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Abstract: This paper focuses on the study of cavitation and underwater noise performance of 

a biomimetically improved horizontal axis tidal turbine (HATT) with a leading edge design 

inspired by the tubercles on the pectoral fins of humpback whales. Systematic model tests were 

recently conducted and details of this test campaign together with the findings are summarised 

in the paper.  

Several full-scale tidal turbine application cases were studied to understand the full-scale 

operating conditions considering the characteristics of varied kinds of tidal energy devices, the 

varying wave height and the flood/ebb tide. A systematic test regime was then designed and 

conducted. A set of tidal turbines with different leading-edge profiles was manufactured and 

tested under different loading and hence cavitation conditions. During the tests, cavitation was 

observed and underwater noise level was measured in comparison with the cavitation and noise 

performance of a counterpart HATT without tubercles. 

The tested turbines displayed two main types of cavitation patterns independent of the tubercles. 

These were steady tip vortex cavitation and relatively intermittent cloud cavitation with a misty 

appearance. The leading-edge tubercles triggered the cavitation onset earlier for the tidal 

turbine but constrained the cavitation region to the trough between tubercles with a lesser extent 

on the blades. The noise performance was strongly related to the blade cavitation hence it was 

influenced by the leading-edge tubercles. While the turbine was working under the non-

cavitating conditions the total noise level was similar to the background noise level. With the 

increase of the tip speed ratio the noise level was increased, while increasing blade pitch angle 

reduced the noise level due to lower blade loading. Cavitation inception and noise diagrams 

are provided as a database for future studies. 

Keywords: Horizontal axis tidal turbine, Leading-edge tubercle, Model tests, Cavitation 

observations, Underwater radiated noise measurements,  

  



1 Introduction 

Tidal energy is a form of marine renewable energy used to generate electricity through turbines 

driven by the twice daily rising and falling of the tide. It is an attractive form of renewable 

energy, which is highly reliable, predictable and abundant in coastal regions (Charlier, 2003; 

Li et al., 2010; Pelc and Fujita, 2002). Developments over the last 20 years mean that the 

Horizontal Axis Tidal Turbine (HATT), which is also called “the underwater wind turbine”, 

has reached the stage that it is very close to commercial development (Bahaj et al., 2007; Khan 

et al., 2009). In fact, many companies, like Atlantis Resources and Alstom already have the 

technology to provide a tidal energy solution with ratings from 1 to 3MW (Alstom, 2013; 

Atlantis, 2015). The feasibility of extracting tidal energy is no longer a question. However due 

to the harsh sea conditions and prevalence of marine organisms, the reliability and economy of 

tidal energy has been questioned in the past ten years (Douglas et al., 2008; Mitchell and 

Connor, 2004). 

As it has been commonly acknowledged, the technology of the HATT is mainly inherited from 

the wind turbine industry. From the turbine blade, the generator, the control system through to 

the grid integration system, most of the systems mimic the technology developed for wind 

turbines. From the power generation point of view, the main difference between wind turbines 

and tidal turbines is only the density difference between air and water. However, there are other 

issues that the wind turbines do not experience. For example, cavitation is one of the major 

differences between water and air. Blade cavitation has significant detrimental effects on the 

hydrodynamic and structural performance of tidal turbines. First of all, it can lead to a 

significant loss of efficiency. Secondly, it causes erosion on the turbine blade which would 

cause significant damage to the blade structure as the resin in composite material, which most 

turbine blades are made of, can’t resist the erosion resulting from cavitation (Harper and Hallett, 

2015).  

However, to-date few studies have looked into this area. In 2007, Bahaj et al. and Wang et al. 

published two papers regarding tidal turbine cavitation (Bahaj et al., 2007; Wang et al., 2007). 

They independently observed the cavitation patterns on two different tidal turbines in two 

different research facilities, which proves the existence of cavitation on tidal turbines. 

Meanwhile, the magnitude of noise generated by the blade cavitation is also much higher than 

the turbulence noise generated by the turbine itself. There is a growing environmental 

awareness around various anthropogenic activities and their potential impact on marine fauna 

however, whilst there is a plethora of research activities taking place in terms of offshore wind 

turbine noise (Madsen et al., 2006), piling noise (Mueller-Blenkle et al., 2010) and shipping 

noise (Aktas et al., 2015; Hildebrand, 2009), the existing research regarding HATT noise is 

very scarce. It has been demonstrated that human activities have significant impacts on marine 

fauna and therefore it was considered essential to conduct a study into the underwater noise 

properties of a tidal energy device (Simmonds et al., 2004). 

Under the above circumstances, continuing the design and optimisation work on tidal turbine 

blades started by Wang et al. (2007), the team in the Emerson Cavitation Tunnel (ECT), 

Newcastle University has recently initiated a new turbine blade study, by applying the leading-

edge tubercles of humpback whale flippers to a tidal turbine (Shi et al., 2016a; Shi et al., 2016b). 

The tubercles have the potential to improve the performance of foils. Their benefits were first 

investigated in wind tunnel tests on a pair of replica humpback whale flippers with and without 

leading-edge tubercles (Miklosovic et al., 2007; Miklosovic et al., 2004). The experiments 



demonstrated a delayed stall and also enhanced lift-to-drag ratio. After that, many research 

studies, both numerical and experimental in nature, have investigated the potential applications 

of leading-edge tubercles as applied on air fans, wind turbines, rudders and so on (Corsini et 

al., 2013; Howle, Jan 24,2009; Swanson and Isaac, 2011; van Nierop et al., 2008; Weber et al., 

2010). A study was also conducted recently to improve a tidal turbine’s performance by 

applying tubercles to the blades and performance comparisons of tidal turbine models with 

different tubercle designs were carried out in a towing tank (Gruber et al., 2011). This work 

demonstrated the great potential to apply tubercles to tidal turbines. The power coefficient of 

the turbines with tubercles showed a significant enhancement compared to the turbine without 

tubercles. 

In the study of applying leading-edge tubercles to a marine rudder, Weber et al. noticed that 

the tubercles can trigger the inception of cavitation earlier than for a conventional rudder but 

that they constrain the cavitation in the trough between two tubercles (Weber et al., 2010). This 

may also be the case for the tidal turbine with a potential reduction in cavitation extent. Bearing 

in mind the fact that there has been no investigation reported on the effect of tubercles on the 

underwater radiated noise levels of tidal turbines it was thought to be most interesting to 

conduct a cavitation and noise test campaign with tidal turbines to explore these aspects. 

An optimisation design study of the leading-edge tubercles for a turbine blade, preliminary 

hydrofoil tests and hydrodynamic efficiency tests for model turbines have been conducted (Shi 

et al., 2015; Shi et al., 2014). It was shown that the leading-edge tubercles can help the turbine 

to produce more torque at lower values of Tip Speed Ratio (TSR) before the turbine reached at 

its maximum power coefficient (Cp). This enhancement can help the turbine to start at a lower 

tidal flow velocity reducing the magnitude of the cutting-in speed without compromising the 

maximum Cp. 

Based on the above background, given the promising potential of applying tubercles to the 

turbine, an investigation was undertaken into the cavitation and noise characteristics of such a 

device in comparison with a counterpart HATT device without the tubercle arrangement. 

Within this framework, this paper firstly investigates the possible operating conditions of 

various HATT devices. Three tidal turbine models with different leading-edge profiles were 

then tested in the ECT under the simulated operating conditions. In the remaining sections of 

the paper, the details of cavitation observations and noise measurements are presented and 

discussed. 

2 Analysis of fullǦscale operating conditions  
Over the last two decades, tidal energy researchers have developed various HATT devices to 

extract energy from the tidal current. These devices have different control systems to control 

either the blade pitch angle or the rotational speed to suit the changing incoming velocity in 

order to maintain the maximum power generating efficiency. They also have different designs 

of their supporting structures, such as floating platforms, fixed foundations and so on.  

Because of these differences, the operating conditions of the HATTs are quite different. The 

blade radius, the blade pitch angle, the shaft emersion depth and also the rotating speed will all 

contribute in operating conditions. The non-dimensional cavitation number, which assures the 

hydrodynamic similarity for cavitation between two geometrically similar turbines, is therefore 

dependent upon these parameters. In this paper the cavitation number is defined at the top 0.7 

radius of the turbine blade, ݒܽܥ଴Ǥ଻௥ which can be described as in Equation 1. 



଴Ǥ଻௥ݒܽܥ ൌ  ଴ܲǤ଻௥ െ ௩ܲͳʹ ඥሺܸଶߩ ൅ ሺͲǤ͹߱ݎሻଶ Equation 1 

 

Where ଴ܲǤ଻௥  is the static pressure at the upper 0.7 radius of the turbine including the 

Atmospheric pressure, Pa; ௩ܲ is the vapour pressure of the water, Pa; ߱ is the rotational speed, 

rad/s; ߩ is the water density, kg/m3; V is the incoming velocity, m/s; r is the turbine radius, m. 

The ݒܽܥ଴Ǥ଻௥ of different designs of tidal turbines was studied and calculated to determine the 

test conditions for the model tests. Four typical HATT cases equipped with different control 

schemes and different supporting structures were studied as described in the next section. 

2.1 Designs of HATT 

2.1.1 HATT with variable speed control and fixed foundation 

A tidal turbine with variable speed control and fixed foundation is widely used in the current 

development of tidal current energy devices. One example is the AR1000 built by Atlantis 

Resources and tested at the European Marine Energy Centre (EMEC), as shown in Figure 1. 

The turbine has three fixed pitch blades with a diameter of 18m and controlled by a variable 

speed control system. The AR1000 is designed to produce its nameplate capacity of 1MW in 

water flows of 2.65m/s and above (Atlantis, 2015). The turbine is supported by a gravity-based 

foundation working in around 40m deep oceans. This turbine is now scheduled to be installed 

on CECEP's Daishan demonstration site in China. 

The rotational speed of this kind of device is always being adjusted with the varying incoming 

flow velocity to keep the turbine working at the optimum TSR. The shaft immersion is also 

changing because of the tide and the waves.  

2.1.2 HATT with pitch control and fixed foundation 

The HATT with pitch control is another type of tidal turbine that is also very popular and which 

is very similar to the wind turbine and typically supported by a fixed structure. The pitch angle 

can be controlled to adapt to the varying incoming velocity. A typical device would be one 

produced by Alstom and also tested in the EMEC site as shown in Figure 2 (Alstom, 2013). Its 

rotor has three pitch controlled blades with a diameter of 18 meters. The unit operates fully 

submerged, with no surface piercing parts, in a water depth of about 40 meters. 

Instead of maintaining the optimum TSR by changing the rotational speed, this device 

maintains a constant rotational speed by controlling its blade pitch angle to suit the changing 

incoming velocity. Because of the fixed foundation, the shaft immersion also changes with the 

tide and the waves. 

2.1.3 HATT with variable speed control and floating platform 

Aiming to minimise the whole lifecycle cost of electricity production from tidal energy and 

other reasons for justifying the deep water locations, floating platforms are becoming more and 

more popular in tidal energy. The SR2000 device, as shown in Figure 3, produced by 

Scotrenewables Tidal Power Ltd, can be installed in any water depths of 25m and above due 



to the flexible mooring system. The SR2000 carries two 16m fixed pitch rotors, giving a rating 

of 2 x 1MW for a 3m/s current speed and using variable speed control (Scotrenewables, 2015). 

Like the other devices with variable speed control, the rotational speed of this kind of device 

is constantly adjusting with the varying incoming velocity. However, because of its floating 

platform the shaft immersion does not change with the tide and the waves greatly.  

2.1.4 HATT with pitch control and floating platform 

Similarly, the floating platform can also be used to carry a HATT with pitch control. Bluewater 

produce a floating platform, BlueTEC, which can carry different kinds of turbine, as shown in 

Figure 4. These turbines can also be controlled by pitch control systems. 

The pitch control tidal turbines will maintain a constant rotational speed but change the blade 

pitch angle to suit the changing incoming velocity. However, the shaft immersion does not 

change with the tide and the waves. 

2.2 Brief introduction to selected tidal turbine  

According to the review in Section 2.1, a 1MW tidal turbine typically will have around a 20m 

blade diameter subject to an assumed design tide (incoming flow) velocity of 3m/s. Depending 

on the supporting structure, the shaft immersion may change with the tide height and the wave 

height. In this paper a typical three bladed HATT was chosen for the study. This turbine model 

was designed and tested during a previous project (Wang et al., 2007) and validated by a CFD 

study (Shi et al., 2013). The main parameters of the notional full-scale design are given in Table 

1. 

2.3 Operating matrix of selected tidal turbine 

Considering different working conditions, operating conditions matrices for the pitch control 

turbine and for the variable speed control turbine combined with different shaft immersion 

depths and different incoming flow speeds were generated and are given in Table 2 and Table 

3, respectively. By taking ebb tide and wave height into consideration, the shaft immersion 

varies from 20m to 11m (only 1m blade tip clearance from the free surface). The incoming 

velocity (Vin) varies from 2m/s to 4.5m/s assuming a spring tide. 

Based on the above assumptions, full-scale tidal turbine operating conditions were used to 

arrange the model tests. Because of the large number of test conditions, a systematic test regime 

was arranged to plot a cavitation diagram in order to cover a reasonable range of cavitation 

numbers.   

  



3 Experimental setǦup and conditions 

3.1 Tidal turbine models with leading-edge tubercles 

Based on the previous numerical optimisation and experimental validation study (Shi et al., 

2015, 2016a), the sinusoidal leading-edge profile was defined as shown in Figure 5. The 

amplitude (A) of the sinusoidal tubercles was equal to 10% of the local chord length (C) while 

eight tubercles were evenly distributed along the radius with the wavelength (W) equal to 

20mm. The profile of the leading edge tubercles was as represented by Equation 2.  

ܪ ൌ ܣʹ ݏ݋ܥ ൤ʹܹߨ ሺݎ െ ͶͲሻ െ ൨ߨ ൅ ܣʹ
 

Equation 2 

 

Where H is the height of the leading-edge profile relative to the reference one which is the 

smooth leading-edge profile. 

Three pitch-adjustable turbine models with different leading-edge profiles were manufactured 

by Centrum Techniki OkrĊtowej S.A. (CTO, Gdansk), as shown in Figure 6. The radial chord 

and pitch distribution for the blades of this 400mm diameter model turbine are shown in Table 

4. The S814 airfoil profile was chosen as the main blade section as shown in Figure 7. The 

turbine model without tubercles is referred to as the reference (or basis) turbine and denoted 

by “Ref” while the one with two leading-edge tubercles at the tip is denoted by “Sin_2” and 

with eight leading-edge tubercles by “Sin_8”, as shown in Figure 6.  

3.2 Experimental setup 

3.2.1 Brief introduction to testing facility 

The models were tested in the Emerson Cavitation Tunnel (ECT) at Newcastle University. The 

outline of the tunnel is shown in Figure 8. The tunnel is a medium size propeller cavitation 

tunnel with a measuring section of 1219mm×806mm (width × height) (Atlar, 2011). 

The turbine was mounted on a dynamometer, K&R H33, designed to measure the thrust and 

torque of a propeller or turbine. A DC motor (64kW at 415 V) is mounted on top of the 

dynamometer to drive the turbine and control its rotational speed for the purpose of achieving 

the desired TSR, as defined in Equation 3.  

ܴܶܵ ൌ ݎܸ߱
 

Equation 3 

where ߱ is the rotational speed, rad/s; V is the tunnel flow velocity, m/s; r is the turbine radius, 

m. 

3.2.2 Image processing  

Two high-speed cameras (NanoSense MK III) and a still DSLR camera (Nikon D90) were used 

to capture the moving and still images of the cavitation patterns, respectively. During the tests 



the strobe lights and high-speed cameras were triggered by the encoder, in phase-lock mode, 

in order to freeze the image recordings to be always in the same blade position. 

3.2.3 Noise measurement 

The noise measurements were captured by using a Bruel & Kjaer (B&K) data acquisition 

system and B&K Type 8103 hydrophone which was installed in a specially designed fin located 

in the tunnel at a distance of 438mm from the model turbine, as shown in Figure 9.  

The noise signals were then processed using the PULSE lab-shop software CPB and FFT 

analysers. The captured signals, which are in 1Hz and 1/3 octave bands, were averaged over 

50 seconds to eliminate the effect of any instantaneous noise sources. The settings in Table 5 

were used with the 8103 hydrophone.  

Following the recommendations of the 15th ITTC Cavitation Committee, the measured Sound 

Pressure Levels (SPL) were corrected to an equivalent 1 Hz bandwidth and 1m source level 

using Equation 4 (ITTC, 1978).  

ࡸࡼࡿ ൌ ࢓ࡸࡼࡿ െ ૚૙ࢍ࢕࢒οࢌ ൅ ૛૙ࢍ࢕࢒ ሺ࢘ሻ 
Equation 4 

Where SPL is the Sound Pressure level in 1 Hz band in dB relative to 1 ȝPa at 1 m; SPLm is the 

Sound Pressure level in 1/3 Octave band in dB relative to 1 ȝPa; ǻf is the frequency bandwidth 

for the 1/3 Octave band for each centre frequency; r is the distance of the location of the 

hydrophone from the turbine centreline. 

In order to achieve the net noise sound pressure level (ܵܲܮே) at each centre frequency, Equation 

5 is used to subtract the background noise (ܵܲܮ஻) from the total noise level (்ܵܲܮ). 

ࡺࡸࡼࡿ ൌ ૚૙ࢍ࢕࢒ሾ૚૙ሺࢀࡸࡼࡿȀ૚૙ሻ െ ૚૙ሺ࡮ࡸࡼࡿȀ૚૙ሻሿ Equation 5 

3.3 Test matrix 

A systematic test matrix was arranged for the model experiments to consider the various 

parameters discussed earlier, as shown in Table 6. Three different incoming flow velocities 

were used and the rotational speed was varied accordingly to achieve the desired TSRs. By 

applying the Atmospheric pressure on the tunnel the range of the cavitation numbers, which 

was applied in the test programme, covered the full-scale operating conditions, as shown in 

Figure 11. Three different pitch angles were also applied to understand the effect of pitch on 

the cavitation performance. 

  



4 Results 

4.1 Cavitation observations 

In this section, the results of the cavitation observation are presented. First the comparison is 

made between the three different turbine models in order to find out the difference in the 

cavitation patterns caused by the leading-edge tubercles. Then, based on the experimental 

observations, a cavitation diagram is presented to provide a prediction for the full-scale 

operations. 

4.1.1 Typical cavitation patterns 

During the tests, two main types of cavitation pattern were noted once the cavitation was 

incepted. These were tip vortex cavitation and cloud cavitation with a misty appearance at the 

back or face side of the blade depending on the TSRs. The development sequence of these 

cavitation types on the blades was such that first the tip vortex cavitation appeared due to the 

higher resultant velocity at the tip in a steady manner. Then the tip vortex cavitation was 

gradually accompanied by a rather misty appearance of unsteady cloud cavitation on either side 

of the turbine blade depending on the TSR. While the cloud cavitation would affect the turbine 

efficiency, the tip vortex cavitation did not have much impact on it. 

4.1.1.1 Tip vortex cavitation  

As presented in Table 7 (Pitch angle=+4o; V=3m/s; TSR=4; Cav0.75r=3.5) the tip vortex 

cavitation was the first and most common type cavitation observed during the tests. This type 

of cavitation is also quite commonly observed in full-scale operation. Either a higher incoming 

velocity or ebb tide can trigger the tip vortex cavitation as well as extreme wave actions. During 

the tests it was noted that this cavitation was incepted downstream of the blades and then 

rapidly attached to all blade tips with increased loading in a rather steady and persistent manner. 

Once the vortices were attached and established at the tips it was noted that the nature (cavity 

dynamics) and size (diameter) of the vortices for the three different leading-edge profiles tested 

were quite similar in appearance.  

4.1.1.2 Back side cloud cavitation  

As shown in Table 8, the tip vortex cavitation could be accompanied with a misty type cloud 

cavitation as the loading condition deteriorates (e.g. Pitch angle=+4o; V=4m/s; TSR=4; 

Cav0.75r=1.5). This is the most severe condition that has been tested for the design TSR which 

corresponds to an extreme condition that a variable speed controlled turbine is working under 

11m shaft immersion depth only 1m tip clearance and 4.5m/s incoming velocity. This kind of 

cavitation is always observed at lower TSRs and lower pitch angle settings. 

The observed cavitation was a cloud type cavitation but its nature was somehow different to 

classical cloud cavitation which has clear and relatively large bubbles. Instead it had a misty 

appearance composed of many micro-bubbles. The cavitation patterns of this type of cavitation 

were quite different for the different leading-edge designs. For the reference turbine, without 

leading-edge tubercles, the cavitation started from the leading edge and spread between 0.8r 

and 0.9r. Likewise for the turbines with the tubercles, the cavitation also started from the 

leading edge. However, the tubercles helped the turbine to constrain the cavitation only to the 

trough areas. However, because of the higher speed and lower pressure within the trough areas, 



Sin_8 produced more cavitation in the lower radius region (0.7R) compared to the other two 

turbines, i.e. the Ref and Sin_2. 

4.1.1.3 Face side cloud cavitation 

The face side cloud cavitation, as presented in Table 9, was observed under the condition: Pitch 

angle=+8o; V=3m/s; TSR=6; Cav0.75r=1.3. This kind of cavitation generally occured at a higher 

TSR and a higher pitch angle setting. As shown in Figure 11, although this condition appeared 

to be more severe, it is not likely to be allowed to occur for a controlled turbine in full-scale. 

Nevertheless, if the turbine lost control and was freely spinning, this kind of cavitation might 

be experienced.  

Regarding the cavitation pattern, this kind of cavitation started from the maximum thickness 

position along the blade section chord. The difference between the cavitation patterns 

developed over the reference turbine and the turbines with tubercles was quite obvious and 

similar to the effect observed with the back side cloud cavitation. The tubercles helped the 

blades to constrain the cavitation development to the trough areas as it can be clearly seen in 

Figure 12. 

4.1.1.4 Double-side cloud cavitation 

Imposing more severe conditions indicated that the turbines could develop cloud cavitation on 

both sides (back and face) of their blades in combination. This is shown in Table 10 for an 

operating condition of Pitch angle=+4o; V=4m/s; TSR=5.5; Cav0.75r=0.86. As for the face side 

cloud cavitation, this condition is not in the range of the full-scale operating conditions 

analysed in Section 2.3. 

The influence caused by the leading-edge tubercles on this cavitation development was also 

very similar to that observed previously for the face side and back side cloud cavitation. 

Cavitation started from the maximum thickness position along the blade section chord. The 

tubercles helped the blades to constrain the cavitation to only to occur in the area after the 

trough of the leading edge and also to separate the cavitation into different regions. 

4.1.2 Cavitation inception diagram 

Following the observation and study of the cavitation patterns for the turbines, a cavitation 

inception diagram was devised for the different leading-edge designs and different pitch angles 

in order to provide a practical guideline for the full-scale operation. The diagram is shown in 

Figure 13 where the different types of cavitation observed are labelled. In this diagram, the tip 

vortex cavitation inception was assumed when the vortex was attached to the blade tip. 

As shown in Figure 12, the two main types of cavitation, which are the tip vortex and misty 

type cloud cavitation, can be observed with the turbines tested. The latter type can be erosive 

as well as potentially affecting the turbine efficiency while both types may contribute into the 

underwater noise level. 

On the other hand, as remarked earlier, even though the leading-edge tubercles can limit the 

cavitation area to the trough parts of the profiles, they can also trigger the cavitation inception 

earlier than it would occur for the turbine without leading-edge tubercles depending on the 

pitch angle. This is because of the higher velocity and hence lower pressure in the trough area 

created by the tubercles. 



4.2 Noise measurements 

Alongside the cavitation observation tests, the underwater radiated noise (URN) levels of the 

subject turbines were also measured. The noise data generated within this experimental 

campaign was extremely large and hence to present all of the information was a challenge. 

Therefore, a comparison was first made between the different leading-edge designs to find out 

the effect of the leading-edge tubercles. These comparisons were made by using the total noise 

data which included the tunnel background noise due to the relative nature of analysis. 

However, the measured sound pressure level of the reference model turbine was further 

analysed to subtract the tunnel background noise and then the net noise levels were plotted to 

provide a bench mark database for a conventional HATT turbine model which is hardly 

available in open literature. All of the test cases were coded as “Model Name_Pitch Angle_Test 
Velocity”, for example “Ref_0_2” indicated the test results for “the reference turbine model” 

with “0o pitch angle setting” tested at “2m/s incoming velocity”, respectively. 

4.2.1 Effect of different leading-edge profiles on URN levels 

A sampled dataset (Pitch angle=8ͼ) of this test campaign is shown in Figure 14, Figure 15 and 

Figure 16. Each figure presents the total URN noise level including the tunnel background 

noise, as raw data, that has been collected by hydrophone 8103 in 1Hz band with the incoming 

flow set to be 2, 3 and 4m/s respectively. Comparisons amongst the three different blade 

leading-edge profiles were made under the same operating conditions with respect to non-

cavitating and cavitating conditions described in the following. 

4.2.1.1 Non-cavitating conditions 

As it can be seen in Figure 14, under the conditions starting from the lowest rotating speed of 

the motor (start) up to the highest condition (TSR=7), the noise levels of the three turbines with 

the different leading-edge profiles overlap each other. Similarly from the top three plots of 

Figure 15, (for TSR=1 and TSR=2) and the first plot in Figure 16 (the starting condition), the 

noise levels of three different turbines overlap each other and are at a relatively low level under 

these cavitation free conditions.   

4.2.1.2 Tip cavitation conditions 

However, once the cavitation was incepted, the difference between the different leading-edge 

profiles was revealed. It can be seen in Figure 15 (for TSR=3 and TSR=4 at 3m/s ) that  the 

noise level of Sin2 and Sin8 in the frequency range from 1 KHz to 2 KHz is much higher than 

that for the reference turbine Ref. This was because under these two conditions the turbines 

with the leading-edge tubercles can trigger the tip vortex cavitation earlier than for the reference 

turbine without the tubercles, as also shown in the cavitation diagram in Figure 13. This 

difference in noise results can also been seen in Figure 16 (for TSR=3 and TSR=4 at 4m/s) 

because of the additional cloud cavitation generated by Sin2 and Sin8 while only tip vortex 

cavitation was generated by the Reference turbine. 

4.2.1.3 Cloud cavitation conditions 

For the last condition while all the three turbines were suffering from the cloud cavitation, as 

shown in Figure 15 (for TSR=6), the noise level of the Reference turbine in the higher 

frequency range from 3 KHz onwards was higher than the turbines with the leading-edge 

tubercles. This was because the face side cloud cavitation that was produced by the reference 

turbine had a larger extent and volume than that of the cavitation produced by the turbines Sin2 



and Sin8, as shown in Table 9.  In Figure 12 it can be easily seen that the face side cloud 

cavitation generated by the reference turbine has the largest extent while with the increase of 

the number of tubercles, the extent of cavitation is gradually reduced.  

This phenomenon can also be seen under the condition TSR=8 and V=2m/s as illustrated in 

Figure 14. It can be noticed that the noise level between the Reference turbine and the turbines 

with tubercles has a significant difference that ranges from 10-20dB. Comparing the detailed 

cavitation patterns shown Figure 17, while only a very small area of cavitation can be observed 

in the trough regions of the tubercles, the cloud cavitation generated by the reference turbine 

covers a much larger extent from around 0.8Rto 0.95R. Therefore, the tubercles can 

significantly change the noise signature via influencing the cavitation development pattern. 

Based on the analysis of the noise measurements and the correlation with the cavitation 

observations, it is obvious that the underwater radiated noise level is highly dependent on the 

cavitation and its pattern. The leading-edge tubercles can influence the noise levels of turbines 

through the particular cavitation pattern that they generate. However, if the turbine is working 

under a cavitation free condition, the difference between the turbines with and without 

tubercles is negligible.  

4.2.2 Benchmark noise data for a typical HATT 

Based on the investigation in Section 4.2.1, it is confirmed that the acoustic performance 

difference caused by the different leading-edge profiles is dominated by the cavitation patterns 

generated. In order to complement the earlier devised cavitation inception diagram, a noise 

map for the net noise levels of the reference turbine was also devised to provide benchmark 

data for a conventional HATT turbine model. This data together with the details of the turbine 

geometry (i.e. Figure 7, Table 1 and Table 4) presents an invaluable contribution to state-of-

the-art tidal turbine hydrodynamic design studies as there is hardly any data of this kind 

published other than limited data from Wang et al (2007). 

As shown in Figure 18, Figure 19 and Figure 20, while the turbine is operating in a cavitation 

free condition, the total noise level is of a similar level to the background noise. Therefore, at 

certain frequencies the noise data is apparently missing as the net noise level is less than 3dB. 

With the development of the blade cavitation the amplitude of the net noise SPL gradually 

increases. The cavitation contributes more in the higher frequency range as it can be observed 

in Figure 20 where from 500 Hz onward the increase in the net noise SPLs is more obvious 

and gradually rises with the increased TSR and reduced cavitation number.  

A cross plot given in Figure 21 is provided to demonstrate the effect of varying cavitation 

number on the Reference turbine SPLs by keeping the pitch angle and TSR (by shaft speed) 

constant (at 0o and TSR4, respectively) while changing the tunnel inflow speed for 2, 3 and 4 

m/s. Since the turbine was free of cavitation at 2m/s inflow speed (see Figure 13) there is no 

measurable SPL appearing in Figure 21. However, with increasing inflow speed (at 3 and 4 

m/s) the turbine first developed the tip vortex cavitation at 3m/s which was further combined 

with the cloud cavitation at 4m/s. This reflects as 15-25dB increase in the measured SPLs for 

the broad range of frequencies after 300 Hz. 

Another cross plot of the measured SPLs with the Reference turbine is given in Figure 22 to 

demonstrate the effect of TSR (and hence cavitation number) for constant pitch and inflow 

speed (at 0o and 4m/s, respectively). As shown in this figure the trend is very clear as increasing 

the TSR (or reduced cavitation number) via increasing shaft speed resulted in increased SPLs. 



The final cross plot for the Reference turbine is shown in Figure 23 to demonstrate the effect 

of blade pitch angle for constant TSR =4. As it is clearly shown, increasing blade pitch angle 

resulted in decreased blade loading and hence reduced SPLs. 

5 Conclusions 

This paper reports on recently conducted model turbine tests in a medium size cavitation tunnel 

to investigate the effect of leading-edge tubercles on the cavitation and underwater radiated 

noise performance of horizontal axis tidal turbines (HATT). The paper also provides invaluable 

benchmark data for the cavitation and net noise levels of a typical HATT. Based on the 

experimental investigations the following can be concluded: 

1. Over the operating range tested the turbine models with three different leading edge 

profiles displayed mainly two types of cavitation patterns depending on the TSR, blade 

pitch and depth of the shaft submergence imposed. The observed cavitation types were 

restricted to the continuous tip vortex cavitation and gradually developing misty type 

cloud cavitation in combination with increasing blade loading. The latter type can 

develop on the back or face side of the blade as well as on both sides depending on the 

loading condition. 

2. The leading-edge tubercles may trigger earlier inception for the tip vortex cavitation 

compared to that for the reference turbine with smooth leading edge. The strength of 

the tip vortex cavitation appeared to be similar for the different leading-edge profiles. 

3. However, the development of the misty type cloud cavitation over the leading edge 

tubercles was restricted to the trough areas of the tubercles. This resulted in reduced 

cavitation extent and rather intermittent cavitation as opposed to larger extent and 

continuous appearance of the cloud cavitation observed with the reference turbine. 

4. The three turbines displayed almost similar total noise levels until the cavitation was 

incepted. Once the cavitation was incepted, the noise levels of the turbines with 

tubercles are generally higher than those of the reference turbine because of the early 

inception of the tip cavitation. When cloud cavitation was generated, the noise levels 

of the turbines with the tubercles were lower than those of the Reference turbine due to 

the constrained development and the lesser extent of cloud cavitation. 

5. Net noise levels of a typical HATT turbine model indicated that the noise level was in 

the comparable to the background noise level while the turbine was not cavitating. Once 

the cavitation was incepted, the net noise level rose dramatically in the higher frequency 

(broad band) range due to initially developing tip vortex and gradually combining 

contribution from the cloud cavitation.  

6. TSR and blade pitch angle are two important parameters affecting the noise levels of a 

typical HATT. While the increasing TSR increased the net SPL, the increased blade 

pitch angle reduced the net SPLs due to the reduced blade loading. 
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Figure 1 AR1000 built by Atlantis Resources (Atlantis, 2015) 

 

Figure 2 Tidal turbine built by Alstom (Alstom, 2013) 



 

Figure 3 SR2000 2MW floating tidal energy device (Scotrenewables, 2015) 

 

Figure 4 BlueTEC floating platform (BlueTEC, 2015) 

 



 

Figure 5 3D design of the turbine with leading-edge tubercles 

  

Figure 6 Tested turbine models (Left: Reference turbine with no tubercles; Middle: Turbine with partial LE 

tubercles; Right: Turbine with full LE Tubercles) 

 

Figure 7 S814 section profile 

S814 Airfoil
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Figure 8 Sketch of ECT 

 

Figure 9 High-speed cameras to observe any cavitation. 



 

Figure 10 Arrangement of the test turbine and hydrophone 

 



 

Figure 11 Test matrix against the full-scale conditions 

 

Figure 12 Detailed comparison of cavitation pattern (Pitch angle=+8o; V=3m/s; TSR=6; Cav0.75r=1.3) 

 



 

Figure 13 Cavitation inception diagram 



 

Figure 14 Comparative total noise levels measured in 1Hz band (Pitch angle=8ͼ, V=2m/s) 



 

Figure 15 Comparative total noise levels measured in 1Hz band (Pitch angle=8ͼ, V=3m/s) 



 

Figure 16 Comparative total noise levels measured in 1Hz band (Pitch angle=8ͼ, V=4m/s) 



 

Figure 17 Detailed comparison of cavitation pattern (Pitch angle=+8o; V=2m/s; TSR=8; Cav0.75r=1.7) 

 

Figure 18 Net noise (sound pressure) level of Ref at pitch angle=0ͼ 



 

Figure 19 Net noise (sound pressure) level of Ref at pitch angle=4ͼ 

 

Figure 20 Net noise (sound pressure) level of Ref at pitch angle=8ͼ 



 

Figure 21 Net noise (sound pressure) level of Ref at pitch angle=0ͼ and TSR=4 

 

 

Figure 22 Net noise (sound pressure) level of Ref at pitch angle=0ͼ and Vin=4m/s 



 

Figure 23 Net noise (sound pressure) level of Ref at TSR=4 and Vin=4m/s 

  



Table 1 Full-scale design 

Diameter(m) 20 Rotation rate (RPM) 12 

Number of blades 3 Current speed (m/s) 3.2 

Immersion of shaft (m) 20 Max. wave height (m) 9 

Table 2 Full-scale operating conditions for pitch control turbine 

Pitch control turbine with constant rotational speed 

Shaft 

immersion 

Diameter Vin RPM TSR Cav 

(m) (m) (m/s)   (0.7R) 

20 20 4.5 12.0 2.8 4.6 

20 20 4.0 12.0 3.1 4.8 

20 20 3.5 12.0 3.6 5.0 

20 20 3.0 12.0 4.2 5.2 

20 20 2.5 12.0 5.0 5.4 

20 20 2.0 12.0 6.3 5.5 

15 20 4.5 12.0 2.8 3.6 

15 20 4.0 12.0 3.1 3.8 

15 20 3.5 12.0 3.6 3.9 

15 20 3.0 12.0 4.2 4.1 

15 20 2.5 12.0 5.0 4.2 

15 20 2.0 12.0 6.3 4.3 

11 20 4.5 12.0 2.8 2.8 

11 20 4.0 12.0 3.1 2.9 

11 20 3.5 12.0 3.6 3.0 

11 20 3.0 12.0 4.2 3.2 

11 20 2.5 12.0 5.0 3.3 

11 20 2.0 12.0 6.3 3.3 

Table 3 Full-scale operating conditions for variable speed control turbine 

Variable speed control turbine with a constant TSR 

Shaft 

immersion 

Diameter Vin RPM TSR Cav 

(m) (m) (m/s)   (0.7R) 

20 20 4.5 17.189 4.0 2.5 

20 20 4.0 15.279 4.0 3.2 

20 20 3.5 13.369 4.0 4.1 

20 20 3.0 11.459 4.0 5.6 

20 20 2.5 9.549 4.0 8.1 

20 20 2.0 7.639 4.0 12.7 

15 20 4.5 17.189 4.0 2.0 

15 20 4.0 15.279 4.0 2.5 

15 20 3.5 13.369 4.0 3.2 

15 20 3.0 11.459 4.0 4.4 

15 20 2.5 9.549 4.0 6.4 

15 20 2.0 7.639 4.0 9.9 

11 20 4.5 17.189 4.0 1.5 

11 20 4.0 15.279 4.0 1.9 

11 20 3.5 13.369 4.0 2.5 

11 20 3.0 11.459 4.0 3.4 

11 20 2.5 9.549 4.0 4.9 

11 20 2.0 7.639 4.0 7.7 

Table 4 Main particulars of the tidal stream turbine model 

r/R 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Chord length(mm) 64.35 60.06 55.76 51.47 47.18 42.88 38.59 34.29 30 

Pitch angle (deg) 27 15 7.5 4 2 0.5 -0.4 -1.3 -2 



Table 5 Hydrophone data acquisition settings 

Lower centre frequency   20 Hz 

Upper centre frequency   20 kHz 

Acoustic weighting   as signal 

Reference Pressure 1 ȝPa 

Overall bands - weighting   none 

Table 6 Test matrix 

V TSR RPM Pitch angle Tunnel pressure Cav 

(m/s)   (o) (mmhg) (0.7r) 

2 0.5 ~ 8 47 ~ 763 0 850 48.534 ~ 1.684 

2 0.5 ~ 8 47 ~ 763 +4 850 48.534 ~ 1.684 

2 0.5 ~ 8 47 ~ 763 +8 850 48.534 ~ 1.684 

3 0.5 ~ 8 71 ~ 1145 0 850 21.571 ~ 0.748 

3 0.5 ~ 8 71 ~ 1145 +4 850 21.571 ~ 0.748 

3 0.5 ~ 8 71 ~ 1145 +8 850 21.571 ~ 0.748 

4 0.5 ~ 8 95 ~ 1527 0 850 12.134 ~ 0.421 

4 0.5 ~ 8 95 ~ 1527 +4 850 12.134 ~ 0.421 

4 0.5 ~ 8 95 ~ 1527 +8 850 12.134 ~ 0.421 



Table 7 Tip vortex cavitation 

Pitch angle=+4o; V=3m/s; TSR=4; Cav0.75r=3.5 

Ref 

   

Sin_2 

   

Sin_8 

   

 

Table 8 Back side cloud cavitation 

Pitch angle=+4o; V=4m/s; TSR=4; Cav0.75r=1.5 

Ref 

   

Sin_2 

   

Sin_8 

   

 



Table 9 Face side cloud cavitation 

Pitch angle=+8o; V=3m/s; TSR=6; Cav0.75r=1.3 

Ref 

   

Sin_2 

   

Sin_8 

   
 

Table 10 Double side cloud cavitation 

Pitch angle=+4o; V=4m/s; TSR=5.5; Cav0.75r=0.86 

Ref 

   

Sin_2 

   

Sin_8 

   
 


