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Abstract

In this thesis, we present a methodology for assessing the economic impact of

power storage technologies. The methodology is founded on classical approaches to

the optimal stopping of stochastic processes. Power storage is regarded as a comple-

ment to the intermittent output of renewable energy generators, and is important

in contributing to the reduction of carbon intensive power generation. Therefore,

the recommendations to study the future economic storage assessment have been

increased. Our aim is to present a methodology suitable for use by policy makers

that is simple to maintain, adapt to different technologies and is easy to interpret.

The thesis start by giving an overview of the UK power market and an introduc-

tion to storage technologies in Chapter 2. Chapter 3 summarize the mathematical

tools, that the methodology is based on, more precisely the discretionary stopping

theory based on dynamic programming techniques. An algorithm to assess the stor-

age is presented in Chapter 4, where the storage problem is formulated as an entry,

exit problem, which allow the investigation of different optimal strategies to fill and

empty a storage facility. An analysis of power demand, and an approximation of

power prices through the merit order curve of the UK power market presented in

Chapter 5. Based on a theoretical study, the methodology is applied to a Com-

pressed Air Energy Storage (CAES) in Chapter 6. Chapter 7 present an empirical

study that applied the methodology directly on the observed data, this approach is

shown to have benefits over current techniques and is able to value, by identifying

a viable optimal operational strategy for a CAES operating in the UK market.



Acknowledgements
I would like to acknowledge and express my special appreciation to my first super-

visor Dr. Timothy Johnson, for his excellent supervision during my three years as

a PhD student: his careful attention, insightful suggestions and patience helped me

to make the very most of my postgraduate education. I would also like to thank

my second supervisor Dr. Stan Zachary for helping me getting the financial support

from the Maxwell Institute, his help is very much appreciated.

I must also mention the varied community of students and staff in the School of

Mathematical and Computer Sciences who have contributed to the fantastic time I

have had in Edinburgh over the years.

Finally, a special thanks to my family. Words cannot express how grateful I am

to my mother, and father for all of the sacrifices that you’ve made on my behalf.

Your prayer for me was what sustained me thus far.

i



Declaration Statement

The Research Thesis Submission form is attached.

ii



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis contribution to knowledge . . . . . . . . . . . . . . . . . . . . 2

1.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Storage models . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.2 Optimal stopping models . . . . . . . . . . . . . . . . . . . . . 5

1.3.3 Power price modelling . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 The UK’s power market 12

2.1 British electricity trading and transmission arrangements (BETTA) . 13

2.2 Electricity market reform (EMR) . . . . . . . . . . . . . . . . . . . . 15

2.3 Electricity generation mix . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Electricity demand and wind supply . . . . . . . . . . . . . . . . . . . 19

2.5 Electricity energy storage (EES) . . . . . . . . . . . . . . . . . . . . . 22

2.5.1 Classification of EES technologies . . . . . . . . . . . . . . . 22

2.5.2 The role of EES . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Discretionary stopping problems 31

3.1 Approach to solve discretionary stopping problems . . . . . . . . . . . 32

3.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
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Chapter 1

Introduction

1.1 Motivation

UK has to meet two main European targets: 15% of their total energy consumption

(transport, heat and electricity) should come from renewables by 2020; and 80%

reduction of carbon emission by 2050. That means that the proportion of electricity

generation from renewable energy should increase to about 30% by 2020. Moreover,

around a fifth of the current generation plants will be closed over the coming decade,

and the electricity demand may double by 2050. Initiated in 2010, the Government’s

Electricity Market Reform (EMR) has three main objectives: the decarbonisation of

electricity generation, keep the lights on and keep the cost of electricity to consumers

down. EMR aims to transform the UK electricity sector into one in which low-carbon

generation (wind and nuclear) can compete with conventional, fossil-fuel generation,

providing a cleaner and more sustainable energy mix (DECC1).

Consequently, renewable energy generations from sources such as wind, solar and

tidal, are expected to have a significant increases in the energy generation system.

These resources are naturally controlled and have variability and uncertainty related

to their outputs. For the electricity market this means that matching power demand

with supply provided by high proportion of intermittent renewable resources pose

new challenges to those tasked with balancing supply and demand. This is an

economic problem of matching supply and demand with different sources, when one

1Department of Energy and Climate Change.
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Chapter 1: Introduction

part of the supply, wind is unpredictable, while other parts, such as nuclear, “must

run”2.

The UK power market under “The British Electricity Trading and Transmission

Arrangements (BETTA)” disadvantage renewable energy in particular wind energy,

because of its intermittent nature:

“BETTA, favours generators and suppliers who are capable of: Guaran-

teeing specific levels of generation or supply in advance, and guaranteeing

agreed flexibility in output/demand at short notice. This becomes prob-

lematic and disadvantageous when you consider that many renewables;

in particular wind energy; produce inherently intermittent and difficult

to accurately predict levels of energy generation. Therefore, the BETTA

currently disadvantages many renewable technologies and will continue

to do so, unless an appropriate storage/buffering mechanism can be es-

tablished, or the arrangements are revised to better support the uptake

of renewable generation technologies”[1].

One of the proposed solutions to tackle this problem is power storage which can

be used as liquidity reserve; this will work by absorbing excess power at low demand

and release it other time of shortfall. Power storage is not new to the power system,

has been part of the system for a long time. However, the renaissance of power

storage in the last years is due to the breakthroughs in storage technologies and

increasing variable renewable resources.

1.2 Thesis contribution to knowledge

Currently, the focus from a number of organizations including researchers, investors

and most importantly policy makers is the economics of electricity storage. In the

assessment of the economics of electricity storage three main areas are of interest:

the methodology used, the profitability of the storage and the impact of regulation

on the storage.

2Nuclear power are not flexible plants, they cannot turn on and off efficiently, which means they
must-run 24/7 to supply the base-load demand.
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Chapter 1: Introduction

Adopting methodologies to assess the economics of energy storage means de-

veloping and using models. For investors, it is profitable to invest in developing

detailed and complex, models of specific plants to address the specific issues of op-

timally managing a single implementation of a power storage technology. Policy

makers, in contrast to investors, would like to employ models that are less complex,

not only for a specific plant but rather adaptable to different technologies, easy to

maintain and straightforward to interpret. These features are not always given in

most of the existing studies on power storage.

The profitability of power storage technologies may rely on revenue from several

streams, and studies of business models which are yet to be proven. These streams

include arbitrage, providing liquidity reserve during low wind periods, and ensuring

the reliability of power supply. Therefore, policy-makers need to be aware and

informed of these in details, and not only take a narrow view of what the technology

can offer.

There are challenges associated with the market and regulatory issues. Currently

in the UK the storage is not explicitly recognized as an asset class or activity. There

is the absence of a well-defined position for storage and so is treated as a generation,

however putting storage within this scope is questionable and unclear [4]. This

emphasise that storage should be explicitly acknowledged by policy makers and be

given a specific regulatory framework.

We aim from this thesis to provide insights on the three areas discussed above,

that are required for further research as stated in Zucker at al. [119]. The method-

ology we presented here is based on advanced mathematics; however we are able to

give an algorithm that straightforward, can be implemented; only require few data

and can be easily interpreted by policy makers. The benefit of the methodology is

in studying different services that power storage could provide to the grid. Further,

we consider the efficiency parameter of the storage facility as a variable input to the

model, as more studies are required on the impact of techno-economic parameters

on the storage business case. Finally we believe that this methodology will support

the need for grid fees or market mechanism to improve the viability of power storage

3



Chapter 1: Introduction

in the UK market.

1.3 Background

1.3.1 Storage models

The assessment of the economics of electricity storage has been studied by many

researchers, where different models have been designed. There are two main cat-

egories of models regarding the assessment of the economics of power storage; the

engineering models and the system models, where many researchers adopt the engi-

neering approach. This approach is based on techno-economic analysis, and requires

less data to study as opposite to the system models. The engineering models are

used mostly when it comes to studying the optimization and control of a specific

storage facility, and usually address the problem from an investor’s point of view in a

given regulatory framework (Zucker et al. [119]). On the other hand, system models

are concerned with an entire energy system and try to find feasible and least cost

solutions under constraints such as carbon emission targets. As there are different

classifications of models proposed for storage, there are also different terms related

to the way the problem is formulated and different mathematical techniques and

concepts applied to solving the problems.

The model may assume linearity or non-linearity either in the objective function

or in the constraints. It can also be deterministic or stochastic. Stochastic models

are used when the future is uncertain and some factors are uncontrollable or gov-

erned by nature. When operators have to take decisions and pre-defined strategy

and policy without a perfect view of the future, and then stochastic modelling can

provide such strategy. There are two main steps in stochastic modelling, first an

optimization is carried out to provide strategies at all future states of the system,

and the second step is to apply these strategies to a given scenario. Deterministic

models directly provide decisions, without need to define strategy [119]. Techniques

such as linear programming, genetic algorithms and stochastic programming, with

dynamic programming most used method to solve stochastic models by dividing

4



Chapter 1: Introduction

them into simpler problems.

Numerous papers worked on storage optimization, ranging from ones that as-

sume the storage operator is a price taker3, e.g. Denholm et al. [43], He et al. [65],

Bathurst and Strbac [12]. Other papers take a non-deterministic approach by allow-

ing for uncertainty on the price level e.g Mokrian and Stephen [93], Xi and Sioshanisi

[116], Keles et al. [79], Grünewald [62]. Hybrid storage studies also exist where au-

thors extend the previous studies and consider an optimization control with one

more stochastic variable e.g. wind as in Howell [69], where partial differential equa-

tions are utilised to model the behaviour and control of a store. Barton and Infield

[11] use a spectral analysis of electrical power system with large fractions of wind

and solar, Garcia Gonzalez et al. [54] provide a two-stage stochastic programming

problem with market prices and wind generation as two random parameters.

The problem of the optimal operation of a power storage facility has long been of

interest to economists and management scientists, for example [85], [81], [57], [95],

[58]. Despite the recent proliferation in papers addressing the optimal operation

of power storage facilities in engineering, there has been relatively little interest in

the contemporary economics literature, notable exceptions include [67], [68], [36],

[109] and [50]. Many of these studies do not address the broader policy questions

around choosing the best portfolio of storage technologies that deliver a resilient

and low cost power system. However these approaches are considered the first step

in research endeavour, in order to evaluate the need for system modelling analysis.

There are number of authors who have provide system models that address policy

issues, Nyamdash and Denny ([97], [98]), Grünewald et al. [63], Wilson et al. [115].

1.3.2 Optimal stopping models

The theory of optimal stopping is an important field of stochastic control. It has

the objective of finding stopping times of the underlying stochastic processes, with

the aim of maximizing an expected payoff or minimizing an expected cost. There

are two main approaches of solving such optimal stopping problems, the martingale

3The storage’s size is not big enough to impact the market price.
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Chapter 1: Introduction

approach and the Markovian approach. The similarities and distinctions of the two

approaches reveal how they describe the probabilistic evolution of stochastic pro-

cesses which underlies the optimal stopping problem. In the martingale approach,

the probabilistic structure of the process X = (Xt)t≥0 is determined by its finite di-

mensional distributions which generate the corresponding probability distribution.

The martingale technique is based on concepts in the theory of martingale, more

precisely the ”Snell envelop” concept that is to look for the smallest supermartin-

gale that dominates the gain function. In the Markovian approach the underlying

process is determined by a family of transition functions leading to a Markovian

family of transition probabilities. This approach has proven to be an effective tool

in optimal stopping problems due to the powerful tools provided by the theory of

Markov processes and that how it has the name of Markovian approach.

The theory of stopping problems has many applications and has attracted the

interest of many researchers. These include Shiryav [39], El-Karaoui [49], Salminen

[106] and Oksendal and Reikvam [99]. Stopping problems and its connections to

free-boundary problems has been discussed in the book by Peskir and Shiryaev

[100]. Using the notion of concavity, a characterization of excessive function for

a general one-dimensional diffusion was obtained by Dayanik and Karatzas [40].

This characterisation gives an explicit solution to the stopping problem in some

suitably generalized sense. Alvarez [8] gives an explicit solution to class of impulse

control problems, using a combination of the classical theory of diffusions, stochastic

calculus, and ordinary non-linear programming to verify a general condition for the

existence and uniqueness of an optimal impulse control for controlled diffusion that

are considered linear, regular, and time homogeneous. Inspired by tools to treat

general parking problem, Beible and Lerche [[14], [15]] described a simple solution

method to determine optimal strategies based on martingale techniques. In the

absence of assumptions on regularity of the value function, the viscosity solution

approach for optimal stopping was presented in the paper by Pham [101].

The theory of optimal stochastic optimal control involving sequential switching

decisions is a generalization of optimal stopping theory that plays a crucial role

6



Chapter 1: Introduction

in stochastic control field. The increase interest in the study of optimal switching

problems (also called starting and stopping problems) is due to its application in

economy and finance, and in real options that are concern with the optimal timing of

investment decision. The incorporation of switching problems into the study of real

options was started by Brennan and Schwartz [22], Dixit[44] and Dixit and Pindyck

[44]. For example, in the case of resource extraction, the switching problem is that

an operator observe the price of natural resource and would like to optimize his/her

profit by managing an extraction facility in an optimal way. Depending on the

price fluctuations, he/she has to choose when to start/stop extracting this resource.

Therefore the problem is to find an optimal switching policy and a corresponding

value function. Several papers undertake research on optimal switching problems,

Brekke and Oksendal [21] studied optimal switching problems in the case of geo-

metric Brownian motion for the underlying state variable and special case for the

value function, Duckworth and Zervos [46] and Zervos [118] solved the variational in-

equality associated with the optimal switching problem using a verification theorem,

Johnson and Zervos[76] have presented an explicit solution to sequential switching

problems assuming non-smoothness for running payoff and switching costs, Bayrak-

tar and Egami [13] employed dynamic programming principle and assume excessive

characterization of the value function to solve one-dimensional optimal switching

problem. A relation between singular and switching problems was studies by Guo

and Tomecek [64].

1.3.3 Power price modelling

In the 1970’s the electricity industry, across the globe, was monopolistic, hence the

concern of economists was in identifying ‘fair’ prices ([96], [59]), while the concern of

engineers running power generation was in balancing load with supply. When elec-

tricity markets became liberalised through the 1990’s, generating companies sought

to maximise profits, meaning prices became important, in an environment defined

by some external regulator, and regulatory policy becomes an issue. Therefore, the

deregulation of electricity market has increased the interest in modelling prices in

7



Chapter 1: Introduction

these markets and has become important topic of research in academia and industry.

Electricity spot prices exhibit seasonality (at daily, weekly and annual time

scales), sudden spikes and very high volatility, all can be traced to non-storability

of electricity and matching supply and demand at all times. During periods when

demand for electricity is high and there is little spare generation, prices rise. Con-

versely, during periods of oversupply, that is when demand is low and there is a

large excess of generation, prices fall, because the technology is more profitable if

kept running. Unexpected features in the electricity market is when enough gener-

ators are actually willing to pay to generate, and this causes the possibility for the

price of electricity to become negative, because is more profitable to pay consumers

to consume electricity. Negative prices in electricity market may also occur from

subsidies of renewable energy for example a wind plant may reduce its sale price to

become negative in order to receive a subsidy of a greater value to cover the neg-

ative price. Although negative prices have not occurred in the UK power market,

they have been observed in other markets like Germany, the Netherlands and the

Nordic region. The issue in the UK market is what is called “constraint payments”,

that is the payment from National Grid to generators in particular wind farms to

reduce their outputs at a certain times. While all generators prevented from selling

their outputs gets constraint payment, there is a fundamental difference between

payments made to conventional plant and those to wind farms. In the case of oil,

coal and gas, the generators need to save in fuel so National Grid gets rebate from

these generators. In the case of wind where there is no fuel cost, if they are called

to reduce outputs they loss the type of subsidy they have like Renewable Obligation

Certificate (ROC) and the Climate Change Levy Exemption Certificates (LECs).

The constraint payments by National Grid to wind farms started in 2010, and what

has been observed is that wind plants charge a lot more than the subsidy they lost.

For example, the average price paid to Scottish wind farms to reduce output in

2011 was £220 per MWh, whereas the lost subsidy is approximately £55 per MWh.

However, the payment to conventional plants was only £34 MWh to reduce outputs

in 2011. This cost of balancing the electricity system is actually going to be paid

8



Chapter 1: Introduction

by the electricity consumers 4.

All these features of electricity prices suggest that the techniques already de-

veloped for financial markets could not apply directly. Instead some other factors

need to be taken into account. In the literature of modelling electricity prices there

are two main categories. The category of models that captures some of the prices

drivers, such as fuel prices, capacity, carbon emission and power demand, are called

structural models. The structural approach in electricity prices modelling is based

on the economic principle that supply and demand must match all the time, for

modelling the power price a function of supply and demand factors is presented.

In this models a dynamic is chosen for the factors instead of choosing directly a

dynamic for the prices. The early work in this category is due to Barlow [10]. His

model consider a supply curve combined with a mean reverting process for the power

demand as the state variable. The same approach has been considered by Skantze

et al. [108], Eydeland and Geman [51], while Caretea and Villaplana [30] consid-

ered two state variables, power and capacity as a stochastic processes merged with

an exponentially shaped supply curve. Other studies that takes into account fuel

prices includes Pirrong and Jermayyan [102], Coulon and Howison [71], Aı̈d et al.

[5]. The cost of carbon emission has also been considered for example in Howison

and Schwarz [70] and Coulon [34], and a multi-fuel structural approach has been

proposed by Carmona, et al. [27]. An extension of these models and a survey on

electricity price modelling can be found in Carmona and Coulon [26].

The second category are those that are called reduced-form models. These mod-

els give an analytic formula that facilitate pricing techniques by proposing models

directly to electricity spot price dynamics. An early model in this category for

spot prices is due to Lucia and Schwartz [87], Schwartz and Smith [107]. They

capture the long and short-term dynamics by a two factor diffusion model which

allow them to make use of the Black-Scholes formula for option pricing because of

the log-normality assumption for spot and forward prices. However, the spikes lead

authors to use jump diffusion processes instead, to capture the jumps for example

Cartea and Figueroa [29], Kluge [80], and a closed-form formula for option pricing

4http://www.ref.org.uk/energy-data/notes-on-wind-farm-constraint-payments.
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was obtained by employing affine jump model framework as in Deng [42] and Culot

et al. [38]. Regime switching models that extract mean reversion from spikes were

also suggested by De Jong and Huisman [41] and Weron et al. [114]. An approach by

Geman and Roncoroni [56] captures the trajectorial properties of electricity prices

by allowing jumps to be downwards when prices are below some threshold.

1.4 Objectives

This thesis provides a methodology to assess the economics of storage in the UK

power market. We focus on understanding the value of storage to a stochastic net

demand, which is the total power demand minus wind supply.

One of the objectives is to investigate how a storage technology could operate

optimally in a power market market, where the decision maker would like to know

the optimal time to buy power from the market and store it, then the optimal time

to sell this power and make a profit. This problem is considered as buy low sell

high problem in which can be characterised in general by entry and exit problems.

The ultimate aim is to provide a tool that can inform government energy policy by

identifying the right mix of storage facilities to support an increase penetration of

wind energy into the power system. The methodology we presenting in this thesis,

is based on a stochastic control model with the following inputs: net demand (total

demand minus wind supply) as an Itô diffusion Xt; the “merit order curve” (MOC),

as function that maps net demand into prices, and the technical characteristics of

the storage facilities. While MOC is discontinuous, the payoff of a storage facility

will be a time integral of demand passing through the MOC which will be a C1

function. Johnson and Zervos[76], Lamberton and Zervos [84], enable the solution

of stopping problems without the payoff function being “smooth” (C2) and so enable

analysis based on identifying payoff functions based on the MOC. The outputs of

the stochastic control model will be switching boundaries that defines when to fill,

and when to empty power from storage facility based on the net demand.

10
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1.5 Thesis outline

An outline of this thesis is as follow. Chapter 2 gives a brief history on the UK power

market, how does it work under BETTA and EMR, energy mix and an overview on

electricity storage technologies.

Chapter 3 will present the core theory we base our analysis on, a summary of

the main assumptions and results on recent published work on discretionary optimal

stopping problems.

Chapter 4 describes the methodology we adopt to assess the economic impact of

storage technology. We consider three main optimal strategies, an irreversible case,

when one allows one use of a full storage facility and want to know the optimal time

to discharge. The second case is where one have an empty facility, that need to be

charged before it can be discharged and not used again. The final case is where one

can use the facility many times and would like to know the optimal strategy to use

the facility sequentially.

In Chapter 5, we have two main sections, section 5.1 deals with the net de-

mand data, which is the total demand minus wind supply, where we calibrated an

OrnsteinUhlenbeck and Feller processes to the historical net demand data. While

section 5.2, describe the merit order curve and how it is used to approximate the

electricity prices in the UK power market.

A detailed case study, where we applied the methodology to a real mechanical

storage technology, a compressed air energy storage CAES is presented in Chapter

6. We investigate number of possible utilisation of this technology given the UK

market data. Two main methods are considered in employing the methodology,

one based on a theoretical process assumption for the net demand with estimated

parameters (Chapter 6), and the other one is based on an empirical study using the

net demand data directly (Chapter 7). Finally, conclusions with further extensions

are presented in Chapter 8.
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Chapter 2

The UK’s power market

The UK electricity market has changed significantly since 1990, the year for pri-

vatising electricity supply industry in England and Wales. In 1990, the electricity

industry was built on four sectors: generation, transmission, distribution and supply.

Transmission and distribution sectors are both natural monopolies. In the whole-

sale market, the Pool was reformed after the privatisation to bring more competition

into the generation and supply sectors. However, two large generation companies

were manipulating the Pool and causing market power problems in the generation

sector. This led the regulators to introduce the new electricity trading arrangement

(NETA) in England and Wales in 2001, which replaced the Pool with a voluntary

bilateral market and power exchange. To have a single, integrated, competitive

market in the whole of Great Britain, in 2005, NETA was extended to Scotland

following the British Electricity Trading and Transmission Arrangement (BETTA).

Under BETTA arrangement, generation and supply companies chose to merge, as

well as electricity supply, water and gas, resulting in a decentralised generation sec-

tor. Therefore the competition improved in the generation and supply sectors and

so the wholesale electricity market started operating more like a commodity mar-

ket. A detailed discussion on the competition of the UK electricity market after the

privatisation can be found in the paper by Green and Newbery [60].

In 2010, the UK government introduced the Market Electricity Reform (EMR).

The EMR is set to ensure three main gaols: affordability, security of supply and

decarbonisation. Under this new reform, the investment in low carbon energy will

12
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increase, and will help to diversify the UK energy supply. A high level of wind

energy is expected to be part of the UK energy mix. As this resource is considered

to be intermittent, this will cause problems to the regulators that need to balance

supply and demand. Therefore, electricity storage should be part of the puzzle, as

this might solve the issue of wind variability.

2.1 British electricity trading and transmission

arrangements (BETTA)

The UK power market under BETTA arrangement based on bilateral trading be-

tween generators, willing to sell electricity at price they would like to receive, and

suppliers, willing to buy electricity to meet their needs at price they would like to

pay, with the final price made by negotiation or exchange trading, that is an open

and competitive wholesale market. Also, organisations without any generation to

sell or any physical demand for electricity, like Banks for example, are allowed to

trade in the wholesale market, and usually called Non-Physical-Traders (NPT). The

NPT will buy electricity from generators with a negotiated price, and sell it to a

supplier, aiming to make a profit as market makers.

Electricity is traded in half an hour blocks, and in real time. While demand

might differ from supply, the responsibility of BETTA arrangements is to guarantee

demand meets supply; second by second. The role of BETTA is also settling finance

imbalances in when supply does not match demand including the following: NPT

may buy more or less electricity than they have sold; generators may produce more

or less electricity than they have sold; and suppliers (through customer demand)

may physically consume more or less electricity than they have purchased. The

National Grid Company (NGC), called the system operator, is the organisation that

ensures supply and demand is controlled and balanced. The volume of electricity

being traded must be notified to NGC, and the role of the NGC is to predict any

surplus or deficit in the actual generation and supply from that predicted, and

then the generation or supply can be modified accordingly, utilising the Balancing
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Mechanism. This maintains security of supply, keeping the overall system in balance

in real time and it is governed by the Balancing and Settlement Code (BSC), which

is managed by a company sub-contracted by NGC called ELEXON.

Figure 2.1 gives an overview of the UK electricity market under BETTA. Trading

is allowed between generators, suppliers and traders before the “gate closure” this

is 1 hour ahead the actual delivery of each half-hour chunk. The trading could be

either through forwards and future market contracts that could have a time-scale

ranging from years to 24 hours ahead the half-hour in subject, or through short-term

contracts markets (short-term power exchange). These contracts ranges usually from

1 hour to 24 hours before delivery, and are bilateral deals at the price registered on

the power exchange. In close to real time, there is an opportunity for generators

Figure 2.1: Overview of the electricity market under BETTA [37].

and suppliers to participate in the balancing mechanism and gain additional revenue

by submitting bids and offers to the NGC after the “gate closure”. Where bids

are proposals to reduce generation or increase demand, and offers are proposals to

increase generation or reduce demand.

14



Chapter 2: The UK’s power market

However, accepting bids and offers available may not be sufficient to balance the

system. It is therefore the responsibility of the NGC to balance the system in real

time using other balancing options such as reserve generation service, where it has

contracts with generators that could ramp up quickly. Here a storage facility will be

the most suitable technology for this service. Currently pumped hydro storage and

reserve hydro-electric power stations are already used by the system. Then, Elexon

will charge generators and suppliers if they were subjected to any imbalances in their

own contracted positions causing the overall imbalance of the transmission system,

this process is called “cash out”. Much research on the value of storage focuses on

balancing (e.g. Black and Strbac[17]).

2.2 Electricity market reform (EMR)

Currently, the Electricity Market Reform (EMR) is still in development. There are

three main objectives the UK government want to achieve through the EMR plan.

The first is to secure electricity supply, as the demand is expected to double by

2050, reliable and diverse electricity supply to “keep the lights on” will be needed.

The second is the de-carbonisation of electricity where there is a need to ensure

sufficient investment in low carbon technologies to meet the 2020 target (15% from

renewable energy) and 2050 target (80% of greenhouse emissions). The last objective

is affordability, which is minimizing the cost for consumers and tax payers, while

delivering the investment needed. The key elements for EMR plan to achieve these

objectives are Feed in Tariffs with Contract for Difference (FiT CfDs) and capacity

Market. FiT CfDs are made in order to support the low carbon investments and

are defined by DECC as follow:

“A Contract for Difference (CFD) is a private law contract between a low carbon

electricity generator and the Low Carbon Contracts Company (LCCC), a government-

owned company. A generator party to a CFD is paid the difference between the ‘strike

price’ - a price for electricity reflecting the cost of investing in a particular low car-

bon technology-and the ’reference price’-a measure of the average market price for

electricity in the GB market. It gives greater certainty and stability of revenues to
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electricity generators by reducing their exposure to volatile wholesale prices, whilst

protecting consumers from paying for higher support costs when electricity prices are

high.”

While, capacity market is set to deliver generation adequacy, the main aim is

to support security of electricity supply by offering capacity payments to those who

commit to deliver energy when it is most needed. This is additional predictable

revenue for generators and non-generators that can provide reliable capacity. Fig 2.2

Figure 2.2: Overview of the Electricity Market Reform (EMR) [55].

gives an overview on different elements of the EMR, with some mechanisms already

implemented under BETTA, like Carbon Price Support and Emission performance

Standard. While Contracts for Difference and Capacity Market are new elements

expected to shape electricity prices in the future.
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2.3 Electricity generation mix

Currently, the UK’s electricity production relies on burning fossil fuels, mainly, coal

and natural gas. Coal energy is considered to be cheap, reliable source and a secure

supply for decades. However, it has a high level of greenhouse gas emissions like

carbon dioxide (CO2) that impact the environment. With the decarbonisation policy

that the EMR is aiming for in the future, the UK will have to look for alternative

low carbon energy sources rather than relying on coal. Natural gas is considered

to be flexible, reliable source of energy. However, importation of gas has increased

as the UK’s North Sea reserves have dropped, resulting volatile electricity prices

that change in response to events outside the UK. There are around 19 gas fired

Combined Cycle Gas Turbines operating (CCGT) in the UK, with 30 GW installed

capacity and emitting around 365g CO2 per kWh. But there is an increase interest

in investing in Carbon Capture Storage (CCS) as part of CCGT plant to help in

decarbonisation of the energy market. Open Cycle Gas Turbine (OCGT) which are

less efficient than CCGT, is used only when demand is very high once or twice a

year.

Nuclear power is a source that is affordable, low carbon and is able to secure a

diverse energy supply in the UK. There are nine plants with 16 operational nuclear

reactors currently producing electricity, but most of these nuclear power stations

are planned to close by 2023 and so new nuclear power stations are needed to help

the UK meeting the target of reducing 80% greenhouse gas emissions by 2050 and

secure its energy supply. The low flexibility of nuclear sources, it has been man-

aged by pumped hydro storage that absorb the surplus of nuclear power generation

during low demand during night time to use it for the demand peak during the

day. Therefore, increasing nuclear in the power system would also mean increasing

storage technologies to absorb the extra energy from nuclear generation.

Renewable sources are natural energy sources used to produce electricity. The

natural fuel sources are mainly wind, marine (wave and tidal), hydro and solar. In

2014, the installed capacity of renewable electricity reached 24.2 GW. Wind energy

is the most important renewable source in the UK, since the country is considered
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to be well placed for such energy comparing to other countries in Europe. With

around 12000 MW (8084 MW onshore and 4049 MW offshore) installed capacity,

wind energy is contributing significantly in the UK electricity supply. In 2014, wind

generation reach 15% of total electricity, assuring electricity to a quarter of homes

in Britain [2].

Marine sources are dominated by tidal and waves, with UK considered to be

the global leader in this industry, having 10 MW of wave and tidal stream devices

already tested in their waters. Wave and tidal energy are going to have significant

help with decarbonising the UK energy supply, reduce their dependence on imported

fossil fuels as well as providing secure supply. Surprisingly, the installed capacity

of solar power hits 5 GW in 2014, says Paul Barwell, chief executive of the Solar

Trade Association. “This milestone achievement is testament to the hard work of

Britains several thousand solar businesses, almost all of them small and medium

sized companies, are at the forefront of real solar transformation as the technologies

steadily becoming one of the cheapest sources of clean, home-grown power”, he said.

Hydroelectric power is the energy derived from flowing water. This can be from

rivers or dam, where water flows from a high-level reservoir down to a lower reservoir

and generational electricity. Hydro power contributes with 1.5% in the UK electricity

supply. All these renewable technologies are low carbon, have very low operating

costs so need more investments.

However, there are some challenges that need to be tackled. Wind does not blow

all the time so that make it a variable resource, waves also depend on the wind this

make it variable too. While tidal and solar are predictable but not controllable,

they may not necessarily occur when electricity is needed, for example the power

generated by night-time tides need to be stored, and storage needed when it is cloudy.

Therefore, to the UK to meet its target of 30% of their electricity should come from

renewable by 2020, new electricity storage technologies should be integrated into

the power system, pumping water up the hill it is not enough (Hydroelectric with

pump).

Figure 2.3 gives the electricity generation mix in years 2013 and 2014. The coal
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share decreased from 36.4% in 2013 to 29.1% in 2014, while gas has been increased

from 26.9% to 30.2%. A significant increase was observed in energy production from

renewables form 14.9% to 19.2% and very small change in nuclear with a decrease

from 19.7% to 19%.

Figure 2.3: Electricity generation mix for 2013-2014 in the UK (DECC).

2.4 Electricity demand and wind supply

The demand side in an electricity market is called “load”, which can be defined as

the sum of all electricity needed in a market at a given time. The load change from

hour to hour, day to day and season to season and there is an underlying pattern,
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called the “load shape”, that enables demand to be forecast with a large degree of

accuracy.

The UK’s electricity demand like many other countries shows strong seasonal-

ity patterns. Example of load shape for a day in September shown in Figure 2.4

demonstrates the changes of electricity load during the day, determined by human

activities. There is low demand at night when peoples are sleeping, then visible

increase in demand in the morning, when people wake-up and begin using kettles,

toasters and power showers. The increases in demand and stabilize, around 9am

when offices, shops, organizations start to open and the electrical equipment such as

computers are utilized. A second increase in demand will occur between 4 am and

6 am when children and workers return home and start using electrical equipment,

lighting, watching television and cooking dinner. Demand then decreases as people

begin to sleep.

Figure 2.4: The path of load for the day 8-10-2014 in the UK (data from National
Grid website).

The weekly patterns are shown in Figure 2.5 as load drops on weekends (Saturday-

Sundays). Over the year in Figure 2.6, we see load high in the winter (apart from

the Christmas break) and low in the summer.

Now consider a system with high penetration of wind energy, the problem with
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Figure 2.5: The path of load for the week 13 to 19 October 2014 in the UK (data
from National Grid website).

Figure 2.6: The path of daily load for 2011-2014 in the UK (data from National
Grid website).

wind supply is the unpredictability, this will introduce an uncertainty in balancing

the system. Analysis of integrating a high level of wind power into the power system

discussed in [47], shows that when subtracting a 30 GW of variable wind generation

from the total demand at each hour, the load histogram shows a normal distribution;
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this is clearly observed in Fig 2.7. This result can be explained by the Central Limit

Theorem states that the distribution of the sum of a large number of independent

random variables, each with finite mean and variance, will approach normality: this

signifies that the load shape will disappear, making the load prediction harder. Fig

2.7 (e) also shows that residual demand with high wind level could be negative.

These observations, motivates our study to assess the value of electricity storage

in the UK market, for that we denote the wind supply by Wt and total demand by

Dt , then we model the net demand (Total demand minus the wind supply) which

will be given a stochastic process Xt i.e.

Xt := Dt −Wt (2.1)

and the units of Xt are MW.

2.5 Electricity energy storage (EES)

From section 2.3 we can observe that UK electricity system is in process of decar-

bonisation. While sections 2.4 shows that significant penetrations of unpredictable

wind, will results uncertainty and variability on the power system. This is a sign for

the need of flexible generation to manage the variability of intermittent generation

and make the system stable. Interconnection, to other countries is one simple so-

lution; however its attractions are somewhat limited. Demand response to manage

the demand side is also suggested. But the solution that getting the most interest is

energy storage. In this context, electricity energy storage has the ability to provide

a source of flexibility in the UK electricity mix in the future.

2.5.1 Classification of EES technologies

Energy storage encompasses many different technologies with different characteris-

tics. Figure 2.8 show different storage technologies by their power rating, discharge

time, category and their suitable grid-scale applications.
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Figure 2.7: Result of increasing installed wind capacity from (a) 2 GW to (b) 10
GW to (c) 20 GW to (d) 30 GW on residual load histograms. Also shown in (e)
are some exam- ple residual. Numbers in brackets indicate volume of onshore and
offshore capacity respectively [48, p. 169].

Mechanical

Three forms are known for mechanical energy: gravitational potential, elastic po-

tential, and kinetic. All these forms can turn back to electricity. Three mechanical

energy technologies are:

Pumped Hydro Storage (PHS): this technology uses gravitational potential based

on the idea of pumping the water up into a reservoir when electricity prices are

low and then use this reservoir to generate electricity when prices are high. PHS
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Figure 2.8: Classification of EES options with respect to their power rating and
discharge duration capacities [104].

is a mature, large-scale technology characterised by the long storage period, high

efficiency (70− 87%), fast response times and relatively low operating costs with a

typical rating between 100 MW and 3000 MW which is the highest rating among

all the other EES technologies. In the world there are over 104 GW of PHS in

operation with about 44 GW in Europe [31]. In the UK PHS contributes to 99%

of the country’s electricity storage with 2800 MW installed capacity. However the

technology found it difficult to compete for investment in UK since privatisation.

There are geological restriction that limits PHS for further deployment, however

there are 100 MW PHS site already planned for 2018 [31].
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Figure 2.9: Pumped Hydro Storage (PHS) plant [31].

Compressed Air Energy Storage (CAES): this technology uses elastic potential.

The air is compressed into a cavern during low demand, then to produce electricity

in high demand the compressed air is heated and expanded through high pressure

turbine, the air is then mixed with fuel and combusted with the exhaust expanded

through a low pressure turbine, and the two turbines are connected to a generator

[31]. CAES are characterised by low capital cost, efficiency around (42 − 54%),

relatively long storage period, fast response times and a rating between 50 MW

and 300 MW, this rating still higher than other technologies except for PHS. In the

Figure 2.10: Compressed Air Energy Storage System (CAES)[31].
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world there are two facilities currently installed of this type: a 290 MW in Huntorf,

Germany built in 1978 and 110 MW in Alabama, USA built in 1991. There are other

CAES being planned in USA such as Norton, Ohio Project (9 × 300 MW), Texas

project (4× 135 MW), Iowa Project(200 MW) and some others in Japan (Chunbu

Electric Project) and South Africa (Eskom Project)[31].

Flywheels : this technology uses rotational kinetic energy that has been stored

using electric energy as input. It works by accelerating a rotor in the minimum

friction losses possible, and then electricity is produced, the spinning force can derive

a device like a turbine and produce electricity. This technology is also able to absorb

energy from intermittent energy sources, then deliver frequency regulation to the

grid. Then installed capacity is a 20MW technology in New York, which help with

balancing supply and demand and keep the frequency constant in the system when

demand exceed supply and vice-versa [31].

Electrochemical

Battery storage includes different technologies; vary from different chemicals such as

lead-acid, nickel-cadmium, nickel-metal, hydride, and different characteristics such

as energy density, costs, efficiency and life time.

Lead acid batteries : is old type of batteries, in the charge state the battery

consists of electrodes of lead metal and lead oxide in an electrolyte of about 37%

sulphuric acid. In the discharge state the electrodes turn into lead sulphate and the

electrolyte loses its dissolved sulphuric acid and becomes primarily water. These

types of batteries have a low cost ($300− 600/kWh), high reliability and efficiency

(70 − 90%). It is a very good storage utility for power quality. However has a

limitation for energy management due to its short life time and low energy density.

Although, there exist some applications of large-scale lead acid batteries such as the

8.5 MWh/1 h system in Berlin, the 4 MWh/1 h system in Madrid and the largest

one in California with a power rating of 10 MW for 4 h [31].

Nickel cadmium batteries (NiCd): these type of batteries exist more than 100

years ago, contain nickel hydroxide positive electrode plate, a cadmium hydroxide
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negative electrode plate, a separator and an alkaline electrolyte. NiCd batteries

are characterised by high energy density (50 − 75 Wh/kg), efficiency (60 − 90%),

very low maintenance requirements and low cycle life. However, the manufacturing

process of NiCd is very expensive (£1000/kWh). Nevertheless, the NiCd system

has its application in the ”world’s largest batteries”, at Golden valley, Fairbanks,

Alaska with a rating of 27 MW for 15 min, 40 MW for 7 min [31].

Sodium sulphur (NaS): NaS batteries consist of liquid sodium (Na) as the nega-

tive electrode and liquid sulphur (S) as the positive separated by a solid beta alumina

ceramic electrolyte. The NaS batteries are characterised by life cycle of 2500, typical

energy in the range of 150− 240, and density 150− 230 W/kg and cells efficiency of

75− 90%. The technology has been demonstrated at over 190 sites in Japan, with

270 MW of stored energy suitable for 8 hours of daily peak shaving installed. There

are some applications of the NaS in the USA from the American Electric Power that

launched the first demonstration of the technology in Ohio with capacity 1.2 MW

[31].

Vehicle-to-Grid(V2G): this technology can be defined as a system that have a

bi-directional charges between vehicle and the electricity grid. The battery of the

vehicle could be charged from the grid, and then the electricity should flows in

the other direction when the grids need electricity. This could give a value to the

utilities of up to $4,000 per year per car. A project in Bronholm Danish Island called

EDISON has been launched to investigate how a large fleet of electric vehicles (EVs)

can be integrated to supports the electric grid and benefit both the individual car

owners and society [16]. Bornholm, the Danish island has been selected as simulation

scenario for EDISON project because it represents a small grid with the option of

operating in island mode1 and with a high wind power penetration [16].

Thermal

Thermal energy storage is not only about heating, energy could also be stored by

cooling materials.

Cryogenic energy storage: is a system that can use the surplus electricity from

1When not connected to Sweden via the HVDC connection.
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the grid to liquefy air, and form a cryogenic liquid that can be stored in vessel. To

deliver electricity back to the grid at peak times, an expansion process could be

held by vaporizing the cryogenic liquid into a gas to drive a turbine. Currently, this

technology already employed in the UK started from 2011 and operated by Scottish

& Southern Energy (SSE), with 60% efficiency. However the technology could reach

70% efficiency if it is located next to conventional plants where excess heat could be

recycled.

Hydrogen related

Hydrogen and Fuel Cells : fuel cell is a technology that combines oxygen with hy-

drogen using highly efficient electrochemical process to produce electricity, heat and

water. This technology is able to produce amounts of electric power, ranges from

small cells the size of a car battery to larger industrial size cells, which could power

entire cities in the future. The UK already has buses that are using hydrogen fuel

cells with a possibility that hydrogen fuel cell cars will soon become commercially

viable in the UK [3].

Electrical

Super Conducting magnetic energy storage (SMES): is a system that store energy

in superconducting coil as a magnetic field created by the flow of direct current.

The coil can be discharged by converting the magnetic energy into electricity and

released back to a connected power system. The SMES is characterised by strong

power density, almost ”infinite” number of charge/discharge, cycles and a very high

efficiency superior to 95%.

Supercapacitor (SC): is a technology that can store energy electrostatically on

the surface of the material, without any chemical reactions. Supercapacitors are also

called electrochemical capacitors contain two electrodes separated by electrolyte so-

lution. The electrodes are often made from porous carbon, and because the surface

area of activated carbons is very high, and since the distance between the plates

is very small, very large capacitances and stored energy are possible using Super-

capacitors. This technology is characterised by a higher power density, it can be
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charged quickly and do not lose its storage characteristic over time [92]. Superca-

pacitors can accept and deliver charge much faster than batteries, and can afford

more charge/discharge cycles than rechargeable batteries. There are number of

companies that develop supercapacitors includes, SAFT (France), NESS(Korea),

ESMA(Russie), PowerCache(Maxwell, USA), PowerSystem (Japan), etc. [31].

2.5.2 The role of EES

Electricity storage is diverse, with different technologies as we detailed in the previ-

ous section. The diversity across the range of electricity storage gives it the ability

to be integrated at different levels of the electricity system and providing different

applications.

Figure 2.11: Electrical energy storage technologies with challenges to the UK energy
systems [89].

There are broad of functions at which EES could be applied depending on the

different challenges facing the future energy system in the UK at different time scales,

months, days, hours and minutes. Fig 2.11, demonstrate various EES technologies

with potentials to address the challenges faced by the UK energy systems [89]. The
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variability of supply/demand of energy could be managed by providing effective

frequency regulation, balancing or load levelling services over a period such as a

day, large scale EES technologies should be able to do the job. Fig 2.12 shows,

the role of a large scale EES with base load, intermediate and peak generation at

different hours of the day, and the potential to reduce the requirements for expensive

and less clean peaking generation, that are usually used to meet the peak demand.

In this thesis, we are mainly interested in the challenges caused by integrating high

Figure 2.12: Load profile of a large-capacity energy storage system [6].

level of wind energy into the system.

The potential role of EES to play as a source of flexibility is well recognized

in the UK and Europe. However there are barriers to further development and

deployment of storage to be part of power system. Challenges associated with the

technologies, selection of appropriate EES technology have been considered to be

important challenge. It is expected that the future deployment of EES will favour

a subset of dominant technologies; however it is not yet clear with certainty which

those will be. Also, there are challenges associated with strategic aspects; means

there is a need for developing a holistic approach to storage, where a link between

technical, regulatory, market and policy should be addressed.
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Discretionary stopping problems

The theory of discretionary stopping has been widely employed in finance and eco-

nomics. This theory is applied, for example, when one need to determine the optimal

time to take an action in a stochastic environment, such as buying or selling an as-

set in a market, or operating a manufacturing facility in response to demand. This

provides the basis of our analysis of the power storage problem.

In this chapter, we review the results in Johnson and Zervos [76], Johnson [74]

and Lamberton and Zervos [84], that forms the basis of our solution. The main work

in Johnson [74], is to develop the theory of discretionary stopping in order to under-

stand under what condition, there exist an optimal strategy in the interval I for the

case where payoff function is C1 but not necessarily C2, this is done within a frame-

work based on dynamic programming techniques employing variational inequalities.

A verification theorem under assumptions 3.1.1, 3.1.2 and 3.1.4, to ensure that the

value function v defined in 3.3 is associated with w the solution to HJB equation

3.5 was proved in Johnson and Zervos [76], with a complete theory to include the

case of inaccessible or absorbing boundaries was developed in Lamberton and Zervos

[84]. These results give a methodology to obtain an explicit solution to infinite time

horizon optimal stopping problems involving general one-dimensional Itô diffusion.
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3.1 Approach to solve discretionary stopping prob-

lems

3.1.1 Notation

To start let us assume a filtered probability space
(
Ω,F ,F = (Ft)t≥0 ,P

)
satisfies the

usual conditions and carrying a standard one-dimensional (Ft) Brownian motion,

W . We denote by I a given open interval with left end point −∞ ≤ α and right

endpoint β ≤ ∞, and by B (I) the Borel σ-algebra on I. Throughout this chapter

we consider signed measures of σ-finite total variation, and a refer to them simply

as ”measures”. Given a µ on (I,B (I)), the unique positive measures on (I,B (I))

resulting from Random decomposition of µ are denoted µ+ and µ−, and we have

µ = µ+ − µ− and | µ |= µ+ + µ−, where | µ | is the total variation of µ. Also, we

say that measure µ on a measurable space
(
I,B

(
I
))

, where I ⊆ I and B
(
I
)

is the

Borel σ-algebra on I, is non-atomic if µ ({c}) = 0, for all c ∈ I.

3.1.2 The Itô diffusion and optimization problem

We consider a stochastic economy driven by a one-dimensional, time homogeneous

Markov process given by the following stochastic differential equation (SDE),

dXt = b (Xt) dt+ σ (Xt) dWt, X0 = x ∈ I = ]α, β[ , (3.1)

where the functions b, σ : I → R are B (I)-measurable satisfies the following two

assumptions.

Assumption 3.1.1.

σ2(x) > 0, ∀x ∈ I,∫ β

α

1+ | b(s) |
σ2(s)

ds <∞ and sup
s∈[α,β]

σ2(s) <∞, for all α < α < β < β.

Assumption 3.1.2. The solution of the SDE 3.1 is non-explosive.

Assumption 3.1.1 gives sufficient conditions for the SDE 3.1 to have a weak
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solution Sx that is unique in the sense of probability law up to a possible explosion

time, for all initial condition x ∈ I. In particular this assumption implies that for a

given c ∈ I, the scale function pc given by

pc (x) =

∫ x

c

exp

(
−2

∫ s

c

b (u)

σ2 (u)
du

)
ds, for x ∈ I, (3.2)

and the speed measure m given by

m (dx) =
2

σ2 (x) p′ (x) dx
,

which characterise the Itô diffusion 3.1, are well defined. Assumption 3.1.2 make

sure that the hitting time of the boundary {α, β} of the interval I is infinite with

probability 1 i.e. the boundaries α and β are inaccessible (see Karatzas and Shreve

[77]).

We adopt a weak formulation of the optimal stopping problem that we study. In

particular, we allow for a stopping strategy to depend, in principle, on the underlying

diffusion’s initial condition x > 0. Then a stopping strategy is given by the following

definition.

Definition 3.1.3. Given an initial condition x > 0, a pair (Sx, τ) is called a stopping

strategy if Sx = (Ω,F ,Ft, X,W ) is weak solution to 3.1 and τ is an Ft-stopping-

time. Then the set of all stopping strategies is denoted by Ax.

The performance criterion associated with each stopping strategy is given as

follow,

J (Sx, τ) = Ex
[
e−Λτ g (Xτ ) 1{τ<∞}

]
,

where g is the pay-off function and Λt the discounted factor given by

Λt =

∫ t

0

r (Xt) ds.

The objective of the optimal stopping problem is to maximise the performance

criterion J (Sx, τ) over all stopping strategies (Sx, τ). Therefore, the value function
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v is given by

v (x) = sup
(Sx,τ)∈Ax

J (Sx, τ) , for x ∈ I. (3.3)

The discounted factor satisfies the following assumption:

Assumption 3.1.4. The function r : I →]0,∞[ is B(I)-measurable and locally

bounded, there exists r0 > 0 such that r(x) > r0, for all x ∈ I and

∫ β

α

r(s)

σ2(s)
ds <∞, for all α < α < β < β. (3.4)

Assumption 3.1.4 is needed for the problem 3.3 to be well defined. Intuitively, to

solve this stopping problem the dynamic programming is employed. If we consider

at time zero, the cases either to wait or stop. If we wait for a time ∆t and then

continue optimally, we expect that the value function v should satisfy the following

inequality

v (1, x) ≥ Ex
[
e−r∆tv (X∆t)

]
,

using Itô formula, dividing by ∆t and taking the limit ∆t ↓ 0, gives

1

2
σ2 (x) vxx (x) + b (x) vx (x)− rv (x) ≤ 0.

Alternatively, we can stop, and so we expect that

v (x) ≥ g (x) .

Therefore, we expect the value function v to be associated with w solution to the

Hamilton-Jacobi-Bellman (HJB) equation,

max

{
1

2
σ2 (x)w

′′
(x) + b (x)w

′
(x)− r (x)w (x) , g (x)− w (x)

}
= 0, x ∈ I. (3.5)
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The interval I can be split into two regions, the stopping region D ⊆ I and the

continuation region C = I \ D. For values in D we require that

g(x)− w(x) = 0 and
1

2
σ2 (x)w

′′
(x) + b (x)w

′
(x)− r (x)w (x) ≤ 0,

while for all values in C, we have

g(x)− w(x) ≤ 0 and
1

2
σ2 (x)w

′′
(x) + b (x)w

′
(x)− r (x)w (x) = 0.

3.1.3 The solution to the associated ODE

Assumptions 3.1.1, 3.1.2 and 3.1.4 ensure the existence of a general solution the

following ODE,

Lf(x) :=
1

2
σ2 (x) f

′′
(x) + b (x) f

′
(x)− r (x) f (x) = 0, x ∈ I, (3.6)

and is given by

f (x) = Aφ(x) +Bψ(x), (3.7)

for some constant A, B ∈ R. These solutions have some important properties that

we will list here. The functions φ and ψ are C1, their first derivatives are absolutely

continuous with φ > 0 (resp. ψ > 0) is strictly decreasing (resp. increasing) and for

any point x1 < x2 in I and a weak solution Sx1 , Sx2 to 3.1 we have

φ(x2)

φ(x1)
= Ex2

[
e−Λτx1

]
and

ψ(x1)

ψ(x2)
= Ex1

[
e−Λτx2

]
, (3.8)

where τy is the first hitting time of {z}, z ∈ I and is defined by

τy = inf {t ≥ 0 |Xt = y} ,
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and

lim
x↓α

φ(x) = lim
x↑β

ψ(x) =∞.

The two functions ψ and φ are unique, modulo multiplicative constants, and the

scale function pc defined by 3.2, satisfies the following

p
′

c (x) =
φ (x)ψ

′
(x)− φ′ (x)ψ (x)

φ (c)ψ′ (c)− φ′ (c)ψ (c)
=
W (x)

W (c)
for all x, c ∈ I, (3.9)

where W > 0 is the Wronskian of the functions φ and ψ. These results are well

known in the probability literature, including Feller [53], Breiman [20], Itô and

McKean [72], Rogers and Williams [105], Karlin and Taylor [78] and Borodin and

Salminen [18].

The previous results are related to classical solution to the ODE 3.6, where the

function g is assumed to be C2. However many of the problems arise in economy

and finance violate this assumption. Here it is worth recalling results that has

been proved in Johnson and Zervos [75], and Lamberton and Zervos [84], which is

associated solution to the ODE 3.6, where the pay-off g is C1, but not necessarily

C2. The works employ probabilistic methods and study the solutions to the non-

homogeneous ODE,

LRµ + µ = 0, (3.10)

with µ is a measure on (I,B (I)) and the measure-value operator L is given by

Lg(dx) =
1

2
σ2 (x) g

′′
(dx) + b (x) g

′

− (x) dx− r (x) g (x) dx,

on the space of all the functions g : I → R that are the difference of two convex

functions. Here we recall that the function g is the difference of two convex function

if and only if its left-hand side derivative g
′
− exists, is of finite variation, and its

second distributional derivative is a measure, which is denoted by g
′′

(dx). In this

case the Lebesgue decomposition is given by
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g
′′

(dx) = g
′′

ac (x) dx+ g
′′

s (dx) , (3.11)

where, g
′′
ac (x) dx is absolutely continuous with respect of the Lebesgue measure and

g
′′
s (dx) is mutually singular with the Lebesgue measure.

Definition 3.1.5. The set of all measures µ on (I,B (I)) such that

∫ γ

α

Ψ (s) |µ| (ds) +

∫ β

γ

Φ (s) |µ| (ds) <∞, ∀ γ ∈ I,

with

Φ(x) =
2φ(x)

σ2(x)W(x)
, Ψ(x) =

2ψ(x)

σ2(x)W(x)
,

is denoted by Iφ/ψ and called space of (φ, ψ)-integrable measures.

The continuous process Aµ is defined by

Aµ =

∫ β

α

Lyt
σ2 (y)

µ (dy) , (3.12)

where Ly is the local-time process of X at y ∈ I. The total variation process |Aµ|

of Aµ is given by |Aµ| = A|µ|, if µ positive measure and Ly an increasing process

∀y ∈ I, then Aµ is an increasing process, and because Aµ has continuous paths we

have

∫ ∞
0

1Γ (t) dA
|µ|
t = 0, for all countable sets Γ ⊂ I.

Given this the r (.)-potential of this process is given by

Rµ (x) = Ex
[∫ ∞

0

e−ΛtdA
|µ|
t

]
. (3.13)
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A measure µ belong to Iφ/ψ if and only if

Rµ (x) = Ex
[∫ ∞

0

e−ΛtdA
|µ|
t

]
<∞, ∀x ∈ I,

in which case the function Rµ admit the analytical representation

Rµ (x) = φ (x)

∫
]α,x[

Ψ (s)µ (ds) + ψ (x)

∫
[x,β[

Φ (s)µ (ds) (3.14)

= φ (x)

∫
]α,x]

Ψ (s)µ (ds) + ψ (x)

∫
]x,β[

Φ (s)µ (ds) , (3.15)

and satisfies the ODE 3.10, and also

lim
x↓α

|Rµ (x)|
φ (x)

= lim
x↑β

|Rµ (x)|
ψ (x)

= 0.

Now if −LRµ = µ, we can see that, if R−LRµ is defined by 3.26 and 3.14 with −LRµ

in place of µ, then we have

R−LRµ = Rµ. (3.16)

Given Ft stopping time %,

Ex
[
e−Λ% |Rµ (X%)| 1{%<∞}

]
<∞.

The function Rµ satisfies Dynkin’s formula, i.e. given any Ft-stopping time %1 < %2,

Ex
[
e−Λ%2Rµ (X%2) 1{%2<∞}

]
= Ex

[
e−Λ%1Rµ (X%1) 1{%1<∞}

]
− Ex

[∫ %2

%1

e−ΛtdAµt

]
.

(3.17)

In addition we have the strong transversality condition, i.e. given a sequence of

Ft-stopping times %n such that limn→∞ %n =∞ (see [76])

lim
n→∞

Ex
[
e−Λ%n |Rµ (X%n)| 1{%n<∞}

]
= 0. (3.18)

Remark 3.1.6. We recall that the stopping time ρ can take an infinite value (ρ =
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∞). In this case we should make an agreement about the value of e−ΛρRµ (Xρ) when

ρ =∞. For the optimal stopping problem to be well defined we restrict e−ΛρRµ (Xρ)

to finite stopping times and when limn→∞ ρn = ∞ we assume the strong universal-

ity condition 3.18. If ρn = ∞ for n ≥ n0, n0 < ∞, then we can not employ the

Markovian property of the process Xt defined in eq 3.1, and therefore integrals in

3.19-3.22 will not be well defined. The condition of strong transversality has a natu-

ral economic interpretation as it reflects the idea that one should expect the present

value of any asset at the end of time should be zero, given that nobody can benefit

by holding the asset after the end of time.

Furthermore, we have

φ (x) (Rµ)
′

+ (x)− φ′ (x)Rµ (x) = −W (x)

∫
]x,β[

Φ(s)LRµ (ds) , (3.19)

φ (x) (Rµ)
′

− (x)− φ′ (x)Rµ (x) = −W (x)

∫
]x,β[

Φ(s)LRµ (ds) , (3.20)

ψ (x) (Rµ)
′

+ (x)− ψ′ (x)Rµ (x) =W (x)

∫
]α,x]

Ψ(s)LRµ (ds) , (3.21)

ψ (x) (Rµ)
′

+ (x)− ψ′ (x)Rµ (x) =W (x)

∫
]α,x]

Ψ(s)LRµ (ds) . (3.22)

We recall thatW is the Wronskian of the functions φ, ψ defined by 3.9. The following

assumption on the pay-off g is to ensure that the stopping problem is well posed.

Assumption 3.1.7. The function g : I → R is the difference of two convex func-

tions, and the measure Lg is (φ, ψ)-integrable. In addition

lim
x↓α

| g (x) |
φ (x)

= lim
x↑β

| g (x) |
ψ (x)

= 0, (3.23)

and the limits limx↑β g (x) /φ (x) and limx↓α g (x) /ψ (x) exist in [−∞,∞].

The necessary and sufficient conditions for Lg to be (φ, ψ)-integrable together

with the proof are given in [[84], Theorem 7]. Under Assumptions 3.1.1-3.1.7 it has

been proved in [76] and [84] that the pay-off function g can be given by the analytical

expression 3.14 and satisfies the equations 3.19-3.22. Also given a function f that
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is C1, and having in mind the following calculation

d±
dx

(
g (x)

f (x)

)
=
g
′
± (x) f (x)− g (x) f

′
(x)

f 2 (x)
, (3.24)

we can see that 3.19-3.20 related to the slop of the function g/φ, while 3.21-3.22

related to the slop of g/ψ. We rely on the work by Lamberton and Zervos [84],

where it has been proved that under Assumptions 3.1.1-3.1.7, the value function in

v associated with the stopping problem and presented by 3.3, is of the form

v (x) =


Ajφ (x) +Bjψ (x) , if x ∈ Cj ⊆ C

g (x) , if x ∈ D,
(3.25)

where D is a closed set represent the stopping region, the continuation or waiting

region is given by C = I \ D and Aj, Bj ≥ 0 are specific to each open interval

Cj of the partition that makes up C. In addition, v is the unique solution to the

variational inequality

max {Lv (dx) , g (x)− v (x)} = 0, x ∈ I, (3.26)

in the sense of Definition 3.1.8 bellow, that satisfy the boundary condition

lim
x↓α

v (x)

φ (x)
= lim

x↓α

g (x)

φ (x)
= 0 and lim

x↑β

v (x)

ψ (x)
= lim

x↑β

g (x)

ψ (x)
= 0. (3.27)

Definition 3.1.8. A function v : I → R is a solution to the variational inequality

3.26 if v (x) is the difference of two convex functions, Lv is (φ, ψ)-integrable,

the measure Lv does not charge the set C = {x ∈ I |v (x) > g (x)}, (3.28)

− Lv is a positive measure on (I,B (I)) , (3.29)

and

g (x) ≤ v (x) ∀x ∈ I. (3.30)
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Remark 3.1.9. We note that the condition 3.29 guarantees that a left hand stopping

boundary will occur for a decreasing payoff, while a right hand stopping boundary

will occur for an increasing payoff, [see [74], Remark 3.1].
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Approach to assess the economics

of power storage

This thesis proposes a methodology, based on recent results on the theory of stochas-

tic control, to inform policy makers of the economic impact of different power storage

technologies on power system with a significant level of wind generation. Stochastic

control theory has been used in the economic and financial study of gas storage, such

as Byers [25], Chen and Forsyth [32], Davison et al. [110], Carmona and Ludkovski

[28], Weber et al. [52] and Ware [112]. An explanation of why there have been many

interest in applying the theory of stochastic control to gas storage, but not to power

storage will be because the electricity prices typically regarded as exhibiting jumps

unlike gas prices, and the theory of stochastic control with jumps still immature,

inhibiting its use in economics. The electricity prices have more complex features

than gas prices, mainly because electricity cannot be stored directly.

In this study we assume that the UK power prices are driven by so called “merit

order curve” (MOC) or “stack”. The MOC ranks different power plants in ascending

order based on their bids to deliver a specific quantity. In a competitive market, the

price to be paid to all generators for their generated power is the marginal cost of

the most expensive plant selected to meet the total demand needed in the system.

More details about the merit order curve and electricity prices in the UK will be

given in the next Chapter 5. The jumps in electricity prices can be occurred when

demand crosses one of the discontinuities in the merit order curve. The implication
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is that demand can be modelled as a continuous processes and the price process is

given by a staircase function of demand process. Therefore, based on these obser-

vations, the analysis undertaking centres modelling demand as one-dimensional Itô

process, a random process driven by Brownian motion passing through a merit order

curve. This approach is also taken in Moriarty [94]. Itô’s Lemma, core theory of

optimal control of Itô processes, requires pay-off functions to be C2, however recent

mathematical research by Johnson and Zervos [76] and Lamberton and Zervos [84],

has worked around this restriction. The approach we take is based on the results

reviewed in Chapter 3.

In this chapter, we will investigate three cases of optimal strategies, section

4.2 describe the case of being endowed with a storage facility and need to know the

optimal time to empty it (exit problem), section 4.3 describe the case when you have

an empty facility need to be filled before you can empty it and make a profit (entry

then exit problem). Finally, section 4.4, describe the case when sequential switching

between full and empty could be optimal (sequential entry and exit problem).

4.1 The model formulation

Our analysis will be based on answering the question “how one would operate a

storage technology participating in a market where the demand that need to be

met by conventional plants is stochastic”. The main driver in this market is the

electricity demand that will be given by a stochastic process Xt. More precisely

our stochastic process Xt will denote the net demand needed in the system, this is

the total demand minus wind supply. Let I =]α, β[ denote an open interval with

left endpoint α ≥ −∞ and right endpoint β ≤ ∞. We assume that the stochastic

process Xt is driven by one-dimensional Itô diffusion.

dXt = b(Xt)dt+ σ(Xt)dWt , X0 = x ∈ I, (4.1)

where W is a standard Brownian motion hosted by a probability space (Ω,F ,Ft,P)

satisfying the usual conditions, and the functions b and σ satisfies Assumptions
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3.1.1, 3.1.2.

Formally, we consider a stochastic system that can be operated in two modes,

“full”, or “empty”. The cost of filling/emptying the facility is linear in price, re-

sulting a “bang-bang” control. We consider the control process given by a càdlàg

finite variation process Z ∈ {0, 1}, where Z = 0 represent the facility being empty

and Z = 1 represent the facility being full. The bang bang control assumption is for

convenience and can be relaxed. However more complex analysis will be involved, if

the cost of filling/emptying are related to the level of charge and Z will have values

in [0, 1]. This can be considered in further research applied to a specific storage

technology.

Definition 4.1.1. Given an initial condition (z, x) ∈ {0, 1} × I, an admissible

strategy, is any collection Zz,x = (Sx, Z, Tn), such that

1. The control process Z is an Ft-adapted, finite variation, càglàd process with

value in {0, 1} and such that Z0 = z and,

2. The sequence is strictly increasing of Ft-stopping times at which the jumps of

Z occur, which can be defined recursively by

T1 = inf{t > 0|Zt 6= z} and Tj+1 = inf{t > Tj|Zt 6= ZTj}, for j = 1, 2, . . .

(4.2)

with the usual convention that inf ∅ =∞.

We denote by Az,x the set of all admissible strategies.

In particular, if Zt = 1 (resp Zt = 0), then the system is in its charged (resp.

discharged) operating mode at time t. The jumps of Z occur at the sequence of times

Tn when the operator switches the system between its two operating modes. There-

fore, if the system is initially in operating mode z ∈ {0, 1}, the operator’s objective

is the select a strategy Sx,z that maximize the following performance criterion

J(Zx,z) = lim
n→∞

Ex

[
n∑
j=1

e−rTj
(
E(XTj)1{∆ZTj=−1} − F (XTj)1{∆ZTj=1}

)
1{Tj<∞}

]
,

(4.3)
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with E represent the income from emptying the facility, and F is the cost of filling the

facility. Accordingly, the value function v that maximize this performance criterion

is given as follow

v(x, z) = sup
Zx,z∈Ax,z

J (Sx,z) , for x ∈ I and z ∈ {0, 1}.

For the problem to be well-posed it is required that we have the following assumption

Assumption 4.1.2. The two functions F,E : I → R satisfy Assumption 3.1.7, and

E(x)− F (x) < 0, for all x ∈ I. (4.4)

The economical interpretation for the condition 4.4 is to exclude the possibility

of making arbitrary high profits by instantaneously filling and emptying the facility.

Therefore, we expect that the value function v is identifies with ω solution to

the Hamilton-Jacobi-Bellman (HJB) equation that takes the form of the following

variational inequality

max

{
1

2
σ2(x)wxx(x, z) + b(x)wx(x, z)− r(x)w(x, z),

w(x, 1− z)− w(x, z) + zE(x)− (1− z)F (x)} = 0.

(4.5)

4.2 Emptying a one-use time facility

Let us first consider the case where we are endowed with a charged storage facility

and we have one opportunity to discharge it. In this case an optimal strategy will

involve waiting until the price go up when it is optimal to empty the facility at

a payoff E (x). If there is no chance to re-use the facility, then we looking for a

solution w to the HJB Eq 4.5 that satisfies the following,

1

2
σ2 (x)w

′′
(x) + b (x)w

′
(x)− r (x)w (x) = 0, for x < b,

E (x)− w (x) = 0 for x ≥ b,
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with a solution given by

w (x) =


Bψ (x) , if x < b,

E (x) , if x ≥ b,

(4.6)

where φ and ( resp. ψ) are strictly decreasing (resp. increasing) positive functions

defined in Section 3.1.3. Now defining B and b will complete the solution. For that

the so called “smooth-fit” condition is applied, which requires the value function to

be C1 at the free boundary point b. This yield to the following system of equations

Bψ (b) = E (b) and Bψ
′
(b) = E

′
(b)

solving both equations for B gives,

B =
E (b)

ψ (b)
=
E
′
(b)

ψ′ (b)
.

If we define a function Q as

Q (x) = E (x)ψ
′
(x)− E ′ (x)ψ (x) ,

then finding B and b is equivalent to solving the following equation

Q (b) = 0. (4.7)

We first note that Q (b) = 0 correspond to a turning point of the function E/ψ,

since ψ (x) > 0 for all x ∈ I. The payoff E is increasing and b is the boundary

between the continuation region and the stopping region. If we start from the

continuation region, the value function can be given as follows

v(x) = sup
b

Ex
[
e−ΛτbE(b)

]
(4.8)

= sup
b

Ex
[
e−Λτb

]
E(b). (4.9)

46



Chapter 4: Approach to assess the economics of power storage

Since E is increasing and a consequence of 3.8 we have

ψ(x1)

ψ(x2)
= Ex1

[
e−Λτx2

]
, (4.10)

and so

v (x) = sup
b

(
E (b)

ψ (b)

)
ψ (x) . (4.11)

Therefore, the location of the maximum point of E/ψ gives the stopping boundary

and the value of the E/ψ at the maximum provides the coefficient B of ψ where

waiting is optimal. This case is implemented in Chapter 6, Figure 6.2.

4.3 Filling and emptying a one-use time facility

Now let us consider the case where we start with an empty storage facility, this

storage facility needs to be filled. In this case an optimal strategy will involve

waiting until the price falls when it is optimal to fill the facility at a cost F (x),

which will deliver the value Bψ (x). Then we can associate the value function v

with w defined by

w (x) =


Bψ (x)− F (x) , if x < a

Aφ (x) , if x ≥ a where a < b,

(4.12)

where B and b are defined in section 4.2, and a is such that

Bψ (a)− F (a)

φ (a)
=
Bψ

′
(a)− F ′ (a)

φ′ (a)
, (4.13)

and A > 0 given by

A =

E (b)

ψ (b)
ψ (a)− F (a)

φ (a)
. (4.14)
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4.4 The sequential filling/emptying time facility

Now consider the case when a decision maker can reverse their decisions sequen-

tially, by assuming that switching between the ”discharge” and ”charge” regimes,

depending on the state process is the optimal strategy.

In this case, we would expect that if we start with a full facility we would wait

until it is optimal to empty it, at which point we receive the payoff E(x) (if there

no chance to re-use the facility). This suggests the value function is

w(x, 1) =


Bψ(x), if x ∈ ]α, b]

E(x) + Aφ(x), if x ∈ ]b, β[ .

If we start with empty facility we will wait until it is optimal to fill the facility, at

a cost of F (x), that will deliver a value Bψ and we have

w(x, 0) =


Bψ(x)− F (x), if x ∈ ]α, a]

Aφ(x), if x ∈ ]a, β[ ,

with A, B constants, and free boundaries a, b, note that we require filling takes place

before emptying so that α < a < b < β and we have a non-zero value of the empty

facility for x ≥ b, then w the solution to the HJB equation admit the following form

w(x, 0) =


Bψ(x)− F (x), if x ∈ ]α, a]

Aφ(x) if x ∈ ]a, β[ ,

(4.15)

w(x, 1) =


Bψ(x), if x ∈ ]α, b] ,

E(x) + Aφ(x) if x ∈ ]b, β[ .

(4.16)

A sketch of the solutions 4.15 and 4.16 to HJB is shown in Fig 4.1. Therefore

we looking for a solution that satisfies the following: as long as the power demand
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Figure 4.1: A sketch of the value of filling w(x, 0), and the value of emptying w(x, 1).
The solid lines represent where filling/emptying take place and the dashed lines
represent where waiting to fill/empty is taking a place, the boundaries a and b are
the solution to the switching problem.

satisfies x ≤ a, w(x, 0) = Bψ(x)− F (x), w(x, 1) = Bψ(x), and we have

1

2
σ2(x)wxx(x, 1) + b(x)wx(x, 1)− r(x)w(x, 1) = 0, (4.17)

1

2
σ2(x)wxx(x, 0) + b(x)wx(x, 0)− r(x)w(x, 0) = −LF (x), (4.18)

w(x, 1)− F (x)− w(x, 0) = 0 (4.19)

w(x, 0) + E(x)− w(x, 1) = E (x)− F (x) . (4.20)

If the power demand satisfies a < x < b, w(x, 0) = Aφ(x), w(x, 1) = Bψ(x), and we
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have

1

2
σ2(x)wxx(x, 1) + b(x)wx(x, 1)− r(x)w(x, 1) = 0, (4.21)

1

2
σ2(x)wxx(x, 0) + b(x)wx(x, 0)− r(x)w(x, 0) = 0, (4.22)

w(x, 1)− F (x)− w(x, 0) = Bψ(x)− F (x)− Aφ(x), (4.23)

w(x, 0) + E (x)− w(x, 1) = Aφ(x) + E(x)−Bψ(x). (4.24)

If demand satisfies x ≥ b, and w(x, 0) = Aφ(x), w(x, 1) = E(x) + Aφ(x), we have

1

2
σ2(x)wxx(x, 1) + b(x)wx(x, 1)− r(x)w(x, 1) = LE(x), (4.25)

1

2
σ2(x)wxx(x, 0) + b(x)wx(x, 0)− r(x)w(x, 0) = 0, (4.26)

w(x, 1)− F (x)− w(x, 0) = E (x)− F (x) (4.27)

w(x, 0) + E(x)− w(x, 1) = 0. (4.28)

4.4.1 Finding boundaries for a single diffusion

To specify the parameters A, B, a and b let us first assume we can make use of the

smooth fit condition of optimal stopping that required the value function to be C1

in particular on the free boundaries a and b, therefore at the free boundary a we

have the following,


Bψ(a)− F (a) = Aφ(a)

Bψ
′
(a)− F ′(a) = Aφ

′
(a).

Solving the system for A and B we have,

Bψ (a)− F (a)

φ (a)
φ
′
(a)−

(
Bψ

′
(a)− F ′ (a)

)
= 0

(Bψ (a)− F (a))φ
′
(a)−

(
Bψ

′
(a)− F ′ (a)

)
φ (a) = 0

B
(
ψ (a)φ

′
(a)− ψ′ (a)φ (a)

)
+ F

′
(a)φ (a)− F (a)φ

′
(a) = 0

F
′
(a)φ (a)− F (a)φ

′
(a) = BW (a) ,

50



Chapter 4: Approach to assess the economics of power storage

using the equations 3.19-3.22 we have

∫ β

a

Φ (x)LF (ds) = B,

with

Φ(x) =
φ(x)

σ2(x)W(x)

where W is as defined in 3.9. We also have

Aφ (a) + F (a)

ψ (a)
ψ
′
(a)−

(
Aφ

′
(a) + F

′
(a)
)

= 0

(Aφ (a) + F (a))ψ
′
(a)−

(
Aφ

′
(a) + F

′
(a)
)
ψ (a) = 0

A
(
φ (a)ψ

′
(a)− φ′ (a)ψ (a)

)
+
(
F (a)ψ

′
(a)− F ′ (a)ψ (a)

)
= 0

AW (a) = F
′
(a)ψ (a)− F (a)ψ

′
(a) ,

using the equations 3.19-3.22 we have

∫ a

α

Ψ (x)LF (ds) = A,

with

Ψ(x) =
ψ(x)

σ2(x)W(x)
.

While at the free boundary x = b we have


Bψ(b) = E(b) + Aφ(b),

Bψ
′
(b) = E

′
(b) + Aφ

′
(b),
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solving again for A and B we have

Bψ (b)− E (b)

φ (b)
φ
′
(b) + E

′
(b)−Bψ′ (b) = 0

(Bψ (b)− E (b))φ
′
(b)−

(
Bψ

′
(b)− E ′ (b)

)
φ (b) = 0

B
(
ψ (b)φ

′
(b)− ψ′ (b)φ (b)

)
+ E

′
(b)φ (b)− E (b)φ

′
(b) = 0

E
′
(b)φ (b)− E (b)φ

′
(b) = BW (b)∫ β

b

Φ (s)LE (ds) = B,

and

Aφ (b) + E (b)

ψ (b)
ψ
′
(b)− E ′ (b)− Aφ′ (b) = 0

A
(
φ (b)ψ

′
(b)− φ′ (b)ψ (b)

)
+ E (b)ψ

′
(b)− E ′ (b)ψ (b) = 0∫ b

α

Ψ (s)LE (ds) = A.

Therefore we have

B =

∫ β

a

Φ(s)LF (ds) =

∫ β

b

Φ(s)LE(ds), which need to be ≥ 0, (4.29)

and simultaneously

A =

∫ a

α

Ψ(s)LF (ds) =

∫ b

α

Ψ(s)LE(ds), which need to be ≥ 0. (4.30)
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In particular if we assume E and F are smooth we have

E
′
(x)φ (x)− E (x)φ

′
(x) = −W (x)

∫ β

x

Φ (s)LE (s) ds

=
d

dx

(
E (x)

φ (x)

)
φ2 (x) ,

(4.31)

E
′
(x)ψ (x)− E (x)ψ

′
(x) =W (x)

∫ x

α

Ψ (s)LE (s) ds

=
d

dx

(
E (x)

ψ (x)

)
ψ2 (x) ,

(4.32)

F
′
(x)φ (x)− F (x)φ

′
(x) = −W (x)

∫ β

x

Φ (s)LF (s) ds

=
d

dx

(
F (x)

φ (x)

)
φ2 (x) ,

(4.33)

F
′
(x)ψ (x)− F (x)ψ

′
(x) =W (x)

∫ x

α

Ψ (s)LF (s) ds

=
d

dx

(
F (x)

ψ (x)

)
ψ2 (x) .

(4.34)

Here we note that 4.31-4.32, are related to the slope of the functions E/φ and E/ψ.

While 4.33-4.34, are related to the slope of the functions F/φ and F/ψ.
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Therefore the algorithm to find the free boundaries a and b could be identified

as follows.

Algorithm 1

1. Identify the interval of points I(i.e. demand is 0-60 GW ).

2. For a set of points A ⊂ I

(a) identify the function lA such that a < lA(a) and,

ψ2 (a)

W (a)

[
d

dx

(
F (x)

ψ (x)

)∣∣∣∣
x=a

]
=
ψ2
(
lA(a)

)
W (lA(a))

[
d

dx

(
E (x)

ψ (x)

)∣∣∣∣
x=lA(a)

]
.

(b) identify the function lB such that a < lB(a) and,

φ2 (a)

W (a)

[
d

dx

(
F (x)

φ (x)

)∣∣∣∣
x=a

]
= −

φ2
(
lB(a)

)
W (lB(a))

[
d

dx

(
E (x)

φ (x)

)∣∣∣∣
x=lB(a)

]
.

3. Find the crossing point of lA, lB, which gives the points (a, b).

4. Check that (a, b), A,B satisfy 4.18-4.25.

and we have

A =
F (a)ψ (b)− E (b)ψ (a)

ψ (a)φ (b)− ψ (b)φ (a)
, B =

F (a)φ (b)− E (b)φ (a)

ψ (a)φ (b)− ψ (b)φ (a)
.

However, the case we have in hand and many of the real economic problems, the

functions E, and F are not necessarily C1, and that the “principle of smooth fit”

will not be applied. In this case we can argue as in Johnson and Zervos [76], that
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we have the following

Aφ (a) = Bψ (a)− F (a) (4.35)

Aφ
′
(a) ≤ Bψ

′
(a)− F ′− (a) (4.36)

Aφ
′
(a) ≥ Bψ

′
(a)− F ′+ (a) , (4.37)

should hold at the free boundary a, and the inequalities

Bψ (b) = Aφ (b) + E (b) (4.38)

Bψ
′
(b) ≤ Aφ

′
(b) + E

′

− (b) (4.39)

Bψ
′
(b) ≥ Aφ

′
(b) + E

′

+ (b) , (4.40)

should hold at the free boundary b. Rearranging the equations 4.59-4.61 and in view

of identities 3.19-3.22 we have the following system of inequalities

d+

dx

(
F (x)

φ (x)

)∣∣∣∣
x=a

φ2 (a)

W (a)
≥ B ≥ d−

dx

(
F (x)

φ (x)

)∣∣∣∣
x=a

φ2 (a)

W (a)
(4.41)

d+

dx

(
F (x)

ψ (x)

)∣∣∣∣
x=a

ψ2 (a)

W (a)
≥ A ≥ d−

dx

(
F (x)

ψ (x)

)∣∣∣∣
x=a

ψ2 (a)

W (a)
. (4.42)

while 4.62-4.64 gives the system of inequalities

d+

dx

(
E (x)

φ (x)

)∣∣∣∣
x=b

φ2 (b)

W (b)
≤ B ≤ d−

dx

(
E (x)

φ (x)

)∣∣∣∣
x=b

φ2 (b)

W (b)
(4.43)

d+

dx

(
E (x)

ψ (x)

)∣∣∣∣
x=b

ψ2 (b)

W (b)
≤ A ≤ d−

dx

(
E (x)

ψ (x)

)∣∣∣∣
x=b

ψ2 (b)

W (b)
. (4.44)

These imply that the free boundary points a < b should satisfy the system of

inequalities

Qc
φ (a, b) ≤ 0 ≤ Qo

φ (a, b) (4.45)

Qc
ψ (a, b) ≤ 0 ≤ Qo

ψ (a, b) , (4.46)
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with

Qo
φ (u, v) =

[
d−
dx

(
E (x)

φ (x)

)∣∣∣∣
x=v

φ2 (v)

W (v)

]
−
[
d−
dx

(
F (x)

φ (x)

)∣∣∣∣
x=u

φ2 (u)

W (u)

]
(4.47)

Qc
φ (u, v) =

[
d+

dx

(
E (x)

φ (x)

)∣∣∣∣
x=v

φ2 (v)

W (v)

]
−
[
d+

dx

(
F (x)

φ (x)

)∣∣∣∣
x=u

φ2 (u)

W (u)

]
(4.48)

Qo
ψ (u, v) =

[
d−
dx

(
E (x)

ψ (x)

)∣∣∣∣
x=v

ψ2 (v)

W (v)

]
−
[
d−
dx

(
F (x)

ψ (x)

)∣∣∣∣
x=u

ψ2 (u)

W (u)

]
(4.49)

Qc
ψ (u, v) =

[
d+

dx

(
E (x)

ψ (x)

)∣∣∣∣
x=v

ψ2 (v)

W (v)

]
−
[
d+

dx

(
F (x)

ψ (x)

)∣∣∣∣
x=u

ψ2 (u)

W (u)

]
. (4.50)
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Therefore, once we identify the cost F of filling the storage facility, and the in-

come E of emptying the facility, an algorithm to solve the optimal stopping problem

could be given in the case where E and F are not necessarily C1.

Algorithm 2

1. Identify the set A, of possible values for the “fill points”, u based on where:

a. Ensure that 3.29, holds for all u ∈ A, that is

sgn

(
d2

dx2

(
F (x)

φ (x)

)∣∣∣∣
x=u

)
= sgn

(
d2

dx2

(
F (x)

ψ (x)

)∣∣∣∣
x=u

)
≥ 0. (4.51)

b. A will be positive, that is

ψ2 (u)

W (u)

[
d−
dx

(
F (x)

ψ (x)

)∣∣∣∣
x=u

]
> 0. (4.52)

c. B will be positive, that is ,

φ2 (u)

W (u)

[
d−
dx

(
F (x)

φ (x)

)∣∣∣∣
x=u

]
> 0. (4.53)

2. Identify the set, B, of possible values for the ’empty points’, v, based on

where

a. Ensure that 3.29, holds for all v ∈ A, that is

sgn

(
d2

dx2

(
E (x)

φ (x)

)∣∣∣∣
x=v

)
= sgn

(
d2

dx2

(
E (x)

ψ (x)

)∣∣∣∣
x=v

)
≤ 0. (4.54)

b. A will be positive, that is

ψ2 (v)

W (v)

[
d+

dx

(
E (x)

ψ (x)

)∣∣∣∣
x=v

]
> 0. (4.55)

c. B will be positive, that is,

φ2 (v)

W (v)

[
d+

dx

(
E (x)

φ (x)

)∣∣∣∣
x=v

]
> 0. (4.56)
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3. (a) Identify the function lA : A → B such that u < lA (u) and

Qc
ψ

(
u, lA (x)

)
≤ 0 ≤ Qo

ψ

(
u, lA (x)

)
. (4.57)

(b) Identify the function lB : A → B such that u < lB (u) and

Qc
φ

(
u, lB (x)

)
≤ 0 ≤ Qo

φ

(
u, lB (x)

)
. (4.58)

4. If there is a u such that lA (u) = lB (u), then we have a candidate pair

(a, b) with a = u and b = lA (u) = lB (u).

5. Repeat steps [3]-[4] to see if there are different pairs (a, b). Use 4.47-4.50

to identify A and B for each candidate pair (a, b). Choose the one that

maximizes the candidate function w. When E and F are not smooth

at a or b, the equations 4.47-4.50 will involve inequalities, in this case a

continuous fit on the boundaries that are not smooth should be applied.

6. Should check that there are not intervals in the “stopping region” that do

not satisfy 3.29 or intervals in the ”continuation region” that do not satisfy

3.30. If it happen to have conditions that contradict Definition 3.1.8, then

repeat steps [1]-[5] restricting only on the intervals where condition in

Definition 3.1.8 are defined (see Example 4.5).

4.4.2 Finding boundaries for two diffusions

Here, we consider a storage facility that works by buying energy and store it when

demand is low and prices are cheap, i.e. during night hours. Then selling power back

to the grid when demand is high and prices are expensive i.e. during day hours.

Here we consider two diffusions for each regime, we empty during day diffusion,

then store during night diffusion. In this case we expect the solution w to take the

following form
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w (x, 0) =


Bψd (x)− F (x) , if ]α, a] ,

Aφn (x) , if ]a, β[

w (x, 1) =


Bψd (x) , if ]α, b] ,

E (x) + Aφn (x) , if ]b, β[ ,

where ψd is related to the first hitting time of the day diffusion , and φn is related

to the first hitting time of the night diffusion. As in the single diffusion case, we

expect the inequalities

Aφn (a) = Bψd (a)− F (a) (4.59)

Aφ
′

n (a) ≤ Bψ
′

d (a)− F ′− (a) (4.60)

Aφ
′

n (a) ≥ Bψ
′

d (a)− F ′+ (a) , (4.61)

should hold at the free boundary a, and the inequalities

Bψd (b) = Aφn (b) + E (b) (4.62)

Bψ
′

d (b) ≤ Aφ
′

n (b) + E
′

− (b) (4.63)

Bψ
′

d (b) ≥ Aφ
′

n (b) + E
′

+ (b) , (4.64)

should hold at the free boundary b. And the boundaries for the two diffusions should

satisfy

Qc
φn (a, b) ≤ 0 ≤ Qo

φn (a, b) (4.65)

Qc
ψd

(a, b) ≤ 0 ≤ Qo
ψd

(a, b) , (4.66)
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with

Qo
φn (u, v) =

[
d−
dx

(
E (x)

φn (x)

)∣∣∣∣
x=v

φ2
n (v)

Wm (v)

]
−
[
d−
dx

(
F (x)

φn (x)

)∣∣∣∣
x=u

φ2
n (u)

Wm (u)

]
(4.67)

Qc
φn (u, v) =

[
d+

dx

(
E (x)

φn (x)

)∣∣∣∣
x=v

φ2
n (v)

Wm (v)

]
−
[
d+

dx

(
F (x)

φn (x)

)∣∣∣∣
x=u

φ2
n (u)

Wm (u)

]
(4.68)

Qo
ψd

(u, v) =

[
d−
dx

(
E (x)

ψd (x)

)∣∣∣∣
x=v

ψ2
d (v)

Wm (v)

]
−
[
d−
dx

(
F (x)

ψd (x)

)∣∣∣∣
x=u

ψ2
d (u)

Wm (u)

]
(4.69)

Qc
ψd

(u, v) =

[
d+

dx

(
E (x)

ψd (x)

)∣∣∣∣
x=v

ψ2
d (v)

Wm (v)

]
−
[
d+

dx

(
F (x)

ψd (x)

)∣∣∣∣
x=u

ψ2
d (u)

Wm (u)

]
, (4.70)

and

Wm = ψ
′

d (x)φn (x)− φd (x)φ
′
(x) .

Therefore, the algorithm to solve Equation 4.65-4.66 and find the free boundaries

a and b in the case of the two diffusions case will take the same steps [1]-[6] as the

single diffusion case.

4.5 Example

Consider X, a geometric Brownian motion, given by the dynamics,

dXt = bXtdt+ σXtdWt (4.71)

where, b, σ and r are constant, and the functions φ, ψ given by

φ (x) = xm, ψ (x) = xn,

where m < 0 < n are given by

(
1

2
− b

σ2

)
±

√(
1

2
− b

σ2

)2

+
2r

σ2
. (4.72)

60



Chapter 4: Approach to assess the economics of power storage

In this example, consider b = 0, σ = 0.2, r = 0.01, so we have

φ (x) = x1/2−
√

3/4 and ψ (x) = x1/2+
√

3/4.

In case we have a payoff function given by

g (x) = max (5− x, 1)

and the operator Lg is given by

Lg (x) =


0.01(x− 5) , x ∈ ]α, 4[ ,

0.32 , x = 4.0,

−0.01 , x ∈ ]4, β[ .

If we have an interval such that

Es := ]xl, xr[ ⊂ J , such that Lg (Es) > 0, (4.73)

then there exist a unique pair a ∈ ]α, xl] and b ∈ [xr, β[ solve the optimal stopping

problem , where the continuation region C = ]a, b[, and the stopping region is defined

by D = ]α, xl]∪ [xr, β[. In this example we cannot define such an interval. However,

as in Johnson [[74], Remark 3.2] the condition Lg (Es) > 0 can be relaxed to

∫
Es

Ψ (s)Lg (s) > 0,

∫
Es

Φ (s)Lg (s) > 0. (4.74)

If we define u? = xl = 3.95, from the inequality

Qc
ψ (u?, v?) ≤ 0 ≤ Qo

ψ (u?, v?)
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we can deduce that v? = 166.97, while if we define v? = xr = 4.05, from the

inequality,

Qc
ψ (u?, v?) ≤ 0 ≤ Qo

ψ (u?, v?) ,

we can deduce that u? = 0.06. We still need to check that

Qc
φ (u?, v?) = −23.54 < 0, Qo

φ (u?, v?) = 0.157 > 0.

Therefore from Lemma A.2 in Johnson [74], there exist a unique (a, b), that can be

approximated by a = 1.34, b = 88.6 and solves the optimal stopping problem, the

value function v is given by

v (x) =


5− x , if x ∈ D1 = ]α, 1.34[ ,

4.0732 x1/2−
√

3/4 + 4.6× 10−4x1/2+
√

3/4 , if x ∈ C = ]1.34, 88.6[ ,

1 , if x ∈ D2 = [88.6, β[ .

(4.75)

4.6 Notes

1. We note that the problem of filling at night and emptying during the day

of storage technology can be considered as a time delay problem. Stochastic

systems with time delay have been studied by several authors, for example

Kuchler and Platen [82] gives an effective Monte Carlo simulation scheme that

converges in a weak sense. While Buckwar [24] studied a numerical solutions

of Itô type differential equations and their convergence where the system con-

sidered has time delay both in diffusion and drift term, where the stochastic

delay differential equations of Itô form is given by

62



Chapter 4: Approach to assess the economics of power storage

dX (t) = b (X (t) , X (t− τ)) dt+ σ (X (t) , X (t− τ)) dW (t), t ∈ [0, T ] ,

(4.76)

and X (t) = Ψ (t), t ∈ [−τ, 0], with τ > 0 and Ψ (t) is prescribed initial

function.

The study of time delay systems is outside the scope of this thesis, however

an extension of the method presented here to consider the driver process 4.76

instead of 4.1, it would be a good consideration for future research.

2. The approach we take here to solve the optimal stopping problem is similar

to the approach taking in Johnson and Zervos [76], this can be observed by

looking at Equations 4.45-4.46, and Equations (129)-(134) in [76]. However, in

our analysis we focus on the ratios E/φ, F/ψ, E/ψ and F/φ rather than the

measures LE and LF as in the existing literature. This approach was taken

by Beibel and Lerche [14] and [15], in this papers they consider the problem

of finding a stopping time τ ? that maximize

v (x) = sup
τ∈T

Ex
[
e−rτg (Xτ ) 1{τ<∞}

]
, (4.77)

where X is Markov process in continuous time. To solve this problem they

make use of the martingale property instead of solving a free boundary prob-

lem. A crucial point in this paper was finding a positive function h such that

M = (e−rth (Xt))t≥0 is a martingale and the function g/h attains its maxi-

mum at x (sufficient conditions for property for continuous local martingales

have been given by Protter [103]). Then x is on the optimal stopping set i.e.

v (x) = g (x). The question however is whether each point in the optimal stop-

ping set is a maximum point of g/h for an appropriate function h. An efficient

way to check that is by ensuring that condition 3.29 in Definition 3.1.8 hold,

this was omitted in the papers [14] , [15], however we make a trivial observa-

tion that the sign of LE and LF , which is important part of 3.29 is given by
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the derivative of the ratio.
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Chapter 5

Understanding UK’s power prices

In this thesis, we consider a reduced form model with structural features, for elec-

tricity prices in the UK power market, where the main driver in this market is

considered to be the electricity net demand that is the total power demand minus

wind supply. The stochastic assumption for net demand is based on the result by

Eager et al.[47] which shows that a high level of wind energy on the system will

cause randomness on the need of conventional plants to meet the total demand in

the system.

This chapter consist of two main parts. Section 5.1 devoted to the analysis of

the UK electricity demand data and section 5.2 contain a construction of the stack

model used in this study.

5.1 Analysing UK’s electricity demand

This section is devoted to study the UK’s electricity demand data, we propose an

Ornstein-Uhlenbeck process (OU) and Feller process, to model the data and we make

use of maximum likelihood method to estimate the parameters. We also derive the

two functions φ and ψ we discussed in the previous chapter that are related to the

fist hitting times of OU and Feller processes, those two functions play an important

role in the methodology we are proposing to study the impact of power storage

technologies.

In the previous chapter, we presented an approach to assess the economic im-
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pact of power storage technologies. The approach is based on solving an optimal

stopping problem where the reward function is not necessarily smooth. The frame-

work, accommodates diffusions with Markovian and time homogeneity property this

including: the geometric Brownian motion

dXt = bXtdt+ σXtdWt, I = ]0,∞[ , X0 = x ∈ I, (5.1)

the Ornstein-Uhlenbeck (Vasicek) process,

dXt = κ (θ −Xt) dt+ σdWt, I = ]−∞,∞[ , X0 = x ∈ I. (5.2)

and the so-called Feller, square-root mean-reverting, or Cox-Ingersoll-Ross process.

dXt = κ (θ −Xt) dt+ σ
√
XtdWt, I = ]0,∞[ , X0 = x ∈ I. (5.3)

Where r in Eq 3.5 is constant, the expressions for the general solutions 3.7 to the

ODE 3.6, associated with all of these diffusions are all well known. In situations

where φ and ψ are not known, it is possible to approximate them through simulation,

by employing 3.8.

The state variable Xt is assumed to model power demand in this study, or more

precisely net demand, that is the total demand minus the production from wind.

In other words, Xt is the electricity demand that needs to be met by conventional

plants. The obvious choice one may think about is to consider the dynamics of Xt

to be given by a Geometric Brownian motion, however part of the analysis is to

study the sequential entry and exit for the storage facility, and it has been shown

in Alazemi, Johnson and Zervos [90] that it is never optimal to sequentially enter

and exit the market in the case where Xt is a Geometric Brownian motion. On the

other hand the paper showed that in the case of mean reverting process, it may

be optimal to sequentially enter and exit the market depend on the problem data.

Therefore, the choice we have between OU process 5.2 and Feller process 5.3. A high

level of wind energy in the system may also lead to negative values for net demand.
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This lead us to choose Ornstein-Uhlenbeck process 5.2 to model our demand data,

since this model revert to the mean level θ with mean reversion speed κ, and could

have a negative value. The Feller process 5.3 with the square root in the standard

deviation has 0 as a reflecting boundary.

5.1.1 φ and ψ for Ornstein-Uhlenbeck process

In chapter 4, we have seen that the solution to the discretionary problem based on

knowing the general solution to the following classical ODE

1

2
σ2 (x) f

′′
(x) + b (x) f

′
(x)− r (x) f (x) = 0, (5.4)

which is giving by

f (x) = Aψ (x) +Bφ (x) .

Thus knowing φ(x) and ψ(x) is crucial. These functions are related to the first

hitting time of the process Xt denoted τy and given by

τy = inf{t : Xt = y},

such that for r > 0 we have

Ex
[
e−rτy

]
=


ψ(x)
ψ(y)

, x ≤ y,

φ(x)
φ(y)

, x ≥ y,

this represent the Laplace transform of the density function of the first hitting time

of the diffusion Xt, these claims can be found in many references such as Feller [53],

Itô and McKean [73], Rogers and Williams [105].

We aim to derive expression for φ and ψ for an Ornstein-Uhlenbeck process.

An Ornstein-Uhlenbeck process Ut can be defined as a solution to the stochastic
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differential equation given by

dUt = −κUtdt+ σdWt, U0 = u. (5.5)

with σ > 0, and κ > 0. In this study we assume Xt is the power demand net of

renewable supply, and κ the rate by which reverts towards the mean θ, in this case

we have

dXt = κ (θ −Xt) dt+ σdWt, X0 = x. (5.6)

Let Ut = Xt − θ, we get

dUt = dXt = −κUtdt+ σdWt. (5.7)

Therefore, the functions φ and ψ for the eq in 5.5 are the same for eq in 5.6 with

change of variable u = x− θ. The Laplace transform of the density function of the

first hitting time for OU in 5.5, is presented by (Alili et al. [7]),

Eu
(
e−rτy

)
=


eκu

2/2σ2D−r/κ

(
−u
√
2κ
σ

)
eκy

2/2σ2D−r/κ

(
−y
√
2κ
σ

) , u ≤ y,

eκu
2/2σ2D−r/κ

(
u
√
2κ
σ

)
eκy

2/2σ2D−r/κ

(
y
√
2κ
σ

) , u ≥ y.

Also ψ and φ appear in the Green’s function of the process Ut as follow

G (u, y) =


ψ (u)φ (y)

W (u)
, u ≤ y,

φ (u)ψ (y)

W (u)
, u ≥ y.

The Green’s functions for an Ornstein-Uhlenbeck process indexed by a strictly posi-

tive parameter κ with the generator Lf = 1
2
σ2f

′′
(u)−κuf ′ (u) is giving by (Borodin
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and Salminen [19])

G (u, y) =
1

W (u)
exp

(
κu2

2σ2

)
D−r/κ

(
u

√
2κ

σ

)

× exp

(
κy2

2σ2

)
D−r/κ

(
−y
√

2κ

σ

)
, u ≥ y,

and

ψ (u) = exp

(
κu2

2σ2

)
D−r/κ

(
u

√
2κ

σ

)

φ (u) = exp

(
κu2

2σ2

)
D−r/κ

(
−u
√

2κ

σ

)
,

are continuous solutions to generalized differential equation

Lf = rf,

where Dν is the parabolic cylinder function with index ν (see Weber [113]). Note

that in the case where the function f is not necessarily C2, the generator is given

by Lf = 1
2
f
′′

(u) − κuf ′− (u). Therefore, the functions φ and ψ related to the first

hitting times of the OU process in 5.6 are given by the following representation

φ(x) = exp

(
κ(x− θ)2

2σ2

)
D−r/κ

(√
2κ
x− θ
σ

)
(5.8)

ψ(x) = exp

(
κ(x− θ)2

2σ2

)
D−r/κ

(
−
√

2κ
x− θ
σ

)
. (5.9)

Let,

z =
√
κ
x− θ
σ

and x =
σ√
κ
z + θ, (5.10)

so we have,

φ(x) = exp

(
z2

2

)
D−r/κ

(√
2z
)

and ψ(x) = exp

(
z2

2

)
D−r/κ

(
−
√

2z
)
,
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and

φ
′
(x) =

√
κ exp

(
z2

2

)
σ

[
zD−r/κ(

√
2z) +

√
2D

′

−r/κ(
√

2z)
]

ψ
′
(x) =

√
κ exp

(
z2

2

)
σ

[
zD−r/κ(−

√
2z)−

√
2D

′

−r/κ(−
√

2z)
]
,

also

φ
′′
(x) =

κ

σ2
exp

(
z2

2

)[
(1 + z2)D−r/κ

(√
2z
)

+ 2
√

2zD
′

−r/κ

(√
2z
)

+ 2D
′′

−r/κ

(√
2z
)]

ψ
′′

(x) =
κ

σ2
exp

(
z2

2

)[(
1 + z2

)
D−r/κ

(
−
√

2z
)
− 2
√

2zD
′

−r/κ

(
−
√

2z
)

+ 2D
′′

−r/κ

(
−
√

2z
)]
.

We would like to show that

Lφ(x) =
1

2
σ2(x)φ

′′
(x) + b(x)φ

′
(x)− r(x)φ(x) = 0, (5.11)

and

Lψ(x) =
1

2
σ2(x)ψ

′′
(x) + b(x)ψ

′
(x)− r(x)ψ(x) = 0, (5.12)

with

σ2 (x) = σ2, b (x) = κ (θ − x) = −σ
√
κz, r (x) = r.

We can calculate that

Lφ(x) = exp

(
z2

2

)[(
1

2
− z2

2
− r

κ

)
D−r/κ

(√
2z
)

+D
′′

−r/κ

(√
2z
)]

,

and

Lψ (x) = exp

(
z2

2

)[(
1

2
− z2

2
− r

κ

)
D−r/κ

(
−
√

2z
)

+D
′′

−r/κ

(
−
√

2z
)]

. (5.13)
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Using the fact that Dν(y) and Dν(−y) are linearly independent solutions to the

Weber equation [113],

d2u

d2y
+ (ν +

1

2
− y2

4
)u = 0, (5.14)

we confirm that Lψ = Lφ = 0 by using the substitution,

ν = −r/κ and y =
√

2z. (5.15)

Now we would like to show that φ and ψ are respectively decreasing increasing. For

that we make use of the following recurrence relationship of the parabolic cylinder

functions

Dν+1 (z) = zDν (z)− νDν−1 (z)

D
′

ν (z) =
−z
2
Dν (z) + νDν−1 (z) ,

so we have

φ
′
(x) =

√
κ

σ
exp

(
z2

2

)[
zD−r/κ(

√
2z) +

√
2D

′

−r/κ(
√

2z)
]

=

√
κ

σ
exp

(
z2

2

)[
zD−r/κ(

√
2z) +

√
2

[
−
√

2z

2
D−r/κ

(√
2z
)
− r

κ
D− r

κ
−1

(√
2z
)]]

=
−r
√

2κ

κσ
exp

(
z2

2

)
D− r

κ
−1

(√
2z
)
,

and

ψ
′
(x) =

√
κ

σ
exp

(
z2

2

)[
zD−r/κ

(
−
√

2z
)
−
√

2D
′

−r/κ

(
−
√

2z
)]

=

√
κ

σ
exp

(
z2

2

)[
zD−r/κ

(
−
√

2z
)
−
√

2

[√
2z

2
D−r/κ

(
−
√

2z
)
− r

κ
D− r

κ
−1

(
−
√

2z
)]]

=
r
√

2κ

κσ
exp

(
z2

2

)
D− r

κ
−1

(
−
√

2z
)
,

we showed that φ
′
(x) < 0 and ψ

′
(x) > 0 and that φ, ψ decreasing increasing

respectively and also are positive. According to Abramowitz and Stegun [91], the
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Wronskian of φ and ψ is given by

W (x) = φ (x)ψ
′
(x)− φ′ (x)ψ (x)

= 2

√
πκ

σΓ
(
r
κ

) exp

(
κ (x− θ)2

2σ2

)
.

5.1.2 φ and ψ for Feller process (CIR)

Feller process described by the diffusion 5.3, also called the square-root mean re-

verting process, known in the theory of finance as the model of the short rate in the

Cox-Ingersoll-Ross model that is why called CIR as well. The parameters of this

diffusion should satisfies the condition 2κθ
σ2 > 1, for the process to be non-explosive

and the hitting time of 0 to be infinite with probability 1. The associated ODE 5.4

for the CIR diffusion is given as follows

1

2
σ2xf

′′
(x) + κ (θ − x) f

′
(x)− rf (x) = 0, x > 0. (5.16)

Setting y = 2κx
σ2 , and g (y) = f (x), we have

yg
′′

(y) +

(
2κθ

σ2
− y
)
g
′
(y)− r

κ
g (y) = 0 (5.17)

taking, γ = r
κ
, ρ = 2κθ

σ2 = 0, the ODE 6.4 become

yg
′′

(y) + (γ − y) g
′
(y)− ρg (y) , (5.18)

that is the Kummer’s equation, and ψ and φ associated to this equation are given

as follows

ψ (x) = 1F1

(
r

κ
,
2κθ

σ2
;
2κ

σ2
x

)
and φ (x) = U

(
r

κ
,
2κθ

σ2
;
2κ

σ2
x

)
, (5.19)

where 1F1 (γ, ρ, y) is the Kummer’s confluent hypergeometric function introduced by

Kummer [83], and U (γ, ρ, y) Tricomi’s confluent hypergeometric function introduced
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by Tricomi [111], these two functions form a linearly independent solutions to 5.18.

Using the following two equations,

d

dz
1F1 (a, b, z) =

a

b
1F1 (a+ 1, b+ 1, z)

d

dz
U (a, b, z) = −aU (a+ 1, b+ 1, z) ,

we can calculate the derivatives of ψ and φ as follow

ψ
′
(x) =

r

κθ
1F1

(
r

κ
+ 1,

2κθ

σ2
+ 1;

2κ

σ2
x

)
> 0,

φ
′
(x) =

−2r

σ2
U

(
r

κ
+ 1,

2κθ

σ2
+ 1;

2κ

σ2
x

)
< 0,

we conclude that ψ is an increasing function and φ a decreasing function. According

to Abramowitz and Stegun [91], the Wronskian of ψ and φ is given as follow

W (x) =

(−2κ
σ2 x

)− 2κθ
σ2

Γ
(
r
κ

) exp

(
2κ

σ
x

)
.

5.1.3 Preparing power demand data

The demand data was taken from the ‘Gridwatch’ website published by Elexon1.

The data considered in this study is that of demand net wind supply and it is given

at 5-min intervals for the period 1 August 2013 to 31 July 2015. As we mentioned

in Chapter 2, the electricity demand in the UK exhibit seasonality in hourly, weekly

and yearly time scales. These features make modelling such data hard task, and in

this thesis we don’t aim to take seasonality in account, because we assume that the

seasonality for Xt will disappear with significant wind generation. Therefore, we

undertake a methodology that obviates different seasonality patterns in the data.

To avoid the daily cycles, we consider two blocks separately (5-min, interval data

between 9:00 am to 20:59 pm) and night data (5-min, interval data between 22:00

1http://www.gridwatch.templar.co.uk/

73



Chapter 5: Understanding UK’s power prices

pm to 5:59 am) 2. We only consider day and night data on working days (Monday to

Friday), excluding weekends to avoid the weekly cycles. Finally to avert the yearly

cycles, the day and night data will be considered for each season in the year, which

is common in modelling UK power demand, winter period (November, December,

January and February) when demand is high, summer period (May, June, July and

August) when demand is low, and shoulder period (March, April, September and

October) when demand can be variable year on year. In total we have six data sets

that we will fit to a stochastic process in the next section. A graph of the data

that we will be using is shown in Fig 5.1. Fig 5.2 shows a profile of 5 min interval

of net demand on weekdays (Monday-Friday) calculated by averaging each 5 min

interval of each the day and night for the period 1 August 2013-31 July 2015. Some

cycles can be observed mainly in day in the winter period and day in the shoulder

period. The cycles in the day winter are due to the Christmas break (December),

where most of the businesses are shut down and many people are on holiday, so

demand drop and then go up in January and February. For the day in the shoulder

period, the cycles are due to September and October where the weather start to be

colder (high demand) after a warm summer, comparing to March and April where

the weather start to be warmer (low demand) after a cold winter. The point about

the shoulder months is basically that the winter months are predictably cold, the

summer is predictably warm but the shoulder months are more variable. The day

in the summer period shows a decrease in demand, which is explained by the fact

that the summer in 2015 was very warm. These shows that power demand in the

UK is very much depends on the heating.

2Note that data does not cover the full 24 hours, this is to resolve the problem of having a
negative value for κ when calibrating this data to OU process.

74



Chapter 5: Understanding UK’s power prices

Figure 5.1: Time series of UK net electricity demand for each season, during day
time (up) and night time (down) for the period 1 August 2013-31 July 2015.
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Figure 5.2: Average UK 5-min net demand for weekdays during day hours (up) and
night hours (down) for each season.
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5.1.4 Calibrating Ornstein-Uhlenbeck process

This section is devoted to describe the maximum likelihood estimation method

for Ornstein-Uhlenbeck process. The stochastic differential equation governs the

Ornstein-Uhlenbeck process is given by

dXt = κ (θ −Xt) dt+ σdWt.

Consider eκtXt and applying Itô’s lemma, using the product rule, we have

d
(
eκtXt

)
= κeκtdtXt + eκtdXt,

= eκt (κ (θ −Xt) dt+ σdWt) + κeκtXtdt

= κθeκtdt+ σeκtdWt,

and we have

eκTXT = X0 +

∫ T

0

κθeκtdt+

∫ t

0

σeκudWu.

Therefore,

XT = Xte
−κ(T−t) + θ

(
1− e−κ(T−t))+ σ

∫ T

t

e−κ(T−u)dWu. (5.20)

This means that XT is normally distributed with mean and variance respectively

given by

E [XT ] = Xte
−κ(T−t) + θ

(
1− e−κ(T−t)) .

and

V [XT ] = E

[(
σ

∫ T

t

e−κ(T−u)dWu

)2
]
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using Itô Isometry,

= σ2E
[∫ T

t

(
e−κ(T−u)

)2
du

]
= σ2

∫ T

t

e−2κ(T−u)du

=
σ2

2κ

(
1− e−2κ(T−t)) ,

and we have

XT ∼ N
(
Xte

−κ(T−t) + θ
(
1− e−κ(T−t)) , σ2

2κ

(
1− e−2κ(T−t))) .

Maximum Likelihood estimates

If we assume that θ is the long-run mean demand, we need to identify κ and σ.

According to Brigo et al. [23] the conditional probability density is given by

f (XT | Xt;κ, σ̂, θ) =
1√

2πσ̂2
exp

{
XT −Xte

−κ(T−t) − θ
(
1− e−κ(T−t))2

2σ̂2

}
,

where

σ̂2 =
σ2

2κ

(
1− e−2κ(T−t)) .

with the log-likelihood function for estimations from n observations xt is given by

L (κ, σ̂, θ) =
n∑
i=1

log f
(
xti | xti−1

;κ, σ̂, θ
)

= −n
2

log (2π)− n log (σ̂)− 1

2σ̂2

n∑
i=1

[
xti − xti−1

e−κ∆t − θ
(
1− e−κ∆t

)]2
.

The Maximum of the log-likelihood can be found at the location where all the partial

derivatives are zero: that is,

∂L

∂θ
= 0,

∂L

∂κ
= 0,

∂L

∂σ̂
= 0.
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Hence,

∂L (κ, σ̂, θ)

∂θ
=

1

σ̂2

n∑
i=1

[
xti − xti−1

e−κ∆t − θ
(
1− e−κ∆t

)]
,

that implies

θ =

∑n
i=1

[
xti − xti−1

e−κ∆t
]

n (1− e−κ∆t)
(5.21)

and

∂L (κ, σ̂, θ)

∂κ
= − 1

σ̂2

n∑
i=1

[
xti − xti−1

e−κ∆t − θ
(
1− e−κ∆t

)] (
∆txti−1

e−κ∆t −∆tθe−κ∆t
)
,

= −∆te−κ∆t

σ̂2

n∑
i=1

[
xti − xti−1

e−κ∆t − θ
(
1− e−κ∆t

)] (
xti−1

− θ
)

= −∆te−κ∆t

σ̂2

n∑
i=1

(xti − θ)
(
xti−1

− θ
)
− e−κ∆t

(
xti−1

− θ
)2

= 0,

implying

n∑
i=1

(xti − θ)
(
xti−1

− θ
)

= e−κ∆t

n∑
i=1

(
xti−1

− θ
)2

and then

κ = − 1

∆t
log

(∑n
i=1 (xti − θ)

(
xti−1

− θ
)∑n

i=1

(
xti−1

− θ
)2

)
.

If
∑n

i=1 (xti − θ)
(
xti−1

− θ
)
≤ 0, then κ is not defined. Substituting κ into the

equation 5.21 of θ gives

θ =

∑n
i=1 xti

∑n
i=1 x

2
ti−1
−
∑n

i=1 xti−1

∑n
i=1 xti−1

xti

n
(∑n

i=1 x
2
ti−1
−
∑n

i=1 xtixti−1

)
−
((∑n

i=1 xti−1

)2 −
∑n

i=1 xti−1

∑n
i=1 xti

) .
The problem that the maximum likelihood condition has is that the solutions of

θ, κ and σ are depending on each other. However since κ and θ are independent

of σ, then determining either κ or θ (the slop and intercept of the OLS fit of xti−1

against xti) we can deduce σ (the residuals of the OLS fit), and we have
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∂L (κ, σ̂, θ)

∂σ̂
= −n

σ̂
+

2

2σ̂3

n∑
i=1

[
xti − xti−1

e−κ∆t − θ
(
1− e−κ∆t

)]2
= 0

so

σ̂2 =
1

n

n∑
i=1

[
xti − xti−1

e−κ∆t − θ
(
1− e−κ∆t

)]2
=

1

n

n∑
i=1

[
xti − θ + e−κ∆t

(
θ − xti−1

)]2
.

A normal Q-Q plot for the net demand data sets is shown in Figure 5.3.

5.1.5 Calibrating Feller process

The Feller process with positive parameters κ, θ and σ, and with 2κθ ≥ σ2 has

gamma distribution as marginal density. We consider the vector parameter α ≡

(κ, θ, σ) to be estimated using maximum likelihood estimation method. Following

Cox et al. [35], given Xt at time t, the density of Xt+∆t at time t+ ∆t is given by

f (Xt+∆t | Xt;α,∆t) = ce−u−v
(u
v

) q
2
Iq
(
2
√
uv
)
,

where

c =
2κ

σ2 (1− e−κ∆t)
,

u = cXte
−κ∆t,

v = cXt+∆t,

q =
2κθ

σ2
− 1,

and Iq (2
√
uv) is the modified Bessel function of the first kind and of order q. Then

the likelihood functions for n observations xt is given by

L (α) =
n−1∏
i=1

f
(
xti+1

| xti ; θ,∆t
)
, (5.22)
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Figure 5.3: Normal Q-Q plots for day/night net demand data for winter, summer
and shoulder seasons.

taking the logarithm we have

logL (α) =
n−1∑
i=1

log f
(
xti+1

| xti ; θ,∆t
)
.

Therefore, the log likelihood function of the Feller process is given by

logL (α) = (n− 1) log c+
n−1∑
i=1

[
−uti − vti+1

+ 0.5q log

(
vti+1

vti

)
+ log

(
Iq
(
2
√
utivti+1

))]
,
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where, uti = cxtie
−κ∆t and vti+1

= cxti+1
. Maximizing the log-likelihood function

over its parameters gives the maximum likelihood estimates θ̂

α̂ ≡
(
κ̂, θ̂, σ̂

)
= arg max

α
logL (α) .

Using the Ordinary Least Squares (OLS) on discretized version of 5.3, we have

xt+∆t − xt = κ (θ − xt) ∆t+ σ
√
xtεt, (5.23)

where εt is normally distributed with zero mean and variance ∆t, and the drift initial

estimates can be found by minimizing the OLS objective function

(
κ̂, θ̂
)

= arg min
κ,θ

n−1∑
i=1

[
xti+1

− xti√
xti

− κθ∆t
√
xti

+ κ
√
xti∆t

]2

which is solved by as in [35].

κ̂ =
n2 − 2n+ 1 +

∑n−1
i=1 xti+1

∑n−1
i=1

1
xti
−
∑n−1

i=1 xti
∑n−1

i=1
1
xti
− (n− 1)

∑n−1
i=1

xti+1

xti(
n2 − 2n+ 1−

∑n−1
i=1 xti

∑n−1
i=1

1
xti

)
∆t

µ̂ =
(n− 1)

∑n−1
i=1 xti+1

−
∑n−1

i=1

xti+1

xti

∑n−1
i=1 xti

n2 − 2n+ 1 +
∑n−1

i=1 xti+1

∑n−1
i=1

1
xti
−
∑n−1

i=1 xti
∑n−1

i=1
1
xti
− (n− 1)

∑n−1
i=1

xti+1

xti

.

The volatility parameter initial estimate σ̂ can be found as standard deviation of

residuals. The vector
(
κ̂, θ̂, σ̂

)
is the initial points for maximizing the log-likelihood

equation 5.22. The maximum likelihood estimation is used to calibrate OU process

and Feller process to the collected data described in section 5.1.3, and the results

are summarised in the Table 5.1 and 5.2. The time interval used is ∆t = 5 min,

and the parameters κ and σ are related to time unit of an hour. Hence, ∆t = 1/12

hour. The mean reversion speed κ is higher during day time comparing to night

time. This suggests that the half-life of the process during the day is longer than the

half-life of the process during the night. More precisely the half-life of an Ornstein

Unlbeck is given by the expression ln (2) /κ, and it gives the average time it will

take the process to get pulled half-way back to the mean θ. For example, in winter

days the half life of the process is ln (2) /0.040 = 7.53h, however in winter night the
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Parameters Day demand (MW) Night demand (MW)

Winter

κ̂ 0.040 0.253

θ̂ 42,748 25,067

σ̂ 276 223

Shoulder

κ̂ 0.08 0.176

θ̂ 35,405 24,930

σ̂ 461 256

Summer

κ̂ 0.080 0.198

θ̂ 30,825 22,829

σ̂ 335 208

Table 5.1: Calibration of net demand data to OU process.

half life of the process is ln (2) /0.253 = 1.19h. Figure 5.4 shows the function φ and

ψ in equations 5.8-5.9 over the range of observed demand data. In the rest of this

thesis we restrict the analysis on the OU process as this process allow for negative

values for net demand opposite to Feller process.

5.2 Merit order curve “stack model”

In a perfect competitive market, the electricity prices are determined by the marginal

cost of the last most expensive plant called to meet the predicted demand. A

successful model for electricity prices is the one that takes into account the most

important factors, demand, fuel prices and carbon emission. To construct a stack

model there are two main steps. The first step is to calculate marginal cost of each

of the plants providing energy, the second step is to match the merit order curve

with demand. The centre of our analysis is modelling demand as one-dimensional

Itô process passing through a merit order curve. Similar approach has been also

considered by Moriarty [94].
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Parameters Day demand (MW) Night demand (MW)

Winter

κ̂ 0.040 0.253

θ̂ 42,748 25,067

σ̂ 1.22 0.84

Shoulder

κ̂ 0.08 0.176

θ̂ 35,405 24,930

σ̂ 1.19 1.09

Summer

κ̂ 0.080 0.198

θ̂ 30,825 22,829

σ̂ 0.72 0.84

Table 5.2: Calibration of net demand data to Feller process.

Figure 5.4: The construction of φ and ψ based on winter parameters for OU process.
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5.2.1 Fuel prices

In order to understand the fundamentals of electricity prices, we need to understand

how electricity is generated and the costs associated with each fuels used by different

plants. The main long-term factors that affect the power prices are fuel prices. In

the UK power sector, coal, nuclear and natural gas are the main sources where

electricity is generated from. Coal plants are the largest contributor to the UK

energy generation mix, though are restricted in running hours because of the carbon

emissions, so tend to run in winter when prices are high. Nuclear plants are run

to maximize income, since the cost of fuel is very low, it pays them to sell at any

price they can get. Combined Cycle Gas Turbine (CCGT) is gas turbine where the

hot exhausts are used to drive a boiler and a steam turbine. These plants are very

efficient and flexible makes them available for peak demand and balancing wind

supply. Open Cycle Gas Turbines (OCGT), are gas turbines without steam plants

to maximize their efficiency. OCGT are cheap to build but expensive to run, so are

only used for emergencies in winter, where they can make a profit because of the

very high electricity prices. Fig 5.5 shows annual prices for oil, gas, and coal data

provided by AF-Mercados EMI and together with annual electricity prices obtain

by averaging monthly data available from APX website. Electricity prices shows

positive correlation with fuel price from 2010 till 2013, however in 2014 we observe

a decrease in electricity prices, but not in fuel prices. This observation might be

explained by the new regulations have been introduced in year 2014 to the UK

power market. According to APX the year 2014 ended with 70 members, where

5 new members have been welcomed to the UK market, these are Flow Enegy,

PowerTra, Petroineos Trading, Stadtwerke Munchen and TrailStone. This means

that competition has been increased in 2014 which results a decrease in prices.

5.2.2 Carbon emission

In European countries, electricity prices are also affected by EU Emission Trading

System (EU ETS). Introduced in 2005, EU ETS is the fundamental principle of EU

policy to combat climate change, with an aim to reduce the industrial greenhouse
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Figure 5.5: Input fuel prices for 2010-2015,

gas emissions with cost efficient way. As a cap-and-trade system, the EU ETS sets

an emissions limit on the total emissions allowed by all generators that produce

carbon emissions. In order to reach the carbon reduction and renewable targets,

the UK governments introduced a carbon price floor (CPF) to increase investments

in low-carbon power plants. Introduced in 2013, CPF calculated using the price

of CO2 and the carbon price support (CPS) with a rate per ton of CO2 produced

(see Fig 5.6). The Carbon Price Support (CPS) rates apply to fossil fuels used in

electricity generation (gas, solid fuels and liquefied petroleum gas), rates of CPS

from 2013 to 2017 are presented in Table 5.3.

Table 5.3: Rate of the carbon price support in £/tCO2

2013-2014 2014-2015 2015-2016 2016-2017
CPS (£/tCO2) 4.94 9.55 18.08 18.00

5.2.3 Thermal efficiency

Thermal efficiency is also an important factor that should be taken into account

in the ‘stack’ model. This factor is associated with combustion-based power plants
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Figure 5.6: The total carbon price including CPS rate 2011-2015.

that burn coal, natural gas, or petroleum to generate electricity. Thermal efficiency

measured using heat rate, and heat rate is defined as the amount of energy used by an

electrical generator or power plant to generate one kilowatt-hour (kWh) of electricity.

Thermal efficiency of combustion-based power plants changes with technology used

and type of the fuel burned. Coal plants have a thermal efficiency less than that of

CCGT. Table 5.4 shows the average thermal efficiency of different plants based on

the year 2012. In practice, thermal efficiency of combustion-based power plants does

change with output level as well. Therefore in the calculation of the stack for power

plants, variable thermal efficiency has been considered for different capacities. Fig

5.7 shows thermal efficiency for CCGT power plants in the UK delivering different

capacities.

Table 5.4: Average thermal efficiency for thermal power plants.

CCGT Coal OCGT Oil
Thermal efficiency 45.7% 36.5% 28.8% 20%

5.2.4 Short run marginal cost

In economy sector, the Short Run Marginal Cost (SRMC) refers to the cost of

producing a small quantity of additional unit of good or service. More specifically
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Figure 5.7: Thermal efficiencies of different output level for different CCGT plants.
The data obtained from the energy markets consultancy, AF-Mercados EMI (Per-
sonal communication).

in power systems, SRMC is the change in total power plant cost from a small output

change, and is in unit £/MWh. The SRMC for thermal power plants is the cost

of the fuel burned to generate one MWh, and it is changing by generation level

because of the changes in the thermal efficiency. Wind, solar PV and hydro plants

have SRMC of zero which means there is no change in total cost if output is changed

by a small amount for a short time.

The main components that construct the SRMC include costs of fuels used by

each generator, whether an expensive oil and gas or a cheap coal. Variable operation

and maintenance (O&M) expenses, for example periodic inspection, repair of the

system component, chemicals necessary for water treatment, limestone consumed for

example in coal plant with Flue Gas Desulphurisation. Variable O&M also depend

on whether plants are combined with CCS or not, plants with CCS have higher

variable costs than the other plants. Fixed costs are not included and cannot be

recovered through SRMC. In addition to fuel costs and variable O&M it is important

to include the environmental costs for plants with emissions in their SRMC, in the

UK that will be the EU ETS cost. Of course plants with combined CCS are not
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subject to EU ETS cost. Fig 5.8 shows the components of SRMC for different plants

in the UK, in this figure fuel costs and variable O&M are averaged across types.

In this study, the short run marginal cost of each plant was calculated considering

each unit separately, to take into account the thermal efficiency of each unit depend

on its output level. A total of 113 generation plants have been considered, CCGT

(60 plants), CHP (11 plants), coal (60 plant), nuclear (12 plants), OCGT (16), oil

(2 plants) and hydro (12 plants). The formula used to simulate the SRMC across

all plants is given as follow

SRMC =
F

ν
+ γ E + V,

where F (£/MWh) is the fuel cost, ν (∈ [0, 1]) is the unit thermal efficiency, E is the

carbon emission price (£/MWh), γ is the carbon intensity per unit (tCO2/MWh),

and V (£/MWh) is the variable operating and maintenance cost.

Figure 5.8: Components of SRMC for different technologies in the UK. The data
obtained from the energy markets consultancy, AF-Mercados EMI (Personal com-
munication).
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5.2.4.1 Merit order curve (MOC)

A perfect competitive market in the classical economic theory assumes that the mar-

ket price is equal SRMC, which is not realistic. However the assumption of perfect

competition is important to understand the foundation of electricity market. Under

this assumption the electricity generators are expected to offer their generation at

the SRMC. In each trading interval, in the UK is half-hour, generators submit their

bids based on the generator SRMC to the system operator (NG), the role of the

NG is to order individual units by increasing SRMC constructing the system merit

order. The MOC approximation of the UK market is presented in Fig 5.9. The

system merit order can be divided to three main categories: based load-units those

are plants operating most of the hours with low variable costs (hydro and nuclear),

mid-load units plants are flexible but does not most of the hours (coal and CCGT)

and peaking plants are those that are used few hours in a year for very high demand

in winter (OCGT and oil).

Figure 5.9: The merit order curve approximation for UK market. The data obtained
from the energy markets consultancy, AF-Mercados EMI (Personal communication).
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5.2.5 Mapping demand to prices

In this thesis we assume that the UK power price is driven by the MOC. The

MOC ranks different power generators based on the ascending order of the price the

generators bid to deliver a specific quantity of power; it is a monotone increasing non

continuous (staircase) function that maps demand to price. The justification of this

mapping lay on the Markovian assumption for Xt, where the future prediction of

the process based only on the present state and not the past states. In this setting

the problem of optimal stopping become a problem of random path in the state

space I, where a transition density for a random path of diffusion can be defined

and satisfies the Kolmogorov equations.

We were provided with the merit order curve data from the energy markets

consultancy, AF-Mercados EMI3, see Figure 5.9. The relationship between the price

paid for power and the merit order curve is not straight forward, but we argue the

merit order curve is fundamental to prices, and gives a good approximation of the

prices. On this basis we approximate the average price paid to power suppliers by

the intersection of load and the MOC.

To emphasise the short-term relationship between demand and prices in the UK,

we choose one day 09/10/2015 and we looked at the demand and prices profile that

day together with the MOC approximation (see Fig 5.10). The left axes corresponds

to the daily power demand in MW, and the right axes correspond to the spot prices

from APX in £/MWh. The positive correlation between demand and prices are

clearly shown, high demand corresponds to high prices and low demand corresponds

to low prices. Mainly two peaks are observed in demand and prices, the first one is

in the morning when working hours start and the second is in the evening the end

of working hours. The merit order curve is derived by ordering the supplier bids

according to ascending marginal cost. The intersection of the demand curve with

the merit order defines the market clearing price that is the electricity spot market

price paid to generators. Fig 5.10 shows APX spot prices for the day on 09/10/2015

in red plot, and the green is the anticipated prices obtained by intersecting the

3info.gb@afconsult.com
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Figure 5.10: Daily demand (National Grid), daily prices (APX) and the merit order
curve approximation for 09/10/2015.

demand that day in blue with the merit order curve (Fig 5.9). The APX represent

the difference between anticipated and realised demand. The plot indicates that the

anticipated demand was close to realised for most of the 24 hour period, as the APX

price was bellow the MOC price, but between 17:30 and 20:30 there was mis-match

and supply becomes very valuable.

The stack model is complete when the available capacity is equal to the predicted

demand. In section 5.1.4 we calibrated an Ornstein-Uhlenbeck process to six data

sets presenting electricity demand at night and day during winter, summer and

shoulder months. The average mean demand is projected on the MOC shown in

Fig 5.11 (day time) and Fig 5.12 (night time where we excluded hydro units). For

example in a winter day with an average demand of (42.74 GW) the last unit to

complete the stack is a CCGT unit providing a SRMC of (£52.13/MWh) and the

system price will be approximately (£52.13/MWh) to be paid for all other units

providing a SRMC less than the system price. The generation mix for winter and
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Average demand (GW) Price (£/MWh) Plant Type Owner

Day

W 42.74 52.13 GreatYarmouth CCGT NPower

SH 35.40 48.98 DidcotB5 CCGT NPower

S 30.82 48.56 Marchwood CCGT Marchwood

Night

W 25.06 41.30 Kings north 1 Coal E.ON

SH 24.93 41.30 Kings north 2 Coal E.ON

S 22.82 40.73 Didcot AC1 Coal NPower

Table 5.5: The averaged demand, the average system price based on the MOC, the
plant, the type and owner bases on the data of 2013-2015 for day and night for each
season in UK market. The data obtained from the energy markets consultancy,
AF-Mercados EMI (Personal communication).

shoulder days consists mainly of nuclear, coal and CCGT plants. However in summer

and night hours the generation mix is only nuclear and coal. A complete summary

of average hourly prices of different seasons together with the type of plants and

owners are presented in Table 6.1.

93



Chapter 5: Understanding UK’s power prices

Figure 5.11: The MOC approximation with the projected demand during day hours.

Figure 5.12: The MOC approximation with the projected demand during night
hours.
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Chapter 6

Case study: Evaluation of

Compressed Air Energy Storage in

UK’s power market

This chapter will present a validation of the methodology we proposed in this the-

sis to assess the economic impact of storage technologies. To this end we shall

consider a live mechanical storage facility, Compressed air energy storage (CAES).

The CAES technology was chosen because it is between chemical batteries tech-

nology and pumped hydro technology in scale. A more details on the technology

are presented in section 2.5.1. This technology has been recognized as to play a

role in integrating high level of volatile wind energy production into the power sys-

tem (Arsie et al. [9]). Number of authors investigate the value of CAES includes,

Lund et al. [88], the authors argue the role of CAES in the future energy system

based on the Danish market. Drury et al. [45] evaluate the value of CAES in

arbitrage and energy reserve markets using deterministic historical prices. Other

authors study a combination of CAES with wind farms, such as Greenblatt et al.

[61], Denholm et al. [45], Loisel et al. [86] and Hessami et al. [66]. Few studies take

into account the stochastic volatility of the power market. Keles et al. [79] used a

time-consuming Monte Carlo simulation to evaluate CAES under uncertain electric-

ity prices. Yucekaya [117], take into account the hourly fluctuation of fuel costs and

electricity prices and used a mixed integer programming method. In this case study
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we are considering the methodology discussed in Chapter 4, to evaluate a CAES

technology in the UK power market with high level of wind energy by assuming a

stochastic residual demand discussed in section 5.1.

The data based on the Huntorf CAES plant in Germany was used in this study.

The Huntorf plant is the first CAES in the world, operating successfully for more

than 30 years in Germany. The power plant with capacity Q = 290 MW could

transfer off-peak (night hours) electricity demand to high demand periods (day

hours). This technology uses electricity in low demand to derive a compressor and

inject air into an underground chamber. During high demand the compressed air is

released, heated via combustion with fuel, and passed through an expansion turbine

to drive a generator and produce electricity to the grid for T = 2h. The assumption

we make on the data is that the CAES facility fully charged/discharged over two

hours, the efficiency is treated as variable. We using the short-run production cost

data for generation in the UK discussed in section 5.2. The discount rate set a

constant 5% per annum continuously compounded and there are no “working day”

adjustments, this implies that Assumption 3.1.4 is satisfied.

In this chapter we adopt a theoretical framework for the dynamics of the net

demand process, that is the first hitting times φ and ψ of the mean reverting pro-

cess 5.2, are assumed to be given by Equations 5.8 and 5.9, and the estimated pa-

rameters are summarized in Table 5.1. The results were obtained by implementing

Algorithm 2 presented in Chapter 4. Python 2.7.8, with version for 1.8.1 of numpy

and 0.14.0 of scipy was used for numerical result with the following Pseudocode.
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Pseudocode

1 # Set up parameters

2 #Demand range and time−s tep

3 #Storage techno logy

4 #Capacity

5 #F i l l /empty ra t e

6 #D i f f u s i o n −− Net demand

7 #Payof f

8 f o r i in Demand range :

9 #Simulate R h [ i ]=F [ i ]

10 E=F∗ eta

11 #Construct phi and p s i

12 i f ( phi ) or ( p s i ) n o t w e l l d e f i n e d f o r a l l i in Demand range :

13 e x t r a p o l a t e ( phi ) or ( p s i )

14

15 #Construct the Wronskian

16 #Plot F/phi , F/ p s i and E/phi , E/ p s i to g ive i n t u i t i o n as to the

s o l u t i o n

17 #Construct LopE and LopF

18 #I d e n t i f y a l i s t ( cand idate s f o r va lue s o f a ) and b l i s t ( cand idate s

f o r va lue o f b) based on Lop E and Lop F

19 #Ignore po in t s in a l i s t or b l i s t that would d e l i v e r negat ive A or B (

Using 1(b)−(c ) and 2(b)−(c ) ) in Algorithm 2

20 #For remaining po in t s in a l i s t c a l c u l a t e F phi A and F psi A us ing 1( a

) in Algorithm 2

21 #For remaining po in t s in b l i s t c a l c u l a t e E phi B and E psi B us ing 2( a

) in Algorithm 2

22

23 f o r i in a l i s t :

24

25 f o r j in b l i s t :

26

27 i f E psi B [ j ] <= F psi A [ i ] <= E psi B [ j +1] :

28 # There i s a pa i r u , l A (u) ; i n t e r p o l a t e l A (u)

29 # Store the pa i r

30 break

31
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32 f o r i in a l i s t :

33

34 f o r j in b l i s t :

35

36 i f E phi B [ j ] <= F phi A [ i ] <= E phi B [ j +1] :

37 # There i s a pa i r u , l B (u) ; i n t e r p o l a t e l B (u)

38 # Store the pa i r

39 break

40

41 #Search f o r a c r o s s i n g po int o f l A and l B ; or f i n d i f they come c l o s e

42

43 f o r each c r o s s i n g :

44 Outputs :

45 ’New s e t ’

46 u , l A , l B #a=u , b=average ( l A (u) , l B (u) )

47 sub ( l A , l B ) #e r r o r

48 A,B

49 B p s i ( a )−F( a )

50 A phi ( a )

51 sub (B p s i ( a )−F( a ) , A phi ( a ) )# e r r o r

52 B\ps i ’ ( a )−F ’ ( a )

53 A\phi ’ ( a )

54 sub (B\ps i ’ ( a )−F ’ ( a ) , A\phi ’ ( a ) )# e r r o r

55

56 B\ p s i (b)

57 A\phi (b)+E(b)

58 sub (B\ p s i (b) , A\phi (b)+E(b ] ) )# e r r o r

59 B\ps i ’ ( b )

60 A\phi ’ ( b )+E(b ] )

61 sub (B\ps i ’ ( b ) , A\phi ’ ( b )+E(b ] ) )# e r r o r

Listing 6.1: Pseudocode
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6.1 Generation of the payoff of emptying and cost

of filling functions.

In order to evaluate the CAES technology, the methodology described earlier is

employed. We start by generating path that represent electricity demand based

on the estimated parameters θ, κ, σ, the electricity prices is a function that takes

demand and return the price for one MWh of energy (stack function presented in

section 5.2). The energy capacity of CAES is rated by the number of hours of full

power output, and the rate is given by ρ = T
Q

, where Q = 290 MW is the capacity

of the technology. Then the cost of filling the technology is presented by

F (x) = Ex
[∫ T

0

ρh (Xs) ds

]
, X0 = x, (6.1)

where Xt is the calibrated OU process govern by the Eq 5.2, h is the merit order

curve given in figure 5.11 during day hours that deliver prices per 1 MWh (figure

5.12 during night hours). The expectation in 6.1 can be approximated using Monte

Carlo simulation method, based on a numerical integration of the following SDE

dXt = κ (θ −Xt) dt+ σdWt, X0 = x. (6.2)

The first step is to obtain an approximation X of the process X using Euler-

Maryama scheme1 and time step of 5 minutes and for increments in x of 1 MW

between 15GW and 65GW . With X
(n)

(t) being independent realization of X (t)

given for 1 ≤ n ≤ N by

X
(n)

0 = x

X
(n+1)

(t) = X
(n)

(t) + κ
(
θ −X(n)

(t)
)

∆t+ σ∆Wn,

where, ∆t = T/N , ∆Wn = Wtn+1 − Wtn , T = 2h and N = 24. This allows an

1There was no benefit in employing the Milstein scheme.
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approximation of the expectation E
[∫ T

0
ρh
(
X

(n)
(t) ds

)]
as follow

E
[∫ T

0

ρh
(
X

(n)
(t) ds

)]
' 1

M

M∑
m=1

(∫ T

0

ρh
(
X

(n,m)
(t)
)
ds

)
, m ∈ N,

where M the number of simulations. Therefore the function F (x) in 6.1 is con-

structed by undertaking a piece-wise least squares polynomial fit of the simulation

results, with a constraint that F is increasing. The pay-off of emptying the CAES

facility E (x) is then given by

E (x) = ηF (x) , (6.3)

where the parameter 0 < η < 1 a constant parameter represent the efficiency of

the store. The parameter η called the round trip efficiency is a critical factor in the

usefulness of a storage technology. For a CAES technology, the level of air leaks

on the system depend on the level of system pressure i.e. the higher the system

pressure, the more air lost through leaks. Therefore, the choice of the minimum

inlet pressure to the expander determines the minimum system pressure, sets the

required air compressor discharge pressure, and influence the efficiency of the overall

CAES plant operating cycle presented by the parameter η. Setting η < 1 ensure

Assumption 4.1.2 is satisfied. Since the MOC is bounded and F is continuous and

differentiable the conditions is Assumption 3.1.7 are satisfied. The results based on

the Winter-day parameters are shown in Figure 6.1.

6.2 Intra-filling/emptying for CAES technology

This section will analyse the entry (filling) and exit (emptying) for the CAES tech-

nology during a day time in winter. We consider three cases, the first case is where

we have a full facility and we look for the exit time, second case will be having an

empty facility that need filling then emptying (entry then exit), and the last case is
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Figure 6.1: The cost/payoff of filling /emptying the CAES technology based on
winter days data with η = 0.95.

where the facility is filled and emptied sequentially (sequential entry and exit).

6.2.1 Pure exit

The solution in this case is described in section 4.2. Considering having a full technol-

ogy, the decision maker would like to know the optimal time to empty the technology.

As inputs to the optimal stopping problem we consider, Ornstein-Unlebeck process

for winter day with parameters θ = 42748, κ = 0.04 and σ = 276. The simulated

results are shown in Fig 6.2, the plots shows the simulated emptying value E (x) and

the function E (x) /ψ (x). As discussed in section 4.2, the emptying boundary b? is

actually the turning point of the function E (x) /ψ (x). Being endowed with a full

CAES technology during a winter day, an optimal exit time strategy will be when

net demand hits the boundary b? = 45145 MW. Looking at the merit order curve,

this suggest that the CAES technology would start selling electricity to the grid at

an approximated price of p = £53.61/MWh, that is the price of CCGT plant.
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Figure 6.2: The solution of a pure exit problem for CAES technology during winter
intraday.

6.2.2 Pure day entry and exit

Here we consider a semi-reversible problem, where we have an empty CAES tech-

nology that need to be filled with cost F (x) before it can be emptied. This case

is described in section 4.3. We consider a winter day parameters, and possess the

sensitivity analysis with respect of the leakage level in the store captured by the pa-

rameter η. The higher the round trip efficiency, the less energy lost due to storage,

the more efficient the technology. Fig 6.3 shows the optimal solution of the pure

entry then exit case for winter intraday for different efficiencies. For a winter day

with an exit boundary of b? = 45145 MW, 69% round trip efficiency gives an entry

boundary of a? = 11730, 79% gives an entry boundary of a? = 28310 MW, 89%

gives an entry boundary of a? = 29980 MW and 99% gives an entry boundary of

a? = 44620 MW.

The results suggest that a technology with a round trip efficiency less than 69%

may not have the chance to be filled during the day for a later delivery at b? = 45145
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MW. For a technology with efficiency between 70% to 80% may have the chance to

be filled when net demand is very low, that may happen if there is a lot of wind

energy supply in the system. While a technology with more than 90% efficiency

will have the chance to be filled up to an upper bound a? = 44580 MW. Intuitively

based on the idea that the storage facility will be charged when demand is low and

discharged later that day when demand is high, we can give the an upper bound for

daily income P by P ≈ E (b?)− F (a?), this will be earned at most once in a daily

basis. Therefore, the present value of the storage facility can be approximated as

follow

v ≈
∞∑
δt=0

e−rd δtP ≈ P

∫ ∞
0

e−rdsds =
P

rd
, (6.4)

with δt correspond to one day and rd = 0.05/365 is the one day discount rate,

results are summarised in Table 6.1. The price column in the table present the

upper bound price at which the facility have to buy electricity and store it, then

sell it later when demand hits b? = 45145 MW at an approximated price of £53.61

/MWh. The results shown in the Fig 6.4, are the approximated present value of

the storage facility as in the Equations 6.4. The present value of the CAES is not

monotonic in efficiency, more precisely, we can observe from the Fig 6.4 a very low

present value of a 79% and 94% efficient storage facility. This non-monotonicity is

related to the filling boundary a?. As efficiency increases, the filling boundary also

increases. Now looking at the cost F in Fig 6.1, we observe an increase in the cost

around 28000 MW, and another increase in the cost around 43000 MW. We get a

lower present value when the filling boundary a? hits the levels where the cost is

start increasing after being almost constant. And that happens when the facility is

79% efficient, and when it is 94% efficient (see Table 6.1). The benefit to be gained

by the storage when it is more efficient is to have a smaller gap between filling

and emptying boundaries. If the operator wishes to use the facility multiple times,

then this smaller gap between the filling and emptying boundaries allow him/her

to maximize the aggregate payoff from the multiple filling and emptying. This case

will be discussed in details in Section 6.2.4.
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η B?(£) a? (MW ) E(b?)(£) F (a?)(£) Price (£/MWh)

0.69 13330.07 11730 13382.40 13375.22 37.12

0.74 14296.01 15735 14352.13 14342.25 39.62

0.79 15261.96 28310 15321.87 15321.70 45.85

0.84 16227.91 29175 16291.60 16287.35 47.75

0.89 17193.85 29980 17261.34 17211.71 48.56

0.94 18159.80 43235 18231.08 18230.88 52.62

0.99 19125.75 44620 19200.82 19156.20 53.61

Table 6.1: The upper bound of filling a CAES technology for different efficiencies,
b? = 45145 MW for all efficiencies.

Figure 6.3: The filling boundary for CAES during winter day, with different efficien-
cies and an emptying point setting at b? = 45145 MW.
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Figure 6.4: The present value for CAES technology during winter intraday with
different efficiencies.

6.2.3 Pure night entry and exit

Considering the ‘night’ model where

θ = 25067, κ = 0.253, σ = 223.

A new function E, F based on these parameters is constructed; the merit order

curve for the night hours (Fig 5.12) is considered where the hydro generation is

removed. This is because in the UK it is rare to utilise hydro power during night

hours when prices are low. Utilizing the CAES technology once during night gives

the results in Table 6.2. Fig 6.5 shows the present value for CAES with different

efficiencies, operating during night time. The decrease in the present value for the

facility with 99% efficiency is because the filling boundary a? hits the level where

the cost F have been increased (see Table 6.2 and Fig 6.1).
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η B?(£) a? (MW ) E(b?)(£) F (a?)(£) Price (£/MWh)

0.89 13321.39 10950.0 13337.59 13337.37 35.94

0.94 14069.78 14740.0 14086.89 14086.63 39.09

0.98 14668.49 18275.0 14686.34 14685.99 40.73

0.99 14818.17 25010.0 14836.20 14836.01 41.30

Table 6.2: The upper bound of filling a CAES technology during winter night for
different efficiencies, b? = 25945 MW for all efficiencies.

Figure 6.5: The present value for CAES technology during winter intra-night with
different efficiencies.

6.2.4 Sequential entry and exit

Now we consider the case where the storage facility could have multiple use during

the day, in this case the emptying would increase by amount A?ψ (x), which has

the potential of shifting b? because φ is not linear, generating a positive feedback

loop that simultaneously increase A? to A and B? to B. The interesting observation

is that in the case of one single use, there is one single chance to maximize pay-

off. However in the multi-use we looking for a and b that maximize the product
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of individuals pay-offs and the frequency of payoffs. This interesting case can be

studied using a combination of the cost of filling the facility F , pay off of emptying

E and φ and ψ representing the first hitting times of the stochastic net demand.

In order to find the sequential boundaries a and b for a CAES technology the

methodology describes in section 4.4.1 is applied, setting η = 0.99 as efficiency of

the storage facility. Results are summarized in the Table 6.3.

u 42495 42495 43250

lA (u) 44646.058 42719.533 44495.217

lB (u) 44646.593 42719.434 44495.223

% D 1.2× 10−3 2.3× 10−4 1.3× 10−5

a 42495 42495 43250

b 44645 42720 44495

A 196300. 196300 456604

B 211386 211386 471684

Bψ (a)− F (a) 196328.457 196328.457 456620.3

Aφ (a) 196328.217 196328.217 456620.2

% D 1.2× 10−3 1.2× 10−4 1.9× 10−5

Bψ
′
(a)− F ′ (a) -0.0449 -0.0449 -0.00643

Aφ
′
(a) -0.0449 -0.0449 -0.0643

% D 2.5× 10−5 5.2× 10−6 6× 10−6

Bψ (b) 211690.2 211404.52 472219.21

Aφ (b) + E (b) 212149.6 211276.72 472337.11

% D 0.217 0.0605 0.025

Bψ
′
(b) 0.4952 0.03798 0.8215

Aφ
′
(b) + E

′
(b) 0.5038 0.03935 0.7092

% D 1.72 3.615 15.8

Table 6.3: Candidate solution to the storage problem.

These results were obtained by employing a grid based on a separation in ∆x =

5 MW , this was five times the resolution of the constructed function F and resulted

in some additional smoothing of F and E. The functions φ and ψ were constructed

based on the estimated parameters for the Itô process Xt. To overcome the problem

when φ and ψ are not defined we use an approximation by fitting φ
′

and ψ
′
. Then

we apply Algorithm 2 to find lA, lB, the fill boundary a and the empty boundary b.
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Figure 6.6: Finding a, b. The solid green line represents the proposed solution.

The potential emptying point b is then the intersection of lA and lB. The potential

filling points and potential emptying points as well as the proposed solution a, b

to the problem are presented in Figure 6.6. We start by using 4.51-4.56 to identify

candidate values for a (the set A) and b (the set B). This is the coding of the curves

in the two diagrams. For each candidate a, starting at the largest element of B, we

search for the solution 4.57 to give lA, this is shown in the top graph. While for each

candidate b, starting from the largest element of B, we search for the solution 4.58

to give lB, this is shown in the bottom graph. Given lA and lB we look for crossing

point of the two lines. We choose a, lA(a) and a, lB(a) as the point where they cross

(or come very close), this is the solution in green line in both graphs in Fig 6.6.

Nevertheless, we still have to check if points above b and all points below a belong

to the optimal sets. In other words, we should check if 3.29 hold. For all points

above b we have (E/ψ)
′′
< 0, so 3.29 holds. However, on the point of the intervals,

[39795, 40000], [42820, 43100] we have (F/φ)
′′
< 0, therefore these interval cannot

be on the “charging” region. To overcome this problem and find a valid solution
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u lA (u) lB (u) % difference A B

39785 43150 43150 1.5× 10−4 786 457425

x aw bw

Aφ (x) +Bφ (x) 458146.4 458275.5

g (x) 456554 456623.2

% difference 0.35 0.36

Aφ
′
(x) +Bφ

′
(x) -0.00786 0.36

g
′
(x) -0.0274 0.00315

% difference 0.35 0.36

Table 6.4: Candidate solutions to cover prohibited intervals.

we need to cover these intervals with a “wait to region” by repeating the algorithm,

but replacing E and F by the charge payoff

g (x) = Bψ (x)− F (x) , (6.5)

then the value function is given by

vj (x, 0) =


Ajφ (x) +Bjψ (x) , if x ∈ C0

j ⊆ C0

g (x) , if x ∈ D0

(6.6)

Executing the algorithm gives the results in Table 6.4.

The results shows that there is an intersection between lA, and lB, however the

actual fit of Aφ (x) + Bψ (x) and g (x) are less satisfactory and the fit of Aφ
′
(x) +

Bψ
′
(x) and g

′
(x) is very poor, given that based on the behaviour of g at a and b we

would require smooth fit here. Given that there is no fit for the covering intervals

means that there is no viable solution to the stopping problem.
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6.3 Night filling/ day emptying for CAES tech-

nology

Intuition would suggest the storage facility would be charged at night during low

demand at lower prices, then discharged on the day during high demand for a higher

prices. We suggest treating this case as a model where the ”filling” decision is made

on the night time parameters and the ”empty” decision is based on the day-time

parameters. Technically, we consider two diffusions, day and night. We look for the

entry during night and exit during day.

We start with an empty CAES technology that needs to be filled with cost F (x)

at night before it can be emptied and deliver the value Bψd during the day. This

case is described in section 4.4.2.

The one cycle use simulation results are shown in Fig 6.7 for winter night/-

day model, the graph shows the function ψd (x), φn (x) from Eq 5.9, the simulated

emptying value E (x) and filling value Bψd − F (x), the function E (x) /ψd (x) and

Bψd (x)−F (x) /φn. It also shows the entry boundary to fill the facility and the exit

boundary to empty the facility. Table 6.5 summarize the upper bound boundaries

at which the facility with different efficiencies could be charge at night for a delivery

at b? = 45035 MW during the day, it shows also the cost of filling, the income of

emptying and the price at which the facility buys electricity during night hours. The

present value of the CAES in the case of the night/day model is presented in Fig

6.8. We observe monotonicity in efficiency as opposite to the results in Fig 6.4 (intra

day) and Fig 6.5 (intra night). This explained by the fact that the cost F does not

change for all the filling boundaries a? related to each efficiency, see Table 6.5 (F

column). We fill during the night where the cost is constant for all efficiencies, while

we empty during the day where prices are increasing as the efficiency increase. That

explained the Millions of pounds in the present value, as we get a higher difference

between emptying (day) and filling (night).

To find the sequential boundaries a and b for day and night diffusion for the case

of multiple use of the facility, the algorithm describes in section 4.4.2 is applied.
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Figure 6.7: The filling boundary for CAES during winter day technology with dif-
ferent efficiencies and an emptying point setting at b? = 45035 MW

η B?(£) a? (MW ) A? E(b?)(£) F (a?)(£) Price (£/MWh)

0.75 14440.073 15165 1.7394e− 210 14527.52 14299.89 39.62

0.80 15402.74 25520 6622.09 15496.02 14766.53 41.30

0.85 16365.41 25525 1583.90 16464.52 14766.57 41.30

0.90 17328.08 25530 2545.71 17433.02 14766.61 41.30

0.95 18290.75 25535 3507.53 18401.52 14766.66 41.30

Table 6.5: The upper bound of filling a CAES technology for night/day model for
different efficiencies, b? = 45035 MW for all efficiencies.
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Figure 6.8: The present value for CAES technology for night/day model for different
efficiencies.

The resulting filling point u such that (3.29) hold, is given by

u = 31380 MW,

and lA (u), lB (u) that satisfies the Equations 4.65 and 4.66 are given by

lA (u) = 43906.52 MW , lB (u) = 43906.3635l MW, (6.7)

with a difference of 3.7× 10−4%, we also have


Bψd (a)− F (a) = 1, 099, 056.4

Aφn (a) = 1, 099, 056.4

D = 4.2× 10−14%

,


Bψ

′

d (a)− F ′ (a) = −0.0039

Aφ
′
n (a) = −0.0039

D = 4.4× 10−14%

(6.8)

and
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
Bψd (b) = 1, 114, 684.5

Aφn (b) + E (b) = 1, 114, 433.1

D = 0.022%

,


Bψ

′

d (b) = 0.7262

Aφ
′
n (b) + E

′
(b) = 0.7325

D = 0.868%.

(6.9)

While the algorithm has delivered results, they are somewhat unsatisfactory.

Intuition points to these results, but these have been delivered by splitting the data

into ‘day’ and ‘night’ and then using a heuristic to propose the solution.

The root of the problem is the fact that the demand does not follow an Ornstein-

Uhlenbeck process. This can easily be established by noting that the residuals in

5.20 should be Normally distributed. Both Shapiro-Wilk and Anderson-Darling

tests reveal that the residuals are, in fact, not Normally distributed; the model is

misspecified. The consequence of this misspecification is that the frequency of cycles

between a? and b? estimated in the different models are too low.
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An empirical study

The results described in Chapter 6 was obtained by considering theoretical process

for the demand, calibrating the observed data to this theoretical process, identify

E, F , ψ, φ and building the solution on this basis. However, given the steps of the

algorithm, there is no need to know the details of the diffusion, only that Assump-

tions 3.1.1-4.1.2 hold, and the functions E, F , ψ and φ exist. The cost of filling F

and the income of emptying E can be constructed by combining the discount rate,

the actual demand data with the merit order curve, while the functions related to

the first hitting times of the diffusion φ and ψ can be identified by applying the

discount rate and demand data to the equations in 3.8. The analysis we undertake

is restricted to winter months in the period 1 August 2013 to 31 July 2015. All data

was used, including that for weekends and the Christmas period and no day/night

split was made.

7.1 Implementation

To generate the cost F , for each data point, F is constructed based on observed

demand data and the merit order curve. These data are then fitted to a polynomial

using least squares regression forming the charging cost function, F (Fig 7.1), with
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F (x) = 5.1926× 10−35x9 − 1.7997× 10−29x8 + 2.7287× 10−24x7

− 2.3728× 10−19x6 + 1.3025× 10−14x5 − 4.6751× 10−10x4

+ 1.0960× 10−5x3 − 1.16169× x2 − 1.3613× 103x

− 4.9723× 106.

Figure 7.1: Construction of F based on observed demand data and the merit order
curve.

To identify the estimates φ̂, ψ̂ for φ, ψ, the following process was undertaken.

Starting at each data point, running maxima and minima were noted and when these

changed, the first hitting time of all points between the old and new maximum (or

minimum) was set as the change time. If there was a time jump of more than 30

minutes between data points or data was repeated more than once, the process was

stopped and the algorithm moved on to the next starting point. This generated a

large number of samples, but because of the “re-sets” some points were ’isolated’ and

as a consequence the data needed to be manipulated (locally, by eye) to ensure that

115



Chapter 7: An empirical study

H J K L M P Q

φ̂ 1.00021 256.23253 1.65366 2.87953 1.0000 20156 54096.579

ψ̂ 0.99986 -35.79520 1.38294 9.44348 1.15731 20156 54093

Table 7.1: Parameters for φ̂ and ψ̂, with α̂ = Pφ = 20156, β̂ = Qψ = 54093.

φ was strictly decreasing and ψ was strictly increasing. Based on the observations

the data was fitted to the functions

φ̂ (x) = Hφ +
Jφ

(x− Pφ)Kφ
+

Lφ

(x−Qφ)Mφ

ψ̂ (x) = Hψ +
Jψ

(x− Pψ)Kψ
+

Lφ

(Qψ − x)Mψ

The boundary α is an inaccessible boundary point if ψ (α) = 0, and similarly

β is inaccessible if φ (α) = 0, the implication is that Assumption 3.1.2 hold. This

constraint the fitting; to overcome this, ψ̂ was fitted for lower values of demand,

giving a candidate solution for α̂ = Pφ, this candidate is then used to fit the lower

values of φ̂. Similarly, φ̂ was fitted for upper values of demand, giving a candidate

solution for β̂, this candidate is then used to fit the upper values of ψ̂ = Qψ. The

results based on this process are summarized in Table 7.1 and Fig 7.2. Note that

these results agreed with the observation in the previous section and suggest that

the demand is not mean reverting, rather it is extreme avoiding.

It is important for the Equations 4.51, 4.54 to be hold whether we are using φ̂

or ψ̂. To test the coherence of the data, the size of the union and the intersection

of the points satisfying the two inequalities 4.51 and 4.54 should be compared. In

theory the number of points in the union should be equal the number of points in

the intersection. We find that for 4.51 the intersection is 98.45% of the union, while

for 4.54 the intersection is 99.95% of the union.
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Figure 7.2: Construction of φ̂ and ψ̂.

7.2 Finding the boundaries to fill/empty a stor-

age technology

Now that we have the empirical data, we can find the filling boundary of a CAES

technology in the case of one single cycle and the results are summarized in Table

7.2. In this case the empting boundary for all efficiencies is b? = 53466 MW, which

correspond to an approximate selling price of p = £58.00 /MWh. Assuming the

facility will sell electricity at p, the results shows an upper bound constant buying

price for all efficiencies to be £43.73 /MWh, that is the marginal cost of coal plants

(Aberthaw7, Aberthaw8 and Aberthaw9). The presented value is presented in Fig

7.3.

To investigate the multiple case use of the technology, Algorithm 2 is used with

the round trip efficiency set as η = 0.90, which is less that than the one used in the

case of the theoretical OU process. A grid precision of ∆x = 1MW is used and the

results are displayed Table 7.3. The first run of the algorithm gives the candidate
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η B?(£) a? (MW ) A? E(b?)(£) F (a?)(£) Price (£/MWh)

0.74 12169 20776 79 12234 12028 40.73

0.79 12991 20816 893 13060 12033 40.73

0.84 13814 20856 1707 13887 12039 40.73

0.89 14636 20886 2522 14714 12043 40.73

0.94 15458 20916 3337 15540 12047 40.73

0.99 16280 20946 4152 16367 12051 40.73

Table 7.2: The upper bound of CAES technology for different efficiencies, b? = 53466
MW for all efficiencies.

Figure 7.3: The present value for CAES technology for different efficiencies.

boundary value of a = 33451MW and b = 42781MW , however this solution leave

the interval [28121.32571] where filling is sub-optimal. Repeating the algorithm to

cover delivers a poor fit since there is not a meeting point of lA (u) and lB (u).

Given there is no solution here we adopt the candidate solution a = 24293MW ,

b = 44677MW .

To check the optimality of this solution, we consider the following strategy to

trigger the filling and emptying of the CAES facility. The filling will take place

when demand net wind is in [20156, 24293], while emptying will take a place when
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u 24293 33419

lA (u) 44677.2069 42807.25

lB (u) 44677.2048 42805.5

% D 4.5× 10−6 -0.004

a 24293 33419

b 44677 42807

A 1230671.8 2184098.3

B 1244447.7 2198884.5

Bψ (a)− F (a) 1231146.71 2184348.2

Aφ (a) 1231146.71 2184348.2

% D 1.9× 10−14 2.1× 10−14

Bψ
′
(a)− F ′ (a) -0.13574 -0.0253

Aφ
′
(a) -0.13574 -0.0253

% D 0.0 1.4× 10−14

Bψ (b) 1244533.08 2198928.7

Aφ (b) + E (b) 1244532.32 2197833.8

% D 6.1× 10−5 0.0498

Bψ
′
(b) 0.0384 0.04803

Aφ
′
(b) + E

′
(b) 0.0385 0.04807

% D 0.138 0.085

Table 7.3: Candidate solution to the storage problem.

demand net wind is in [44677, 54093]. The data for winter of 2013-2014 and of 2014-

2015 was used and the facility started both seasons in the ’Empty’ state and if it

was full at the end of the season, its inventory value was based on emptying the

technology at the emptying boundary b. The cost of filling was determined using

the function F identified in Fig 6.2, while the value of emptying was determined

by using E (x) = F (x) × η. For example, the cost of filling the facility at the

candidate value of a = 24293 MW is 12, 762.62 whereas the value of emptying at

b = 44677 MW is 13, 955.14. On this basis the candidate strategy gives a net present

value for the facility over two winter seasons as 47, 113.59, with the optimal strategy

being a? = 24000 MW and b? = 40800 MW with a net present value of 50, 295.41.

A contour plot showing these results presented in Fig 7.4. From the contour plot

we can note that strategies with an discharging point around 40800 MW performed
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significantly better than those discharging above 41000 MW . This can be explained

by the fact that the test data included weekends and the Christmas period, and

strategies discharging at around 40800 MW were able to cycle over these holidays,

generating additional value. Repeating the experiment excluding holidays resulted

in a net present value of the candidate strategy of 40, 148.84 while the empirically

optimal strategy was identified as a? = 24600MW and b? = 42, 900 MW with a

net present value of 44, 514.16. The contour plot without holidays and weekends is

shown in Fig 7.5.

The empirical optimal strategies and optimal candidate strategies are compared

in Figures 7.6, 7.7, 7.8 and 7.9. The cumulative NPV of winter season of 2013-2014

and 2014-2015 are shown respectively in Fig 7.10. The interesting observation is that

it has been a significant increase in the number of strategies or the filling/emptying

times of the storage facility in November 2014 comparing with November 2013, and

that also could be observed comparing December 2013 with December 2014.

In winter of 2013-2015 a total of 20 filling and emptying empirical optimal strat-

egy gives a cumulative NPV of £18698, and a total of 16 optimal candidate strategies

gives a cumulative NPV of £18850. While during the winter of 2014-2015 a total

of 29 filling and emptying empirical optimal strategy gives a cumulative NPV of

£44514, and a total of 17 optimal candidate strategies give a cumulative NPV of

£40140.
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Figure 7.4: Contour plot showing values for different strategies. The empirically
optimal strategy identifies by the blue dot, with value £50295, the green dot is the
candidate strategy, with value £47114.

7.3 Conclusion

The candidate strategy does not appear to be optimal. However there are a number

of points to consider in assessing the effectiveness of the methodology.

The algorithm did not identify an optimal solution. There is no meeting point of

lA and lB, they only come very close. The results, both empirically optimal and the

candidate strategy sit on a“plateau” suggesting that there is no optimal fill/empty

pair. This reflect the fact that all the optimal emptying points lay in the demand

range of 40-45 GW, which, with reference to the merit order curve, corresponds to a

fairly constant marginal price of power. This interval is supplied by Combined Cycle

Gas Turbines. More careful construction of the functions F and E might resolve this

problem if necessary.

The data is not Markovian. The methodology rests on the assumption that the

data is Markovian and the underlying diffusion is time-homogeneous; this is not
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Figure 7.5: Contour plot showing values for different strategies, without holidays.
The empirically optimal strategy identifies by the blue dot, with value £44514, the
green dot is the candidate strategy, with value £40149.

the case. This assumption is the cost of a relatively straightforward methodology.

The impact is that the periodicity of demand is not encoded in φ and ψ, and this

results in the algorithm under-estimating the number of cycles the demand will pass

through.

The observer results are subject to experimental error. We are only testing

against two seasons. Over 2013-2014 the empirically optimal strategy under-performs

the candidate strategy £18698 to £18850, while performing significantly better in

2014-2015, £44515 to £40149.
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Figure 7.6: Empirical optimal (EO) and optimal candidate (OC) strategies, 11/2013-
12/2013.
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Figure 7.7: Empirical optimal and optimal candidate strategies, 01/2014-02/2014.
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Figure 7.8: Empirical optimal and optimal candidate strategies, 11/2014-12/2014.

125



Chapter 7: An empirical study

Figure 7.9: Empirical optimal and optimal candidate strategies, 01/2015-02/2015.

126



Chapter 7: An empirical study

Figure 7.10: Cumulative NPV of CAES, EO vs OC for Winter 2013-2014 and 2014-
2015.
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Conclusions and future work

8.1 Conclusions

The thesis presents a methodology for assessing the economic impact of power stor-

age facilities that can be used by policy makers, in the spirit of the recommendations

in [[119], 5.2.2]. The methodology identifies a viable optimal stopping strategy and

by reflecting on the data it is suggested, that in the case considered, no actual

optimal strategy exists.

The attributes of a good model in policy making are identified as ease of main-

tenance, adaptability and ease of interpretation at the expense of a loss of precision.

This rule out many novel techniques that identify optimal strategies, those are com-

plex and only really suitable for plant managers. We suggest that the main benefit

of the methodology we present is that, while built of sophisticated mathematics, it

only requires an understanding of calculus and the ability to implement the central

algorithm.

The strategy identified is naive, and could be inferred by searching through sim-

ple entry and exit strategies, as we did in testing the optimality of our strategy.

However, such an approach would not identify the existence of more complex, and

better, strategies that involve discontinuous charging and discharging regions. This

situation should not be disregarded given the staircase nature of the pay-offs en-

countered in the problem.

We note that the optimal strategy for the CAES plant is based on nightday ar-
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bitrage and does not appear to address the issue of variable wind generation. This

is not an unusual result, the explanation being that wind is not that volatile: there

are periods when the weather is windy and periods when it is not, and within these

periods, lasting a few days, wind power generation is largely predictable. This sug-

gests that the relevant power storage technology to address wind variability needs

to be very large capacity that can store excess power generated over days and is

able to compensate for similar periods of low wind power generation. These sug-

gest focusing on hydro/pumped storage technologies, rather than chemical storage

technologies, with significant capital costs. This presents the policy makers with the

challenge of establishing a regulatory framework that incentives investment in such

plant. The simplicity and flexibility of the methodology we present would play a

part in taking on this challenge.

On this basis, we believe the utility of this methodology is in, for example: assess-

ing the potential impact of feed in tariff levels in improving the economic viability

of storage in supporting the integration of renewable electricity generation onto the

grid; as part of studying capacity payments; or, to investigate what technological

developments need supporting.

An important feature of the methodology used in Chapter 7 is that it is not

based on identifying a particular Itô process driving the model; rather the analysis

is based solely on empirical data. This approach, which mitigates for model risk, is

shown to be better, in this case, than the standard approach of identifying an Itô

process to which the observed data is calibrated.

While the methodology has been developed with a particular application in mind,

it has broader utility in employing the standard theory of optimal stopping in other

situations where the driving process cannot be easily identified.

8.2 Future extension

The methodology we studied in this thesis is based on a number of assumptions.

We considered an Ornstein Uhlenbeck process for the dynamics of net demand, a

continuous time homogeneous Markov process. In contrast, its discrete counterpart

129



Chapter 8: Conclusions and future work

of autoregressive processes (AR(1)) may well present the dynamics of net demand.

Though the theory of optimal stopping is not mature for AR(1), however, some

existing results ([33]) might be a starting point.

In terms of the electricity market assumptions, we considered an approximation

method (merit order curve approximation) for electricity prices based on the mar-

ket under BETTA in 2012; however from autumn 2013 the UK market had some

changes under the EMR like assuming the capacity market and the contract for

difference (CfDs). These mechanisms will play an important role on the electricity

prices, therefore for future studies, these should be taken into account. A perfect

competitive market under which this study based on, may not be realistic, rather a

model that takes into account the different agents participating in the market is a

good extension, and here we recommend the use of agent modelling approach.

The main assumption on modelling the storage was to consider a ”bang bang

control”. However a study that includes inventory is needed. A future extension to

this work is to assume the costs of charging/discharging are related to the level of

charge and Z ∈ [0, 1] instead of assuming Z ∈ {0, 1}.
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a one-dimensional itô diffusion. Unpublished manuscript, 2006.

[85] John DC Little. The use of storage water in a hydroelectric system. Journal

of the Operations Research Society of America, 3(2):187–197, 1955.

[86] Rodica Loisel, Arnaud Mercier, Christoph Gatzen, Nick Elms, and Hrvoje

Petric. Valuation framework for large scale electricity storage in a case with

wind curtailment. Energy Policy, 38(11):7323–7337, 2010.

[87] Julio J Lucia and Eduardo S Schwartz. Electricity prices and power derivatives:

Evidence from the nordic power exchange. Review of derivatives research,

5(1):5–50, 2002.

[88] Henrik Lund, Georges Salgi, Brian Elmegaard, and Anders N Andersen. Opti-

mal operation strategies of compressed air energy storage (caes) on electricity

139



BIBLIOGRAPHY

spot markets with fluctuating prices. Applied thermal engineering, 29(5):799–

806, 2009.

[89] Xing Luo, Jihong Wang, Mark Dooner, and Jonathan Clarke. Overview of cur-

rent development in electrical energy storage technologies and the application

potential in power system operation. Applied Energy, 137:511–536, 2015.

[90] Johnson Timothy C M. Zervos and F. Alazemi. Buy-low and sell-high invest-

ment strategies. Mathematical Finance, 23(3):560–785, 2013.

[91] Irene A. Stegun Milton Abramowitz. Handbook of Mathematical Functions

with formulas, Graphs and Mathematical Tables. New York, Dover, 1965.

[92] Santiago Miret. Storage wars: Batteries vs. supercapacitors. Berkeley Energy

and Resources Collaborative, November, 10, 2013.

[93] Pedram Mokrian and Moff Stephen. A stochastic programming framework for

the valuation of electricity storage. In 26th USAEE/IAEE North American

Conference, pages 24–27, 2006.

[94] John Moriarty and Jan Palczewski. American call options for power system

balancing. Available at SSRN 2508258, 2014.

[95] DT Nguyen. The problems of peak loads and inventories. The Bell Journal

of Economics, pages 242–248, 1976.

[96] DT Nguyen. The problems of peak loads and inventories. The Bell Journal

of Economics, pages 242–248, 1976.

[97] Batsaikhan Nyamdash and Eleanor Denny. The impact of electricity storage

on wholesale electricity prices. Energy policy, 58:6–16, 2013.

[98] Batsaikhan Nyamdash, Eleanor Denny, and Mark OMalley. The viability of

balancing wind generation with large scale energy storage. Energy Policy,

38(11):7200–7208, 2010.

[99] Reikvam Kristin Oksendal, Bernt. Viscosity solutions of optimal stopping

problems. Stochastics and Stochastic Reports, 62(3-4):285–301, 1998.

140



BIBLIOGRAPHY

[100] Goran Peskir and Albert Shiryaev. Optimal stopping and free-boundary prob-

lems. Springer, 2006.

[101] Huyên Pham. Continuous-time stochastic control and optimization with finan-

cial applications, volume 61. Springer, 2009.

[102] Craig Pirrong and Martin Jermakyan. The price of power: The valuation of

power and weather derivatives. Journal of Banking & Finance, 32(12):2520–

2529, 2008.

[103] Philip E Protter. Stochastic integration and differential equations, volume 21.

Springer, 2013.

[104] DM Rastler. Electricity energy storage technology options: a white paper

primer on applications, costs and benefits. Electric Power Research Institute,

2010.

[105] L Chris G Rogers and David Williams. Diffusions, Markov processes and

martingales: Volume 2, Itô calculus, volume 2. Cambridge university press,

2000.

[106] Paavo Salminen. Optimal stopping of one-dimensional diffusions. Mathema-

tische Nachrichten, 124(1):85–101, 1985.

[107] Eduardo Schwartz and James E Smith. Short-term variations and long-term

dynamics in commodity prices. Management Science, 46(7):893–911, 2000.

[108] Petter Skantze, Andrej Gubina, and Marija Ilic. Bid-based stochastic model

for electricity prices: the impact of fundamental drivers on market dynamics.

In Energy Laboratory Publications MIT EL 00-004, Massachusetts Institute of

Technology. Citeseer, 2000.

[109] Bjarne Steffen and Christoph Weber. Efficient storage capacity in power sys-

tems with thermal and renewable generation. Energy Economics, 36:556–567,

2013.

141



BIBLIOGRAPHY

[110] Matt Thompson, Matt Davison, and Henning Rasmussen. Natural gas stor-

age valuation and optimization: A real options application. Naval Research

Logistics (NRL), 56(3):226–238, 2009.

[111] Francesco Tricomi. Sulle funzioni ipergeometriche confluenti. Annali di

Matematica Pura ed Applicata, 26(1):141–175, 1947.

[112] Antony Ware. Accurate semi-lagrangian time stepping for stochastic optimal

control problems with application to the valuation of natural gas storage.

SIAM Journal on Financial Mathematics, 4(1):427–451, 2013.

[113] Heinrich Weber. Ueber die integration der partiellen differentialgleichung.

Mathematische Annalen, 1(1):1–36, 1869.

[114] Rafa l Weron, Michael Bierbrauer, and Stefan Trück. Modeling electricity

prices: jump diffusion and regime switching. Physica A: Statistical Mechanics

and its Applications, 336(1):39–48, 2004.

[115] Ian Allan Grant Wilson, Peter G McGregor, and Peter J Hall. Energy storage

in the uk electrical network: Estimation of the scale and review of technology

options. Energy Policy, 38(8):4099–4106, 2010.

[116] Xiaomin Xi, Ramteen Sioshansi, and Vincenzo Marano. A stochastic dynamic

programming model for co-optimization of distributed energy storage. Energy

Systems, 5(3):475–505, 2014.

[117] Ahmet Yucekaya. The operational economics of compressed air energy stor-

age systems under uncertainty. Renewable and Sustainable Energy Reviews,

22:298–305, 2013.

[118] Mihail Zervos. A problem of sequential entry and exit decisions combined

with discretionary stopping. SIAM Journal on Control and Optimization,

42(2):397–421, 2003.

[119] A Zucker, T Hinchliffe, and A Spisto. Assessing storage value in electricity

markets. JRC Scientific and Policy Report, 2013.

142


	Introduction
	Motivation
	Thesis contribution to knowledge
	Background
	Storage models
	Optimal stopping models
	Power price modelling

	Objectives
	Thesis outline

	The UK's power market
	British electricity trading and transmission arrangements (BETTA)
	Electricity market reform (EMR)
	Electricity generation mix
	Electricity demand and wind supply
	Electricity energy storage (EES)
	Classification of EES technologies 
	The role of EES


	Discretionary stopping problems
	Approach to solve discretionary stopping problems
	Notation
	The Itô diffusion and optimization problem
	The solution to the associated ODE 


	Approach to assess the economics of power storage
	The model formulation
	Emptying a one-use time facility 
	Filling and emptying a one-use time facility 
	The sequential filling/emptying time facility
	Finding boundaries for a single diffusion
	Finding boundaries for two diffusions

	Example
	Notes

	Understanding UK's power prices
	Analysing UK's electricity demand
	 and  for Ornstein-Uhlenbeck process
	 and  for Feller process (CIR)
	Preparing power demand data
	Calibrating Ornstein-Uhlenbeck process
	Calibrating Feller process

	Merit order curve ``stack model"
	Fuel prices
	Carbon emission
	Thermal efficiency
	Short run marginal cost
	Merit order curve (MOC)

	Mapping demand to prices


	Case study: Evaluation of Compressed Air Energy Storage in UK's power market
	Generation of the payoff of emptying and cost of filling functions.
	Intra-filling/emptying for CAES technology
	Pure exit
	Pure day entry and exit
	Pure night entry and exit
	Sequential entry and exit

	Night filling/ day emptying for CAES technology

	An empirical study
	Implementation
	Finding the boundaries to fill/empty a storage technology
	Conclusion

	Conclusions and future work
	Conclusions
	Future extension

	Bibliography

