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Squeeze-film flow between a curved impermeable bearing and a flat porous bed

D. J. Knox, B. R. Duffy, S. McKee, and S. K. Wilson
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Livingstone Tower, 26 Richmond Street, Glasgow G1 1XH, United Kingdom

(Dated: 13th May 2016, revised 19th September 2016)

Axisymmetric squeeze-film flow in the thin gap between a stationary flat thin porous bed and a

curved impermeable bearing moving under a prescribed constant load is analysed. The unsteady

Reynolds equation is formulated and solved for the fluid pressure. This solution is used to obtain

the time for the minimum fluid layer thickness to reduce to a given value, and, in particular, the

finite time for the bearing and the bed to come into contact. The effect of varying the shape of the

bearing and the permeability of the layer is investigated, and, in particular, it is found that both

the contact time and the fluid pressure behave qualitatively differently for beds with small and large

permeabilities. In addition, the paths of fluid particles initially situated in both the fluid layer and

the porous bed are calculated. In particular, it is shown that, unlike in the case of a flat bearing,

for a curved bearing there are fluid particles, initially situated in the fluid layer, that flow from the

fluid layer into the porous bed and then re-emerge into the fluid layer, and the region in which these

fluid particles are initially situated is determined.

I. INTRODUCTION

In our recent study (Knox et al.1) we gave a detailed analysis of the squeeze-film flow between a flat

impermeable surface moving under a prescribed constant load and a flat thin porous bed coating a stationary

flat impermeable surface. In particular, in this work we obtained an explicit expression for the finite time it

takes for the two surfaces to come into contact and analysed the fluid particle paths in both the fluid layer and

the porous bed. Our previous work was motivated by a desire for a better understanding of the biomechanics

of the human knee joint. Since the layers of cartilage that coat the femoral condyle and the tibial plateau

are elastic as well as porous, they tend to deform to produce an approximately uniform layer of fluid as they

are squeezed together (Weekley et al.2), and hence it was not unreasonable to consider the approach of two

flat surfaces as a first model for the knee. (See, for example, Knox3 for further details of previous work on

the mathematical modelling of both cartilage and the knee.) However, in addition to the human knee, porous

squeeze-film flow is also potentially relevant to a range of other situations, including the engagement of wet

porous clutch plates (Wu4), wet adhesion (Persson5,6), and macromolecule-coated colloids interacting with

mucus-coated surfaces (Swavola et al.7). In these and other contexts the shape of one or both surfaces can

play a significant role, and so in the present work we extend the analysis of Knox et al.1 to consider the

squeeze-film flow between a curved impermeable surface and a flat thin porous bed. Note that essentially the

same analysis also applies to the squeeze-film flow between a curved thin porous bed and a flat impermeable

surface.

Squeeze-film flow with one or two curved impermeable surfaces has, of course, been considered by many

previous authors. For example, in pioneering early work Brenner8 studied a sphere in a fluid approaching

(or retreating from) a flat surface, and Cox and Brenner9 obtained an asymptotic expansion for the force

on the sphere when the ratio of the fluid gap to the sphere radius is small. Subsequently, in an important

unifying contribution, Stone10 considered the squeeze-film flow of a more general smooth curved surface moving

towards a flat surface. In particular, he showed that the flatter the surface, the longer it takes to reach a

given gap thickness. In addition to the recent work by Knox et al.1, there has also been work on squeeze-film
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FIG. 1: The geometry of the problem.

flow with one or two porous surfaces by several previous authors. Wu11 (see also Prakash and Vij12 and the

review by Wu4) considered squeeze-film flow between two annular discs, one of which is coated with a porous

layer, and found that increasing the permeability of the layer reduces the normal force on the discs. Goren13

and Nir14 (see also the summary of previous work given in Table 1 in Ramon et al.15) calculated the force

required to pull a sphere away from contact with a thin porous membrane at a constant velocity, and found

that, unlike in the case of an impermeable membrane, the force is finite. In particular, Goren13 found that

the maximum value of the force does not occur when the sphere and the membrane are in contact. More

recently, Ramon et al.15 studied a particle with a more general shape approaching a thin porous membrane.

They showed that the particle attains a finite non-zero velocity as it sediments under gravity towards the

membrane, and hence that it comes into contact with the membrane in a finite time. They also showed that

spherical particles would approach the membrane at a greater velocity than flatter particles. Very recently,

Majhi et al.16 compared theoretical predictions for the normal force generated in constant-velocity porous

squeeze-film flow with experimental results obtained using materials commonly used in the manufacture of

composite materials.

The structure of the present work is as follows. The governing equations are derived in Section II and solved

(in terms of integrals) in Section III. The behaviour of the minimum fluid layer thickness and contact time,

the fluid pressure, and the fluid particle paths and penetration depths are discussed in Sections IV, V and VI,

respectively. Asymptotic solutions for the contact time in the limits of small and large permeability are given

in Section VII and Appendix A, respectively. Finally, concluding remarks are made in Section VIII.

II. MODEL FORMULATION

With reference to the geometry of the problem shown in Figure 1, consider unsteady axisymmetric flow in

the thin gap between a vertically moving rigid impermeable surface z = h(r, t), referred to hereafter as the

“bearing”, and a stationary flat rigid impermeable surface at z = −Hp coated with a thin rigid porous layer of

constant permeability k, porosity φ (0 < φ < 1) and thickness Hp, referred to hereafter as the “porous bed”,

where (r, θ, z) denotes the natural cylindrical polar coordinate system with the z-axis vertically upwards and

t denotes time. The fluid layer separating the bearing and the porous bed (i.e. the region 0 ≤ z ≤ h(r, t)) is
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filled with, and the porous bed (i.e. the region −Hp ≤ z ≤ 0) is saturated with, an incompressible Newtonian

fluid of constant density ρ and viscosity µ. The load acting vertically downwards through the bearing, denoted

by L = L(t) in Figure 1, may, in general, be prescribed as a function of t. However, for simplicity, in the

present work we consider only the particular case in which L is a prescribed constant force.

The thickness of the fluid layer is given by

h(r, t) = hmin(t) +H(r), (1)

where hmin = hmin(t) is the (unknown) minimum fluid layer thickness andH = H(r) ≥ 0, withH(0) = 0, is the

(prescribed) shape of the bearing. The initial minimum fluid layer thickness is denoted by hmin(0) = Hf (> 0).

Following Stone10, Skotheim and Mahadevan17 and Ramon et al.15, we consider smooth axisymmetric shapes

of the form

H(r) =
R
2n

( r

R

)2n

, (2)

where R is a radial distance associated with the bearing and the exponent n ≥ 1 is an integer. As n increases

H(r) becomes flatter for 0 ≤ r ≤ R and steeper for r > R, and thus in the limit n → ∞ the bearing given by

(2) approaches a flat disc of radius R, i.e. H(r) = 0 for 0 ≤ r ≤ R, and we recover the problem treated by

Knox et al.1.

A. Governing Equations

1. Lubrication Equations

We assume that the fluid layer and the porous bed are of comparable thickness (i.e. that Hf and Hp are

of the same order of magnitude) and that the aspect ratio of both, namely ǫ = Hp/l ≪ 1, and the (reduced)

Reynolds number for the flow in the fluid layer, namely R∗ = ǫ2ρV l/µ ≪ 1, where l is the characteristic radial

length scale and V is the characteristic radial fluid velocity scale, are both small. The flow in the fluid layer

satisfies the continuity and Navier–Stokes equations, and at leading order in the thin-film limit ǫ → 0 these

reduce to the classical lubrication equations,

∇ · v = 0,
∂p

∂r
= µ

∂2vr
∂z2

,
∂p

∂z
= 0, (3)

where v = (vr, 0, vz) is the fluid velocity and p = p(r, t) is the fluid pressure.

2. Darcy’s Law

The flow in the porous bed satisfies the continuity equation and Darcy’s law,

∇ · u = 0, u = −k

µ
∇P, (4)

where u = (ur, 0, uz) is the Darcy velocity and P = P (r, z, t) is the pore pressure. Since the aspect ratio for

the porous bed, namely ǫ = Hp/l ≪ 1, is assumed to be small, it can be shown (see, for example, Knox et al.1

and Hicks and Purvis18) that at leading order in the limit ǫ → 0 the solution of (4), subject to no-penetration

and continuity of normal stress boundary conditions at z = −Hp and z = 0, respectively, is

P = p(r, t), u = (ur, 0, uz) =
k

µ

(

−∂p

∂r
, 0,

Hp + z

r

∂

∂r

(

r
∂p

∂r

))

. (5)
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3. Load Condition

Neglecting inertial terms, the net force exerted on the bearing by the fluid must be equal to the prescribed

load L. Hence at leading order in the limit ǫ → 0 the load condition is

2π

∫

∞

0

pr dr = L. (6)

4. Boundary and Initial Conditions

On the lower surface of the bearing the usual no-slip and no-penetration conditions are

vr = 0 and vz =
dhmin

dt
on z = h. (7)

On the upper surface of the porous bed mass conservation requires that

vz = uz on z = 0. (8)

In addition, on this interface we allow for velocity slip with slip length ls = k1/2/α as described by the

Beavers–Joseph boundary condition

k1/2

α

∂vr
∂z

= vr − ur on z = 0, (9)

where α (> 0) is the dimensionless Beavers–Joseph constant (see, for example, Beavers and Joseph19 and

Nield20).

In the far field the pressure in the fluid layer takes its ambient value, which, without loss of generality, we

may take to be zero, i.e.

p → 0 as r → ∞, (10)

and on the axis of symmetry we impose the smoothness condition

∂p

∂r
= 0 at r = 0. (11)

The initial condition for the minimum fluid layer thickness is simply

hmin(0) = Hf . (12)

B. Non-dimensionalisation

We scale and non-dimensionalise the problem described in Subsection IIA using the characteristic radial

length scale l = R(2nHp/R)1/2n and the characteristic radial velocity scale V = LH2
p/µl

3 as follows:

r = R
(

2nHp

R

)1/2n

r′, z = Hpz
′, t =

µR4

LH2
p

(

2nHp

R

)2/n

t′,

h = Hph
′, hmin = Hph

′

min, H = HpH
′, k = H2

pk
′,

vr =
LH2

p

µR3

(

2nHp

R

)

−3/2n

v′r, vz =
LH3

p

µR4

(

2nHp

R

)

−2/n

v′z, ur =
LH2

p

µR3

(

2nHp

R

)

−3/2n

u′

r,

uz =
LH3

p

µR4

(

2nHp

R

)

−2/n

u′

z, p =
L

R2

(

2nHp

R

)

−1/n

p′, P =
L

R2

(

2nHp

R

)

−1/n

P ′,

(13)
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where dimensionless quantities are denoted by a prime (′).

Note that since the characteristic radial length scale l depends on n, the characteristic time, velocity and

pressure scales also depend on n. This can be inconvenient as it means that it is difficult to compare the

(dimensionless) solutions for these variables for different values of n. To avoid this difficulty we define a

second set of dimensionless variables obtained by using the radius R (which is independent of n) to be the

characteristic radial length scale, namely

r = Rr̄′, z = Hpz
′, t =

µR4

LH2
p

t̄′, h = Hph
′, hmin = Hph

′

min, H = HpH
′, k = H2

pk
′,

vr =
LH2

p

µR3
v̄′r, vz =

LH3
p

µR4
v̄′z, ur =

LH2
p

µR3
ū′

r, uz =
LH3

p

µR4
ū′

z, p =
L

R2
p̄′, P =

L

R2
P̄ ′,

(14)

which will be used when presenting the results obtained in Sections IV–VI. Henceforth we omit the primes

on dimensionless quantities for clarity.

When expressed in terms of the dimensionless variables (13), the continuity and lubrication equations (3),

the pore pressure and Darcy velocities (5), the load condition (6), and the boundary and initial conditions

(7)–(12) become

1

r

∂

∂r
(rvr) +

∂vz
∂z

= 0,
∂p

∂r
=

∂2vr
∂z2

,
∂p

∂z
= 0, (15)

P = p(r, t), u = (ur, 0, uz) = k

(

−∂p

∂r
, 0,

1 + z

r

∂

∂r

(

r
∂p

∂r

))

, (16)

2π

∫

∞

0

pr dr = 1, (17)

vr = 0, vz =
dhmin

dt
on z = h, (18)

vz = uz on z = 0, (19)

k1/2

α

∂vr
∂z

= vr − ur on z = 0, (20)

p → 0 as r → ∞, (21)

∂p

∂r
= 0 at r = 0, (22)

hmin(0) = d, where d =
Hf

Hp
, (23)

respectively.

C. Unsteady Reynolds Equation

Solving equations (15a) and (15b) for vr and vz subject to (18a), (19) and (20) using (16) yields

vr = −
(h− z)

[

(αh+ k1/2)z + k1/2(h+ 2αk1/2)
]

2(αh+ k1/2)

∂p

∂r
, (24)

vz =
F(h, z)

12r(αh+ k1/2)

∂

∂r

(

r
∂p

∂r

)

, (25)
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where the function F(h, z) is defined by

F(h, z) = 2(αh+ k1/2)(6k − z3) + 3α(h2 − 2k)z2 + 6k1/2h(h+ 2αk1/2)z. (26)

Substituting (25) into (18b) we obtain

dhmin

dt
=

1

12r

∂

∂r

(

r
[

h2(αh2 + 4k1/2h+ 6αk) + 12k(αh+ k1/2)
]

αh+ k1/2
∂p

∂r

)

, (27)

where the fluid layer thickness h = h(r, t) is given by

h = hmin(t) + r2n. (28)

The unsteady Reynolds equation (27) subject to the load condition (17), the pressure boundary conditions

(21) and (22), and the initial condition (23) determine p = p(r, t) and hmin = hmin(t).

III. GENERAL SOLUTION

Solving the unsteady Reynolds equation (27) subject to (21) and (22) yields an expression for the fluid

pressure p = p(r, t):

p = −6

(∫

∞

r

r̃(αh+ k1/2)

h2(αh2 + 4k1/2h+ 6αk) + 12k(αh+ k1/2)
dr̃

)

dhmin

dt
, (29)

where h = h(r̃, t) = hmin(t) + r̃2n. Applying (17) gives rise to a first-order ordinary differential equation for

the minimum fluid layer thickness hmin = hmin(t):

1 = −6π

(∫

∞

0

r̃3(αh+ k1/2)

h2(αh2 + 4k1/2h+ 6αk) + 12k(αh+ k1/2)
dr̃

)

dhmin

dt
, (30)

which when solved subject to (23) yields an explicit expression for the time for hmin to reduce to a given value

t = t(hmin):

t(hmin) = 6π

∫ d

hmin

∫

∞

0

r̃3(αh+ k1/2)

h2(αh2 + 4k1/2h+ 6αk) + 12k(αh+ k1/2)
dr̃ ds, (31)

where h = s+ r̃2n.

In the case of an impermeable bed, k = 0, the solutions for hmin = hmin(t) and p = p(r, t) are given by

hmin =







































d exp

(

− 2t

3π

)

when n = 1,

3πd

3π + 4dt
when n = 2,

(

d−2(n−1)/n +
2n2 sin(2π/n)

3π2(n− 2)
t

)−n/2(n−1)

when n ≥ 3,

(32)

and

p =











































hmin

π(hmin + r2)2
when n = 1,

1

2πh
1/2
min

[

3 tan−1

(

h
1/2
min

r2

)

− h
1/2
minr

2(5hmin + 3r4)

(hmin + r4)2

]

when n = 2,

2n3 sin(2π/n)h
(3n−2)/n
min

π2(n− 1)(n− 2)

∫

∞

r

r̃

(hmin + r̃2n)3
dr̃ when n ≥ 3.

(33)
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(a)

hmin

ln t̄
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(b)

hmin

ln t̄
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FIG. 2: (a) Plots of hmin given by (31) as a function of ln t̄ for (a) n = 1 and (b) n = 2 for k = 0, 10−4, 10−2, 10−1, 1 and

10 (solid lines), the small-k asymptotic solutions given by (66) for k = 10−4 (dotted lines), and the large-k asymptotic

solutions given by (A2) for n = 1 and (A7) for n = 2 for k = 10 (dashed lines).

The solution for hmin = hmin(t) given by (32) is equivalent21 to that given by Stone10.

In the case of a porous bed, k 6= 0, the integrals (29) and (31) were evaluated numerically. (The integral in

(31) may, in principle, be evaluated in closed form, but the resulting expression is unwieldy.)

For simplicity, in all of the plots presented in the present work we take d = 1 and α = 1.

IV. MINIMUM FLUID LAYER THICKNESS AND CONTACT TIME

Figure 2 shows hmin given by (31) plotted as a function of ln t̄ for various values of n and k. Figure 2 shows

that increasing k decreases t(hmin), i.e. decreases the time for the minimum fluid layer thickness to reduce to

a given value. Figure 2 also shows that for “small” values of k (specifically, for k = 0, 10−4, 10−2 and 10−1)

increasing n increases t(hmin), whereas for “large” values of k (specifically, for k = 1 and 10) increasing n

decreases t(hmin). Furthermore, Figure 2 shows that when the bed is porous the bearing and the bed always

come into contact in a finite time. This finite contact time is denoted by tc, and is given by setting hmin = 0

in (31) to yield

tc = 6π

∫ d

0

∫

∞

0

r̃3(αh+ k1/2)

h2(αh2 + 4k1/2h+ 6αk) + 12k(αh+ k1/2)
dr̃ ds, (34)

where again h = s+ r̃2n.

Figure 3 shows ln t̄c given by (34), where t̄c = (2nHp/R)2/ntc, plotted as a function of ln k for various

values of n and also, for comparison, the solution for a flat bearing given by equation (4.32) in Knox et al.1.

Figure 3 shows that, in agreement with Figure 2, increasing k decreases t̄c, and that when the permeability

k ≪ 1 is small increasing n increases t̄c, whereas when the permeability k ≫ 1 is large increasing n decreases

t̄c. This latter behaviour is confirmed by the asymptotic solutions in the small-k and the large-k limits

given subsequently in Section VII and Appendix A, respectively, which are also shown in Figures 2 and 3.

Furthermore, Figure 3 shows that as n increases from n = 1 to n = 10 the solution for ln t̄c becomes almost

indistinguishable from the solution for a flat bearing. The physical reason for this is simply that, as previously

pointed out in Section II, in the limit n → ∞ the shape of the bearing approaches a flat disc.
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ln k

ln t̄c

Increasing n

Increasing n

FIG. 3: Plots of ln t̄c given by (34) as a function of ln k for n = 1, 2, 3, 5 and 10 (solid lines), the small-k asymptotic

solutions given by (60) for n = 1 and n = 10 (dashed lines), the large-k asymptotic solutions given by (A4) for n = 1 and

(A8) for n = 10 (dotted lines), and the solution for a flat bearing given by equation (4.32) in Knox et al.1 (dash-dotted

line).

Figures 4.5–4.7 in Knox3 (omitted here for brevity) show plots of radial velocity profiles, v̄r and ūr, for

various values of α, n and k, and instantaneous streamlines for various values of n and k.

V. FLUID PRESSURE

Figure 4 shows ln p̄ given by (29) plotted as a function of r̄ for various values of n and k. Figure 4 shows

that increasing k decreases the maximum fluid pressure p̄max = p̄(0, t̄) = (2nHp/R)−1/npmax and distributes

the fluid pressure p̄ over a larger area. Furthermore, Figure 4 shows that increasing k decreases the temporal

variations in p̄. (In fact, as shown in Appendix A, p is independent of t at leading order in the limit k → ∞.)

Figures 4(a)–(d) show that for small values of k (specifically, for k = 0 and k = 10−2) increasing n decreases

p̄max and distributes p̄ over a larger area, whereas Figures 4(e) and 4(f) show that for large values of k

(specifically, for k = 5× 104) increasing n increases p̄max and concentrates p̄ over a smaller area. Again, this

behaviour is confirmed by the asymptotic solutions in the small-k and large-k limits given subsequently, which

are also shown in Figure 4.

Figure 5 shows ln p̄max plotted as a function of ln t̄ for various values of n and k. Figure 5 shows that for small

values of k the solution for p̄max as a function of t̄ has a maximum turning point. Specifically, p̄max increases

monotonically in time to its maximum value p̄⋆max, which it attains at some time t̄ = t̄⋆ satisfying 0 < t̄⋆ < t̄c,

and then decreases to its value at t̄ = t̄c. The physical reason for this is that, as the asymptotic solutions in

the small-k limit given subsequently show, the porous bed is effectively impermeable when hmin ≫ O(k1/3)

is sufficiently large, and the effects of k on p̄ become significant only when hmin = O(k1/3). Consequently,

p̄max increases monotonically in time when hmin ≫ O(k1/3), but when hmin = O(k1/3) the fluid volume flux

into the porous bed is sufficiently large that it causes a decrease in p̄max. Consequently p̄max = p̄max(t̄) does

not attain its maximum value p̄⋆max when t̄ = t̄c. As already mentioned in Section I, a similar observation

was made by Goren13, who found that the maximum value of the force required to pull a sphere away from

contact with a thin porous membrane does not occur when the sphere and the membrane are in contact.
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(a)

r̄

ln p̄

Increasing t̄

(b)

r̄

ln p̄

Increasing t̄

(c)

r̄

ln p̄

Increasing t̄

(d)

r̄

ln p̄

Increasing t̄

(e)

r̄

ln p̄

Increasing t̄

(f)

r̄

ln p̄

Increasing t̄

FIG. 4: Plots of ln p̄ given by (29) as a function of r̄ at the times when hmin = d, 3d/4, d/2, d/4 and 0 (solid lines), the

small-k asymptotic solutions given by (64) at the times when hmin = d and 0 in (c) and (d) (dashed lines), and the

large-k asymptotic solutions given by (A1) in (e) and (A6) in (f) (dashed lines) for (a) n = 1, k = 0, (b) n = 2, k = 0,

(c) n = 1, k = 10−2, (d) n = 2, k = 10−2, (e) n = 1, k = 5× 104, and (f) n = 2, k = 5× 104.

VI. FLUID PARTICLE PATHS AND PENETRATION DEPTHS

The path of a fluid particle initially situated at the point (r0, z0) (where r0 ≥ 0 and −1 ≤ z0 ≤ h(r0, 0)) is

denoted by (r, z), where r = r(t) and z = z(t) satisfy

dr

dt
= vr,

dz

dt
= vz (35)

in the fluid layer 0 ≤ z ≤ h, and

dr

dt
=

ur

φ
,

dz

dt
=

uz

φ
(36)
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(a)

ln p̄max

ln t̄

Increasing k

(b)

ln p̄max

ln t̄

Increasing k

FIG. 5: Plots of ln p̄max as a function of ln t̄ for (a) n = 1 and (b) n = 2 for k = 0, 10−4, 10−2, 10−1, 1 and 10 (solid

lines), the small-k asymptotic solutions given by (65) for k = 10−4 (dotted lines), and the large-k asymptotic solutions

given by (A5) for n = 1 and (A9) for n = 2 for k = 10 (dashed lines).

(a)

r̄

z

(b)

r̄

z

FIG. 6: Plots of the fluid particle paths, (r̄, z), in the case of an impermeable bed, k = 0, with r̄ = r̄(hmin) and

z = z(hmin) given by (37) and (38) for (r̄0, z0) = (0.04, 0.5), (0.08, 0.5), (0.12, 0.5), (0.16, 0.5) and (0.2, 0.5) for (a)

n = 1 and (b) n = 2.

in the porous bed −1 ≤ z ≤ 0.

Substituting (24), (25) and (29) into (35) and (36) and eliminating t, we obtain the equations

1

r

dr

dhmin
= − 3(h− z)[(αh+ k1/2)z + k1/2(h+ 2αk1/2)]

h2(αh2 + 4k1/2h+ 6αk) + 12k(αh+ k1/2)
, (37)

dz

dhmin
=

1

2r

∂

∂r

(

F(h, z)r2

h2(αh2 + 4k1/2h+ 6αk) + 12k(αh+ k1/2)

)

, (38)
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(a)

r̄

z

Γbed

Γpen

(b)

r̄

z

Γbed

Γpen

(c)

r̄

z

Γbed

Γpen

(d)

r̄

z

Γbed

Γpen

FIG. 7: Plots of the fluid particle paths, (r̄, z), in the case of a porous bed, k 6= 0, with r̄ = r̄(hmin) and z = z(hmin)

given by (37)–(40) (solid lines), and plots of the curves Γbed (thick dashed lines), Γpen (thick dotted lines), Γbed∗ (thin

dashed lines) and Γpen∗ (thin dotted lines) for (a) n = 1, k = 0.5, (b) n = 2, k = 0.5, (c) n = 1, k = 10, and (d) n = 2,

k = 10, when φ = 3/4.

in the fluid layer 0 ≤ z ≤ h, where the function F(h, z) is given by (26), and

1

r

dr

dhmin
= − 6k(αh+ k1/2)

φ
[

h2(αh2 + 4k1/2h+ 6αk) + 12k(αh+ k1/2)
] , (39)

1

1 + z

dz

dhmin
=

6k

φr

∂

∂r

(

(αh+ k1/2)r2

h2(αh2 + 4k1/2h+ 6αk) + 12k(αh+ k1/2)

)

, (40)

in the porous bed −1 ≤ z ≤ 0, subject to the initial conditions

r = r0 and z = z0 when hmin = d. (41)

The equations (37)–(40) were solved numerically.

Figure 6 shows the paths (r̄, z) taken by several fluid particles from their initial positions (r̄0, z0), where

r̄0 = (2nHp/R)1/2nr0, in the case of an impermeable bed for n = 1 and n = 2. In this case the fluid particles

are, of course, present in only the fluid layer.
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Figure 7 shows the paths taken by several fluid particles in the case of a porous bed for various values

of n and k. Figure 7 shows that there are three possible behaviours for the fluid particles that are initially

situated in the fluid layer: they can flow through the fluid layer without passing into the porous bed, they can

flow from the fluid layer into the porous bed, or they can flow from the fluid layer into the porous bed and

then re-emerge into the fluid layer. On the other hand, as Figure 7 also shows, there are only two possible

behaviours for the fluid particles initially situated in the porous bed: they can either flow through the porous

bed without passing into the fluid layer or they can flow from the porous bed into the fluid layer.

Also plotted in Figure 7 is the curve Γbed, which consists of the initial positions (r̄0, z0) of the fluid particles

that are situated on z = 0 when hmin = 0, i.e. when t̄ = t̄c. Fluid particles that are initially situated below

Γbed are in the porous bed when t̄ = t̄c, whereas fluid particles that are initially situated above Γbed are in the

fluid layer when t̄ = t̄c. Furthermore, Figure 7 shows that as k increases (with n fixed) or as n increases (with

k fixed) the area bounded by the curves Γbed, z = 0 and r = 0 increases, meaning that more fluid flows from

the fluid layer into the porous bed. Consequently, mass conservation requires that more fluid flows from the

porous bed into the fluid layer and thus the area of the finite region bounded by the curves Γbed and z = 0

also increases.

The final positions of the fluid particles that flow from the fluid layer into the porous bed and vice versa

are also of interest. Figure 7 also shows the curve Γpen, which consists of the final positions (r̄pen, zpen) =

(r̄(0), z(0)) of the fluid particles initially situated on z = 0. The curve Γpen shows the extent to which the

fluid particles initially situated in the fluid layer penetrate into the porous bed (the part of the curve below

z = 0) and the extent to which the fluid particles initially situated in the porous bed can penetrate into the

fluid layer (the part of the curve above z = 0). In particular, Figure 7 shows that as k increases the fluid

particles penetrate deeper and wider into the porous bed. Furthermore, Figure 7 also shows that the fluid

particle initially situated at (r̄0, z0) = (0, 0) is the one that penetrates deepest into the porous bed. Since

both the radial fluid velocity v̄r = 0 at r̄ = 0 and the radial Darcy velocity ūr = 0 at r̄ = 0 are zero for all

times, the fluid particles initially situated at r̄ = 0 move vertically downwards only. Thus setting r = 0 in

(40) and solving the resulting equation for z(hmin) subject to the initial condition z(d) = 0 we deduce that

the penetration depth zpen of the fluid particle initially situated at (r̄0, z0) = (0, 0) is given by

zpen = −1 + exp

(

−12k

φ

∫ d

0

αs+ k1/2

s2(αs2 + 4k1/2s+ 6α) + 12k(αs+ k1/2)
ds

)

, (42)

which, we note, does not depend on n. Though the maximum penetration depth zpen of fluid particles initially

situated in the fluid layer into the porous bed given by (42) does not depend on n, Figure 7 shows that

increasing n widens the region over which these fluid particles penetrate into the porous bed and increases the

maximum penetration depth zpen of fluid particles initially situated in the porous bed into the fluid layer.

As discussed earlier, the fluid particles that lie above the curve Γbed are situated in the fluid layer when

t̄ = t̄c (i.e. when hmin = 0). However, as shown in Figure 7, some of these fluid particles flow from the fluid

layer into the porous bed and then re-emerge into the fluid layer. Also shown in Figure 7 is the curve Γbed∗ ,

which consists of the initial positions (r̄0, z0) of the fluid particles that attain v̄z = 0 on z = 0. In particular,

the finite region bounded by the curves Γbed, Γbed∗ and z = 0 contains the fluid particles that flow from the

fluid layer into the porous bed and then re-emerge into the fluid layer22. When t̄ = t̄c these fluid particles are

situated (in the fluid layer) in the finite region bounded by the curves Γpen, Γpen∗ and z = 0, where the curve

Γpen∗ , which is also plotted in Figure 7, consists of the final positions (r̄pen, zpen) of the fluid particles that

attain v̄z = 0 on z = 0.
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VII. LIMIT OF SMALL PERMEABILITY k → 0

In most cases of practical interest the permeabilities of porous media are small, and so in this section we

consider the limit of small permeability k → 0. The corresponding analysis of the mathematically interesting

but physically less relevant limit of large permeability k → ∞ is given in Appendix A. Specifically, in this

Section we show that in the limit k → 0 the contact time is large, and, as in the case of a flat bearing treated

by Knox et al.1, regular perturbation solutions for p = p(r, t) and hmin = hmin(t) in powers of k1/2 ≪ 1 are

valid only for “short” times t = O(1) when hmin = O(1), and additional asymptotic solutions that are valid for

“intermediate” times, when hmin = O(k1/4), and “long” times t = O(tc), when hmin = O(k1/3), are required

in order to obtain the solution up to t = tc.

For both short and intermediate times the leading order terms in the solutions for hmin = hmin(t) and

p = p(r, t) are given by (32) and (33), i.e. the solutions in the case k = 0, but k and α enter the higher order

terms in different ways (see Knox3 for the details of these higher order terms).

A. Solution for Long Times when hmin = O(k1/3)

For long times when hmin = O(k1/3) we re-scale r, p and hmin and shift (when n = 1) or re-scale (when

n ≥ 2) t according to

r = (12k)1/6nR, t =











π

2
ln

(

1

k

)

+ T when n = 1,

(12k)−2(n−1)/3nT when n ≥ 2,

p = (12k)−1/3nP, hmin = (12k)1/3Hmin, (43)

where R, T , P and Hmin are O(1) in the limit k → 0. Seeking a regular perturbation solution to (27),

integrated once with respect to r and satisfying (22), of the form

P = P0(R, T ) + (12k)1/6P1(R, T ) +O(k1/3) (44)

and

Hmin = H0(T ) + (12k)1/6H1(T ) +O(k1/3), (45)

at O(1) and O(k1/6) we have

∂P0

∂R
=

6R

(H0 +R2n)3 + 1

dH0

dT
(46)

and

∂P1

∂R
=

3R

α [(H0 +R2n)3 + 1]
2

(

2α
[

(H0 +R2n)3 + 1
] dH1

dT

−
√
3(1 + 2

√
3αH1)(H0 +R2n)2

dH0

dT

)

, (47)

respectively. Solving (46) and (47) subject to P0 → 0 and P1 → 0 as R → ∞ yields the solutions

P0 = −6I0,1(R,H0, n)
dH0

dT
(48)

and

P1 = −6I0,1(R,H0, n)
dH1

dT
+

3
√
3(1 + 2

√
3αH1)

α
I2,2(R,H0, n)

dH0

dT
, (49)
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where we have defined the integral

IM,N (R,H0, n) =

∫

∞

R

s(H0 + s2n)M

[(H0 + s2n)3 + 1]N
ds (50)

for any n. The solutions P0 and P1 must satisfy the load conditions

2π

∫

∞

0

P0R dR = 1 and

∫

∞

0

P1R dR = 0 (51)

and so at O(1) and O(k1/6) we have

1 = −6πJ0,1(H0, n)
dH0

dT
(52)

and

J0,1(H0, n)
dH1

dH0
=

√
3
(

1 + 2
√
3αH1

)

2α
J2,2(H0, n), (53)

respectively, where we have defined the integral

JM,N (H0, n) =

∫

∞

0

s3(H0 + s2n)M

[(H0 + s2n)3 + 1]N
ds (54)

for any n.

Solving (52) and (53) subject to the appropriate matching conditions with the solution that is valid at

intermediate times, namely

H0 ∼



































d

121/3
exp

(

−2T

3π

)

when n = 1

3π

4T
when n = 2

(

3π2(n− 2)

2n2 sin(2π/n)T

)n/2(n−1)

when n ≥ 3



































→ ∞ as T →







−∞ when n = 1,

0 when n ≥ 2,
(55)

and

H1 → − 1

2
√
3α

as T →







−∞ when n = 1,

0 when n ≥ 2,
(56)

yields the solutions

T =























































π

4



2 ln

(

e3d3

12

)

+
3
∑

j=1

ωj(H0 + ωj)
2 (1− 2 ln(H0 + ωj))



 when n = 1,

π

2

3
∑

j=1

ωj(H0 + ωj) [ln (H0 + ωj)− 1] when n = 2,

− π2

2 sin(2π/n)

3
∑

j=1

ωj(H0 + ωj)
2/n when n ≥ 3,

(57)

where

ω1 = 1, ω2 = −1

2
(1 +

√
3i) and ω3 = −1

2
(1−

√
3i) (58)
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n 1 2 3 5 10 25

H⋆
min 0.2478 0.7317 0.8492 0.9363 0.9987 1.0351

TABLE I: The real positive solutions of (61) for n = 1, 2, . . . , 25.

are the cube roots of unity, and

H1 = − 1

2
√
3α

. (59)

In contrast to the solutions for short and intermediate times, the permeability k appears in the leading

order solutions for p = p(r, t) and hmin = hmin(t) at long times, and these solutions remain valid up to t = tc,

which, in terms of the original variables, is given by

tc =



















π

2
ln

(

e9/2d3

12k

)

− π2(12k)1/6

3α
+O(k1/3) when n = 1,

π2 csc[(2 + n)π/3n]

2(12k)2(n−1)/3n
− π2 csc(2π/3n)

2
√
3αn(12k)(3n−4)/6n

+O(k−(n−2)/3n) when n ≥ 2.

(60)

Note that letting n → ∞ in (60) we recover the solution for a flat bearing obtained by Knox et al.1, and

that, as in the case of a flat bearing, the leading-order small-k solution for tc is independent of α. The

Beavers–Joseph constant α appears at O(k−(3n−4)/6n) in the small-k expansion for tc, and inspection of this

term shows that increasing α increases tc.

The leading-order small-k solution for pmax = p(0, t), given by setting R = 0 in (48), has a maximum turning

point when H0 = H⋆
min, where H⋆

min is the real positive solution of the equation

(

J0,1(H0, n)
dI0,1(0, H0, n)

dH0
− I0,1(0, H0, n)

dJ0,1(H0, n)

dH0

)∣

∣

∣

∣

H0=H⋆
min

= 0. (61)

Table I contains the real positive solutions of (61) (correct to 4 decimal places) for various values of n. Therefore

at leading order in the limit k → 0, and in terms of the original variables, pmax attains its maximum value

when

hmin = h⋆
min = H⋆

min(12k)
1/3 (62)

which from (43) corresponds to the time

t = t⋆ =







π

2
ln(1/k) + T (H⋆

min) when n = 1,

(12k)−2(n−1)/3nT (H⋆
min) when n ≥ 2,

(63)

where T is given by (57).

B. Uniformly Valid Solutions for p(r, t) and t(hmin)

A uniformly valid leading order composite solution for p = p(r, t) is given by

p(r, t) =
I0,1(R,Hmin, n)

π(12k)1/3nJ0,1(Hmin, n)
, (64)

where R = (12k)−1/6nr and Hmin = (12k)−1/3hmin.
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A uniformly valid leading order composite solution for pmax = p(0, t) is given by setting r = 0 in (64), which

yields

pmax(t) =



















































−
∑3

j=1 ωj ln(Hmin + ωj)

π(12k)1/3
∑3

j=1 ωj(Hmin + ωj) ln(Hmin + ωj)
when n = 1,

6
∑3

j=1 ωj(Hmin + ωj)
−1/2

(12k)1/6
∑3

j=1 ωj ln(Hmin + ωj)
when n = 2,

−
2 cos(π/n)

∑3
j=1 ωj (Hmin + ωj)

−(n−1)/n

π(12k)1/3n
∑3

j=1 ωj (Hmin + ωj)
−(n−2)/n

when n ≥ 3.

(65)

A uniformly valid leading order composite solution for t(hmin) is

t(hmin) =























































π

4



2 ln

(

e3d3

12k

)

+
3
∑

j=1

ωj(Hmin + ωj)
2 [1− 2 ln(Hmin + ωj)]



 when n = 1,

π
(

−3(12k)1/3 + 2d
∑3

j=1 ωj(Hmin + ωj) [ln(Hmin + ωj)− 1]
)

4d(12k)1/3
when n = 2,

π2
(

3(2− n)(12k)2(n−1)/3n − n2d2(n−1)/n
∑3

j=1 ωj(Hmin + ωj)
2/n
)

2n2 sin(2π/n) (12d3k)
2(n−1)/3n

when n ≥ 3,

(66)

where Hmin = (12k)−1/3hmin. Note that setting hmin = d in (66) yields

t(d) =







O(k1/3) when n = 1

O(k) when n ≥ 2







→ 0 as k → 0, (67)

so that at leading order in the limit k → 0 the initial condition (23) is satisfied. Similarly, setting hmin = 0 in

(66) we see that at leading order in the limit k → 0 it coincides with the leading-order term in (60).

VIII. CONCLUSIONS

In the present work we considered the axisymmetric squeeze-film flow in the thin gap between a stationary

flat thin porous bed and a curved impermeable bearing with shape H ∝ r2n, where n is an integer, moving

under a prescribed constant load L.

The unsteady Reynolds equation (27) was solved to yield an explicit solution for the fluid pressure p(r, t)

given by (29) in terms of an integral. This solution was then used in the load condition (17) to obtain the

equation for the minimum fluid layer thickness hmin(t), which was then solved to obtain an explicit expression

for the time for hmin to reduce to a given value t(hmin) given by (31) in terms of a double integral.

In contrast to the case of an impermeable bed, when the bed is porous the bearing and the bed always

come into contact in a finite contact time tc given by (34). The contact time tc was shown to increase as the

permeability k decreases, and, in particular, it was shown in Section VII that in the limit of small permeability

k → 0 the contact time

tc =







O(ln(k−1)) when n = 1

O(k−2(n−1)/3n) when n ≥ 2







→ ∞ (68)

is large, and it was shown in Appendix A that in the limit of large permeability k → ∞ the contact time

tc =







O(k−1/2 ln k) when n = 1

O(k−(2n−1)/2n) when n ≥ 2







→ 0 (69)
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is small. For small values of k it was found that increasing n increases tc, i.e. tc is longer for flatter bearings,

whereas for large values of k increasing n decreases tc, i.e. tc is shorter for flatter bearings. Furthermore,

it was shown that, like in the case of a flat bearing, for small values of k the velocity slip on the interface

between the fluid and porous layers, introduced via the Beavers–Joseph boundary condition (9) with constant

α, has a negligible effect on tc. In fact, at leading order in the small-k limit the contact time tc given by (60)

is independent of α. However, it was also shown that for large values of k the velocity slip has a significant

effect on tc. In fact, at leading order in the large-k limit the contact time tc given by (A4) when n = 1 and

(A8) when n ≥ 2 depends on α, and, in particular, increasing α decreases tc.

The fluid pressure p was also calculated. In contrast to the case of an impermeable bed, when the bed is

porous p remains finite as the bearing approaches the bed. The maximum fluid pressure pmax was shown to

increase as k decreases. In fact, it was shown in Section VII that in the limit of small permeability k → 0 the

maximum fluid pressure

pmax = O(k−1/3n) → ∞ (70)

is large, and it was shown in Appendix A that at leading order in the limit of large permeability k → ∞ the

maximum fluid pressure

pmax =







O(k−1/4(ln k)−1) when n = 1

O(k−1/4n) when n ≥ 2







→ 0 (71)

is small. For small values of k it was found that increasing n decreases pmax, i.e. for flatter bearings pmax

decreases and p is distributed over a larger area, whereas for large values of k increasing n increases pmax,

i.e. for flatter bearings pmax increases and p becomes concentrated over a smaller area. Furthermore, it was

shown that for small values of k the maximum value of pmax does not occur when t = tc. The maximum fluid

pressure pmax increases monotonically in time to its maximum value p⋆max which it attains at some time t = t⋆

satisfying 0 < t⋆ < tc and then decreases to its value at t = tc.

The paths of fluid particles initially situated in both the fluid layer and the porous bed were calculated. It

was shown that as k increases the fluid particles that flow from the fluid layer into the porous bed penetrate

deeper and wider into the porous bed. It was also shown that, though the maximum penetration depth zpen

of these fluid particles given by (42) is independent of n, increasing n widens the region into which these fluid

particles penetrate into the porous bed. Furthermore it was shown that, unlike in the case of a flat bearing,

there are fluid particles, initially situated in the porous bed, that flow from the porous bed into the fluid layer.

In fact, it was shown that there are fluid particles, initially situated in the fluid layer, that flow from the fluid

layer into the porous bed and then re-emerge into the fluid layer, and the region in which these fluid particles

are initially situated was determined.
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Appendix A: Limit of Large Permeability k → ∞

In this Appendix we show that in the limit of large permeability k → ∞ the contact time is small, and,

unlike in the limit of small permeability k → 0 treated in Section VII, there are inner r = O(k1/8n) and outer

r = O(k1/4n) regions in which different (uniformly valid in time) large-k solutions for p = p(r, t) are valid.

In the case of a parabolic bearing n = 1, the contributions to the normal force exerted on the bearing by

the fluid in both the inner and the outer regions are algebraically O(1) and so we must, therefore, obtain the

asymptotic solution for p = p(r, t) in both regions in order to obtain the leading order asymptotic solution

for hmin = hmin(t). However, for general bearing shapes H = r2n with n ≥ 2, the contribution to the normal

force in the outer region is smaller than the contribution from the inner region, and therefore we need obtain

the asymptotic solution for p = p(r, t) only in the inner region in order to obtain the leading order asymptotic
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solution for hmin = hmin(t). For brevity, only the main results are summarised here, and further details are

given by Knox3.

1. Parabolic Bearing n = 1

A uniformly valid leading order composite solution for p = p(r, t) is

p(r, t) = − 1

8αk

[

√
8αk1/4 tan−1

(

√

2

α

k1/4

r2

)

+ 48α

∫

∞

r/k1/4

1 + αr̃2

r̃3(αr̃4 + 4r̃2 + 6α)
dr̃ − 4k1/2

r2

]

dhmin

dt
. (A1)

Applying the load condition (17) to (A1) and solving the resulting first-order ordinary differential equation

for hmin = hmin(t) subject to the initial condition (23) yields

t =
π(ln k + g(α))

8αk1/2
(d− hmin), i.e. hmin = d− 8αk1/2

π(ln k + g(α))
t, (A2)

where the function g = g(α) is defined by

g(α) = 2 ln(3α) +
4(1− 3α2)
√

2(2− 3α2)
ln

(

2−
√

2(2− 3α2)

2 +
√

2(2− 3α2)

)

. (A3)

Setting hmin = 0 in (A2) we obtain the leading order large-k solution for tc:

tc =
πd(ln k + g(α))

8αk1/2
. (A4)

In contrast to the small-k solution, the leading order large-k solution for tc given by (A4) depends on α.

Inspection of (A4) shows that increasing α decreases tc. Note that the asymptotic solution for tc given by

(A4) is not uniformly valid in the limit α → ∞.

The leading order large-k solution for pmax is

pmax =

√
2α

k1/4(ln k + g(α))
. (A5)

2. General Bearing Shapes n ≥ 2

The leading order solution for p = p(r, t) valid when r = O(k1/8n) is

p = − 1

k(4n−1)/4n

(∫

∞

k−1/8nr

r̃

2 + αr̃4n
dr̃

)

dhmin

dt
. (A6)

There is an outer region r = O(k1/4n) in which a different large-k solution for p = p(r, t) is valid. However,

the contribution to the normal force exerted on the bearing by the fluid in this outer region is o(1).

Applying the load condition (17) to (A6) and solving the resulting first-order ordinary differential equation

for hmin = hmin(t) subject to the initial condition (23) yields

t =
π2 csc(π/n)

8nk(2n−1)/2n

(

2

α

)1/n

(d− hmin), i.e. hmin = d− 8n sin(π/n)k(2n−1)/2n

π2

(α

2

)1/n

t. (A7)
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Setting hmin = 0 in (A7) we obtain the leading order large-k solution for tc:

tc =
π2d csc(π/n)

8nk(2n−1)/2n

(

2

α

)1/n

. (A8)

As in the case of a parabolic bearing n = 1, when n ≥ 2 the leading order large-k solution for tc given by (A8)

depends on α, and inspection of (A8) shows that increasing α decreases tc. Also as in the case of a parabolic

bearing n = 1, the asymptotic solution for tc given by (A8) is not uniformly valid in the limit α → ∞. Note

that letting n → ∞ in (A8) we recover the solution for a flat bearing obtained by Knox et al.1.

The leading order large-k solution for pmax is

pmax =
2 cos(π/2n)

πk1/4n

(α

2

)1/2n

. (A9)


