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Nomenclature 

Ao The propeller disc area 

AE The expanded area of the blades 

AE/Ao Expanded Blade Area Ratio 

D  Diameter [m] 

J Advance Coefficient 

N  Rotational speed [rpm] 

P/D Pitch Ratio at 0.7R 

PD Delivered power 

Q  Torque [Nm] 

R Radius [m] 

RL Received Noise Level 

RNL Radiated Noise levels  

SPL received sound pressure level  

SPL' The level of net sound pressure of the propeller 

SPLn the background sound pressure level measured  (in dB; re 1µPa) 

SPLs+n The total sound pressure level (in dB; re 1µPa) 

T  Thrust [N] 

Va  Speed of advance [m/s] 

Z Number of Blades 

ri 
Distance between the acoustic center of the target vessel and 
hydrophone i 

rref the reference distance (1m) 

µ  Viscosity of the fluid [kg/ms ](sea) 

 Density of the fluid [ton/m3](sea) ο ௭ܲ the total amplitude of pressure fluctuations ο ଴ܲ the pressure fluctuation due to the non cavitating propeller ο ௖ܲ the pressure fluctuation due to the cavitating propeller ߮ the phase angle 
 

  



 

1. Introduction 

 

Quantifying the underwater radiated noise (URN) of ships is not a simple process because ships are 

installed with many types of machinery, causing different noise and vibration levels. URN can be 

generated mechanically by on-board reciprocating engines, machinery as well as hydrodynamically 

e.g. mainly due to their propeller(s) (Fischer and Brown 2005, ITTC 2014). During the combustion 

process, high gas pressure forces and inertial forces excite the system to vibrate and generate 

structure borne noise in the firing rate harmonics (Vorus 1988, Arveson and Vendittis 2000). The 

overall URN level of surface ships can be associated with vessel speed and displacement up to 

100Hz for commercial vessels (Ross 1976). Noise generated by non-cavitating propellers can be 

divided into two categories; the first one is low frequency blade rate noise induced pressure 

fluctuations, and the other is high frequency broadband cavitation noise (e.g. Urick 1967, Carlton 

2012). Fig. 1 shows an idealized non-cavitating propeller noise spectrum. However, URN can be 

contributed and dominated by propeller blades, especially when cavitation occurs (e.g. Sasajima et 

al. 1986). Cavitating propellers have more complex noise spectra with considerably higher sound 

pressure levels than the noise spectra for non-cavitating propellers. Fig. 2 presents the general noise 

spectrum of cavitating ship propellers (Nilsson and Tyvand 1981). The blade rate noise through its 

harmonics can be predicted up to the middle frequency range due to the relatively steady nature of 

the developed cavitation on the propeller blades (Wales and Heitmeyer 2002).  



Most of the tools to predict URN level and pressure pulses induced by cavitating propellers can be 

performed for lower frequency by taking into account the propeller geometry, boundary condition, 

area of sheet cavitation on the propeller blade (Szantyr 1985, Kinnas et al. 2003, Ekinci et al., 2010). 

Many unsteady phenomena are involved in the developed cavitation including cavity collapse and 

shock waves as reported in (Wenz 1962, Nilsson and Tyvand 1981, Sasajima et al. 1986, Hallander 

and Göran 2002). Therefore, predictions get harder beyond the middle frequency range.  

 

Fig. 1– Non-cavitating noise spectrum (Reproduced from Carlton 2012) 

 

 



Fig. 2– General noise spectrum level of a cavitating propeller (Reproduced from Nilsson and Tyvand 

1981) 

In assessing the most accurate levels of the ship’s URN full-scale measurements through dedicated 

noise trials are essential. Full-scale trials involve on-board and off-board measurement devices e.g. 

hydrophone arrays, accelerometers, pressure sensors and GPS sensors (e.g. Brooker, Humphrey 

2014). Trials using these systems are often complex, expensive and time-consuming to undertake. 

Moreover, self-noise of the deployed equipment might be apparent in the URN spectra. The distance 

between the noise source and hydrophones cannot be hold constant due to the target vessel 

continuously moving without employing the rudders. Therefore, a measurement time span (Data 

Window Period) is necessary for averaging the measured data (ANSI 2009). Traditional methods 

offer a high accuracy level to determine the underwater noise generated by shipping. However, cost-

effective and hands-on methods of ship noise monitoring need to be investigated. 

This paper presents a new method to quantify the URN of a ship by using cost- and time-effective 

on-board measurement devices. Comprehensive full-scale trials were conducted on The Princess 

Royal, which is Newcastle University’s catamaran type research vessel and the results were 

analysed and discussed as part of the FP7-EU project called SONIC, Suppression Of underwater 

Noise Induced by Cavitation (SONIC, 2012). During these trials, an extensive amount of on-board 

data were captured from multiple measurement systems using hull pressure sensors, 

accelerometers, ultrasonic transducers, optical devices, etc. Simultaneous off-board radiated noise 

measurements were also undertaken to establish a correlation between the on-board and off-board 

noise data. Moreover, the cavitation views were recorded by using digital photography and high-

speed cameras to describe the type of the cavitation present on the propellers. Finally, the direct 



relation between the sound pressure levels measured in the far-field and the dynamics created by 

the propellers and machinery were investigated.  

 

A general description of the trials, including the Princess Royal as the benchmark vessel and on-

board and off-board measurement devices as well as the location of the trial area, is given in Section 

2. The full-scale cavitation observations made on-board of the vessel and its major contribution to 

URN are shown in Section 3. This is followed by a description of on-board and off-board 

measurement data and their analysis methods in Section 4. A correlation method that was created 

in this study is presented in Section 5. A conclusion and discussion with a specific emphasis on the 

correlation study are reported in Section 6. 

 

2. Methodology  

 

On-board measurements were carried out to give an indication of the impact of cavitating ship 

propellers on the underwater noise emission from a catamaran research vessel. A total of 76 runs 

were completed during the trial. Of these, off-board radiated noise data was recorded on 49 runs. 

The measurements were undertaken in the region of Northumberland, about 28 km offshore east of 

Blyth, in the North East coast of England. Water depth in the trials area varies from about 90 m – 100 

m at Lowest Astronomical Tide (LAT). Sediment conditions consist of soft mud. The target vessel 



used in the trials was the RV Princess Royal (Fig. 3), designed, owned and operated by Newcastle 

University (Atlar et al. 2013). The outline specification of the vessel is shown in Tab 1 while those of 

her propellers are given in Tab 2. 

 

 

 
Fig. 3 – The target vessel: Research Vessel The Princess Royal (Atlar et al. 2013). 

 
 

Tab 1 - Specification of the target vessel RV Princess Royal. 

Classification MCA Cat 2 

Overall length 18.9 m 

Beam (Full) 7.3 m 

Design draft at AP: 1.96 m at FP: 1.76 m 

Displacement (Loaded arrival) 42 tonnes (approx.) 

Payload 5 tonnes 

Max speed 20 knots 

Cruising speed 15 knots 

Engines 2 x 602 BHP 

Gearbox reduction ratio 1.75 

Propulsion 2 x 5-bladed, fixed pitch propellers 

 



Tab 2 - Specification of the propellers (Atlar et al. 2013). 

Diameter, D 0.75 m 

Pitch Ratio at 0.7R, P/D 0.85 

Expanded Blade Area Ratio, AE/Ao 1.06 

Number of Blades, Z 5 

Rake angle 0° 

Skew angle 19° 

Direction of rotation Outward 

Design Advance Coefficient, J 0.5 

Material NiAlBr 

 

Off-board measurements were carried out with deployed hydrophone arrays to record the URN. The 

array also consists of three hydrophones attached to a central weighted line and a multichannel 

acquisition system on-board the support vessel. The deployment depths of the hydrophones on the 

central line are 10, 25 and45m from the water surface. On-board sensors were installed to measure 

the underwater pressure pulses, hull and engine vibration, engine room sound pressure levels and 

underwater ultrasonic noise. Off-board measurements were carried out simultaneously for a more 

conclusive analysis of URN in combination with on-board measurements. GPS data was provided to 

improve accuracy of the measurement window and time. A range of cameras were used in order to 

cover as many possibilities and opportunities to capture dynamics of the cavitation. A summary of 

the sensors deployed by each SONIC project partner is provided in Tab 3. The technical details of 

on-board sensors and Camera Specifications are given in Tab 4 .The sensors were connected to the 

Data Acquisition Hardware multi-channel NI CDAQ Chassis with Modules. A laptop were used to log 

the measured data. 

 



These sensors were complemented by optical observations made through the side by side above 

each propeller at each demi-hull ( shown in Fig. 4), four windows in total, and borescope. Six pressure 

sensors were used during the trial. The locations were defined to receive the influence of cavitation 

dynamics on pressure fluctuations above the propeller and in the downstream.  Mainly the port side 

sensors were analysed in this study and Fig. 5 shows the hull locations of the pressure sensors, 

accelerometers and the windows. The Perspex window does not allow to locate a sensor above the 

propeller. Therefore the pressure transducers PP2 and PP3, were installed 0.15D behind the 

propeller disc (D is the propeller diameter) to capture the pressure pulses above the propeller. The 

transducer PP4 was installed 0.8D behind the propeller disc to capture the pressure pulses in the 

downstream. 

Tab 3 – The summary of on-board sensors. 

Contributing SONIC partner Port side Starboard side 

Wartsila 

1 x engine body 
accelerometer 

1 x hull pressure pulse 
sensor 

1 x hull accelerometer 
1 x engine room 

microphone 

1 x engine body accelerometer 
1 x engine foundation 

accelerometer 
1 x hull pressure pulse sensor 
1 x engine room microphone 

CETENA 

2 x hull pressure pulse 
sensor 

1 x shaft speed sensor 
1 x engine power sensor 
1 x propeller shaft torque 

sensor 
1 x boroscope 

 

Newcastle University  

2 x hull pressure pulse sensor 
2 x hull accelerometer 

4 x cavitation observation 
cameras 

Southampton University 
(SOTON) 

1 x ultrasonic transducer 
 

 



Tab 4 – The technical details of on-board sensors. 

Sensor  Sensor description 
Frequency 
sampling 

Pressure Transducer 1   XPM10 Miniature pressure sensor 2kHz 

Pressure Transducer 2 XPM10 Miniature pressure sensor 2kHz 

Accelerometer 1 
Wilcoxon Model 797V Low profile, 

IsoRing® PiezoVelocity 
2kHz 

Accelerometer 2 
Wilcoxon Model 797V Low profile, 

IsoRing® PiezoVelocity 
2kHz 

Torque 
SingleǦchannel torque 

measurement via strain gauges 
(full bridge) 

565 
samples/second 

Thrust 
SingleǦchannel axial load (thrust) 
measurement via strain gauges 

(full bridge) 

565 
samples/second 

RPM OnceǦperǦrev pulse measurement 
565 

samples/second 

High Speed Camera 
(starboard side) 

Nanosense Mark 3 2000 fps 

Digital camera (portside) 
Digital camera 240 FPS Samsung 

Galaxy 
Stationary 

picture, 120 fps 

Digital Camera (port side) Digital Camera 240 FPS GoPro 
Stationary 

picture, 240 fps 

Digital  Camera (port/ 
starboard side) 

Nikon D700 + 20mm f2.8 lens 
6400 ASA giving 
1/1000 sec at f 
2.8 still images 

 

 

Fig. 4 – Portside (Perspex Windows) above the propeller 



 

 

Fig. 5 – Port side sensor hole arrangement of The Princess Royal for the first trial. 

 

The trials were mainly performed for 4 different operating conditions with main engine speeds of 600, 

900, 1200, and 2000 rpm set on the research vessel. The averaged, engine delivered power 

corresponding to the operational conditions is given in Tab 5.  



 

Tab 5 -Full-Scale Average Running Conditions 
 

Engine 
Propeller 

N 
PD PD 

 [RPM] 
Torque 
[kNm] 

[rpm] [kW] [%MCR] 

600 0.3 342.8 10 2.22 

900 0.6 514 31 6.89 

1200 1 679.5 71.6 15.91 

2000 2.77 1141.5 329.3 73.18 

 

3. Cavitation observation 

Since the type, extent, volume, density and dynamics of the cavitation play a major role in contributing 

to the URN levels this section summarizes the cavitation observations made on-board the vessel 

through the portholes (Perspex Windows) above her propellers as shown in Fig. 4Error! Reference 

source not found.. Some pictures were taken from outer side windows some from inner side 

windows. The full documentation of the cavitation observations during the SONIC noise trials can be 

found in Sampson et al. (2015). The vessel’s lowest engine speed is 600rpm. At this speed, as shown 

in Fig. 6, no cavitation was visible. In fact, the inception of the tip vortex was between 650 and 700 

engine rpm.  

 



 

Fig. 6 – Full-scale trial cavitation observation – 600 engine rpm. 

 

When the vessel was operated at an engine speed of 900rpm cavitation could be observed on the 

propeller. The dynamics of the cavitation at this speed can be described as less intermittent, rather 

continuous " stable leading edge vortex cavitation" emanating from the suction side of the blade and 

continuing in the slipstream as a trailing vortex extending to the rudder. This is supported by the 

picture shown in Fig. 7.  

 



 

Fig. 7 – Full scale trial cavitation observation– 900 engine rpm. 

 

Fig. 8 shows the nature of cavitation at the 1200rpm engine speed. At this speed cavitation is 

characterized as a strong suction side "Sheet Cavitation" emanating from the entire blade leading 

edge with increased extent (hub to tip) terminating the blade by rolling-up in the form of "Trailing Tip 

Vortex" extending to the rudder. Partial "break-up” of the sheet cavitation as well as occasional 

appearance of intermittent "Hub Vortex Cavitation" (in Fig. 9) and "Hull-Propeller Vortex" cavitation 

were observed. 

 

 



 

Fig. 8 – Full scale trial cavitation observation – 1200 engine rpm. 

 

Fig. 9 – The hub vortex cavitation (captured from the footage)– 1200 engine rpm. 

 

Fig. 10 shows the cavitation pattern observed at the maximum engine speed of the vessel, 2000 rpm. 

At this speed, the extent of sheet cavitation is the largest covering almost 25-30% of the suction side 

of the blade. The volume of the sheet cavity and its intensity are further increased. As far as the cavity 

dynamics is concerned, the sheet cavitation is extremely unsteady and breaking-up and bursting, 



occasionally with a cloudy appearance. This sheet cavitation terminates the blade at tip region by 

rolling-up, rather thick, intense and cloudy tip vortex and dominating the propeller slipstream up to 

the rudder. Occasionally this trailing vortex bursts. The left picture in Fig. 11 shows the Hub-Vortex 

cavitation which is much thicker, intense and continuous. The Hull-Propeller Vortex cavitation very 

often develops with increased vortex diameter as also shown in Fig. 11 right picture. 

 

Fig. 10 – Full scale trial cavitation observation – 2000 engine rpm. 

 

Fig. 11 – The hub vortex cavitation (left) and the hull-propeller vortex cavitation (right) – 2000 

engine rpm. 



 

4. Results of the on-board and off-board measurements 

 

The off-board radiated noise data were measured by using CETENA’s and Southampton University’s 

hydrophone arrays following procedures of ISO/PAS 17028-1: 2012 and ANSI S12.64 (Humphrey 

et al. 2015). Each array consisted of three digital hydrophones each with a depth sensor. The 

acquisition system is a multi-channel data receiver that is able to get a continuous flow of digital data 

simultaneously from all the hydrophones along with data from a GPS antenna. A moored 14 m 

catamaran support vessel was used to deploy the vertical hydrophone arrays. 

 

Radiated Noise levels (RNL) received at each hydrophone was found from the Power Spectral 

Density (PSD) for each run within the Data Window Period (in µPa2.Hz-1). The received PSD level 

for each hydrophone is provided accordingly in narrowband (NB) spectra (from 4Hz to 50 kHz) in dB 

re 1 µPa2.Hz-1. NB spectra are corrected for range to a reference distance of 1 m to give RNL in dB 

re 1 µPa2m2.Hz-1, by adding the following correction to the averaged received levels 

ܮܴܰ ൌ ܮܴ ൅ ʹͲ logଵ଴ሺ  ௥௘௙ሻ Equation 1ݎ௜ݎ



where ݎ௜ is the distance between the acoustic center of the target vessel and each hydrophone ݅ at 

CPA (the slant range) and ݎ௥௘௙ is the reference distance (1m). The one-third octave (OTO) band 

levels in dB re 1 µPa2m2 were calculated in the same frequency range as NB spectra and adjusted 

for the distances between the target vessel and each hydrophone as above. The data were either 

analysed using real time OTO filters or Fast Fourier Transform (FFT) analysers in accordance with 

ANSI/ASA S1.11 (ANSI, 2004). 

. 

The ship radiated noise data (both NB and OTO band) were adjusted for background noise again 

using the standards of ISO/PAS 17028 and ANSI S12.64. If the difference between received level 

during a target vessel run and background noise level was greater than 10 dB no adjustments to NB 

spectra and OTO band levels were necessary. If the difference was between 3 dB and 10 dB, 

background noise was subtracted from the ship radiated noise using the following formula: 

 

ᇱܮܲܵ ൌ ͳͲ logଵ଴ൣͳͲሺௌ௉௅ೞశ೙ ଵ଴Τ ሻ െ ͳͲሺௌ௉௅೙ ଵ଴Τ ሻ൧ Equation 2 

 

where ܵܲܮᇱ is the background noise adjusted received sound pressure level (SPL) from the vessel, ܵܲܮ௦ା௡  is the vessel noise plus background noise received SPL and ܵܲܮ௡  is the measured 

background noise SPL. If the difference was less than 3 dB then the data was discarded. 



 

Measuring the vibration level of the vessel with accelerometers was necessary to identify the noise 

sources and explore the structural responses as well as to calculate the transmitted energy and 

structure-borne noise through the structure (Fischer et al. 2008). Vibration level was measured by 

the accelerometer located near to the pressure sensors, on the port side hull structure and the port 

side engine foundation. The measurements for the non-cavitating condition (600 rpm engine speed) 

and heavily cavitating condition (2000 rpm engine speed) are presented in Fig. 12 and Fig. 13 to 

illustrate the effect of the dominant noise sources on the structure in narrow band. At 600rpm, the 

vibratory energy of the main engine excites the engine foundation as shown in Fig. 12. In this 

condition, structure borne noise and background noise are dominating the URN. At 2000rpm, the 

cavitating propellers are the dominant noise and vibration sources. Hence, the structural responses 

of the engine foundation were altered more by cavitation (in the blade passing frequencies) than the 

main engine (in firing frequencies) as shown in Fig. 13. 

 



 

Fig. 12 – The main engine acceleration compared with off-board measurements (narrow band) for 

600 rpm engine speed.  

 

Fig. 13 – The narrow band spectrum of the main engine acceleration compared with off-board 

measurements for 2000 rpm.  

 

Acc. measured at engine bed 

URN measured by hydrophone 

Acc. measured at 

URN measured by 



To summarize the measurement campaign, the pressure pulses and RNL are proportional to engine 

speeds (see Fig. 14 and Fig. 15). Fig. 16 further shows vessel radiated noise at various engine 

speeds as well as background (ambient) underwater noise. Background noise seemed to be above 

the URN when the vessel was operated at the low speeds. This might limit the usability of data from 

the lower speed runs (SONIC 2014). 

 

 

Fig. 14– Pressure pulse spectrum of PP2 for various vessel speed measured by the CETENA on-

board. 



 

Fig. 15– OTO band radiated noise levels for various engine speed measured on the SOTON off-

board hydrophone array (Humphrey and Brooker 2014). 

 



Fig. 16– Received levels of radiated noise from the test vessel compared to levels of background 

underwater noise in the test area (SONIC 2014). 

 

5. Correlation between on-board and off-board measurements 

The pressure pulses measured by the pressure sensors were corrected to a 1m distance based on 

the cavitation pressure fluctuation prediction formula given in Equation 3 by Bodger et al. (2014) as 

shown below. Equation 3 is established based on two major contributions to the fluctuating hull 

pressures:  

(i) Pressure fluctuations induced by the non-cavitating propeller, 

(ii) Those induced by the cavitating propeller, as follows 

 

Equation 3 

where ο ௭ܲ is the total amplitude of pressure fluctuations, ο ଴ܲ is the pressure fluctuation due to the 

non cavitating propeller, ο ௖ܲ is the pressure fluctuation due to the cavitating propeller, ߮ is the phase 

angle between the above two components and Z is the blade number.  

The calculated correction factors for PP2, PP3 and PP4 for the1 m reference distance is -8.2 dB, -

10.3 dB and -3.4 dB respectively. Note that the analysis has concentrated on data from these 

2 2

0 02 cos( )
Z C C

p p p p p Z         



pressure sensors rather than the accelerometers as they were in direct contact with the water and 

the pressure corrections were applied for the lower frequencies. 

The correlation method is based on the comparison of the radiated noise levels with the pressure 

pulse levels using graphics as shown Figure 17 through 20. A “reference line” was introduced to 

graphs to show the tendency of the correlation between the pressure sensors and hydrophone more 

clearly. Two different frequency ranges were selected to evaluate the parameters (RNL and pressure 

pulse); a lower frequency region (1 – 500 Hz) and a higher region (1 kHz – 5 kHz). The correlation in 

the high (broadband) frequency region is not presented in this paper as the various noise sources 

such as unsteady cavitation and turbulent flow are dominating in this region. For this reason, it is 

difficult to associate tonal noises with the blade passing frequency (BPF) in the URN spectra.  

The lower frequency region from 1 Hz to 500 Hz includes the region where the blade passing 

fundamental and low harmonic frequencies occur. In this region, the amplitudes of the peaks at the 

BPF seen in the narrow band analyses of the RNL and pressure pulse data recorded for the various 

engine speeds were extracted.  

Derived from the measurements, the curves in Fig. 17 and Fig. 18 indicate a clear relationship 

between the on-board pressure and the off-board radiated noise measurements as engine rpm and 

hence vessel speed increases. A divergence from this trend is evident at the 3rd BPF shown in Fig. 

19. The reason for this divergence is the hydrophone measurement at the 2000 rpm engine speed 

being lower than 1200 rpm condition at the 3rd BPF, as shown in Tab 6. Fig. 20 presents the data for 

the 4th BPF, which shows a relatively good agreement between the increase in pressure and noise. 



 

 

 

Fig. 17 –Correlation between hydrophone RNL and pressure pulse level for 1st blade rate 

frequency. (Left: not corrected for distance, right: corrected for distance.) 

 

 

 



Fig. 18– Correlation between hydrophone RNL and pressure pulse level for 2nd blade rate 

frequency. (Left: not corrected for distance, right: corrected for distance.) 

 

 

 

Fig. 19– Correlation between hydrophone RNL and pressure pulse level for 3rd blade rate 

frequency. (Left: not corrected for distance, right: corrected for distance.) 

 

 



Fig. 20 – Correlation between hydrophone RNL and pressure pulse level for 4th blade rate 

frequency. (Left: not corrected for distance, right: corrected for distance.) 

 

 

Tab 6– RNL corresponding to 3rd BPF for each engine speed (Humphrey et al. 2015). 

Engine 
rpm 

3BPFs 
(Hz) 

CETENA 
 

 [dB_rms re 1 
µPa2/Hz@1m] 

SOTON  
 
[dB_rms re 1 
µPa2/Hz@1m] 

900 127 135 134 

1200 170 153 147 

2000 285 147 145 

 

6. Conclusion and discussion 

In this study traditional as well as innovative methods were employed to obtain URN levels. Results 

gained from this new correlation method provide insights into the relationship between on-board 

measured data and URN data. The URN was associated with machinery and ambiance noise before 

cavitation inception. The structural dynamics were also excited by the main engine. After the 

cavitation inception, the URN level and pressure pulses were dominated by cavitating propellers. 

Vibration analysis showed that the structural responses were higher at the blade passing frequencies 

than at the main engine harmonics when the strong suction side sheet cavitation appeared.  



It was experienced that monitoring the measurements in OTO octave band was practical to gain an 

overall impression of the URN phenomenon, however, narrow band analysis was found to be 

necessary in order to identify the noise sources accurately. The dominant noise sources were clearly 

detected in the acceleration data analysed in narrow band. The frequencies at which harmonics of 

the shafts, the propellers and the main engines occur on the target vessel were very similar and 

hence could not be easily analysed in OTO band data.  

The correlation method presented in this paper is based on the data collected from the pressure 

sensors and hydrophones. The main reason to concentrate on the pressure sensor data, rather than 

the accelerometer data, is that both the pressure sensors and hydrophones were operated in the 

fluid domain and therefore receive the direct transmission of the fluid pressures from the cavitating 

propellers.  

One of the major outcomes from the correlation method is that the radiated noise levels can be 

associated with pressure sensor data in the low and medium frequency range which covers the first 

four blade passing frequencies. Underwater radiated noise data can also be obtained with 

accelerometers and the correlation method can further cover the higher frequency range. Due to the 

high modal density it is, however, very complicated to associate the results with noise beyond the 

middle frequency range (~1 kHz). Nevertheless, the accelerometers have an essential role in defining 

the dominant noise sources on the vessel. The techniques developed in this study can most likely be 

applied to the determination of URN levels of similar vessels. For this reason, URN levels can be 

monitored in real time via the deployment of relatively inexpensive equipment. 
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