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Abstract

In this thesis we explore the mathematical modelling of wound healing lymphangio-
genesis, tumour neoneurogenesis and Drosophila courtship behaviour.

We begin by focussing on the mathematical modelling of lymphatic regeneration
in wound healing. Indeed, several studies suggest that one possible cause of impaired
wound healing is failed or insufficient lymphangiogenesis, that is the formation of
new lymphatic capillaries. Although many mathematical models have been devel-
oped to describe the formation of blood capillaries (angiogenesis), very few have
been proposed for the regeneration of the lymphatic network. In Chapter 2 a model
of five ordinary differential equations is presented to describe lymphangiogenesis in
a skin wound. The variables represent different cell densities and growth factor
concentrations, and where possible the parameters are estimated from experimen-
tal and clinical data. The system output is compared with the available biological
literature and, based on parameter sensitivity analysis, new therapeutic approaches
are suggested to enhance lymphangiogenesis in diabetic wounds.

Chapter 3 extends the aforementioned work to two PDE systems aimed at de-
scribing two possible hypotheses for the lymphangiogenesis process: 1) lymphatic
capillaries sprout from existing and interrupted capillaries at the edge of the wound,
in analogy to the blood angiogenesis case; 2) lymphatic endothelial cells first collect
together in the wound region through following the lymph flow and then begin to
form a network. Furthermore, we include the effect of advection from both back-
ground interstitial flow and additional lymph flow from the open capillaries, and
address the question of their relative importance in the lymphangiogenesis process.

Malignant tumours induce not only the formation of a lymphatic and a blood
vascular network, but also innervation around themselves. However, the relationship
between tumour progression and the nervous system is still poorly understood. In
Chapter 4 we study the interactions between the nervous system and tumour cells
through an 8-dimensional ODE model. The model confirms experimental observa-
tions that a tumour promotes nerve formation around itself, and that high levels of
nerve growth factor (NGF) and axon guidance molecules (AGMs) are recorded in the
presence of a tumour. Our results also reflect the observation that high stress lev-
els (represented by higher norepinephrine release by sympathetic nerves) contribute
to tumour development and spread, indicating a mutually beneficial relationship
between tumour cells and neurons.

In Chapter 5 a preliminary model for courtship behavioural patterns of Drosophila
melanogaster is suggested. Drosophila courtship behaviour is considered a good
model to investigate neurodegenerative diseases (such as Parkinson’s) in humans.
The present chapter illustrates the biological and health-care related background to
this topic, and then presents a possible modelling approach based on Pasemann’s
work on neural networks.

We conclude with a brief discussion that summarises the main results and out-
lines directions for future work.



Acknowledgements

I would like to acknowledge and thank my supervisors Prof. Jonathan Sherratt and
Dr. Kevin Painter for their excellent supervision during my three years as a PhD
student: their careful attention, insightful suggestions and patience helped me to
make the very most of my postgraduate education. I would also like to thank Dr.
Georgios Lolas for proposing an interesting project for collaboration and for the
enthusiasm he put in the work and our meetings in general. I must also mention the
varied community of students and staff in the School of Mathematical and Computer
Sciences who have contributed to the fantastic time I have had in Edinburgh over
the years. Finally, I wish to acknowledge the generous financial support from the
Maxwell Institute, without which my work here would not have been possible.

i



Declaration Statement

The Research Thesis Submission form is attached.

ii



Contents

1 Introduction 1

1.1 Wound healing lymphangiogenesis . . . . . . . . . . . . . . . . . . . . 1

1.2 Tumour-nerve interactions . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Drosophila courtship behaviour . . . . . . . . . . . . . . . . . . . . . 6

2 A model for lymphangiogenesis in normal and diabetic wounds 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Brief review of existing models . . . . . . . . . . . . . . . . . . 13

2.2.2 Model development . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3 Parameters and initial conditions . . . . . . . . . . . . . . . . 22

2.3 Results and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Modelling the diabetic case . . . . . . . . . . . . . . . . . . . 25

2.3.2 Comparison of results in the normal and diabetic cases . . . . 28

2.3.3 Analysis of the model . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Therapies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.1 Existing experimental treatments . . . . . . . . . . . . . . . . 33

2.4.2 Novel therapeutic approaches . . . . . . . . . . . . . . . . . . 38

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Spatio-temporal models for wound healing lymphangiogenesis 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

iii



3.2 Biological background . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Wound healing . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.2 Sprouting versus self-organising lymphangiogenesis . . . . . . 44

3.2.3 Interstitial versus lymph flow . . . . . . . . . . . . . . . . . . 44

3.3 Mathematical Modelling . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Review of lymphatic-related models . . . . . . . . . . . . . . . 46

3.3.2 Model targets . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.3 Model variables and domain . . . . . . . . . . . . . . . . . . . 47

3.3.4 Advection velocity and open capillaries . . . . . . . . . . . . . 48

3.3.5 Self-organising hypothesis . . . . . . . . . . . . . . . . . . . . 50

3.3.6 Sprouting hypothesis . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.7 Parameters and initial and boundary conditions . . . . . . . . 58

3.4 Numerical solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.1 Self-organising hypothesis . . . . . . . . . . . . . . . . . . . . 63

3.4.2 Sprouting hypothesis . . . . . . . . . . . . . . . . . . . . . . . 65

3.4.3 Comparison between the two models . . . . . . . . . . . . . . 65

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4 Modelling (direct) tumour-nerve interactions 71

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Biological background . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.1 Neurons, neurotransmitters and the Autonomic Nervous Sys-

tem (ANS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.2 Tumour-induced neoneurogenesis . . . . . . . . . . . . . . . . 74

4.2.3 ANS effects on tumour progression . . . . . . . . . . . . . . . 75

4.3 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.1 Model equations . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3.2 Parameters and initial conditions . . . . . . . . . . . . . . . . 80

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.1 Parameter sensitivity analysis . . . . . . . . . . . . . . . . . . 85

4.4.2 Stress and tumour progression . . . . . . . . . . . . . . . . . . 86

iv



4.4.3 Blocking tumour acetylcholine receptors . . . . . . . . . . . . 87

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 Modelling Drosophila ’s courtship behaviour 90

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.1.1 Ethology of Drosophila courtship . . . . . . . . . . . . . . . . 93

5.1.2 A “courtship tracker” . . . . . . . . . . . . . . . . . . . . . . . 95

5.1.3 Relevance for the 3Rs and human health . . . . . . . . . . . . 95

5.2 Mathematical Modelling . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2.1 Pasemann’s model . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2.2 A “Pasemann-like” model . . . . . . . . . . . . . . . . . . . . 99

5.2.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2.4 Rejective and receptive females . . . . . . . . . . . . . . . . . 105

5.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 Conclusions 110

6.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.1.1 Wound healing lymphangiogenesis . . . . . . . . . . . . . . . . 110

6.1.2 Tumour neoneurogenesis and (direct) tumour-nerve interactions111

6.1.3 Drosophila courtship behaviour . . . . . . . . . . . . . . . . . 112

6.1.4 Remark – parameter estimation . . . . . . . . . . . . . . . . . 112

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2.1 Angio- and lymphangio-genesis in wound healing . . . . . . . 112

6.2.2 Tumour-nerve interactions . . . . . . . . . . . . . . . . . . . . 113

6.2.3 Ecological models for cancer . . . . . . . . . . . . . . . . . . . 113

6.2.4 Wound healing peripheral nerve regeneration . . . . . . . . . . 113

6.2.5 Nerve-mediated cell migration . . . . . . . . . . . . . . . . . . 114

6.2.6 Drosophila courtship model . . . . . . . . . . . . . . . . . . . 115

A Lymphangiogenesis ODE model – Appendix 116

A.1 ODE Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . 116

A.1.1 Equilibrium values and standard sizes . . . . . . . . . . . . . . 116

v



A.1.2 TGF-β equation . . . . . . . . . . . . . . . . . . . . . . . . . 117

A.1.3 Macrophage equation . . . . . . . . . . . . . . . . . . . . . . . 118

A.1.4 VEGF equation . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A.1.5 LECs equation . . . . . . . . . . . . . . . . . . . . . . . . . . 124

A.2 Calculation of the steady states . . . . . . . . . . . . . . . . . . . . . 128

B Lymphangiogenesis PDE model – Parameter estimation 133

B.1 Sizes, weights, equilibria and velocities . . . . . . . . . . . . . . . . . 133

B.1.1 Domain size . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

B.1.2 Macrophage volume . . . . . . . . . . . . . . . . . . . . . . . . 133

B.1.3 Molecular weights . . . . . . . . . . . . . . . . . . . . . . . . . 133

B.1.4 TGF-β equilibrium T eq . . . . . . . . . . . . . . . . . . . . . . 133

B.1.5 Macrophage equilibrium M eq . . . . . . . . . . . . . . . . . . 134

B.1.6 VEGF equilibrium V eq . . . . . . . . . . . . . . . . . . . . . . 134

B.1.7 Normal capillary density Ceq . . . . . . . . . . . . . . . . . . . 134

B.1.8 Maximum capillary density Cmax . . . . . . . . . . . . . . . . 134

B.1.9 Lymph velocity . . . . . . . . . . . . . . . . . . . . . . . . . . 135

B.1.10 Interstitial flow velocity . . . . . . . . . . . . . . . . . . . . . 136

B.2 Re-calculation of sM and k1 . . . . . . . . . . . . . . . . . . . . . . . 136

B.3 Diffusion coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

B.3.1 VEGF diffusion coefficient DV . . . . . . . . . . . . . . . . . . 136

B.3.2 TGF-β diffusion coefficient DT . . . . . . . . . . . . . . . . . 137

B.3.3 Macrophage random motility µM . . . . . . . . . . . . . . . . 137

B.4 Advection parameters λ1 and λ2 . . . . . . . . . . . . . . . . . . . . . 137

B.5 Rate at which TGF-β is internalised by macrophages γ1 . . . . . . . . 138

B.6 Chemotaxis parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 138

B.6.1 Macrophage chemotactic sensitivity towards TGF-β χ1 . . . . 138

B.6.2 LEC chemotactic sensitivity towards VEGF χ2 . . . . . . . . 139

B.6.3 Density-dependence of the macrophage chemotactic sensitiv-

ity ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

B.7 Macrophage inflow φ1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

vi



C Tumour-nerve interactions – Parameter estimation 141

C.1 Standard sizes and weights . . . . . . . . . . . . . . . . . . . . . . . . 141

C.2 Initial and equilibrium values . . . . . . . . . . . . . . . . . . . . . . 142

C.3 Primary tumour cells equation . . . . . . . . . . . . . . . . . . . . . . 145

C.4 NGF equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

C.5 AGM equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

C.6 SNC equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

C.7 PNC equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

C.8 Norepinephrine (noradrenaline) equation . . . . . . . . . . . . . . . . 161

C.9 Acetylcholine equation . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Bibliography 165

vii



Chapter 1

Introduction

1.1 Wound healing lymphangiogenesis

The main focus of this thesis concerns the modelling of wound-healing related pro-

cesses. In particular, we examine the phenomenon of lymphangiogenesis (that is,

lymphatic vasculature regeneration) as the main topic of study due to the presence

of exciting recent biological literature and the scarcity of mathematical models in

this area. Recent reviews of lymphangiogenesis can be found in [129, 187, 247];

among experimental research papers, [20, 26, 223] are of particular significance for

my work. On the mathematical modelling side, there is a significant gap between

the amount of models developed for blood angiogenesis (for a comprehensive review,

see [229]) and those describing its sibling process lymphangiogenesis; of these, most

focus on tumour-induced lymphangiogenesis (see for instance [89]). To the writer’s

knowledge, only one modelling paper has been produced that deals with wound

healing lymphangiogenesis: this work, presented in [218], uses elasticity theory to

explain the lymphatic network pattern in collagen gels.

The lymphatic system first came to the anatomists’ attention with Hippocrates’

mention of lymph nodes in his 5th century BC work On Joints [276]. Later, the

Roman physician Rufus of Ephesus identified the axillary, inguinal and mesen-

teric nodes and the thymus in the 1st-2nd century [169]. The earliest reference

to lymphatic vessels is instead attributed to the anatomist Herophilus, who lived

in Alexandria in the 3rd century BC; he described the lymphatics as “absorptive

1



Chapter 1: Introduction

Figure 1.1: Inflammatory stimuli (such as those observed during wound healing)
stimulate (extranodal) lymphangiogensis; from [129, adapted from Figure 1].

veins” [58, 264]. This rudimentary knowledge of the lymphatic system was lost dur-

ing the Middle Ages, until Gabriele Falloppio re-discovered lymphatic capillaries in

the mid-16th century [32]. Since then, there has been a steady but slow increase in

our awareness of the “second” circulatory system of our body. Major impetus to

study the lymphatic system came only in the 1990s, after the discovery of a suitable

lymphatic marker that allowed quantifiable observation of lymphatic dynamics [40].

Lymphatic research is still a current trend in biomedicine and a source of sensational

new discoveries, such as the 2015 finding of lymphatic vessels in the central nervous

system [150].

An impetus for studying lymphatic regeneration is provided by recent biological

studies that propose lymphangiogenesis as a major target for the treatment of non-

healing wounds: functional lymphangiogenesis is nowadays regarded as a crucial

factor in wound healing [39, 117, 191, 277] and delayed or failed lymphatic regen-

eration (such as the one observed in diabetic patients) constitutes a major cause of

impairment to wound healing [5, 167, 224] (see Figure 1.1).

Our work conducted on wound healing lymphangiogenesis is reported in Chapters

2 and 3.

The first model developed to describe lymphangiogenesis is discussed in Chap-

ter 2. It is a five-dimensional ODE model which has many strong points: the

predictions of the model are in good agreement with experimental data and the

majority of the parameters have been estimated from biological sources. The model

2



Chapter 1: Introduction

is then used to compare lymphangiogenesis dynamics between healthy and diabetic

patients through changing the values of a specific set of parameters. These pa-

rameter changes, informed by biological observations, induce a model output which

is characteristic of the diabetic scenario, thus supporting our assumptions for the

disturbances of normal healing via altering the “diabetic” parameters. Finally, pa-

rameter sensitivity analysis is performed in order to identify the parameters to which

the system is most sensitive; these indeed constitute promising targets for therapy,

and different possible (effective) treatments are proposed.

The second work on lymphangiogenesis modelling is discussed in Chapter 3.

Here, two systems of PDEs are proposed to model two different possible mechanisms

of lymphatic regeneration after a skin wound. In fact, this process is not very

well understood by experimentalists and different theories have been suggested to

describe the exact way a lymphatic network is restored. Specifically, two main

hypotheses have been advanced:

a. free lymphatic endothelial cells resulting from the interrupted capillaries pool

into the wound space and spontaneously cluster into a network structure once

they have reached a critical density (the “self-organising” hypothesis);

b. lymphatic capillaries regenerate “continuously” by sprouting from the inter-

rupted network at the wound edge, in analogy to blood angiogenesis (the

“sprouting” hypothesis).

These two hypotheses are translated into two distinct systems of PDEs and their

solutions are compared. Simulations suggest that both cases can give rise to lym-

phatic regeneration occurring in the direction of the lymph flow; a discriminating

factor could be the exact determination of relative contribution of different fluid

flows in the tissue. Indeed, the concept of interstitial flow as a morphoregulator has

recently emerged from the biological community [222]; however, it is not clear from

the biological literature whether this is a major factor in shaping chemical concen-

trations in tissue regeneration, or if the main contribution to flow comes from the

interrupted capillaries. Our model investigates such issue and suggests that lymph

3



Chapter 1: Introduction

flux into the wound from open capillaries is the main advection force in wound

healing lymphangiogenesis.

1.2 Tumour-nerve interactions

Chapter 4 contains research work conducted in collaboration with Dr. Georgios

Lolas from Technische Universität Dresden on tumour-nerve interactions.

Although a connection between a tumour and the patient’s mood has been em-

pirically known by physicians since antiquity, it is only in recent decades that a

biochemical explanation of this phenomenon has been speculated [154, 263]. Yet

even still, the bilateral interactions between a tumour and the nervous system are

not fully understood and little is known about the direct connections between the

two (indirect connections are, for instance, those involving the immune system). In-

spiring experiments conducted recently which provide a better understanding of the

“cross-talk” between a tumour and the host nervous system are reported in [6, 160].

While there is still a substantial amount of information that needs to be uncovered,

what appears for certain is that interactions between nerves and tumour cells are

bilateral: on the one hand, nerve-released substances affect tumour cell behaviour

[64, 74, 137] (see Figure 1.2), and on the other a tumour mass can induce nerve

proliferation around itself through a process named neoneurogenesis (in analogy

with lymphangiogenesis and (blood) angiogenesis [72], which also both occur in the

peritumoural area).

Our model is the first attempt (to the best of our knowledge) to mathematically

study this phenomenon. The model’s assumptions are based on topical biological

papers and the parameters are carefully estimated from the experimental literature.

A system of eight ODEs is developed in order to describe how tumour cells and nerves

interact through various chemicals, such as neurotransmitters. Then, the model is

simulated for both normal and stress conditions, the latter being characterised by

high norepinephrine release. The simulations in the stress-free case confirm and

explain the following experimental observations:

• nerve density is increased after tumour cell implantation;

4



Chapter 1: Introduction

Figure 1.2: This picture from [112] illustrates how prostate cancer is initiated by
sympathetic nerves that release norepinephrine (NE), which also induces tumour
growth through adrenergic receptors (Adrβ2, Adrβ3); on the other hand, parasym-
pathetic nerves release acetylcholine (ACh), which promotes cancer cell proliferation
and metastasis by binding with (muscarinic) cholinergic receptors (Chrm1).

5



Chapter 1: Introduction

• the initial condition for primary tumour cells determines whether the tumour

mass develops and has the potential to form metastases;

• factors such as nerve growth factor and axon guidance molecules are found at

higher levels around tumours.

In addition, by simulating a stress condition we found that stress generally enhances

tumour proliferation and the potential to form metastases. Even more noticeably, an

initial condition for tumour cells that would normally evolve to a zero steady state

(that is, a tumour free scenario) can tend to a non-zero equilibrium (i.e. persistent

tumour) in a stress situation. Finally, we simulated a possible metastasis-reducing

treatment by blocking acetylcholine receptors on tumour cells, with positive results.

Although at first glance a very different subject from wound healing lymphan-

giogenesis, studying tumour neoneurogenesis can help one to understand wound

healing-related phenomena. Indeed, insufficient or impaired nerve regeneration is

increasingly seen as a major obstacle for healing in diabetic patients.

1.3 Drosophila courtship behaviour

An entirely different modelling approach can be found in Chapter 5, where work is

presented from a multidisciplinary team assembled during the NC3Rs/POEMS Net-

work Maths Study Group: Applying mathematics to 3Rs problems (8-12 September

2014 in Cambridge). The aim of the working group was to develop models capable

of describing courtship behaviour in the male fruit fly, Drosophila melanogaster (see

Figure 1.3). These behavioural patterns provide, in fact, a good model for studying

human neurodegenerative diseases shared with Drosophila, including Alzheimer’s

and Parkinson’s [116, 231]. A mathematical model correctly describing these pat-

terns would therefore help our understanding of the physiological and pathological

connections between neural stimulation, innate reactions, memory and behaviour in

general. As a result of the workshop and a subsequent meeting in Oxford, our team

proposed three preliminary models. In Chapter 5 the one designed and simulated by

the thesis’ author is outlined. It consists of a set of four difference equations, each

6
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of which describes the neural activity of a specific neural cluster associated with a

certain behavioural pattern. The underlying assumption is that high neuronal ac-

tivity in a certain cluster causes the male fly to display the behaviour corresponding

to that cluster. To the author’s knowledge, there is only one model similar to that

presented here: a neural model developed in [127], where the authors propose a

network model for cricket courtship. While further work is required to improve the

model and compare it with available behavioural data, the ideas presented in this

chapter are promising and offer a different perspective on the connection between

behaviour and neural activity.

Figure 1.3: This picture from [99, Figure 1] illustrates the sequence of behaviours
during the courtship of Drosophila. The coloured arrows represent sensory signals
by which flies communicate: (+) for stimulatory and (–) for inhibitory inputs.

7



Chapter 2

A model for lymphangiogenesis in

normal and diabetic wounds

The work presented in this chapter has been published in [17].

Abstract: Several studies suggest that one possible cause of impaired

wound healing is failed or insufficient lymphangiogenesis, that is the

formation of new lymphatic capillaries. Although many mathematical

models have been developed to describe the formation of blood capillaries

(angiogenesis) very few have been proposed for the regeneration of the

lymphatic network. Moreover, lymphangiogenesis is markedly distinct

from angiogenesis, occurring at different times and in a different manner.

Here a model of five ordinary differential equations is presented to de-

scribe the formation of lymphatic capillaries following a skin wound. The

variables represent different cell densities and growth factor concentra-

tions, and where possible the parameters are estimated from experimental

and clinical data. The system is then solved numerically and the results

are compared with the available biological literature. Finally, a parameter

sensitivity analysis of the model is taken as a starting point for suggest-

ing new therapeutic approaches targeting the enhancement of lymphan-

giogenesis in diabetic wounds. The work provides a deeper understanding

of the phenomenon in question, clarifying the main factors involved. In

8



Chapter 2: A model for lymphangiogenesis in normal and diabetic wounds

particular, the balance between TGF-β and VEGF levels, rather than

their absolute values, is identified as crucial to effective lymphangiogen-

esis. In addition, the results indicate lowering the macrophage-mediated

activation of TGF-β and increasing the basal lymphatic endothelial cell

growth rate, inter alia, as potential treatments. It is hoped the findings

of this paper may be considered in the development of future experiments

investigating novel lymphangiogenic therapies.

2.1 Introduction

2.1.1 Motivation

Much effort has been spent in order to better understand and potentially treat

the impaired wound healing of diabetic patients. In this regard, one phenomenon

that has recently gained attention from biologists is lymphangiogenesis ; that is, the

formation or reformation of lymphatic vasculature [108, 109, 129, 247]. Insufficient

lyphangiogenesis, as observed in diabetic subjects, appears to correlate with failed

or delayed wound healing.

Impaired wound healing is a major health problem worldwide and in recent

decades has attracted the attention of both biologists and mathematicians. In many

cases unresolved wound healing correlates with prolonged infection, which negatively

affects the patient’s quality of life, causing pain and impairing their physical abilities.

A particularly serious infection may even require the amputation of the affected limb

[139]. Furthermore, impaired wound healing also constitutes a major problem for

health care systems, accounting for approximately 3% of all health service expenses

in the UK and 20 billion dollars annually in the USA [55, 63, 65, 211]. Several

systemic factors contribute to the delay or complete failure of the wound healing

process [5, 77, 115, 141, 245]. In particular, diabetic patients exhibit a slower and

sometimes insufficient response to infection after injury. Such a delay often results

in a chronic wound; that is, the wound fails to progress through the normal stages

of healing and usually remains at the inflammation stage [24, 207].
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Interest in lymphangiogenesis in reference to wound healing is very recent: for

example in the Singer & Clark 1999 review [238] the process is not mentioned.

Nevertheless, lymphatic vessels have recently become regarded as a crucial factor in

wound healing [39, 117]. They mediate the immune response and maintain the right

pressure in the tissues [243], thus playing a very important role in inflammation and

contributing to the healing of a wound [191, 277]. Moreover, failed restoration of a

lymphatic network (observed, for example, in diabetic patients) is now thought to

be a major cause of impairment to wound healing [5, 167, 224].

Mathematical modelling has proven a useful tool in understanding the mecha-

nisms behind numerous biological processes. It is therefore of interest, and poten-

tially great utility, to build a model describing lymphangiogenesis in wound healing,

considering both the normal and pathological (diabetic) cases.

2.1.2 Biology

Wound healing is a very complex process involving a number of entwined events,

which partially overlap in time and influence one another. For simplicity and edu-

cational purposes, it is often divided into four different phases: hemostasis, inflam-

mation, proliferation and remodelling. Here the key events in each of the phases are

summarised; for further details, see for instance [55, 91, 197, 238, 240]. A few minutes

after injury, the contact between blood and the extracellular matrix (ECM) causes

a biochemical reaction that leads to the formation of a blood clot. This “crust” has

the double function of stopping the bleeding (hemostasis) and providing a “scaffold”

for other cells involved in the process to be described below. Concurrently, chemical

regulators (such as Transforming Growth Factor β, or TGF-β) are released, which

attract cells such as neutrophils and monocytes to the wound site. These cells clean

the wound of debris and neutralise any infectious agents that have invaded the tis-

sue. This stage is called inflammation; in a normal wound inflammation begins a

couple of hours after wounding and lasts a few weeks. Monocytes differentiate into

macrophages, which complete the removal of the pathogens and also secrete some

proteins (like Vascular Endothelial Growth Factor, or VEGF). This leads to the next

10
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stage: the proliferation or reepithelialisation phase. At this point VEGF and other

substances stimulate the growth and aggregation of the surrounding cells, restoring

the different tissue functions. The clot is slowly substituted by a “temporary skin”

called granulation tissue and the interrupted blood and lymphatic capillary net-

works are restored in processes named (blood) angiogenesis and lymphangiogenesis,

respectively. After a lengthy period the granulation tissue is replaced by normal

skin; this happens during the final, long phase of remodelling, which can take up to

one or two years.

Although wound healing has been studied extensively and the main underlying

mechanisms are well understood, little is known about how lymphangiogenesis takes

place. Far more biological (and mathematical) literature has been produced about

its sibling process, blood angiogenesis; it was not until the 1990s that lymphangio-

genesis received significant attention from researchers [2, 15, 40]. This discrepancy

was mainly due to the previous lack of markers and information on the growth fac-

tors involved in the lymphangiogenesis process; such a dearth of biochemical tools

impeded a detailed and quantifiable study of lymphatic dynamics [40, 191]. For

biological reviews about lymphangiogenesis see [129, 187, 247] and for particularly

significant biological research papers see [20, 26, 223].

Naively, lymphatic vessels may appear “interchangeable” with their blood equiv-

alents from a modelling perspective. However, it is stressed that the two vasculatures

are quite different; for biological papers comparing lymphangiogenesis with (blood)

angiogenesis see [2, 149, 244]. First of all, the capillary structure is completely dis-

tinct: while blood vessel walls are relatively thick, surrounded by smooth muscles

which pump the blood around the body, lymphatic capillaries are made of a sin-

gle layer of endothelial cells known as lymphatic endothelial cells (LECs) [187] (see

Figure 2.1).

Moreover, the formation of new lymphatic capillaries, or the restoration of pre-

existing ones, is very different from blood angiogenesis. While growing blood cap-

illaries are known to sprout from existing interrupted ones, several studies suggest

that lymphangiogenesis occurs in a different way [15, 182]. For instance, in [223] it

11
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Figure 2.1: This figure, from [187, Figure 2], shows the structural differences between
blood and lymphatic vessels.

is observed that LECs migrate as single cells in the direction of interstitial flow and

after sufficient numbers have congregated in the wound region, they organise into

vessels (see Figure 2.2).

Figure 2.2: The photo is taken from [20, Figure 2] and shows lymphatic channels
formation in the mouse tail. Note that at day 10 (a) fluid channelling is not observed,
but at day 25 (b) discrete channels are present and at day 60 (c) a hexagonal
lymphatic network is nearly complete. Notice also that lymph and interstitial fluid
flows from left (tail tip) to right (tail base): this is in contrast to what happens
during blood angiogenesis, which occurs equally from both sides of the implanted
tissue equivalent. In [20] the authors use a new model of skin regeneration consisting
of a collagen implant in a mouse tail (whose location is indicated by the dashed lines
in the picture). The aim of the experiment is mainly to characterise the process of
lymphatic regeneration. Lymph fluid is detected (green in the photograph) and in
[20] it is shown that LECs follow this fluid. Therefore, this photo can be seen as the
migration of LECs into the wound. (Bar=1mm)

We are therefore facing a new process whose mathematical description cannot be

directly drawn from any previous model for blood angiogenesis. In the following sec-

tion more details are given about the lymphangiogenesis process and a mathematical

model is proposed.
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2.2 Modelling

2.2.1 Brief review of existing models

Being of such a complicated nature and evident medical interest, wound healing

has been the subject of mathematical modelling for decades; see for instance [235,

254] for the first models in the 1990s, [234] for a 2002 review and [94] for a 2010

review. A variety of mathematical formalisms have been involved in wound models:

from classical PDEs [50, 192, 235], often derived from bio-mechanical considerations

[90, 179], to stochastic models [23], to discrete models [52]. Some authors have

used moving boundary methods to study the movement of the wound edge during

healing [114], and attempts have been made to understand more specific aspects of

the healing process, for example macrophage dynamics in diabetic wounds [271] and

the resolution of the inflammatory phase [66]. One aspect of wound healing that

has received considerable attention from mathematicians is (blood) angiogenesis

(see, for instance, [27, 34, 85, 92, 158, 204, 226, 286]). A comprehensive review

of mathematical models for vascular network formation can be found in Scianna

et al.’s 2013 review [229]. Little work has been done with regards to modelling

lymphangiogenesis and, indeed, [229] cites only a limited number of mathematical

works concerning this topic. Of these a representative sample is given by [89, 203],

which deal with tumour lymphangiogenesis, and [218], which describes the collagen

pre-patterning caused by interstitial fluid flow. More specifically, [218] uses the

physical theory of rubber materials to develop a model explaining the morphology

of the lymphatic network in collagen gels, following the experimental observations of

[20]. This is the only existent model for lymphangiogenesis in wound healing known

to the authors. A further brief review of lymphatic modelling can be found in [164],

where the phenomenon is approached from an engineering perspective.

In summary, a small number of papers have considered modelling the lymphan-

giogenesis process in the context of tumours; the modelling of lymphangiogenesis in

wound healing is confined to [218], where two fourth order PDEs are used to de-

scribe the evolution of the collagen volume fraction and of the proton concentration
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in a collagen implant. That work does not address the healing process as a whole

which is the aim of the present chapter. Here a simple model (comprised of a system

of ODEs) is presented that provides an effective description of the main dynamics

observed in wound healing lymphangiogenesis.

2.2.2 Model development

In the present model five time-dependent variables are considered: two chemical

concentrations (TGF-β and VEGF) and three cell densities (macrophages, LECs

and lymphatic capillaries). Their interactions are described in Figure 2.3 and the

formulation of the ODE model is based on the following set of processes (the full

system is given by the set of equations (2.10)). The initial (or pre-wounding) state

is altered when latent TGF-β is activated (thus becoming active TGF-β, denoted in

the sequel by T ) by macrophages and enzymes released immediately after wounding.

This active form of TGF-β attracts more macrophages (M) to the wound site,

through chemotaxis. Macrophages in turn produce VEGF (V ), a growth factor that

chemoattracts and stimulates the proliferation of LECs (L). Note that LEC growth

is also inhibited by TGF-β. In the final stage of the process, LECs cluster in a

network structure, transdifferentiating into lymphatic capillaries (C). This latter

process happens spontaneously, although it is enhanced by VEGF.

In the following the time-dependent variables introduced above are discussed

in detail. In particular, the derivation of the corresponding evolution equation is

individually presented for each variable.

TGF-β This chemical is normally stored in an inactive or latent form in the body;

however, only active TGF-β plays an important role in wound healing lymphan-

giogenesis, and therefore we will only consider the dynamics of the active chemical.

Effectively, the active TGF-β protein is bound to a molecule called Latency Asso-

ciated Peptide, forming the so-called Small Latent TGF-β Complex; this in turn

is linked to another protein called Latent TGF-β Binding Protein, overall forming

the Large Latent TGF-β Complex [250]. Hence, the two “peptide shells” must be

removed before the organism can use the TGF-β.
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Latent
TGF-β

Active
TGF-β

VEGF

Macrophages LECs Capillaries

Figure 2.3: A schematic representation of the model dynamics. The five time-
dependent variables correspond to the levels of the factors in each of the rectangular
boxes; the quantity in the circle (latent TGF-β) is assumed constant. Concern-
ing the arrows, dashed red denotes chemotactic attraction, solid green denotes
activation/transdifferentiation, dotted blue denotes production/enhancement and
dash-dotted orange denotes inhibition.

Another feature of this growth factor is that it exists in at least three isoforms

(TGF-β1, 2 and 3) which play different roles at different stages of wound healing

[36]. The isoform of primary interest in our application is TGF-β1.

The differential equation describing (active) TGF-β concentration has the fol-

lowing form:

change in

TGF-β

concentration

=

activation by

enzymes and

macrophages

× latent TGF-β − decay.

A review of the activation process is presented in [250] where it is reported

that TGF-β can be activated in two ways. The first is enzyme-mediated activation

whereby enzymes, mainly plasmin, release the Large Latent TGF-β Complex from

the ECM and then the Latency Associated Peptide binds to surface receptors. The

second form of activation is receptor-mediated activation. Here cells bind the Latency

Associated Peptide and later deliver active TGF-β to their own TGF-β-Receptors

or to the receptors of another cell. This behaviour is often observed in activated

macrophages [97, 188].
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Thus both enzyme concentration and macrophage density M are influential in

the activation process and thereby appear in the activation term, app0e
−apTLt +

aMM . Here ap and aM denote the activation rates by enzymes and by macrophages,

respectively. TL denotes the (constant) amount of available latent TGF-β (more

details in the next paragraph). In addition, the enzyme/plasmin concentration is

assumed to decrease exponentially from the initial value p0, as in [51]; this reproduces

quite well the enzyme dynamics in real wounds [237].

It is widely accepted that a variety of cells have the potential to secrete latent

TGF-β, including platelets, keratinocytes, macrophages, lymphocytes and fibrob-

lasts [11, 124, 250]. Moreover, this latent complex is stored in the ECM in order

to be constantly available to the surrounding cells [236]. This fact is manifested

in a constant production rate TL in our model equation. Furthermore, it is well

known that macrophages secrete latent TGF-β [124], we assume that this occurs at

a constant rate r1. Together these considerations imply that the amount of available

latent TGF-β in the wound will be modelled by TL+r1M . Finally, TGF-β naturally

decays at rate d1, so the term −d1T will be included in the differential equation.

Therefore, the full equation for active TGF-β is

dT

dt
= [app0 exp(−apTLt) + aMM ] · [TL + r1M ]− d1T . (2.1)

Macrophages These are a type of white blood cell that removes debris, pathogenic

microorganisms and cancer cells through a process known as phagocytosis (as in

Figure 2.4). They are produced by the differentiation of monocytes and are found

in most of the tissues, patrolling for potential pathogens.

Perversely, in addition to enhancing inflammation and stimulating the immune

system, macrophages can also contribute to decreased immune reactions. For this

reason they are classified either as M1 (or inflammatory) macrophages if they en-

courage inflammation, or as M2 (or repair) macrophages if they decrease inflamma-

tion and encourage tissue repair [166]. Henceforth we restrict attention to inflam-

matory macrophages, since they are the most involved in lymphangiogenesis-related

processes. A useful review of the multifaceted and versatile role of macrophages in
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Figure 2.4: Macrophage engulfing bacteria as part of the immune system’s response
to infection. Credit: Dr. David Phillips/Visuals Unlimited/Corbis.

wound healing can be found in [217].

The following scheme will be considered for macrophage dynamics:

change in

macrophage

density

=
constant

source
+

chemotaxis

by TGF-β
+

logistic

growth
−

removal

and differ-

entiation.

The various terms appearing in the right-hand side of this equation are discussed

below.

The number of inflammatory macrophages increases due to their migration into

the wound, in part due to movement of existing inflammatory macrophages from

the surrounding tissue, as well as by chemotaxis of monocytes up gradients of

TGF-β [265], a fraction α of which differentiate into inflammatory macrophages

[163]. The former is modelled by assuming a constant source sM dictated by

the non-zero level of inflammatory macrophages [272], and the latter by the term

αh1(T ) = αb1T
2/(b2 + T 4). Here h1(T ) is the “chemotactic function”, whose form

is discussed in detail in Appendix A.1. Only a (small) percentage β of macrophages

undergo mitosis [100]; we thus assume the logistic growth term βr2M (1−M/k1)

where r2 denotes the macrophage growth rate and k1 the carrying capacity of the

wound. Notice that here onlyM appears over the carrying capacity and the other cell

types L and C are omitted. However, since the logistic term is small overall, adding

L and C here would just increase the numerical complexity of the system without

adding any significant contribution to the dynamics of the problem. This is reflected
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in the parameter sensitivity analysis provided later in the paper, and simulations

(not shown) including all populations showed no appreciable difference. Finally, in-

flammatory macrophages can die, differentiate into repair macrophages or be washed

away by the lymph flow. This is embodied in the removal term −(d2 +ρC)M , where

d2 denotes the constant death rate. Here polarisation and removal are considered

to be linearly proportional to the capillary density C through the coefficient ρ: in

particular, capillary formation is an index of progression through the healing process

and, to reflect the decreased requirement for inflammatory macrophages as wound-

ing proceeds, we assume the polarisation/removal rate increases with the size of C.

Combining these observations one derives the macrophage equation

dM

dt
= sM + α

b1T
2

b2 + T 4
+ βr2M

(
1− M

k1

)
− (d2 + ρC)M . (2.2)

VEGF This is a signal protein whose main function is to induce the formation

of vascular networks by stimulating proliferation, migration and self-organisation

of cells after binding to specific receptors on their surface. There are many kinds

of VEGF: while VEGF-A and VEGF-B are involved mainly in blood angiogene-

sis, VEGF-C and VEGF-D are the most important biochemical mediators of lym-

phangiogenesis via the receptor VEGFR3 (although VEGF-C can also stimulate

angiogenesis via VEGFR2 – see Figure 2.5). For a comprehensive description of the

growth factors involved in lymphangiogenesis see [118, 148]. Henceforth “VEGF”

refers to VEGF-C (and, to a lesser extent, VEGF-D), unless otherwise stated.

Figure 2.5: This picture, from [109, adapted from Figure 1], summarises the effects
of different VEGF types on lymphatic and blood endothelial cells.
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For VEGF we assume the following dynamics:

change in

VEGF

concentration

=
constant

source
+

production by

macrophages
− decay − use by

LECs.

Since the normal VEGF level in the skin is nonzero [107, 196], it is assumed there

is a constant source sV of this growth factor from the surrounding tissues. VEGF

is produced by several cells, but macrophages are considered to be one of its main

sources in the context of wound healing [130, 279]. It is therefore natural to add

the production term +r3M to the VEGF equation, where r3 is the production rate

of the chemical by macrophages. On the other hand, the VEGF level is reduced

by natural decay at constant rate d3, taken into account by the term −d3V . In

addition VEGF is internalised by cells: effectively, LECs use VEGF to divide and

form capillaries [168, 284]; it is assumed this process occurs at a constant rate γ,

leading to the term −γV L. Thus, in this model the equation for VEGF dynamics

is

dV

dt
= sV + r3M − d3V − γV L . (2.3)

LECs As discussed above, lymphatic vessel walls are made of (lymphatic) endothe-

lial cells. The equation describing the presence of LECs in the wound consists of

the following terms:

change in

LEC

density

=

growth,

upregulated by

VEGF and

downregulated

by TGF-β

+

inflow and

chemotaxis

by VEGF

−
crowding

effect and

apoptosis

−

transdiffer-

entiation

into

capillaries.

LEC growth is upregulated by VEGF [16, 275, 284] and downregulated by TGF-β

[178, 242]. The former observation is described mathematically by augmenting the

normal/basal constant growth rate c1 with V in an increasing saturating manner

through the parameters c2 and c3. To account for the latter, the growth term is

multiplied by a decreasing function of T . Explicitly, the whole proliferation term is

(
c1 +

V

c2 + c3V

)(
1

1 + c4T

)
L (2.4)
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where c4 takes into account the “intensity” of the TGF-β inhibition on LEC growth.

It is assumed that LECs are brought into the wound by lymph flow at a constant

rate sL and are chemoattracted by VEGF [16, 247]. Considering a chemotactic

function h2(V ) of the same form as that used for TGF-β-mediated chemotaxis (see

Appendix A.1), these phenomena are captured by the terms

sL + h2(V ) = sL +
b3V

2

b4 + V 4
.

Since both of these movements originate from the interrupted lymphatic vasculature

at the edges of the wound, this flow will tend to decrease as the lymphatic network

is restored. Hence, supposing a linear correlation between the term above and the

lymphatic regeneration, the former is multiplied by the piecewise linear function

f(C) defined by

f(C) =

 1− C
C∗ if C < C∗

0 if C ≥ C∗
. (2.5)

Here C∗ is a capillary density threshold value above which the lymphatic network

is functional and uninterrupted and LEC flow stops. Hence the final term for LEC

inflow and chemotaxis is (
sL +

b3V
2

b4 + V 4

)
f(C) . (2.6)

LEC growth is limited by over-crowding of the wound space, a fact that is taken

into account by the negative term −L(M + L+ C)/k2 where k2 relates to the car-

rying capacity. Finally, individual or small clusters of LECs migrate into the wound

and later form multicellular groups that slowly connect to one another, organising

into vessel structures [20, 223]. Here it is assumed that when LECs are sufficiently

populous (that is, their density becomes larger than a threshold value L∗) they self-

organise into capillaries at a rate which depends linearly on VEGF concentration

via the term δ2V . In particular, endothelial cells tend to form network structures

spontaneously (at a constant rate δ1, say) but the rate is increased by the pres-

ence of VEGF [209]. These observations result in the transdifferentiation term
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−σ(L,C) · (δ1 + δ2V )L where σ(L,C) is the step function

σ(L,C) =

 1 if L+ C ≥ L∗

0 if L+ C < L∗
. (2.7)

Note that σ depends both on L and C: this is justified by the observation that the

self-organisation process begins when L reaches the threshold L∗ and then continues

as LECs start forming the first capillaries. Therefore the complete LEC equation is

dL

dt
=

(
c1 +

V

c2 + c3V

)(
1

1 + c4T

)
L+

(
sL +

b3V
2

b4 + V 4

)
f(C)

−M + L+ C

k2

L− σ(L,C) · (δ1 + δ2V )L. (2.8)

Lymphatic capillaries We assume that the lymphatic capillaries form simply

from the self-organisation of LECs into a network structure. Thus the capillary

formation term is just the transdifferentiation term from the LEC equation above

and the dynamics of C are modelled by

dC

dt
= σ(L,C) · (δ1 + δ2V )L . (2.9)

The full system of equations is therefore given by
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dT

dt
= [app0 exp(−apTLt) + aMM ]︸ ︷︷ ︸

activation by
enzymes & MΦs

· [TL + r1M ]︸ ︷︷ ︸
latent TGF-β

− d1T︸︷︷︸
decay

dM

dt
= sM︸︷︷︸

constant
source

+ α
b1T

2

b2 + T 4︸ ︷︷ ︸
chemotaxis
by TGF-β

+ βr2M

(
1− M

k1

)
︸ ︷︷ ︸

logistic growth

− (d2 + ρC)M︸ ︷︷ ︸
removal and

differentiation

dV

dt
= sV︸︷︷︸

constant
source

+ r3M︸︷︷︸
production

by MΦs

− d3V︸︷︷︸
decay

− γV L︸︷︷︸
use by LECs

dL

dt
=

(
c1 +

V

c2 + c3V

)(
1

1 + c4T

)
L︸ ︷︷ ︸

growth upregulated by VEGF
and downregulated by TGF-β

+

(
sL +

b3V
2

b4 + V 4

)
f(C)︸ ︷︷ ︸

inflow and
chemotaxis by VEGF

(2.10)

−M + L+ C

k2

L︸ ︷︷ ︸
crowding effect
and apoptosis

−σ(L,C) · (δ1 + δ2V )L︸ ︷︷ ︸
transdifferentiation

into capillaries

dC

dt
= σ(L,C) · (δ1 + δ2V )L︸ ︷︷ ︸

transdifferentiation of LECs

where f(C) and σ(L,C) are defined in (2.5) and (2.7), respectively.

2.2.3 Parameters and initial conditions

Parameters Table 2.1 gives a full list of parameter values, their units and the

sources used for their estimation in the normal (non-diabetic) case. It is remarked

that great care was put into assessing the parameter values, and of the 31 param-

eters listed in the table, 25 have been estimated from biological data. A detailed

description of the estimation of each parameter can be found in Appendix A.1.

Initial conditions In the present model, the initial time-point t = 0 corresponds

to the release of enzymes by platelets within the first hour after wounding [237, 238].

The initial amounts of active TGF-β, macrophages and VEGF are taken to be their

equilibrium values, estimated from experimental data as shown in Table 2.2. It is

assumed that there are no endothelial cells or capillaries at t = 0.
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parameter value units source

ap 2.9× 10−2 mm3pg−1day−1 [54]
p0 2.5× 105 pg mm−3 no data found
aM 0.45 mm3cells−1day−1 [97, 188]
TL 18 pg mm−3 ([189])
r1 3× 10−5 pg cells−1day−1 [124]
d1 5× 102 day−1 [120]

sM 5.42× 102 cells mm−3day−1 ([272])
α 0.5 1 [271]
b1 8× 108 cells pg2(mm3)−3day−1 ([186])
b2 8.1× 109 (pg mm−3)4 [265, 283]
β 5× 10−3 1 [100]
r2 1.22 day−1 [289]
k1 6× 105 mm3cells−1 [289]
d2 0.2 day−1 [44]
ρ 10−5 day−1cells−1 [223]

sV 1.9 cells day−1 ([107, 196])
r3 1.9× 10−3 pg cells−1day−1 ([130, 233])
d3 11 day−1 [131]
γ 1.4× 10−3 mm3cells−1day−1 [155]

c1 0.42 day−1 [183]
c2 42 day [275]
c3 4.1 pg day mm−3 [275]
c4 0.24 mm3pg−1 [178]
sL 5× 102 cells day−1 no data found
b3 107 cells pg2(mm3)−3day−1 no data found
b4 8.1× 109 (pg mm−3)4 estimated ≈ b2
C∗ 104 cells mm−3 [223]
k2 4.71× 105 cells day mm−3 [183]
L∗ 104 cells mm−3 [223]
δ1 5× 10−2 day−1 no data found
δ2 10−3 mm3pg−1day−1 no data found

Table 2.1: A list of all the parameters appearing in the model equations (details
of the estimation are provided in Appendix A.1). Each one is supplied with its
estimated value, units and source used (when possible) to assess it. References
in brackets mean that although the parameter was not directly estimated from a
dataset, its calculated value was compared with the biological literature; the caption
“no data found” signifies that no suitable data were found to estimate the parameter.
Concerning the VEGF value corresponding to maximum LEC chemotaxis b4, it was
assumed that its value is similar to its TGF-β correspondent b2; this choice was
dictated by the lack of relevant/applicable biological data, to the authors’ knowledge.
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init.value value units source

T (0) 30 pg/mm3 [283]
M(0) 1875 cells/mm3 [272]
V (0) 0.5 pg/mm3 [107, 196]
L(0) 0 cells/mm3 assumption
C(0) 0 cells/mm3 assumption

Table 2.2: Values of the model variables at t = 0.

2.3 Results and analysis

We now present a typical solution of the system (2.10) and compare it with biological

data. The system is solved numerically with the MatLab standard ODE solver ode45

with relative tolerance 10−6 and absolute tolerance 10−9 over a time interval of 100

days. It is remarked that the present model chiefly addresses inflammation and

the early proliferation stage of the wound healing process. In healthy subjects the

inflammatory phase starts a few hours after injury and lasts approximately 1 or 2

weeks, but it is prolonged in diabetic patients. Moreover, lymphangiogenesis occurs

between 25 and 60 days after wounding, much later than blood angiogenesis which

is observed between day 7 and day 17 [15, 223]. Thus, the equations are expected to

realistically describe the phenomenon for about the first 100 days post-wounding.

The TGF-β level is expected to display a rapid spike in the first day post injury

before returning to its equilibrium value [283]. In Figure 2.6 the simulation output

is compared with a biological dataset. Both demonstrate the expected initial spike,

but in the data a second peak is visible around day 5, reported also in [186]. We

recall that TGF-β exists in at least three known isoforms: TGF-β1, TGF-β2 and

TGF-β3; the biological data set concerns all kinds of TGF-β involved in other wound

healing processes, such as collagen deposition, which are not modelled here (the time

dynamics of the different TGF-β isoforms can be found in [281]). Nevertheless, the

overall predicted trend of TGF-β concentration in the wound matches the biological

reality fairly well.

Macrophage levels are observed to reach a peak approximately 5 days after injury

before returning to their equilibrium level [186]. Again the model prediction is

consistent with the biological literature, as in Figure 2.7.

VEGF is also reported to reach its maximum concentration 5 days after wounding
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[233]. This is unsurprising given the above macrophage dynamics and the fact

that macrophages are understood to be primarily responsible for the production of

the protein. Once again there is a strong correlation between the results of the

theoretical model and experimental observations, as shown in Figure 2.8.

LEC levels are expected to increase immediately after wounding but only later

do the LECs self-organise into capillaries, around day 25 [223]. This is reflected in

the simulation shown in Figure 2.9. Here LECs proliferate in the wound space until

reaching the threshold level L∗ = 104 around day 20. They then start agglomerating

into capillary structures, commencing the lymphangiogenesis process proper.

2.3.1 Modelling the diabetic case

In order to simulate the diabetic case, some parameter values are changed as de-

scribed in the following. Unfortunately, it is difficult to obtain precise quantitative

assessment of the appropriate changes, and therefore the values chosen here only

have a qualitative significance.

Several studies report that the TGF-β level is significantly lower in diabetic

wounds compared with controls. This seems to be caused by impaired TGF-β

activation both by platelets and macrophages and by reduced production of TGF-β

by macrophages [3, 173, 281]. These features of the diabetic case are modelled by

applying the following modifications to the parameters:

adiabp =
1

2
anormp < anormp , adiabM =

1

2
anormM < anormM .

Furthermore, in diabetic wounds the macrophage density is higher than normal. In

particular, the inflammatory macrophage phenotype persists through several days

after injury, showing an impaired transition to the repair phenotype [173]. In ad-

dition, macrophage functions (such as phagocytosis and migration) are impaired in

the diabetic case [126, 280]. These differences from the normal case are reflected in
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Figure 2.6: A comparison of the simulation output for the time course of TGF-β
concentration with data from [283, Figure 2], showing the time course of active
TGF-β generation during wound repair in rats.

Figure 2.7: A comparison between model and experimental data for the time course
of macrophage density. Experimental data taken from [186, Figure 3c]: note that
the time-course comparison here is against the black bars, representing macrophage
numbers in normal (wild-type) mice.

Figure 2.8: A comparison of the simulation output for the time course of VEGF
concentration with data from [233, adapted from Figure 2], where VEGF was mea-
sured in rat wound fluid (note that the units on the vertical axis are pg/mL, where
1000 pg/mL = 1 pg/mm3, and that here we reported only the median values).

Figure 2.9: Simulation output for the time course of LEC density, lymphatic cap-
illary density and their sum. Note that the sum density has also been plotted the
sum, since LEC and capillary cells are difficult to differentiate and any cell counts
are likely to reflect the total density of these two cell types.
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the following choice of parameter changes:

αdiab = 0.8 > αnorm, bdiab1 = 3
4
bnorm1 < bnorm1 ,

ddiab2 = 1
2
dnorm2 < dnorm2 , rdiab3 = 1

2
rnorm3 < rnorm3 .

Finally, it is reported that endothelial cell proliferation is markedly reduced in

diabetic wounds when compared with the normal case [48, 53, 132] (a detailed discus-

sion of endothelial dysfunction in diabetes can be found in [28]). This phenomenon

is reflected in the model by reducing the basal proliferation rate of endothelial cells:

cdiab1 =
1

2
cnorm1 < cnorm1 .

A summary of some of the differences between normal and diabetic wounds can

be found in Figure 2.10.

Figure 2.10: A summary of the differences between normal and diabetic wound
healing, from [24, Figure 1].
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2.3.2 Comparison of results in the normal and diabetic cases

Figures 2.11-2.14 show numerical simulations of the model comparing the time-

course of the five model variables in the normal (blue solid line) and diabetic (red

dashed line) case.

TGF-β The level of TGF-β recorded in diabetic wounds is lower than in the normal

case, at least in the first 20 days after injury [3, 173, 281]. Model simulations are

consistent with this observation (Figure 2.11).

Figure 2.11: Time course of TGF-β concentration in normal and diabetic wounds
as predicted by the model and as found empirically in [281, Figures 3G and 3H],
where the authors study molecular dynamics during oral wound healing in normal
(blue lines) and diabetic (red lines) mice.

Macrophages Experiments show that the density of macrophages in diabetic

wounds is higher than in the normal case and they persist for longer in the wound

site [173, 217, 280]. Model simulations match these observations (Figure 2.12).

VEGF The VEGF level during wound healing is lower in diabetic patients [3,

173]. In fact, as described below, a key target for the design of new therapies has

been increasing VEGF levels. The simulation output and a biological dataset are

compared in Figure 2.13.

LECs & Capillaries In diabetic patients, lymphatic capillary formation is delayed

and insufficient [5, 167, 224]. The model simulations are consistent with this fact

(Figure 2.14).
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Figure 2.12: Time course of macrophage density in the normal and diabetic cases.
We compare the model prediction with [173, Figure 1B]. In the experimental results,
the relative height of shaded to solid white bars indicates the relative macrophage
density in diabetic/non-diabetic wounds in mice (assessed via Ly6C expression, a
marker for the macrophage lineage).

Figure 2.13: Time course of VEGF in normal and diabetic case wounds. Compare
the simulation with the data reported in [3, Figure 2G], representing VEGF presence
in control (white bars) and diabetic (black bars) rats. In fact, [3] investigates the
connection between a defect in resolution of inflammation and the impairment of
TGF-β signaling, resulting in delayed wound healing in diabetic female rats. The
abbreviations in the legend stand for: C, control; D, diabetic; E2, diabetic-treated
with estrogen; TNFR1, diabetic treated with the TNF receptor antagonist PEG-
sTNF-RI; VEGF, vascular endothelial growth factor.

Figure 2.14: Time course of LEC and capillary density in normal and diabetic
cases, compared with [167, Figure 2b]. The study presented in [167] investigates the
role of wound-associated lymphatic vessels in corneal inflammation and in a skin
wound model of wild-type and diabetic mice. The figure shows a quantification of
lymphangiogenesis in the corneal suture model assay in the wild-type (db/+) and
diabetic (db/db) cases. No suitable data were found in the skin wound model.
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2.3.3 Analysis of the model

In this section the steady states of the system are identified and a sensitivity analysis

of the model parameters is performed.

Steady States

For the parameter set studied, at t = 0 there are no LECs in the wound, but subse-

quently they increase towards a positive value of approximately 2× 105 cells/mm3.

However, when they reach the “threshold” density L∗ = 104 cells/mm3, the system

steady states change and L starts to decrease towards zero. In the meantime, lym-

phatic capillaries start forming; their final value will depend on the dynamics of the

system, but in any case it will be bigger than C∗ = 104 cells/mm3. This “switch”

in the steady state values is due to the presence of two piecewise defined functions

(σ and f) in the system. On the other hand, there is always one stable steady state

for M which also defines one for T :

M eq ≈ 1875 cells/mm3 and T eq =
aM
d1

(TL + r1M
eq)M eq ≈ 30 pg/mm3 .

Note that the M -steady state (and thus also that for T ) is unique for parameters

with biologically relevant values. For the V -equilibrium, the following expression is

found:

V eq =
sV + r3M

eq

d3 + γLeq
.

Note that V eq depends on L; therefore V will tend to different values according to

the current L-steady state; for Leq = 0 it is V eq = 0.5 pg/mm3. Details about how

these steady states were determined can be found in Appendix A.2.

The stability of the steady states is determined numerically. The stability of M eq

is deduced from the shape of the numerically-plotted M -nullcline, and the stability

of the other steady states can be inferred from the simulations of the full system.

See for instance the simulation shown in Figure 2.15, where the model is run over a

time interval of 250 days: here it is evident that all the variables tend to stay at a

stable value after about 100 days post-wounding. Since some of the parameters were

modified to simulate diabetes-related conditions, the steady states for the diabetic
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Figure 2.15: Simulation of the model in both normal (solid blue) and diabetic
(dashed red) cases over a time period of 250 days.

case are different than the corresponding “normal” ones. In particular, TGF-β,

VEGF and capillary equilibrium values are lower in the diabetic case, while the

macrophage level is higher than in the normal case. LECs go to zero in both cases.

Although this analysis does not give very profound insights into the understand-

ing of lymphangiogenesis, it provides some extra information about the dynamics of

the system. More specifically, it shows that for realistic parameter values the system

has only one steady state, which is in agreement with experimental observations.

Parameter Sensitivity Analysis

Here a numerical parameter sensitivity analysis of the model is presented which

plays two important roles. On the one hand, it demonstrates which parameters are

most significant in the model, and thereby provides a deeper understanding of the

dynamics of the system. On the other hand, it constitutes the first step towards the

design of new therapeutic approaches.
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To estimate the dependence of the model on a given parameter p, a quantification

of the affect of a change in p on the (final) capillary density C at day 100 is calculated.

To begin, p is increased by 10% and thereafter the system is solved over the time

interval [0, 100]. The final value of the capillary density thus obtained, denoted

C+10%, is then compared with the reference value Cref of the corresponding density

in the original system. The percentage change in C is defined by

100× C+10% − Cref

Cref
. (2.11)

The same procedure is then repeated, this time substituting the parameter p with

its value decreased by 10% and the corresponding change C−10% is calculated. The

results are summarised in Figure 2.16.

Figure 2.16: Percentage change in the final capillary density C(100) when every
parameter is increased/decreased by 10%.

It is notable that perturbing any parameter does not result in a percentage change

in final capillary density of more than 15%. Thus, the model is quite robust in terms

of dependence on the parameters. Percentage changes over 5% are observed only

for eight parameters. Of these, one needs to decrease aM , TL, sM or c4 to observe

an increase in the final capillary density; while a similar enhancement is obtained

by increasing d1, d2, c1 or k2.
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2.4 Therapies

2.4.1 Existing experimental treatments

Although there is at present no approved therapy for enhancement of lymphangio-

genesis (in wound healing or in any other context), many studies and experiments

have been published exploring potential treatments. In the following three such

experiments are reported and then simulated.

Administration of TGF-β Receptor-Inhibitor This substance binds to the

TGF-β receptors on the surface of surrounding cells, thus making them “insensitive”

to TGF-β molecules and their effect. [190] reports a study of the effect of TGF-

β on lymphangiogenesis in which human LECs are cultured and quantified after

treatments with TGF-β1 or TβR-I inhibitor to assess cell growth, cord formation

and cell migration. It is observed that TGF-β1 treatment decreases cord formation,

while TβR-I inhibitor treatment increases it. These results are consistent with those

found in [42], where it is reported that a higher level of TGF-β1 is associated with

delayed recruitment and decreased proliferation of LECs during wound repair.

To simulate the treatment with TβR-I inhibitor, the cell migration assay is con-

sidered. Here, the inhibitor was added at 3 µM = 817 pg/mm3 (the molecular

weight is 272). Since this is significantly bigger than the concentration of TGF-β in

our model and in normal skin (in both cases the maximum level is 300 pg/mm3),

this treatment is simulated by setting the parameters α and c4 equal to zero (that

is, TGF-β molecules have no effect on cells because their receptors are “occupied”

by the inhibitor). The effect of this “virtual treatment” are shown in Figure 2.17,

and match well with the described TGF-β inhibitor experiment: LEC and capillary

densities are markedly increased by the treatment.

Macrophage-based treatments Another therapeutic approach is to add macro-

phages to the wound, so that they secrete VEGF and other substances that are

known to induce lymphangiogenesis. In [121] an “opposite” experiment is imple-

mented: here a systemic depletion of macrophages is reported to markedly reduce

lymphangiogenesis. This is in accordance with [270], in which it is observed that
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Figure 2.17: Time courses of T , M , V , L, C and L+C in a simulation of the TβR-I
inhibitor experiment described in [190].

the induction of macrophage apoptosis inhibits IL-1β-induced lymphangiogenesis.

One hypothesis suggested to explain such results is that because of the reduced

level of macrophages, less VEGF is produced and this impairs LEC proliferation

and capillary formation.

We simulated the increase in macrophage apoptosis by taking a bigger (for in-

stance, the double) value of d2 in the system. The output of the model in which

d2 is doubled (both in normal and diabetic cases) is reported in Figure 2.18. In

this case, the output is in contrast with what is described in the biological studies:

although fewer macrophages and consequently less VEGF are present, more LECs

and capillaries form after the simulated treatment.

This result could be explained by the fact that, in the model, a reduction in

macrophage density implies a reduction in TGF-β level, so that the inhibition of

LEC proliferation is smaller and hence there are more endothelial cells to form the

capillaries. In fact, in the previous section it was found that the system is much

more sensitive to c4 than to c2, c3 or δ2. It is then natural to consider the effect of

fixing T = 30 pg/mm3 in the LEC growth term (2.4); this level of T corresponds to

the TGF-β equilibrium. The simulation output in this case is shown in Figure 2.19.

With T fixed, the difference between the treated and untreated cases is very
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Figure 2.18: Time courses of T , M , V , L, C and L + C in a simulation of the
macrophage-depletion experiment described in [121].

Figure 2.19: Time courses of T , M , V , L, C and L + C in a simulation of the
macrophage-depletion experiment described in [121], where the T in the LEC growth
inhibition term is substituted by T eq = 30 pg/mm3.
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small, but still an increase in capillary formation is observed in spite of the lower

VEGF level. This may be due to the fact that, with fewer macrophages, the crowding

term in the LEC equation is smaller, which facilitates the growth and accumulation

of endothelial cells. In fact, if the M in the crowding term is fixed at its equilibrium

value of 1,875 cells/mm3, there is no difference at all between treated and untreated

cases. Note that this result could have been foreseen from the parameter sensitivity

analysis (Figure 2.16) which predicted that a 10% increase in d2 induces a 5 to 10%

increase in final capillary density.

VEGF supply A third documented approach to enhance lymphangiogenesis con-

sists of supplying VEGF to the wound, since this protein promotes both LEC growth

and the ability of LECs to form a network-like structure. For instance, in [287]

a wound healing assessment is done in normal and diabetic mice after a VEGF-

treatment. More precisely, two different types of VEGF were studied: VEGF-A164

and VEGF-ENZ7. The authors observed that the treatment with VEGF-A164 in-

creased macrophage numbers and the extent of lymphangiogenesis in both wild-type

and diabetic cases, while VEGF-ENZ7 did not induce any significant change.

In order to reproduce the experiment in silico, the amount of supplied VEGF

is estimated in Appendix A.1.4. Then, a 10 days constant VEGF supply of 1.8 ×

102 pg/mm3 is introduced in the model system. The output is reported in Figure

2.20. There is apparently no difference between capillary formation of treated and

untreated cases. Moreover this result is relatively insensitive to the amount of VEGF

supplied. What if the same treatment is applied for 30 days instead of 10? A

simulation of this is shown in Figure 2.21.

There is now a clear difference in the treated cases (especially the diabetic one)

showing a lower level of macrophages and an earlier onset of capillary formation,

even if the final capillary density is similar to that in the untreated case.

Observation There is an important feature common to all three modelled thera-

pies: in order to stimulate lymphatic capillary formation one cannot consider TGF-β

or VEGF levels individually. A precise balance of TGF-β and VEGF is necessary for

successful lymphangiogenesis. This mutual equilibrium may be reached in vivo by
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Figure 2.20: Time courses of TGF-β, macrophage, VEGF, LEC and capillary den-
sities in a simulation of the 10-days VEGF-supply experiment described in [287].
Here the original model is altered by adding a constant VEGF supply of 1.8 × 102

pg/mm3 for 0 ≤ t ≤ 10.

Figure 2.21: Time courses of M , L, C and L + C in a simulation of the 30-days
VEGF-supply experiment.

the production of either of these growth factors by other cell types not considered in

the present work. In particular, this suggests the model does not take into account

certain elements of the process. Nevertheless, the model does effectively describe

both normal and diabetic lymphangiogenesis in wound healing which suggests that

the variables considered here are the most relevant. This indicates that potential

therapies should focus on these aspects of the regeneration process.

37



Chapter 2: A model for lymphangiogenesis in normal and diabetic wounds

2.4.2 Novel therapeutic approaches

As mentioned above, parameter sensitivity analysis proves useful in designing novel

therapeutic approaches. Among the “sensitive” parameters only aM , d2 and c1

vary between the normal and diabetic cases (note that the increasing d2-case was

discussed above in the macrophage-based treatment). Thus, at least theoretically,

aM , d2 and c1 are the natural targets for a therapeutic strategy aiming to increase

the final lymphatic capillary density. The feasibility of each suggested parameter

change is now explored.

Decreasing aM Decreasing aM means lowering the macrophage-mediated activa-

tion of TGF-β. First of all, note that the increase in final capillary density due to

a decrease in aM is explained by the fact that less active TGF-β implies less TGF-

β-inhibition of LEC growth and hence a larger LEC growth term. For the practical

implementation of this change, it is recalled that receptor-mediated TGF-β activa-

tion consists of the binding of Latency Associated Peptide to the cell surface through

receptors such as TSP-1/CD36, M6PR and multiple αV-containing integrins [250].

Hence, a decrease of aM might be obtainable by blocking these receptors.

Increasing c1 Increasing c1 would be achieved by increasing the LEC growth rate.

Several possible implementations of this are found in the literature. Recombinant

human IL-8 induces (human umbilical vein and dermal microvascular) endothelial

cell proliferation and capillary tube organisation [142]. DNA dependent protein

kinase (DNA-PK) is well known for its importance in repairing DNA double strand

breaks; in [162] it is observed that DNA-PKcs suppression induces basal endothelial

cell proliferation. In [153] it is reported that polydopamine-modified surfaces were

beneficial to the proliferation of endothelial cells. Finally, non-thermal dielectric

barrier discharge plasma is being developed for a wide range of medical applications,

including wound healing; in particular, [119] reports that endothelial cells treated

with plasma for 30 seconds demonstrated twice as much proliferation as untreated

cells, five days after plasma treatment.

Other parameters To increase the final capillary density, one could also think
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about targeting other parameters to which the system is sensitive. In particular:

• Decreasing TL means reducing available (latent) TGF-β and hence reducing

the TGF-β-inhibition over LECs. Suppression of TGF-β by antibodies has

been proposed as a possible therapy to reduce scar formation [75, 81, 230].

Thus many studies of TGF-β antibodies are available.

• Decreasing c4 involves reducing the (inhibitory) effect of TGF-β on LECs,

which can be achieved by blocking specific TGF-β-receptors on the endothelial

cell surface. Now, TGF-β signalling is very well studied [177]; in particular,

it is known that TGF-β family proteins act through two type II and two

type I receptors and that ALK-1 antagonises the activities of the canonical

TGF-β type I receptor, TβRI/ALK-5, in the control of endothelial function

[56]. Moreover, a few studies have been published which deal with blocking of

TGF-β receptors in the specific case of endothelial cells [144, 259, 268].

• Changes in the other “sensitive” parameters do not appear feasible. Increas-

ing d1 would mean increasing the TGF-β decay rate; decreasing sM would

mean reducing the constant source of macrophages; increasing k2 requires an

increased “carrying capacity” for the wound. We are not aware of practical

approaches that could cause these changes.

• Finally, among the parameters that, when changed by 10% of their value,

induce a change in final capillary density between 2 and 5% (that is, a bit

less than those analysed above), only b1 merits discussion. Reducing b1 corre-

sponds to reducing macrophage chemotaxis towards TGF-β, which might be

achievable by blocking specific receptors on the macrophage surface.

2.5 Conclusions

Our model procures new insights into the mechanisms behind lymphangiogenesis in

wound healing. The major contributors to the process have been identified (TGF-β,

macrophages, VEGF and LECs); the self-organisation hypothesis for the lymphatic
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network formation described in [20, 223] has been confirmed and the importance of

the balance between different factors has been highlighted. Moreover, the present

work suggests novel therapeutic approaches to enhance the lymphangiogenic pro-

cess in impaired wound healing. In addition, nearly all of the relevant parameters

have been estimated from biological data and therefore this work provides fairly

reliable numerical values for the parameters encountered. However, any parameter

estimation is limited by, for example, the specific experimental method used or dis-

crepancies between the system considered here and that studied in a given reference.

The results should therefore be viewed with care. In particular, the numerical values

pertaining to the aforementioned balance between the TGF-β and VEGF may be

shifted under an alteration of the parameter set.

The ODE model presented in this chapter is intended as a first step in studying

wound healing lymphangiogenesis through mathematical modelling. In the next

chapter we will develop a PDE model describing the same phenomenon: the inclusion

of a spatial variable will allow to take into account the important role of lymph and

interstitial flow in lymphatic capillary network formation. Introducing a spatial

variable also enables a fuller description of chemotaxis. The PDE model will also be

able to reflect further differences between angiogenesis and lymphangiogenesis. In

particular, contrary to blood angiogenesis, lymphangiogenesis is unidirectional: as

opposed to sprouting from both sides of the wound, LECs appear to predominantly

migrate downstream to the wound space in the direction of the interstitial flow [20].
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Chapter 3

Spatio-temporal models for wound

healing lymphangiogenesis

This chapter is currently in preparation for publication.

Abstract: Several studies suggest that one possible cause of impaired

wound healing is failed or insufficient lymphangiogenesis, that is the

formation of new lymphatic capillaries. Although many mathematical

models have been developed to describe the formation of blood capillaries

(angiogenesis), very few have been proposed for the regeneration of the

lymphatic network. Lymphangiogenesis is a markedly different process

from angiogenesis, occurring at different times and in response to dif-

ferent chemical stimuli. Two main hypotheses have been proposed: 1)

lymphatic capillaries sprout from existing interrupted ones at the edge of

the wound in analogy to the blood angiogenesis case; 2) lymphatic en-

dothelial cells first pool into the wound region following the lymph flow

and then, once sufficiently populated, start to form a network. Here we

present two PDE models describing lymphangiogenesis according to these

two different hypotheses. Further, we include the effect of advection due

to interstitial flow and lymph flow coming from open capillaries. The

variables represent different cell densities and growth factor concentra-

tions, and where possible the parameters are estimated from real biological
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data. The system is then solved numerically and the results are compared

with the available biological literature.

3.1 Introduction

Interest in lymphatics is not just a mere scientific curiosity: their importance as

pressure regulators in tissues and, moreover, as vectors of the immune response

has been emphasised in recent decades, particularly in the context of wound healing

[109]. The healing of a skin wound is a complex process made of different overlapping

phases that, if well orchestrated by the organism, lead to the restoration of the skin

and vasculature to a healthy, functional condition. Unfortunately, this delicate

sequence of events can fail to proceed to full healing in diabetic or aged patients

[5, 115, 245]; indeed, if the organism response to infection is insufficient, wound

healing does not proceed through all normal stages, halting at the inflammation

stage and resulting in a chronic wound [24, 207].

Non-healing wounds constitute a major health problem, seriously affecting the

patient’s quality of life and accounting for approximately 3% of all health care ex-

penses in the UK [65, 211]. Lymphangiogenesis, or the regeneration of the lymphatic

vasculature, is now regarded as a crucial factor for functional wound healing [39, 117].

Being the main mediators of the immune response, lymphatics seem to significantly

contribute to healing [191, 277] and it has been observed that failed lymphangiogen-

esis correlates with impaired wound healing [5, 167, 224]. However, little is known

about the actual mechanisms involved in the lymphangiogenic process, in contrast

with the (blood) angiogenic case [15, 40].

Mathematical modelling potentially provides an alternative, powerful tool to

back up experimental observations, generate a better understanding of wound heal-

ing lymphangiogenesis and identify potential clinical targets. Here we build upon

our ODE model presented in the previous chapter to address the spatial elements

of lymphangiogenesis, specifically focussing on modelling two different hypotheses

proposed to describe the exact lymphangiogenesis mechanism.
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3.2 Biological background

3.2.1 Wound healing

For educational purposes, wound healing is usually presented as a sequence of four

different (overlapping) phases, namely:

1. Hemostasis : Shortly after injury, a blood clot is formed as a result of the

interaction between blood and the extracellular matrix; the clot stops the

bleeding and provides a scaffold for cells and chemicals that will consequently

contribute to the healing process.

2. Inflammation: Substances activated during hemostasis attract the inflamma-

tory cells leukocytes (Figure 3.1): these clean the wound from debris and

pathogens and secrete chemicals which promote the evolution of the system

to the next phase.

3. Proliferation (or reepithelialisation): The chemicals released during inflamma-

tion enhance the growth and aggregation of the surrounding cells, restoring

different tissue functions and elements such as the blood and lymphatic net-

works; the regeneration of blood and lymphatic vessels is named (blood) an-

giogenesis and lymphangiogenesis, respectively. In this phase, the blood clot

is slowly substituted by a “temporary skin” called granulation tissue.

4. Remodelling : Finally, the granulation tissue is slowly replaced by normal skin

tissue; this stage can take up to two years to be completed.

Figure 3.1: 3-D rendering of various types of leukocytes. Credit: Blausen.com staff.
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For further details about wound healing we refer to [238] for normal cutaneous wound

healing, and to [240] for an account of chronic wounds dynamics.

3.2.2 Sprouting versus self-organising lymphangiogenesis

The lymphatic system is a circulatory system responsible for mediating the immune

response of the body and maintaining the physiological pressure in tissues by drain-

ing excess liquid. It is mainly constituted of vessels and lymph nodes. Lymphatic

vessel walls are made of so-called lymphatic endothelial cells (LECs); contrary to

the blood case, lymphatic capillaries are very thin and are formed from a single layer

of LECs.

To date, little is known about the biological events taking place during lym-

phangiogenesis and different hypotheses have been proposed by biologists. Although

important reviews on the subject such as [187, 247] state that lymphangiogenesis

“occurs primarily by sprouting from pre-existing vessels”, in a fashion which resem-

bles the (blood) angiogenic case, recent experiments suggest that this may not be

the case, at least not in some specific experimental settings [15, 223]. In [15] it is

stated that lymphangiogenesis “can occur both by recruitment of isolated lymphatic

islands to a connected network and by filopodial sprouting”. Similarly, in [223] it

is reported that in an adult mouse tail wound model LECs migrate as single cells

in the wound space and later connect to each other forming vessel structures (see

Figure 3.2). According to the authors of [223], single LEC migration following the

lymph/interstitial flow would explain why lymphatic vessel regeneration appears to

happen in this direction (from left to right in the figure).

Comparative reviews of lymphangiogenesis and (blood) angiogenesis can be found

in [2, 149, 244].

3.2.3 Interstitial versus lymph flow

Interstitial flow is a fluid flow induced by dynamic stresses and pressure gradients

through the extracellular matrix. It is generally slower than fluid flow inside vessels,

because of the resistance of the extracellular matrix components; nonetheless, inter-
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Figure 3.2: In the photo, taken from [223, Figure 2], one observes blood and lym-
phatic vessel regeneration; the latter appears to occur in the direction of the intersti-
tial flow. The different photos refer to different times after wounding: A was taken
at day 7, B at day 10, C at day 17 and D at day 60. The yellow dashes mark the
regenerating region (note its overall contraction over time); the red colour indicates
blood vessels, while LEC presence is highlighted by green colour. The open arrows
signal how blood vessels seem to sprout from deeper vessels, while other arrows point
out LEC organisation at day 17 after a higher LEC density is reached; arrowheads
indicate single LECs migrating towards the proximal side of the wound. Scale bar
in D = 300 µm.

stitial flow has recently been shown to play an important role in many processes,

including cell migration. Such effects can be purely mechanical, for example by

“pushing” on the cell, or can act indirectly by shifting the distribution of chemi-

cals in the surroundings of the cell (see Figure 3.3). A nice review of the effects of

interstitial flow on cell biology can be found in [222].

In recent years, a number of studies have investigated the role of interstitial flow

on lymphangiogenesis, mainly through the formation of concentration gradients of

pro-lymphangiogenic factors. In particular, in [20] the authors propose that intersti-

tial flow, enhanced by the lymph flow resulting from interrupted lymphatic vessels,
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Figure 3.3: Direct effects of interstitial flow on cells, from [222, Figure 3]: (a) shear
stress on cell surface; (b) forces normal to the cell surface; (c) shear and normal
forces to the pericellular matrix; (d) redistribution of pericellular proteins.

can direct wound healing lymphangiogenesis by transporting LECs into the wound

space and creating a gradient in chemicals (such as vascular endothelial growth

factor – VEGF) which stimulate LEC growth and chemotaxis.

However, the relative role of interstitial and lymph flow on capillary regeneration

has yet to be investigated in depth; therefore, it is not clear which of the two takes

on the greatest importance. In fact, although interstitial flow is slower than the flux

of the lymph coming from interrupted capillaries, the former persists after wound

closure, while the latter is more localised to open capillaries and stops once the

lymphatic network has been restored.

3.3 Mathematical Modelling

3.3.1 Review of lymphatic-related models

Contrary to the blood angiogenesis case, modelling literature about lymphangio-

genesis is relatively immature and sparse, and mostly refers to tumour-induced lym-

phangiogenesis (see for instance [89]). To the authors’ knowledge, the only models

addressing lymphangiogenesis in wound healing are [218], which focuses on the me-

chanical elements that lend the lymphatic network its characteristic shape (at least

in the mouse tail), and our previous work [17], which we are going to extend here. A

good review of mathematical models of vascular network formation is [229], where
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indeed the imbalance between blood angio- and lympangio-genesis modelling is man-

ifest.

A number of models have been produced by the bioengineering community, de-

scribing specific mechanical features of lymphatic physiology; in particular, mechan-

ics of contracting lymph valves have been presented in [93, 105, 157, 171, 213]. A

brief review of engineering models proposed in the lymphatic context can be found

in [164].

Very few attempts have been made to specifically model the effect of flow on

capillary regeneration, although one interesting example is [86], where the authors

use a convection-diffusion model to analyse the effects of flow on matrix-binding

protein gradients.

3.3.2 Model targets

The model hereby presented aims to investigate the following questions about wound

healing lymphangiogenesis:

• which hypothesis (self-organising or sprouting) offers a better explanation for

the lymphangiogenesis mechanics?

• what are the relative contributions of interstitial and lymph flow on the lym-

phangiogenic process?

• how does the initial wounded state impact on lymphatic regeneration?

3.3.3 Model variables and domain

In the following, we propose two distinct PDE models to describe the two different

theories advanced by biologists to describe lymphangiogenesis in wound healing (see

Section 3.2.2). We will refer to them as the “self-organising” (O) hypothesis and

the “sprouting” (S) hypothesis.

For both cases, we consider the following basic dynamics: immediately after heal-

ing, transforming growth factor-β (TGF-β) is activated and chemotactically attracts
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macrophages, which in turn secrete VEGF which induces capillary regeneration act-

ing on either LECs (in the self-organising case) or capillary tips (in the sprouting

case). The variables included in the models are summarised in Table 3.1, where they

are reported together with their names and units.

variable model quantity units
T (t, x) O,S active TGF-β concentration pg ·mm−3

M(t, x) O,S macrophage density cells ·mm−3

V (t, x) O,S VEGF concentration pg ·mm−3

L(t, x) O lymphatic endothelial cell density cells ·mm−3

E(t, x) S lymphatic capillary end (tip) density cells ·mm−3

C(t, x) O,S lymphatic capillary density cells ·mm−3

Table 3.1: A summary of the model variables.

We consider a 1D space variable x that varies between 0 and `; this interval

includes the wound space and a portion ε of healthy tissue on its edges, so that

the wound is enclosed (at least initially) between ε and `− ε. This kind of domain

describes a narrow cut, where at every point we average chemical and cell densities

over the depth of the wound. We take the increasing-x direction to be the lymph

flow (and interstitial flow) direction. A schematic of the model domain is shown in

Figure 3.4.

x0 ε `− ε `

skin

WOUND

skin

direction of the lymph flow

lymphatic capillaries

Figure 3.4: The model 1D domain.

3.3.4 Advection velocity and open capillaries

The models incorporate an advection term for the majority of variables that accounts

for the effect of flow on the lymphatic regeneration process. In biological references

(such as [20]) it is not clear whether flow is mainly a result of lymph fluid exiting
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the interrupted capillaries, or the “normal” interstitial flow. We hence investigate

the relative contribution from these two components by considering an advection

term motivated as follows.

In general, interstitial flow does not have a constant direction; however, in the

wound healing experimental setting of [20], both lymph and interstitial flow occur

in the increasing direction of x (from left to right in Figure 3.4). We assume the

interstitial flow to be constant and present across the full tissue, reflecting its persis-

tent nature in healthy tissues. On the other hand, the contribution due to leaking

lymphatic capillaries is assumed to specifically depend on the density of open cap-

illaries Cop and we assume a linear dependence for simplicity. However, since we do

not know the precise contribution of each element to the total advection, we intro-

duce a single “weight” parameter ξ, 0 ≤ ξ ≤ 1, which can be varied. Specifically,

the advection velocities for chemicals and cells, λchem and λcells respectively, will be

taken to be of the forms

λchem(Cop) = ξ · (λchem1 · Cop) + (1− ξ) · λchem2 and (3.1)

λcell(Cop) = ξ · (λcell1 · Cop) + (1− ξ) · λcell2 , (3.2)

where 0 ≤ ξ ≤ 1 and λchem1 ,λchem2 ,λcell1 ,λcell2 are four parameters to be determined.

In Appendix B.4 we estimate the values of λchem1 and λchem2 , while corresponding

parameters for cells are assumed to be significantly smaller, since advective cell

velocity is likely to be smaller due to the higher environmental friction. A value of

ξ = 0 corresponds to purely interstitial flow advection, while ξ = 1 represents pure

lymphatic flow induced advection.

To quantify the open capillary density, we assume that as the “cut” in capillary

density C becomes steeper (and thus |∂C/∂x| → +∞), more capillaries are open and

the open capillary density will tend to equalise C. The open capillary density Cop

is then defined as

Cop

(
C,
∂C

∂x

)
=

|∂C/∂x|
η0 + |∂C/∂x|

· C (3.3)

where η0 is a parameter for whose estimation no relevant experimental data were
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found. See Figure 3.5 for a plot of (3.3).

x0

C

Cop

x0

C

Cop

Figure 3.5: Plots of Cop (solid red) for different steepness of C (dashed blue).

3.3.5 Self-organising hypothesis

In this case, single LECs migrate into the wound and start to self-organise into

capillary structures only after reaching a certain threshold density L∗. This case

represents the direct extension of the ODE model developed in Chapter 2 and the

variable and parameter names have been kept as consistent as possible.

(Active) TGF-β equation

The differential equation describing active TGF-β concentration has the following

form:

change in

TGF-β

concentration

=
diffusion and

advection
+ activation − decay −

internalisation

by macrophages.

Of these terms, the following three are assumed to have standard forms:

Diffusion: DT
∂2T

∂x2
, Decay: d1T , Internalisation: γ1TM ,

and advection will be taken to be −∂/∂x(λchem(Cop) · T ), with velocity λchem(Cop) as

defined in (3.1).

Concerning the activation, we consider a constant amount of latent TGF-β in

the skin TL [236, 250], which is increased by macrophage production at rate r1 [124].

This latent form of TGF-β is activated by macrophages [54, 97, 188, 250] and by
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the enzymes (mainly plasmin) present in the blood clot, which is mainly made of

platelets [98, 110, 125] (for a review of TGF-β activation see [250]). Therefore, we

take the following activation term:

[aMM + app(C)]︸ ︷︷ ︸
activation by macro-
-phages & plasmin

· [TL + r1M ]︸ ︷︷ ︸
latent TGF-β

.

The C-dependent quantity p is an estimate of plasmin presence in the wound, which

is proportional to the platelet mass. In fact, although activation of platelet-released

TGF-β is still poorly understood, it seems that plasmin, while degrading the blood

clot, activates the latent TGF-β contained in the platelets [98]. We assume that

plasmin level is proportional to the wound space which is not occupied by capillaries;

this is motivated by the fact that capillary presence can be considered as a measure of

the healing stage of the wound.1 When capillary density gets close to its equilibrium

(healthy state) value Ceq (say 90% of it), the plasmin-induced TGF-β activation

switches to zero. We will thus take

p(C) =

 −
ψ
CeqC + ψ if C ≤ 9/10 · Ceq

0 if C ≥ 9/10 · Ceq .
(3.4)

A plot of p(C) is shown in Figure 3.6.

C

p(C)

0.9 · Ceq

0.1 · ψ

ψ

Figure 3.6: Plot of p(C).

1However, it would maybe be more appropriate to consider fibroblasts instead of capillaries
here, but the introduction of a new variable and consequently a new equation does not seem to be
worthwhile, since capillary presence is a good indication of the healing state of the wound.
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Macrophage equation

The following scheme will be considered for macrophage dynamics:

change in

macrophage

density

=
random movement

and advection
+

chemotaxis by

TGF-β
+ constant source

+
influx from open

capillaries
−

removal and

differentiation
− crowding effect.

Macrophages are assumed to move randomly with diffusion coefficient µM , while

their advection will be modelled by the term − ∂
∂x

(
λcell(Cop) ·M

)
, with λcell(Cop) as

discussed above in Section 3.3.4.

For the chemotaxis term, we first point out that only a fraction α of the mono-

cytes that are chemoattracted by TGF-β differentiate into (inflammatory) macro-

phages [163, 265]. Therefore, the term describing macrophage chemotaxis up to

TGF-β gradients will have the form

−αχ1
∂

∂x

(
M

1 + ωM
·

∂T/∂x

1 + η1 |∂T/∂x|

)

where the macrophage velocity 1
1+ωM

· ∂T/∂x
1+η1|∂T/∂x| decreases as cell density increases

(as in [260, 261]) and is bounded as |∂T/∂x| → ∞.

The presence of a constant source sM (from the bottom of the wound) is justified

by the observation that macrophage equilibrium in the skin is nonzero [272].

The introduction of an influx term is motivated by the fact that macrophages

are “pumped out” from interrupted capillaries [20, 223] and into the wound. We

consider the following form for the influx term:

ϕ1

(
Cop,

∂C

∂x

)
= Cop · ζ1

(
∂C

∂x

)
, (3.5)
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where Cop was introduced in (3.3) and ζ1 is defined as

ζ1

(
∂C

∂x

)
=

 φ1 if ∂C/∂x < 0

0 otherwise .
(3.6)

In (3.6) φ1 is a parameter estimated in Appendix B.7. The presence of the Heaviside

function ζ1 is due to the influx only occurring from the open lymphatic capillaries

on the side of the wound from which lymph fluid flows (see Figure 3.4).

The removal term includes (inflammatory) macrophage death, differentiation

into repair macrophages and reintroduction into the vascular system, the latter

being proportional to the capillary density. Thus, we take the removal term to be

(d2 + ρC)M .

We also include a crowding effect through the term −M+L+C
k1

·M .

VEGF equation

For VEGF we assume the following dynamics:

change in

VEGF

concentration

=
diffusion and

advection
+ constant source +

production

by macro-

phages

− decay −
internalisation

by LECs.

VEGF diffusion is modelled via the standard term DV
∂2V
∂x2

and advection by

− ∂
∂x

(
λchem(Cop) · V

)
where λchem(Cop) is the expression defined in (3.1). The con-

stant source is called sV , while the production term will be r3M and the decay

d3V . Internalisation is assumed to be linearly dependent on LEC density and the

corresponding term will consequently be γ2V L.

LEC equation

The equation describing the presence of LECs in the wound consists of the following

terms:
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change in

LEC

density

=

random

movement and

advection

+
chemotaxis

by VEGF
+

growth, upregulated

by VEGF and

downregulated by

TGF-β

+
influx from

open capillaries
−

crowding

effect
−

transdifferentiation

into capillaries.

Again, random cell movement is modelled via a diffusion term µL∂
2L/∂x2 and the

advection is taken to be − ∂
∂x

(
λcell(C) · L

)
.

LECs are chemoattracted by VEGF [16, 247], and their chemotaxis term is as-

sumed to be of a similar form to the one used to describe the macrophage counter-

part:

−χ2
∂

∂x

(
L

1 + ωL
·

∂V/∂x

1 + η2 |∂V/∂x|

)
.

LEC growth is upregulated by VEGF [16, 275, 284] and downregulated by TGF-

β [178, 242]: (
c1 +

V

c2 + c3V

)(
1

1 + c4T

)
L .

LECs are “pumped out” from the interrupted capillaries in a similar manner

to macrophages, but also result (with less intensity) from interrupted capillaries

downstream of the lymph flow. The influx term this time takes the form:

ϕ2

(
Cop,

∂C

∂x

)
= Cop · ζ2

(
∂C

∂x

)
(3.7)

where Cop is the same as in (3.3) and ζ2 is defined as

ζ2

(
∂C

∂x

)
=

 φ+
2 if ∂C/∂x < 0

φ−2 if ∂C/∂x > 0 ,
(3.8)

where φ+
2 > φ−2 .

LECs cannot grow excessively due to crowding, taken into account via the term

− (M+L+C)
k2

· L.

When LECs have locally sufficiently populated the wound (i.e. when their density
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exceeds a threshold L∗ [20, 223]) they are assumed to self-organise into capillaries

at a rate which is increased by the presence of VEGF [209]:

σ(L,C) · (δ1 + δ2V )L

where

σ(L,C) =

 1 if L+ C ≥ L∗

0 if L+ C < L∗ .
(3.9)

Lymphatic capillary equation

After LECs have occupied enough of the wound space, they “stick” together and

form a capillary network; also, they undergo remodelling, which we model via a

logistic term. Thus, the C-equation will be

∂C

∂t
= σ(L,C) · (δ1 + δ2V )L︸ ︷︷ ︸

source

+ c5

(
1− C

k3

)
C︸ ︷︷ ︸

remodelling

.

Full system – “self-organising” hypothesis

The full system of equations in the “self-organising” hypothesis is therefore given

by
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∂T

∂t
= DT

∂2T

∂x2
− ∂

∂x

(
λchem(Cop) · T

)
+ [aMM + app(C)] · [TL + r1M ]

−d1T − γ1TM (3.10)

∂M

∂t
= µM

∂2M

∂x2
− ∂

∂x

(
λcell(Cop) ·M + αχ1

M

1 + ωM
·

∂T/∂x

1 + η1 |∂T/∂x|

)
+sM + ϕ1

(
Cop,

∂C

∂x

)
− (d2 + ρC)M − M + L+ C

k1

M (3.11)

∂V

∂t
= DV

∂2V

∂x2
− ∂

∂x

(
λchem(Cop) · V

)
+ sV + r3M − d3V − γ2V L (3.12)

∂L

∂t
= µL

∂2L

∂x2
− ∂

∂x

(
λcell(Cop) · L+ χ2

L

1 + ωL
·

∂V/∂x

1 + η2 |∂V/∂x|

)
+

(
c1 +

V

c2 + c3V

)(
1

1 + c4T

)
L+ ϕ2

(
Cop,

∂C

∂x

)
−M + L+ C

k2

L− σ(L,C) · (δ1 + δ2V )L (3.13)

∂C

∂t
= σ(L,C) · (δ1 + δ2V )L+ c5

(
1− C

k3

)
C (3.14)

where λchem is defined in (3.1), λcell in (3.2), p in (3.4), ϕ1 in (3.5), ϕ2 in (3.7) and σ

in (3.9). Parameters, initial and boundary conditions are discussed in Section 3.3.7.

See Figure 3.7 for a summary of the fluxes included in the model.

0 x

C
interstitial flow

macrophages

lymph lymph

LECs LECs

Figure 3.7: A summary of the fluxes included in the model: capillaries; fluid fluxes;
macrophage influx; LEC influx (only in O).

3.3.6 Sprouting hypothesis

Here, instead of LECs we consider capillary tip density E. Capillary tips are at-

tached to the vessel ends and therefore, contrary to LECs, are not subject to advec-

tion. As we will see, the introduction of this variable is necessary in order to model

directed capillary growth in response to a gradient.
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TGF-β, macrophage and VEGF equations are the same as in the self-organising

case, except for the fact that in the crowding term for M there is E instead of L

and that in the V internalisation term there is E instead of L.

Lymphatic capillary ends (tips) equation

Capillary ends (or tips) are assumed to sprout from interrupted lymphatic capillaries,

the density of which (Cop) was defined in (3.3). Tip growth is enhanced by VEGF

and inhibited by TGF-β and this is reflected by the following term, similar to the

one used for LECs in the self-organising case:

(
c1 +

V

c2 + c3V

)(
1

1 + c4T

)
Cop .

Importantly, capillary ends move in the direction of the (positive) gradient of VEGF

with an upper-bounded velocity, modelled by the term

−χ2
∂

∂x

(
E ·

∂V/∂x

1 + η2 |∂V/∂x|

)
.

Finally, we assume that capillary tip death is due predominantly to overcrowding,

and thus we include the removal term − (M+E+C)
k2

· E.

Lymphatic capillary equation

New capillaries are formed continuously from the interrupted ones in the direction

defined by their tips. This is modelled here according to the “snail trail” concept

introduced in [67] for fungal colonies: newly formed capillaries are laid after the

sprouting tips, which therefore leave a sort of “track” behind.

Capillaries also undergo remodelling. Therefore, their dynamics are captured by

the terms:

χ2

∣∣∣∣E · ∂V/∂x

1 + η2 |∂V/∂x|

∣∣∣∣︸ ︷︷ ︸
sprouting

+ c5

(
1− C

k3

)
C︸ ︷︷ ︸

remodelling

.
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Full system – “sprouting” hypothesis

Thus, the full system for the “sprouting” hypothesis is

∂T

∂t
= DT

∂2T

∂x2
− ∂

∂x

(
λchem(Cop) · T

)
+ [aMM + app(C)] · [TL + r1M ]

−d1T − γ1TM (3.15)

∂M

∂t
= µM

∂2M

∂x2
− ∂

∂x

(
λcell(Cop) ·M + αχ1

M

1 + ωM
·

∂T/∂x

1 + η1 |∂T/∂x|

)
+sM + ϕ1

(
Cop,

∂C

∂x

)
− (d2 + ρC)M − M + E + C

k1

M (3.16)

∂V

∂t
= DV

∂2V

∂x2
− ∂

∂x

(
λchem(Cop) · V

)
+ sV + r3M − d3V − γ2V E (3.17)

∂E

∂t
=

(
c1 +

V

c2 + c3V

)(
1

1 + c4T

)
Cop − χ2

∂

∂x

(
E ·

∂V/∂x

1 + η2 |∂V/∂x|

)
−M + E + C

k2

E (3.18)

∂C

∂t
= χ2

∣∣∣∣E · ∂V/∂x

1 + η2 |∂V/∂x|

∣∣∣∣+ c5

(
1− C

k3

)
C (3.19)

where λchem is defined in (3.1), λcell in (3.2), p in (3.4), ϕ1 in (3.5) and Cop in (3.3).

See Figure 3.7 for a summary of the fluxes of the model.

3.3.7 Parameters and initial and boundary conditions

Parameters

Most of the parameters were already considered in Chapter 2; these are reported

here in Table 3.2 and we refer to Appendix A.1 for the details of their estimation.

The other parameters are listed in Table 3.3 and the details of their estimation

can be found in Appendix B.

Initial Conditions

As initial time t = 0 we take the moment of wounding, at which time little chemical

or cell populations are assumed to have entered in the wound space.

We assume that at the beginning there are no LECs (for model O) or capillary

tips (for S), while other variables can be present near the edges (recall our domain
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parameter value units source

ap 2.9× 10−2 mm3pg−1day−1 [54]
aM 0.45 mm3cells−1day−1 [97, 188]
TL 18 pg mm−3 ([189])
r1 3× 10−5 pg cells−1day−1 [124]
d1 5× 102 day−1 [120]

α 0.5 1 [271]
β 5× 10−3 1 [100]
r2 1.22 day−1 [289]
d2 0.2 day−1 [44]
ρ 10−5 day−1cells−1 [223]

sV 1.94 cells day−1 ([107, 196])
r3 1.9× 10−3 pg cells−1day−1 ([130, 233])
d3 11 day−1 [131]
γ2 1.4× 10−3 mm3cells−1day−1 [155]

c1 0.42 day−1 [183]
c2 42 day [275]
c3 4.1 pg day mm−3 [275]
c4 0.24 mm3pg−1 [178]
k2 4.71× 105 cells day mm−3 [183]
L∗ 104 cells mm−3 [223]
δ1 5× 10−2 day−1 no data found
δ2 10−3 mm3pg−1day−1 no data found

Table 3.2: A list of parameters appearing in the model equations with values pre-
cisely the same as in Chapter 2 – see Appendix A.1. Each one is supplied with
its estimated value, units and source used (when possible) to assess it. References
in brackets mean that although the parameter was not directly estimated from a
dataset, its calculated value was compared with the biological literature; the cap-
tion “no data found” signifies that no suitable data were found to estimate the
parameter. Note that γ2 here corresponds to γ in Chapter 2.

includes portions of healthy skin surrounding the wound). We will then take the

following initial conditions:

ν(0, x) = aν ·
[
1− tanh(b(x− ε)) + tanh(b(−x+ `− ε))

2

]
, (3.20)

L(0, x) = E(0, x) = 0 , (3.21)

where ν ∈ {T,M, V, C}. For each variable ν the value of aν is chosen to be such

that ν(0, 0) = ν(0, `) is equal to the boundary conditions discussed in the following.

Concerning b, we will vary its value to see how the “sharpness” of the initial condition

will affect lymphangiogenesis. For higher values of b, the initial conditions become

more step-like and we can interpret this as a deep wound with sharp edges: in this

case, there would be (almost) no capillaries in the centre of the wound. On the other
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parameter value units source

η0 104 no data found

DT 2.76 mm2day−1 [140, 179]
ψ 105 pg mm−3 no data found
γ1 4.2× 10−3 mm3cells−1day−1 ([283])

λchem1 1.35× 10−2 mmday−1 [82, 83]
λchem2 8.64× 102 mmday−1 [222]
λcell1 1.35× 10−3 mmday−1 estimated ≈ 0.1× λchem1

λcell2 86.4 mmday−1 estimated ≈ 0.1× λchem2

ξ 0 ≤ ξ ≤ 1 1 variable

µM 0.12 mm2day−1 [78]
sM 8.6× 102 cells mm−3day−1 ([272])
χ1 4× 10−2 mm5pg−1day−1 [143]
ω 1.67× 10−6 mm3cells−1 estimated ≈ 1/kold1

η1 100 mm9pg−1 no data found
φ1 2.05× 103 day−1 [29, 82]
k1 105 mm3cells−1 [289]

DV 2.4 mm2day−1 [174]

µL 0.1 mm2day−1 estimated ≈ µM
χ2 0.173 mm5pg−1day−1 [10]
η2 1 mm9pg−1 no data found
φ+

2 102 day−1 no data found
φ−2 1 day−1 estimated to be 1% of φ+

2

d4 0.1 day−1 estimated ≈ d2

c5 0.42 day−1 estimated = c1

k3 1.2× 104 mm3cells−1 estimated ≈ Ceq

Table 3.3: The remaining parameters. See Appendix B for details on the estimation
of each of these parameters. kold1 denotes the parameter k1 in Chapter 2, where it
is the macrophage carrying capacity. d4 appears in the boundary conditions for L.
The parameter ξ will be taken o assume different values between 0 and 1 in order
to investigate the relative importance of lymph and interstitial flow.

hand, assigning smaller values of b would correspond to a shallower initial wound,

such that when averaging over the wound depth a certain number of capillaries still

remain.

As an example, the plot of (3.20) for ν = T is shown in Figure 3.8 for different

values of b.

Boundary Conditions

We consider Dirichlet boundary conditions for all variables except L, for which we

assume Robin boundary conditions. The choice of Dirichlet boundary conditions is

dictated by the fact that at the boundary the tissue is in a non-wounded state, and

we expect variables to remain close to their normal, equilibrium value there. For L,
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x0 `ε `− ε

T eq

shallow wound
(e.g. b = 5)

x0 `ε `− ε

T eq

deep wound
(e.g. b = 100)

Figure 3.8: Initial condition T (0, x) = aT ·{1−[tanh(b(x−ε))+tanh(b(−x+`−ε))]/2}
for different values of b. T eq denotes the T -equilibrium level in non-wounded skin.

instead, we apply the following reasoning.

For LECs, we assume that once they pass the domain edge they will move ran-

domly and will die at a constant rate d4; in fact, it seems unrealistic to assume that

they will just vanish once reaching the domain edge. Therefore we will follow what is

suggested in [152] for the spruce budworm: we set a different evolution equation for

L inside and outside the domain. In the interior (i.e. for 0 < x < `), the dynamics

of L will be described by the equation (3.13); in the exterior (i.e. for x < 0 and

x > `) instead we assume that LECs move randomly and die (or transdifferentiate)

with (high) constant rate d4, thus following the equation

∂L

∂t
= µL

∂2L

∂x2
− d4L , (3.22)

whose solution at equilibrium is given by

Lo(x) = Ao exp

(√
d4

µL
x

)
+Bo exp

(
−

√
d4

µL
x

)
(3.23)

where Ao and Bo are constants. Note that, since we want solutions to be bounded

in order to be biologically meaningful, we will take Bo = 0 for x < 0 and Ao = 0 for
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x > `. Since at the boundaries the outer and the inner solutions should have the

same value and the same flux, we have that

at x = 0 : L = Ao and
∂L

∂x
= Ao

√
d4

µL
⇒ ∂L

∂x
(t, 0) =

√
d4

µL
L(t, 0)

at x = ` : L = Bo exp

(
−

√
d4

µL
`

)
and

∂L

∂x
= −Bo

√
d4

µL
exp

(
−

√
d4

µL
`

)

⇒ ∂L

∂x
(t, `) = −

√
d4

µL
L(t, `)

which give the boundary conditions for L.

Summarising, the boundary conditions are

ν(t, 0) = ν(t, `) = νeq , E(t, 0) = E(t, `) = 0 , (3.24)

∂L

∂x
−

√
d4

µL
L = 0 at x = 0 ,

∂L

∂x
+

√
d4

µL
L = 0 at x = ` (3.25)

with ν ∈ {T,M, V, C} and where νeq denotes the equilibrium value in the unwounded

skin for each variable.

3.4 Numerical solutions

To simulate the two systems (3.10)-(3.14) and (3.15)-(3.19), a specific code was

written in MatLab which applies the Crank-Nicolson method for the diffusion terms

and a first-order upwind scheme for the chemotactic terms.

As a datum for comparison of the time-scale of the process, we take the obser-

vation that in the experimental setting lymphatic vasculature is complete at day 60

post-wounding [20, 223].

In the figures that follow, numerical solutions are plotted at different times. In

particular, dotted green refers to t = 5 days, solid blue to t = 15 days, dashed

red to t = 30 days, solid green to t = 60 days, dashed blue to t = 80 days and

dotted red to t = 100 days. Where appropriate, a waterfall plot of the solutions is

also supplied.
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3.4.1 Self-organising hypothesis

We start by taking ξ = 0.5 (representing that both interstitial and lymph flow con-

tribute equally to overall advection) and a very smooth initial condition, with b = 5

– see (3.20). In this case, actual lymphatic regeneration appears to be almost sym-

metric and a nearly-complete network is restored by around day 60 (see Figure 3.9).

Biologically, this represents the situation in which a less deep wound leaves more

capillaries in the domain after wounding, so that regeneration occurs mainly from

remodelling of the pre-existing network. We note, however, that the distribution of

chemicals is highly asymmetric in form.

Figure 3.9: Simulation of equations (3.10)-(3.14) with parameters from Tables 3.2
and 3.3 and initial condition as defined in 3.3.7, with b = 5. ξ = 0.5.

A steeper initial condition (b = 100) appears to significantly slow down the pro-

cess, such that almost no regeneration occurs in the first 100 days (see Figure 3.10).

A similar scenario is observed if one takes ξ = 0 instead.

However, when ξ = 1 (i.e. the advection is due only to the lymph coming

from the interrupted capillaries), the same initial condition gives rise to much faster

healing, with complete vasculature at day 60; even more interestingly, in this case

lymphatic regeneration occurs only from left to right, that is in the direction of

the lymph flow (see Figure 3.11). Notice that in this case TGF-β, macrophages

and VEGF have not returned to their equilibrium levels by day 100 (as we would

expect): instead, they remain present at a higher level on the down-lymph flow side
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Figure 3.10: Simulation of equations (3.10)-(3.14) with parameters from Tables 3.2
and 3.3 and initial condition as defined in 3.3.7, with b = 100. ξ = 0.5.

Figure 3.11: Simulation of equations (3.10)-(3.14) with parameters from Tables 3.2
and 3.3 and initial condition as defined in 3.3.7, with b = 100. ξ = 1.
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of the domain. Also, as the front of regenerating capillaries move from left to right,

a “bump” of excessive capillary is generated, before remodelling returns it to the

equilibrium level.

Simulations over longer periods indicate that T , M and V persist at elevated

levels. However, as our model is only expected to simulate post wounding dynamics,

we can exclude effects after 100 days or so.

3.4.2 Sprouting hypothesis

For ξ = 0.5 and initial conditions (3.20) with b = 5, the model prediction for the

sprouting case is very similar to its self-organising counterpart (see Figure 3.12).

A steeper function for the initial conditions (b = 100) will again slow down

the process, but contrary to the self-organising case we observe a clear left-to-right

regeneration pattern in this case (see Figure 3.13). A very similar, just slightly

slower process is observed when ξ = 0 (simulation not shown).

Interestingly, when ξ = 1, lymphangiogenesis is only slightly enhanced, but

occurs from right to left (Figure 3.14).

However, for ξ = 0.9, we observe again a left-to-right occurring lymphangiogen-

esis (Figure 3.15).

Contrary to the self-organising case, here a simulation over 300 days shows that

all the variables will tend towards values which are close to their estimated equilib-

rium levels in the normal skin; with the exception of capillary tips, which instead of

going to zero stay at a high level around the original edges of the wound, causing a

slightly higher capillary density in these areas.

3.4.3 Comparison between the two models

Summarising, for shallower wounds (Figures 3.9 and 3.12), lymphangiogenesis ap-

pears to be dominated by logistic growth/remodelling and occurs symmetrically

from both sides of the wound. In this case, there is little difference between the O

and S hypothesis in terms of the rate and form of wound healing lymphangiogenesis.

Steeper initial conditions lead to slower capillary regeneration. This may be ex-
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Figure 3.12: Simulation of equations (3.15)-(3.19) with parameters from Tables 3.2
and 3.3 and initial condition as defined in 3.3.7, with b = 5. ξ = 0.5.

Figure 3.13: Simulation of equations (3.15)-(3.19) with parameters from Tables 3.2
and 3.3 and initial condition as defined in 3.3.7, with b = 100. ξ = 0.5.

66



Chapter 3: Spatio-temporal models for wound healing lymphangiogenesis

Figure 3.14: Simulation of equations (3.15)-(3.19) with parameters from Tables 3.2
and 3.3 and initial condition as defined in 3.3.7, with b = 100. ξ = 1.

Figure 3.15: Simulation of equations (3.15)-(3.19) with parameters from Tables 3.2
and 3.3 and initial condition as defined in 3.3.7, with b = 100. ξ = 0.9.
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plained with the observation that travelling wave solutions of Fisher-type equations

exhibit minimum speed in the case of a step-like function initial condition. However,

to confirm this more calculations are required.

For deeper wounds we observe markedly distinct behaviour between the two

hypotheses according to the “advection balance” between interstitial and lymph

flow. Observations are summarised in Table 3.4.

ξ = 0
self-organising: extremely slow dynamics (seems symmetric)

sprouting: slow but visible lymphangiogenesis, from left to right

ξ = 0.5
self-organising: extremely slow dynamics (seems symmetric)

sprouting: slow but visible lymphangiogenesis, from left to right

ξ = 0.9
self-organising: extremely slow dynamics (seems symmetric)

sprouting: lymphangiogenesis from left to right, complete just after t = 100

ξ = 1
self-organising: lymphangiogenesis from left to right, complete at t = 60

sprouting: lymphangiogenesis visible but not fast, from right to left

Table 3.4: Self-organising and sprouting model predictions for different ξ.

We compare these predictions with experimental data reported in Figure 3.16.

These experimental observations show that the overall LECs (both free and in a

capillary structure) increase steadily after wounding, and that while at day 10 the

vast majority are in the distal half (i.e. upstream the lymph flow) by 60 days they

are almost evenly distributed over the two sides.

Figure 3.16: Left: Quantification of total LECs (A) and relative distribution of LEcs
(B) in regenerating region in a mouse tail wound – from [223, Figure 2]. Right: Same
data for a similar experimental setting described in [95, adapted from Figure 1]: LEC
numbers (C) and distribution of LECs (D) in mouse tail regenerating region.

Hence, from experimental data:

• lymphatics should have reached a density close to Ceq at day 60;

• LEC migration and/or lymphatic capillary formation should happen predom-

inantly in the direction of the lymph/interstitial flow.
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Since these data refer to full-thickness wounds with almost no capillaries left in the

region, we can limit our comparisons to the steep initial condition case (high b).

The first fact suggests that ξ should be bigger than 0.5 and in general close to 1,

since lymphatic regeneration appears to be faster in this case. This suggests that

flow due to lymph coming from interrupted capillaries, rather than interstitial flow,

is the major factor during lymphangiogenesis. The second experimental observation

is consistent with simulations of both the self-organising and the sprouting model;

however, a very high ξ is required in this context for both self-organising and sprout-

ing case, and in the latter an inverted lymphangiogenesis direction (from right to

left) occurs for ξ = 1.

Therefore, we can infer that there exists a threshold value for ξ, namely ξ∗, such

that:

• 0.9 < ξ∗ < 1;

• if ξ > ξ∗, then the sprouting model predicts the lymphangiogenesis will occur

from right to left and thus we can assume the self-organising hypothesis better

describes the phenomenon in question (although chemical and macrophage

values do not go back to their equilibrium level);

• if ξ < ξ∗, then both models predict a left to right development of the lymphatic

vasculature, but this process is faster (and thus closer to aforementioned data)

in the sprouting case.

Therefore, once the real value of ξ is assessed, one of the two models can be selected

as the most suitable for describing the mechanisms of wound healing lymphangio-

genesis.

3.5 Conclusions

The preliminary results presented in this chapter provide new insights in the un-

derstanding of lymphangiogenesis mechanisms. First of all, both models show the

importance of advection in order to form a concentration gradient of the chemoat-

tractants and thus promote cell migration and capillary regeneration. Furthermore,
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the models presented here constitute a first attempt at exploring the relative im-

portance of interstitial flow and lymph flow in lymphatic vessel regeneration; our

results seem to be in favour of a predominant role of lymph flow in lymphangiogen-

esis dynamics. Further biological investigation is required to confirm this result.

A reliable value of ξ is also needed in order to choose between the two hypotheses

modelled in this chapter. Interestingly, a sprouting assumption also has the potential

to explain lymphatic restoration in the direction of the lymph flow; this is a notable

result, since this experimental observation has been brought as support of the self-

organising hypothesis. However, the sprouting scenario also includes an opposite

tendency of lymphangiogenesis development for a value of ξ close to 1. Thus, one

way to further select one of these theories is to inform the value of ξ from biological

data. Other discriminating factors are that:

• capillary density in the sprouting case never significantly exceeds its normal

value Ceq, while passing of this value is predicted in the self-organising case

along with the capillary front;

• in the self-organising case there is an excess of TGF-β, VEGF and macrophages

persisting downstream of the lymph flow.

Finally, our simulations suggest that initial conditions (that is, the type of

wound) strongly affect the speed and the shape of the regeneration process: deeper

wounds will require more time to heal, and lymphangiogenesis will occur more

markedly in the direction of the lymph flow.
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Chapter 4

Modelling (direct) tumour-nerve

interactions

The content of this chapter has been accepted for publication in Scientific Reports.

Abstract: Tumours induce the formation of a lymphatic and a blood

vasculature around themselves. A similar but far less studied process

occurs in relation to the nervous system and is referred to as neoneu-

rogenesis. The relationship between tumour progression and the nervous

system is still poorly understood and is likely to involve a multitude of

factors. The present work is a first attempt to model the neurobiological

aspect of cancer development through a system of differential equations.

The model confirms the experimental observations that a tumour is able

to promote nerve formation/elongation around itself, and that high lev-

els of nerve growth factor and axon guidance molecules are recorded in

the presence of a tumour. Our results also reflect the observation that

high stress levels (represented by higher norepinephrine release by sympa-

thetic nerves) contribute to tumour development and spread, indicating a

mutually beneficial relationship between tumour cells and neurons. The

model predictions suggest novel therapeutic strategies, aimed at blocking

the stress effects on tumour growth and dissemination.
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4.1 Introduction

A relationship between tumours and the nervous system has been suspected since

the second century AD with the work of the Greek physician Galen [251]. Tra-

ditionally, the nervous system has not been considered to be actively involved in

the process of metastasis. However, recent studies have demonstrated the presence

of neurons in peritoneum regions of several human tumours, and the number of

tumour-associated neurons has been correlated with metastases [6, 151]. The rel-

ative importance of pre-existing versus newly-formed neurons to metastasis is not

understood. Although pre-existing peritumoural neurons are likely to be sufficient

for tumour spread, recruitment of neurons into the close proximity of a tumour may

increase the propensity of tumours to metastasise. Increased nerve density and/or

presence of intratumoural neurons should be regarded as an additional pathway for

metastasis.

Significant progress has also been made in understanding the effects of stress-

and depression-mediated release of chemicals by the nervous system on tumour cell

dissemination [154, 263]. On the one hand tumour cells produce factors that induce

the formation of a neural network, and on the other the newly formed nerves release

neurotransmitters that affect tumour growth and migration [137, 160]. Following

the terminology suggested by Entschladen and co-workers [72], the formation of new

nerve branches is herein called neoneurogenesis, in analogy to lymphangiogenesis

and (blood) angiogenesis. The (direct) interaction between peripheral nerve cells

and tumour cells is usually called the neuro-neoplastic synapse (see Figure 4.1).

tumour
nervous
system

neoneurogenesis

neuro-neoplastic synapse

Figure 4.1: Tumour-nerve interaction is bilateral.

The present model aims to investigate how solid tumours induce peripheral nerve

proliferation and how different types of nerves affect tumour growth and metastasis
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by releasing substances such as neurotransmitters (see Figure 4.2); in particular, we

see how an increase in norepinephrine production by sympathetic nerves (usually

associated with stress) affects cancer progression. This model was mainly inspired

by recent works that focus predominantly on prostate cancer [6, 160, 246]. The study

in Ayala et al. [6] combines in vitro experiments with autopsy analysis of prostate

cancer patients; Magnon and collaborators [160] explore the effects of the nervous

system on tumour progression by altering nerve structure and receptor activity in

mice, after implanting human tumour cells in the animals. Since the scope of our

work does not include tumorigenesis, our model simulations start with a non-zero

initial condition for primary tumour cells, reflecting the tumour cells implantation

described in the study by Magnon et al. [160]. Our aim is to investigate the

further evolution of these cells and their interactions with the pre-existing prostate-

surrounding nerves. The model takes major inspiration from the work by Ayala et

al. [6], supporting the hypothesis of a symbiosis between nerves and tumour cells.

Figure 4.2: Scheme of tumour-nerve interaction proposed in [160, Figure 8].

4.2 Biological background

4.2.1 Neurons, neurotransmitters and the Autonomic Ner-

vous System (ANS)

Neurons (or nerve cells) are the core components of the nervous system. The elec-

trical signals travelling inside a neuron are converted into signals transmitted by cer-

tain chemicals (neurotransmitters); these are then passed to another neuron across

a synapse. A neurotransmitter released by a nerve binds to a receptor on another
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cell and, according to the receptor type, induces a certain action (see Figure 4.3).

Figure 4.3: Neurotransmitters in a synapse.

The collection of all the neuronal structures that together control body functions

below the level of consciousness (for instance, heart and respiratory rate, digestion

and pupillary dilation) constitute the Autonomic Nervous System (ANS). The ANS

is in turn made of three sub-systems; here we will focus only on two of them: the

Sympathetic Nervous System (SNS, also called the “fight or flight” system), which is

responsible for quick response processes, and the Parasympathetic Nervous System

(PNS, also known as the “rest and digest” system), which governs slower responses

such as gastrointestinal functions.

4.2.2 Tumour-induced neoneurogenesis

Tumours induce innervation around themselves [151, 194] and, in general, high levels

of innervation in tumours correlate with a poor disease outcome [6, 160]. Tumour

cells have the ability to produce substances, such as Nerve Growth Factor (NGF),

that stimulate the growth and improve the survival of nerve cells [60, 215]. NGF

also promotes tumour growth [60] and inhibits aggregation of cancer cells and thus

enhances tumour invasion, although this process is currently poorly understood [61].

Tumours also release Axon Guidance Molecules (AGMs). These molecules were

originally considered only for their role in the nervous system as guidance cues for

axons. The term axon guidance denotes the process by which neurons send out

axons along a precise path in order to reach the correct targets. The tip of an axon

(or growth cone) is equipped with receptors that can sense (gradients of) chemicals,

called guidance cues, which “tell” them where to expand [57]. In recent years,
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however, it was shown that many AGMs can also influence neuronal survival and

migration and likely play an important role in cancer progression [170]. There are

at least three different families of AGMs (semaphorins, slits and netrins), which

seem to have different roles in nervous system development and cancer progression.

They are found in many different body tissues and can regulate cell migration and

apoptosis (for a review of the role of AGMs in cancers, see Chédotal et al.[35]).

4.2.3 ANS effects on tumour progression

It was originally believed that the nervous system only indirectly affected cancer de-

velopment, through perineural invasion (that is, the spread of tumours along nerve

fibres [73, 262]) and modulation of the immune function [263]. Indeed, neurotrans-

mitters regulate the cytotoxicity of T lymphocytes and natural killer cells [138] and

induce leukocyte migration [70, 137]; the consequent immunosuppression can favour

tumour growth and progression, impairing the anti-tumour response [8, 263]. How-

ever, it is the migratory effect of neurotransmitters that first suggested a direct link

between nerves and tumour progression. One theory for the spread of metastases

from a primary tumour to a certain organ claims that circulating cancer cells are

attracted and settle in a specific region of the body due to the presence of factors

such as chemokines or AGMs [35, 147]. This assumption is in agreement with the

well-known “seed and soil” hypothesis [80]. In particular, several studies have shown

that neurotransmitters influence the migratory activity of cancer cells, perhaps by

inducing a phenotypic change towards a more motile phenotype via intracellular sig-

nalling [74], or simply by chemotaxis [64]. In addition, some neurotransmitters also

induce tumour growth [137]. Indeed, tumour cells express many receptors, including

serpentine receptors [71] to which neurotransmitters are ligands. Neurotransmitters

can induce several behavioural changes in tumour cells, mostly increasing their pro-

liferation and/or migration (a summary of such effects can be found in Lang &

Bastian [137]).
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4.3 Mathematical model

We define the main domain of our study as a portion of the body containing the

prostate and its near surroundings, thus including both the tumour and the neigh-

bouring nerves. All the variables, with the exception of the migrating tumour cells

(see below), are average concentrations/densities over this domain, which vary in

time. We develop a compartmental model in which an extra domain is considered for

the tumour cells which leave the main domain. A schematic of the model, showing

the variables and their interactions, can be found in Figure 4.4.

Nerve Growth
Factor (G)

Norepinephrine (Nn)

Axon Guidance
Molecules (A)

Acetylcholine (Na)

Sympathetic
Neurons (S)

Parasympathetic
Neurons (P )

Primary
Tumour

Cells (Tp)

Migrating
Tumour

Cells (Tm)

Figure 4.4: A schematic representation of the interactions among the model vari-
ables. Each variable corresponds to a rounded-corners rectangular box; note that
cells are in blue while chemicals are in green. The light red-shaded rectangular
area represents the main domain, that is the prostate and its immediate surround-
ings. Concerning the arrows, solid blue denotes production, dashed magenta
denotes enhancement of growth and/or survival (and axon extension in the case
of neurons), dash-dotted green denotes migration enhancement, dash-dotted
black actual migration and dotted grey denotes apoptosis induction.

We distinguish between primary tumour cells (Tp) and migrating tumour cells

(Tm). The former are those that constitute the original tumour mass; when they

detach and leave the orthotopic site of the tumour they are then designated migrat-

ing. The migrating cells are particularly dangerous because they have the potential

to form metastases. Herein we do not explicitly account for the further development

of the migrated tumour cells: our variable Tm represents an indication of potential

metastasis formation.
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NGF (G) is a neurotrophin (a kind of protein) which stimulates the growth and

enhances the survival of both Sympathetic Nerve Cells (SNCs) and Parasympathetic

Nerve Cells (PNCs). It has been found to be secreted by tumour cells. AGMs (A)

also affect the survival and moreover the growth of both SNCs and PNCs. In

reality, there are many kinds of AGMs, which can have completely different effects

on nerve and tumour development. Here, for simplicity, we consider them as a single

variable; taking into account the different types of AGMs would be one step towards

improving the model in future.

The growth of both SNCs (S) and PNCs (P ) is enhanced by NGF and AGMs.

In addition, both types of nerve cell respond to a neurotransmitter called acetyl-

choline (Na), but only PNCs produce it; SNCs instead secrete epinephrine (also

known as adrenaline) and norepinephrine (Nn, also called noradrenaline) – see Fig-

ure 4.5. Norepinephrine is understood to be the main tumour-related sympathetic

neurotransmitter; there are less documented effects of epinephrine on tumour cell

growth and dissemination [137]. We are mainly interested in these neurotransmitters

in relation to their effects on tumour cells: while norepinephrine enhances tumour

cell survival, growth and chemotaxis, acetylcholine seems to stimulate tumour cell

invasion and migration [160].

Figure 4.5: Neuro-signalling in a sympathetic (left) and parasympathetic (right)
innervation. Neurotransmitters are in blue, nerves are in yellow and receptors in
red.

4.3.1 Model equations

It is well documented that tumour cells naturally undergo mitosis (see for instance

Friberg & Mattson [87]). The model accounts for this by taking constant growth

rates rTp and rTm for primary and migrating tumour cells, respectively. Only a

fraction of primary tumour cells exhibit proliferation; this is due to the presence
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of a necrotic core, that we assume to be defined by the half inner radius of the

(spherical) tumour mass [9]. This assumption leads to the conclusion that only 7/8

of the tumour volume (and thus primary tumour cells) proliferate. Primary tumour

cells are also exposed to the chemicals present in the domain which influence the

tumour development. Since tumour growth is enhanced by NGF, we assume that

the growth rate of Tp is increased in a saturating manner by this factor. It has been

shown that a classic logistic equation is often not suitable for modelling tumour

growth [133]. Here we include an Allee effect in the growth term to take into

account the fact that tumour cell populations tend to die out at low densities. The

Allee effect is an ecological term describing a correlation between the size and the

per capita growth rate of a population; its inclusion in cancer modelling was already

suggested by Korolev et al. [133]. Here we take the Allee threshold (in the sense of

Korolev et al. [133]) to be a function ϑ = ϑ(Nn) that decreases as the norepinephrine

level increases. This choice reflects the observation that norepinephrine enhances

tumour cell survival [69].

Figure 4.6: Graphical comparison between solutions of a standard logistic model (a)
and of a logistic model with an Allee threshold (b), from [133]. Here, K denotes the
carrying capacity and N∗ the Allee threshold.

Tumour cells also die at a constant rate dT . Interestingly, some AGMs (such as

netrin-1) are also thought to control tumour cell apoptosis [252]; we model this phe-

nomenon by adding a linear dependence on A to the death term. Finally, another rel-

evant aspect of tumour cell dynamics is migration. Tumour cells can spontaneously

disaggregate and move away from their original site. This process is enhanced by

substances produced by nerve cells and distant organs, including AGMs [30] and

acetylcholine [70, 137]. Hence, the densities of primary and migrated tumour cells
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are described by the following equations:

dTp
dt

=
7

8
Tp ·

(
rTp +

G

τ1 + τ2G

)
︸ ︷︷ ︸

growth up-regulated by NGF

·
(

1− Tp
kT

)
·
(

Tp
ϑ(Nn)

− 1

)
︸ ︷︷ ︸
logistic growth with Allee effect

(4.1)

− dT (1 + δA) · Tp︸ ︷︷ ︸
cell death

increased by AGM

− (µ0 + µ1A+ µ2Na) · Tp︸ ︷︷ ︸
migration induced by

AGM and acetylcholine

, (4.2)

dTm
dt

= (rTm − dT ) · Tm︸ ︷︷ ︸
natural cell

growth/death

+ (µ0 + µ1A+ µ2Na) · Tp︸ ︷︷ ︸
tumour cell migration

from the primary tumour

, (4.3)

where

ϑ(Nn) =
θ1

1 + θ2Nn

(see Appendix C for the motivation of the definition of ϑ(Nn)).

We are interested in the effects that tumour-secreted NGF and AGMs have on the

system; here the tumour secretion rate of these two growth factors is assumed to be

constant [72, 74]. We do not include other sources of NGF and AGMs in the main

domain since these have a negligible effect on the dynamics that we want to study

here (their effect on nerve growth in the absence of tumour is implicitly included in

the logistic growth of nerve cells – see below). As chemicals, both NGF and AGMs

decay at constant rate dG and dA, respectively. They are also internalised by both

tumour and nerve cells, which bind them to their surface receptors. Here we assume

that SNCs and PNCs bind the proteins at the same rate (namely, γ2 for NGF and

γ4 for AGM). The evolution equations describing NGF and AGM dynamics in the

domain are therefore given by

dG

dt
= sGTp︸︷︷︸

production by
tumour cells

− dGG︸︷︷︸
decay

− [γ1Tp + γ2(S + P )]G︸ ︷︷ ︸
internalisation by tumour

and nerve cells

, (4.4)

dA

dt
= sATp︸︷︷︸

production by
tumour cells

− dAA︸︷︷︸
decay

− [γ3Tp + γ4(S + P )]A︸ ︷︷ ︸
internalisation by tumour

and nerve cells

. (4.5)

We assume that in a normal (i.e. tumour-free) setting both SNCs and PNCs grow

in a logistic manner and tend to their carrying capacities kS and kP , which are
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equal to their normal equilibrium values. However, when tumour cells are present

nerve growth is enhanced by the secreted NGF [146] and AGMs [267]. This addi-

tional growth is modelled by two saturating functions and is not subject to logistic

limitation. This is due to the fact that, given the complex shape of neurons, it

is difficult to estimate an actual maximum density. Nerve growth can also occur

as axon elongation, which does not take a significant portion of space. Thus, the

equations characterizing SNC and PNC rate of change are

dS

dt
= rS

(
1− S

kS

)
· S︸ ︷︷ ︸

logistic growth
and remodelling

+

(
G

σ1 + σ2G
+

A

σ3 + σ4A

)
· S︸ ︷︷ ︸

extra growth up-regulated
by NGF and AGM

, (4.6)

dP

dt
= rP

(
1− P

kP

)
· P︸ ︷︷ ︸

logistic growth
and remodelling

+

(
G

π1 + π2G
+

A

π3 + π4A

)
· P︸ ︷︷ ︸

extra growth up-regulated
by NGF and AGM

. (4.7)

Norepinephrine and acetylcholine are produced by SNCs and PNCs, respectively,

[101] at respective net rates sn and sa that we assume to be constant. However,

these two neurotransmitters are also released by other cell types [172, 273] and we

include constant sources cn, ca in their equations. As chemicals, they decay at

constant rates dn and da, respectively. Finally, they are absorbed by tumour cells

[137, 160] at constant rates γ5 and γ6, respectively. The evolution equations for the

neurotransmitters are then expressed by

dNn

dt
= cn︸︷︷︸

const.
source

+ snS︸︷︷︸
production
by SNCs

− dnNn︸ ︷︷ ︸
decay

− γ5TpNn︸ ︷︷ ︸
uptake by

tumour cells

, (4.8)

dNa

dt
= ca︸︷︷︸

const.
source

+ saP︸︷︷︸
production
by PNCs

− daNa︸ ︷︷ ︸
decay

− γ6TpNa︸ ︷︷ ︸
uptake by

tumour cells

. (4.9)

4.3.2 Parameters and initial conditions

Parameters

Table 4.1 reports a list of all the parameters appearing in the model equations. Each

parameter is supplied with its estimated value and units. A detailed description of
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the estimation of each parameter (together with used sources) can be found in

Appendix C. The parameter values were informed from the most relevant available

datasets. Although these data are not “uniform” (in the sense that some are taken

from experiments in vivo and others in vitro; some refer to human cell lines, others

to rodents), we stress that, to the authors’ knowledge, no entirely homogeneous and

complete experiment related to neoneurogenesis has been performed to date; thus

a consistent estimation of the parameters is not possible. To test the robustness of

the model to parameter alterations, we performed a parameter sensitivity analysis

(see below).

Initial conditions

In order to explore model predictions in different scenarios we will run simulations

under different initial conditions on the primary tumour cells. In particular, T 10%
0

and T 5%
0 denote an initial density of primary tumour cells corresponding to 10% and

5% of the prostate volume, respectively (see Appendix C for details). A relatively

high percentage is used due to the fact that data concerning the tumour-nerve system

evolution are only available for advanced stages of tumour progression (as in Ayala

et al. [6]). We assume that a certain amount of tumour cells, corresponding to our

initial data, has been implanted in previously tumour-free individuals (as done by

Magnon et al. [160], although there human tumour cells were implanted in mice).

We also assume zero initial conditions for Tm, NGF and AGMs, because we are

interested in the growth factors produced by the tumour (see above section). All

the other values are assumed to be at their normal (tumour-free) level when the

model simulation starts. A list of the initial values for all the model variables can

be found in Table 4.2.

4.4 Results

A simulation of the system of equations (4.1)–(4.9) with initial primary tumour

cell density T 10%
0 (see above) is shown in Figure 4.7, where the MatLab function

ode45 was used to obtain the approximate solutions. The output of the model
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parameter value units source

rTp 4.81× 10−4 day−1 Schmid et al.[225]
rTm 1× 10−4 day−1 estimated ≈ rTp
τ1 134.27 pg day (mm3)−1 Zhu et al.[288], Sortino et al.[239]
τ2 2.39 day Zhu et al.[288], Sortino et al.[239]
kT 106 cells (mm3)−1 (Park et al.[198])
θ1 104 cells(mm3)−1 estimated ≈ 1% of kT
θ2 1 mm3pg−1 (Chiang et al.[37])
dT 1.27× 10−2 day−1 Dachille et al.[49]
δ 1.29× 10−2 mm3pg−1 Castro-Rivera et al.[33]
µ0 0.22 day−1 Pienta et al.[205]
µ1 9.8× 10−6 mm3pg−1day−1 Herman & Meadows[106]
µ2 2× 10−3 mm3pg−1day−1 Magnon et al.[160]

sG 2.22× 10−3 pg cell−1day−1 Dolle et al.[60]
dG 22.18 day−1 Tang et al.[248]
γ1 5.57× 10−5 mm3cell−1day−1 Rakowicz-Szulczynska et al.[212]
γ2 5× 10−2 mm3cell−1day−1 Claude et al.[41]

sA 5.42× 10−3 pg cell−1day−1 Kigel et al.[128]
dA 2.4 day−1 Sharova et al.[232]
γ3 10−5 mm3cell−1day−1 estimated ≈ γ4

γ4 1.47× 10−5 mm3cell−1day−1 Keino-Masu et al.[123]

rS 6× 10−2 day−1 Dolle et al.[60]
kS 0.26 cells (mm3)−1 Magnon et al.[160]
σ1 1.29× 102 pg day (mm3)−1 Collins & Dawson[47], Ruit et al.[220]
σ2 50 day Collins & Dawson[47], Ruit et al.[220]
σ3 7.79 pg day (mm3)−1 Kuzirian et al.[135]
σ4 0.01 day (Kuzirian et al.[135])

rP 7 day−1 Collins & Dawson[46, 47]
kP 0.03 cells (mm3)−1 Magnon et al.[160]
π1 0.33 pg cell−1day−1 Collins & Dawson[47]
π2 0.1 day (Collins & Dawson[47])
π3 1 pg day (mm3)−1 estimated ≈ σ3

π4 0.01 day estimated ≈ σ4

cn 0.41 pg (mm3)−1day−1 (Dodt et al.[59])
sn 1.6 pg cells−1day−1 Esler et al.[76]
dn 1.66 day−1 Taubin et al.[249]
γ5 2× 10−3 mm3cell−1day−1 Jaques et al.[113]

ca 3.99× 103 pg (mm3)−1day−1 (Wessler et al.[274], Watanabe et al.[269])
sa 0.73 day−1 Paton et al.[201]
da 49.91 day−1 Bechem et al.[14]
γ6 10−3 mm3cell−1day−1 estimated ≈ γ5

Table 4.1: A list of all the parameters appearing in the model equations, together
with the sources used for their estimation.
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init.value value units source

Tp(0) T 10%
0 ,T 5%

0 cells/mm3 calculated
Tm(0) 0 cells/mm3 assumption
G(0) 0 pg/mm3 assumption
A(0) 0 pg/mm3 assumption
S(0) 0.26 cells/mm3 Magnon et al.[160]
P (0) 0.03 cells/mm3 Magnon et al.[160]
Nn(0) 0.5 pg/mm3 Dodt et al.[59]
Na(0) 80 pg/mm3 Wessler et al.[274], Watanabe et al.[269]:

Table 4.2: Values of the model variables at t = 0.

will be compared with the experimental observations reported in Ayala et al.[6]

and Magnon et al.[160]. Note that, to the authors’ knowledge, these are the only

published experiments that specifically address tumour-nerve interaction dynamics;

yet, these results are not completely consistent and therefore we will not carry out

a quantitative comparison. Indeed, Ayala and collaborators [6] use three different

cell lines for in vitro experiments (human prostate cancer, mouse neuroblastoma

and rat pheochromocytoma) and data from human patients for the nerve density

analysis; Magnon and co-workers implanted human prostate cancer cells into mice

to collect most of their data (only the assessment of nerve density in normal tissues

surrounding tumour was done on human patients). Therefore, the only possible

comparison between the model results and the experimental observations is of a

qualitative, rather than a quantitative, nature.

Figure 4.7: Time-course of the model variables over a period of 15 days for T 10%
0 .

Overall, the output is in good qualitative agreement with the experimental ob-

servations associated with aggressive human prostate tumour as reported by Ayala
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and collaborators [6]. Both sympathetic and parasympathetic nerves are, in the

presence of tumour, significantly increased in the region around the prostate, and

the number of tumour cells leaving the domain are constantly increasing, matching

the metastases-formation report in Ayala’s and Magnon’s works [6, 160]. Concern-

ing the primary tumour mass, our model predicts that after an initial increase it

reaches a non-zero equilibrium; this is in agreement with the results of Magnon and

co-workers [160], which reports an increase in tumour mass within the prostate. Also

the fact that NGF and AGM levels stay high seems realistic: NGF levels are higher

in inflammation and some studies report that semaphorin 7A and netrin-1 levels are

significantly elevated in patients subject to chemotherapy and some kinds of cancers,

respectively. Neurotransmitters reduce rapidly to a low non-zero level following the

sudden implantation of tumour cells. On the other hand, our results are not in

quantitative agreement with Magnon et al. [160]; in particular, the present model

reaches an equilibrium approximately 5 days after tumour cells implantation, whilst

in Magnon’s report [160] it takes weeks to observe such significant changes. This

may be due to the fact that the model does not take into account other elements

of the prostate environment (such as lymphatic and blood vasculature) which com-

pete with the nervous system for growth factors and space, thus potentially slowing

down the dynamics. In particular, in order to incorporate blood and lymphatic

vasculature role in neoneurogenesis, one could consider extra variables representing

blood and lymphatic endothelial cells as well as tumour (lymph)angiogenic growth

factors. Of particular interest is the relation between NGF and vascular endothelial

growth factor in prostate cancer, as proposed by Nico et al. [185] and Botelho et al.

[21]. Including the immune system also has the potential to slow down the tumour’s

growth; this could be modelled for instance by considering lymphocyte dynamics or

macrophage plasticity [159]. The inclusion of such extra elements is not put into

practice here; however, the considered variables are sufficient to confirm the exper-

imental evidence of tumour-nerve bilateral interactions. Also, we did investigate

how perturbations in the parameter values may affect the model output and how

different initial conditions will determine cancer progression.

84



Chapter 4: Modelling (direct) tumour-nerve interactions

Figure 4.8: Primary and migrating tumour cells density time-course for initial con-
dition T 5%

0 .

An interesting feature of the model is that a smaller initial condition for primary

tumour cells, for instance T 5%
0 , gives rise to completely different dynamics. In this

case the primary tumour goes to zero after a few days, while migrating tumour

cells initially increase but then decrease to zero (Figure 4.8). This behaviour is in

accordance with the hypothesis that a tumour cell colony has to be bigger than a

certain threshold in order to proliferate [133]. Note that the migrating tumour cells

could lead to tumour development in another site of the body where the conditions

are more favourable. It is notable that the model is able to reflect this strong

dependence of tumour progression on its initial conditions; this appears to be an

important feature in modern cancer research inspired by ecological dynamics [133].

Our Allee threshold, lying between T 5%
0 and T 10%

0 , appears to be unrealistically

high but, to the authors’ knowledge, no measurement of this parameter is available

for comparison. In this model tumour cell survival and growth are affected only

by nerves, while in reality blood vessels also contribute to tumour maintenance by

providing oxygen and nutrients; this may (partially) account for the high threshold.

4.4.1 Parameter sensitivity analysis

To test the robustness of the model, we performed a parameter sensitivity analysis

by observing the effect that a 10% increase/reduction of each parameter value has

on tumour cell densities at day 15. The model appears to be very solid in the

sense that final tumour cell densities are not greatly affected by perturbations in

the parameter values. The only parameters that generate a change in the density

of migrating tumour cells of 2% or more are reported in Figure 4.9. Of these, only
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the tumour cell carrying capacity kT has a similar effect on primary tumour cells.

Figure 4.9: Parameter sensitivity analysis. The graph shows the effects on migrating
tumour cells at day 15 after an increase (blue) or decrease (orange) of 10% in the
parameters. Here only the parameters which induced a percentage change of 2% or
more are shown; they are: the tumour cell carrying capacity kT , the “basal” tumour
cell Allee threshold θ1, and the spontaneous tumour cell migration rate µ0.

4.4.2 Stress and tumour progression

Many cancer patients exhibit stress and depression, which are known to have an

effect on the immune system and consequently tumour growth [176, 263]. Addition-

ally, they may have a direct effect as stress is associated with increased release of

norepinephrine by the hypothalamus and sympathetic nerves [136]. Here we simulate

a stress condition by increasing the norepinephrine release rate sn by sympathetic

nerves. Figure 4.10A shows the time course of primary and migrating tumour cells

when sn is multiplied by 10 for initial condition T 10%
0 . The plots show that when sn

is increased, the primary tumour cell density settles quickly to a higher equilibrium,

while tumour cell migration is enhanced. This is in accordance with the experimen-

tal observation that stress is related to higher cancer metastasis and perhaps higher

mortality [38, 175]. Again, our results agree qualitatively (but not quantitatively)

with the experimental evidence.

Another interesting prediction of our model is that for some initial conditions,

such as T 5%
0 , stress makes a crucial difference in tumour development. Here, if sn is

taken to be its baseline value, recall the primary tumour tends to zero (Figure 4.8);

in stress conditions (simulated by multiplying sn by 10) the same initial condition

leads to primary tumour growth and a constant increase of migrating tumour cells
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(Figure 4.10B). This observation suggests that a stressful environment can affect tu-

mour development and therapeutic efficacy, in accordance with many findings in the

biological literature [69, 263]. More experimental data are needed to precisely quan-

tify this effect, however this already supports the potential for treatments targeting

the sympathetic nervous system, as discussed by Cole & Sood [45].

Figure 4.10: Primary and migrating tumour cells in stress conditions (simulated by
multiplying sn by 10) for initial conditions (A) T 10%

0 and (B) T 5%
0 respectively.

4.4.3 Blocking tumour acetylcholine receptors

Regarding parasympathetic neural activity, Magnon and collaborators [160] report

that impairing the cholinergic (acetylcholine) receptors on tumour cells does not sig-

nificantly affect tumour growth in the orthotopic site, but markedly reduces tumour

cell spreading and metastasis. To simulate this phenomenon, we set µ2 = 0; that is,

we consider tumour cells to be non-responsive to acetylcholine. In this case, we see

(simulation not shown) that the number of migrated tumour cells after 15 days is

reduced by about 0.5% and a similar reduction is also observed in primary tumour

cell density. Thus, the model corroborates the findings of Magnon et al. [160] that

cholinergic receptors on tumour cells are potential clinical targets in view of limiting

cancer metastasis; again, for a quantitative assessment of the potential effectiveness

of this treatment one would need to include more variables in the model.

4.5 Discussion

This work is the first mathematical confirmation of the major role played by the

autonomic nervous system in promoting tumour development and progression of
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prostate cancer and highlights neoneurogenesis as a target for cancer drug develop-

ment. In the present paper we develop a simple mathematical model for tumour

neoneurogenesis and cancer progression based on recent experimental evidence; the

results show that, regardless of the presence of angiogenesis and lymphangiogensis,

tumour-induced neoneurogenesis represents a symbiotic factor for prostate tumour.

This work further expands our understanding of the process by which stress can reg-

ulate cancer initiation and development: previous research predominantly empha-

sised the role of the immune system in mediating stress effects on tumour growth and

metastasis, while our model predicts that stress can directly affect primary tumour

growth through the release of neurotransmitters. In addition, the effect of parasym-

pathetic nerves is also captured by the model through the acetylcholine-induced

tumour migration.

The use of ecological concepts in cancer biology and modelling is a promising

development in tumour research [206]. Here we included an Allee effect in primary

tumour cell dynamics, as suggested by Korolev et al. [133]. However, we suggest that

one could couple tumour cell dynamics and nerves by introducing a norepinephrine

dependence of the Allee threshold.

This model, though quite simple, gives good insights into tumour neoneurogen-

esis and offers many possibilities for expansion and improvement. First of all, the

introduction of a spatial variable and thus the use of PDEs would allow a more

precise description of the processes occurring during tumour neoneurogenesis. In

particular, a spatial approach may be able to explain why sympathetic nerves tend

to accumulate in normal tissues and only penetrate tumour edges, while parasym-

pathetic nerves infiltrate tumour tissues [160]. Also, a more accurate description

of the spatial component could allow for a distinction between axon elongation and

nerve cell proliferation [6].

The model could be further improved by considering different variables for dif-

ferent kinds of AGMs, which are known to have diverse effects on tumour cells

[35]. In fact, circulating tumour cells are probably attracted to a specific organ by

chemokines and AGMs; the fate of a new tumour cell cluster will depend on the
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sensitivity of the tumour cells to the specific factors and AGMs produced in the new

environment.

One could also take into account the blood and lymphatic vasculatures. Guid-

ance cues for axons also have a function in (lymph)angiogenesis [31, 68]. Both angio-,

lymphangio- and neoneuro-genesis promote metastasis formation, although in dif-

ferent ways; for instance, blood and lymphatic vessels offer pathways for tumour

cells to disseminate, similar to perineural invasion [73].

Another factor that could be included in the model is the immune system, which

functions as a bridge between the tumour and nervous system and is the main cause

of the indirect connections between the two (in addition, NGF also seems to be

involved in immune response and inflammation [278]).

Finally, the model would highly benefit from more consistent datasets in order

to include more realistic parameters values. Obtaining consistent parameter values

would allow both qualitative and quantitative predictions to be formed.
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Chapter 5

Modelling Drosophila ’s courtship

behaviour

Abstract: Courtship behavioural patterns of Drosophila melanogaster

are considered a good model to investigate neurodegenerative diseases

(such as Parkinson’s) in humans. This chapter illustrates the biologi-

cal and health-care related background to this topic, and then presents a

possible modelling approach, which is still work in progress.

This chapter reports my contribution to the outcomes from the NC3Rs/POEMS

Network Maths Study Group: Applying mathematics to 3Rs problems, held on 8th-

12th September 2014 in Cambridge, in response to a problem entitled Improving the

utility of Drosophila melanogaster for neurodegenerative disease research by mod-

elling courtship behaviour patterns, presented by Birgit Brüggemeier and Dr. Chris-

tian Schusterreiter from University of Oxford.

Our group presented three possible models to approach the study of Drosophila

courtship behaviour, one of a probabilistic nature and two deterministic ones. The

main difficulty in treating this problem mathematically is the nature of the data,

which are sequences of behavioural patterns. While the probabilistic approach in-

volves a Markov process (whose states are reported in Figure 5.1), the deterministic

models presented at the end of the workshop in Cambridge focus on physiological

mechanisms based on neuronal excitation, following Margaret Bastock’s hypothesis.
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Figure 5.1: A schematic of the state space of the Markov process developed in the
workshop. Each circle represents a displayed behaviour: N stands for no courtship,
while F denotes following, W wing extension and C copulation. The arrows in the
diagram indicate which behavioural switches are observed during courtship. Note
that copulation terminates courtship display.

Bastock’s theory states that switches between behaviours during courtship are due

to hierarchical activity thresholds for successive courtship behaviours (for details,

see [12]). The deterministic models have the advantage that they include a physio-

logical mechanism: each behaviour is seen as the result of the neural activity, that

triggers the behaviour when the activity or firing level of the related neurons is above

a certain threshold. Although these kinds of models require parameter values which

are difficult to obtain, parameter estimation might be possible through established

statistical tools such as approximate Bayesian computation [145, 253].

In this Chapter I will present only one of the deterministic models developed

during the workshop, which is the one I mostly contributed to design and implement.

The model description is preceded by an introduction about the biology and interest

of Drosophila courtship behaviour. The other model presented in Cambridge was

an adaptation of the Fitzhugh-Nagumo equations [84, 181].

The model hereunder presented is still preliminary and some work still needs

to be done for publication in terms of simulations and analysis, before it can be

submitted.
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5.1 Introduction

Figure 5.2: A male fruit
fly. Credit: Jan Polabin-
ski/iStockphoto.

The common fruit fly Drosophila melanogaster (Figure

5.2) was one of the first organisms used for genetic anal-

ysis. It was first proposed as a model organism by the

American entomologist Charles W. Woodworth at the

beginning of the 20th century and is nowadays one of the

best-known eukaryotic organisms and one of the most

used in biological research. There are many reasons for

Drosophila’s popularity among biologists, in particular it

is cheap to keep and breed in large quantities, its generation time is short (about

10 days), and its complete genome has been sequenced and published in 2000 [1].

Information from Drosophila is useful for understanding genetic processes in other

eukaryotes, including humans: in particular, about three out of four known human

disease genes have a recognizable match in the genome of the fruit fly [214]. For

these reasons, Drosophila melanogaster has long been used as a genetic model for

several human diseases, including neurodegenerative disorders (such as Parkinson’s

and Alzheimer’s diseases) and those related to aging, diabetes, immunity and cancer

[116].

Behavioural tests are crucial tools for screening new therapeutic agents for neu-

rodegenerative disorders. Fruit fly courtship behaviour is a good model for research

since as we will see in the following: it is modular, complex, partly innate and

partly learnt from individual experience. In [231] the authors propose Drosophila

courtship behaviour as a better behavioural assay for Parkinson’s genetic model flies

than other behavioural tests such as climbing ability. However, fruit fly courtship is

not widely used in disease and drug studies (apart from a few exceptions), due to its

complexity, despite its advantages over other fly behaviours. In this regard, mathe-

matical modelling could potentially furnish a useful quantification and comparison

method to extend the use of courtship behavioural tests in medical research.
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5.1.1 Ethology of Drosophila courtship

Innate courtship of the male fruit fly Drosophila melanogaster consists of a series

of behaviours (such as orientation towards the female, wing extension and copula-

tion) which alternate in a complex pattern [18]. Figure 5.3 illustrates the observed

behaviours displayed by the male fly during the courtship ritual.

Figure 5.3: Drosophila courtship ritual as a series of successive behaviours, as pre-
sented in [18].

Although these behaviours are presented in an “ordered” fashion, transitions

between different behaviours do not follow a fixed rule, since the male fly can switch

from any one courtship behaviour to any other [13, 43, 165]. Figure 5.4 presents an

ethogram of courtship behaviour taken from [43]: boxes denote different courtship

behaviours, while arrows between boxes indicate the probability of a switch through

the arrow’s thickness.

In the 1950s, Margaret Bastock, a British zoologist and geneticist, advanced a

hypothesis aiming to explain behavioural switches in innate fly courtship by consid-

ering excitatory thresholds and varying excitation in the male fly [12]. According

to Bastock’s theory, over the course of courtship male flies become increasingly sex-

ually excited, and courtship behaviours are assumed to be hierarchical in the level

of excitation they require to be displayed [4, 12, 195]. In addition, the female influ-

ences courtship choices of the male by sexually motivating him and thus increasing

his excitation level [12].

Courtship is generated by one common neural network, with neuronal subsets

sensitive to different excitatory frequencies [216]. The neural network determining

courtship in the male fly consists of about 650 cells [216], and through the use of
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Figure 5.4: Ethogram of courtship behaviour for Drosophila melanogaster from [43,
Figure 5]. The text in the boxes indicate the sub-behaviours of courtship: ♂ mov

stands for male movement, ♀ mov stands for female movement, orn stands for male
orienting towards the female, scis stands for wing scissoring, that is simultaneous
extension of both wings, row stands for wing rowing, that is wing extension followed
by immediate wing swing in, vib stands for wing vibration, ext stands for wing
extension, lick stands for the male licking the female genitalia, ♀ beh stands for
a class of behaviours shown by the female to express acceptance or rejection and
cop stands for copulation. The thickness of arrows represents the frequency of
transitions observed during courtship experiments, grouped in three classes: over
25 instances of a transition, 10 to 24 instances of a transition and transitions that
occurred less than 10 times. Black arrows denote transitions significant at P ≤ 0.01
in a stepwise search for identifying subsets of behaviours that significantly deviate
from the assumption of quasi-random transitions. Accordingly, dotted arrows are
not significant at P ≤ 0.01.

genetic tools it is possible to narrow down even smaller neuronal subsets which are

responsible for specific courtship behaviours [202]. These neuronal subsets can be

tested both for their necessity in generating a given behaviour (through neuronal

deactivation) and their sufficiency in generating a behaviour (by artificial neuronal

excitation). Thus Drosophila allows for a systematic study of neural-driven be-

haviour.
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5.1.2 A “courtship tracker”

A considerable amount of data is available concerning the behavioural patterns

displayed by both healthy and Parkinson’s-affected male fruit flies in response to

different female subjects. An effective way to collect consistent behavioural data was

developed by one of the members of our team, Dr. Christian Schusterreiter, during

his PhD and this is summarised in [228]. It is a software tool which analyses videos

of courting flies and discerns different behaviours, translating each of them into a

specific colour and plotting it as a bar whose length is proportional to the time the

behaviour has been displayed. A snapshot from the “courtship tracker” is shown in

Figure 5.5. This tool provides a clear way to collect and present behavioural data

which can then be compared with a model’s output.

Figure 5.5: A snapshot from the software presented in [228]: the analysed video
appears on the left, while the detected behaviours are printed as bars on the right;
the thin green line represents the time point at which the video is captured. In this
frame, green identifies following, red wing extension and yellow copulation.

5.1.3 Relevance for the 3Rs and human health

In the last century there has been increasing consideration for the ethical use of

animals in research and testing. In particular, three guiding principles (known as

“the Three Rs” or “3Rs”) have been proposed in this regard since 1959 [221]:

1. Replacement, that is, the use of non-animal methods over animal methods

when possible;

2. Reduction, which refers to methods that reduce the number of animals required

to obtain scientific information;
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3. Refinement, which invokes the development of methods that reduce pain, suf-

fering, or distress and enhance animal welfare for the animals used.

In this context, promoting the modelling of fly courtship as an investigation

method for neurodegenerative diseases meets many of these goals since both math-

ematical models and the use of invertebrates are regarded as main targets for re-

placement and reduction of animal experimentation.

However, the use of fly courtship as a standard behavioural tool for quantifying

disease-related impairment is still problematic, given the complexity of courtship

and the associated difficulty of defining normal courtship. Modelling can help with

this problem by providing techniques and tools that define normal courtship on the

basis of current theories of how Drosophila courtship patterns emerge. Currently

courtship is mainly quantified with summary measures as the percentage of time

spent courting (CI), which is easy to quantify. This allows large scale comparisons,

but simplifying courtship to one index omits differences in behavioural patterns of

healthy and non-healthy flies [12, 231]. The model presented in the following could

be a starting point for studying behavioural patterns in a quantitative way and

consequently could help to identify impairments that are otherwise overlooked in

disease screens.

5.2 Mathematical Modelling

When modelling the courtship patterns of Drosophila melanogaster, it has been

observed that certain neurons fire during the different stages of courtship. We

decided to focus on a simple model of four neuron clusters, namely: Processing unit

(P ), which corresponds to no behaviour; Following cluster (F ), which comprises

several neuron types activated when following behaviour is displayed; Wing vibration

cluster (W ), more precisely defined as mesothoracic cluster; and finally Copulation

cluster (C), located in the abdomen. As a simple starting point, we consider these

four neuronal clusters as interconnected with differently-weighted excitatory and

inhibitory connections between them. For simplicity, we assume that all neurons

in a cluster fire at the same time, so that each cluster can be effectively regarded
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as a single neuron. While a simplification, there are biological reasons to consider

each cluster as one neuron. Each of the behaviours can be linked to a group of

neurons which share a specific feature, for example an active gene sequence. When

these neurons are activated at the same time, the behaviour is displayed. Hence

we consider a single neuron from a cluster and assume all others share the same

biological feature (active gene sequence).

In the following, a simple difference equation system is introduced to describe

the interconnections among these neuronal clusters. This is still preliminary work;

in particular, a precise way to quantitatively compare the model output with the

observed behavioural data is to be defined. Once the model output fits the data,

it will potentially have great value in identifying impaired neural connections in

neurodegenerative cases.

5.2.1 Pasemann’s model

In the 1990s, Pasemann proposed a simple model to describe interactions between

neurons [199, 200]. Here the dynamics of neuronal interactions are described by

discrete-time difference equations. To every “unit” (neuron) i corresponds one equa-

tion describing its activation ai; this quantity is a real number (either positive or

negative) which does not represent any specific physical parameter but is a measure

of the neuronal activity. For each neuron i its total activation ai is given by

ai =
∑
j

wijoj + θi,

where wij is the weight assigned to the connection between the units i and j (i 6= j),

θi = θ̄i + Ii (Ii total “external” input to unit i, θ̄i fixed bias) and oj represents the

output coming from unit j. The output function was taken to be

oj = σ(aj) =
1

1 + e−aj
. (5.1)

All of these quantities are represented schematically in Figure 5.6.

Observe that transfer functions are here assumed to be sigmoid, that is bounded,
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Figure 5.6: A schematic from Pasemann’s paper [199, Figure 1] representing a 2-
neuron network.

monotone increasing functions σ such that there exists a unique xM ∈ R where

σ′(xM) attains a local (and global) maximum. In fact, one can choose a constant

α > 0 to be this maximum, that is a positive number α such that

0 < σ′(x) ≤ α ∀x ∈ R . (5.2)

In [199] the sigmoid (5.1) is chosen so that α = σ′(0) = 1/4.

In [199] the author analyses the discrete dynamics of so-called 2-modules, that

is two-neuron networks of the form described in Figure 5.6, with w11 = w22 = 0

(no self-connections). The author also classifies different 2-modules depending on

the sign of the product A = w12 · w21: if A > 0 the module is purely excitatory

or inhibitory and is called an even 2-module (because the number of inhibitory

connections in even); if A < 0 the module is inhibitory-excitatory and is called

an odd 2-module. Modules with symmetric (respectively, anti-symmetric) weight

matrix are special cases of even (respectively, odd) modules.

The equations for the 2-module dynamics at the equilibrium are

a∗1 = θ1 + w12σ(a∗2) ,

a∗2 = θ2 + w21σ(a∗1) .

From these one can see that the system can only have one or three steady states

(this fact is related to the shape of the transfer functions, that being sigmoid can

intersect only in either one or three points). In addition, by linearisation one finds

98



Chapter 5: Modelling Drosophila’s courtship behaviour

that the eigenvalues of the system at the equilibrium are given by

λ1,2 = ±
√
A · σ′(a∗1) · σ′(a∗2) .

This tells us that, since σ′(a∗1) · σ′(a∗2) is strictly positive, the eigenvalues are real in

the case of an even 2-module and imaginary for an odd 2-module. The distinction

between even and odd 2-modules is also considered by studying the type of bifur-

cation occurring at (a∗1, a
∗
2) = (0, 0). Note that unstable steady states are those of

greater interest in the context of neuronal models.

Further on, the paper [199] provides results concerning the dynamics of even and

odd 2-module systems for different values of the weights w12, w21 (related via the

constant α defined in (5.2)). It is worth stressing that the qualitative behaviour of

the system does not depend on the particular choice of the sigmoid transfer function,

but only on α.

Finally, in the discussion section of [199], the author points out how the continu-

ous dynamics of a 2-module are very different from the discrete case presented above.

In particular, it is proved that a time-continuous 2-module without self-connections

cannot exhibit stable periodic behaviour.

Pasemann remarks how introducing self-connections to the units of a 2-module

will generate much more complex behaviours.

5.2.2 A “Pasemann-like” model

In formulating our model we were inspired by the models presented in [199, 200], but

contrary to Pasemann’s assumptions we considered neural clusters instead of single

neurons, assuming that neurons in the same cluster fire at the same time. Further,

we did not take any bias into account and considered a random external input In

(at each time point n). Another difference between Pasemann’s work and ours is

that here all the weights are taken to be positive and the distinction between purely-

excitatory and excitatory-inhibitory connections is modelled through two types of
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transfer functions:

σ+(x) =

 (1 + exp[m1(−x+ q)])−1 if x > 0

0 if x ≤ 0
, (5.3)

σ±(x) =


(1 + exp[m1(−x+ q)])−1 if x > 0

0 if x = 0

−(1 + exp[m2(x+ q)])−1 if x < 0

, (5.4)

whose graphs are plotted in Figure 5.7.

x0

1

xq1

σ+(x) x
xq1

xq2

1

−1

σ±(x)

Figure 5.7: Plots of the functions σ+ (left) and σ± (right).

Note that we considered more general sigmoid functions than in [199], with an

input argument depending not only on x, but also on three parameters m1, m2

and q (m1,m2 > 0, q ∈ R). Physically, the parameters m1,m2 represents the

steepness of the “switch” between zero and excitation or inhibition. More precisely,

m1 determines the steepness of the switch between no-effect to excitation for both σ+

and σ± while m2 controls the same steepness in the case of a switch between no-effect

and inhibition for σ±. In the following, we will take m2 < m1 because it is known

empirically that neural inhibition has less “immediate” effect on neural activity

than excitation. The parameter q instead determines the position of the points xq1,xq2

depicted in Figure 5.7 (that is, the lower bound for |σ+|,|σ±| for x 6= 0). Although the

results proven in [199] suggest that a more general shape for the transfer functions

does not affect the qualitative behaviour of the system, our decision to introduce

the three parameters m1,m2,q that control the exact shape of the sigmoid functions

was in view of fitting to experimental data. It seems difficult to measure these

parameters directly in an experimental setting, but as we will see in the following

one could fit the model output to observed behavioural patterns.

Our model consists of the four units (neural clusters) described above, which
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interact as described in Figure 5.8 through the transfer functions defined in (5.3)

and (5.4).

Figure 5.8: Schematic view of the model, compared with an image of neurons ex-
pressing the sex-determining gene doublesex (in green) in the Drosophila brain and
ventral nerve cord (purple). The doublesex gene is necessary and sufficient for flies
displaying male courtship behaviours [202]. The fly brain was prepared and imaged
by Hania Pavlou, who was also a member of the workgroup. In the graph, the num-
bers on the edges are the number of times the corresponding behavioural switch has
been observed in four experiments (their sum).

The numbers on the arrows shown in Figure 5.8 give the number of times (summed

- not averaged - over four experiments) the corresponding behavioural transition is

observed. The proportions between these values will be maintained across the values

we will choose for the weights in our model. In this way, it is implicitly assumed

that each behavioural switch is proportional to the weight of the corresponding

connection. This assumption helps focus our parameter specification, given that

there is no available data concerning these specific neural connections. Indeed,

little is known about these connections. Thus, on the one hand it is difficult to

realistically estimate parameters, but on the other the model therefore has potential

to give a greater insight into the understanding of the system: estimating the relative

importance of the connections between different neural clusters could help to identify

impaired or lacking connections in the neurodegenerative case.

In writing the equations describing the activity of each cluster, the following

assumptions are made:
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• the external input I can be either positive or negative (depending on the female

behaviour).

• the input I acts on the activation of the processing unit P in either an exci-

tatory or inhibitory manner, thus modelled through the function σ±;

• the activity of the cluster P can induce an increase in the activity of F and

W through the purely excitatory output function σ+;

• P itself can be excited by the activity of the clusters F and W , via the func-

tion σ+;

• the activity of the copulation cluster C is only influenced by the processing

unit P and the wing-extension cluster W .

These assumptions are motivated by the observed alternation of behaviours from

none to following, from none to wing-extension and from following to wing-extension

(while, for instance, no copulation after following is observed). In addition, the

clusters F , W and C are supposed to have a self-excitatory mechanism (represented

by the loops in Figure 5.8) suggested by the observation that neural activity in a

cluster tends to maintain and increase itself (for example, even if the external stimuli

suddenly end, an excited cluster will stay excited for a while – at least for the 4-

minute duration of the standard experiment – although the level of excitation can

vary). This approach will hopefully take into account a sort of “hierarchy” among

the neural clusters: for example, it is observed that copulation is “stronger” than

following and wing extension, so we hope to see a kind of ordered sequence in the

behaviours emerging from this neural activity.

Applying the above reasoning gives rise to the following equations to describe

the network:

Pn+1 = wIσ±(In) + wFP σ+(Fn) + wWP σ+(Wn) , (5.5)

Fn+1 = wPF σ±(Pn) + wWF σ+(Wn) + `FFn , (5.6)

Wn+1 = wPW σ±(Pn) + wFW σ+(Fn) + `WWn , (5.7)

Cn+1 = wPC σ±(Pn) + wWC σ+(Wn) + `CCn . (5.8)
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In the above n is the (discrete) time and σ+,σ± are defined in (5.3) and (5.4),

respectively. Note that In here depends on the female response at time n and, in a

first instance, we will take it to be random and uniformly distributed between −1/2

and +1/2. As a starting time point we will take the beginning of an experiment and

consequently consider zero initial conditions for all the four clusters, reflecting the

fact that the part of the male fruit fly’s nervous system involved in courtship is not

activated before he sees the female.

5.2.3 Simulations

A representative numerical simulation of the model (performed in MatLab) can be

seen in Figure 5.9, where the neuronal activity of the different clusters is plotted

over about 60 time steps. This particular number was chosen for the following

reasoning: in a (video) experiment, the camera records about 25 frames per second

and one experiment usually lasts around 4 minutes; one experiment should then

correspond to approximately 6000 frames/timesteps, however plots over more than

100 timesteps are not clear to interpret, so we considered a time-rescaling of a factor

of 100. This is justified by the fact that each behaviour displayed by a male fruit

fly lasts several tens of frames anyway. More simulations (corresponding to different

random inputs I) are plotted in Figure 5.11.

The simulation shows oscillatory increasing dynamics for P , F , W and a fairly

steady increase in the activity of C, which is what we would expect during a normal

courtship experiment in which the male is constantly exposed to the female’s pres-

ence. Note that here we have considered a random input I coming from the female,

I being uniformly distributed between -0.5 and 0.5; in this way, at every time n

there is 50% chance that the male will get a negative input and 50% he will receive

a positive one. We will explore different ranges of I in the following.

To convert these results into a behavioural output (which would then be com-

parable with real data), it is assumed that a certain behaviour is displayed by the

fly when the activation of the corresponding neural unit is above a certain thresh-

old. Figure 5.10 shows the “translation” of the dynamics shown in Figure 5.9 for a
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Figure 5.9: Simulation of neural activity of the four neural clusters. Here, the weights
were taken to be random numbers normally distributed around the following values:
0.47 for wPF , 0.41 for wFP , 0.19 for wPW , 0.18 for wWB, 0.05 for wPC , 0.28 for
wFW , 0.27 for wWF , 0.05 for wWC (wPC and wWC were multiplied by 10 since the
“original” values seem too small to be realistic). The standard deviations were taken
to be equal to 1/10 of these values, respectively. The other parameters considered
are m1 = 1, m2 = 0.5 and q = 2 for the sigma-functions (5.3) and (5.4) and the
loops `F = 0.1, `W = 0.3 and `C = 0.9.

certain choice of thresholds. We assumed θC > θW > θF because it seems reason-

able to require higher neural activity for behaviours generally associated with higher

excitation. Again, more realisations of the same system are reported in Figure 5.12.

Figure 5.10: Behavioural pattern emerging from the previous simulation of neural
activation. Here the thresholds are taken as follows: θF = 5, θW = 6 and θC = 7.

The pattern shown in Figure 5.10 is encouraging because it shows an alternation

between no behaviour, following and wing extension followed by copulation, which
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is the same thing we observe in reality. Further study should include comparing the

time each behaviour is displayed in relation to other behaviours, and then comparing

this with experimental data (this could be an idea to design a “metric” to compare

model outputs and data).

5.2.4 Rejective and receptive females

An idea for further exploring the model’s potential to describe real fly behaviour

could be to use different female/external inputs I and see how these affect the male

behavioural display. For a non-receptive female we can consider a random input I

uniformly distributed between -0.8 and 0.2 (that is, the female gives a negative cue

80% of the times). Four representative realisations of the model in this case are

reported in Figure 5.13.

From these simulations, one sees that most of the time it takes longer before the

male starts exhibiting any courtship-related behaviour, and that copulation does not

always occur in the time of the experiment (about 4 minutes/6000 frames/60 time

steps in the model). This reflects the fact that the male’s excitement and propensity

to proceed in the courtship ritual is strongly influenced by the female’s behaviour.

In a forced vicinity with the female (which is the case in the lab experiments) the

male will eventually get excited anyway, but we could argue that in a natural/wild

setting the female has time to flee and no copulation will occur.

Similarly, we can simulate a receptive female by taking the input to vary in the

range −0.2 ≤ I ≤ 0.8 (that is, positive signals from the female in 80% of the cases).

Again, four representative simulations are shown in Figure 5.14.

Here we observe that a positive input from the female accelerates the courtship

process from the initial phase to copulation.

A more precise comparison between model outputs for the different choices of I

can be done by calculating mean copulation time ncop in the different cases (copu-

lation time meaning the time at which copulation starts). We find that the mean

copulation times over 104 simulations are respectively:

• ncop = 24 for −0.5 ≤ I ≤ 0.5 (random female input);
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Figure 5.11: Simulations of neural activity of the four neural clusters for the same
set of base parameters as Figure 5.9, but under different random inputs.
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Figure 5.12: Plots of the behavioural patters corresponding to the solutions plotted
in Figure 5.11.
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Figure 5.13: Plots of the behavioural patters in the case of a rejective female (−0.8 ≤
I ≤ 0.2). Same set of base parameters as Figure 5.10.

• ncop = 50 for −0.8 ≤ I ≤ 0.2 (rejective female);

• ncop = 18 for −0.2 ≤ I ≤ 0.8 (receptive female).

These numbers clearly show that the copulation time is affected by the female be-

haviour: the more receptive a female is, the earlier the male will mate with her.

While it is still too early to decide whether these outputs are “good” or not,

these preliminary results suggest that this neural approach might be a good way

to study the model. In fact, it produces an output which is comparable with the

experimental data, and the general shape of the network is based on widely accepted

biological knowledge.

5.3 Future work

The aspect of this model that would most benefit from improvement is the param-

eter estimation. The neural activation presently considered does not correspond to
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Figure 5.14: Plots of the behavioural patters in the case of a receptive female (−0.2 ≤
I ≤ 0.8). Same set of base parameters as Figure 5.10.

a precisely defined physical quantity, and it seems difficult to practically implement

an experiment measuring the weights of connections between clusters. However, the

data contained in the ethograms can be used to estimate the weights and the thresh-

olds through an algorithm such as the one described in [145, 253], using quantities

such as the CI (percentage of time spent courting) or the mean copulation time for

comparison.

Also, one could follow Pasemann’s steps and do a steady state analysis of the

model, identifying the possible equilibria and their stability; for a deterministic

female behaviour (that is, without a random input).

Then, once the model is thought to properly describe the biological dynamics

in the case of a healthy fly, this system could be used to speculate about the most

relevant connections between neuronal clusters. This would have a big impact in

studying the underlying mechanisms of impaired neural activity as that observed in

Parkinson’s disease, identifying potential targets for therapy development.
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Conclusions

This thesis collects various projects related to modelling biomedical phenomena:

they provide a broad slice of problems of interest to the mathematical biology com-

munity.

The main research topic has been modelling wound healing-related processes, and

in this context two main works have been developed focussing on lymphangiogenesis.

6.1 Results

6.1.1 Wound healing lymphangiogenesis

In Chapter 2 an ODE model is presented which is able to capture the main elements

describing lymphangiogenesis in both normal and diabetic tissues. The model’s

predictions reflect biological observations very well, not only in healthy subjects

but also in the diabetic case. The model then offers deep insight into the complex

phenomenon of wound healing lymphangiogenesis, identifying the key players in

the process and thus the most promising targets for therapy. Several therapeutic

approaches are suggested. Another valuable contribution of the work is the detailed

parameter estimation reported in the Appendix: great care was put in determining

realistic values for the parameters, which is a crucial feature of reliable models

and hopefully the effort put in this parameter estimation will serve other models

addressing wound healing-related processes.
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In Chapter 3 we build upon the work conducted in the previous chapter and

propose two PDE models to describe different hypotheses concerning lymphatic

vasculature regeneration. Biologists do not agree on a single theory to describe lym-

phatic network restoration, and mathematical models could potentially give a great

insight into the question. Our models account for a variety of scenarios and further

biological data would be required to establish which hypothesis better describes the

phenomenon under study. The resulting simulations give particularly interesting

results about, for instance, the role of lymph/interstitial flow in chemotaxis and

(lymph)angiogenesis; this is something very novel in modelling of capillary network

formation.

6.1.2 Tumour neoneurogenesis and (direct) tumour-nerve

interactions

Chapter 4 includes an ODE model that is a first attempt to mathematically in-

vestigate how tumours induce neoneurogenesis and how different nerve types affect

tumour growth and metastasis by releasing substances such as neurotrasmitters.

The model was mainly inspired by recent works presented in [6, 160], focussing

predominantly on prostate cancer.

The model (a system of eight ODEs) gives good qualitative results; in particular,

it confirms and explains the following experimental observations:

• nerve density is increased after tumour cell implantation;

• the initial condition for primary tumour cells determines whether the tumour

mass develops and potentially creates metastases;

• factors such as nerve growth factor and axon guidance molecules are found at

a higher levels around tumours.

We also used the model to explore how stress affects cancer progression. Simu-

lating a stress condition via an increased norepinephrine secretion rate, we found

that stress generally enhances tumour proliferation and metastasis. Even more no-

ticeably, an initial condition for tumour cells that would normally evolve to a zero
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steady state (that is, a tumour free scenario) can tend to a non-zero equilibrium in

a stress situation. Finally, we simulated a possible metastasis-reducing treatment

by blocking acetylcholine receptors on tumour cells, with positive results.

Although there is no quantitative match between available data and model out-

put, the system confirms and explains biological and clinical observations.

6.1.3 Drosophila courtship behaviour

Chapter 5 constitutes a preliminary study of a possible way to model and quantify

Drosophila courtship behaviour. The main idea is to link neural activity levels

to displayed behaviours, and in our model such neuronal activity is initiated by

an external input coming from the female. The model can produce output which

is comparable to available behavioural data. Also, the model predicts an earlier

copulation time for receptive females than for rejective females.

6.1.4 Remark – parameter estimation

Any parameter estimation is limited by, for example, the specific experimental

method used or discrepancies between the system considered and that studied in

a given reference. The results should therefore be viewed with care. Indeed, a

common observation from all projects is the need for clear, suitable experimental

datasets: more consistent parameter values would benefit any model with providing

more realistic quantitative results.

6.2 Future work

6.2.1 Angio- and lymphangio-genesis in wound healing

Novel work could include a “parallel” system modelling both blood angiogenesis and

lymphangiogenesis after wounding, in order to emphasise and compare the similar-

ities and differences between these two systems.

Also, future work may include a simulation of the diabetic case in the PDE model

and determine how different lymphangiogenesis hypotheses would affect treatment
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delivery.

6.2.2 Tumour-nerve interactions

Further work should mainly aim to include more variables in the model to better

describe the dynamics in the peritumoural environment. For instance, different

kinds of AGMs (which are known to have diverse effects on tumour cells) could

be included. One could also include the blood and lymphatic vasculatures, whose

development seems to be guided by AGM. Finally, one could take into account the

immune system, which is regulated by the nervous system and is known to affect

tumour progression.

6.2.3 Ecological models for cancer

An emerging concept in cancer biology is the application of ecological concepts. In

Chapter 4 we introduced a norepinephrine-dependent Allee threshold, but possibili-

ties of application are many. For instance, the Allee threshold can be influenced by

other cell populations, which can interact with tumour cells in many different ways

potentially modelled by predation, cooperation or other ecological relationships.

In addition, a tumour is not a homogeneous mass: tumour cells are of different

kinds which are believed to be selected by the environment and then potentially

form metastasis; also, it seems that more than one genotype can persist in a tumour

to allow an overall survival. Peritumoural environment is crucial in tumour cell

selection and dissemination, and nerve-released factors may play a fundamental role

in this.

6.2.4 Wound healing peripheral nerve regeneration

The knowledge built in Chapter 4 concerning the autonomic nervous system biology

could be also usefully transferred to a wound healing setting: one characteristic of

diabetes is nerve damage, which can affect several body functions including sensory

feeling. Therefore, one could combine the results presented in Chapters 2, 3 and 4 to
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mathematically address the problem of peripheral nerve function and regeneration

in diabetic wound healing.

6.2.5 Nerve-mediated cell migration

A further area to build upon would be to develop models which investigate how

nervous system activity affects (cancer) cell migration. Although the question is

of major importance in biology and is well-addresses in this field, no mathematical

model has yet been developed in this regard. Being such a new area to explore,

modelling nerve-mediated cell migration would offer a variety of directions to follow.

For instance, two promising approaches could be to develop:

• macroscopic models to understand how a certain kind of primary tumour often

induces metastases in a specific foreign region of the body.

There are reasons to believe that nerves play a key role in determining the

fate of tumour cells. Their influence is both indirect (through, for example,

perineural invasion; that is, through the spread of tumours along nerve fibres

[73]) and direct (neurotransmitters have been found to have a migratory effect

on cancer cells [137]). According to a modern version of the well-known “seed

and soil” hypothesis, circulating tumour cells are attracted and settle in a

specific region of the body because of favourable environmental conditions

[80] and factors like chemokines or AGMs seem to provide such a setting [147].

• intracellular models to investigate how neurotransmitters affect cell functions.

Several studies have shown that neurotransmitters influence the migratory ac-

tivity of cancer cells, possibly through chemotaxis [64]. However, the effects

of neurotransmitters on different cell types are various and often inconsistent

[193]. It would therefore be useful to develop models describing this complex

intracellular signalling to be able to predict what effect a certain neurotrans-

mitter has on a specific tumour cell and why.
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6.2.6 Drosophila courtship model

Further work will include an analysis of the system and the development of a nu-

merical method to fit experimental data. Then one could apply the model to the

Parkinson’s case and identify potential targets for therapy.
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Appendix A

Lymphangiogenesis ODE model –

Appendix

A.1 ODE Parameter estimation

A.1.1 Equilibrium values and standard sizes

TGF-β equilibrium T eq

The equilibrium value of active TGF-β is about 30 pg/mm3 [283, Figure 2].

Macrophage equilibrium M eq

The macrophage steady state can be estimated from [272, Figure 1], which plots

typical macrophage density in the skin. This shows that there is an average of

about 15 macrophages per 0.1mm2 field. Assuming a visual depth of 80 µm, the

macrophage density becomes 15 cells/(0.1mm2 × 0.08mm) = 1875 cells/mm3.

VEGF equilibrium V eq

The VEGF equilibrium concentration is estimated to be 0.5 pg/mm3 from [107,

Figure 1] and [196, Figure 2].

Final LEC and Capillary density

In [223] we find that “it was not until day 60, when functional and continuous

lymphatic capillaries appeared normal” and “at day 60 the regenerated region had

a complete lymphatic vasculature, the morphology of which appeared similar to
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that of native vessels”. Hence, if we assume that a capillary network that can be

considered “final” appears at day 60, we will take Cfin (or Ceq) to be the number of

LECs present at this time, and since in the normal case all the lymphatic endothelial

cells will become part of the capillary network, we will further assume that Leq = 0.

In [223, Figure 2E] we see that at that time there are about 80 cells. This value

corresponds to a 12 µm thin section. In addition, through [223, Figure 2D] we can

calculate the observed wound area, which is about 5.6 × 105 µm2. In this way we

get a volume of 0.0067 mm3 with 80 cells, which corresponds to Cfin = 1.2 × 104

cells/mm3.

EC size and weight

[102] reports the cross-sectional area of an EC as 10µm × 100µm. In [258] the

thickness of these cells is given as 0.5µm. Hence we can assume a cell volume of

approximately 500µm3 = 5× 10−7 mm3. Moreover, if we assume the density of the

cells to be 1 g/mL (the same as that of water), we have that a cell weighs about

5× 10−10 g = 500 pg.

VEGF molecular weight

The molecular weight of VEGF is 40kDa = 66.4× 10−9 pg/mol [219].

A.1.2 TGF-β equation

Enzyme-mediated activation rate ap

For ap, it seems reasonable to take the rate at which LAP binds to the receptors.

Now, in [54] we find an estimate for the binding rate to be about 1.7×104 M−1s−1 [54,

Tables I and IV]. Considering a protein weight of approximately 50 kDa (found in

the same article) and converting the units we find: ap ≈ 2× 10−5 mm3pg−1min−1 =

2.9× 10−2 mm3pg−1day−1.

Receptor-mediated activation rate aM

[188] reports that (“activated”) macrophages plated at 2×105 cells/well in a 24-well

tissue culture dish (that is, about 102 cells/mm3) activated approximately 8% of the

total TGF-β secreted after 22 hours. This means that 1 cell/mm3 activated about
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0.087% of TGF-β per day. On the other hand, in [97] we find that macrophages cul-

tured at 1× 106 cells/dish in 100-mm plates (that is, about 10 cells/mm3) activated

12.2% of total TGF-β1 after about 36 hours. So 1 cell/mm3 activated approximately

0.8% of the TGF-β per day. Hence, for aM we will take a value between 0.087 and

0.8, say the average 0.45.

TGF-β production rate r1

In [124] it is reported that 106 macrophages produced about 30 pg of TGF-β after

24 hours. So one single macrophage produced 30× 10−6 pg/day of TGF-β, and we

can then take r1 = 3× 10−5 pg · cells−1 · day−1.

TGF-β decay rate d1

In [120] it is stated that “free TGF-β has a half life of about 2 min”. We will therefore

take the decay rate d1 of active TGF-β to be d1 = ln 2/(2 min) = 0.35 min−1 =

500 day−1.

Constant amount of latent TGF-β TL

At the equilibrium, the TGF-β equation becomes: [0+aMM
eq]·[TL+r1M

eq]−d1T
eq =

0 . Substituting the values of the parameters aM , r1, d1 and of the equilibrium

values T eq and M eq found before, we get an equation for TL. Solving it, we find

TL = 18.0916 pg/mm3. To compare this value with a “real” one, we consider [189].

Here, taking an average of 6 pg of TGF-β1 per mg of skin (from [189, Figure 3])

and assuming a skin density of 1 g/mL (as for water), we have a concentration of

latent TGF-β of 6 pg/mm3, which is of the same order as our previous estimate.

A.1.3 Macrophage equation

Fraction of monocytes migrating into the wound that differentiate into

macrophages α

We follow [271] and take α to be equal to 0.5 in normal wound healing (reflecting the

fact that in this case the number of inflammatory macrophages is the same of the

repair ones), and α = 0.8 in a diabetic wound (since there are more inflammatory

than repair macrophages this time). However, it must be noted that [271] comments
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that “there is currently no quantitative data on which the value of α for diabetic

wounds can be based”.

Migration of monocytes to the wound in response to TGF-β: shape of

h1(T ) and value of b2

In [265] the authors study the migration of monocytes taken from healthy volunteers

and observe that the motility of the cells depends on the dose of TGF-β to which

they are exposed. Moreover, even if the response varied with individual donors,

they see that “the optimal chemotactic concentration for TGF-β fell within the

range 0.1-1.0 pg/mL”. These findings are shown in Figure A.1, which shows the

dataset reported in [265]. In light of these observations, it is reasonable to take the

chemotactic function h1(T ) to be

h1(T ) =
b1T

m

(b2 + T 2m)

where we will take m = 2 from visual comparison with data.

To determine b2 we look for the maximum of h1(T ). This is located at the point

Tmax where h′1(Tmax) = 0, which is Tmax = 2m
√
b2. [283] reports that the normal

level of TGF-β in the skin is about 30 pg/mm3, and that this amount increases

up to 300 pg/mm3 during wound healing. From this, and from the observation

that macrophage levels also reach a peak soon after this TGF-β peak [186], we

deduce that the maximum monocyte/macrophage migration occurs when the level

of TGF-β in the skin is about 300 pg/mm3. Thus we take b2 = 3002m; for m = 2

this gives b2 = 3004 = 8.1 × 109 pg4 (mm−3)4. This seems to be in contrast with

the data reported in [265, Figure 1]: here Tmax is around 0.5 pg/mL = 0.5 × 10−3

pg/mm3. However, this value does not seem realistic and should be considered

carefully. In particular, we recall that chemotaxis occurs through gradients of a

chemical, and considering this directed movement to depend only on the absolute

concentration of the chemoattractant is a simplification. In fact, in the experiment

described in [265] the diluted chemotactic stimuli were placed in the bottom wells

of microchamber plates that were separated from the upper wells by a filter with

5.0 µm pores; then monocytes were put in the plates with human TGF-β diluted
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at different concentrations. Chemotactic activity was defined as the mean number

of monocytes that migrated through the pores. Therefore, we consider the value of

Tmax to be a “conventional” one and we keep the estimate for b2 found above.

Figure A.1: Experimental data from [265, Figure 1] reporting a quantification of
monocyte chemotaxis for different concentrations of TGF-β. Chemotactic activity
is defined as the mean number of monocytes that migrated through the 5-µm pores
in three standard fields for each of triplicate filters.

Percentage of monocytes/macrophages undergoing mitosis β

In [100, Figure 4] we see that only about 0.5% of monocytes in vitro show mitotic

activity. Therefore we take β = 0.005.

Macrophage growth rate r2 and carrying capacity k1

To obtain estimates for these parameters, we first consider just the logistic part of

the macrophage equation dM/dt = r2M(1−M/k1), whose solution is

M(t) =
k1M0e

r2t

k1 +M0(er2t − 1)
. (A.1)

In [289] murine macrophage-like cell growth is measured under different conditions.

We then fit the data contained in [289, Figure 1] to the curve (A.1) using the

MatLab function nlinfit. Moreover, [289] specifies that “6×106 cells were cultured

in 100-mm tissue culture plates in 10 mL of the (above) medium”. Then, taking

M0 = 600 cells/mm3, we get the estimates r̂2 = 1.22, k̂1 = 6 × 105, with 95%
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confidence intervals (0.82, 1.62) and (4.40 × 105, 7.61 × 105) respectively (these are

calculated using the MatLab function nlparci).

Macrophage constant removal rate d2

[44] presents a mathematical model for keloid and hypertrophic scarring. Here we

find that macrophages are known to exist in a wound for several days after the initial

migration; so based on this we assume a decay rate for macrophage cells to be of

the order of d2 ≈ 0.2 day−1.

Macrophage capillary-dependent removal rate ρ

We assume that the term ρC becomes of the same order of d2 when capillaries

reach their “final” density, which we have estimated as 1.2× 104. Since we estimate

d2 = 0.2, we take ρ = 10−5.

Migration of monocytes to the wound in response to TGF-β: b1

To find b1 we notice that this parameter determines the maximum level of macro-

phages M during healing. To find this value, we refer to [186]. Here the authors

investigate the role of TGF-β activation in wound repair, and assess several compo-

nents of wound healing (including inflammatory cell infiltration) over a period of 28

days. [186] reports that at day 5 a maximum of about 70 macrophages/field (400x)

are observed. Assuming a diameter field of view of 0.4 mm and a depth of field of

80 µm, 1 field corresponds to (0.2)2π mm2 × 80 × 10−3mm ≈ 10−2mm3. Then 70

cells/field ≈ 7000 cells/mm3. Numerical experimentation shows that reproduction

of this result requires b1 ≈ 8× 108 cells mm pg2/day.

Macrophage constant source sM

At the steady state, the M -equation becomes

sM + α
b1T

2

b2 + T 4
+ βr2M

(
1− M

k1

)
− d2M − ρCM = 0 .

Substituting the equilibrium values and the parameters found above, we get

sM = 586− b1 × 5.5× 10−8 .
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Above, we chose b1 = 8× 108 cells mm pg2/day. Therefore sM = 542 cells/day.

A.1.4 VEGF equation

VEGF production by macrophages r3

From [130, Figure 1B] we have that human macrophages plated at 106 cells/ml =

103 cells/mm3 produced 214 pg/ml = 214× 10−3pg/mm3 of VEGF after 24 hours of

culture. Then r3 ≈ 8.9 × 10−6pg · cells−1 · h−1 = 2.1 × 10−4 pg · cells−1 · day−1. In

fact, this value is a bit smaller than the one we use in the model, which we take to

be 9× 2.1× 10−4 ≈ 1.9× 10−3 pg/cell/day. This “adjustment” is done considering

the data shown in [233, Figure 2], which reports that the VEGF peak (occurring

at day 5) corresponds to a level of about 1000 pg/mL = 1 pg/mm3. Since in our

model we assume that the VEGF peak is due (mainly) to the macrophages, it seems

reasonable to adjust the parameter r3 to meet this observation.

Other estimates were obtained from [279, 285] and one “equivalent” parameter

was found in the modelling paper [156]. Although the numerical values are different,

they are all between 10−6 and 10−4 pg/cell/day. This variety is not surprising

because different cell types produce VEGF at different rates (as clearly shown in

[285]). Since in the context of wound healing lymphangiogenesis we are mainly

concerned with macrophages, we focus more on the values for these cells [130, 279].

VEGF decay rate d3

The half-life for VEGF165 (the most common and biologically active VEGF protein)

at room temperature is 90 minutes [131]. It follows that d3 = 11 day−1. To compare

this value with those used in other modelling articles, we see that in [208] the VEGF

decay rate is taken to be µv = 0.456 h−1 = 10.9 day−1, while in [286] the VEGF

natural decay/neutralisation rate is µc = 0.65 h−1 = 15.6 day−1.

VEGF consumption/internalisation by ECs γ

In [155] the VEGF internalisation by a cell is described in the way schematised in

Figure A.2. In that figure and the following text, V stands for VEGF, R for receptor

and V R for the ligand-receptor complex.
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parameter values

kon,V,R1 = 3.8× 106M−1s−1

kon,V,R2 = 1.2× 106M−1s−1

koff,V,R1
= 95× 10−6s−1

koff,V,R2
= 410× 10−6s−1

kint,R1 = kint,R2 = 1× 10−5s−1

kint,V R1 = kint,V R2 = 28× 10−5s−1

Figure A.2: A schematic representation of the dynamics considered in [155]. V
stands for VEGF, R for Receptor and V R for the ligand-receptor complex.

We will not distinguish between the two kinds of receptors R1 and R2, so we will

just take the average of the above parameters. That is, we will take

kon = 2.5× 106M−1s−1, koff = 2.5× 10−4s−1,

kint,R = 10−5s−1, kint,V R = 2.8× 10−4s−1.
(A.2)

According to this reaction scheme, the corresponding equation for V (for a single

cell) is

dV

dt
= −kon · V ·R + koff · (V R) . (A.3)

Here the dimensions of R are moles per unit volume. Similarly the equation for the

ligand-receptor complex (V R) (per cell) is

d(V R)

dt
= +kon · V ·R− koff · (V R)− kint,V R · (V R) .

So, at equilibrium:

kon · V ·R− koff · (V R)eq − kint,V R · (V R)eq = 0

⇒ (V R)eq =
kon ·R

koff + kint,V R
· V .

(A.4)

To determine the value of R, we note that human endothelial cells (cultured in vitro)

display 1,800 VEGFR1/cell and 5,800 VEGFR2/cell [111], giving a total of 7.6×103

receptors/cell. Assuming a cell volume of 500 µm3 we take R = 2.5×10−14 mol/mm3.

Substituting this value for R and replacing the parameters with the values given in

(A.2), the equation (A.4) gives (V R)eq ≈ 118 ·V = V̂ Req ·V . Substituting this value
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for (V R) in (A.3) we have

dV

dt
= −

(
kon ·R− koff · V̂ Req

)
︸ ︷︷ ︸

=2.9×103 day−1

·V · L

Then, again assuming a cell volume of 500µm3, we have that our parameter (per

cell) is γ = 5×10−7 mm3×2.9×103 day−1cells−1 = 1.4×10−3 mm3 ·day−1 · cells−1.

VEGF constant source sV

At equilibrium, the V -equation becomes

sV + r3M − d3V − γV L = 0

Substituting the equilibrium values and the parameters gives sV = 1.9 cells/day.

VEGF supply in [287]

In [287] control medium with or without growth factors was injected into wounded

mice at a dose of 2 µg/wound/10 days. Since the experimental wounds are full-

thickness with a 5-mm diameter, and assuming a skin thickness of 0.56 mm [103],

this amount corresponds approximately to 1.8 × 104 pg/mm3/day. Now, since the

experiment is performed in vivo, it is reasonable to assume that the vast majority

of the VEGF is washed away and dispersed by body fluids. In the absence of

quantitative data, we assume that only 1% of the added VEGF is therapeutically

active in the wound, giving a delivery of 1.8× 102 pg/mm3/day.

A.1.5 LECs equation

We consider first the parameter c1, then k2, and then the remaining parameters. For

c1 and k2 we focus on the “logistic” part of the equation

dL

dt
= c1L−

L2

k2

= c1L

(
1− L

c1k2

)
. (A.5)

Recalling that the volume of an EC is approximately 500 µm3, closely packed cells

have a density of 1 cell/500µm3 = 2 × 106cells/mm3. We assume the carrying
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capacity to be 10% of this, so that c1k2 ≈ 2 × 105cells/mm3. In the following, we

will fit experimental data to the solution of (A.5), which is

L(t) =
c1k2L0e

c1t

c1k2 + L0(ec1t − 1)
. (A.6)

“Normal” proliferation rate c1

In [183] the different responses of lymphatic, venous and arterial endothelial cells

to angiopoietins is studied; note that the cells were isolated and cultured from

bovine mesenteric vessels. [183, Figure 4B] shows the evolution of LEC density in

time. After converting these data (in particular, those corresponding to control,

or 10% FBS) into cells/mm3, we can fit the function (A.6) to them, obtaining the

estimate ĉ1 = 0.42 day−1 with 95% confidence interval (0.15, 0.70). Again, we can

compare this value with other estimates obtained from different biological sources,

such as [178, 256, 275]; also, a similar parameter is estimated in [286]. Although

the numerical values for c1 found in these other references are all different, it is

noticeable that they are all around 10−1. This make us very confident in estimating

this parameter.

Maximum density of cells (per unit time) k2

In the previous section we found different possible values for c1. Since c1k2 =

2× 105cells/mm3, we can easily obtain k2:

• From [183] we get k2 ≈ 4.71 × 105 cells · day/mm3 (this is the value used in

our model);

• From [178] we get k2 ≈ 4.77× 105 cells · day/mm3 for bovine cornea

and k2 ≈ 5.43× 105 cells · day/mm3 for bovine fetal heart;

• From [256] we get k2 ≈ 3.13× 105 cells · day/mm3;

• From [275] we get k2 ≈ 4.48× 105 cells · day/mm3 for 10% FBS

and k2 ≈ 18.52× 105 cells · day/mm3 for 2% FBS.

VEGF-dependence of LECs growth c2, c3

To estimate c2 and c3, we consider only the exponential VEGF-dependent part of
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the LEC equation, that is

dL

dt
=

(
c1 +

V

c2 + c3V

)
· L , (A.7)

whose solution is

L(t) = L0 · exp

[(
c1 +

V

c2 + c3V

)
· t
]
. (A.8)

Recall that we already have an estimate for c1. Also, notice that, if time is fixed,

(A.8) can be seen as a function of V only.

[275, Figure 7A] shows the response of rat mesenteric LECs to VEGF-A and

VEGF-C at low serum conditions (2% FBS). The cells were seeded at the density

of 16,000 per well in 24-well plates. Then, VEGF165 and mature VEGF-C (2-100

ng/mL) were added 4 hours after seeding. Finally, cells were counted 72 hours later.

This provides a set of data giving the cell densities for different concentrations of

VEGF-A and C. These data refer to time t = 72 hours = 3 days, and our approach is

to fit the function (A.8) as a function of V (with t fixed at 3 days) to the experimental

data. Recalling that 1 ng/mL = 1 pg/mm3, and considering a standard well of

1 mL = 103mm3 (for a 24-well cell culture plate), we can convert these data into

suitable units and use the MatLab function nlinfit to fit (A.8) to them. This gives

ĉ2 = 42 days and ĉ3 = 4.1 pg/day/mm3, with 95% confidence intervals (−7.7, 92)

and (2.9, 5.3) respectively.

TGFβ-dependence of LECs growth c4

We estimate c4 using experimental data obtained in the absence of VEGF. Therefore

we consider only the part of the LEC equation concerning TGF-β regulation of cell

growth:

dL

dt
=

(
c1

1 + c4T

)
L (A.9)

whose solution is

L(t) = L0 · exp

[(
c1

1 + c4T

)
· t
]
. (A.10)

In [178] the inhibitory action of TGF-β on bovine endothelial cells is studied. [178,
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Figures 1(a) and 1(b)] demonstrate the growth in time of bovine cornea and fetal

heart endothelial cells respectively, while [178, Figure 1(c)] shows the inhibition on

cell growth by TGF-β. We can thus use these figures in different ways:

• In [178, Figures 1(a) and 1(b)] the amount of TGF-β is fixed, so we can

consider (A.10) as a function of t only. Recalling that previously we found

the value c1 = 0.42 day−1 for [178, Figure 1(a)], and c1 = 0.37 day−1 for [178,

Figure 1(b)], we can fit the function (A.10) to the data corresponding to T = 2

ng/mL = 2 pg/mm3 to find the parameter c4. The MatLab functions nlinfit

and nlparci give us the estimate ĉ4 = 0.16 and its 95% confidence interval

(−0.25, 0.58) for cornea ECs, and ĉ4 = 0.22 with 95% confidence (−0.50, 0.95)

for fetal heart ECs.

• Another strategy is to use the data contained in [178, Figure 1(c)], fixing the

time (t = 4 days) and considering (A.10) as a function of T only. For bovine

cornea ECs, in this case we have ĉ4 = 0.32 with 95% confidence interval

(0.12, 0.51). Similarly the data for fetal heart ECs gives ĉ4 = 1.3 with 95%

confidence interval (−0.66, 3.2).

Looking at the confidence interval for each of the estimates found above, we argue

that the most “reliable” values for c4 are the first three: ĉ4 = 0.16, ĉ4 = 0.22 and

ĉ4 = 0.32. Hence, in our model we chose to take the average of these numbers, that

is ĉ4 = 0.24 mm3/pg.

To compare this number with a similar estimate found in another source, we con-

sider [242, Figure 1], which also shows how cell growth is influenced by TGF-β. Here

bovine retinal and aortic endothelial cells were plated at 25 cells/cm2 and TGFβ-1

was added at different proliferation stages. Cell numbers were determined 5 days af-

ter the addition of different concentrations of TGFβ-1. Considering the data in [242,

Figure 1B] and assuming a dish of 10mm height, we can fit the function (A.10) to

the data with the MatLab function nlinfit, taking L0 ≈ 10 cells/mm3 (estimated

from [242, Figure 1A]) and consequently c1 = (1/t) ln(L(t)/L0) = 0.37 day−1, since

t = 5 days. This gives the estimate ĉ4 = 6 with 95% confidence interval (−2.5, 14).
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Threshold levels L∗,C∗

In [223] it is observed that in a wound space LECs begin to organise in a network-

fashion after about 25 days. Hence, we take L∗ to be the number of LECs present

at day 25 during normal repair. In [223, Figure 2E] we see that at that time there

are about 80 cells. This value corresponds to a section of width 12 µm. In addition,

through [223, Figure 2D], we can calculate the observed wound area, which results

to be 5.6× 105 µm2. In this way we get a volume of 0.0067 mm3 which contains 80

cells, which corresponds to 1.2× 104 cells/mm3. We take L∗ to be 104 cells/mm3.

For C∗, we assume that LECs stop coming into the wound when capillaries

reach a level which is not far from the final one, that we have estimated to be

Cfin = 1.2× 104 cells/mm3. Therefore we take C∗ = 104 cells/mm3. Note that our

estimate for L∗ and Cfin are the same because in [223, Figure 2E] it happens that

the cell numbers counted at day 25 and at day 60 are about the same.

A.2 Calculation of the steady states

For T we have immediately

T eq =
aM
d1

(TL + r1M
eq)M eq , (A.11)

since the exponential tends to zero as t→∞. It follows that there is one T -steady

state for every M -steady state.

For M the situation is more complicated. Writing down the equation (2.2) at

the equilibrium and rearranging the terms one finds

−β r2

k1

M2 + (βr2 − d2 − ρC)M + sM + α
b1T

2

b2 + T 4
= 0 . (A.12)

Plugging in the expression for T found in (A.11), the equation (A.12) becomes a

polynomial in M of degree 10. Plotting this polynomial for M ∈ [0, 104] and M ∈

[0, 107] gives the graphs shown in Figure A.3. The graphs are strongly indicative

that there is only one stable steady state for (at least) M < 107 and this is around
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2000. This finding is in agreement with the estimate M eq = 1875 cells/mm3 from

the biological literature.

Figure A.3: Plots of the M -expresson at the equilibrium. The different lines refer
to different representative values of C.

The equilibrium equation for V is

sV + r3M − d3V − γV L = 0 ⇒ V eq =
sV + r3M

eq

d3 + γLeq
. (A.13)

So there is one V -equilibrium for every M , L equilibrium.

At this point, it is more convenient to look at the capillary equation first, and

afterwards consider the LEC one. There are two different cases to consider in the

C-equation:

• if L+ C < L∗, then σ = 0 and dC/dt = 0 always;

• if L+ C ≥ L∗, then σ = 1 and the equilibrium equation becomes

(δ1 + δ2V )L = 0 ,
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whose only solution is L = 0 (since V cannot be negative).

Coming to the L-equation, it is necessary to consider a number of different cases,

since there are two piecewise-defined functions involved:

CASE CONDITIONS FNs VALUE

I L+ C ≥ L∗ and C ≤ C∗ σ(L,C) = 1 and f(C) = 1− C/C∗

II L+ C ≥ L∗ and C ≥ C∗ σ(L,C) = 1 and f(C) = 0

III L+ C < L∗ and C ≤ C∗ σ(L,C) = 0 and f(C) = 1− C/C∗

IV L+ C < L∗ and C ≥ C∗ σ(L,C) = 0 and f(C) = 0

Note that case IV seems to be not realistic, since the estimates for the thresholds

are L∗ ≈ C∗.

case I Since we must have L = 0 in order to have a steady state in the C-equation,

the equilibrium L-equation reduces to

(
sL +

b3V
2

b4 + V 4

)(
1− C

C∗

)
= 0 ,

which implies

Ceq = C∗ .

case II Again, we must have L = 0 for the equilibrium in the fifth equation. This

time the steady state L-equation is automatically satisfied and therefore any

value of C corresponds to a steady state.

case III In this case, rearranging the fourth equation for L one gets

− 1

k2

L2 +

[(
c1 +

V

c2 + c3V

)(
1

1 + c4T

)
− M + C

k2

]
L

+

(
sL +

b3V
2

b4 + V 4

)(
1− C

C∗

)
= 0

(A.14)

where V depends on L and this dependence is given by the expression (A.13).

Notice that if γ = 0 then V does not depend on L. Hence, if we set γ = 0 the

expression (A.14) becomes a simple quadratic equation for L. In order to study

how the system changes as V depends on L, we gradually increase γ and see
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how the roots change. The function (A.14) is therefore plotted numerically

versus L and the resulting graphs are reported in Figure A.4. These show

that increasing γ does not have a significant effect on the roots of (A.14): the

function is always concave for 0 ≤ L ≤ 4 × 105 and intercepts the horizontal

axis once. Thus for C < C∗ (which is the case we are studying) there is only

one intersection for L > 0 at about L = 2× 105.
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Figure A.4: Plots of the expression (A.14) as a function of L for different values
of γ (more precisely, γ = 0, 10−4, 10−2, 1, 102, 104). In each picture the function is
plotted for three different representative values of C, in particular 0, C∗/2 and C∗.
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Lymphangiogenesis PDE model –

Parameter estimation

B.1 Sizes, weights, equilibria and velocities

B.1.1 Domain size

We consider a full-thickness wound of 5-mm length, inspired by [287]. For the

surrounding skin, we consider a (small) variable width ε (from 1 to 3 mm). Thus,

we have a domain of length ` = 5mm + 2ε.

B.1.2 Macrophage volume

A human alveolar macrophage has a volume VMΦ of approximately 5000µm3 =

5× 10−6mm3 [134].

B.1.3 Molecular weights

We take TGF-β molecular weight to be approximately 25 kDa [22, 266, active/ma-

ture isoform] and VEGF one to be 38 kDa [122, 282, VEGF-165].

B.1.4 TGF-β equilibrium T eq

The equilibrium value of active TGF-β is about 30 pg/mm3 [283, Figure 2].
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B.1.5 Macrophage equilibrium M eq

The macrophage steady state can be estimated from [272, Figure 1], which plots

typical macrophage density in the skin. This shows that there is an average of

about 15 macrophages per 0.1mm2 field. Assuming a visual depth of 80 µm, the

macrophage density becomes 15 cells/(0.1mm2 × 0.08mm) = 1875 cells/mm3.

B.1.6 VEGF equilibrium V eq

The VEGF equilibrium concentration is estimated to be 0.5 pg/mm3 from [107,

Figure 1] and [196, Figure 2].

B.1.7 Normal capillary density Ceq

In [223] we find that “it was not until day 60, when functional and continuous

lymphatic capillaries appeared normal” and “at day 60 the regenerated region had

a complete lymphatic vasculature, the morphology of which appeared similar to

that of native vessels”. Hence, if we assume that a capillary network that can be

considered “final” appears at day 60, we will take Ceq to be the number of LECs

present at this time. In [223, Figure 2E] we see that at that time there are about

80 cells. This value corresponds to a 12 µm thin section. In addition, through [223,

Figure 2D] we can calculate the observed wound area, which is about 5.6×105 µm2.

In this way we get a volume of 0.0067 mm3 with 80 cells, which corresponds to

Ceq = 1.2× 104 cells/mm3.

B.1.8 Maximum capillary density Cmax

First of all, we want to convert 1 capillary section into a cell number. For this

purpose, we consider EC cross-sectional dimensions reported in [102] as 10µm ×

100µm. We then assume that LECs lie “longitudinally” along the capillaries, and

therefore only the short dimension contributes to cover or “wrap” the circumference

of the capillary. Considering a capillary diameter of 55 µm as in [82], we have that

each lymphatic capillary section is made of approximately 20 LECs (taking into

134



Appendix B. Lymphangiogenesis PDE model – Parameter estimation

account some overlapping).

Then, from [258] we know that EC thickness is approximately 0.5 µm. Thus a

capillary section is a circle of about 55 + 2 × 0.5µm diameter, corresponding, as

described above, to 20 cells.

If we imagine stacking 1 mm3 with capillaries of this size, we see that we can pile

on 1 mm/56µm ≈ 18 layers of capillaries. Then, considering an EC length of 100

µm as in [102], we have that 1 mm3 fits at most a number of capillaries equivalent

to the following amount of ECs:

20 cells × 18× 18× 1 mm

100µm
≈ 6.4× 104 cells = Cmax .

B.1.9 Lymph velocity

The abstract of [82] suggests that the high lymph flow value (0.51mm/s) is due to

high pressure following die injection. This suggests that a lower value (9.7 microns/s)

might be considered as typical, in agreement with [83]. In both papers the normal

lymph velocity seems to be around 10 microns/sec.

We thus assume lymph velocity to be vlymph = 10 micron/sec = 864 mm/day

(from [82, 83]).
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B.1.10 Interstitial flow velocity

First of all, we note that in [222] interstitial flow in the skin is calculated to be

around 10 microns/sec. (Less important for the parameters, but related to our work

is [104], where the synergy between interstitial flow and VEGF gradient is discussed.)

Therefore, we will consider the interstitial flow to be also vIF = 10 microns/sec =

864 mm/day (from [222]).

B.2 Re-calculation of sM and k1

sM here is calculated in the same way as in [17], but using the equations presented

here (in [17] it was 5.42× 102).

For k1, we point out that in Chapter 2 this parameter was appearing in the

logistic part of the M -equation: dM/dt = r2M− r2/k1 ·M2. In the PDE systems we do

not include such term because only a minor fraction of macrophages undergo mitosis

[100]. However, death due to overcrowding is present in both models; comparing

these terms, we see that our new k1 corresponds to the “old” k1/r2.

B.3 Diffusion coefficients

B.3.1 VEGF diffusion coefficient DV

In [174] the authors observe that “in general, the diffusion coefficient of protein

molecules in liquid is of the order of 106 µm2/h = 24 mm2/day. This intuitively

means that a molecule moves 10 µm/sec. To generate a gradient over the order of

100 µm, the timescale of protein decay should be around 10 seconds. In this specific

case the protein decay time is about 1-10 hours. Therefore, the observed diffusion

coefficient is too large and we need some mechanism to slow down the diffusion.”

In [174] VEGF diffusion coefficient is estimated in three different ways: by

a theoretical model (0.24 mm2/day), and by two different measuring techniques

(24 mm2/day). The authors then suggest a diffusion coefficient of the order of

106 µm2/h = 24 mm2/day. However, they also used the same technique to determine
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the diffusion coefficient at the cell surface; this time the diffusion coefficient is esti-

mated to be approximately 104 µm2/h = 0.24 mm2/day. Keeping in mind all these

considerations, for the model we take the intermediate value DV = 2.4 mm2/day.

B.3.2 TGF-β diffusion coefficient DT

In [140] the authors estimate a TGF-β diffusion coefficient of 0.36 mm2/h = 8.64

mm2/day from [25, 96]. In [179] the authors estimate a TGF-β diffusion coefficient

of 2.54 mm2/day using the Stokes-Einstein Formula.

Given these two mathematical-modelling references, we check their consistency

with the estimate forDV above. These calculations use the Stokes-Einstein equation,

which assume spherical particles of radius r to have diffusion coefficient D ∼ 1/r;

since the molecular weight w of a particle proportional to its volume, we have that

D ∼ 1/ 3
√
w and we getDT ≈ 2.76.

B.3.3 Macrophage random motility µM

In[78] we find “Population random motility was characterized by the random motil-

ity coefficient, µ, which was mathematically equivalent to a diffusion coefficient.

µ varied little over a range of C5a [a protein] concentrations with a minimum of

0.86×10−8cm2/sec in 1×10−7 M C5a to a maximum of 1.9×10−8cm2/sec in 1×10−11

M C5a”. We thus take the average value µM = 1.38× 10−8cm2/s ≈ 0.12 mm2/day.

B.4 Advection parameters λ1 and λ2

We will take λchem2 to be equal to vIF calculated in B.1; thus λchem2 = 864 mm/day.

For λchem1 it is more complicated, but we would say that if Cop reaches the

maximum possible value Cmax calculated in B.1.8, then λchem1 ·Cop = vlymph calculated

in B.1 (i.e. if the skin is “packed” with open capillaries, then the resulting flow

will be the same as the usual lymph flow in the skin lymphatics). Hence λchem1 =

vlymph/Cmax = 0.0135 mm day−1cell−1.

For cells we assume smaller values due the higher friction that cells encounter in
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the tissue. We will consider: λcell1 = 1/10 · λchem1 and λcell2 = 1/10 · λchem2 .

B.5 Rate at which TGF-β is internalised by macro-

phages γ1

At equilibrium, C = Ceq and thus p(C) = 0. Therefore, the equation for T at

equilibrium becomes

aMM
eq(TL + r1M

eq)− d1T
eq − γ1T

eqM eq = 0 ,

which leads to

γ1 =
aMM

eq(TL + r1M
eq)− d1T

eq

T eqM eq
≈ 0.0042

mm3

cells · day
.

B.6 Chemotaxis parameters

B.6.1 Macrophage chemotactic sensitivity towards TGF-β

χ1

In [143, Table 1] the chemotaxis coefficients of neutrophils for different gradients of

interleukin-8 are listed (ranging from 0.6×10−7 to 12×10−7 mm2·mL·ng−1·s−1). We

take the intermediate value χ1 = 5×10−7mm2mL ng−1s−1 ≈ 4×10−2mm2(pg/mm3)−1day−1.

To compare this value with one from another source, we consider [255, Figure

8]: although the chemotaxis coefficient is shown to depend on the attractant con-

centration, taking the average value these give χ = 150 cm2sec−1M−1 ≈ 5.18 ×

10−2mm2(pg/mm3)−1day−1 (considering the TGF-β molecular weight found in B.1.3).

This result is encouraging because it is of the same order of magnitude of the pre-

vious estimate.
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B.6.2 LEC chemotactic sensitivity towards VEGF χ2

In [10] a quantification is made of the effects of FGF2 and VEGF165 on HUVEC

and HUAEC chemotaxis. In [10, Figure 6A] it is reported that the total distance

migrated per HUVEC in response to a 50 ng/mL gradient of VEGFA165 was about

150 µm. Considering that the analysed area of the cell migration chamber was 800

µm long and that the experiment lasted 200 minutes, we can estimate the endothelial

cell velocity to be 150/200 = 0.75 µm/min = 1.08 mm/day and the VEGF gradient

to be 50 ng/mL / 800 µm = 62.50 (pg/mm3)/mm. Now, the flux J in our equation

is given by J = χ2L
∂V
∂x

; however, J can also be seen as the product of the mass

density and the velocity of the flowing mass [62]. Therefore, with L being our mass

density, we have

cell velocity = χ2
∂V

∂x

and then we can use the previous calculations to estimate

χ2 =
cell velocity

VEGF gradient
=

1.08mm/day

62.50(pg/mm3)/mm
= 0.0173

mm2

day

mm3

pg
.

In order to have realistic cell movement dynamics, χ2 is taken to be 10 times bigger.

This can be justified by the fact that the aforementioned data refer to HUVECs,

and LECs might be faster than these cell types. A more suitable dataset for this pa-

rameter would be very useful to better inform this estimate, but it was not found by

the authors. Also, chemical gradients created in vitro are usually different between

those observed in vivo and they are known to highly affect cell velocity.

B.6.3 Density-dependence of the macrophage chemotactic

sensitivity ω

Consider the cell density-dependent macrophage velocity (factor) 1/(1 +ωM). This

velocity is maximal when M is close to zero and we assume that it is halved when

M reaches its carrying capacity kold1 (that is, the parameter k1 in Chapter 2. We

therefore take ω to be the inverse of the macrophage carrying capacity kold1 .
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B.7 Macrophage inflow φ1

We expect φ1 to be proportional to the lymph flow (estimated in B.1 as vlymph =

864 mm day−1) and macrophage presence in the lymph.

In the same source [82] used to estimate vlymph it is reported that the mean

capillary diameter is 55 µm. Thus about 2.05 mm3 of lymph pass through a capillary

bi-dimensional section in 1 day.

In [29] we find that a mouse leukocyte count in the blood is approximately 3

to 8× 106 cells/mL, and that of these about 2× 106 are macrophages coming from

the lymph nodes; so we have a macrophage density of 2 × 103 cells/mm3 in the

lymph. Therefore, each day about 2.05 mm3 × 2 × 103 cells/mm3 = 4.11 × 103

macrophages pass in one capillary. Converting capillaries into cell density as done

in B.1.8, we have an influx equal to 4.11
20
×103day−1 = 0.205×103day−1. However, the

macrophage density reported in [29] refers to blood; we assume that this quantity

in lymph (especially during inflammation) will be about 10 times bigger. Therefore,

we will take φ1 = 2.05× 103day−1.
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Tumour-nerve interactions –

Parameter estimation

C.1 Standard sizes and weights

Domain and normal prostate sizes

We take normal prostate size to be approximately 30mL = 3 × 104mm3 = Vprost

[184]. Assuming a spherical shape, this implies a radius of about 20 mm.

For our model, we consider the prostate and its surroundings. Therefore we

consider a slightly bigger sphere, with the same centre; say (for instance) of radius

25 mm. This leads to a domain volume Vdom = 65.45× 103mm3.

Tumour cell size

In Park et al. [198] the circulating tumour cells and the cultured tumour cells in

prostate cancer patients are measured; the former are found to have an average

diameter of 7.97 µm, while the latter of 13.38 µm. We then take a tumour cell di-

ameter of 10µm = 10−2mm and thus of approximate volume Vtum cell = 5×10−7mm3

(assuming cells of spherical shape).
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Neurite diameter and nerve cell size

Take neurite diameter to be about 1 µm (from Table 2.1 in Fiala & Harris [79]).

Friede[88] reports that human Purkinje cell (a class of nerve cells) diameter is 27

µm. We then estimate the nerve cell volume to be approximately 10−5 mm3.

NGF molecular weight

In Poduslo & Curran [210] and PhosphoSitePlus (www.phosphosite.org) NGF

molecular weight is stated to be around 2.7 × 104 Da; in [7, 180] this is estimated

to be between 104 and 105 Da. Therefore we will assume NGF molecular weight to

be 104 Da ≈ 1.660× 10−8 pg.

AGM molecular weight

Molecular weight of Semaphorin 4D is 96,150 Da (see product at www.abcam.com).

Netrin-1 molecular weight is 75 kDa = 1.245× 10−7 pg [161].

Norepinephrine molecular weight

NE molecular weight = 169.17784 g/mol (from PubChem, pubchem.ncbi.nlm.nih.gov).

Acetylcholine molecular weight

Acetylcholine molecular weight = 146.20744 g/mol (from PubChem, pubchem.ncbi.nlm.nih.gov).

C.2 Initial and equilibrium values

Tumour cell initial value

As initial time t = 0, we take the moment at which the (primary) tumour cells

occupy the (variable/adjustable) percentage p0 of the prostate volume. Therefore,

the initial tumour cell density is given by the expression

Tp(0) =
p0 × Vprost
Vtum cell

× 1

Vdom
= p0 × 106
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where Vprost denotes the prostate volume, Vtum cell the volume of a tumour cell and

Vdom the volume of the domain; their values are estimated hereunder in Section C.1.

We also start “counting” the migrating tumour cells at t = 0; therefore we take

Tm(0) = 0.

Sympathetic and parasympathetic nerve density

In Figure 7 from Magnon et al. [160] we find a quantification of sympathetic and

parasympathetic (respectively) neural areas in normal human prostate tissues. From

the graph, one can take a positive nerve area per field of about 1000µm2 for sympa-

thetic and 100µm2 for parasympathetic fibres, field surface = 0.15mm2. It follows

that the percentage of the area occupied by nerve fibres is approximately 0.7% and

0.07 % for sympathetic and parasympathetic nerves respectively. Note that here a

section is 5 µm thick. However, the staining here identify any kind of nerve fibres,

and it is well known that axon size is extremely variable depending on the type (for

instance, in Friede [88] it is recorded a nerve diameter of 27 µm, while Schuman

et al. [227] report a nerve fibre layer thickness in the eye of about 100 µm). We

will assume that the nerve fibres occupy the whole thickness of the sections; thus

we conclude that sympathetic nerves account for 0.7% of the normal prostate tissue

volume and parasympathetic ones for 0.07%.

To convert these values in an actual cells/mm3 value, we recall that in C.1 we

found a domain volume of 65,450 mm3. Taking the above found percentages of

volume occupied by neural fibres, we have 458.1500 mm3 occupied by sympathetic

nerves and 45.8150 mm3 by parasympathetic ones. Approximating a nerve cell

a sphere of 27 µm = 27 × 10−3 mm diameter [88], we have that 458.1500 mm3

correspond to 16,969 cells and 45.8150 mm3 to 1,697 cells. Therefore, the initial

sympathetic nerve density will be Seq = 16, 969/65, 450 ≈ 0.26 cells/mm3 and the

initial parasympathetic nerve density P eq = 1, 697/65, 450 ≈ 0.03 cells/mm3.
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Norepinephrine level

Dodt et al.[59] measured plasma concentration of epinephrine and norepinephrine

before, during and after sleep in volunteers. They found that, although the neu-

rotransmitters levels did not change significantly from one sleep phase to another,

they increased after standing up from the horizontal position. In a final experiment,

the subjects were asked to stay horizontal for 30 minutes after waking up and then

stand up for and additional 30 minutes. The norepinephrine levels registered in

these settings are summarised here:

• REM and non-REM sleep: 615.4±67.8 PMol/L and 616.5±51.4 pmol/L re-

spectively;

• after standing up: from 778.76±88.9 to 2202.7±247.55 pmol/L;

• after 30 minutes lying down plus 30 minutes standing: from 1075.2±48.9 to

3213.4±212.5 pmol/L.

So between pre- and post-sleep plasma norepinephrine levels change in a range

going from 615.4 pmol/L ≈ 0.1 pg/mm3 and 3213.4 pmol/L ≈ 0.5 pg/mm3 (using

the norepinephrine molecular weight found in C.1). Since this value is likely to be

even higher in fully awake individuals (norepinephrine is associated with stress), we

will consider the latter value N eq
n = 0.5 pg/mm3.

Acetylcholine level

• Wessler et al.[274] report that “non-neuronal acetylcholine is involved in the

regulation of basic cell functions” and measured acetylcholine concentration

in skin biopses from healthy volunteers. They found that “the superficial and

underlying portion of skin biopsies contained 130 ± 30 and 550 ± 170 pmol/g

acetylcholine, respectively”.

Since we are interested in the prostate region of the body, we will take the

acetylcholine level in the “deeper” skin sample 550 pmol/g. Considering a

tissue of the same density of water (1g=1mL) and the acetylcholine molecular
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weight reported in C.1, we have that the acetylcholine equilibrium level is

approximately N eq
a = 80 pg/mm3.

• Watanabe et al.[269] determined blood acetylcholine levels in healthy human

subjects. They report that “The blood acetylcholine levels of healthy subjects

varied over a wide range with a geometric mean of 0.49 mumole/liter, 90% of

the levels falling into the range of 0.20 to 1.31 mumole/liter”.

Converting into our units we have N eq
a = 72 pg/mm3.

We will take N eq
a = 80 pg/mm3.

C.3 Primary tumour cells equation

Tumour constant growth rate rTp

Schmid and collaborators [225] report that prostate cancer has a very large doubling

time. In particular: “Seventy-nine percent of all patients had a doubling time of

more than 24 months. Twenty of 28 cancers thought to be clinically organ confined

doubled at rates exceeding 48 months”. We could then take rTp = ln 2/48months ≈

4.81× 10−4day−1.

Tumour constant death/apoptotic rate dT

Dachille et al. [49] calculate the apoptotic index (AI) of prostatic adenocarcinoma

as

AI (%) = 100× apoptotic cells/total cells .

The mean AI in 3,000 tumour nuclei was 1.27. We will therefore take dT = 1.27 ×

10−2.

To compare these growth and death rates with others, we see that in Stein et al.

[241] it is stated that “The growth rate constants varied over a nearly 1,500-fold

range, while the regression rate constants varied over a 50-fold range (Fig. 3A).

Furthermore, the regression rate constants were consistently larger than the growth
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rate constants, with median values of 10−1.7day−1 versus 10−2.5day−1, respectively.”

These observations correspond to rTp ≈ 10−2.5day−1 and dT ≈ 10−1.7day−1. Now,

while dT is approximately the same computed above, rTp here is bigger; this differ-

ence is explained by the fact that prostate tumour is well-known for being particu-

larly slow in growth.

NGF-enhanced tumour growth τ1, τ2

• Zhu et al. [288] report the dose-dependent effects of NGF on pancreatic cancer

cell growth in vitro after 48 hours in Figure 4A. Here data are expressed as

a percentage of increase or decrease of untreated controls. In particular, the

data in Table C.1 are recorded.

NGF (ng/mL) % increase of untreated controls

6.3 approx. 130
25 approx. 180
100 approx. 210

Table C.1: (Recall: 1 ng/mL = 1 pg/mm3.) Time = 48 hours = 2 days.

We then consider the NGF-dependent growth part in the Tp-equation

dTp
dt

=

(
rTp +

G

τ1 + τ2G
− dT

)
· Tp

that, assuming G constant, has solution

T (t) = T0 exp

[(
rTp +

G

τ1 + τ2G
− dT

)
· t
]

(C.1)

that for G = 0 reduces to

T (t) = T0 exp
[(
rTp − dT

)
· t
]
, (C.2)

which will correspond to the control case.

Now, from the data in Table C.1 we see that if, for example, G = 6.3, then

TG=6.3(t = 2)

TG=0(t = 2)
= exp

[
G

τ1 + τ2G
· t
]

= 1.3 .
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Similarly

TG=25(t = 2)

TG=0(t = 2)
= 1.8 and

TG=100(t = 2)

TG=0(t = 2)
= 2.1 .

We thus have a system of three equations in two unknowns τ1, τ2:


ln(1.3) [τ1 + 6.3 · τ2] = 2 · 6.3

ln(1.8) [τ1 + 25 · τ2] = 2 · 25

ln(2.1) [τ1 + 100 · τ2] = 2 · 100

(C.3)

We can then consider the following function: y = τ1 + τ2x; then the system

(C.3) corresponds to the following data points:

(x1 = 6.3, y1 = 48.02) , (x2 = 25, y2 = 85.06) , (x3 = 100, y3 = 269.56) .

Fitting the values of the parameters τ1 and τ2 to these points with MatLab

functions nlinfit gives the following estimates: τ1 = 29.54 and τ2 = 2.39,

with 95% confidence intervals (−30.2417, 89.3126) and (1.3891, 3.3943), re-

spectively, given by the function nlparci. Note that while the estimate for τ2

seems quite accurate, the same can not be said for τ1.

• We can do a similar reasoning taking the data from Sortino et al.[239], who

investigated the effect of NGF in the androgen-dependent, prostate adenocar-

cinoma LNCaP cell line. The data reported by Sortino et al. are summarized

in Table C.2.

(48 hours)
cells/well (×103)

+ serum - serum
Control 153±11 110±2
NGF (25 ng/mL) 217±16 163±8

(7 days) cells/well (×103)
Control 189±1.3
NGF (25 ng/mL) 385±4.6

Table C.2: Data from Table 1 (left) and Table 2 (right) from Sortino et al.[239].
Note that the second dataset was obtained in the presence of serum.

Following a similar reasoning as the one done above with the data from Zhu

et al. [288], we find

TG=25(t = 2)

TG=0(t = 2)
= exp

[
G

τ1 + τ2G
· t
]

= 1.42 ⇒ ln(1.42) [τ1 + 25 · τ2] = 2 · 25
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and

TG=25(t = 7)

TG=0(t = 7)
= exp

[
G

τ1 + τ2G
· t
]

= 2.04 ⇒ ln(2.04) [τ1 + 25 · τ2] = 7 · 25

respectively from the two datasets reported in Table C.2 (note that 25 ng/mL

= 25 pg/mm3). Averaging, we obtain that τ1 + 25 · τ2 ≈ 194.02. Substituting

the previously found value of τ2 (τ2 = 2.39), we get τ1 = 134.27.

We will therefore take τ1 = 134.27 and τ2 = 2.39.

Maximum tumour cell density kT

The maximum tumour cell density is given by 1mm3/Vtum cell = 2 × 106; in fact,

kT corresponds to the maximum number of tumour cells that can fit in every mm3.

Now, because of the presence of the stroma and other cells not explicitly included

in the model, we will take half of this value kT = 1× 106 cells/mm3.

Shape of ϑ(Nn) and values of θ1, θ2

We want the function ϑ = ϑ(Nn) to be such that ϑ(0) 6= 0 (to reflect the pres-

ence of an Allee threshold in the absence of norepinephrine) and that ϑ is a de-

creasing function of Nn (in fact, our hypothesis is that norepinephrine lowers the

Allee threshold, making the tumour more likely to proliferate). We thus consider

ϑ(Nn) = θ1/(1 + θ2Nn), where θ1 and θ2 are two parameters to be determined.

For θ2, we consider Figure 1 from the paper by Chiang and collaborators [37],

where the time course of prostate tumour weight is shown in control mice and in

mice treated with doxazosin, an α1-adrenergic-antagonist (α-blocker). In the plot,

we observe that in the doxazosin-treated mice the tumour weight dropped down

from about 5 g to zero, while in control mice a tumour of weight around 2 g kept

growing. Assuming that the doxazosin treatment blocked all the adrenergic receptors

on tumour cells (thus corresponding to the case Nn = 0), and that in the control

experiment the norepinephrine was at its equilibrium value N eq
n , we deduce that
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• when Nn = 0 (i.e. norepinephrine does not make any effect on tumour growth),

5 g is below the Allee threshold;

• when N = N eq
n , 2 g is above the Allee threshold.

Now, since it is difficult to translate these tumour weights in tumour cell densities

(mouse prostate size and tumour cell size are probably different from human ones),

we can only use the “relative” information contained above, that is

θ1 > 5 g

θ1
1+θ2N

eq
n
< 2 g

 ⇒ 1 + θ2N
eq
n >

5

2
⇒ θ2 > 5× 10−3 mm3

pg
.

We can take for instance θ2 = 1 mm3/pg.

As pointed out by Korolev et al. [133], no experiment has been done to measure

the “basal” Allee threshold θ1 for any kind of tumour. We will just assume that θ1

is approximately the 1% of the carrying capacity kT , i.e. θ1 = 1× 104.

AGM-induced tumour cell apoptosis δ

In Table 1 from Castro-Rivera and collaborators’ work [33] we find a quantification

of the effect of semaphorin 3B on two different kinds of cancer cells; these data are

summarised in Table C.3.

Treatment H1299 lung cancer cells MDA-MB-231 breast cancer cells

Control-CM 11× 104 16× 104

SEMA3B-CM 6× 104 5× 104

Table C.3: Time = 5 days; C0 = 104 cells/well (six-well plates)

We will then consider the following two equations for control tumour cells Tcontrol

and for semaphorin-treated ones TSEMA:

Tcontrol(t) = T0 exp
[(
rTp − dT

)
t
]

and TSEMA(t) = T0 exp
[(
rTp − dT − δA

)
t
]
,

where A represents the concentration of axon guidance molecule (here, semaphorin).

To estimate A we consider the statement “Semiquantitative assay showed an average

of 1540 ng/mL SEMA3B in theCMafter transfection” in the Materials and Methods
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section and the fact that the medium was diluted 1:2; in this way we approximate

A ≈ 13.75 pg/mm3 (note that 1 ng/mL = 1 pg/mm3). Equipped with all these

values (recall: t = 5), we can use the data in Table C.3 as follows:

for H1299 cells:
TSEMA

Tcontrol
= exp (−δAt) =

6

11
, for MDA-MB-231 cells:

TSEMA

Tcontrol
=

5

16

and then calculate the corresponding δ values 0.0088 and 0.0169 respectively. Taking

the average, we get δ ≈ 1.29× 10−2.

No data for prostate tumour cells were found to inform the value of the param-

eter δ.

Spontaneous tumour cell migration µ0

Pienta et al. [205] observed about 1,400 colonies of (rat) prostate tumour cells after

8 days (see Figure 4 in the same reference). Without knowing how big each colony is,

we will assume that 1 colony corresponds to 1 cell. Therefore, taking an exponential

decay Tp(t) = Tp(0) exp (−µ0t) for the tumour cells and knowing that the initial cell

density was Tp(0) = 2 × 4 × 103 cells/mL (stated also in the work by Pienta and

co-workers [205]), we can calculate µ0 = 0.22 day−1.

AGM-induced migration µ1

In Figure 3 from Herman & Meadows’ paper [106] the following % cell invasion

are reported for semaphorin-treated PC-3 cells (androgen-independent prostate cell

line):

sema3A: ∼ 65% of control , sema3C: ∼ 135% of control

after 20 hours incubation (T0 = 105). The authors’ comment is: “Overexpression of

sema3A in PC-3 decreased the invasive characteristics of PC-3 cells by 33% compared

to the untransfected cells. Sema3C, on the other hand, increased invasion by 33%

compared to untransfected cells”. To estimate the amount of semaphorin used in

the experiment, we read: “The bacterial clones transfected with sema3A or sema3C

were grown on agar plates and selected with 35 µg/mL of kanamycin”. Therefore,
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in our equation for tumour cell migration Tm(t) = T0 exp[(µ0 + µ1A)t] we will take

A = 35µg/mL = 35 × 103 pg/mm3. Finally, considering the 20-hours sema3C

treatment, we have that

T0 exp [(µ0 + µ1A)t]

T0 exp (µ0t)
= 1.33 ⇒ µ1At = ln(1.33) ⇒ µ1 = 9.8×10−6 mm3

pg · day
.

Acetylcholine-induced migration µ2

Figure 3A from Magnon et al.’s paper [160] reports an ex vivo quantification of

tumour cell invasion of pelvic lymph nodes (which drain the prostate gland). Here

data are reported both for control (saline-treated) and carbachol-treated mice, and

in the second case the invading tumour cells are about the double than in the control.

Notice that since carbachol is a non-selective cholinergic (muscarinic) receptor ago-

nist, we can consider it as a substitute of acetylcholine. Then, denoting with c the

carbachol amount, we can estimate from the equation Tm(t) = T0 exp[(µ0 + µ2Na)t]

and Figure 3A [160] that µ2ct = ln(2) (since T0 exp[(µ0 + µ2c)t] ≈ T0 exp(µ0t)). To

estimate the value of c, we read in Magnon’s paper [160]: “For experiments on the

PNS, 15 days after tumour cell injection, animals received carbachol at 250 (day

0), 300 (day 1), 350 (day 2), 500 µg/kg per day (day 3) [every 12 hours, 8 divided

doses]”. First notice that the average of these amounts is 350 µ/kg over 5 weeks,

which corresponds to 10 µg/kg/day. To convert the kilos in a volume, we take water

density (1 g/mL); therefore we find the approximation c = 10 pg/mm3/day and

thus µ2 = 2× 10−3 mm3pg−1day−1 (t = 35 days).

No more direct measurements of this kind of data were found by the authors.

C.4 NGF equation

NGF decay rate dG

Tang and collaborators [248] state that “Nerve growth factor (NGF) mRNA is

rapidly degraded in many non-neuronal cell types with a half-life of between 30

and 60 min”. Hence, taking a half-life of 45 minutes, the resulting decay rate is

151



Appendix C. Tumour-nerve interactions – Parameter estimation

dG = 0.0154 min−1 = 22.18 day−1.

NGF production by tumour cells sG

In Figure 1c from Dolle et al. [60] it is reported that after 24 hours, cultures of

different lines of breast cancer cells expressed approximately 0.3 ng/(mg protein) of

NGF. Considering a total protein amount of 300 pg per cell (as in HeLa cells (an

immortalised cell type used in biological research, derived from cervical cancer cells

taken from Henrietta Lacks), we have that 1 mg = 109 pg protein corresponds to

approximately 3 × 106 cells. Now, we have to consider that in 24 hours the NGF

also decayed; in fact the differential equation for G in this case is

dG

dt
= sGT − dGG ⇒ G(t) =

(
G(0)− sG

dG
T

)
exp(−dGt) +

sG
dG
T

where T denotes the number of tumour cells (and G(0) = 0 in our case). Thus,

Dolle and co-workers [60] tell us that G(t = 1day) = 0.3× 103pg, T = 3× 106cells.

Substituting these numbers in the equation (and taking the value of dG estimated

above), we determine sG = 2.22× 10−3 pg · cells−1 · day−1.

The authors did not find any suitable dataset with prostate cancer cells.

NGF internalisation rate by tumour cells γ1

In Table 1 from Rakowicz-Szulczynska’s paper [212] it is reported the internalisation

of 125I-NGF after 1 hour or 24 hours incubation of different breast carcinoma and

melanoma cell lines with 10 ng/mL. For SKBr5 breast carcinoma cells, we find that

33,560 molecules/cell were internalised after 24 hours incubation. Considering a

NGF molecular weight of 1.660× 10−8 pg and knowing that the cells were seeded at

density 2× 107 cells/10 mL = 2× 103 cells/mm3, we can write down the equality

γ1×
(

2× 103 cells

mm3

)
×
(

10
pg

mm3

)
= 33.56×103×1.660×10−8 pg

mm3
×2×103 cells

1

day
,

which leads to γ1 = 5.57× 10−5 mm3cells−1day−1.

It was not possible to find data about NGF internalisation by prostate tumour
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cells.

NGF internalisation rate by nerve cells γ2

We can estimate the rate of NGF internalisation by cultured neurons using the data

in Figure 1 by Claude et al. [41]. The plot reports the pg of 125I-NGF binding to rat

sympathetic neurons versus different amounts of free NGF. It is also stated that the

neurons were incubated for 140 minutes with the NGF at a density of approximately

1,000 neurons/dish in 35-mm culture dishes.

Therefore, if we have a density of free NGF equal to G0, the corresponding value

on the y-axis of Figure 1 [41] corresponds to G(t = 140min) = G0 exp(−γ2St).

Then, converting these data into our units (in particular, we considered t = 140 min

= 0.0972 day and S = 1000 neurons/35 −mm dish = 0.5 cells/mm3 from the data

in Figure 1 [41], assuming a 35-mm dish of 2 mL), we can use the MatLab functions

nlinfit and nlparci to get an estimate for γ2 and its 95% confidence interval

respectively. The plot of the fit is reported in Figure C.1 and the output gives an

estimated γ2 value of 0.048342 with 95% confidence interval (0.0422, 0.0545).

Figure C.1: Plotting the data from Claude et al. [41] (red circles) together with
the function G(t) = G0 exp(−γ2St) (blue line) fitted to the data with the MatLab
function nlinfit.
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C.5 AGM equation

A large class of secreted or membrane bound axon guidance molecules are semaphorins

and more specifically the so called class-3 semaphorins, that include seven family

members. Class 3 semaphorins are the only secreted vertebrate semaphorins. In

a recent work, Blanc et al. [19] highlighted that Semaphorin 3E is not only over-

expressed in prostate cancer but also affects adhesion and motility of prostate can-

cer cells. They also demonstrated that all the prostate cancer cell lines that have

been tested produce both the unprocessed (87kDa) and processed (61kDa) form of

Sema3E. However the effect of tumour and stromal secreted semaphorins on tumour

functionalities such as migration, apoptosis, growth and invasion is likely to depend

on which co-receptors are expressed. Namely, sema3E act as a chemoattractant for

neurons expressing NRP1 receptors, that have been found to have a high expression

on prostate tumours.

AGM tumour secretion rate sA

Kigel et al. [128] estimate the concentration of secreted sema3s in conditioned

medium for specific (breast) tumour cell lines. As it can be deduced by Figure

2 from the same work [128] the relative concentrations of class-3 semaphorins se-

creted into the medium of tumour cell lines were 1000 and 500 sema3-expression

per cell. Tumour cells were incubated for 48 hours = 2 days. Take an aver-

age of the aforementioned values, we deduce that the expression of sema3 per-

cell per-day is 375. Taking the molecular weight of unprocessed sema3 to be

87kDa (as described at the beginning of this section C.5), we estimate that the

secretion rate is: sA = 375 × 87000 × 1.66 × 10−12pg cell−1day−1, thus sA ≈

5.42 × 10−5pg cell−1day−1. However, Kigel and co-workers [128] highlight that the

aforementioned expressed semaphorins did not affect the proliferation rate or the

survival of the different semaphorin tumour producing cells. In this regard, we

expect that during tumour driven neo-neurogenesis the expressed tumour secreted

sema3E are 100 or 1000 higher then the estimated value, in other words we take

sA = 5.42× 10−3pg cell−1day−1.
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We did not find prostate cancer-specific data to inform this parameter.

AGM decay rate dA

In the Supplementary Tables 1 and 2 provided by Sharova et al. [232] we find the

mRNA half-life of different kinds of semaphorins. We take an average decay rate of

0.1 h−1 = 2.4 day−1.

Manitt et al. [161] write: “Currently, little is known about the half-life of netrin-1

protein in any context”.

AGM internalisation by nerve cells γ4

In Figure 4 by Keino-Masu and collaborators [123] it is studied the binding of

netrin(VI•V)-Fc to DCC-expressing cells (spinal commissural axons). Here the

counts per minute are reported for different concentrations of netrin. Assuming the

every binding corresponds to 1 molecule, and taking the netrin molecular weight

1.245 × 10−7 pg, we can calculate the decrease of free netrin, that in our sys-

tem is represented by the variable A and in this case is modelled by the equation

A(t) = A0 exp(−γ4St). Then, having S = 2.5× 105 cells/24-well = 71.43 cells/mm3

(24-well→ 3.5 mL) and t = 1 minute = 6.9444×10−4 days, we can fit this as a func-

tion of A0, as in Figure 4 [123]. The MatLab functions nlinfit and nlparci give the

γ4 estimate 1.4673×10−5 with 95% confidence interval (0.0462×10−4, 0.2472×10−4).

The plot of this fitting is reported in Figure C.2.

C.6 SNC equation

Basal SNC growth rate rS

In Table 1 presented by Dolle et al. [60] we find that 4.4% control sympathetic

neurons cultured for 48 hours showed a neurite length of 29 mm. The initial cell

density was 2× 103 cells/well that, assuming a well volume of 100 mL, correspond

to S0 = 2× 10−2 cells/mm3; moreover, taking a neurite diameter of 1 µm, we have
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Figure C.2: Plotting the data from Keino-Masu et al. [123] (red circles) together
with the function A(A0) = A0 exp(−γ4St) (blue line) fitted to the data with the
MatLab function nlinfit.

that 29 mm neurite correspond o approximately 2.9 cells (recalling that we consider

a nerve cell volume of about 10−5mm3).

From Dolle et al. [60]: “Cell culture plates (96-well) were prepared by incubat-

ing each well with 100 mL of 0.1mg/mL poly-L-lysin in sterile distilled water [...]

Approximately 2 × 103 cells, prepared from embryonic day-12 chick paravertebral

sympathetic ganglia, were added to each well in 100 mL of a 1:1 mixture of [...]

medium”.

Hence, we conclude that after 2 days of experiment there were

S(t = 2) = S0+0.044×S0×2.9 cells ⇒ S(t = 2) = 2.2552×10−2cells/mm3 = S0 exp (2 · rS) ,

from which we can calculate rS = 0.06 day−1.

SNC carrying capacity kS

In absence of tumour, we know that the SNC equilibrium value is Seq = 0.26

cells/mm3 (see section C.2). We then take kS = Seq.
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NGF-enhanced SNC growth σ1, σ2

In Table 1 by Ruit et al. [220] the effects of NGF treatment on superior cervical

ganglion cell dendritic morphology are reported; they are summarised here in Table

C.4.

Treatment Animal size Total dendritic length (µm)

Control 23.5 g 721
NGF 23.5 g 929

Table C.4: Mouse 2.5S NGF was administered daily to mice by subcutaneous injec-
tion in a dosage of 5 mg/kg. The animals were treated for 2 weeks.

Now, if we take a dendritic diameter of 1 µm and a nerve cell volume of 10−5 mm3,

we have that 1 µm dendrite corresponds to about 10−4 cells. Therefore, we can

“convert” the previous dendritic lengths in cells (at least roughly). For the NGF

treatment, we know that it was 5 mg/kg/day for 2 weeks. If a mouse was 23.5

g, we have that each animal received 117.50 × 106 pg/day. Being NGF injected

subcutaneously, we assume that only 1% of the dosage actually contributed to the

experiment (the rest being dispersed by body fluids). Additionally, we estimate a

total mouse volume of 28.57×103 mm3 (knowing that mice blood volume is about 2

mL and it constitutes 7-8% of their total volume [257]) and thus we have a daily NGF

supply of 41.13 pg/mm3/day. Now, to calculate the effective NGF present, we have

to take into account its decay. We know that NGF decay rate is dG = 22.18 day−1

(see C.4); if we define the constant supply s = 41.13 pg (mm3)−1day−1, we have

that the evolution equation for G in this setting is

dG

dt
= s− dGG =⇒ G(t) = G0e

dGt − s

dG
e−dGt +

s

dG
.

Then, taking G0 = 0, we have that at t = 1 day the amount of NGF is approximately

1.85 pg/mm3. For the two-week experiment, we will then assume G to be 1.85×14 =

25.96 pg/mm3. Then, back to the S-equation: we recall that the bit in which we

are now interested is

dS

dt
=

(
rS +

G

σ1 + σ2G

)
S

G const
=⇒ S(t) = S0 exp

[(
rS +

G

σ1 + σ2G

)
t

]
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we have that at 2 weeks = 14 days

SNGF
Scontrol

= exp

(
G

σ1 + σ2G
× 14

)
=

929

721
= 1.29 .

From this equation (recall: G = 25.96) we derive σ1 = 25.96 × (54.9791 − σ2).

Consequently, we have that it must be σ2 < 54.9791 in order to have σ1 > 0.

We can derive a second equation for σ1 and σ2 from the experimental results

reported by Collins & Dawson [47]. In fact, Table 1 from the same work [47] lists

the maximal effects on neurite lengths of various additions to the culture medium.

In particular, the mean total neurite length per neuron after different treatments

divided by the corresponding value of the untreated control is reported. For sym-

pathetic neurons exposed for 2 hours to 1 ng/mL NGF, the relative length is 2.47;

this observation allows us to write the following equality:

exp

(
G

σ1 + σ2G
× 0.0833

)
= 2.47 =⇒ σ2 = 57.1782 ,

the latter obtained after substituting the expression for σ1 found previously (note

that 2 hours = 0.0833 days). Notice that although σ2 is bigger than 54.9791, the

difference is small (less than one order of magnitude). This is probably due to the

fact that the two references estimated σ1, σ2 in completely different experimental

settings (for example, the experiment done by Ruit and co-workers [220] is in vivo

while that reported by Collins & Dawson [47] is in vitro). Therefore it seems justified

to take for instance σ2 = 50 days and consequently σ1 ≈ 129 pg day (mm3)−1.

No human data were found to estimate these parameter values.

AGM-enhanced SNC growth σ3, σ4

In Figures 1A(ii) and 2A Kuzirian and collaborators [135] report the synapse density

after 0.5, 1, 2 and 4 hours of Sema4D treatment as % of control. In particular,

it is reported that after 0.5 hours = 0.0208 days = t1 of 1nM-Sema4D-treatment

GABAergic synapse formation in rodent hippocampus was about 130% of control,

and after 1 hour = 0.0417 days = t2 it was approximately 150% of control. Now,
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recalling the “growth bit” of the S-equation

dS

dt
=

(
rS +

A

σ3 + σ4A

)
S

A const
=⇒ S(t) = S0 exp

[(
rS +

A

σ3 + σ4A

)
t

]
,

we have from the previous data points that

exp

(
At1

σ3 + σ4A

)
= 1.3 and exp

(
At2

σ3 + σ4A

)
= 1.5

(since the control corresponds to the S(t) where A = 0). Note that taking molecular

weight of 96,150 Da for A, we have that A = 1 nM = 96.117 pg/mm3. Finally,

considering the average of the two expressions above we can estimate

σ3 + σ4A ≈
1

2

(
At1

ln(1.3)
+

At2
ln(1.5)

)
⇒ σ3 ≈ 8.75− 96.12× σ4 .

Note that we must choose σ4 < 0.0911 in order to have σ3 > 0. Taking for instance

σ4 = 0.01, we have consequently also σ3 = 7.79.

No relevant data were found for human SNC.

C.7 PNC equation

Basal PNC growth rate rP

In Table I Collins & Dawson [46] report that the mean total neurite length/neu-

ron after 23/4 hours in conditioned medium was 408 µm, while in the uncondi-

tioned medium it was 118 µm (they study chicken embryo ciliary ganglia, which

are parasympathetic ganglia located in the posterior orbit). Taking the latter as

the initial value P0, from the equation describing PNC dynamics in this context we

have:

P (t = 23/4h = 0.1146day) = P0 exp (rP × t)

⇒ 0.1146× rP = ln

(
408

118

)
⇒ rP = 10.83 day−1 .
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In the same reference we find another useful dataset in Table II [46]. Here it

is stated that the mean elongation rate of 14 neurites (chosen to be at east 15 µm

long) without any medium change was 22 µm/hour. Converting these lengths into

cell numbers (using the calculations done in C.1) and keeping in mind that 1 hour

= 0.0417 days, we calculate the growth rate “per cell” rP as 22/14×15 × 1/0.0417 =

2.51 day−1.

Another way to determine rP could be to use the data in Table I [47]. Here the

authors measure the maximal effect on ciliary (parasympathetic) and sympathetic

neurite growth in various culture media after 2 hours. Considering the data regard-

ing the “standard” conditioned medium, we have that the relative neurite length

for ciliary neurons was 3.42, and for sympathetic neurons 1.81. Then, assuming an

exponential growth for both cell cultures, we have that P0 exp(rP t)/S0 exp(rSt) =

3.42/1.81; furthermore, taking P0 = S0 and t = 2h = 0.0833day, we have that

rP − rS = 7.63 day−1. Now, recalling our previous estimate for rS (rS = 0.06, see

C.6), we have rP = 7.70 day−1.

It is encouraging to see that all these three values are of the same order of

magnitude. To choose an estimate for rP , we take their average 7 day−1.

The authors did not find data for human parasympathetic nerve growth.

PNC carrying capacity kP

In absence of tumour, we know that the PNC equilibrium value is P eq = 0.026

cells/mm3 (see section C.2). We then take kP = P eq.

NGF-enhanced PNC growth π1, π2

Collins & Dawson [47] investigated the effect of NGF on promoting the chicken

embryo parasympathetic ciliary ganglion outgrowth in vitro. Their calculations were

used to calculate the mean total length of neurites per neuron. Their calculations

were based on data from neurons that had at least one neurite greater then 15

µm in length (≈ about the diameter of the neuronal soma). In this regard when

they added NGF to dissociate ciliary ganglion neurons, resulted in a 2-fold increase
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in neurite length over untreated, control cultures.They estimated the mean total

neurite length per neuron for control cultures to be 79 ± 19µm. Parasympathetic

ganglion neurons were exposed to a concentration of 10ng/mL = 10×103

103
pg

mm3 per h.

Just two hours after addition of NGF the ratio PNGF

Pcontrol
≈ 2.08± 0.12.

Recalling the given P equation:

dP

dt
=

(
rP +

G

π1 + π2G

)
S

G const
=⇒ P (t) = P0 exp

[(
rP +

G

π1 + π2G

)
t

]
;

so after two hours we have

PNGF
Pcontrol

= exp

(
G

π1 + π2G
× 2

24

)
= 2.08 .

Taking into account that 2 hours ≈ 2
24

day = 0.083day we deduce that

10

π1 + π2 × 10
× 0.083 = ln 2.08

and therefore π1 = 1.33− 10× π2. Note that it must be π2 < 0.13 in order to have

π1 > 0. We can take for example π2 = 0.1 and thus π1 = 0.33.

No data were found for human PNC.

C.8 Norepinephrine (noradrenaline) equation

Noradrenaline production by SNC sn

Regarding the norepinephrine release rate, Esler et al. [76] estimated the appar-

ent norepinephrine release rate at rest in humans to be 0.54 ± 0.20µg/(m2min) =

777.60 pg/mm2×day. Note that 90% of this release rate is due to the sympathetic

nerves. To convert the mm2 in cells, we assume once again a nerve cell radius

r = 13.5µm = 13.5 × 10−3m (see C.1); the surface area is given by 4πr2 =

4π(13.5 × 10−3)2 ≈ 2.29 × 10−3mm2, thus we deduce that in 1 mm2 there are

1/(2.29× 10−3) = 436.7 nerve cells. The noradrenaline secretion rate is then given
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by sn = 0.9× 777.60/436.7 ≈ 1.6 pg cells−1day−1.

Noradrenaline decay rate dn

Taubin et al. [249] report that the noradrenaline half-life is about 10 hours (although

this value is different in different tissues). This leads to a decay rate dn = 1.66 day−1.

Noradrenaline uptake rate (by tumour cells) γ5

In Figure 4A by Jaques et al. [113] we find one set of measurements of NE uptake by

human pheochromocytoma cells. A pheochromocytoma is a neuroendocrine tumour

of the medulla of the adrenal glands; it secretes high amounts of catecholamines,

mostly norepinephrine, plus epinephrine to a lesser extent. Recalling the molecular

weight of NE found in C.1 and assuming a culture volume of 1 mL (it is not better

specified in the paper), we can convert the data points in Figure 4A [113] into our

units and fit the functionN(t) = N0−N0 exp(−γ5Tt) to them; note that T represents

the tumour cells, and that the value of this function at each time t is measured as the

initial substrate concentration minus the uptaken NE. Using the MatLab function

nlinfit to fit the data we obtain an estimated γ5 value of 0.0019926 wih 95%

confidence interval (0.0018, 0.0022). The plot of the fit is reported in Figure C.3.

Figure C.3: Plotting the data from Jaques et al. [113] (red circles) together with the
function N(t) = N0−N0 exp(−γ5Tt) (blue line) fitted to the data with the MatLab
function nlinfit.

No data in this respect were found concerning prostate tumour cells.
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Noradrenaline constant source cn

We found in C.2 that in normal conditions (i.e. in the absence of a tumour) the

level of noradrenaline is N eq
n = 0.5 pg/mm3. We can then calculate cn from the

equilibrium equation

cn + snS
eq − dnN eq

n = 0 ⇒ cn ≈ 0.41
pg

mm3day
,

where Seq and P eq were also found in C.2 and sn,dn were estimated above.

C.9 Acetylcholine equation

Acetylcholine release rate sa

Paton et al. [201] use the output of acetylcholine from the plexus of the guinea-

pig ileum longitudinal strip to study the mechanism of acetylcholine release. The

resting output is reasonably constant for a given preparation for long periods; the

mean value for eighty-four experiments was about 51 ng/g·min. The evoked output,

however, usually changes as stimulation is prolonged, in a manner varying with

the stimulation used. Assuming a nerve cell volume of 10−5 mm3 (see C.1) and of

density equal to water’s one (1g/mL), we have that 1 g of parasympathetic nerves

corresponds to approximately 108 cells. Therefore, we estimate the acetylcholine

production rate as sa = 0.73 pg/cell day.

No better (human) dataset was found to inform this parameter value.

Acetylcholine decay rate da

Bechem et al. [14] studied the influence of the stimulus interval and the effect of

Mn ions on facilitation of acetylcholine (ACh) release from parasympathetic nerve

terminals in quiescent guinea-pig auricles (here the term facilitation denotes an

increase in transmitter release during repetitive nerve excitation). Here we also find

that when conditioning trains of stimuli were applied, a second much longer lasting

component of facilitation was found (t1/2 ≈ 4 s). Also, the decay to the control
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level displays a half time of about 20 min and can also be accelerated by frequent

stimulation of the parasympathetic nerve fibres. In this regard we can estimate

da = 49.91day−1 (taking 20 min).

No data were found regarding acetylcholine decay rate in human tissues.

Acetylcholine constant source ca

In C.2 we estimated that in normal conditions (i.e. in the absence of a tumour) the

acetylcholine level in the tissue is N eq
a = 80 pg/mm3. We can then calculate ca from

the equilibrium equation

ca + saP
eq − daN eq

a = 0 ⇒ ca ≈ 3.99× 103 pg

mm3day
,

where Seq and P eq were also found in C.2 and sa,da were estimated above.
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hibitory action of transforming growth factor β on endothelial cells. Proc.

Natl. Acad. Sci. USA, 84:5600–5604, 1987.

[179] K. E. Murphy, C. L. Hall, P. K. Maini, S. W. McCue, and D. L. S. McElwain.

A fibrocontractive mechanochemical model of dermal wound closure incor-

porating realistic growth factor kinetics. Bull. Math. Biol., 74(5):1143–1170,

2012.

[180] R. A. Murphy, J. D. Saide, M. H. Blanchard, and M. Young. Molecular

properties of the nerve growth factor secreted in mouse saliva. Proc. Natl.

Acad. Sci. USA, 74(7):2672–2676, 1977.

[181] J. Nagumo, S. Arimoto, and S. Yoshizawa. An active pulse transmission line

simulating 1214-nerve axons. Proc. IRL, 50:2061–2070, 1970.

[182] S. Nakao, K. Maruyama, S. Zandi, M. I. Melhorn, M. Taher, K. Noda,

E. Nusayr, T. Doetschman, and A. Hafezi-Moghadam. Lymphangiogenesis

and angiogenesis: concurrence and/or dependence? Studies in inbred mouse

strains. FASEB J., 24(2):504–513, 2010.

184



BIBLIOGRAPHY

[183] V. P. K. H. Nguyen, S. H. Chen, J. Trinh, H. Kim, B. L. Coomber, and D. J.

Dumont. Differential response of lymphatic, venous and arterial endothelial

cells to angiopoietin-1 and angiopoietin-2. BMC Cell Biol., pages 8–10, 2007.

[184] J. C. Nickel. Benign prostatic hyperplasia: does prostate size matter? Rev.

Urol., pages S12–17, 2003.

[185] B. Nico, D. Mangieri, V. Benagiano, E. Crivellato, and D. Ribatti. Nerve

growth factor as an angiogenic factor. Microvasc. Res., 75(2):135–141, 2008.

[186] J. E. Nör, L. DiPietro, J. E. Murphy-Ullrich, R. O. Hynes, J. Lawler, and

P. J. Polverini. Activation of latent TGF-β1 by thrombospondin-1 is a major

component of wound repair. Oral Biosci. Med., 2(2):153–161, 2005.

[187] C. Norrmen, T. Tammela, T. V. Petrova, and K. Alitalo. Biological basis of

therapeutic lymphangiogenesis. Circulation, 123(12):1335–1351, 2011.

[188] I. Nunes, R. L. Shapiro, and D. B. Rifkin. Characterization of latent TGF-β

activation by murine peritoneal macrophages. J. Immunol., 155:1450–1459,

1995.

[189] M. Oi, T. Yamamoto, and K. Nishioka. Increased expression of TGF-β1 in

the sclerotic skin in bleomycin-‘susceptible’ mouse strains. J. Med. Dent. Sci.,

51:7–17, 2004.

[190] M. Oka, C. Iwata, H. I. Suzuki, K. Kiyono, Y. Morishita, T. Watabe, A. Ko-

muro, M. R. Kano, and K. Miyazono. Inhibition of endogenous TGF-beta

signaling enhances lymphangiogenesis. Blood, 111(9):4571–4579, 2008.

[191] G. Oliver and M. Detmar. The rediscovery of the lymphatic system: old and

new insights into the development and biological function of the lymphatic

vasculature. Genes Dev., 16(7):773–783, 2002.

[192] L. Olsen, P. Maini, and J. A. Sherratt. A mechanochemical model for normal

and abnormal dermal wound repair. Nonlinear Anal., 30(6):3333–3338, 1997.

185



BIBLIOGRAPHY

[193] K. Ondicova and B. Mravec. Role of nervous system in cancer aetiopathogen-

esis. Lancet Oncol., 11:596–601, 2010.

[194] D. Palm and F. Entschladen. Neoneurogenesis and the neuro-neoplastic

synapse. Prog. Exp. Tumor Res. Basel, Karger, 39:91–98, 2007.

[195] Y. Pan, C. C. Robinett, and B. S. Baker. Turning males on: activation of male

courtship behavior in drosophila melanogaster. PLOS One, 6:e21144, 2011.

[196] A. I. Papaioannou, E. Zakynthinos, K. Kostikas, T. Kiropoulos, A. Koutsok-

era, A. Ziogas, A. Koutroumpas, L. Sakkas, K. I. Gourgoulianis, and Z. D.

Daniil. Serum VEGF levels are related to the presence of pulmonary arterial

hypertension in systemic sclerosis. BMC Pulm. Med., pages 9–18, 2009.

[197] N. J. Park, L. Allen, and V. R. Driver. Updating on understanding and

managing chronic wound. Dermatol. Ther., 26(3):236–256, 2013.

[198] S. Park, R. R. Ang, S. P. Duffy, J. Bazov, K. N. Chi, P. C. Black, and H. Ma.

Morphological differences between circulating tumor cells from prostate cancer

patients and cultured prostate cancer cells. PLOS ONE, 9(1):e85264, 2014.

[199] F. Pasemann. Discrete dynamics of two neuron networks. Open Sys. & Inf.

Dyn., 2(1):49–66, 1993.

[200] F. Pasemann. Neuromodules: A dynamical systems approach to brain mod-

elling. In H. Herrman, D. Wolf, and E. Pöppel, editors, Herrmann, pages
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