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Smart charging for electric vehicles to minimize charging cost 

Yue Wang1, David Infield, Simon Gill 

Electronic and Electrical Engineering, University of Strathclyde, UK  
 

Abstract 

This paper assumes a smart grid framework where the driving patterns for electric vehicles 

are known, time variations in electricity prices are communicated to householders, and data 

on voltage variation throughout the distribution system is available. Based on this 

information an aggregator with access to this data can be employed to minimize EV owner 

charging costs whilst maintaining acceptable distribution system voltages. In this study EV 

charging is assumed to take place only in the home. A single-phase LV distribution network 

is investigated where the local EV penetration level is assumed to be 100%. EV use patterns 

have been extracted from the UK Time of Use Survey data with 10-minute resolution and the 

domestic base load is generated from an existing public domain model. Apart from the 

so-called real time price signal, which is derived from the electricity system wholesale price, 

the cost of battery degradation is also considered in the optimal scheduling of EV charging. A 

simple and effective heuristic method is proposed to minimize the EV charging cost whilst 

satisfying the requirement of state of charge for the EV battery. A simulation in OpenDSS 

over a period of 24 hours has been implemented, taking care of the network constraints for 

voltage level at the customer connection points. The optimization results are compared with 

those obtained using dynamic optimal power flow. 
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Introduction 

The global target to achieve decarbonisation together with future limitations in fossil fuel 

resources has resulted in an increasing interest in electric vehicles (EV). Significant growth in 

EV usage will place significant demands on the power system. The additional power demand 

due to uncontrolled residential EV charging during weekdays coincides almost exactly with 

the daily load peak in the early evening, [1], and this will stress the distribution power system 

to an unacceptable extent as the number of EVs increases. Smart charging of EVs has the 

potential to mitigate these problems by shifting the charging load to a low demand period; 

this has the added benefit of reducing the EV charging cost to the vehicle owner. 

A joint optimal power flow (OPF)-EV charging optimization problem is presented in [2], 

where the optimal EV charging is characterised as a valley-filling target. Both offline and 

online algorithms are proposed here, and the performance of the online algorithms is near 

optimal based on the offline valley-filling profiles. To improve power system asset 

utilization, the EV charging power in [3] is controlled to minimize the deviation of the 

instantaneous load from the average daily demand. Actions proposed in both [2] and [3] 
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would have a direct effect on smoothing the daily demand curve and therefore also the 

voltage profile. 

Richardson et al., [4], focus more on the primary function for EVs as transportation by 

maximizing the power delivery to EVs during the available charging period while operating 

within the network limits. Here linear network sensitivity is assumed between the network 

operation parameters, including nodal voltage and line thermal loading, and the addition of 

EV loads. 

Three smart charging algorithms including price based, load based and regulation 

participation based are proposed in [5] to maximize the profits to the aggregator. This work 

assumes that aggregator income comes from both power delivery to the EVs and regulation 

service provision, and as a result the aggregator would try to arrange as much EV charging as 

possible. Reference [6] also focuses on the aggregator by minimizing the deviation between 

the energy bought in by the aggregator and the energy consumed by EVs at each time step, 

using EV charging power control. On completion of scheduling of the EV charging, any 

power network violations are then resolved by iteratively decreasing the load on the 

problematic buses in 10% steps. 

A rolling optimization approach is proposed in [7], in which a moving window of length 12 

hours achieves the local minimization of EV charging cost and then advances into the next 

period, sliding with a step of 30 minutes, until the simulation period of 24 hours is completed. 

Here the load flow is performed via an inverted Jacobian matrix, which relates the current 

change in each specific node to the voltage changes in all the nodes including the one under 

consideration. Mocci et al. introduces a master agent and sub-agent control scheme in [8], 

where the aggregator works as master agent and each single EV is regarded as individual 

sub-agent. In response to the requirement from the distribution network operator, the master 

agent then schedules each sub-agent to achieve the objective of charging cost minimization. 

A penalty term that defines the cost of deviating from the average behaviour of the other 

sub-agents is introduced in the objective function to coordinate the sub-agents performance. 

A multi-agent system based coordination of EV charging is presented in [9] and [10], where a 

hierarchical architecture consisting of regional aggregator agent, local aggregator agent and 

EV agent is proposed. These agents, together with the distribution system operator, 

coordinate among each other to minimise the EV charging cost using hourly data resolution. 

A search algorithm is employed for EV charging scheduling, the computational complexity 

of which increases exponentially as a function of the investigated time stamps. This would 

cause a potential issue for detailed simulation with relatively high time resolution. 

The works mentioned above present smart EV charging approaches with different objectives, 

but none of them take account of the EV users’ requirement in terms of battery state of 

charge (SoC) level, with realistic vehicle use patterns, and the network operational limits 

simultaneously.  

A decentralised EV charging controller is proposed in [11] to optimize the charging 

current/power in order to meet the user’s requirement, and ensure the battery’s state of health 
is protected and voltage level is maintained at the same time. However, the proposed 

controller is only applied to a single EV in the studied network. The potential conflicts due to 

interference among multiple EV controllers, in particular those connected to the same feeder, 

have not been investigated. These considerations are also taken into account by [12], which 

aims at a flat aggregated demand profile by coordinating the response from flexible EVs and 

local renewable generation. A dynamic virtual pricing mechanism is adopted to achieve this 

target, but the price signal does not reflect realistic market arrangements. 



This paper proposes a simple and effective heuristic method to minimize the EV charging 

cost whilst satisfying both the SoC requirement for EV battery and the normal operation of 

the investigated distribution network. The setting of the lower bound for battery state of 

charge (SoC) level has been paid special attention, in particular when there are further 

journeys to be made. EV use patterns have been extracted from the UK Time of Use Survey 

(TUS) data to with 10-minute resolution. The price signal used here is derived from the 

electricity system wholesale price, which provides a true representation of actual market 

arrangements. 

Optimization model 

The smart charging of EVs in this work is explored in the context of a smart grid 

environment where an aggregator is employed to collect information from individual EV 

owners and help them make decisions regarding EV charging action in response to a real time 

price (RTP) signal. Under such a conceptual framework it is assumed that the EV owners 

submit their EV usage data for the next day to the aggregator, who then schedules the EV 

charging profiles accordingly on a daily basis. The communication facilities between the 

aggregator and individual EV owners, as well as the charging interface at each of the 

individual households that automatically changes the charging rate according to the demand 

set by the aggregator, are assumed to be available as part of the smart grid infrastructure. 

The objective function is expressed in Equation (1) as a charging cost minimization problem 

across the whole period of simulation covering all the EVs : 

min ൛σ σ ሺ ௜ܲ ൅ ே௝ୀଵ௜்ୀଵݐ௜ǡ௝οݔሻߟܥ ൟ (1) 
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where ௜ܲ is the RTP signal that varies with time ݅, and C represents the battery degradation 

cost rate in £/kWh. Parameter ݔ௜ǡ௝ represents the EV charging rate for the jth connected EV 

at the ith time index. The charging rate is assumed in this study to be constant for each time 

period of duration οݐ, rather than the standard process of constant current followed by 

constant voltage. T and N represent the total number of time steps of the simulation and 

number of EVs respectively. 

The constraints that the objective function in Equation (1) is subject to are listed in Equations 

(2) to (6), where ݔ௠௔௫ in Equation (2) indicates the upper bound of EV charging rate. As 

will be presented in the next section, the charging rate with this method will take discrete 

values, i.e. either 0 or ݔ௠௔௫, rather than a continuous range of values within the specified 

range. The energy required by the battery is almost always a non-integer multiple of the 

equivalent charging rate ݔ௠௔௫ߟ for each charging period οݐ, where ߟ is the charging 

efficiency. To ensure a 100% SoC level by the end of the charging period, the last scheduled 

point of charge is modified to a lower charging rate.  



The SoC range at each time stamp is limited as in Equation (3), where the lower bound, ܵܥ݋௜௠௜௡, is defined in Equation (4). If no further journeys are planned, ܵܥ݋௜௠௜௡ is set to ܵܥ݋௠௜௡. When further journeys do take place, ܵܥ݋௜௠௜௡ is determined by comparing ܵܥ݋௠௜௡ 

with ்ܵܥ݋௢஽ െ ሺܶܦ݋ െ ݅ሻݔ௠௔௫οߟݐ, and taking whichever is larger. The latter term is to 

make sure that the required SoC level by the time of departure, ்ܵܥ݋௢஽, can be achieved by 

charging from the ith time stamp, hence ensuring the EVs’ primary function for 
transportation. The EVs are assumed to be connected to the grid immediately after arriving at 

a charging place at time ߙ, with initial battery energy ܵܥ݋ఈ, until the final departure time at ߚ. Only home place charging is considered in this work. Equation (5) assures that the battery 

is fully charged for each individual EVs by the end of the scheduling period. The network 

constraint in terms of the voltage limitation at the ith time stamp for the nth customer 

connection point (CCP) is taken into account by Equation (6). 

Implementation of the optimization 

Equation (1) is in the form of linear optimization, with the target of charging cost 

minimization driven by the time-varying equivalent charging price signal, G2Vequi as 

expressed in Equation (7).  GʹVୣ ୯୳୧ ൌ P୧ ൅ C(7) ߟ 

Most of the constraints are linear apart from the voltage limitation of Equation (6), which 

requires power flow that is naturally nonlinear. To calculate the voltage values involved, the 

so-called network sensitivity matrix is employed by works such as [4, 7, 8] as mentioned in 

the previous section, assuming local linearity between the nodal voltage and the additional 

EV loads. The sensitivity matrix requires updating for every new operating point to ensure 

accuracy, and this makes the optimization inefficient. A dedicated network simulator, Open 

Distribution System Simulator (OpenDSS), is used in this work to implement the power flow 

for low voltage residential households. Although the optimization efficiency is not of 

essential importance here, OpenDSS based power flow simulation would save huge efforts 

compared to the sensitivity matrix updating and definitely bring more accuracy to the voltage 

calculations.  

On top of the power flow calculation, a heuristic method is proposed to implement the smart 

charging target whilst satisfying the constraints regarding both battery SoC level and 

network. The method follows an intuitive idea of filling troughs of the price signal curve with 

EV charging. The process is undertaken in two steps as listed below: 

1) Schedule EV charging for each individual EV based on its availability and the price signal 

G2Vequi. 

The charging energy required is due to the EV’s daily driving consumption. To minimise 

the associated cost, the charging time slot with the lowest price value from G2Vequi, as 

expressed in Equation (7), is selected first, provided that the EV is parked at home at this 

specific time stamp. It should be noted that residential charging is the only charging option 

used in this work, and no other charging locations are considered here. This price valley 

filling continues until the EV becomes fully charged. Attention is required during the 

scheduling process to ensure the SoC level throughout the simulation always stays within 

the specified range. 

 

2) Spot and eliminate any violated voltage points resulting from the charging profiles. 

The total demand profiles that consist of the domestic base load (see Section ‘Network 
layout and parameter setting’ for details) and the EV charging load for individual 



households are fed into the distribution network model using OpenDSS. Any detected 

(lower bound) voltage violations is then resolved by repetitively running the OpenDSS 

simulation, in each round of which any points with voltage violations are excluded from 

the (charging) scheduling list in order from upstream to downstream households, and the 

same rule as described in Step 1 is used for EV charging profile generation. The OpenDSS 

simulation continues until the criteria, as specified in Equation (6), is met.  

Distribution network case study 

Implementation of the proposed smart charging method is presented in this section using a 

case study of a typical domestic distribution network in the UK, in which the weekday RTP 

signal is used and the UK Time of Use Survey (TUS) data is used to provide the EV driving 

patterns and charging availability for a typical weekday. It should be noted that the RTP is an 

hourly based signal and the data resolution of TUS data is 10 minutes, and to deal with this 

difference in data resolution at each 10 minute period the price signal will be interpolated 

(linearly) from the hourly data available. 

Real time price (RTP) signal 

The online valley-filling algorithm in [2] adopts a constant pricing scheme, which is 

infeasible under the smart grid environment. The wholesale electricity price on the other hand 

is a popular choice for EV charging scheduling, either day-ahead price as in [5] or intra-day 

price as in [7], due to the fact that it directly reflects the supply-demand relationship in 

electricity market. The RTP signal is recognized to improve the performance of wholesale 

electricity market by mitigating market power and price volatility, [13]. A range of Real Time 

Pricing tariffs are presented in [13], where the wholesale electricity price is passed on to the 

customers together with some usage rate to recover the transmission and distribution costs. 

The RTP signal is derived by scaling the original wholesale electricity price to account for 

the proportion of this price that comprises the total customers’ bill. In this work the RTP 

signal, ௜ܲ, is obtained by dividing the wholesale signal by 0.43 to reflect the usage rate, in 

line with the Ofgem statistics for 2013, [14].   

 

Figure 1. The UK day-ahead electricity price and associated national demand curve 

The UK day-ahead electricity price for a typical January weekday from N2EX, [15], which is 

an electricity exchange launched in 2010, is illustrated in Figure 1 together with the 
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corresponding national demand curve. The price signal for scheduling EV charging, G2Vequi, 

can then be calculated using Equation (7). The high correlation observed in Figure 1 between 

the price and demand curve indicates that by responding to the RTP signals the EV charging 

load would be scheduled to periods of low load. Cost minimization based EV charging would 

therefore smooth out the national demand curve. 

EV usage pattern 

The UK 2000 Time Use Survey records the daily activities for householders on a 10-minute 

basis, [16]. This data can be processed in terms of car (here assumed to be EV) using patterns 

to four distinct states, namely ‘driving’, ‘parking at home’, ‘parking at workplace’ and 
‘parking at other places’, where other places include shopping centres, restaurants, etc. As 

such, the associated weekday TUS data is selected in this case. More details of the statistical 

characteristics of the TUS data can be found in [17]. 

Network layout and parameter setting 

A single-phase UK distribution network with 17 households, as illustrated in Figure 2, is 

employed to implement the proposed algorithm for minimizing EV charging cost. The worst 

case scenario of 100% EV penetration is investigated here, i.e. each individual household is 

equipped with an EV.  

Variable Value 

Simulation time steps 144 

Total number of EV 17 

Battery consumption rate due to driving 6.192kW 

Battery degradation cost (C) 0.028£/kWh 

Charging rate (ݔ௠௔௫) 3kW 

Charging efficiency (ߟ)  0.9  

Minimum SoC without further journeys (ܵܥ݋௠௜௡) 20% 

Minimum SoC before further journeys (்ܵܥ݋௢஽) 50% 

Voltage tolerance range ([ ௠ܸ௜௡,  ௠ܸ௔௫]) [-0.06, +0.10] p.u. 

Table 1. EV assumptions and model parameter setting 

The battery related assumptions and the parameter setting for the optimization function are 

listed in Table 1. The battery consumption rate of 6.192kW is the product of the speed 

assumption of 30mph, [18], and the electricity consumption figure of 12.0kWh/100km from 

the EV specification sheet of a BMW i3 model, [19]. According to the battery SoC constraint 

in Equation (5), EVs need to be fully charged by the morning departure, and the associated 

charging energy requirement due to driving can be calculated based on the EV driving pattern 

and the battery consumption rate as provided in this table. The battery degradation cost 

adopted here, which is 4.2 cent/kWh (2.8 pence/kWh) of throughput, is taken from the 

laboratory measurements based prediction in [20]. As has been mentioned in Section 

‘Optimization model’, a fixed charging rate is specified for the EVs, rather than a continuous 

range of values and the charging level here uses the same value as in [21], i.e. 3kW. It should 

be noted that when there are no further journeys to be taken on a given day, the threshold of 

20% for the minimum battery SoC value is set to prevent the battery from being 

over-discharged thereby causing disproportionate damage. The SoC level by departure time 

of further journeys has to reach as least 50% to ensure a minimal compromise of EVs’ 
primary function as transportation. In such cases, the lower SoC bound setting before 

departure needs to be adjusted according to Equation (4). All charging scheduling should 

satisfy the voltage tolerance range of [-0.06, +0.10] p.u. at low voltage level in the UK, [22]. 
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Figure 2. Single phase distribution network layout 

Results and discussions 

The simulated period in this study is 24 hours with a resolution of 10 minutes. The domestic 

base load for individual households is generated using the CREST model, [23], which is an 

open source tool that generates daily household electricity consumption based on a series of 

parameters, such as day of week, month of the year and active occupancies. A January 

weekday, which usually has the peak demand of the year, is chosen for this model to be 

consistent with the RTP signal selection, and a power factor of 0.9 is assumed for the 

domestic loads. 

The time series of the equivalent charging price signal, G2Vequi, is illustrated in Figure 3 

together with the EV state for an example household (Household 6), where the four EV states 

identified in Section ‘EV usage pattern’, ‘driving’ and ‘parking at home’ are illustrated as 1 
and 2 respectively. The remaining two states, ‘parking at workplace’ and ‘parking at other 
places’ which are not of interest here, are shown together as 0. According to Figure 2, the 

vehicle at Household 6 departs from home to work at 8am and arrives back at home at 

7:30pm, and then parks at home without any further journeys till next morning, which offers 

the flexibility of charging scheduling throughout the night when the price is low. The 

equivalent charging price signal shown in Figure 3 has been generated by extending the 

hourly signal to 10-minutes as described above, which are then used to guide charging 

scheduling for individual households according to the procedures outlined in Section 

‘Implementation of the optimization’. The associated results are illustrated in Figures 4 to 6 

and household 6 is selected for illustration purposes. 



 

Figure 3. Illustration of the equivalent prices and EV state for Household 6 

The three drops in SoC value in the battery SoC curve, as illustrated by the black dash-dot 

line, in Figure 4, are due to commuting consumption as indicated by the EV state in Figure 3. 

According to the charging rule in Section ‘Implementation of the optimization’, the first step 

is to schedule the charging power for the available period with lowest price until the EV is 

fully charged. The selected charging period for Household 6 (between 3am and 4:30am) with 

specified charging rate is illustrated in Figure 4 by the solid blue line, is calculated to bring 

the EV back to a fully charged state. The observation of lower charging rate of 0.52 kW at 

4:10am is to deal with the issue of SoC overspill issue as mentioned in Section ‘Optimization 
model’, and this point is selected due to its having the highest price value for the scheduled 

charging period. The corresponding voltage level, as shown by the blue solid curve in Figure 

5, however drops below the lower limit from 3:00am to 3:50am due to EV charging. Step 2 

then takes into account the voltage constraints by shifting the problematic charging period to 

the next cheapest price period that is available. By referring to both the price signal and the 

EV state in Figure 3, the EV profiles gets rescheduled, as shown by dashed green line in 

Figure 4, with the result that the corresponding voltage profile (dashed red line in Figure 5) 

shows no excursion. As such, the daily EV charging cost for Household 6 is optimized to 

£0.38.  

The optimized total EV charging cost within the simulation period of 24 hours for this 

investigated distribution network is £10.92. The figure before voltage constraints are taken 

into account is £10.82, which shows that meeting network constraints results in a small 

(0.9%) increase in costs. 
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Figure 4. Smart charging results for Household 6 

 

Figure 5. Voltage profile of charging scheduling for Household 6 

It should be noted that the assumption of the EV being fully charged by the morning 

departure is made here, and the 100% SoC level is guaranteed for individual households by 

the end of the scheduling period according to Equation (5), which ensures the same SoC level 

at the start and end of the simulated cycle of 24 hours period in this case. 

Figure 6 summarises the demand side response that can be provided by smart charging. By 

achieving the minimum cost, the total EV charging profile for the 17 households (dashed red 

curve) is spread across the trough of domestic base demand (solid blue curve). The EV 

penetration in this case is assumed to be 100%, which causes a higher recharging demand 

than the original domestic load peak. This is however not of concern since the associated 

voltage profiles are within limit, and the charging profiles would be less significant given a 

lower level of EV uptake. It is worth pointing out that the 100% EV penetration is only a 

local assumption, and the system wise EV uptake rate is assumed to be low enough to have 

little impact on the system price. 
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Figure 6. Aggregated demand curve for local distribution network 

 

Figure 7. Uncontrolled EV charging results 

Figure 7 shows the results from uncontrolled charging, where the EVs are assumed to 

connect to the grid and charge until full as soon as they arrive home. It can be seen that the 

aggregated demand due to uncontrolled charging coincides with the domestic base load and 

therefore causes voltage violation in more than 1/3 households in the local distribution 

network at around 6pm. The associated total EV charging cost for this network is £17.64, a 

62% increase on the smart charging case.  

12:00 18:00 00:00 06:00 12:00
0

5

10

15

20

25

30

35

40

45

Time

D
e
m

a
n
d
 o

f 
1
7
 h

o
u
s
e
h
o
ld

s
 (

k
W

)

 

 

domestic base load

EV profile

12:00 18:00 00:00 06:00 12:00

0

5

10

15

20

25

30

Time

D
e
m

a
n
d
 o

f 
1
7
 h

o
u
s
e
h
o
ld

s
 (

k
W

)

 

 

12:00 18:00 00:00 06:00 12:00
0

1

2

3

4

5

6

A
m

o
u
n
t 

o
f 

h
o
u
s
e
h
o
ld

s
 w

it
h
 v

o
lt
a
g
e
 v

io
la

ti
o
n

Domestic base load

EV demand

Voltage violation number



 

Figure 8. An example of meeting battery SoC requirement for further journeys 

The assumptions made in this work for EV related parameters, as listed in Table 1, result in 

the battery SoC of all the EVs, under the current use patterns, to be at a level above 50% after 

the completion of trips, which automatically satisfies the requirement for further journeys. A 

separate case study for Household 15 is used to demonstrate the capability of the proposed 

method to maintain the battery SoC level as required. This is shown in Figure 8, where a 

higher driving consumption rate is assumed and the vehicle use pattern is illustrated together 

with the associated battery SoC level. It can be seen that charging is scheduled for the period 

between 9:30pm and 10pm (as highlighted by the orange circle in the figure) to satisfy the 

lower SoC bound of 50% due to the subsequent journey on that day, i.e. before 00:00. It also 

becomes clear by comparing the use pattern in Figure 8 with the price signal in Figure 3 that 

this additional charging has been undertaken using the cheapest available electricity, and thus 

contributes to the optimization target. 

Result validation using Matpower 

It should be noted that the price signal based scheduling method of charging as described in 

Step 1 in Section ‘Implementation of the optimization’ guarantees the absolute minimization 

of energy cost, which is however sacrificed in a minor way by considering the voltage 

constraints as in Step 2. The replacement of the voltage violation points by less profitable 

options obviously increases charging cost above the optimized value, and the associated 

exclusion approach, which in this case is undertaken from upstream to downstream within the 

network, adds uncertainty to the final optimization results. A Matpower based dynamic 

optimal power flow approach is presented in this section to demonstrate the effectiveness of 

the proposed smart charging method. 

Matpower, [24], is developed as a Matlab based simulation tool dedicated for solving power 

flow and optimal power flow (OPF) for various network sizes and voltage levels. For a 

standard static OPF problem, a model including all the network elements is used to represent 

the power system at a single time point, where there are one reference bus, generators, 

transformers, transmission or/and distribution cables, fixed demands which are modelled as 

PQ buses, flexible demands which are modelled as generators with negative generation, or 

combinations of these.  
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The cost minimization problem here however requires a dynamic optimal power flow 

(DOPF) due to the fact that the objective function aims at the whole simulation time period 

and the associated battery SoC level for each individual EVs is linked throughout time. For 

instance, charging at a particular time will affect the battery SoC values for subsequent time 

points, each of which comes with specific SoC constraints depending on the EV status. As 

presented in [25, 26], the DOPF problem is modelled by replicating the static network 

structure and extending it along the time dimension to represent different time steps.  

 

 

 
(a) Static OPF (b) DOPF by network extension at multiple time steps 

Figure 9. DOPF concept illustration using a 3-bus system 

The concept of DOPF implementation is illustrated in Figure 9 using a 3-bus system, where 

bus 1, bus 2, and bus 3 represent a reference bus, a flexible bus which consists of a fixed load 

and flexible demand from an EV, and a fixed-load bus respectively, as shown in Figure 9(a). 

The individual replicas of network structure in the case of DOPF, as shown in Figure 9(b), 

are physically independent. During the implementation of optimization, the buses connected 

with flexible demands (Bus 2 in each network replicas) are coupled mathematically 

throughout time, as illustrated by the red line, using the constraint matrix in Matpower. As 

such, the original DOPF problem is in effect converted to a standard OPF with a network size 

T times the actual one, where T is the total number of simulation time steps, and the 

intertemporal interaction of each flexible demand is treated as bus variable manipulation in 

the newly generated large-scale network at one single time step.  

The optimization problem in this work is modelled by 144 (24 hours with 10 minutes 

simulation resolution) physically independent replicas of the network illustrated in Figure 2, 

each of which has its own reference bus. Since the local EV penetration is assume as 100%, 

each household bus in these 144 networks consists of a domestic base load, which is assumed 

inflexible here, and a flexible EV load, which offers the smart charging opportunity. The EV 

demand for the same bus at different time steps and the associated SoC constraints are taken 

in to account by the extended OPF.  
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A continuous charging rate with range 0-3kW is defined in the Matpower implementation. 

The ‘fmincon’ solver is chosen for this DOPF problem due to its good convergence 

performance for this case, and the interior point algorithm is used due to its capability of 

handling large-scale systems [27]. To avoid the local minima issue in the selected Matpower 

solver, multiple initial conditions are chosen and the ones with the best results gives a EV 

charging cost of £10.86 for the investigated distribution network, which is very close to the 

proposed heuristic solution to the smart charging case (£10.92), therefore demonstrating the 

effectiveness of the proposed method of EV charging cost minimization.  

Conclusions 

The effectiveness of the proposed heuristic method to minimize the EV charging cost has 

been demonstrated by comparison with results from DOPF. The SoC constraint ensures 

customer satisfaction, for cases both with and without further journeys after arriving at home, 

and the safe and acceptable operation of the network has also been guaranteed. Demand due 

to the smart charging has been shifted to the load trough, which avoids the network issue 

arising from uncontrolled charging, and the associated charging cost has been reduced 

significantly in relation to the uncontrolled charging case. 

Future work will explore the economic feasibility of grid service provision such as frequency 

support from EVs where bidirectional interaction between EVs and the grid will be assumed 

and battery degradation cost will be properly considered. 
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