent historical data are a prerequisite. 

Furthermore, there are additional conditions that must be satisfied as well and these are 

more relevant to the quality of the available information, rather than the quantity issues 

mentioned in criteria 1 and 2. The suitability of the historical Internet volumes is the 

key to extract the connection properties of the pertinent data through careful observation 

as numbers progress over years in chronological order. These pure values must have the 

following properties and are defined as criteria 3 and 4: 

Criterion 3: Consecutive historical traffic volumes are only considered within the last 

ten years to accord with trends and must constantly increase in time, i.e. total traffic V 

for a given year Ԑ must exceed V of previous year: 

 V(Ԑ) > V(Ԑ–1), Ԑ > 2004       (11) 

Criterion 4: Their increasing values will ideally have smooth progression properties as 

they advance over time, i.e. all numerical values would preferably have no sudden 

peaks, spikes or irregular fluctuations. If such irregularities are present, then statistical 

indicators such as standard deviation, RMSE and/or fitting error over subsequent years 

will preferably incorporate low values; otherwise there is a risk of coming up with 

inaccurate predictions at the later stages.  

Condition in 3 is of outmost importance and only then are these studies considered. 

Indeed, all the collected traces imported in the thesis satisfy this demand on a global and 

more local basis. Restriction Ԑ > 2004 is to ensure that included are only the latest 

traffic trends and for the years of which traces are available according to the four 

criteria specified on the whole. In addition, the requirement described in the 4
th

 criterion 
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is to define the success rate of the fitting procedure and, consequently, the curve/line 

fitting error. The quality of the combination of 3 and 4 will determine how easy or 

difficult it is to detect the patterns in the available successive numbers and then form a 

suitable relation. In any case, the information and methodology that have been used to 

conduct this research satisfy all four conditions 1 to 4 and, as such, studied are only 

those traffic traces which meet them in full. Criteria 1, 2 and 3 are straight forward as 

opposed to 4 which is more flexible and accompanied by some level of arbitrary 

calculations. At the same time, the quality of the mathematical relations to be derived 

from the fitting and pattern detection procedure must be guaranteed prior to making 

numerical experiments and predictions for the future; full achievement of all criteria 1 

to 4 are almost definite to guarantee excellent results. 

However, producing reliable equations in any scientific field is – apart from challenging 

– a difficult task and a considerable level of difficulty does also apply to these studies. 

The use of straight-forward equations are important to all scientific fields and, here, the 

intention is to produce simple and practical relations and to establish them in Internet 

traffic forecasting. At this point it must be mentioned that no software was used in order 

to trace any patterns or to produce the mathematical equations from all available data 

sets. Although there are available computer programs that can manipulate large 

quantities of samples, the results obtained in all chapters rely exclusively on my own 

intelligence, intellectual and observational abilities. Only standard programming 

languages have been used and only for the purpose of saving time on the large scale 

numerical experiments and calculations. To the best of my knowledge no software is 

able to produce directly these findings and formulae to the extent it has been 

accomplished and described herewith. 

3.3 Dynamic versus Static-Based Predictions 

The term “static” or “non-dynamic” shall be referred in the thesis as the basic approach 

for the proposed methods. As reported in [Klo2004], dynamic predictions are based on 

previously repeated forecasts, i.e. when a forecast number is produced it is then 

referenced to form the next figure and so on. On the other hand, static methods perform 

predictions according to already available data which require actual historical numbers 

[Klo2004] and a similar method is used exclusively in the thesis. 
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Static approaches are not hitherto unknown. Other than the relevant studies already 

described, there are some similar-like approaches in different scientific topics, which 

represent some of the state-of-the-art studies in their fields. In tumor growth modelling, 

a parameterized exponential model [End2014], best-fit curves for two models 

[Mar1996] and regression lines [Ben2014] are each presented for selected purposes. In 

economics, evaluating a static factor model is included in [Che2007] to predict the 

Gross Domestic Product (GDP) in Canada. Another report on forecasting the German 

GDP uses three different models, including a static. The study, which comes from the 

“Deutsche Bundesbank”, is based on 124 series of data from 1978 to 2004 and points 

out that none of the dynamic factor models shows better prediction results than the 

static [Sch2005]. 

3.4 Excluding Certain Traffic Collections 

There are traffic samples which meet all prerequisites from the previous section and 

some others that do not. All collections used in the thesis satisfy the necessary 

conditions. Historical measurements which do not meet all criteria are not necessarily to 

be omitted from studies in general, but it is essential that this investigation is based on 

reliable evidence in order to make successful predictions when these will be compared 

with the actual data once they are released. Performing studies on not so consistent 

information might result in error percentages from 10% to 20% or more. Even if the 

range of 10-20% seems acceptable – and as a matter of fact is already the case for many 

related investigations – it is not preferred for the present studies. The contribution of 

this thesis must be achieved to the maximum and this suggests forecast errors less than 

10% on average and ideally below 5%. 

Unsuitable historical traces can produce dispersed figures at the fitting stage and this 

can lead to magnified forecasting errors. The example of table 10 is the incoming and 

outbound aggregate traffic that has crossed the Amsterdam IXP in 2014. We can 

observe the traffic generally increases from the beginning to the end of the year for both 

incoming and outgoing (and consequently for their totals), but in between certain 

months there are significant drop offs. Modeling any data set that displays seasonal 

variations is susceptible to significant deviations at later study stages and should maybe 

assigned to more dynamic techniques. Therefore this sample may not be suitable to 

form a reliable basis for predictions and cannot be used for either fitting, relation 



Internet Traffic Volumes Characterization and Forecasting  

Nikolaos K. Vlachos  59 PhD Thesis 

 

forming or projection purposes. However, if all numbers of the data set are added 

together to represent the totality of volume for 2014, then all relevant aggregate 

volumes from past years of the same IXP can be merged into one table in chronological 

order. The new table will have the total volumes of the traffic from several consecutive 

years of the past, e.g. from 2009 to 2014, to predict figures for years 2015 to 2018. The 

latter is indeed a core project in this thesis and is presented later. 

 

Table 10: Amsterdam IXP: variations on monthly historical volumes [Ams2014] 

 

Table 11: Estimated backbone traffic in USA [UoM1], [UoM5] 

Further examples that can possibly lead to huge prediction errors are measurements 

given in broad ranges or traffic activity compiled into a single graph without precise 



Internet Traffic Volumes Characterization and Forecasting  

Nikolaos K. Vlachos  60 PhD Thesis 

 

figures, as shown in table 11 and figure 24 respectively. Table 11 may be a good 

indication of what is to be expected for 2012 and later, but no constructive investigation 

can be conducted to detect patterns or produce fittings. It is quite obvious that those data 

do not display a specific traffic pattern in terms of accuracy for either prediction or 

modelling, mainly because of the wide range of the numbers they are given. Although 

traffic uncertainty is relatively high, the data in the table could be a good start in 

revealing patterns but these would be only based on the lower and upper limits of the 

values of each year as the latter increases to 2011. Projections using this method would 

again produce some specific ranges and estimates would not be accurate, even if this 

method is safer due to the increased probability defined by the wide range of the 

numbers. The same applies to extrapolating figures by producing curves or lines that fit 

into the area specified by the lower and the higher levels of the numbers. In contrast, 

detecting patterns in the progression properties of standard numbers rather than in the 

properties of dispersed ranges is expected to lead to better estimations on future values. 

The convenience of forecasting traffic volumes within excessive ranges cannot be 

regarded as producing “safe results” because networking and investment companies 

need more precision when it comes to their future plans: they need projections that 

come with fixed numbers or at least with some very narrow ranges. 

 

Figure 24: Traffic exchanged at the DE-CIX in Frankfurt [Dix2015] 
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The graph in figure 24 comes from the “Deutscher Commercial Internet Exchange” 

(DE-CIX) in Frankfurt [Dix2015] and is certainly useful, especially the average traffic 

(yellow) as opposed to the peak activity (red) which exhibits medium-level fluctuations 

in 2014 and 2015. The former meets all specified criteria but obviously there is absence 

of figures. At close inspection, one might be able to extract all numbers as they progress 

from 2012 to 2015 but these would be within certain ranges – even narrow – or they 

would come with a standard level of tolerance. Any lack of precision may not be an 

important issue for the general public’s information but for high-level studies accurate 

figures collection is strongly advised. 

3.5 Suitable Historical Measurements 

The desired level of explanation of historical measurements can lead to precise 

estimates and table 12 is an explicit example that meets all conditions. The numbers 

have hidden properties and this pattern always depends on the value of each previous 

number. In other words, the pattern can be well represented with an equation which 

takes the relation from the volume of a given year ε−1 and performs calculations to 

assign the new value to the volume of year ε. Any number on the right hand side of the 

table depends on its previous value, i.e. the volume information is always related to that 

of previous year and can be expressed with a mathematical equation including variable 

ε as a separate parameter. The numbers of the table have been observed to produce a 

hidden model to characterize the traffic and the fitting attributes, which is able to further 

indicate the future values in advance with a low associated error. In broad format, the 

equation is expressed as: 

V(Ԑ) = [V(Ԑ−1)]
P
         (12) 

V(Ԑ) refers to the total traffic volume we want to predict for year Ԑ, which clearly 

depends on the available historical volume V(Ԑ−1) from previous year. Exponent P is to 

be formed according to the investigation case in each chapter and is a more complex 

parameter that includes variables and constants defined at the fitting and pattern 

detection process. The same idea is as well to be applied to all history traffic data used 

in this documentation, including further tables with several years of recorded traffic 

from large and consecutive data samples. 
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The format in (12) of the proposed relation is similar to the MINTS and Korotky’s 

equations format and to other related studies that use an exponential form to predict or 

fit the traffic as a function of the year (or the day where applicable). In addition, the 

rather general appearance of equation (12) is to be altered accordingly in subsequent 

chapters to comply with the fitting and prediction peculiarities of each purpose. In this 

way, a further advantage is the minimum effort that will be required in the future if and 

when equations need to be updated according to the trends. 

 

Table 12: Historical global IP volumes [Cis2013], [Wik2015a] 

Last but not least, the selected timeframe for predictions has been limited to three years 

at maximum due to the uncertainty of future trends as these can unpredictably change at 

any time. A further fourth year has been included in most chapters to verify that even an 

additional year beyond the suggested 3-year period is susceptible to increased error rate. 

It must be realized that focusing on the next few years, rather than too macroscopically, 

has a lower risk of failure and this issue has been successfully pointed out in the 

respective part of the literature review. On the other hand, nearer time estimations along 

with all four aforementioned conditions, strongly suggest that the trend is likely to 

remain stable resulting to more accurate estimations. For the present studies, the 

selection of small chronological forecasting periods of either three, or four years at the 

most, is expected to be the optimum choice. At the same time, it is recommended that 

revisions and necessary updates of all proposed equations in this thesis be conducted 

every three years. Finally, the proposed model implies that any future activity for a 

specific geographical range depends on the past activity for the same region, as long as 
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all essential prerequisites are satisfied as discussed. In other words, the successful 

model candidate can be described with the following sentence: 

If we possess a big and representative set of successive information from the past that 

follow a pattern which can be expressed with a relation, then we can count on reliable 

predictions of future traffic.  

Through the next chapters, the accuracy of the proposed model is demonstrated and, as 

pointed out in the literature review, errors at less than 10% mean accurate predictions. 

Also, Borzemski et al (2011) state that in particular a MAPE measure below 10% is a 

very good indicator of prediction results [Bor2011], which is the case in these studies as 

well. The performance of all proposed models will be evaluated as soon as actual data 

for the targeted timeframe become available and this shall be indicated in respective 

chapters where applicable. At the same time, fitting statistics of historical traffic 

demonstrate the abilities of the suggested formulas. Producing appropriate relations for 

successful forecasts starts immediately in chapter 4. 
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CHAPTER 4 

Analysis and Prediction of Aggregate Traffic across IXPs: 

The Case of the Amsterdam Internet Exchange Point 

 

“Necessity is the mother of invention” 

- Plato 

This chapter introduces the reader to a novel method for characterizing and estimating 

traffic according to historical measurements by producing a new formula. The study is 

performed on one of the largest gatherings of traffic volume in the world for which 

there are sufficient recorded traces, the Amsterdam Internet exchange point. The 

proposed equation has successful results on predictions for aggregate traffic in 2015. 

4.1 Share of Internet Traffic by Internet Exchange Points 

Internet eXchanges or Internet eXchange Points (IXPs) are large local networks that 

allow peering between other parties such as carriers, ISPs and other networks. IXPs 

provide connection to other large networks directly rather than through other 

infrastructures or third-parties from other locations. Internet exchange points are a major 

part of the Internet infrastructure and they are main contributors in the evolution of the 

Internet topology [Ahm2010]. A considerable number of IXPs exist on the Internet and 

in all geographic continents around the world. Internet exchanges are traffic sources that 

account for nearly all bandwidth of the Internet, however there are countries that still 

lack an IXP and need to import bandwidth from other countries that do have IXPs 

[OECD2013]. Holland, for instance, is a country that consumes 50% of the bandwidth 

that its IXPs produce and is a major bandwidth exporter [OECD2013]. Internet 
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exchange points grow fast on a global scale in terms of total number and especially in 

overall bandwidth capacity, with most of the total activity coming from our region, 

Europe, as shown in table 13. Full details of IXP statistics for a list of countries can be 

found in the relevant report available from the Organisation for Economic Co-operation 

and Development in 2013 [OECD2013]. 

 

Table 13: 5-year growth figures of IXPs [OECD2013, p.54] 

In table 13 we can observe the number of IXPs and that their respective bandwidth offer 

have grown in all continents. Latin America is the fastest growing in terms of total 

number of IXPs, while Africa has the largest percentage growth in regional bandwidth 

production. Although Africa’s figure at 159M in 2006 and 3.22G in 2011 is small 

compared to other regions, we may further expect high levels of growth at those 

locations in the future. The same trend may be the case for Latin America as well, since 

both of them seem to have high growth rates not only caused by IXP traffic but for their 

total global figures too as presented in the next chapter. 

In spite of measuring the Internet as a whole infrastructure, there is not much effort on 

the more localized Internet [Res2012]. A study by Ahmad et al (2011) reports almost 

44000 peering links at various IX points were missing (invisible) at the time of another 

study conducted, as referenced therein [Ahm2011]. Of even more important note is the 

fact that nine large IXPs in the world are responsible for 43% of the total traffic, 

including the one in Amsterdam [Ahm2012]. The following table illustrates important 

figures of the total flow and the number of members for each of the nine IXPs in three 

different continents. 
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Table 14:  Statistics from popular IXPs as of January 2012 [Ahm2012, p.622] 

The top three of the exchanges are located in Europe and their behaviour in terms of 

total traffic, fitting curve and incoming/outgoing equation has been already studied by 

the MINTS as updated in September 2009 [UoM2]. In 2015, however, there are detailed 

traffic volume figures for the Amsterdam exchange of which historical measurements 

shall indicate future growth as explained in the next sections. 

4.2 The Amsterdam Internet Exchange Point: Numerical Properties and Patterns 

in Historical Traffic Data 

All recorded traffic that has crossed this large peering network since 2001 is available 

from [Ams2015]. The historical data start from July 2001 until August 2015 and for the 

research purpose investigated are years 2005 to 2014, to comply with the constraints of 

equation (11), criterion 3 in chapter three, and due to the incomplete data for 2015 when 

this study began. The restriction of relation (11) is to consider a maximum of 10 years 

of recorded history, mainly to keep up to date with the trends of the more recent past, 

but the exact number of years is to be determined by all four criteria justified in the 

methodology. 

All monthly traffic volumes of the past are included at [Ams2015] for the incoming and 

outgoing traffic and at this very first stage all monthly data of each year have been 

merged and imported in a spreadsheet to form the yearly figures. After adding them up, 

a new table with the aggregate volumes has been produced for each of the years 2005 to 

2014 inclusive, which are plotted into an X-Y coordinate graph. This phase is the most 
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important in the sense that it must be made clear which of the four criteria are satisfied 

as exactly described. Obviously, the first three conditions are met while the 4
th

 criterion 

has some peculiarities. The results for the yearly historical data from 2005 to 2014 from 

the Amsterdam IXP are summarized: 

1
st
 criterion: confirmed (more than four years of historical data) 

2
nd

 criterion: confirmed (the aggregate volume samples come from a large geographical 

region across West Europe) 

3
rd

 criterion: confirmed (yearly traffic figures are constantly increasing from 2005 up to 

2014) 

4
th

 criterion: partly satisfied – years 2005 to 2008 have produced medium level of spikes 

that affect the smooth properties of the graph, which increases the difficulty at the 

pattern detection process. Nevertheless, the rest of the traffic volumes from 2009 to 

2014 have smooth properties. 

For dynamic modelling, the presence of spikes may not be an issue but using a more 

static approach may lead to significant fitting and forecasting error rates. As already 

emphasized, the preferred option for this thesis is an average prediction error of less 

than 10% and ideally lower than 5%. Therefore, traffic data from period 2005 to 2008 

will be excluded and considered is the timeframe 2009-2014 to proceed to the next 

stage. The exclusion of the aforementioned period does not affect the procedure as the 

new data have been again verified against all criteria which are now met in full. The 

new figures to be investigated are given in the following table in Terabytes (TB). 
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Traffic that has crossed the Amsterdam IXP 

Year ε 
Total volume 

(TB in year ε) 

Monthly average volume 

(TB/month) 
AGR 

2009 3498294 291525 N/A 

2010 4913330 409444 1.404 

2011 6430632 535886 1.309 

2012 8277665 689805 1.287 

2013 11156521 929710 1.347 

2014 14282831 1190236 1.280 

Table 15: Aggregate traffic, as compiled from [Ams2009] – [Ams2014] with respective 

AGRs 

Although traffic volumes in 2009-2014 increase year after year, the annual growth 

figures confirm the declining growth rate of the Internet traffic and, here specifically, of 

the Amsterdam IXP (table 15). The information for the monthly traffic will be analyzed 

to detect any existing numerical patterns in numbers as these progress in chronological 

order. Equation V(Ԑ) = [V(Ԑ−1)]
P
 from previous chapter is now used and the format is 

accordingly modified to indicate traffic at the Amsterdam Internet exchange point 

expressed with the following relation: 

AMS.IXP(Ԑ) = [AMS.IXP(Ԑ−1)]
P
       (13) 

The selected monthly average values 2009-2014 from table 15 are substituted into 

equation (13). Values of all respective years Ԑ will be expressed as a function of 

volumes of previous years (Ԑ−1) and will form the relations, which are to reveal the 

values of exponent Pi in each pair. After substituting all volumes from table 15 with the 

actual numbers, we get the next set of expressions: 

AMS.IXP(2010) = [AMS.IXP(2009)]
P1

 → 409444 = 291525
P1

   (14) 

AMS.IXP(2011) = [AMS.IXP(2010)]
P2

 → 535886 = 409444
P2

   (15) 

AMS.IXP(2012) = [AMS.IXP(2011)]
P3

 → 689805 = 535886
P3

   (16) 
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AMS.IXP(2013) = [AMS.IXP(2012)]
P4

 → 929710 = 689805
P4

   (17) 

AMS.IXP(2014) = [AMS.IXP(2013)]
P5

 → 1190236 = 929710
P5

   (18) 

All numbers are expressed in TB/month and obviously index i = 5 (maximum). By 

solving equations (14) to (18) according to P1 to P5 respectively, we make use of the 

following power-logarithm relation and the logarithm identity property defined as: 

χ
ψ
 = ω ↔ ψ = log(χ)ω         (19) 

log(χ)ω = log(2)ω / log(2)χ        (20) 

Relation (19) will be used to reveal exponents, while (20) converts any logarithm base 

to the desired in the Java programming language, which is the software to be used for 

the large-scale numerical experiments. Then from equations (19) and (20), P1 to P5 

have been calculated as shown in table 16 expressed to 6 significant figures: 

Relation Value of Pi 

409444 = 291525
P1

 1.026995 

535886 = 409444
P2

 1.020826 

689805 = 535886
P3

 1.019140 

929710 = 689805
P4

 1.022200 

1190236 = 929710
P5

 1.017976 

Table 16: Equations (14) to (18) with their P1 to P5 respectively 

The next and most critical stage is to detect hidden patterns in all P variables as revealed 

in table 16. Looking carefully at the second column of the table, all values generally 

decrease as Pi increases with the exception of P4 which can be defined as a “small” 

spike. This issue can be overlooked as long as there is a satisfactory progression 

property detected from P1 towards P5 and provided that a small fitting error exists (to 

be calculated later). For all P1 to P5, the ideal situation would be a fixed number to be 

subtracted starting from the first with the aim to approach P5 at the last subtraction. If 

there was such a fixed number, say A, then we would get the following set of relations: 
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P1 – A = P2 

P2 – A = P3 

P3 – A = P4 

P4 – A = P5, which is of generic form: 

Pi – A = Pi+1           (21) 

But since (21) cannot be applied, the next step would be to detect a pattern relation by 

adding one parameter (either fixed or variable depending on the situation) to each of the 

variables we already have, which would be of the following expression: 

(a ± Pi) – (b ± A) = (c ± Pi+1)        (22) 

Factors a, b, and c can be divided into more arithmetical operations including additional 

variables and may affect the quality of (22) in a negative way if the wrong values are 

assigned to a, b, c. However, using equation (22) is the key to approximate P1 to P5 

successfully, albeit with a small error. This error is to be defined as the fitting error, 

later at the fitting procedure. At this point, extensive numerical experiments will be 

carried out to set A, a, b, c to a plethora of operations (at least in the order of millions) 

and values that only calculation software is able to perform. In this thesis, those 

extensive experimentations are performed with the Java programming language to 

iterate complex calculations within loops using numerical programming. Those large-

scale experiments will be performed using an extensive range of numbers assigned to A, 

a, b, c. The combinations of their values will be evaluated against the actual numbers of 

table 16 and the newly formed values will later define the fitting error. The aim is to 

find the combination of values A, a, b, c and operations, which incorporate low errors 

and selected will be the lowest compound average error considering all Pi. As such, 

repeated experiments have set the new Pi’s to be as accurate as possible compared to the 

actual, but at the same time they must have a low deviation compared to the Pi’s of table 

16. On the other hand, calculations must reveal new values to have a good decreasing 

pattern as this will be used to form the final format of the proposed novel formula. 
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Indeed, results have indicated the average deviation rate to be at an exceptionally low 

rate compared to those of table 16 and has been calculated at below 0.4% (<4‰) which 

is totally negligible. Table 17 reveals their new values, which are expected to 

accommodate a low fitting error as a consequence of a low deviation and will lead to 

successful traffic predictions. Obviously, each P reduces by 0.002 related to its 

previous, which is not a difficult task to form the exponent of the equation. 

Pi New values 

P1 1.024 

P2 1.022 

P3 1.020 

P4 1.018 

P5 1.016 

Table 17: P1 to P5 alternative figures revealed at the pattern detection stage 

4.3 Traffic Data Fitting 

Proceeding to the next stage, the newly formed data are to determine the fitting error 

rate of the historical traffic. At this point it must be mentioned even if very low fitting 

errors are achieved, they are likely (but not definitely) to magnify the forecast error rate 

some time when traffic figures of the future become available to compare them with the 

proposed predictions. Therefore it is essential to come up with considerably low errors 

at this present stage. The next table summarizes the proposed fitting procedure and 

statistical figures; the respective error is computed using formula (23): 

    (23) 
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Year ε 
Proposed 

P 

Fitted 

AMS.IXP(ε) 

(TB/month) 

Actual 

AMS.IXP(ε) 

(TB/month) 

Fitting 

error (%) 

2010 1.024 394301 409444 3.69 

2011 1.022 544080 535886 1.53 

2012 1.020 697676 689805 1.14 

2013 1.018 878665 929710 5.49 

2014 1.016 1158353 1190236 2.68 

Average fitting error 2.906 

Table 18: Fitted traffic vs. actual for the Amsterdam Internet exchange point 

The calculated mean fitting error at 2.906% is not exceptionally low but is indeed 

within a very good acceptable range and the actual historical data have a good match 

with the proposed fitted. Another important achievement comes at the pattern detection 

trials which, out of millions of operations, seek to select an optimum range of Pi’s but at 

the same time reveal a consistent and convenient numerical decrease of each P. Indeed, 

Pi+1 is always subtracted by 0.002 related to each Pi. 

 

  Figure 25: Actual and fitted traffic 

As shown in the graph (figure 25), the fitted representation is in line with the 

progression shape of the historical activity. The selected actual data of 2009-2014 have 

smooth progression over the selected timeframe and this attribute is well captured by 

the fitted traffic. Should the long term trends remain the same as with those in the past, 
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or behave very similarly, it is expected that forecasts on future traffic will follow the 

same regression shape and be almost identical with the suggested fitted data. 

4.4 The Proposed Equation 

The next stage is to form a widely accepted and parsimonious formula. The basic format 

of the promising relation will be that of (13) combined with the new values of P and as 

a function of year Ԑ. This investigation part is of high importance as well but is more 

difficult than detecting patterns, primarily because variable Ԑ must be included in the 

exponent P. Furthermore, Ԑ has to be an integer representing the year and must bridge 

the fitted historical values with the successful future figures, which brings more 

difficulty to form an appropriate equation. However, performing some basic numerical 

analysis on the numbers of table 17, it is easy to observe a steady decrease of 0.002 to 

all P values. With regards to P1, the latter figure is multiplied by 2 as P1 increases to 

P3, by 3 as P1 increases to P4 and so on. This pace combined with the year increasing 

+1 from 2009 to 2014 introduces a new method of presenting progression properties of 

different patterns. It is essential to bookkeeping those properties, observe the way they 

progress in time as a function of parameter Ԑ and then form suitable relations according 

to these. Consequently, after another set of extensive experiments which include all 

necessary information, the pattern relation has been verified with further numerical 

programming. The empirical form of the new proposed equation is expressed with (24): 

     (24) 

Year ε in the exponent is always an integer. This equation is simple, straight-forward 

and is a complete representation of the fitting data, as discussed, and of the predictions 

to be made as a function of the corresponding year. The fitting data are of period 2010-

2014 and the forecast horizon has been selected to four years ahead, i.e. 2015 to 2018 

inclusive. Thus, the following restrictions must be taken into account for calculations: 

2010 ≤  ε ≤  2014, for fitting purposes      (25) 

2015 ≤  ε ≤  2018, for future estimations      (26) 
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If ε < 2010 equation (24) produces invalid results; for values ε > 2018 it is highly likely 

that prediction attempts will have an associated error of ≥ 10% which is not an ideal 

option. For any ε satisfying restriction (25), substituting in equation (24) will lead to 

exactly the same results as already calculated and displayed in table 18. 

Table 17 uses P1 to P5 for fitting traffic up to 2014. In order to make predictions about 

the monthly average traffic for period 2015 to 2018, it is obvious that the additional Pi’s 

will be P6 to P9 respectively. Then, as these values progress at –0.002 for each P, P6 

will be at 1.014, P7 at 1.012 etc., and this is exactly how the exponent works when 

combing the suggested arithmetical operations, variables and fixed numbers. However, 

those who make use of formula (24) do not need to know what the procedure is behind 

but only replace the necessary parameters. And this is the main reason why a so simple 

and robust scientific formula has been chosen: To be used by everyone who possesses 

elementary mathematical or computing skills. For example, to project traffic per month 

for 2015 we substitute the historical traffic of 2014 and the year accordingly, thus 

equation (24) becomes: 

    (27) 

At this stage, the following question arises: For AMS.IXP(2014) in the right-hand side 

of (27), which figure from table 18 must be substituted, is it the fitted (1158353) or the 

actual (1190236)? The answer lies to the fact that investigation is based on the fitting 

procedure on the one hand, but both fitted and real values are almost the same on the 

other hand. The reason for proposing (27) – and as a matter of fact any prediction 

equation in this work – is because it is solely based on historical fitted traffic but, as 

expected, the latter is nearly equal to the actual because of the very small fitting error. 

Therefore, using either value makes almost no difference. However, it is recommended 

that actual figures should be preferred in case they exist. For instance, when forecasting 

traffic for 2015, we need historical traffic for 2014, for which the actual value does exist 

in table 18 and is therefore preferred. But if, for example, we need projections for year 

2017, there is no actual figure for 2016 available at the moment thus the only option is 

to use the proposed fitted traffic for 2016 (which is to be included in a separate table in 

the next section). Back to (27), we solve the equation by substituting AMS.IXP(2014)  
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with the actual figure (1190236) as proposed and we compute the estimated traffic for 

the Amsterdam Internet exchange point for year 2015: 

  

      (28) 

This figure is the average monthly traffic; to estimate the aggregated traffic for the 

whole year 2015, a multiplication by 12 is required. The monthly traffic has been 

selected instead of the yearly figures in order to be consistent with the global IP 

volumes of table 1. The latter is investigated to detect patterns and provide forecasts, 

which is an additional project and is presented in chapter 5. 

4.5 Future Projections: Analysis and Discussion of Results  

The macroscopic estimates for the next four years (2015-2018) for the Amsterdam IXP 

traffic are presented in this section. For this reason, equation (24) will be used to form 

the anticipated figures of the future based on the fitting properties of the exponent as 

year ε increases. The power value of (24) is assigned to P6 to P9 to predict traffic for 

2015 to 2018 respectively and results must show the nature of the future tendency when 

compared to the past. As discussed, all “near” long term projections are expected to 

follow the trend of the historical record provided all assumptions meet the four criteria 

as described. All data from 2010 to 2018 are, more or less, expected to display a smooth 

progression from the past towards the future. The next table 19 presents the monthly 

average volumes as well as their respective annual growth. The latter is calculated as the 

ratio of the traffic for a given year to that of previous year. 
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Year 

ε 

Data type 

 

AMS.IXP(ε) 

(TB/month) 

Annual 

Growth 

Rate 

2015 Forecast 1447745 1.216 

2016 Forecast 1716407 1.186 

2017 Forecast 1981374 1.154 

2018 Forecast 2225062 1.123 

Estimated Average AGR 1.17 

Table 19: Amsterdam IXP traffic projections 

Figure 26 demonstrates the excellent ability of the proposed formula to maintain the 

same trend between the historical (actual) and projected data, especially for the 

regression line that represents traffic from 2012 to 2018. Similarly in figure 27, we 

observe a stable decline in all annual growth rates which, apart from a slight deviation 

in 2013, follow as well a fixed trend. In both graphs, the future strongly depends on the 

past characteristics and, based on this, it is almost certain it can be successfully 

predicted. 

 

Figure 26: Trend progression: actual (2010-2014) and estimated (2015-2018) traffic 

data 
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Figure 27: Historical (2010-2014) and estimated (2015-2018) AGR 

Furthermore, the outcomes as displayed in the table appear reasonable in the sense that 

traffic will be still increasing in the future and the annual growth rate will continue to 

have declining characteristics year over year. Although there do not seem to exist 

similar studies to project traffic for the Amsterdam IXP, forecasts for the global 

aggregates are in the same line: global IP traffic still increases and the respective AGRs 

are declining. For the IXP traffic, if annual growth rates of the past (table 15) are 

compared with the estimated from table 19, there is a nearly steady decay expected until 

2018. However, those annual growth figures here seem to be unusually low given the 

information presented in chapters 1 and 2. Furthermore, it can be expected that the 

global IP growth rate will end up between 1.30 and 1.35 for the global IP traffic, as 

demonstrated later in chapter 5 which immediately follows. Undoubtedly, the 

worldwide total figures are indeed different from those that come from local-scale 

sources such as IXPs, but on the other hand traffic that crosses large geographical areas 

can be expected to behave similarly with the total global traffic. The latter when 

compared to the Amsterdam Internet exchange displays higher traffic activity, increased 

at around two orders of magnitude. If traffic statistics of the future are found to be very 

close to the numbers as shown in table 19, then some other sources of traffic at some 

other location(s) in the world are likely to have much higher growth rates to balance the 

average total global volume. Those regions may involve certain countries of which their 

traffic growth and bandwidth offered are increasing faster than others and may involve 

higher socio-economic growth rates. Reports from Cisco in June 2008 for the total IP 

traffic, predicted a CAGR of 61% for Latin America for the six year period 2007 to 
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2012, while for the same timeframe the corresponding CAGR for Western Europe was 

estimated to reach 52% [Cis2008], [Cis2008b]. In addition, the same company in a 

more recent report in June 2014 projected a CAGR in IP traffic for Middle East and 

Africa at 38% in 2013-2018 which is the highest rate, as opposed to the 18% for West 

Europe which is the lowest [Cis2014a, p.6]. Similar CAGR figures for other types of 

regional traffic appear in numerous compiled tables in [Cis2014a], where Middle East 

and Africa have the highest CAGR while West Europe has one of the lowest. An 

example can be seen in the following table. 

 

Table 20: Estimated Internet traffic in Content Delivery Networks [Cis2014a, p.9] 

Even though the top 3 continents of table 20 are responsible for approximately 90% of 

the total volume, their six year growth is lower than that of other regions. In general, 

there may be a number of important factors affecting traffic growth rates and may 

include the following two: 

(i) Recent economic recession in North America and/or financial crisis in Europe.  

(ii) Possible traffic saturation in populated countries in Europe and/or North America. 

Although these topics are not a subject of the thesis, it might be worth to be taken into 

consideration for research, as their investigation may have implications on the technical 

part. Internet traffic is generated mostly by users which, in turn, may have strong 

connections with economic, social and other situations that could have adverse effects 

in Internet usage. In the meantime, nevertheless, certain evidence of traffic decline as 
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discussed in the introductory and literature chapters is already a fact. Eventually, 

projections of traffic for the Amsterdam Internet exchange as pictured in table 19 may 

be proved to be accurate. In anticipation to the actual traffic, complete 2015 aggregate 

figures should be available early 2016. 

 4.6 Evaluation 

Usually, there are two methods to determine the quality of a model: 

(i) Going back in time several years to test the validity of the “future” values (up to the 

last present historical volume). 

(ii) Evaluate predictions based on the actual traffic figures when they become available. 

The former has been already accomplished at the fitting stage as demonstrated and is 

considered successful. Judging a model’s real quality, however, must be supported with 

convincing evidence for the purpose it has been designed for. The fitting process is the 

reference technique that will lead to accurate forecasts, but the real purpose of the 

suggested equation is its actual predictability. Therefore, real traffic figures will be 

compared to the estimated for the proposed timeframe 2015-2018. As of January 2016, 

all traffic at the Amsterdam Internet exchange point for all months for year 2015 has 

been released; all figures are available at the Amsterdam IXP statistics website 

[Ams2015]. Note that studies of this chapter have begun in September 2015 but this 

section is composed just after the end of 2015 to perform the evaluation stage when the 

new figures had become available. The same process is applied to all evaluation 

sections in all chapters (where applicable) with results and discussion as appropriate. 

For the IXP historical statistics at Amsterdam, after adding up monthly volumes for 

incoming and outgoing traffic the aggregate number is divided by 12 to form the 

average final figure. The following table summarizes the necessary information; 

however it does so only for the available traffic for 2015. 
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Year 

ε 

Projected 

AMS.IXP(ε) 

(TB/month) 

Actual 

AMS.IXP(ε) 

(TB/month) 

Prediction 

error (%) 

2015 1447745 1509995 4.13 

2016 1716407 Not available - 

2017 1981374 Not available - 

2018 2225062 Not available - 

Average prediction error (so far) 4.13 

Table 21: Evaluation results for the Amsterdam IXP forecasts 

Using equation (5) from section 2.9 and substituting values accordingly for year 2015, 

the associated forecasting error is calculated at only 4.13% thus the ideal target of 

producing a predictability rate below 5% has been achieved for the Amsterdam IXP. 

The rest of the pending actual data will be made available on a yearly basis and by the 

end of the suggested timeframe the model will be evaluated in total. In any case, the 

average figure must be lower than 10% to be regarded as successful. 
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CHAPTER 5 

Forecasting Volumes on a Global Scale: the Total IP Traffic 

 

“What we know is a drop, 

what we do not know is an ocean” 

  

- Sir Isaac Newton 

The totality of the generated traffic across the Internet can be predicted based on 

sufficient historical measurements. This chapter presents the proposed method and 

formula to project the aggregate Internet Protocol (IP) traffic across the entire Internet. 

Evaluations on predictions for the suggested future timeframe have shown excellent 

results with a very low forecasting error rate. 

5.1 Global Facts 

Worldwide Internet traffic encompasses all types of activity and each type is responsible 

for small or large parts of the total flow. Historical traffic evidences fixed Internet to be 

the dominating part of the overall IP figures but, at the same time, mobile technologies 

seem to grow at a faster pace and tend to absorb a larger share in the last several years 

according to Cisco. From another point of view, Internet users respond in a different 

way towards market challenges, especially when technological advances bring forward 

new applications and hardware, such as i-phones, smart TVs and wireless wearable 

equipment. Unless it is something very popular and extraordinary that breaks into the 

market, most of the traffic those devices generate at their rapid growth stages usually 

accounts for small percentages when compared to the whole transmitted activity across 

the Internet. Nevertheless, certain technologies can boost global IP traffic to increase 

significantly some time, for instance streaming media webpages. The behavior of 

Internet users along with the increased demand for bandwidth may be important factors 

to be taken into account when trying to predict future traffic. Some of those assumptions 
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may be part of the methodology used in [Cis2012, Cis2008, Cis2008b, Cis2013b, 

Cis2014a] to predict global volumes, along with further technical assumptions and other 

information from a variety of companies. In this thesis, however, and specifically in this 

chapter none of those assumptions or any socio-economic facts have been taken into 

consideration. The proposed prediction methodology has been exclusively derived from 

a large number of experiments and from numerical properties of historical statistics. 

There are available measurements from all global networking systems which can 

indicate forthcoming traffic; the IP traces in table 22 will be used for this purpose. In 

these studies, selecting the appropriate model is based on the arithmetical properties of 

global traces that have been captured from the past. Therefore, appropriate 

characterization of the figures of the series of table 22 must be achieved in strict 

chronological order. The proposed analytical investigation is to be applied to the IP 

volumes, as those figures have been collected from all global activity and are preferred 

to smaller samples such as the fixed or the managed IP traffic. Studies are specifically 

focused on the progression properties of numbers for the 2005-2011 timeframe and on 

hidden relations to be revealed in consecutive values to produce subsequent numbers.  

 

Table 22: IP historical figures for the entire Internet [Cis2013] 

There are certain patterns that have been found in the historical values, for which a 

relation can be produced to model history activity and produce accurate forecasts. If that 

trend is the case, it is highly likely to provide us with precise projections at an average 
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prediction error rate ideally lower than 5% for 2012 to 2015 inclusive, but certainly less 

than 10%. 

5.2 Hidden Properties in Historical Sizes 

IP volumes in table 22 incorporate certain progression attributes; the main hypothesis 

here is that a value of a given year in PB/month has an influence to that of next year, 

and vice versa, for 2006-2011. Apparently, this means there is an explicit relation 

between all IP figures in each consecutive pair that can describe their connection and in 

particular between 2006 and 2005, 2007 and 2006 and, in general, between any years ε 

and ε–1.  All sets of relations have been observed to have common parameters and the 

hidden numbers of the parameters have a relation for each pair. In turn, the common 

parameter which exists in each pair has a different value but there is a hidden relation 

that connects it in all pairs as values progress in time. To justify the aforementioned 

assumption, the following important observations are a fact for all global IP numbers: 

(i) Each of those numbers is a multiple of 1.5 (±0.2 maximum deviation) when 

compared with the previous number as the associated period progresses at +1 for the 

observed values for years 2006 until 2011. 

(ii) Numbers seem to be increasing at a steady order across the years with no significant 

irregularities or spikes seen in their data, i.e. they exhibit smooth progression 

characteristics. 

In other words, (i) is another evidence of the declining nature of traffic growth and (ii) 

implies it is almost granted there is a form of equation that connects all involved 

numbers. Again, as in all chapters, no software has been used or does exist until today 

to reveal the proposed methods or equations, but it is only based on intelligence and 

extensive experimentations. 

Proceeding to the core part of the project, an explicit relation must be formed to 

characterize the set of inputs (years ε–1) and the permissible set of outputs (years ε). All 

involved variables and constants are straight-forward and the assumption is to include 

year ε which is to be substituted at the calculation processes. Forecasts are expressed in 
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PB per month and depend on historical traffic which again highlights a strong relation 

between the future and the past. As demonstrated in earlier chapters, an exponential-like 

equation has been proved efficient and the same generic format is used here as well. 

Apart from this reason, an exponential form is suitable for potential updates in case 

future figures indicate so. Although traffic growth is probably expected to decline for 

the global traffic too, the opposite should not be totally excluded at some time in the 

future thus an exponential representation of the following form (equation 29) is always 

flexible to updates: 

        (29) 

Notation G.IP(ε) is the worldwide (global, G) Internet Protocol (IP) total traffic which 

we want to predict for year ε and G.IP(ε–1) refers to the historical figure that has been 

measured in year ε-1. The exponent P is to be detected separately for all historical 

values as described in the methodology procedure. According to (29), to forecast IP 

traffic in year 2012, for instance, we substitute available traffic for 2011 with 27483 

PB/month from table 22: 

  

        (30) 

However by the time of these studies, traffic for 2012 was not available thus P is not 

known. Relation (30) has two unknown variables, therefore patterns cannot be detected 

since only known numbers will be taken into account. Consecutive traffic figures are 

now considered to reveal exponent P, therefore values of all Pi for each pair will be put 

into the proposed experimentation set. Figures are substituted using (29) accordingly 

and all possible pairs are expressed as: 

 

    (31) 
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    (32) 

    (33) 

     (34) 

     (35) 

     (36) 

Common variable P has been separately assigned to P1, P2, P3, P4, P5 and P6 for the 

timeframe 2006 to 2011 to relate period 2005 to 2010 respectively. All Pi‘s (index i = 1 

to 6) are the key to detect patterns, if any, between volumes for years ε and ε–1 and 

some common parameters – constants and/or variables – will appear in the exponent 

later to formulate the final equation. Again, using the known logarithm property 

relations from chapter 4, we now solve equation set (31) to (36) to calculate Pi rounded 

to the closest sixth decimal digit and the table that follows indicates respective values. 

 

Table 23: Respective P for equations (31) to (36) 
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5.3 Fitting Historical Trends 

The produced P values have decreasing characteristics between the range 1.063902 and 

1.031073 but no fixed variable seems to be matching a fixed subtraction to form the 

next number as P reduces down to 1.031073. As opposed to the Amsterdam IXP traffic 

numerical properties, the progression from 2006 to 2011 for which the global IP figures 

exhibit over the historical trend is more complicated. Initially, the following relations 

are observed: 

P1 – Ω1 = P2 

P2 – Ω2= P3 

P3 – Ω3 = P4 

P4 – Ω4 = P5 

P5 – Ω5 = P6  

Pi – Ωi = Pi+1   i [1, 6]       (37) 

Variable Ωi does not seem to accommodate a “convenient” property or a relation which 

can be expressed with a fixed number. When observing P1, P2 and P3 it looks like their 

difference can be expressed with: 

Ω = 0.007∙C  C = 1, 2       (38) 

However, pattern in (38) is not consistent for subsequent values P4, P5, P6 and, 

furthermore, for the latter three variables their difference shrinks down when 

approaching the final value of P6. This variation along with the previous brings more 

difficulty to the pattern detection process and at this stage extensive trials with specific 

ranges of Ω are put into the experiments to reveal the combination of Pi‘s and Ωi‘s to 

produce the lowest deviation, which is to define the fitting error.  
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In any case, the associated error must be kept at a reasonably low figure and at the same 

time the range of the exponent must be continuously re-calculated, so that it can clearly 

formulate a pattern. After large-scale numerical experiments, the exponent’s upper limit 

and lower limits have been computed to combine precise values with very low errors. 

Relations (31) to (36) by using the fitting values have been found to exhibit minor 

deviations when compared to the actual which in turn suggests a low fitting error, less 

than the average that was found for the Amsterdam IXP. The new particular range has 

excellent fitting characteristics and all selected values for P produce almost the same 

numbers with the available historical data in table 22. Results are pictured in table 24 

and calculations of fitted G.IP(ε) figures are rounded to the closest integer (PB/month). 

 

Table 24: Fitting results of the proposed method 

The mean six-year fitting error calculated at as low as 1.02% is regarded as 

exceptionally low. It is obvious that numerical experimentations have come up with 

excellent alternative data as shown in the fitted G.IP(ε) data column in table 24. 

Moreover, the progression characteristics of the proposed fitting data demonstrate an 

almost identical regression curve when they are compared with the actual traffic (figure 

28) suggesting that future trends are highly likely to be in the exact same line with this 

pattern. Although fitting data points are discrete in time, their smooth progression 

represents the connection of traffic volumes year over year. Since the sample comes 

from the totality of the history of Internet activity, it is strongly suggested that the 

specific trend will be almost the same for the next few years. 
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Figure 28: Historical global IP volumes compared to the fitted 

5.4 Formulating the Appropriate Equation 

The pattern detection stage depends on finding an accurate progression property for all 

numbers as shown in decreasing order in the first column of table 24. Variables P1 to P6 

have been observed to decay gradually, not at a stable rate (e.g. at –0.002 as detected in 

previous chapter) but with some level of peculiarity. By bookkeeping all extracted 

relations of P1 to P6 using some complex operations, numerical experiments have 

successfully indicated a hidden relation which is explicitly expressed with equations 

(39) to (44): 

        (39) 

       (40) 

      (41) 

    (42) 
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   (43) 

 (44) 

All relations add an extra number each time which appears inside the brackets and this 

happens each time as P decreases. In addition, they have several repeating constants and 

some common variables which decrease by 0.0010. Again, by carefully observing (39) 

to (44), the pattern has been verified with certain combinations of arithmetical 

operations using numerical programming and the final relation must be now confirmed. 

Proceeding to the main formula, the aforementioned properties are being considered and 

more variables and parameters are added as necessary. The final format of the proposed 

equation comes as a result of bookkeeping all extracted relations so far, consistent 

observations in numerical experiments and a standard level of intellectual abilities. 

Equation (45) is the hereby proposed model including year ε for historical fittings and 

future estimations. 

    (45) 

2006 ≤  ε ≤  2011, for fitting purposes      (46) 

2012 ≤  ε ≤  2015, for predictions       (47) 

Obviously at some time after the end of year 2015 when all measurements will become 

available, relation (45) can be used to fit data until 2015 in order to forecast figures for 

the next few years, e.g. for 2016-2018. Restriction (47) is the recommended limited 

prediction timeframe to avoid huge forecasting errors and uncertainties. This four-year 

horizon is probably an optimum selection to keep the associated error below 10% and to 

maintain the traffic trends of the past. The fourth year is to test if forecasting error rates 

are to suggest a 3-year timeframe instead. Strategical planning and financial investing 

would perhaps be more efficient if the selected period would look quite several years 

ahead, e.g. even up to 10, but in this way misleading information caused by high 
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prediction errors in the long term could have negative impacts to companies and ISPs. 

In any case, it is advised that (45) be revised shortly after 2015. 

5.5 Future Projections 

Although the selected model has excellent results with historical fitting, speculations for 

the near or distant future shall be always susceptible to errors – the longer the 

forecasting horizon the higher the risk of coming up with inaccurate figures. An explicit 

example is the Cisco case where the respective Historical Average Prediction Error 

(HAPrE) has been calculated at more than 10% as analyzed in the literature part. For the 

present studies, introducing a novel forecasting model such as formula (45) does not 

necessarily imply 100% precise results or even close to that. Even though the mean 

fitting error has been computed at only 1.02%, there is no guarantee that future traffic 

will behave similarly. However, the suggested relation is expected to provide high 

prediction accuracy if there is stability in Internet user trends and market consuming 

power. Considering any potential adverse implications of the distant future, the 

proposed forecasts are targeted to period 2012 to 2015. The following table presents the 

expected average monthly figures in PB per month of the total global IP traffic 

calculated with the proposed equation, along with a 2016-2017 “guesstimate”. The latter 

is a term used in [Per2003] for future outlooks but it should not be regarded as suitable 

for this work, hence the wide range given instead of precise figures. 

 

Table 25: Projections of traffic volumes with respective growth rates 
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A decline in the AGR as shown in the table is reasonable and, furthermore, the average 

estimated IP growth rate at 1.315 is quite realistic considering the recent and not so 

recent decay characteristics of historical traffic. The same trend is estimated to progress 

until at least for 2014 and maybe up to 2017. However, there are a few issues that seem 

to be unclear, considering the distant macroscopic traffic behavior: 

(i) Whether the decrease in AGRs will continue or not in the far future, i.e. from 2016 

and onwards. 

(ii) At which point we expect saturation to begin (if any), i.e. for which year(s) would 

the corresponding growth rate be calculated at nearly 1 or less. 

Those issues derive mainly from the uncertainty peculiarities of the very long run and, 

in general, from what we can expect in several years ahead. As a result, there are more 

relevant issues that can be brought forward such as the technical implications (e.g. 

hardware configurations, bandwidth demand, energy supply) as well as associated 

financial risks that investors would first want to think of. However, the technology 

advances that are about to come, the significant rise in mobile Internet traffic and the 

domination of 4G/5G smart and wearable devices indicate that traffic saturation is still 

far from us. Specifically, it is not expected that global traffic will decline as a whole but 

the opposite is more likely to happen: it should continue to grow beyond 2015 as 

demonstrated in related studies by [Kor2013], [Cis2008], [Cis2008b], [Cis2012], 

[Cis2013b], [Cis2014a]. 

The next two figures show graphical representations of the results of table 25. In figure 

29 it is clear that estimates using the proposed formula are absolutely consistent with 

historical progression while graph 30 shows a reasonable further decline in the annual 

traffic growth rates. 
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Figure 29: Historical (blue) and projected (green) total global IP traffic 

 

Figure 30: Historical (blue) and estimated (green) AGRs of IP volumes 

5.6 Further Analysis 

The hereby suggested function derives from repeated experiments which have set the 

format of the equation as presented. The parameters have been selected after a few 

millions of comprehensive calculations to determine a low error and minimize the effort 

to form a reasonable complex relation. As described in Leonard Euler’s work 

“Mathematics by experiment” in book [Ngu2011], patterns can be detected using “The 

Scientific Method” or “The Mathematical Method” by keeping a good record of the data 



Internet Traffic Volumes Characterization and Forecasting  

Nikolaos K. Vlachos  93 PhD Thesis 

 

to allow relations to be easily observed. Part of those ideas have been as well applied for 

this thesis but it is reasonable to say that perhaps there is another similar relation which 

might produce better results – fitted and forecasts – and which has not come to my 

attention yet. The extremely large number of computations may have missed optimum 

choices to assign specific numbers to variables and constants, but this is reasonable too. 

When actual data prove or disprove the proposed model, any further updates must 

realize even slight variations of the involved parameters can affect the exponent and 

final results seriously. A general representation of possible updates in the future may be 

given with the following expression: 

       (48) 

ΔP is to indicate a certain degree of variation when new measurements can be compared 

with the historical traffic by that time. ΔT(ε–1) refers to the changing trend that each of 

the historical years exhibit by the time when new studies, if any, are to revise the 

proposed model. Even in the ideal situation where forecasts will be proved to be 

absolutely successful, an extensive revision of the formula using updated facts can give 

even more precise figures. A possible change in Internet users’ behaviour, especially for 

the high-impact global traffic sources, would mean some level of improvement. Some 

degree of change in the trend over the years may add or remove existing variables 

and/or constants in (45). Alternatively, the nature of this change may prioritize different 

operations to be considered for the new formula or simply altering specific numbers in 

the exponent. At this point it is reminded that any updates on new data must take into 

consideration all four criteria exactly as described in the third chapter.  

The static characteristics of the proposed studies exclude forecasts that have severe 

fluctuations. However, the presence of many numbers in the main equation allows 

certain changes to take effect, even though there is some complexity in the exponent. 

Apart from the year, most of the selected constants give more detail to results and may 

set the slope of the graphical representation at varying levels. Minor modifications of 

such numbers have been put into experimentations and it has been observed that those 

changes could be sufficient. According to the past trend of 2005 to 2011, an appropriate 

extrapolation of a possible future trend within some limited range can be represented by 

updating the decay rate using constant 90 in the formula. Numerical results have 
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indicated a good response, in the meaning that extrapolated figures do not significantly 

deviate from the initial calculations. Thus, equation (45) could be of the following 

general format: 

    (49) 

More specific, the constant term 90 has been replaced with variable ΔF and has been 

selected over other numbers from the exponent mainly because it does not produce 

undesired results. ΔF has been assigned a suitable range and is between 82.5 to 92.5, 

which has slightly changed the slope of the original curve – the upper and lower limit – 

as shown in the following figure: 

 

Figure 31: Extrapolated estimates for 2012-2015 

The expansion of the range falls within ±10% of the initial graph included in an earlier 

section and is an alternative representation and at the same time it is a potential update 

of the original formula. However, the exact value of ΔF is to be determined in the 

future, if applicable, and according to the new traffic figures. 
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5.7 Evaluation 

The ultimate target of coming up with a prediction error of no more than 10% (and 

ideally less than 5%) when some new measurements would be known, is now a fact. 

Global figures for 2012, 2013 and 2014 have been made available to the public from 

Cisco Systems. The following table highlights successful predictions by the time 

respective studies were conducted. Again, relation (5) from section 2.9 is employed to 

calculate yearly forecast error rates. 

Year 

ε 

Projected G.IP(ε) 

(average PB/month) 
Actual G.IP(ε) 

(average PB/month) 
Prediction 

error (%) 

2012 37127 38300 3.06 

2013 48809 47400 2.97 

2014 63587 59800 6.33 

2015 82918 Not available - 

Average prediction error (so far) 4.12 

Table 26: Demonstration of the goodness of the proposed model 

The average error rate at 4.12% is of excellent accuracy so far and seems to be the most 

accurate result in all relevant studies for predictions focused on the long term. In 

anticipation to 2015 global IP traffic, the average rate will most likely stay below 5%, 

however this is not guaranteed mainly because the proposed prediction timeframe has 

been set to only three years, i.e. 2012 to 2014 inclusive. The additional fourth year of 

2015 has been included only to test the predictability of the model beyond the proposed 

period which, in general, is not advised. And as already demonstrated, forecasts targeted 

to the very long run are susceptible to excessive errors and should be avoided. 
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CHAPTER 6 

Forecasting Global IP Traffic: an Alternative Method 

 

“No great mind has ever existed 

without a touch of madness” 

- Aristotle 

Another method to project IP traffic for the whole Internet infrastructure is presented in 

this part. The main assumption is to include additional historical data from two or more 

consecutive years to make predictions. This approach has been proved successful as 

well, albeit with a higher associated error when compared to that of previous chapter. 

6.1 Increasing the Dependence of the Past 

One of the main findings of the previous chapter was the strong influence of historical 

measurements to make accurate forecasts. Generally for predictions, there are additional 

methods to produce accurate results which are not as popular as NN or ARIMA models, 

but are efficient as well. A good example is the study in [Tia2015] where a hybrid 

Gauss process is proposed to predict network traffic. The authors’ novel idea improves 

the forecast accuracy, even if the method seems to be quite different from traditional 

time series modelling. Broadly speaking, we may witness certain studies in the near or 

far future that would have never been proposed several years ago mainly because they 

are much different from existing ones. In this chapter another relation is brought 

forward to project global IP traffic which is based on extracting patterns through 

available historical figures, but this time from all years for which we have got pertinent 

data. The central hypothesis of this idea suggests that the total traffic for any year ε can 

be estimated using either: 
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(i) Two consecutive years’ figures ε–1 and ε–2 instead of one. 

(ii) Volumes of any number of historical years in any order, as appropriate. 

This proposal would emphasize the dependency of the history traffic towards the future 

trends, again for the next three to four years maximum. Approach (i) seems to be more 

feasible as advised in the next section. 

6.2 Leonard Euler: “The Sum of Divisors” 

Some specific part of the idea used herewith has been inspired from Nguyen (2011) and 

is the exclusive work from one of the greatest minds and Mathematicians of all time, 

Leonard Euler [Ngu2011]. “The sum of divisors and the pentagonal number theorem”, 

as presented by Leonard Euler, is included in chapter one in [Ngu2011] in which it is 

clearly emphasized that Euler was an excellent bookkeeper of relations. Euler’s 

technique is looking for patterns that can be recursively defined in certain consecutive 

numbers as shown in the next table. 

 

Table 27: Elements σ(n), n = 1..10 [Ngu2011, p.8]  

To begin with, numbers σ(n), σ(n–1), σ(n–2) have been put into order according to 

ascending degree of n as demonstrated and then the following relations can be easily 

observed [Ngu2011, p.8]: 
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       (50) 

       (51) 

Ideally, this would continue for all subsequent elements of n for table 27 with a fixed 

equation of the following expression: 

        (52) 

Unfortunately this pattern fails to continue for n = 5 or more and, thereafter, Euler 

applies different mathematical methods which are not suitable to this work and are not 

analyzed. For this thesis, however if a parameter ⍴ could be added/subtracted 

accordingly so that the pattern holds for larger n’s, then some equation of the following 

format could be suitable for the scope of this chapter: 

       (53) 

Notation ⍴ can be a constant, variable or a whole expression. Its value is critical and 

experiments will be carried out through the next sections to detect the exact format of ⍴. 

It is clear that numbers in table 27 do not display a fixed ascending pattern as n 

increases, which is necessary for these studies and is a restriction as defined by the four 

criteria. Relation (53) can be amended accordingly to predict traffic for a certain year as 

a function of the two previous years by looking carefully at the numbers as they 

increase in time. 

6.3 Relating Traffic Recursively 

The idea based on Euler’s method will be used to project the global IP figures. 

Therefore, the next table 28 has been formed to include the available historical IP 

figures in a sense that it will look like table 27 to allow any relations to be revealed. In 

addition, an extra column produces all applicable additions on σ(n–1) + σ(n–2) to be 

compared with  σ(n) and to reveal a possible value for ⍴. 
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Table 28: The alternative method based on Euler 

Substituting accordingly n with ε to be consistent with the main formula, relation (52) 

becomes: 

      (54) 

In combination with (53), equation (54) is now expressed as: 

      (55) 

The sum σ(n–1) + σ(n–2) in the table is observed to be close to σ(n) for 2007 to 2011 

but some number must be subtracted and this is where parameter ⍴ is to form a complex 

expression. According to all sums for n = 3 to 7, ⍴ seems to have an increasing pattern 

as year ε increases too, which if subtracted gives a very good approximation to the final 

result. Firstly, the expression of ⍴ is of the following form: 

⍴ = δ + A          (56) 

Letter δ denotes a variable; parameter A includes a constant and an additional variable 

C (CϵN) that has been calculated to be equal to: 
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A = 495∙C C = 1, 2, 3, …         (57) 

C will be related to each year ε as appropriate, since the former increases at a rate of 

some positive integer which is convenient for the calculation set and year proceeds 

always at +1. All previous three expressions (55), (56) and (57) can be combined into 

one single equation: 

    (58) 

This relation is to indicate the associated fitting error at the respective stage. However, 

the pattern detection according to the proposed method is far more complicated than in 

other chapters, thus the equation must be first revealed. 

6.4 Mathematical Representation 

By substituting G.IP(ε), G.IP(ε–1), G.IP(ε–2) with historical volumes and starting from 

year 2008, we must now proceed to detect any unknown variables. Initially, the 

following simple relations can be obtained: 

    (59) 

    (60) 

    (61) 

    (62) 

When combining (59) to (62) with relation (58), we get the following set of relations: 

   (63) 
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   (64) 

   (65) 

   (66) 

From those series of calculations, variable C increases as the historical timeframe 

increases too and for this reason there is a pattern satisfying the condition. However, δ 

does not have a consistent rate at all and therefore revealing a pattern for the whole set 

of equations (63) to (66) seems to be getting complicated. Indeed, the peculiarity of 

parameter δ forces the other two numbers to participate in a mixture of linear and 

exponential combination of operations and, all together, it has been of particular 

difficulty to include year ε as well. Other than the millions of calculations involved, 

some tricks had to be included regarding how the aforementioned numbers assigned to δ 

could be overlooked or simply be broken into more operations. Eventually, the latter 

was preferred rather than excluding the complex properties that δ exhibits, as this could 

lead to excessive fitting and/or forecasting errors. Performing a further extensive set of 

related numerical experiments and by bookkeeping all relations into separate categories, 

the following equation has been formed after great effort: 

           (67) 

Apart from the difficulty described, the model as presented in equation (67) is of limited 

functionality in the meaning that the fitting process starts in 2008 due to Euler’s 

recursive feature which requires at least two numbers of the past. On the other hand, the 

prediction timeframe remains the same as with the main relation, thus restrictions are 

categorized according to the purpose: 

2008 ≤  ε ≤  2011, for fitting        (68) 

2012 ≤  ε ≤  2015, for estimates       (69) 
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However, the numerical results that the formula produces seem to be of particular 

interest because they have very low levels of dispersion when compared to historical 

figures and this particular feature has been discovered at the large-scale computation 

process. Undoubtedly, the final format is of high complexity but, in fact, it seems to 

fulfil the purpose which it has been designed for as evidenced in the sections which 

immediately follow. 

6.5 Existing vs. Fitted Data 

Despite the intricacy of the proposed mathematical model, related fitting outcomes have 

indicated excellent response over the actual data points. The first version of the global 

IP formula in chapter 5 is certainly less peculiar but has a slightly larger fitting error 

compared to the second version of this chapter. Specifically, equation (67) produces an 

average deviation error of at only 0.47% which is an almost perfect result. Table 29 

includes all results at the fitting stage. We can observe calculations with very low error 

rates against the actual traffic. 

 

Table 29: Characterization and fitting results of the second proposed model 

The same fitting advantages are as well illustrated in the next graph. We can observe a 

perfect match of the two representations – fitted and actual – for which the future trend 

is expected to extend at a similar progression rate (figure 32). Fitted results are also in 

line with the first proposed model. Some analysis between the main equation of chapter 

5 and this model, show respective data points for common historical years 2008-2011 to 
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be located very near each other. However, the criterion described in the methodology 

section which states there must be at least four years of historical activity, has been just 

met with the present equation. In previous chapters and for all that follow, there have 

been more than four years included for the historical timeframe which means there is a 

stronger basis for research. For the proposed equation, there is a good review supported 

by evidence to be presented in the evaluation section (6.8) when projections of the 

model are compared with the actual figures. 

 

Figure 32: Identical graphs: fitted vs. real traffic 

6.6 Future Estimates 

By substituting variable ε with corresponding years 2012 to 2015 (equation (67), future 

projections for global IP traffic are eventually presented in table 30. In the four-year 

timeframe it is once more confirmed that annual growth is expected to decline down to 

around 1.3 for the final year. At a close inspection, the growth levels have similar rates 

compared with those of chapter 5 respectively but estimated figures for 2013 to 2015 

are proportionally higher, which may prioritize the adoption of this model in case global 

networking traffic is to increase excessively. Another observation that might be of 

interest comes from the AGR figures in which respective decay rates seem to slow 

down as they develop towards 2015, suggesting narrow AGRs close to just lower than 
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1.3 in the far future. Some average “guesstimates” for 2016 and 2017 have shown 

respective annual growth figures not to be lower than 1.27. 

 

Table 30: Worldwide IP traffic forecasts 

All the important findings are concisely formed into the next two graphical 

representations (figures 33 and 34). The connection of historical data with the proposed 

forecasts illustrates the capability of the model to maintain an excellent relation between 

the two distinguished timeframes: the past and the future. In addition, the annual growth 

rate tendency beyond 2011 is expected to produce accurate figures of no more than 10% 

associated prediction error. 

 

Figure 33: Real (blue) and estimated (green) IP traffic 
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Figure 34: Historical figures (blue) and forecasts (green) of AGRs 

6.7 Analysis and Alternative Scenarios 

The empirical relation that has been produced in this chapter requires the presence of 

certain numbers which give detail to the shape and to numerical results. Apart from 

assigning additional dependence to history traffic, the not-so-exponential behavior of 

the model is justified with the inclusion of volumes G.IP(ε–1), G.IP(ε–2) and of fixed 

numbers 800 and 495. Those linear attributes provide reduced levels of sensitivity and 

particular detail to calculations using formula (67), which require small effort at the 

revising procedure (if necessary) in the near or far future. Specifically: 

(i) Constants 800 and 495 can be replaced with a fixed range of numbers ΔF and ΔG 

respectively, e.g. at ±20% maximum of the original constants, which will be defined 

according to latest/updated trends. Within that range, further future projections should 

be as well accurate. 

(ii) Large variations of ΔF and/or ΔG do not necessarily mean significantly different 

results as a whole and can be tolerated. 

(iii) Even if the formula totally fails to predict traffic figures (far from 10% error), 

removing or adding extra parameters would not be required; only altering values of 

existing ones. 
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At its present format however, constants 800 and 495 seem to provide a good degree of 

stability to the slope of the equation and any varying levels of sensitivity that the 

exponent may add can be easily adjusted. Further numerical experiments suggest that if 

number 800 is slightly modified to some suitable range ΔF to be substituted in (67) to 

form a new equation (70), it can provide reasonable extrapolations of future traffic in a 

similar way that it does using the main equation of the previous chapter as 

demonstrated. Experimentations have also indicated that number 495 should remain 

intact and is to be changed only in combination with ΔF; this however is not advised as 

it would increase the complexity of the extrapolation procedure. 

           (70) 

The most appropriate range for ΔF has been set to 700-900 which indicates some 

conservative projections of traffic for 2012 to 2015. Even more conservative figures are 

suggested within a limited range of 50 units and specifically if ΔF = 851 to 900. This 

limitation might be the most suitable in case the anticipated traffic of the future requires 

the model to be revised downwards instead of upwards and is to be seriously 

considered. Graph 35 shows realistic extrapolations while figure 36 demonstrates the 

more conservative approach of the model compared to that of chapter five. In the former 

we observe the data points are located quite close within a narrow space for only 2012 

and 2013 forecasts. The variability between the upper and the lower limitations of the 

graph tends to be more obvious for periods 2014 and 2015 which is reasonable because 

of the proliferation characteristics of the term that contains the exponent. 

On the other hand, figure 36 emphasizes variabilities of ΔF that affect each of the two 

models in a different way. We observe how a mere change of only 10 units can 

significantly affect the proposed future figures produced by the first model, while an 

absolute change of 200 units is less sensitive to the shape of the second proposed 

formula. For both cases, however, the proportional variance of the upper and lower 

boundaries seems to be clearer for 2014 and 2015, where data pairs exhibit higher levels 

of dispersion. 



Internet Traffic Volumes Characterization and Forecasting  

Nikolaos K. Vlachos  107 PhD Thesis 

 

 

Figure 35: Extrapolating global IP traffic: 2012-2105 estimates 

 

Figure 36: Range of extrapolations: Formula 49 (left) vs. Formula 70 (right)  
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Also worth mentioning is the fact that both the sensitivity and variability of the 

proposed methods are almost absent for 2012 projections, as shown in figure 36, to be 

located just below 40000 PB/month for both models. In each of those two graphs the 

difference between the lower and higher ΔFs for 2012 is not more than 3000, while for 

year 2014 the same difference has already expanded to at least 24000 PB/month. This 

feature seems reasonable in the way that near-future revisions and improvements tend to 

be more stable than the long run updates. By the time when certain revisions are 

proposed – if applicable – the best way to start is to focus on the first year ahead which 

may be the key to proceed further ahead. In other words, if predictions that have been 

made for the first year fail then the associated risk is getting higher for the second and 

the third year, due to the long-time uncertainties. 

6.8 Evaluating Forecasts 

Actual data for 2012 up to 2014 have now become available and in this way the 

accuracy of the model can be tested and further advice can be offered for future 

improvements, if necessary. Relation (67) produces an average forecasting error of 

5.67% (table 31) which falls within the proposed range defined at less than 10% and 

therefore prediction attempts using the respective mathematical formula are considered 

successful. 

Year 

ε 

Projected G.IP(ε) 

(average PB/month) 
Actual G.IP(ε) 

(average PB/month) 
Prediction 

error (%) 

2012 37540 38300 1.98 

2013 49899 47400 5.27 

2014 65640 59800 9.77 

2015 85487 Not available - 

Average prediction error (so far) 5.67 

Table 31: Evaluation results  

When comparing prediction figures between universal equations (45) and (67), the 

former has an ideal error rate (<5%) while the latter slightly exceeds the corresponding 
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5% limit. Therefore, the first model is preferred to the second but both can be employed 

to offer reliable projections. However, equation (67) seems to be more prone to errors as 

time reaches year 2014 as illustrated in table 31. In particular, the rate has increased to 

more than 3 percentage units from 2012 to 2013 and another 4.5 units from 2013 to 

2014. Should the value continue to grow at this fast pace, then the model is definitely 

not reliable for estimating 2015’s traffic and must be extensively revised to be seriously 

considered for further predictions beyond 2015. Even if data for 2015 are still pending 

and in spite of its very good predictability, the formula is almost certain to fail to project 

a further 3-year timeframe traffic at its current format. At this point it must be reminded 

that successful predictions mean an average associated error of less than 10% and any 

suspicion of producing a rate other than that must be excluded – not only for this thesis 

but for similar future work as well. Figure 37 clearly demonstrates the tendency of the 

second model to magnify its dispersion through time against the first and the already 

available new data. The very small gap between all figures is present only in the first 

year of estimates; further ahead it tends to increase, albeit not out of bounds for the data 

we have so far. 

 

Figure 37: Progression properties of the proposed estimates vs. new traffic data released 

Finally, results from table 31 are strong evidence to an issue that has already been 

raised: it is of outmost importance that future estimations should be conducted for no 
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more than three years ahead. If projections for 2015 fail, it is because the 3-year forecast 

horizon, as proposed, has been exceeded by the time the studies have been made. This is 

an essential conclusion which is once more confirmed – but has already been proved in 

previous chapters, especially with Cisco Systems’ estimates – and, in my opinion, must 

be always regarded as the first and basic rule for long-time Internet traffic forecasts. A 

violation of the rule will not necessarily mean inaccurate results but the risk of adding 

further years can lead to extremely huge error rates, which should not be an option for 

high level studies. 
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CHAPTER 7 

Future Projections of Global Internet Users 

 

“Two things are infinite: the Universe and human 

stupidity; …and I am not sure about the Universe”  

- Albert Einstein 

Studies in this chapter are focused on historical numbers of Internet users in the world 

to make estimations on their future growth. The historical trend of pertinent data has 

ideal numerical properties and the proposed formula has an excellent potential to predict 

total users in the next years. So far, the model has a forecasting error rate of only 1.5%. 

7.1 Global Figures for the Total Number of Users 

Historical data for global IP and fixed traffic volumes seem to be available from only 

one source, Cisco Systems, as cited throughout the thesis. For Internet users, however, 

there are several reports that exist on the Web [Stat2015], [Iws2015], [Ils2015], 

including the International Telecommunications Unit (ITU) [ITU2015]. Some of them 

contain statistics not only for the total global figures but over different regions and 

countries too, as well as by other categories, e.g. users’ gender, users by connection type 

(fixed, mobile) etc. Certain reports also provide some estimates for the future, however 

the method that has been used is not specified. Of most important note is the fact that 

none of them has exactly the same historical information for the same years, when 

compared to the other reports, but all figures seem to have the following in common: 

(i) The number of Internet users increases every year in certain countries and globally. 

Figures may vary between developed and developing countries. 
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(ii) The rate of the annual growth for respective years is almost the same in all reports 

for the last several years. 

(iii) The pace of growth is smooth, i.e. there are no extreme spikes or fluctuations. 

Observations (i) to (iii) means they can be effectively used for predictions, ideally by 

producing a suitable formula, even though their historical data have some small 

differences. For example in [Stat2015] it is reported that global users in 2014 had 

reached 2.94 billion, which is almost the same with the ITU historical figures at 2.937 

billion [ITU2015], while for the same year a different source claims total users were as 

high as 3.079 billion [Iws2015]. Those variations can have a maximum deviation in the 

order of 100 million users but the relative difference is calculated at around 3.5% only, 

which is far better than the level of variation between the two sources of fixed Internet 

traffic statistics, as presented in the literature chapter. Even if differences between the 

three reports above were to be significantly larger (e.g. 10-15%), the fact that 

observation (ii) is consistent would balance the negative implications of large levels of 

variation. Table 32 and graph 38 illustrate aggregate figures of global Internet users. 

 

Table 32: Historical numbers of global Internet users in millions (*estimates) 

[ITU2015] 

In table 32 and after 2007, we observe the higher figures are coming from developing 

regions rather than from developed countries; calculations on annual growth rates are 

also proportionally higher. This is a further evidence of the larger AGRs of the 

developing world, this time for the global users, when they are compared to the 

respective rates of the rest of the world. This persisting trend comes from the most 
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populous countries around the world, mainly in the Asia & Pacific region but in Latin 

America as well. As with Cisco’s figures presented in earlier chapters, maybe the larger 

growth coming from those continents will continue in the near and maybe the far future 

too. From a global view, the penetration rate of users related to the global population 

has reached 40.6% in 2014 and it is estimated that this rate will increase to 43.4% in 

2015 [ITU2015]. 

 

Figure 38: Progression properties of Internet users [Ils2015] 

Graph 38 shows yearly figures growing at a smooth rate and further statistics in table 33 

confirm this stable pace as chronologies progress towards 2014. The latter provides 

more detail of how the number of users has grown in between a 3 to 6 months interval 

(apart from year 2013) in which we can observe some slight seasonal inconsistencies. 

The total number of users by the end of each year will be considered to investigate 

fitting properties, detect patterns and form a suitable relation for predictions. Table 33 

has been taken from a more enlarged data set, listing the total number of users since 

1995, and all details can be seen in [Iws2015]. At this point it should be also noted that 

annual growth rates have been calculated using the information after 2005. In most 

cases the computed AGRs from users have similar trends with respective global IP 

traffic AGRs and, specifically, both are declining at a stable pace. This observation is 

extremely important because: 
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(i) The similarity of their properties suggest that there is a formula capable of relating 

Internet users for a given year to the year before – exactly the same assumption as with 

both global IP equations presented in previous chapters. The new proposed users’ 

formula should be of an exponential-like form as well, exhibiting certain similarities 

with variables and constants proposed for the global IP formula and the Amsterdam IXP 

equation. 

(ii) Both users and Internet Protocol traffic represent the worldwide activity on the 

entire Internet. Finding a relation between them can expand our understanding on how 

traffic can be expressed as a function of the number of Internet users and vice versa. 

This suggests a strong connection of historical behaviour of users with the historically 

generated IP aggregate traffic. 

Case (ii) should clearly indicate a connection of the average traffic share per each 

individual. Both (i) and (ii) are indeed the subject of this chapter and are presented 

immediately in the sections that follow. 
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Table 33: More detailed figures of global users (*estimates) [Iws2015] 

7.2 Definition and Significance of Predicting Users’ Figures 

An Internet user is referred to the person who can access the Internet either via a 

computer device or some mobile equipment within the home of residence of that person 

[Ils2015]. There are certain ITU guidelines to collect data for users in different 

countries. The method of collection may include household surveys and some examples 

on definitions and questionnaires for that purpose are available from an ITU manual in 

[ITU2014]. From the information we have from global statistics so far, it seems easier 

to record data on Internet users rather than monitoring and measuring the associated 

global traffic. For the former, the collection of pertinent data seems to be more 

transparent and obvious whatsoever; the publicized figures, albeit from different 

sources, have a very good match. Most of the currently available historical information 

for users that exists on the Web can be used for thorough detection of patterns and 
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reveal progression properties in the last several years, since they have minor differences. 

They all satisfy the defined criteria of chapter three and, moreover, they display very 

small fluctuations when carefully observed. 

Table 33 has been initially selected to investigate hidden properties in the numbers as 

they appear in chronological order. It is absolutely important that a rigorous formula is 

produced to characterize and project users’ behavior in precise figures. The enormous 

usage of video and audio related services as well as peer-to-peer activities has a strong 

impact on global volumes flow, as described in existing work. Another fine example is 

the increase in UDP traffic in the last years and this is also caused by P2P traffic 

[John2010]. Apart from certain automated processes, most of the activity on the Internet 

originates from people using it, therefore we must know how they are likely to advance 

in the long term (1
st
 proposed equation, this chapter) and then connect them with the 

global traffic volumes (2
nd

 proposed equation, next chapter). The investigation excludes 

the use of penetration rates (column 3, table 33) for the involved experiments, mainly 

because global population figures must be studied separately using non-technical 

aspects such as from a social, economic and/or medical-oriented perspective. 

7.3 Detecting Numerical Properties 

Historical data since 2005 up to the latest available (end of 2014) are scrutinized to form 

the progression properties. Again for this stage it has been investigated whether a 

relation of an exponential form can be found, although as with all data in this thesis 

equations are not strictly exponential. At this point it shall be reminded that producing 

an exponential-like formula has certain advantages including necessary updates for the 

future. To this extend, we proceed including all pairs of historical numbers of global (G) 

Internet users (Iu) for years Ԑ and Ԑ−1 by looking for a universal relation of the 

following expression:  

G.Iu(Ԑ) = [G.Iu(Ԑ−1)]
P
        (71) 

Format of (71) is consistent with the corresponding global IP traffic (G.IP), however the 

power as a function of P is different when including year Ԑ. First, all years have been 

consecutively observed for respective pairs starting from 2005. Considering the whole 
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decade 2005-2014, trends for the first three years (2005 to 2007) tend to have some 

slightly different properties when compared to the rest of the period (2008-2014). Thus 

it is wise to exclude them at this stage to avoid large levels of fitting errors. The selected 

timeframe for 2008 to 2014 has no particular peculiarities, apart from one single spike 

which is of low level. This variation can be effectively managed by the 

experimentations settings without really affecting the procedure all together. For all the 

suitable history of Internet users, the following relations are the available pairs for the 

global number of users (in millions) to reveal the still unknown P: 

G.Iu(2009) = [G.Iu(2008)]
P1

  1802 = 1574
P1

     (72) 

G.Iu(2010) = [G.Iu(2009)]
P2

  2040 = 1802
P2

     (73) 

G.Iu(2011) = [G.Iu(2010)]
P3

  2267 = 2040
P3

     (74) 

G.Iu(2012) = [G.Iu(2011)]
P4

  2497 = 2267
P4

     (75) 

G.Iu(2013) = [G.Iu(2012)]
P5

  2802 = 2497
P5

     (76) 

G.Iu(2014) = [G.Iu(2013)]
P6

  3079 = 2802
P6 

    (77) 

Common parameter P has decaying characteristics observed over all variables from P1 

to P6 as corresponding years increase from 2009 to 2014, apart from P5. The size of the 

proposed Pi‘s (index i = 1 to 6) is to indicate an explicit relation in the exponent; firstly, 

we use the common logarithm properties to calculate values for respective Pi‘s and 

results are as follow: 
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Table 34: Range of P 

The low fluctuation that P5 displays is not a barrier to come up with ideal fitting values 

for all parameters. If there were more such fluctuations exhibited from other Pi‘s too, 

only then it could be regarded as an undesired phenomenon. This is just an isolated 

characteristic and shall not affect the next stage; the rest of the numbers have a smooth 

progression over the included timeframe. Some considerable deviation of a single 

variable is manageable provided that the calculated average is generally low for the 

whole procedure. Even if the mean fitting error is higher than expected, e.g. higher than 

respective calculations for the formulae in previous chapters, it should successfully 

indicate future figures. 

7.4 Trend Characterization and Proposed Relation 

Numbers in column 2 (table 34) are to be used for numerical experiments.  Their 

minimum to maximum value and the average declining rate over the whole range will 

suggest alternative values that have suitable characterization properties. Not 

surprisingly, the peculiarity of exponent P5 has caused some variations to new fitting 

exponents P3, P4 and P5 related to the actuals, however all results produced at this stage 

are almost ideal. A fine range of experiments has suggested that it is possible to balance 

the low-level influence of P3 to P5 and, after an extensive set of computations, the 

selected figures for P1-P6 (table 35) seem to have the lowest fitting error over the actual 

values of table 34. All fitted results are rounded to the closest integer and the yearly 

percentages are to the second decimal digit. At the same time, the numerical progression 

shape of the new proposed P can be easily used to form an appropriate equation to make 

predictions, since the declining rate of P has been selected at 0.0014 year over year.  
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Table 35: Summary of fitted vs. actual data 

The low average rate at 0.815% is indeed excellent. It can be interpreted as being an 

ideal figure to proceed to future estimations, thus the soon to be proposed formula is 

expected to produce forecasts at a very good precision rate. The following figure shows 

an excellent match between the actual and fitted data. The model has an excellent 

prospective to maintain the current trend for the next three years. 

 

Figure 39: Real and proposed fitted figures for global Internet users (in millions) 
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Although the fitting stage has not allowed for much flexibility, it has clearly indicated 

that the associated fixed declining rate at –0.0014 shall be applied to each year. The 

combination of the progression rate with the range of P for respective years can be 

observed through the following explicit relations: 

Year 2009:  [180 – 14∙(0)]/10000 + 1     (78) 

Year 2010:  [180 – 14∙(1)]/10000 + 1     (79) 

Year 2011:  [180 – 14∙(2)]/10000 + 1     (80) 

Year 2012:  [180 – 14∙(3)]/10000 + 1     (81) 

Year 2013:  [180 – 14∙(4)]/10000 + 1     (82) 

Year 2014:  [180 – 14∙(5)]/10000 + 1     (83) 

As a result, exponent P including year ε is modified accordingly and the final equation 

is of the following expression, with restrictions (85) and (86) to apply as necessary: 

      (84) 

2009 ≤  ε ≤  2014, fitting stage       (85) 

2015 ≤  ε ≤  2018, future projections       (86) 

7.5 Expected number of Internet Users for 2015 - 2018 

The shape of equation (84) is similar to that of Amsterdam IXP traffic but different than 

the other two for the global IP part. However, prediction attempts using this function are 

as well expected to be accurate for at least three years (2015-2017) and maybe for 2018 
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if trends do not significantly change. According to relation (84), the total number of 

global users we expect for the next four years are as shown in table 36.  

Year ε Data type 
G.Iu(ε) 

(millions) 
Annual 

Growth Rate 

2015 Forecast 3326 1.08 

2016 Forecast 3555 1.069 

2017 Forecast 3758 1.057 

2018 Forecast 3929 1.046 

Estimated Average AGR 1.063 

Table 36: Future estimates for Internet users for the entire world 

Additionally, the next two figures show trends of the past and for the future as expected. 

We can clearly observe similar tendencies between the main two timeframes. 

 

Figure 40: Historical (2009-2014) and expected (2015-2018) number of users 
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Figure 41: Historical (2009-2014) and expected (2015-2018) corresponding AGRs 

However, the annual growth rate for year 2013 is slightly different than the rest of the 

shape due to the irregularity of the proposed exponent P5, as discussed previously. This 

reasonable characteristic does not in any way affect the whole trend which, if 

maintained, can indicate future number of users with a very good precision. 

Figures in table 36 suggest a wide range of growth in the number of users from 150 to 

250 million per year but an almost fixed rate of respective annual growth at –0.011 year 

over year. This may be convenient in the way that if the trend continues at a stable pace, 

the predictability of the model would have excellent results even in the very far future. 

It would be also ideal for ISPs and large networks to have some macroscopic certainty 

for the purpose of technical and investing purposes. However, Internet users are part of 

the total population of the Earth and the rate at which they penetrate the global 

population seems to be growing at a stable speed. In table 33 one may observe the 

penetration rate adds around 3 percentage units at a year over year level and it has 

already reached near the half of the total population. But for how long can the 

penetration growth be sustained at that rate? 

According to some calculations using the figures of table 33, annual population growth 

rate alone is slower than the users’ penetration growth rate. The latter is increasing fast 

anyway and this may imply that saturation should be expected at some time, e.g. at 

penetration rates of maybe 80% or more. This fact must be also investigated in terms of 
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global population growth and ideally with producing some long term forecasts for the 

whole planet’s population. This proposal is not a subject of the present thesis but can be 

certainly referred for future work and in collaboration with other suitable fields, e.g. 

social, medical and environmental studies. However, Internet users’ growth can be 

effectively studied in terms of how they are related to the corresponding traffic that they 

generate: the global IP traffic. This project is a subject of investigation in chapter eight. 

7.6 Evaluation 

At present there is only one source that has released actual Internet users’ data for 2015. 

As of 31
st
 December of 2015, the users’ clock embedded in [Ils2015] has displayed a 

total number of approximately 3.277 billion (3277 million) of global Internet users. The 

International Telecommunications Unit [ITU2015] and the Internet World Statistics 

[Iws2015] have provided their estimates for the end of 2015 but without including the 

actual figures for 2015. Again using equation (5) from section 2.9, forecasts come with 

an exceptional error rate as low as 1.5%. However, the only available figure is that of 

2015 (table 37) and, as with some other evaluations in earlier chapters, the total average 

rate will be calculated at the end of the proposed prediction timeframe. 

Year 

ε 

Estimated users 

G.Iu(ε) 

(millions) 

Actual users 

G.Iu(ε) 

(millions) 

Prediction 

error (%) 

2015 3326 3277 1.5 

2016 3555 Not available - 

2017 3758 Not available - 

2018 3929 Not available - 

Average prediction error (so far) 1.5 

Table 37: Evaluation results of the proposed formula for global users 

ITU’s estimates for the global Internet users as presented in [ITU2015] and those of the 

Internet World Statistics [Iws2015], both for 2015, have a slightly higher prediction 

error when compared to the estimated figure of table 37. However, both have predicted 

very accurately as their error percentage is as well below 5%. 
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CHAPTER 8 

Connecting Global IP Traffic with Global Users 

 

“Ego = Knowledge 
– 1

: more the knowledge lesser 

the ego, lesser the knowledge more the ego”  

- Albert Einstein 

In this chapter, the worldwide historical trends of Internet users and that of IP traffic 

will be used to reveal any connection between them. Since the available history figures 

are now different with those that have been used for the IP traffic studies, the proposed 

formula should be able to indicate future figures with even greater precision. 

8.1 Reasoning 

Studies in chapters 5, 6 and 7 make use of the largest and most representative sample of 

historical information: the global data. Furthermore, investigations in those chapters are 

not only based on the totality of the information but on figures of which IP traffic has 

been generated by the users. This means the total IP traffic should be related as a 

function of the total number of Internet users, which have actually caused most of the 

traffic. Thus, we are now looking for a relation to be expressed with the following 

proposed format, where G.IP(ε) is the global IP traffic and G.Iu(ε) is the number of 

global users: 

        (87) 

However, certain issues may affect the quality of the proposed investigation and the 

following questions are therefore raised: 
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(i) Which of the available historical data for Internet users should be selected? 

(ii) Why does equation (87) propose IP traffic as a function of users of the same year, 

rather than of previous year as with all formulae so far? 

The answer to the first question is quite obvious, since the data to be used have to be the 

same with chapter 7, mainly for consistency reasons. But even if another set was to be 

considered, it is not supposed to seriously affect the experimentations since there are 

only minor differences. About (ii), recorded data of users can be effectively linked to 

the same period of the total generated IP traffic only, i.e. for the same reference year. 

All formulae so far relate sizes to previous years but this is because they always refer to 

the same category, while for this part we have two different types of investigation. 

Apart from that, another important reason is the large level of inconsistency found for 

figures in G.IP(ε) as a function of those of previous years G.Iu(ε−1). Medium to strong 

levels of spikes and fluctuations have been observed, implying that any attempt relating 

the two aforementioned sizes will probably be invalid. 

In contrast, a thorough observation of all included sets G.IP(ε) and G.Iu(ε) for the same 

chronologies have revealed an explicit and rigorous pattern for ten consecutive 

historical years. This is the only chapter that makes full use of all historical data for the 

whole decade 2005-2014, whereas in other projects certain years have been excluded 

due to inconsistencies. By bookkeeping relations, it has been observed that a persistent 

numerical property is present to all pairs between G.IP(ε) and G.Iu(ε) in the last ten 

years and this can be well represented with a further parsimonious equation. 

Furthermore, another reason for selecting (87) can be attributed to the fact that statistics 

for Internet users seem to be released faster than the measurements for the IP volumes. 

In this way, relation (87) might be the only option for estimating unknown IP traffic 

immediately after the data for users have become available, instead of anticipating them 

from the original source. In fact, it looks like there is a “users clock” in [Ils2015] 

embedded within the statistics webpage which counts existing Internet users around the 

entire world and displays them in real time. This useful feature may be a good 

alternative for making predictions on global IP traffic in case the latter is still pending. 
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8.2 Data Observation 

All historical information for the totality of IP traffic and Internet users have been put 

into in-depth analysis. First, global figures in tables 22 and 26 will be compiled into 

one, to form the historical IP volumes for the last decade, 2005-2014 inclusive. The 

enlarged version of table 33, which is available at [Iws2015], is to further include years 

2005 to 2007. Thus, any numerical properties can be detected easier when all the 

information is merged into the following single table:  

 

Table 38: The entire historical traffic generated by respective users 

As with all data sets, we look for hidden patterns between consecutive pairs. This time, 

figures G.IP(ε) and G.Iu(ε) for the same years will be observed, instead of looking for a 

relation between data from years ε and ε−1. The fact that all information for the same 

years is applicable for this chapter only, suits with the discovery of an explicit relation 

revealed by the data of table 38. Through careful observation, it has been concluded that 

an exponential-like equation is not the best option for this data set, but a formula of 

some other algebraic form would be more reliable. But why is a non-exponential format 

more suitable for this situation? 
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When observing consecutive data between all years ε and ε−1, the produced relation 

tends to be exponential, albeit not a strict one. However, when looking at pairs for the 

same years ε – of which there are already exponential equations proposed – we actually 

try to find an association between two exponential representations. G.IP(ε) and G.Iu(ε) 

have been defined as exponential-like in respective chapters, consequently this 

assumption applies to both. This means results of certain operations between them can 

be of different form, such as their ratio which may be closer to a linear contribution. 

Therefore we need to verify or disprove this feature and, for this reason, the following 

two equations are considered to detect a suitable format for relation (87): 

G.IP(ε) = [G.Iu(ε)]
χ(ε)

         (88) 

G.IP(ε) = [G.Iu(ε)]∙[TUR(ε)]        (89) 

G.IP(ε) and G.Iu(ε) are all available historical data for 2005-2014, χ(ε) is some 

exponent and TUR(ε) is the Traffic to Users Ratio defined as G.IP(ε)/G.Iu(ε) for all 

corresponding years ε. Proceeding to calculations of χ and TUR, the following table 39 

includes the necessary findings. 

 

Table 39: Exponential and linear relation assumptions 
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The first main observation from table 39 is the strict ascending order of all numbers in 

the last two columns. It seems either is suitable but certain peculiarities of their patterns 

have suggested that Traffic to Users Ratio is preferred over χ(ε). 

8.3 The Fitting Stage 

The next and most important step is to select the data set of the column for which well-

suited proposed values will have the lowest error rate and according to the ability to 

sustain the associated trend beyond 2014. After an extensive set of numerical 

experiments, alternate numbers for all χ and TUR of table 39 have been assigned to 

indicate their level of effectiveness. In general, the proposed numerical ranges for both 

χ(ε) and TUR(ε) have a very good response towards the actual data, but numbers for 

TUR are slightly better in terms of fitting error and low complexity to form an equation. 

Furthermore, the proposed exponents for all χ display several low-level fluctuations 

related to the actual while, on the other hand, alternative TUR(ε) variables are quite 

consistent on average. Thus, equation (89) is more appropriate and has been selected 

over (88). Traffic to Users Ratio will be defined in more detail in the next section, 

together with the overall proposed format of (89). 

In table 40, the associated error rates have been calculated using the same method as 

with all respective fitting procedures. Equation (89) calculates G.IP(ε) for all new 

proposed TUR(ε), while the number of users G.Iu(ε) is always the actual figure for 

corresponding year ε (column G.Iu(ε) in table 39). New figures for G.IP(ε) are then 

compared to the actual values, from which the respective fitting errors are computed; 

the whole procedure and results are summarized in table 40. We can observe excellent 

rates for most of the fitted data apart from the percentages of two years, for 2005 and 

2012, which derive from reasonable deviations but are nevertheless acceptable. The 

average rate calculated at only 1.79% demonstrates the goodness of the proposed model 

over the total historical timeframe.  
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Table 40: Real and fitted data 

 

Figure 42: Actual (blue dots) and proposed fitted (red curve) data for global IP traffic 

As a further evidence, figure 42 demonstrates the exceptional ability of the model to 

locate alternative data points through years 2005 to 2014 using generic equation (89). 
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Analysis on numerical patterns suggests that future trends are highly likely to be a 

successful expansion of the historical figures, at least for period 2015 to 2017. 

8.4 Towards the Final Layout 

For the purpose of future projections, the proposed relation in (89) must be presented 

with more details to form an suitable formula. Again, the idea is to include a separate 

parameter for the year, to be substituted as appropriate, and any additional variables 

and/or constants with suitable operations according to the pattern. At this point, 

equation (89) must be used and all observations will be further broken down to smaller 

numbers using suitable arithmetical operations. The proposed fitted sizes for all 

associated TUR parameters of table 40 are now introduced instead of the real. Thus, we 

get the first set of the following relations: 

G.IP(2005) = [G.Iu(2005)]∙[TUR(2005)]  2426 = 1018∙2.5   (90) 

G.IP(2006) = [G.Iu(2006)]∙[TUR(2006)]  3992 = 1093∙3.6   (91) 

G.IP(2007) = [G.Iu(2007)]∙[TUR(2007)]  6430 = 1319∙4.9   (92) 

… … … …     … 

G.IP(2014) = [G.Iu(2014)]∙[TUR(2014)]  59800 = 3079∙19.6   (99) 

A careful observation on the numbers of the proposed fitted TUR(ε) column 2.5 to 19.6 

(table 40), indicate some value that is consecutively added to each number as these 

progress to 2014. At the same time and in every addition, the number increases at a 

constant rate of +0.2 starting initially at 1.1 for the first value of 2.5 (year 2005). This 

numerical pattern has not been too difficult to be observed, however the overall 

difficulty to form the final proposed equation is of medium complexity. Therefore, 

proceeding to the next stage, the right hand side of (90) to (99) can be replaced with the 

following relations arranged by their sizes: 
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2426 = 1018∙2.5  2426 = 1018∙(2.5+0)       (100) 

3992 = 1093∙3.6  3992 = 1093∙(2.5+1.1)       (101) 

6430 = 1319∙4.9  6430 = 1319∙(2.5+1.1+1.3)     (102) 

… … … …      … 

59800 = 3079∙19.6  59800 = 3079∙(2.5+1.1+1.3+1.5+…+2.7)   (109) 

The fixed increase rate of +0.2 is added to ascending numbers 1.1 to 2.7, which can be 

written in more detail as we approach to find a suitable format for the universal formula. 

It is once again reminded, as with the whole thesis, that no software or any other form 

of mathematical or technical aid has been involved to reveal the observed numerical 

pattern. The procedure is based on pure observations on numbers and on bookkeeping 

all possible relations, for both the pattern detection and the equation forming. The 

following explicit multiplications have been carefully observed to effectively replace 

the steady 0.2 growth of several terms: 

2426 = 1018∙(2.5+0)  2426 = 1018∙[2.5+(1.0∙0)]     (110) 

3992 = 1093∙(2.5+1.1)  3992 = 1093∙[2.5+(1.1∙1)]     (111) 

6430 = 1319∙(2.5+1.1+1.3)  6430 = 1319∙[2.5+(1.2∙2)]    (112) 

… … … …      … 

59800 = 3079∙(2.5+1.1+1.3+1.5+…+2.7)  59800 = 3079∙[2.5+(1.9∙9)]  (119) 
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Equations (110) through (119) can be ideally replaced by a fraction only for the 

ascending real numbers 1.0 to 1.9, which gives: 

2426 = 1018∙[2.5+(1.0∙0)]  2426 = 1018∙[2.5+(1+0/10)∙0]    (120) 

3992 = 1093∙[2.5+(1.1∙1)]  3992 = 1093∙[2.5+(1+1/10)∙1]    (121) 

6430 = 1319∙[2.5+(1.2∙2)]  6430 = 1319∙[2.5+(1+2/10)∙2]    (122) 

… … … …      … 

59800 = 3079∙[2.5+(1.9∙9)]  59800 = 3079∙[2.5+(1+9/10)∙9]   (129) 

By applying the process of substituting all numbers that can be expressed as a function 

of the same year ε, two terms for each relation have been indicated as such. We now 

proceed to the broader format of (120) to (129) that connects global IP traffic with 

Internet users. Eventually, the final format of the proposed equation can now be 

expressed using (130): 

G.IP(ε) = [G.Iu(ε)]∙[2.5+[1+(ε–2005)/10]∙(ε–2005)]  

G.IP(ε) = [G.Iu(ε)]∙[2.5+[(ε–1995)/10]∙(ε–2005)]     (130) 

To accord with the rest of the formulae presented in the thesis, there are two timeframes 

involved, thus the following restrictions must be considered: 

2005 ≤  ε ≤  2014, for historical figures      (131) 

2015 ≤  ε ≤  2018, for future estimates      (132) 
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The final relation of (130) could be further simplified; however it may be wiser to keep 

the present format to be consistent with the already proposed two formulae for G.IP(ε), 

presented in earlier chapters. 

8.5 Comparison with Previous Models on Fitted Data 

In previous chapters, both G.IP(ε) formulae have been expressed as a function of 

G.IP(ε–1), i.e. traffic as a function of some other traffic. In this study, inputs of G.IP(ε) 

always refer to Internet users G.Iu(ε) and at the same time the equation has linear 

contributions to the results instead of semi-exponential. With the exception of its linear 

characteristics, the way (130) is arranged in terms of parameter ε and 

variables/constants, it looks similar to the global IP formula (45) of chapter 5. The 

shape of (130) suggests even lower level of complexity when compared to that of 

relation (45) and, furthermore, it is far more simplified than the respective G.IP(ε) in 

equation (67) of chapter 6. The latter especially is an intricate version of (45), albeit 

effective, due to the numerous constants and the multi-presence of year ε. Furthermore, 

relation (67) combines the linearity of G.IP(ε–1) and G.IP(ε–2) with some medium-

level of exponential influence due to an increased number of constants but at the same 

time it adds more detail to the result. 

On the other hand, there is a significant lack of fitting data in equations (45) and (67). 

Due to the limited availability of recorded information when proposed studies on (45) 

and (67) were performed, their historical data timeframe had been extending to 2011 

only, while equation (130) makes full use of period 2005-2014. Of more importance is 

the even narrower limitation of (67) which fails to take into account fitting properties 

before 2008 due to the restriction suggested by Euler’s method. As a result, the 

variation of the investigation period has inevitably led to some different predictions 

between (45) and (67) as already analyzed which, in turn, may (or may not) imply 

different forecasts using relation (130). However, the associated degree of deviation 

between all three models is totally insignificant when looking at the common historical 

period from 2008 to 2011 inclusive. The following graph visualizes their fitting 

performance for the common time periods only. 
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Figure 43: Overall demonstration of common fitted data between equations (45), (67) 

and (130) 

We observe the fitting trend for the three proposed models is roughly the same. 

Calculations have indicated a maximum distance of ~2% between data for respective 

years and this can be further evidenced by comparing the 2012-2014 interval of 

historical figures for equation (130) with 2012-2014 forecasts for relations (45) and 

(67). Specifically, when looking at tables 40, 26 (chapter 5) and 30 (chapter 6) there are 

similar results in their corresponding 2012-2014 timeframe. However, figures in table 

40 are closer to the actual which is reasonable because those studies have been 

conducted far more recently than the other two models. This fact is, once again, another 

confirmation for the importance of revising forecast models every three years in order to 

make predictions for the next proposed period, preferably for another three years. This 

means both formulae (45) and (67) must be re-considered and updated as appropriate to 

further estimate figures after 2015. 
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8.6 Projections of IP Traffic as a Function of Internet Users 

As demonstrated, this model has a different functionality for data fitting and for the 

forecasting procedure as well. It uses data from respective global Internet users to 

predict IP traffic only for the same year ε. Therefore, it must be combined with results 

of G.Iu(ε) for which we expect for the future, as presented in chapter seven, and are 

available from table 36 produced by formula (84). In this way we substitute figures of 

users for years 2015 to 2018 (table 39) in equation (130) and obviously ε = 2014 to 

2018 respectively. Results show expected global IP traffic as a function of users and can 

be viewed in the following table. 

Year ε Data type 
G.IP(ε) = f[G.Iu(ε)] 

(PB/month) 

Annual 

Growth 

Rate 

2015 Forecast 74835 1.25 

2016 Forecast 91008 1.22 

2017 Forecast 108606 1.19 

2018 Forecast 127300 1.17 

Estimated Average AGR 1.208 

Table 41: G.IP(ε) = f[G.Iu(ε)] 

 

The calculated AGR starting at 1.25 and declining further down to 1.17 seems to be 

absolutely realistic because: 

(i) When compared to the most recent available rate, that of ~1.3 for year 2014, it is 

very likely to meet the expectation that historical AGRs indicate. 

(ii) The progression is smooth and follows the expansion of historical figures. 

The expected tendency to prolong a stable trend is demonstrated in the next graph 

where, apart from a slight deviation in 2012, the overall shape maintains both trends. 
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Figure 44: Historical figures (2005-2014) and projections (2015-2018) according to 

relation (130) 

However, forecasts for 2015 according to (130) can be compared with those that have 

been estimated by the G.IP formulas (45) and (67) for the same year. When referring to 

tables from relevant chapters, the two latter indicate a total IP traffic at 82918 and 

85487 PB per month respectively while equation (130) predicts a more conservative 

figure at 74835, slightly less than 75 Exabyte (EB) per month. Consequently, their 

maximum difference is calculated at ~10.6 EB/month between relation (130) and (67), 

which is not a huge deviation but not small either. Certainly, those equations come from 

studies that use a variety of parameters and different inputs thus the variation for future 

figures – although we have no available actual numbers – can be considered reasonable. 

However, there may be some further explanation regarding the associated timeline: 

(i) Studies for the aforementioned produced estimates have a chronological difference 

of around two years, thus the associated trend may have changed over that time and 

therefore the more recent version of relation (130) might be more suitable. 

(ii) When (67) was proposed and although using it has been proved effective, the 

formula has a tendency to add more prediction error rate towards 2014 results. If this 
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rate follows a similar increasing tendency, then forecasts for 2015 might significantly 

deviate from the actual, i.e. more than 10%. 

When real IP traffic measurements for 2015 become available, only then we can 

evaluate if justifications (i) and (ii) are on a reasonable basis or if we are to consider a 

scenario proposed by forecasts using equation (67). 

 

 

 

 

 

 

 

 

 

 

 

 

 



Internet Traffic Volumes Characterization and Forecasting  

Nikolaos K. Vlachos  138 PhD Thesis 

 

 

CHAPTER 9 

Some Further Discussion 

 

"Mathematics is the alphabet with 

which God wrote the Universe" 

- Galileo Galilei 

This chapter presents some observations and further suggestions as a whole. At the 

same time it is a concluding part of the thesis with some advice and highlights the 

importance of ongoing work. 

9.1 Exclusion of Important Data 

To this point, major historical traffic and users’ information have been analysed for 

modelling and forecasting purposes. The relevant data that have been used satisfy all 

criteria as described in the methodology chapter and those four conditions should be 

met in full to produce the most accurate projections. Also, the research that has been 

conducted hereby covers representative parts of the global activity from large 

geographical locations that have been or have been not previously put into academic 

investigation. However, there are significant worldwide data which do not meet this 

thesis’ prerequisites: historical statistics of fixed and mobile traffic on a global level 

have not been included in the present studies, because their available information reveal 

certain irregularities which may cause high prediction error rates. The decision that 

those data have been excluded is mainly based on the following peculiarities: 

(i) The presence of a relatively high degree of fluctuations in fixed and mobile traffic. 

(ii) The undesired numerical properties that they exhibit as they progress in time. 
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Table 42 shows the relevant information with the most up to date figures.  At a first 

glance, the numbers of the specimen can be regarded as another suitable set for further 

investigation and it seems that hidden arithmetical properties do meet all criteria. 

However, using the same numerical analysis as with all data in previous chapters, 

certain irregularities have been detected. 

 

Table 42: Fixed and mobile historical Internet traffic [Wik2015a], [Cis2013], 

[CisVNIb] 

 

Employing equation (20) from chapter 4 and considering that both fixed and mobile 

historical data can be again represented with an exponential-like relation, we observe 

the following progression properties illustrated in table 43. As with all proposed 

formulae (with the exception of relating G.IP with G.Iu of the same year, chapter 8), 

traffic in a given year is presented and calculated as a function of the previous year. 

This applies to the global fixed (G.FI) and the mobile (G.MO) parts too, thus their 

generic form may be given with the following expressions: 

G.FI(ε) = [G.FI(ε–1)]
P
        (133) 

G.MO(ε) = [G.MO(ε–1)]
E
        (134) 
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Using similar assumptions, exponents P and E are revealed as time series data with not 

so consistent properties as the rest of the proposed equations so far. 

Numerical Properties of Exponents 

Relating years P (eq. 133) E (eq. 134) 

2006 to 2005 1.06363313 N/A 

2007 to 2006 1.05504880 1.95344529780 

2008 to 2007 1.04450445 1.34324916068 

2009 to 2008 1.03743772 1.24307394478 

2010 to 2009 1.03614880 1.22632390922 

2011 to 2010 1.03367313 1.15269839015 

2012 to 2011 1.04206381 1.06158880420 

2013 to 2012 - 1.07775785527 

2014 to 2013 - 1.06984961435 

Table 43: Progression characteristics of global fixed and mobile historical traffic 

In table 43, one may observe there is no obvious pattern. There are unstable occurrences 

of numbers in both exponents, especially as these tend to increase towards later periods 

instead of following the consistent decline of all years before. In specific, the not so 

slight increase in 2012 to 2011 of P and the last two undesired fluctuations of the 

mobile exponent E makes it difficult to decide what methodology should be followed to 

successfully fit those data and what type of equation would lead to precise future 

estimations. Furthermore, the rest of the figures of P and E do not have smooth 

declining properties for all periods 2005-2011 which, again, is another negative aspect 

to produce a recognized relation for prediction purposes. 

As with all investigations so far, most results accommodate a forecasting error of less 

than 5%, mainly because of the efficiency of the proposed methodology and selection of 

certain criteria. If the same method had been applied to the inappropriate data of fixed 

and the mobile global traffic, then a rather higher prediction error (perhaps more than 

10%) would probably be more realistic than the successful low rates accomplished with 

the suitable data sets. Therefore, it may be more appropriate to establish a totally 

different technique to characterize the fixed and mobile traffic by producing a different 

prediction equation. For the fixed part, Korotky (2013) [Kor2013] uses regression 

analysis and proposes a hyperbolic CAGR to project global fixed volumes, as already 
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discussed in the first chapters of this thesis. An attempt to forecast fixed traffic using 

some other method may not produce accurate results. 

9.2 How big should a big or representative Sample of Data be? 

The answer to this question cannot be given with precise explanation. In this thesis it 

has been extensively argued that investigations on long-term modelling and forecasting 

of Internet traffic volumes and number of users must meet almost in full the proposed 

criteria as described in chapter three. Those include historical samples over several 

years of the past and across large geographical areas in order to produce the best fitting 

results and prediction equations with more than 95% precision, i.e. less than 5% 

forecasting error. Those levels of error rate have been achieved because of the rigorous 

selection methodology for the data to be included in the investigation. 

Certainly, statistics that come from just a few years from the past cannot be considered 

as a big sample. Neither can be traffic measurements that have been captured from a 

small region be treated as representative (e.g. urban zones, big cities, metropolitan areas 

etc.). On the other hand, samples such as statistics of more than four years and 

measurements from at least some big countries can be safely used in research as long as 

the remaining two criteria are satisfied too. In contrast, in a middle situation where there 

is doubt as to whether the proposed historical information should be investigated, then 

the answer is probably negative. All samples that are to be considered for high-level 

research and for valuable contribution to Science must be scrutinized against all four 

criteria in the first place. Those that meet them in full are highly likely to produce 

accurate future projections such as with all investigations in this document so far. 

Similarly, traffic measurements or Internet users’ history that exhibit up to medium 

level fluctuations over time are also positively considered for research but with certain 

levels of risk in prediction results. Depending on the degree of the fitting success, those 

are prone to prediction errors at between 5% and 10%, which is still acceptable, but 

there is no guarantee whatsoever that this rate will not exceed 10%. Fortunately, the 

latter excessive percentage has not been a result in any part of these studies but, again, it 

may happen any time in relevant future work even if the chances are rather low. 
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9.3 Relevance of Proposed Formulae to other Historical Data 

An important observation from this long-time research effort in terms of historical data 

availability is the lack of recorded information in a more regional level and mainly in 

Internet traffic rather than in users. Although we have statistics about the global 

aggregate volume of IP, fixed and mobile traffic, we do not seem to possess enough 

long-term historical evidence of countries or continents. This fact is a limitation to 

allow us to reveal how certain proposed equations on a global level can be related to 

smaller samples. For example, it would be useful to compare a proposed formula which 

projects global IP traffic with another one that predicts the same type of traffic but for a 

big country and how the format and range of the parameters of those two equations are 

related to each other. 

On the other hand, historical figures from Internet users are not only available for the 

total global sample but there is information on a smaller scale as well. The top three 

countries around the world in terms of population – China, India and the United States 

of America – constantly increase in terms of Internet users according to the latest 

updates (as of July 2014) and the number of their users are ranked at the top three as 

well [Ils2015b], [Ils2015c], [Ils2015d]. Similarly and as of November 2015, those 

countries appear to have more or less the same tendencies, both in terms of population 

and users and their figures can be seen in [Iws2015b]. Some of their most important 

statistics are available in the appendix. Internet users in China and India have higher 

growth rates when compared to those of the United States in the last several years. In 

the USA, however, the historical numbers of users tend to increase in a similar way with 

the total worldwide users even though there are some notable differences. The number 

of users in the USA might soon be reaching a maximum and thereafter only increase at 

the rate of their population, while in India and China there will be a large proportion of 

the population who are still not users. While the global figures encompass those of the 

developing countries where growth rates are faster, the developed parts of the world 

including Europe and North America have a lower but steadier growth pace and the 

latter seems to have certain consistencies which are present in the global figures as well. 

The proposed formula in chapter seven to predict global users for the next three years 

might be suitable for some regional users’ forecasts too, provided it will be used 

proportionally to the population and/or users and subject to certain changes in its 

parameters. 
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Some regression analysis and pattern detection on historical data of China and USA 

Internet users suggests that an exponential-like equation can be used to predict the 

number of their users at least two years ahead but for no more than three years, again, 

due to the uncertainty. Moreover, according to some basic analysis, it was explicitly 

shown that a potentially proposed relation for those two big countries may probably 

have the same shape and format with the already proposed formula (84) of chapter 

seven but with a different numerator in the exponent and a slight change to another 

variable. It may be also the case that a general prediction equation be proposed at the 

first stage and, according to the purpose, be then appropriately modified. More specific, 

equation (84) can be more generally expressed with the following basic format: 

      (135) 

Then, from the alternative and rather generic shape of relation (135) a more detailed 

mathematical version would be accordingly proposed by taking into account the 

following important aspects: 

(i) The significance of number of the investigated Internet users. That is, new proposed 

equations may fairly vary for big countries when compared to smaller ones.  

(ii) The starting values of numerical patterns that are to be calculated at the first stages 

of pattern detection including the fitting procedure of the historical data. For this, 

mainly responsible are variables S1 and S2 that crucially define the overall range of the 

exponent based on the start year of the historical investigation. 

(iii) Year y which is the start year for which there are long-term suitable data; this is to 

propose the timeframe ε–y which is divided into the two usual intervals, the fitting stage 

and the forecasting period. 

(iv) The level of progression of the exponent in time according to pattern detection and 

regression analysis. A proposed range Δd is to indicate the growth/decline pace of the 

exponent of which optimum and selected values are to minimize the associated fitting 

error at that stage. 
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In addition and in any case, nevertheless, all criteria as already outlined must be also 

satisfied when proceeding to form equations. The final shape, however, according to 

each case is an ongoing subject and worth investigating as it will establish a main 

relation for all levels rather than proposing a different one for each case. 

9.4 A Totally different Format of Equations? 

The procedure of establishing a forecasting model must be based on personal 

intelligence and up-to-date facts but at the same time on successful techniques from 

other researchers as well. In this thesis, the format of most of the proposed formulae has 

some similarities with those of the University of Minnesota Internet Traffic Studies 

(MINTS) [UoM1, UoM2], Korotky’s regression relation [Kor2013] and the equation 

proposed by Labovitz et al (2010). The exponential-like shape is common but the 

assumptions vary according to the selected methodology and circumstances. In my 

opinion, what makes a forecasting model successful is the accuracy of its predictability 

evaluated against the actual figures and the option to revise it with a minimum effort as 

soon as trends change. The selection of the formulae as they have been presented 

hereby, certainly justify the prediction accuracy but the revision process is still not 

necessary as the earliest update to any equation here is to take place some time in 2016. 

However, one may come up with a considerably different version of suggested relations 

by choosing to ignore the consistency of the exponential format as it has been proposed 

over the last several years. As a matter of fact some alternative methodology in the 

future might suggest an overall linear shape with some level of semi-exponential 

influence. Moreover, the macroscopic uncertainty of user trends and the constant 

decline of annual growth rates may introduce a different generation of mathematical 

models close to linear, since an alternative but realistic scenario is the fact that Internet 

traffic volume may some time become almost the same year-over-year. At present there 

is no convincing evidence that this can happen but considering the stable pace of 

historical AGR decay figures (and the AGRs we expect for the future as investigated), 

we might witness an era where aggregate yearly volumes could remain stable albeit 

with a small level of tolerance. 
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CHAPTER 10 

Conclusions and Ongoing Work 

 

"Most people say that it is the intellect which makes 

a great scientist. They are wrong: it is character" 

- Albert Einstein 

This final chapter summarizes the proposed prediction scheme and its contribution. 

Advice is given to address important issues in network planning and for future work 

with some proposed collaboration from diverse scientific fields.  

10.1 Main Conclusions 

Characterizing and forecasting Internet traffic volumes on a long-term basis is essential 

for resources allocation, hardware infrastructure and investment planning. Future 

projections of Internet users is as well significant as most of the traffic generated across 

the Internet comes from subscribers’ connections. Through these studies, a certain 

methodology defined by four prerequisite conditions has been proposed to model and 

forecast Internet traffic and users for the next three years ahead. The investigation uses 

pattern detection and variables’ relations in historical data from several years to make 

macroscopic estimations. It has been shown that all proposed mathematical relations 

have excellent fitting characteristics in history traffic and Internet users and have 

provided very accurate future projections. The predictability of the suggested formulae 

has in most cases a prediction error rate of less than 5% where pertinent data have 

become available; those result, so far, seem to be the most accurate in long-term 

forecasting research. The format and the selection of parameters of the proposed 

equations can be updated if and when this becomes necessary in the future, using 

minimum effort. The process of revision, where applicable, is not to take place before 

the middle of 2016 and in most cases it may begin in 2018-2019 where all formulae will 
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be evaluated against the actual measurements by that time. From current evaluations 

however, it is expected that results will probably continue on the same successful 

precision rate provided that trends will not undergo significant changes. The selection of 

the prediction timeframe for up to a maximum of three or four years has been proved to 

be the optimum choice. This proposed restriction on forecasting periods is strongly 

recommended for any relevant work where long horizon traffic or users prediction is the 

main subject of research. 

10.2 Advice and Future Work 

10.2.1 Estimations for the very far future 

Companies and investment bodies may need to be shown accurate projections of more 

than four years ahead. In those cases where the potentially selected timeframe is 

targeted to the very long run, then the negative implications of the extremely long-term 

traffic uncertainties can be minimized only if we possess a better understanding of user 

trends and we are to know some non-technical details. Specifically: 

(i) If we know how certain technologies will be advancing in the future, e.g. bandwidth 

to be offered, computer power, mobile devices evolution, storage capacity etc. 

(ii) If prices of emerging technologies can be estimated fairly accurate in advance and a 

proposed plan of their potential future price behavior can be given. 

(iii) If we can successfully model human behavior in terms of how people make use of 

the Internet over long consecutive periods (e.g. to detect any seasonal variations) as well 

as in the short term (e.g. weekly). This would include socio-economic details such as 

income, social status, GDP per capita and main reasons for using the Internet. 

In general, forecasting Internet traffic and usage may have strong connections with 

other non-technical fields such as social, psychological and economical aspects. Careful 

interpretation of historical data from a computer science and mathematical view 

combined with strong collaboration of diverse disciplines is recommended for optimum 

results.  
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10.2.2 Accurate traffic and users’ figures 

Extreme variations on the same data sets of historical measurements, where those 

should be almost the same, must be minimized. As described in the literature review, 

there have been some significant differences in historical figures of global fixed Internet 

volumes which is not convenient in the sense that research efforts may be based on 

inaccurate facts and there would be doubt as to which data set should be used. For this 

reason priority must be given in capturing precise information and at least two 

independent bodies should collect traffic traces on a real time and continuous basis. For 

the same location – for example an IXP or a country or even the entire Internet – the 

traffic monitoring and collection system of the two independent companies may or may 

not be the same but this should not affect the quality of the recording procedure. At the 

end and after the processing stage, the data sets must be nearly the same. 

On the other hand, the historical information we have on Internet users from at least 

three sources appear only with minor differences as demonstrated in chapters seven and 

eight. This small variation would ideally not exist in order to proceed to absolutely 

effective forecasting models; however the quality of research in this case would not be 

negatively affected when selecting either data set that is almost the same with each 

other. 

10.2.3 Research on mobile traffic 

The number of mobile devices increases quickly in the last decade and so are a variety 

of mobile applications. The information we have for that type of activity is fairly 

limited, however mobile connections and technologies are estimated to have a large 

share in the future according to Cisco Systems. Global aggregate volume traces of 

mobile Internet traffic are available up to 2014 (table 42, chapter 9). Even though the 

data have not been a subject for this thesis, further aspects of the mobile traffic part 

must be investigated and specifically: 

(i) If there is a similar exponential (or any other type of) equation to predict the global 

and more regional evolution of the mobile traffic in the next few years. It is important 
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that base stations and other intermediate equipment can process extreme traffic loads in 

the future as mobile activities tend to increase fast. 

(ii) How mobile traffic is evolving with regards to the sigmoid function. The latter is 

sometimes used to show a trend that is growing fast at its initial stages but it then tends 

to smooth and finally reaches saturation at the end. 

 

Figure 45: Graphical representation of a sigmoid function [Stan2013] 

The growth of the entire global Internet traffic was generally believed to be increasing 

fast in the 1990s as described in early chapters. At present, nevertheless, it may have 

reached the smooth part of the shape of figure 45 but the mobile part may yet have not, 

suggesting that its growth could be located before the smooth side of the sigmoid 

representation, i.e. at some point in the interval [-5, -1] on the X-axis. If so, research on 

the behavior of mobile traffic in the future may reveal certain similarities with the entire 

global IP or fixed type and, in this way, the traffic that is expected for the mobile part 

after 2015 might be proportionally related to the respective period of the global 

aggregate volume already investigated. It may sound optimistic, but if some relation 
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could be established between those two important categories then it would be easier to 

produce further promising mathematical formulae to predict traffic and number of users 

at geographical areas which, until today, have limited historical information. 

10.3 Future Performance of Networks 

The increase of Internet traffic in terms of aggregate volumes in most medium and 

large-scale network infrastructures is inevitable in the next few years and possibly 

further ahead. As mobile applications and multimedia streaming tend to become the 

largest parts of traffic categories, there are certain issues that affect networking 

performance. The quality and delivery of services to customers can be divided into two 

different types. 

10.3.1 Short term performance 

The increasing load at networking nodes may be difficult to manage in case of excessive 

levels of flow. The undesired aspects of real-time traffic such as congestion, rapid 

accumulation of network queues and some level of information loss can have adverse 

implications at the levels of IP routing and packet processing. Moreover, this would 

raise certain questions regarding the security of the network, as it may be exposed to 

threats from external sources. The overall performance of large networks (Internet 

service providers, major backbones, Internet exchange points) is highly dependent on 

their ability to administrate large traffic loads and to what extent. Even high-capacity 

networks may fail to manage the excessive volumes that must be processed at once and 

simultaneously for all incoming and outgoing requests. In this way the available 

network bandwidth becomes saturated reaching its limitations and this practically 

means users’ speed unavoidably decreases. This impact is usually not important in 

private local networks where the overall bandwidth can be divided by the number of 

existing customers. But for large geographical providers such as ISPs it is critical to 

effectively prioritize traffic according to session characteristics e.g. application, 

destination and level of security. 

Information loss and service delays are undesired phenomena in real-time traffic. Future 

investigation should be effectively focused on these issues and a possible approach 
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would be to prioritize critical applications (e.g. real-time multimedia) and those with 

increased level of security such as governmental and military connections. Especially 

for the security-sensitive, it is extremely important to ensure that source and destination 

are securely established and their connection must be guaranteed in advance. 

10.3.2 Long term effect 

As opposed to short time scales, the long-time performance of networks is not affected 

by the bursty properties of real-time Internet traffic. However, the continuously 

aggregating flow that hundreds of millions of users generate must accord with a 

considerable level of increase on the overall network capacity not only on ISPs where 

increasing number of subscribers belong but also at distant peering networks that 

receive statistically more traffic than other destinations. Installation of appropriate 

hardware is essential, otherwise this may result in failure of congestion control and 

severe limitations of the maximum speed rate offered to users. 

Another issue is the high demand of cloud computing which is an Internet-based 

resource of a variety of services and networks with reliable and secure access. Users and 

companies can benefit from those services and access to these facilities is estimated to 

increase further. As such, enhanced security and reliable performance of clouds are of 

utmost importance. Investment and capacity planning of cloud computing resources is 

also advised as a subject of further investigation to estimate how much traffic is 

expected to cross certain types of clouds within the proposed future timeframe of three 

years ahead. It may also be worth investigating the maximum levels of aggregating 

volumes that the service can process compared to the number of its resources and its 

maximum bandwidth. 
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Table App. 1: A comparison of two different reports from Cisco’s projections on 

global IP traffic. The lower table comes from [Cis2014a] in June 2014 and appears to be 

revised when compared to the common period of the upper table which is part of the 

studies in [Cis2013b] released one year earlier (May 2013). 
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Table App. 2: Historical number of Internet users of the planet’s two most populous 

countries, China [Ils2015b] and India [Ils2015c]. We can observe a large users growth 

rate over the 15-year timeframe (estimated figures indicated with *). 
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Table App. 3: Internet users in the United States of America [Ils2015d]. Users’ growth 

is significantly lower than in China or India. However, the penetration rate in the USA 

is consistently higher than the respective rate of the other two countries. 
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Figure App. 1: Incoming traffic at one of the largest IXP, the Budapest Internet 

Exchange (BIX) point. Traces are from November 3, 2002 to August 25, 2009 [UoM2]. 

The curve has good fitting properties over the historical data but there is no reference on 

the fitting error rate. The incoming mathematical relation is of the form y = 10
0.81

 * 

10
0.0007x

 where x is the day. 
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Figure App. 2: Incoming traffic at another large IXP taken from the MINTS: the Japan 

Internet Exchange (JPIX). The regression curve that fits to the historical traces seems to 

have some considerable dispersion. The AGR has been calculated at 1.44 and the 

relation is y = 10
4.81

 * 10
0.0004x

 [UoM2]. 
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