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Abstract

A great many physical phenomena are modelled by partial differential equations
(PDEs), and numerical schemes often have to be employed to approximate the so-
lutions to these equations where analytical solutions cannot be found. We develop
and analyse here new schemes belonging to two broad classes, schemes that are
asynchronous, and exponential integrators. We apply these schemes to test models
of advection-diffusion-reaction processes that occur in porous media flow.
Asynchronous schemes allow different parts of the physical domain to evolve at dif-
ferent rates. We develop a class of asynchronous schemes that progress by discrete
events, where a single event is the transfer of a unit of mass through the domain,
according to the local flux. These schemes are intended to focus computational
effort where it is most needed, as a high local flux will cause the algorithm to au-
tomatically take more events in that part of the domain. We develop the simplest
version of this scheme, and then develop further schemes by adding modifications
to address potential shortcomings. Numerical experiments indicate a number of in-
teresting relations between the parameters of these schemes. Particularly, the error
of the schemes seems to be first order with respect to a control parameter we call
the mass unit. Some analysis is conducted which can pave the way towards robust
theoretical understanding of these schemes in the future.
Exponential integrators are time stepping schemes which exactly solve the linear
part of a semilinear ODE system. This class of schemes requires the approximation
of a matrix exponential in every step, and one successful modern method is the
Krylov subspace projection method. We investigate, through analysis and experi-
ment, the effect of breaking down a single timestep into multiple substeps, recycling
the Krylov subspace to minimise costs. Our results indicate that this can increase
accuracy and efficiency.
We show the results of an investigation into developing a class of ‘semi-exponential’
Runge-Kutta type schemes, which use an exponential integrator for the initial stage
and then essentially fulfil classical order conditions for the remaining stages.
Finally, we return to the concept of asynchronicity in a different form. With the
advent of massively parallel machines, there is increasing interest in developing
domain-decomposition type schemes that are robust to random failures or delays in
communication between processing elements. This is because in massively parallel
machines, communication between processors is likely to be the significant bottle-
neck in execution time. Recently the effect of such communication delay with a
simple domain-decomposed Euler timestepping solver applied to a linear PDE has
been investigated with promising results. Here, inspired by exponential integrators,
we investigate the natural extension of this, by replacing the Euler timestepping
with the evaluation of the appropriate matrix exponential on the sub-domain. We
have performed experiments simulating the communication delay and the results are
also promising.



Acknowledgements

For my parents, who gave me everything. May this make you proud.

I am extremely grateful to my supervisors, Professors Gabriel Lord and Sebastian
Geiger, for all their support and guidance.

i



Contents

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Porous Media Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Conservation Equation and the Advection Diffusion Reaction

(ADR) Equation . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 The Finite Volume method . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Exponential Integrators . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4.1 ϕ-Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5.1 Local and Global Error . . . . . . . . . . . . . . . . . . . . . . 19

1.5.2 Estimating Error in Numerical Experiments . . . . . . . . . . 24

1.5.3 Stiff Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Face Based Asynchronous Schemes 28

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.1 Motivation and Basic Concept . . . . . . . . . . . . . . . . . . 29

2.1.2 Finite Volume Discretisation . . . . . . . . . . . . . . . . . . . 33

2.2 The Basic Face Based Asynchronous Scheme (BAS) . . . . . . . . . . 37

2.3 Background and DES Schemes in General . . . . . . . . . . . . . . . 42

2.3.1 Comparison of BAS With Other Schemes . . . . . . . . . . . . 44

2.4 Connection Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.5 Modifications to BAS . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.5.1 Exact Mass Transfer Across a Face - the EAS Scheme . . . . . 54

2.5.2 Using A Mass-Passed Tracking Value - the BAST Scheme . . 56

ii



2.5.3 The Cascading or ‘Flux Capacitor’ Concept of [1] . . . . . . . 57

2.6 Adding a Reaction Term . . . . . . . . . . . . . . . . . . . . . . . . . 58

3 Face Based Asynchronous Schemes - Numerical Experiments 61

3.1 Numerical Results for Systems Corresponding to Linear PDEs . . . . 61

3.1.1 Fracture with High Péclet Number . . . . . . . . . . . . . . . 62

3.1.2 Fracture System with Varying Diffusivity . . . . . . . . . . . . 71

3.1.3 A Three Dimensional Example . . . . . . . . . . . . . . . . . 79

3.1.4 Diffusion With a Random Diffusivity Field . . . . . . . . . . . 83

3.2 Tests for the Reaction Term Scheme . . . . . . . . . . . . . . . . . . 87

3.2.1 Reaction-diffusion test system . . . . . . . . . . . . . . . . . . 87

3.2.2 Reaction Advection Diffusion Example . . . . . . . . . . . . . 91

3.3 Conclusions from Numerical Tests . . . . . . . . . . . . . . . . . . . . 93

4 Face Based Asynchronous Schemes - Analysis 95

4.1 Analysis of the New Schemes . . . . . . . . . . . . . . . . . . . . . . 95

4.2 Convergence of BAS with One Internal Face . . . . . . . . . . . . . . 96

4.3 Towards a General Convergence Result for BAS . . . . . . . . . . . . 100

4.4 Assumptions of Parameter Relations . . . . . . . . . . . . . . . . . . 103

4.5 Analysis of EAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.6 Extensions and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 111

5 Krylov Subspace Recycling 113

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2 The Krylov Subspace Projection Method . . . . . . . . . . . . . . . . 115

5.3 Recycling the Krylov subspace . . . . . . . . . . . . . . . . . . . . . . 118

5.3.1 The local error of the recycling scheme . . . . . . . . . . . . . 119

5.4 Substepping with the scheme EEM . . . . . . . . . . . . . . . . . . . 127

5.4.1 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.5 Using the additional substeps for correctors . . . . . . . . . . . . . . 134

5.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.6.1 Allen-Cahn type Reaction Diffusion . . . . . . . . . . . . . . . 139

iii



5.6.2 Fracture system with Langmuir-type reaction . . . . . . . . . 143

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6 Semi-Exponential Runge-Kutta Type Methods 148

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.2 Method for the Semi-Exponential RK Scheme . . . . . . . . . . . . . 150

6.2.1 General scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 150
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Chapter 1

Introduction

1.1 Introduction

Partial differential equations (PDEs) are used in physics, chemistry, biology, engi-

neering and applied mathematics to model a vast array of behaviour. They express

the temporal and spatial rates of change of some quantity of interest, and their

solution subject to specific domains and initial and boundary conditions allows the

quantity of interest to be usefully predicted in real world scenarios. Examples of

PDEs include the Navier Stokes equations for fluid flow, where the quantity of in-

terest may be the velocity or density of the fluid, the equations of electromagnetism,

and the equations modelling the flow of fluid through a porous medium. The latter

are of primary interest here, see §1.2.

Closed form solutions cannot normally be analytically derived for many useful PDE

models, thus it is necessary to use algorithms to approximate the solutions, given

specific domains and initial and boundary conditions. The development, analysis,

implementation and testing of the approximation algorithms constitutes the field of

numerical analysis.

A plethora of other approaches exist, but a traditional approach to numerical ap-

proximation of a PDE is as follows. First the domain is gridded or meshed into dis-

crete cells, volumes or nodes. An approximation method for the spatial derivatives

in the PDE is applied and the result is a system of ordinary differential equations

(ODEs); this is called the method of lines. Spatial discretisation methods include

1



Chapter 1: Introduction

the simplest finite difference method ([2], Chapter 12), the finite element method

[3], and the finite volume method, which we discus further in §1.3. These are the

classical ‘big three’ spatial discretisation methods; an example of a more modern

development is the mimetic finite difference method [4]. An ODE has only temporal

derivatives, and the ODE system is called the semidiscretised equation.

Schemes for ODEs range from the simplest Euler method, which approximates

the temporal derivative by the simplest possible finite difference, to Runge-Kutta

schemes (e.g. [5] Chapter 3), to modern schemes such as exponential integrators,

which are introduced in §1.4. Some of our contributions are schemes within this

class.

In this thesis our contribution will be to new schemes for approximating semidiscre-

tised PDE systems. In this chapter we introduce necessary concepts. In Chapters 2

through 4 we develop new schemes within the class of Asynchronous schemes which

proceed by discrete events at different parts of the domain, according to the local

rate of activity. Chapter 2 describes the schemes, Chapter 3 reports our numerical

experiments with these schemes, and Chapter 4 contains some analysis. Chapter 5

contains a new type of scheme within the class of exponential integrators, where an

approximation of part of the solution is recycled across multiple substeps in order

to increase accuracy. In Chapter 6 we develop a class of Runge-Kutta type schemes

which share some properties with exponential integrator schemes but sacrifice oth-

ers for faster run time. Chapter 7 deals with schemes which are asynchronous in

a different way to those of Chapter 2 through 4. In Chapter 7 we look at schemes

which allow asynchronicity as a result of communication delay in a parallel system.

This introductory chapter is organised as follows. In §1.2 we introduce the basic con-

cepts of porous media flow and in §1.2.1 we introduce the model equation which we

will use a primary test for our new schemes. In §1.3 we introduce the Finite Volume

method for spatial discretisation, which we will make use of for our tests. Expo-

nential integrators are introduced in §1.4, and some important numerical analysis

concepts are discussed in §1.5.

2



Chapter 1: Introduction

1.2 Porous Media Flow

Here we introduce porous media flow, as described in, for example, [6]. A porous

medium is a solid material with connected internal void spaces (pores) through

which a fluid can flow. The complete connected space of voids is called the pore ge-

ometry. One example is soil, which consists of solid soil grains packed together. The

gaps between the grains form a pore geometry and allow the bulk movement of fluid

through a solid mass of soil, for example groundwater flow. Geological reservoirs

are rock formations with connected void spaces in which water, oil and natural gas

can exist and flow. The extraction of fluid hydrocarbon resources from the earth

is thus a problem of porous media flow. A hydrothermal reservoir is a geological

reservoir containing heat; pumping a fluid into, through, and out of a hydrothermal

reservoir for the purpose of geothermal energy generation is also a porous media

flow problem. Other materials, including bones and the electrolyte in hydrogen fuel

cells, can be characterised as porous media.

The void spaces in porous media are not simply or linearly connected, and the flow-

ing fluid will traverse a tortuous path. Also, the scale of the void spaces can be

microscopic while the complete porous medium of interest may range in scale up

to kilometres (e.g. an entire geological reservoir). Thus modelling and simulating

flow through a realistic medium by taking into account every void space is generally

impossible. It is extremely difficult to measure the pore geometry or the state of a

fluid at any specific point of the geometry. Typically, bulk scale parameters of the

flow or the medium are observed and used, and empirical models for the bulk scale

flow developed based on these observations. The most famous such model is Darcy’s

law, which we will introduce shortly. Another way to develop models is to consider

the flow through some tractable but representative pore geometry and then upscale

this system into an averaged bulk scale model; see for example [7] and the references

therein. At the bulk scale the properties of the flow are expressed by continuous

parameters; this is called the continuum approximation. The first is the porosity

φ(x), where x = (x, y, z)T is the coordinate for a spatial position in the domain. The

porosity is defined as the ratio of the void space to the total volume, within a small

3



Chapter 1: Introduction

Representative Elementary Volume (REV) centred at x. The REV must be small

enough for the value of φ(x) to be specific to x, but not so small that the definition

stops making sense. Consider decreasing the size of the REV. As the size is reduced,

φ will initially appear to approach a limiting value. However, as the volume passes

below a certain critical value, the porosity will start to fluctuate erratically due to

the fine scale of the pore geometry, before approaching unity or zero as the volume

reaches zero. See Figure 1.3.2 in [6] or Figure 5 in [8] for example. The true value

of φ can be taken to be the value at the critical volume, or the extrapolated limit

as the volume goes to zero, if the fluctuation effects were not present.

The second continuum parameter for the medium is the permeability k(x). This

quantifies the extent to which a pressure gradient in the fluid in the medium will

induce flow in each of the three principal directions (i.e., the x, y, z directions in

three dimensions). The permeability is a square matrix, also referred to as a tensor

in this context, with size equal to the dimensions of the domain. In three dimen-

sions, k(x) ∈ R3×3. If k(x) = k(x)I, where I is the identity matrix and k(x) is a

scalar, then the permeability field is called isotropic and flow is not favoured in any

particular direction, at any point in the domain.

Variables typical of fluid flow models are also continuous variables of the flowing

fluid in a porous media flow models. At a point x, the pressure of the fluid is p(x);

the velocity is v(x); the density is ρ(x), and the viscosity of the fluid is µ.

We now introduce the most famous and basic equation of porous media flow, Darcy’s

law, discovered in 1856. See also [8]. Darcy’s law typifies the empirical and contin-

uum approach discussed above. Darcy was an engineer; the experiment and equation

were reported in four pages of an appendix to a 647-page report on modifications

to the public water systems of Dijon, France. He was trying to design a filter. The

experiments consisted of observing the bulk flow rate of water through a column

of packed sand. The flow rate was related empirically to the length of the column

and the pressure at each end, and a coefficient K, which describes how properties of

the medium (the sand in this case) and the fluid affect the average flow, and later

practitioners showed can be related to the permeability k of the medium and the

4



Chapter 1: Introduction

density ρ and viscosity µ of the fluid. The original expression is,

q = −K
l

(h2 − h1),

where q is the rate of flow per unit volume, l is the length of the column, and h1 and

h2 are the heights of water in manometers above and below the column. A manome-

ter measures pressure, so the (h2 − h1) part describes a pressure difference. This

is a scalar equation since the bulk flow in only one direction is considered. Subse-

quent work by practitioners led to expressions for velocity fields in three dimensional

domains, in terms of the gradient of the pressure field, such as,

q(x) ≡ v(x)φ(x) = −k(x)

µ
(∇p(x) + ρ(x)g), (1.1)

where q ≡ vφ is the Darcy velocity. The vector g is the vector representing acceler-

ation due to gravity. We see how the matrix k(x) controls how the gradient of p(x)

relates to the flow q(x), as well as the effect of gravity ρ(x)g(x). Both ∇p(x) and

ρ(x)g(x) describe forces on the fluid and (1.1) describes how these forces, at some

point x, affect the flow velocity q(x) at that point. The matrix form of k(x) helps

describe the tortuous paths in the porous medium, as, for example, a large gradi-

ent of p(x) in one direction may induce a large flow velocity q(x) in a completely

different direction, depending on the components of k(x). This would represent

flow through the medium being much easier in the other direction due to the pore

geometry.

1.2.1 Conservation Equation and the Advection Diffusion

Reaction (ADR) Equation

Conservation equations are important for modelling flows in porous media, and a

particular example we shall use often in our tests is the Advection Diffusion Reaction

(ADR) equation. Other examples of conservation equations include the relation of

current density to charge density in electromagnetism, the heat equation, and the

relation of fluid density to velocity in fluid flow models (we note a porous media

5



Chapter 1: Introduction

equivalent of this shortly, where the velocity is given by Darcy’s law).

Let U be some conserved extensive property of a substance, such as mass, amount,

or heat. Define u with respect to U by

∫
V

φudV = Sum of all U in V ,

for some closed volume V . Note the inclusion of the porosity term φ, ensuring

that only the pore space within V is taken into account. Then u is a density or

concentration function corresponding to U . Let the evolution of U be determined by

a flux J(x, y, z) = (Jx(x, y, z), Jy(x, y, z), Jz(x, y, z))T and a non-conserving source

or reaction term Q. The flux models the flow and transport of U ; it is defined such

that in unit time the amount of U that will flow through a surface S is

∮
S

J(x, y, z)dS.

The source or reaction term models any other processes that affect U . For example,

the mass could increase or decrease at a certain rate due to chemical or physical

processes; or radioactive decay may destroy mass or generate heat; or the substance

may be simply inserted to or removed from the system at certain parts of the domain,

as with wells in geological reservoirs. Per unit time, the rate of change of U at a

point due to non-conserving processes is given by Q(x, y, z, t, u).

The evolution of u, the density of U , is then given by the conservation (also called

continuity) equation,

d(φu(x, y, z, t))

dt
= ∇ · (J(x, y, z, t)) + φ(x, y, z)Q(x, y, z, t, u). (1.2)

We show a standard derivation of (1.2) here; another derivation specific to porous

media flow can be found in §4.2 of [6]. For the derivation we consider an infinitesimal

cube of sides ∆x, ∆y, ∆z as shown in Figure 1.1 a). First we note that the definitions

6



Chapter 1: Introduction

of u, Q and J give us, for the point (xc, yc, zc)
T at the centroid at the cube,

d

dt

∫
V

φudV =

∮
S

J(xc, yc, zc) · dS +

∫
V

φQdV, (1.3)

where V is now the cube and S its surface. We can express the term
∮
S

J(xc, yc, zc) ·

dS as a volume integral as follows. Note this is essentially a proof of the divergence

theorem.

The surface integral over the cube is the sum of the surface integrals over its six

faces. We consider the three pairs of opposite faces - show in Figure 1.1 b), c) and

d). The sum of the surface integrals over the two faces perpendicular to the x axis

is (highlighted in plot b),

∫ zc+∆z

zc−∆z

∫ yc+∆y

yc−∆y

(Jx(xc + ∆x, yc, zc)− Jx(x−∆xc, yc, zc)) dydz.

We can invoke the fundamental theorem of calculus on Jx,

Jx(xc + ∆x, yc, zc)− Jx(xc −∆x, yc, zc) =

∫ xc+∆x

xc−∆x

dJx
dx

dx.

Thus we have that the sum of the surface integrals over these two faces is

∫ zc+∆z

zc−∆z

∫ yc+∆y

yc−∆y

∫ xc+∆x

xc−∆x

dJx
dx

dxdydz =

∫
V

dJx
dx

dV.

Using the same argument, we see that the two faces highlighted in Figure 1.1 c) yield

a total surface integral of
∮
V

Jy
dy
dV , and the faces highlighted in d) yield

∮
V
dJz
dz
dV

so that the total surface integral is

∮
S

J(xc, yc, zc)dS =

∫
V

∇J(xc, yc, zc, t)dV.

Inserting this into (1.3) and rearranging gives us

∫
V

(
d(φu)

dt
−∇J(xc, yc, zc, t)− φQ

)
dV = 0.

7
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The integrand must be zero, and by taking (xc, yc, zc)
T to be an arbitrary point

(x, y, z), (1.2) follows.

Figure 1.1: The representative elementary volume used to derive the conservation
equation. a) The dimensions and centroid of the volume. b) Flow in and out on
faces perpendicular to x. c) Flow in and out on faces perpendicular to y. d) Flow
in and out on faces perpendicular to y.

We use the Advection Diffusion Reaction (ADR) equation model to test our

schemes, which we derive from (1.2). This models the transport of a dissolved

species in a solute flowing in a porous medium. To (1.2) we apply the following.

We let U be the mass, m of some dissolved species. From this it follows that u is

the concentration, c. We let Q be some arbitrary reaction term R. Two physical

processes define the flux J.

The first is diffusion, modelled by Fick’s law (see e.g., [9] §1.2 or [10] §16.2),

JD = −D∇c,

where the matrix D is the diffusivity matrix. Moving forward we will consider the

8
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simplified case where D = DI, where I is the 3 × 3 identity matrix. Diffusion is

the net movement of the solute from regions of high to low concentration. The

solute molecules are constantly undergoing Brownian motion; those whose velocities

happen to be in the direction of a lower concentration have a smaller probability of

collision, thus longer mean free paths, thus the net movement of molecules is in the

direction of lower concentration. The second physical process is advection. Let the

solvent be flowing with velocity field v. Then solvent molecules may collide with

solute molecules and move them in the direction of the flow. Collisions are more

likely with higher concentration, so the flow of the solvent causes a flux,

JA = cv.

The total flux of the dissolved species is J = JD + JA. Inserting this into (1.2) gives

us

dφc

dt
= ∇ · (D∇c+ φcv) + φR(c), (1.4)

the advection diffusion reaction equation. A simplification of (1.4) which we will

make use of is to set φ = 1 everywhere; this is done in our tests.

Using (1.1) we can write a conservation equation for the mass of the flowing fluid,

as in §1.2.1, letting the density be u ≡ ρ and the flux be J ≡ q in (1.2),

dφρ

dt
= ∇ · q +Q = −∇ ·

(
K

µ
(∇p+ ρg)

)
+Q, (1.5)

where Q models any sources or sinks of the fluid. A simplification of (1.5) for the

case of no sources or sinks (Q ≡ 0), negligible gravitational effects (ρg ≈ 0), and

steady state (dφρ
dt

= 0), is

0 = −∇ ·
(

K

µ
∇p
)
. (1.6)

1.3 The Finite Volume method

We introduce here the Finite Volume spatial discretisation method. This method

is appropriate for porous media flow as it closely follows the physics underlying

9



Chapter 1: Introduction

the PDE, as will be seen. The method also conserves mass and flux. By mass

conservation it is meant that the total mass in the system will not be spuriously

changed by the method. By flux conservation it is meant that the approximated

flux approximation across one face is consistent for both of the cells adjacent to that

face. For more detail see also the expository paper [11] and references therein, or

textbooks such as [12, 13, 14].

The method is appropriate for general conservation equations (1.2); we will focus

on (1.4) in our description. It is necessary to ensure that (1.4) is well posed, that is,

the solution c exists and is unique for given initial data c0(x) ≡ c(0,x). For theory

of well-posed PDEs see [15, 16, 17], for example. Typically it is necessary to assume

that the non-linearity satisfies a Lipschitz condition.

Definition 1. Lipschitz Continuity A function F (x) is said to be Lipschitz con-

tinuous if there exists positive CL ∈ R such that

||F (y)− F (x)|| ≤ CL||y − x||.

There are also requirements on the linear part of (1.4). Setting the operator

A· ≡ ∇D∇ ·+∇v·,

so that (1.4) can be written dc
dt

= Ac+Q, it is required that A be the generator of a

semigroup. See for example [17] Definition 1.3.3 or [16] Chapter 4 for this definition

and conditions for A to have this property. We will assume throughout that sufficient

conditions are fulfilled such that (1.4) is well posed. Similar conditions are required

for convergence proofs for finite volume discretisations; see for example [11] or [18]

and the references therein.

We now describe the finite volume discretisation of (1.4).

Consider the spatial domain Ω divided into a mesh of non overlapping polyhedral

volumes; we refer to the volumes as cells. Let there be J cells in total and let each

cell have unique index j ∈ {1, 2, . . . , J} = C, where C is simply the set of all cell

10
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indexes. We denote the volume of a cell j by Vj and the cell itself by ωj, such that

Ω =
⋃J
j=1 ωj. Let K be the total number of faces in the grid and let each face have

a unique index k ∈ {1, 2, . . . K} = F . For a cell j ∈ C, let the set Fj ⊂ F be the set

of faces for that cell. For a face fk with index k let Ak be its area.

We consider integrating the conservation law (1.2) over one cell j.

∫
ωj

dφu(x, y, z, t)

dt
dV =

∫
ωj

∇ · (J(x, y, z, t))dV +

∫
ωj

φQ(x, y, z, t, U)dV. (1.7)

We invoke the divergence theorem on the first term on the right hand side,

∫
ωj

∇ · (J(x, y, z, t))dV =

∫
A

J(x, y, z, t) · dS,

where the surface integral is over the surface of ωj. Since the cell is polyhedral the

surface integral can be expressed as the sum of the surface integrals on each of the

faces, ∫
A

J(x, y, z, t) · dS =
∑
k∈Fj

∫
fk

J(x, y, z, t) · dS.

Let Q̂ ≡ φQ, and assume that u and Q̂ are constant in the cell. That is, let xj be

the vector of (x, y, z) at the centre of the cell j, then inside the cell we make the

approximation, u(x, y, z, t) ≈ u(xj, t) and Q̂(x, y, z, t) ≈ Q̂(xj, t). Then (1.7) can be

written as

dφu(xj, t)

dt
=

1

Vj

∑
k∈Fj

∫
fk

J(x, y, z, t) · dS + Q̂(xj, t, U),

where we have divided through by the volume of Vj. An approximation for the flux

terms on each face in Fj needs to be found. That is, we must approximate on each

face,

J(x, y, z, t) · n,

where n is the outward unit normal vector of the face. The simplest methods are

the two point and upwind methods, which we now describe.

Consider the ADR equation so that

J = D∇u+ φuv.

11
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The two point approximation for the term D∇u · n is essentially a finite difference

approximation for the spatial derivative term. If j1, j2 are the two cells adjacent to

the face, then we approximate,

D∇u · n ≈ D̄
uj2 − uj1

∆x
,

where ∆x is the length of the line joining the two centroids of cells j1 and j2, uj1 and

uj2 are the values of u at these centroids, and D̄ is an average value D on the face.

Note that we only consider Cartesian grids here (in which cells are simple cubes),

so that the line joining the centroids of cells j1 and j2 is always perpendicular to the

face it passes through. Also note that for D̄, in order to ensure convergence to the

underlying PDE as the cell volume is reduced to zero, a harmonic mean is used;

D̄ =
2Dj1Dj2

Dj2 +Dj2

.

To approximate the advection term uv ·n the upwind approximation is used; see for

example [13, §5.6]. See also [14, §8.3.4] for a justification of this method in terms

of stability. Let v be the velocity at the centre of the face. This may need to be

interpolated if velocities are only available at cell centroids. The approximation then

depends on the direction of the velocity vector with respect to the normal vector to

the face. If n is in the direction away from cell j1 and towards j2, then,

uv · n ≈


uj1v · n if v · n > 0

uj2v · n otherwise,

(1.8)

and vice versa if n points from j2 to j1.

The two point flux approximations fail to consistently approximate the underlying

PDE unless the mesh is regular and Cartesian. For more complicated grids, ap-

proximations for the flux using data from more than two cells must be used (so

called Multi Point Flux Approximation schemes, MPFA, see for example [19] and

the references therein).

Let the approximation of the flux on face k be J̃k. The approximation of (1.7) is

12
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then

dφu(xj, t)

dt
=

1

Vj

∑
k∈Fj

AkJ̃k + Q̂(xj, t, U). (1.9)

The approximation of the flux J̃k is a linear combination of the values of u in cell

j and others. We can accumulate the approximation (1.9) into an ODE system.

Let u ∈ RJ be the vector with jth entry φu(xj, t). Similarly let Q̂ ∈ RJ be the

vector with jth entry Q̂(xj, t). Let the matrix L ∈ RJ×J be the matrix representing

the linear combinations from the flux approximation parts of (1.9). Then the finite

volume method yields a semilinear ODE system,

du

dt
= Lu + Q̂. (1.10)

1.4 Exponential Integrators

A PDE such as the ADR (1.4) can be semidiscretised into an semilinear ODE system

using a spatial discretisation such as the Finite Volume method, as seen in the

previous section. The resulting ODE system can be expressed as

du

dt
= Lu + F (u, t). (1.11)

If the spatial grid has J cells or nodes, then u ∈ RJ is a vector of the approximation

to u in each cell (from now on in this section we will say cell instead of cell or node

as we mainly deal with Finite Volumes). The matrix L ∈ RJ×J represents the linear

parts of the discretised equations, while the vector F ∈ RJ is a vector of the non-

linear contributions in each cell. For example when the ADR (1.4) is approximated

by (1.11) the approximation of the diffusion and advection terms produce linear

equations, while the approximation of the reaction term produce a nonlinear term.

In a general conservation equation (1.2), the flux term can be approximated as a

linear combination of data from two or more cells, while the reaction term produces

a nonlinear contribution to the ODE semidiscretised system.

Exponential integrators are a class of schemes which approximate (1.11) by exactly
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solving the linear part. This means that if F were zero or constant, then the expo-

nential integrator is exact for the ODE system. We give details on the construction

of these schemes shortly in §1.4.1. A characterising aspect of exponential integrators

is that they require the evaluation or approximation of a matrix exponential func-

tion of L at each timestep. The concept of exponential integrators has existed since

at least the 1960s, but were considered impractical until the start of the current

century. This is because methods to efficiently approximate the matrix exponential

functions were not available until then.

Exactly solving the linear part of (1.11) grants exponential integrators some bene-

ficial properties. Classical CFL conditions (See e.g., §4.2 in [20]) are avoided since

e∆tL is dense even when L is typically sparse; thus at each timestep each cell up-

dates based on information from every other cell (that is, the physical domain of

dependence is always within the domain of dependence of the scheme). Exponential

integrators tend to have greater stability regions than other explicit schemes, see

for example the analysis in §3 in [21]. Exponential integrators are also often useful

for ‘stiff’ problems. A problem is termed stiff if the timestep is limited by stability

requirements, or if there are different processes being modelled that evolve at vastly

different rates. The timestep in that case would need to be small enough to resolve

the fastest of these processes accurately. Either way there is a timestep restriction.

If the stiffness is in the processes modelled in the semilinear part of the ODE (e.g.,

advection or diffusion), then the exponential integrator will not have problems with

stiffness as the linear part is solved exactly. If the problem is stiff in the sense of a

stability restriction; exponential integrators will benefit from their large regions of

stability.

An overview for exponential integrators has been published in Acta Numerica [22].

Another overview is [23], and useful references can be found in [24]. A major class

of exponential integrators are the multistep Exponential Time Differencing (ETD)

schemes, first developed in [21], which also contains some analysis to justify the

claims about stability. Other classes include the Exponential Euler Midpoint method

[25] and Rosenbrock type methods [26, 27].
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Extending the concept Runge-Kutta (RK) schemes to exponential integrators has

also been a significant area of research. Analogous to how classical RK schemes use

multiple internal stages in order to attain a higher order of accuracy, Exponential

Runge Kutta (ERK) schemes use multiple internal stages, thus requiring multiple

evaluations of the matrix exponential function typically. Hochbruck and Osterman

[28, 29, 30] have derived conditions for ERK schemes which guarantee the stiff order

of the scheme (see §1.5.3). Tokman has developed a class of ERK schemes [31, 32, 33]

which instead satisfy classical order conditions but require fewer matrix exponential

function evaluations. We investigate a different approach to the same objective in

Chapter 4.

Exponential integrators have been successfully applied to geological reservoirs, see

for example [34]. Lord [35] and Tambue [36, 37, 38, 39] have developed exponen-

tial integrators for stochastic ODE systems, used to model, for example, geological

reservoirs with highly heterogeneous permeability. See also the Thesis [40].

A parallel in time exponential integrator has been developed, named Paraexp [41]

and based on the parallel in time scheme Parareal [42]. This requires the reaction

term to be autonomous of u, i.e. F = F (t). Another report on parallelization is

[43], where the matrix-matrix and matrix-vector multiplications necessary for the

Leja-point interpolation [44] method for approximating the matrix exponential, are

performed in parallel in a standard way.

Packages released for exponential integrators include [45] and the expint package

[46].

1.4.1 ϕ-Functions

A class of exponential functions called ϕ−functions are key to the formulation of

exponential integrators. They also appear in some of our Asynchronous schemes in

Chapter 2. We provide a definition here.

The first ϕ−function is ϕ0(·) and is defined as simply the exponential function

ϕ0(z) ≡ ez.
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The argument z can be any operator for which the exponential can be defined, but

for our purposes it will always be a matrix; z ∈ Rn×n. The exponential is defined as

the series,

ez ≡
∞∑
i=0

zi

i!
. (1.12)

The rest of the ϕ−functions are defined iteratively,

ϕn+1(z) ≡ z−1

(
ϕn(z)− 1

n!

)
, (1.13)

where I is the n× n identity. Of particular interest is ϕ1(·);

ϕ1(z) = z−1 (ez − I) =
∞∑
i=0

zi

(i+ 1)!
. (1.14)

The series expression in (1.14) follows from the series expression of the exponential

(1.12). Indeed, an inductive argument using (1.12) and (1.13) shows that for general

ϕ−functions,

ϕm(z) =
∞∑
i=0

zi

(i+m)!
. (1.15)

We show how ϕ−functions relate to (1.11). First we follow the approach of [21].

Using an integrating factor e−∆tL, the exact solution to (1.11) can be written as

u(t+ ∆t) = e∆tLu(t) +

∫ t+∆t

t

e(t+∆t−s)LF (u(s), s)ds. (1.16)

ETD schemes are derived for (1.11) by approximating the integral in (1.16). Con-

sider the approximation that F (u(s), s) is constant over [t, t+∆t], that F (u(s), s) ≈

F (u(t), t). Then integration gives

u(t+ ∆t) ≈ e∆tLu(t) + ∆tϕ1(∆tL)F (u(t), t),

which is equivalent to Equation (4) in [21] after applying the definition of ϕ1 (the

authors of [21] do not use ϕ−functions). Using this we can define the approximation

method ETD1. Let tn ≡ n∆t, define the approximation un ≈ u(tn), and let Fn ≡
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F (tn,un). Then ETD1 is the scheme,

un+1 = e∆tLun + ∆tϕ1(∆tL)Fn, (1.17)

ETD1 can be shown to be locally second order in ∆t and globally first order in ∆t

([21] and §1.5.1 here).

By approximating F (u(s), s) in (1.16) by polynomials of increasing degree, more ac-

curate multistep methods can be derived. Consider the approximation F (u(s), s) ≈

F (u(t), t)+sF (u(t),t)−F (u(t−∆t),t−∆t)
∆t

(i.e., a second order Taylor series approximation,

with a finite difference approximation for the first derivative). Inserting this into

(1.16) and integrating gives us,

u(t+ ∆t) ≈ e∆tLu(t) + ∆tϕ1(∆tL)F (u(t), t)

+ ∆tϕ2(∆tL) (F (u(t), t)− F (u(t−∆t), t−∆t)) .

This can be seen to be equivalent to Equation (6) in [21] after some rearrangement

and application of the definitions of ϕ1 and ϕ2. Using the same notation as before,

this approximation is the basis for the scheme ETD2,

un+1 = e∆tLun + ∆tϕ1(∆tL)Fn + ∆tϕ2(∆tL) (Fn − Fn−1) . (1.18)

ETD2 can be shown to be locally third and globally second order, [21].

We see how ETD schemes constructed in this manner include the exact solution of

the linear part, i.e. e∆tLu(t), while the approximation of the nonlinear part includes

ϕ−functions. An alternative framework for deriving exponential integrators can be

found by using the Taylor series expansion of F in (1.16). It can be shown [22] that

evaluating the integral for each term results in an infinite series of ϕ−functions;

u(t+ ∆t) = e∆tLu(t) +
∞∑
k=1

∆tkϕk(∆tL)F (k−1)(t, u(t)) +O(∆tk). (1.19)

From this we see that ETD1 and ETD2 are attempts to match or approximate the

first one or two terms in the sum in (1.19), respectively.
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Approximating the matrix exponential and functions of it like ϕ−functions is a

notorious problem [47]. A classical technique is Padé approximation, which is only

efficient for small matrices. Modern methods range from Taylor series methods

making sophisticated use of scaling and squaring for efficiency, [48], to approximation

with Faber or Chebyschev polynomials [49], [22] §4.1, interpolation on Leja points

[50, 44, 43, 51, 52], to Krylov subspace projection techniques [53, 54, 45, 55, 56]. We

are particularly interested in the Krylov subspace projection technique and introduce

this in detail in Chapter 3.

A variation on ETD1 is to replace L with the Jacobian of the right hand side of

(1.11), that is, the matrix J defined as

J ≡ ∂

∂u
(Lu+ F (u, t)) = L+

∂F (u, t)

∂u
.

Equation (1.11) can then be re-written as

du

dt
= Ju + (Lu + F (u, t)− Ju) (1.20)

We then apply ETD1 (1.17) to (1.20), obtaining

un+1 ≈ e∆tJun + ∆tϕ1(∆tJ) (Lun + F (un, t)− Jun)

= un + ∆tϕ1(∆tJ) (Lun + F (un, t)) ,

(1.21)

where we have used e∆tJun = un+∆tϕ1(∆tJ)Jun, which follows from the ϕ−function

definition at the start of this section. The scheme (1.21) is essentially the simplest

Rosenbrock-type exponential method [26, 27], and is second order globally. We will

refer to it as ROS2.

18



Chapter 1: Introduction

1.5 Numerical Analysis

1.5.1 Local and Global Error

We now discuss types of error that can be examined to analyse a numerical scheme;

the local error and the global error; and the relationship between them. See also for

example [57, §9.5] for a treatment specifically for linear systems, or [5, §2.11-2.12]

for an example specifically for the Euler method.

Throughout the thesis we will use || · || to denote a generic norm. When the object

x in the norm ||x|| is a vector, then ||x|| is understood to be a vector norm. If x is

instead an operator or a matrix, then ||x|| denotes the corresponding induced norm.

More specific norms will be denoted as needed, for instance || · ||2 is the standard

Euclidean norm, or the corresponding induced operator or matrix norm.

Consider the ODE system (1.11) and its approximation un ≈ u(tn), where tn = n∆t,

produced by a scheme with update rule,

un+1 = Lun +N (un), (1.22)

where L is a linear operator and N (·) is nonlinear. Consider the global error En

defined as,

En ≡ u(tn)− un. (1.23)

Typically an essential step in examining the global error is to start with the local

error, defined as,

Ên = u(tn)− Lu(tn−1)−N (u(tn−1)), (1.24)

i.e. the error that would accumulate in one step of the method if u(tn−1) were

used instead of the approximation un−1. The global error can then be expressed

iteratively, for we can combine (1.22), (1.23) and (1.24) to obtain

En = Ên + LEn−1 +N (u(tn−1))−N (un−1).
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From this it follows

En =
n∑
i=1

Ln−iÊi +
n−1∑
i=1

Ln−1−i (N (u(ti))−N (ui)).

An attempt is then made to bound the norm of En, i.e.,

||En|| =
n∑
i=1

||Ln−i|| ||Êi||+
n−1∑
i=1

||Ln−1−i|| ||N (u(ti))−N (ui)||. (1.25)

A bound for ||Ln−i|| is searched for. A bound for ||Êi|| can be found by examining

the local error. For the nonlinear part, a bound can usually be found of the form

||N (u(ti)) − N (ui)|| ≤ N(∆t, ti)||F (u(ti)) − F (ui)||, where N(∆t, ti) is a positive

function specific to the scheme. For a bound on ||F (u(ti)) − F (ui)|| it is usually

necessary to assume that F is Lipschitz continuous, see Definition 1. If F is Lipschitz

continuous, equation (1.25) will yield the bound,

||En|| =
n∑
i=1

||Ln−i|| ||Êi||+ CL

n−1∑
i=1

||Ln−1−i|| ||N(∆t, ti)|| ||Ei||. (1.26)

The goal is to put (1.26) in a form to which we can apply a discrete Gronwall

Lemma. A result is described as being a discrete Gronwall lemma if it has the

following properties. Given some nonnegative series {εn} and a bound on εn in

terms of one or more εi where i < n, then there exists a bound on εn independent

of any other members of the sequence {εn}. For our purposes we are best served by

simplified form of Lemma 4 from [28].

Lemma 1.5.1. Discrete Gronwall Lemma, [28], Lemma 4, simplified.

Given ∆t > 0, tn = n∆t, a, b ≥ 0, and a sequence of nonnegative εn satisfying

εn ≤ a∆t
n−1∑
i=1

εi + b,

then εn satisfies

εn ≤ Cgb,

where Cg depends on all the parameters and on a T ≥ tn.
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Proof. This is Lemma 4 from [28] with with ρ, δ = 0.

Other forms of discrete Gronwall lemma are given in the paper [58]. Also see for

example A.10 in [59]. Note that for the bound T ≥ tn in Lemma 1.5.1 it is natural

to simply use the final time of the simulation.

Example 1: Forward Euler

As a simple example of finding a bound on the global error, consider the forward

Euler method, for which L = I, the identity operator, andN (·) = ∆tF (·). Assuming

that F is Lipschitz continuous (Definition 1), then in (1.25) we have ||N (u(ti)) −

N (ui))|| ≤ ∆tCL||u(ti)− (ui)|| = ∆tCL||Ei||, and (1.25) leads to the estimate,

||En|| ≤ ∆tCL

n−1∑
i=1

||Ei||+
n∑
i=1

||Êi||,

and so,

||En|| ≤ ∆tCL

n−1∑
i=0

||Ei||+
T

∆t
max
i
||Êi||,

where we have used
∑n

i=1 1 = n = tn
∆t
≤ T

∆t
. Applying Lemma 1.5.1 to this gives

||En|| ≤ Cg
T

∆t
max
i
||Êi||.

The local error of the Euler method can be shown to be bounded by

||Êi|| ≤
∆t2

2
max
t
||dF (u(t), t)

dt
||,

by Taylor series expansion. That is, it is locally second order in ∆t. The global

error is first order in ∆t,

||En|| ≤ Cg
T

2
∆tmax

t
||dF (u(t), t)

dt
||.
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Example 2: ETD1

As another example we consider the global error of ETD1, see also for example

Theorem 4.1 from [29]. For ETD1 we have L = e∆tL and N (·) = ∆tϕ1(∆tL)F (·).

The global errors then satisfy the recursion,

En = ∆t
n−1∑
i=0

e(n−i−1)∆tLϕ1(∆tL) (F (ti, u(ti))− F (ti, ui)) +
n−1∑
i=0

ei∆tLÊi.

Taking a norm gives us,

||En|| ≤ ∆tCL

n−1∑
i=0

||e(n−i−1)∆tL|| ||ϕ1(∆tL)|| ||Ei||+ max
i
||Êi||

n−1∑
i=0

||ei∆tL||. (1.27)

Bounds need to be found for the norms of the exponential functions in (1.27). Differ-

ent approaches may be taken, and the particular form of the bound will depend on

the approach and the norms used. We sketch standard ideas behind straightforward

bounds in Remarks 1.5.2, 1.5.3 and 1.5.4. For a full discussion see [29].

Remark 1.5.2. Bound for ||etL||

We assume there exists a positive C such that ||etL|| ≤ C. Possible justifications for

this include the following.

1) We could assume that L is diagonalizable, then etL = V etDV −1, where D is the

diagonal matrix of the eigenvalues of L. Then in the norm induced by the Euclidean

2-norm, ||etL||2 ≤ C1 maxi |etλi |, where ||V ||2||V −1||2 ≤ C1. If all the eigenvalues

of L are negative, then |etλi | ≤ 1. Otherwise maxi |etλi | ≤ maxi |eTλi |. Either way

there exists a C2 such that ||etL||2 ≤ C2. Equivalence of norms then guarantees a C

such that ||etL|| ≤ C in any norm.

2) Various approaches can be found in, for example, [60, §2] and the references

therein. For example, consideration of the power series definition of etL leads to

||etL|| ≤ et||L|| which is bounded by a constant if ||L|| is.
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Remark 1.5.3. Bound for ||ϕ1(∆tL)||

We assume there exists a positive C such that ||ϕ1(∆tL)|| ≤ C. Possible justifica-

tions for this include the following.

1) We could assume that L is diagonalizable, then ϕ1(∆tL) = V ϕ1(∆tD)V −1, where

D is the diagonal matrix of the eigenvalues of L. Then like in Remark 1.5.2,

||ϕ1(∆tL)||2 ≤ C1 maxi |ϕ1(∆tλi)|. The term maxi |ϕ1(∆tλi)| is bounded above in

the range ∆t ∈ [0, T ] (∆t is confined to this range because there will be between 0 and

∞ steps), because ϕ1(·) is continuous. Thus ϕ1(∆tL) is bounded by a constant in the

2-norm, and thus is bounded by a constant in any norm by the equivalence of norms.

2) Another approach is to use the power series definition as in 1.5.2 2), leading

to ||ϕ1(∆tL)|| ≤ ϕ1(∆t||L||), which is bounded by a constant if ||L|| is.

Remark 1.5.4. Bound for ||
∑n−1

i=0 e
i∆tL||

Given Remark 1.5.2, there exists a positive C4 such that ||
∑n−1

i=0 e
i∆tL|| ≤ C4

∆t
.

We have that ||
∑n−1

i=0 e
i∆tL|| ≤ Cn = C tn

∆t
≤ CT

∆t
, where C is the bound on ||etL||

from Remark 1.5.2.

Applying these bounds with (1.27) leads to the estimate,

En ≤ C∆t
n−1∑
i=0

||Ei||+ max
i
||Êi||

C

∆t
,

where we have replaced all products of various constants with the generic constant

C. Taylor series expansion shows that the bound on the local error of ETD1 is

max
i
||Êi|| ≤

∆t2

2
max
t
||dF (u(t))

dt
||,

so that by applying Lemma 1.5.1, we see that ETD1 is globally first order in ∆t.

Using similar methods, local errors of the globally second order methods ETD2

(1.18) and ROS2 (1.21) can both be shown to be third order in ∆t using Taylor

expansions.

As a general rule of thumb if the local error of a scheme is order p, then the global

error is order p−1, given that adequate bounds on L andN (·) exist, which depend on
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assumptions on the operators that make up the scheme or the underlying PDE, such

as boundedness of the matrix L or F being Lipschitz continuous. Heuristically, if the

final time T = N∆t is reached in N timesteps, then the local error is accumulated

N times, leading to a term in the global error of the form NO(∆tp) = T
∆t
O(∆tp) =

O(∆tp−1). In the two examples above, this describes the term in the global error

inequalities which involves the local error Ê and takes the place of b in Lemma 1.5.1.

The form of Lemma 1.5.1 shows us that b controls the bound on the global error.

Ideally sharp estimates should be found for both the local and global errors for every

scheme. In Chapters 3 and 4 we introduce new schemes and study their local errors.

We then test the properties implied by the local error (i.e., accuracy and order

of convergence) in numerical experiments. With the local error of these schemes

examined, derivation of sharp bounds for the global error is a subject of potential

future research.

1.5.2 Estimating Error in Numerical Experiments

When testing a scheme for accuracy and efficiency it is necessary to estimate the

error. If the exact solution of the system is not available, this can be done by

producing a comparison solve ucomp which is guaranteed to be close to the true

solution. One can produce ucomp by using a scheme known to be reliable with

a much smaller timestep ∆t than the range used in the experiments, for example.

Then ucomp is used instead of the true solution to estimate the error of solutions

produced by the schemes being investigated. Consider a spatial discretisation with

K total cells or nodes, such that the approximation un and the comparison solve

ucomp satisfy un, ucomp ∈ RK . Then the following error estimation can be used.

Estimated Error(un) =
||ucomp − un||2√

K
, (1.28)

where || · ||2 is the discrete euclidean norm. Equation (1.28) corresponds to an

estimation of the Euclidean norm of the global error in (1.23). The scaling by
√
K

is to remove dependence of the error on the size of the system - without the scaling

the error estimate would always increase with
√
K, due to the definition of the
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Euclidean norm. We will use (1.28) for error estimation throughout the rest of this

thesis. We will refer to (1.28) as the ‘scaled Euclidean Norm’ of the estimated error

on occasion.

1.5.3 Stiff Order

We discuss here the concept of stiff order, which is a concept related to the benefits

of exponential integrators. Our analysis is for classical order conditions. Prothero

et al [61] are cited as discovering the phenomenon. They explained the concept in

terms of so called S-stability and S-accuracy. The more well known terminology of

B-convergence was later introduced by [62]. One may also see chapter IV.15 of [63].

Mention is also made in the review paper [64, §5], for example.

Consider an ODE, possibly an ODE system,

du(t)

dt
= f(u(t), t), (1.29)

where u(t) and f(u(t), t) may be vectors. Consider an approximation un ≈ u(tn) by

some scheme, and two different theoretical error results, in some norm,

||un − u(tn)|| ≤ Chp = E, (1.30)

||un − u(tn)|| ≤ C̄hp̄ = Ē, (1.31)

where h is the timestep used, C 6= C̄ and, crucially p 6= p̄, that is, the error results

are of different order. Both results may be theoretically true but the smaller of E,

Ē determines the actual error behaviour.

As an example of having two different error order results, one can imagine working

through the error analysis of a classical global second order method, but not con-

sidering the Taylor series to f beyond second order. One would obtain a bound on

the local error of the form α2M2h
2, even though a bound α3M3h

3 is possible. Here
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the αi are different constants and the Mi are bounds on the derivatives of f ,

||d
if

dti
|| ≤Mi. (1.32)

From the two different local error bounds one would then obtain global error results

of first and second order. Using the notation of (1.30), (1.31), in this case let E be

the first order result with p = 1 and Ē the second order result with p̄ = 2. The

argument then goes that Ē ≤ E, because for low h, hp̄ < hp, and also possibly

because f is a nice function whose derivatives cause C̄ < C. In this case the higher

order result is more sharp.

Returning to the general case (1.30), (1.31), we can imagine an exception where

p̄ > p but C̄ >> C, so that E ≤ Ē for any h we might practically use. In this case

the lower order result is sharper and better describes the error behaviour. This can

be the case when the function f is such that its higher derivatives have extremely

high bounds in (1.32), resulting in C̄ >> C. Since this depends on f and thus

the ODE (1.29) to which the scheme is applied, this is one explanation for the

order reduction phenomenon in [61]. Another possibility is that the function f is

such that a bound (1.32) simply does not exist. In that case the higher order error

estimate is not just misleading, but untrue, when applied to certain systems (i.e.,

the assumption of the existence of an Mi was wrong in the analysis).

We can take this further towards understanding stiff order in exponential integrators,

used extensively in the papers of Hochbruck and Osterman, e.g. [29]. First we specify

that we are dealing with a semilinear form of (1.29), that is,

f(u(t), t) = Lu(t) + g(u(t), t),

where L is a matrix and g is the nonlinearity term. A stiff error analysis starts from

an expansion of the true solution u,

u(t+ h) = u(t) +
∞∑
j=1

hjϕj(hL)g(j). (1.33)
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This is used to replace the classical Taylor series at all times. Also, Taylor expanding

any of the ϕ−functions (see §1.4.1 ) is not allowed. Efforts are made in designing

schemes to match terms in (1.33), not the classical Taylor series. Generally this

causes the coefficients in error estimates to be controlled by terms like,

||ϕj(hL)
dig

dti
|| ≤ M̂i, (1.34)

that is, C and C̄ vary in size with M̂i, and not Mi, for exponential integrators.

Very often, M̂i << Mi, i.e. the ϕ-functions damp high derivatives of f (or that the

derivatives of g are much smaller than those of f). Effects like this can be observed

in Chapter 4 on ‘semi-exponential’ RK schemes, which are designed to satisfy clas-

sical order conditions, but exhibit an order barrier for stiff problems.

The result is that Hochbruck-type exponential integrators owe their stiff order to

ensuring that their highest order error estimates remain sharp even when the scheme

is applied to systems with very large derivatives of f , by having error estimate co-

efficients that depend on the (damping) action of a ϕ−function on such derivatives.
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Chapter 2

Face Based Asynchronous Schemes

2.1 Introduction

We analyse and develop new schemes for the simulation of porous media flow based

on an asynchronous simulation methodology. By asynchronous we mean a scheme

in which different parts of the spatial domain are allowed to exist at different times

simultaneously during the course of the simulation. Numerous different categories

of schemes may fall under this broad description; here we are interested in schemes

based on the Discrete Event Simulation (DES) methodology. This methodology is

essentially the idea of evolving a system forward in time by discrete events, local

in space, with each event having its own local timestep determined by the physical

activity in that region, see [65, 1, 66]. In this way more active regions of the spatial

domain receive more events, in principle leading to more efficient distribution of

computational effort. A full description and algorithm follows in §2.2. Initially we

focus on the simulation of linear conservation law models in the absence of reaction

terms,

dc(x, t)

dt
= ∇f(c(x, t)), t ∈ R, x ∈ Ω ⊂ Rd, (2.1)

d = 1, 2, 3, where c(x, t) is a concentration and f is a given flux function. An initial

condition c(x, 0) = c0(x) is provided. For simplicity of exposition, we consider ‘no

flow’ boundary conditions, that is, Neumann type boundary conditions with zero

flux on external faces. Other types of boundary conditions could easily be added in
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this framework. We are primarily interested in advection diffusion systems, where

the flux is of the form

f((c(x, t)) = ∇D(x)(c(x, t)) + v(x)c(x, t), (2.2)

and D is the diffusivity and v is a given velocity. The combination of (2.1) and

(2.2) is the PDE

dc(x, t)

dt
= ∇2(D(x)c(x, t)) +∇(v(x)c(x, t)). (2.3)

The diffusivity D may come from, for example, porosity and permeability in a porous

media flow model and therefore could be a tensor, but often we consider a simple

scalar field. The velocity v is of a vector field with the same dimension as Ω. In

§2.6 we later describe the incorporation of a reaction term for our schemes. The

spatial domain Ω is discretised into cells, as in a standard finite volume approach

(see §1.3), and equation (2.1) is discretised in space over the grid. To describe our

new schemes we start by focusing on a simple system; a conservation law without

sources (2.1) with flux given by, for example, (2.2).

The outline of this chapter is as follows. In §2.1.1 we introduce the motivation and

concept behind the schemes. In §2.1.2 we re-state the ideas from the Finite Volume

discretisation method as they are relevant here. We present the basic version of

the new schemes in §2.2, which we then compare to other schemes based on the

same general methodology in §2.3. In §2.4 we describe the representation of the new

schemes with so called ‘connection matrices’. Modifications to the basic schemes

are introduced in §2.5, and the addition of reaction terms is discussed in §2.6.

2.1.1 Motivation and Basic Concept

Our work builds on other work on the application of the asynchronous DES method-

ology to continuous systems [65, 1, 66]. We refer to our simplest scheme as the Basic

Asynchronous Scheme (BAS). The underlying idea is simple but unusual, therefore

we present the scheme now in a simplified way to elucidate the general concept. In
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this section we will present a motivation and explain the algorithm for BAS in a

simplified way before providing a full description in §2.2

Consider a domain with varying flow rates in different spatial regions, such as the

case with a strongly varying velocity or diffusivity field (see for example Figure 3.1

and the numerical experiments in Chapter 3). Assuming the domain is gridded for

a finite volume discretisation, this will result in some faces in the grid having much

greater flux than others. In Figure 2.1 we have a simplified example of such a grid.

Figure 2.1 a) shows a section of a grid, with a value of mass in each cell. We consider

the four cells shown and their four internal faces.

Figure 2.1 b) shows the fluxes on each of the internal faces. The face with the

greatest flux is highlighted in red. The core of BAS is to identify the face with the

greatest rate of activity, i.e. flux, and to perform an event where mass is transferred

across only this face. Thus the two cells adjacent to the face (highlighted in plots b)

and c) experience a change in mass, and we can think of the face evolving forward in

time separately from the rest of the domain. The algorithm proceeds to evolve the

domain forwards to a final time T by a sequence of these discrete events, in which

parts of the domain evolve asynchronously, thus the terminology. Indeed, each face

has its own individual time value which may be different from that of its neighbours.

Figure 2.1 c) represents a single event, where a specified amount of mass ∆M , which

we refer to as the global mass unit, is allowed to pass over the face between the two

cells according to the direction of the flux. The event is taken to represent activity

over some interval of time ∆t. This is calculated from ∆M and the flux on the face

by the heuristic,

dm

dt
= flux,

dm

dt
≈ ∆M

∆t
=⇒ ∆t ≈ ∆M

flux
. (2.4)

A timestep ∆t is calculated for every individual event and is thus specific to the face

and the event. When a face undergoes an event, the ∆t for the event is calculated

and added to the face’s individual time value. Figure 2.1 d) shows the grid after

the event. Only the two cells adjacent to the active face have had their mass values

changed.
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The idea is to allow different parts of the domain to evolve at rates appropriate

to their rates of activity (measured by flux). The arguments which motivate the

method are:

1. A face with a greater flux should be allowed to evolve with more steps with

smaller ∆t values than a face with smaller flux, to maintain accuracy. The

underlying assumption here is that the appropriate timescale is related to the

flux. The greater the flux the faster the timescale; and thus a finer temporal

resolution is necessary to correctly capture the local behaviour of the system.

One way in which the local rate of activity effects temporal resolution is the

CFL condition; this is discussed in relation to Asynchronous schemes in [67].

Another way to look at the argument is that in BAS the ‘resolution’ of the

solve is set by ∆M - no single discrete transfer of mass in the system is allowed

to exceed ∆M in magnitude, any by the heuristic (2.4), ∆t is consequently

inversely proportional to the flux.

2. If the faces are being processed one at a time, then faces with greater flux

should have greater priority since the effects of evolving the system on that

face is likely to be more significant than the effects of evolving the system on

a face with smaller flux; and the greater flux face is going to need more events

anyway.

This is the reasoning behind identifying the highest flux face, processing it first, and

using ∆t inversely proportional to the flux, in our example. More necessary details

of the scheme, such as how to manage the fact that evolving one face will change

the flux on nearby faces, how to correctly schedule events, and how to synchronise

to a final time T , are all discussed in §2.2.

This example demonstrates the basic idea of the Asynchronous scheme. We have

used a varying velocity field to demonstrate how the flux on the faces may vary,

but this is not necessary; the algorithm works by looking at fluxes. Algorithm 1

describes the basic algorithm as outlined above; a more rigorous version is given in

Algorithm 2. In Algorithm 1 we introduce the idea of faces having individual times.
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1 while Any face has tk < T do
2 Identify face k with highest event priority (a function of the face’s flux

and individual time) ;
3 Calculate ∆t for the event from (2.4) ;
4 Transfer ∆M across face k, changing m in the two adjacent cells ;
5 Set face k’s individual time to tk + ∆t
6 Update flux and priority of all faces which were affected by the changes in

m (including face k) ;

7 end

Algorithm 1: BAS - The basic idea of the scheme as outlined in §2.1.1. Some
considerations such as synchronisation to a final time are ignored here, but are
presented in Algorithm 2 and §2.2.

a) Before Event b) Fluxes on Faces

c) Event on Most Active Face d) After Event

Figure 2.1: Demonstrating the idea of BAS, considering four cells and their internal
faces. a) Distribution of mass in each cell. b) Fluxes across each face; the fluxes are
not equal. The face with highest flux is highlighted in red. c) An asynchronous event
moves the simulation forward. A pre-determined amount of mass ∆M is transferred
between the two cells adjacent to the face with highest flux. d) Counterpart to a)
after the event. The mass distribution in the system has changed but only in the
two cells adjacent to the face which triggered the event.
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2.1.2 Finite Volume Discretisation

Our schemes make use of the flux on each face of the grid approximated by the finite

volume (FV) method. For clarity we restate the basics of the FV approach as they

are relevant here; see also for example [12]. The spatial domain is divided to a grid

of cells. Each cell has a unique index j ∈ {1, 2, . . . , J} = C, where we have named

the set of all cell indexes C for convenience. Similarly every face also has a unique

index k ∈ {1, 2, . . . K} = F . Some subsets of C and F are useful to define. For a

cell with index j ∈ C, define the set Fj of faces belonging to the cell, where Fj ⊂ F .

Also, define the set of associated faces F̃k of a face k as follows. If face k is adjacent

to cells j1, j2 ∈ C, then

F̃k = Fj1 ∪ Fj2 ,

i.e., the associated faces is the set of all the faces of the two cells which face k is

adjacent to. The finite volume discretisation of (2.1) is based on the approxima-

tion of the flux across faces in the grid. See Figure 2.2 for illustration of variable

placement on the grid. Let fk be the approximation of the flux on a face k ∈ F ,

which depends upon the concentration values cj1 , cj2 in the two cells with indexes

j1, j2 ∈ C adjacent to face k. The concentration cj of a cell j is assumed constant

throughout the cell, and is derived from the mass in the cell mj and its volume Vj

as cj =
mj

Vj
. The flux fk on a face is assumed constant and defines the flow of mass

across the face between its two adjacent cells, i.e., the flow of mass from cell j1 due

to face k will be −fkAk; and into cell j2 will be be fkAk, where Ak is area of the

face k. The direction of mass flow depends on the sign on fk. To be explicit, the

equations for mass flow across a single face k, are

dmj1

dt
= fkAk,

dmj2

dt
= −fkAk. (2.5)

The flux may be approximated by finite differences such as, for a diffusion only

system,

fk =
D̄k(cj2 − cj1)

∆xk
=
D̄k

(
mj2

Vj2
− mj1

Vj1

)
∆xk

, (2.6)
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where D̄k is an approximation of the diffusivity at the face based on the diffusivity in

the two cells, typically the harmonic mean of Dj1 and Dj2 (see §1.3), and ∆xk is the

distance between the two cell centroids, for example, Figure 2.2 b) shows two cells;

their centroids are marked with dots, and ∆xk is then the length of the straight line

between them. For an advection-diffusion system, one of the two cells will be the

upwind cell; without loss of generality let this be cell j1. Then (2.6) will be replaced

by

fk =
D̄k

(
mj2

Vj2
− mj1

Vj1

)
∆xk

− mj1

Vj1
v, (2.7)

where v is the scalar product of the velocity at the centre of face k with the unit

vector in the direction of the line from the centre of cell j1 to cell j2. We now take

a moment to discuss the signs in (2.7) and their meanings in (2.5). First, since j1

is the upwind cell, it is clear that
mj1

Vj1
v should have a negative sign since mass will

leave cell j1 and arrive in cell j2. The diffusion term in (2.7) derives from Fick’s

law of diffusion, according to which the rate of change of the amount of mass at the

centre of cell j1, along the line connecting the two cells, is

dmj1

dt
= −Ddcj1

dx
, (2.8)

and respectively for cell j2. Here D is the diffusivity, and the spatial derivative

is along the line connecting the two cells. While the D replaced with an average

D̄ as stated earlier, the spatial derivative is approximated by a finite difference,

dcj1
dx
≈ cj1−cj2

∆xk
. The negative sign in (2.8) flips the order of the difference, which is

the reason for the order of the difference in the diffusion term in (2.7). We see that

the same applies for cell j2.

The total rate of change of mass, and thus concentration in a cell j is the sum of

(2.5) for each k ∈ Fj. This can be expressed as a matrix, L which gives the finite

volume semidiscretisation of (2.1) as a system of ODEs,

dc

dt
= Lc, L ∈ RJ×J (2.9)
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where c = (c1, c2, . . . , cJ)T is the vector of concentrations in cells. In a standard

finite volume based implementation (2.9) is then discretised in time, resulting in the

fully discrete approximation. Face based asynchronous schemes are based on events

involving the transfer of mass across a single face but do not form the global system

(2.9); instead they can be defined in terms of much smaller local matrices which we

call ”connection matrices” and introduce in §2.4. They proceed in discrete events

approximating the effect of (2.5). We now present the basic asynchronous scheme

in detail.
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(a)

(b)

Figure 2.2: (a) Demonstrating placement of important variables on the mesh. Each
cell (labelled j1, j2 etc.) has a mass, m, and thus a concentration C value. Each
face (labelled k1, k2 etc.) has a flux, f , time, t and update time t̂ value. (b) During
an event on face k1, only the cells adjacent to the face (here j1 and j2) are updated.
An amount of mass ∆M is transferred between the two cells, and the time on the
face tk1 is set to be the update time t̂k1 . The update time and ∆M are related to
the flux fk1 by (2.10)
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2.2 The Basic Face Based Asynchronous Scheme

(BAS)

We now describe in depth the simplest form of our face based asynchronous schemes

(BAS). We introduce the important parameters and variables used in the method.

Consider the spatial domain Ω discretised into cells as in the standard finite volume

approach. We use a subscript to denote association of a variable with a face or

cell. For example, t̂k is the update time for face k. Figure 2.2 (a) illustrates the

placement of the variables. The variables belonging to each a cell j are:

Variables belonging to a cell j

Symbol Description

mj Mass in cell j.

Vj Volume in cell j.

cj Concentration; cj =
mj

Vj
.

Dj Effective diffusivity in cell j.

vj Velocity vector in cell j.

The variables associated with each face with index k are:

Variables belonging to a face k

Symbol Description

Ak Area of the face k.

fk Flux across the face k; see (2.6).

tk Time of the face’s most recent update.

t̂k Projected update time of the face.

∆tk The timestep with which the face will asynchronously advance dur-

ing its next event.
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Global values, not placed on specific parts of the discretisation of Ω are:

Global values

Symbol Description

∆M Global mass unit. This is the amount of mass to be transferred

between two adjacent cells in an event.

t Global time; the lowest time on any face, i.e. t = mink tk.

T Final time. The algorithm will reduce the update times of faces

towards the end of the solve in order to synchronise all faces to

having time tk = T .

We note that choosing an appropriate value of the global mass unit ∆M to bal-

ance between accuracy and efficiency is of great importance in using this method.

For a face k, the projected update time t̂k is calculated so that in the interval

∆tk ≡ t̂k − tk, at most ∆M units of mass pass through the face. We discuss the

relationship between t̂k and ∆tk in more detail now.

The BAS method calculates the update time t̂k as,

t̂k =


tk + ∆M

|fk|Ak
if this ≤ T

T otherwise.

(2.10)

This is derived as follows. Consider a simple Euler-type approximation of the flow

of flux through the face, ignoring the effect of the other faces in the cell. We want a

face to have passed an amount of mass ∆M in the time interval t̂k − tk. This leads

to an approximation of the derivative in (2.5),

Mass flow through single face k ≈ ∆M

t̂k − tk
= |fk|Ak, (2.11)

from which (2.10) follows. The absolute value of the flux is used to ensure that the

calculated time values are positive. The aim is to approximate the time taken for

an amount of mass ∆M to cross the face k. The direction is irrelevant, thus the

only magnitude of the flux is important.

When (2.10) calculates t̂ > T , the value of T is used instead. In this way the

38



Chapter 2: Face Based Asynchronous Schemes

simulation finishes with every face at the desired final time T ; it is an Euler-type

approximation using the imposed timestep T − tk. The mass transferred during this

final synchronisation step is not ∆M . Let δm be the mass transferred in an event

for face k. Then,

δm =


∆M if tk + ∆M

|fk|Ak
≤ T

|fk|(T − tk)Ak otherwise.

(2.12)

Data: Grid structure, Initial concentration values, ∆M , T
1 Initialise: t = 0 ; Calculate fl from (2.6) and t̂l from (2.10) ∀ faces k ;
2 while t ≤ T do
3 Find face k s.t. t̂k = minl∈F t̂l ;
4 Get cells j1 and j2 adjacent to k;
5 Calculate δm from (2.12) ;
6 mj1 ← mj1 − sign(fk)δm ;
7 mj2 ← mj2 + sign(fk)δm ;

8 t = tk ← t̂k ;

9 for l ∈ F̃k do
10 Recalculate fl from (2.6) ;

11 Recalculate t̂l from (2.10) ;

12 end

13 end

Algorithm 2: Pseudo code for the basic face based scheme.

Algorithm 2 describes the BAS method. After initialising the required values

on all faces, the update loop is run until every face is synchronised to the desired

final time of T . Each iteration of the loop is a single event and proceeds as follows.

First the face with the lowest projected update time t̂ is found (line 3) Then the two

cells adjacent to this face are located from the grid structure (line 4). The amount

of mass to transfer between these cells is calculated (line 5). This equation simply

returns the global mass unit ∆M in most cases, except when the face is being forced

to use an update time T ; see equation (2.10). Mass is transferred between the cells

in the correct direction (lines 6-7). A loop (lines 8-12) updates the faces of cells j1

and j2; recalculating their fluxes and update times based on the new mass values.

The loop then continues by finding the next face with the lowest uptime (back to

line 3). Figure 2.2 (b) illustrates an event occurring on a face k.

This is the simplest face based Asynchronous scheme we can conceive. We have

observed, for every experiment we have attempted, that, as the mass unit ∆M
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decreases to zero, the approximation produced by this scheme converges to the

exact solution of the linear ODE system produced by applying the corresponding

finite volume discretisation to the corresponding PDE (2.1). Thus, even this simple

Asynchronous scheme works and will agree with established classical schemes for

sufficiently small ∆M . We illustrate the scheme with a simple example here; fur-

ther numerical experiments can be found in Chapter 3.

In Figure 2.3 we show the results of BAS applied to (2.3). The domain is Ω =

10 × 10 × 1 metres. There is no advection, so v(x) = (0, 0, 0)T ∀x ∈ Ω ; there is a

constant diffusivity field of value D(x) = 1.0 ∀x ∈ Ω, there are no-flow bound-

ary conditions, and the initial condition is concentration zero except for a sin-

gle cell of concentration 1.0 in the centre of the domain, that is c(x, 0) = 1.0 if

x = (4.95, 5.05, 0.5)T and c(x, 0) = 0.0 otherwise. The final time is T = 1.0s, the

domain Ω divided into 100×100×1 cells, making the system effectively two dimen-

sional.

Figure 2.3 a) shows the accurate result produced by BAS with ∆M = 10−10. Figure

2.3 b) shows how the error (i.e., the difference between the BAS solve result and

the comparison solve), decreases with ∆M , in the scaled Euclidean norm given by

(1.28). Figure 2.3 c) shows the result from a BAS solve with ∆M too large, which

will be discussed shortly. Finally, Figure 2.3 d) shows the comparison solve, pro-

duced by an exponential integrator, to which BAS agrees excellently when ∆M is

sufficiently small - compare a) and d). For more details about how our numerical

experiments were performed, see §3.1.

It is strongly indicated by Figure 2.3 a) that the mass unit ∆M acts analogously to

the tolerance for adaptive timestepping schemes or the timestep for fixed timestep-

ping schemes. Decreasing ∆M improves accuracy of the scheme at the cost of

greater computational expense (i.e., more events). Also, analogously to how a fixed

timestepping scheme may exhibit instability as the timestep becomes too large, the

basic scheme presented here exhibits certain phenomena when ∆M is too large.

These can be seen in Figure 2.3 c), and we discuss them now.

First, as can be inferred from the algorithm, there is no guarantee that that the
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mass taken from a cell during one event will always be less than the mass currently

in the cell - thus a cell can be overdrawn, i.e., that the mass and thus concentration

in a cell can become negative. We observe that this does not happen in practice for

∆M sufficiently small, but does for ∆M unsuitably large. Indeed, we can observe

from the scale in Figure 2.3 c) that some cells have negative concentration. This is

the overdrawing phenomenon (after the term used for a similar effect in [68]) at large

∆M . One of the modifications to BAS described in §2.5 eliminates overdrawing.

The second phenomenon is that the scheme fails to preserve the smoothness of a

solution, when ∆M is too large. Observe the ‘checkerboard’ pattern of Figure 2.3

c), where adjacent cells have alternating shades or colours, caused by small scale

un-physical oscillations caused by the scheme. As before, this does not occur for

∆M sufficiently small. We refer to this as the ‘checkerboarding ’ phenomenon.

a) b)
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Figure 2.3: Simple example of BAS agreeing with classical solution. a) BAS solution
with ∆M = 10−10. b) Error vs. ∆M for BAS, showing convergence. c) BAS solution
with ∆M too large (10−5). d) Comparison solve produced by exponential integrator.
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2.3 Background and DES Schemes in General

With the concept explained through the in depth presentation of our BAS, we

present some background. Traditionally Discrete Event Simulation (DES) schemes

were developed for naturally discrete systems, not continuous physical systems such

as fluid or solute flow models. The use of DES concepts applied to continuous

physical systems was introduced by [65] for plasma simulation; extending this work

has been the main pursuit of these same authors, including a parallel implementation

in [69], and further development in [70]. In [65], the underlying physics was simulated

directly - an event was the motion of an ion particle between two cells. The same

authors then presented in [1] an asynchronous method for conservation law PDES

with sources, in one dimension, based on evolving the PDE model at different rates

in different cells. Our methods are all, by contrast, face based, in that an event is

always the transfer of mass between cells, not evolution within a cell.

Indeed, the choice of which elements of the spatial domain that are allowed to exist

at different times in an Asynchronous scheme leads to different types of scheme.

In our schemes every face k of the finite volume discretisation has a time tk. In [1]

every cell has a time; in [65] individual particles have individual times. In [66], inter-

cell fluxes and source terms experience asynchronous events, while cells themselves

posses individual times.

Now we describe in more detail the general idea of DES based asynchronous schemes.

The simulation is moved forward by discrete events on a single part of the domain,

one at a time. Every event has a timestep ∆t associated with it. We take an event

to be the transfer of some amount of mass across a face k between the two adjacent

cells (at a rate determined by the flux in (2.1), for example (2.2)). In [1] an event is

the update of the local PDE in a cell; in [65], an event is a particle’s position being

updated according to its current trajectory, and in [66] an event models the effect

of either a flux term on a single face, updating the two cells adjacent to the face, or

the effect of a source term in a single cell, updating only that cell.

The faces/cells/particles/etc are systematically given a priority. Each object with a

time tk also has an update time t̂k. At any instant in the simulation the object with
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the lowest update time will have the next event. After an event the update time

for the object, and typically some of its neighbours, must be updated. The update

time for object k takes the form

t̂k = tk + ∆tk,

where ∆tk is the timestep estimated for the next event object k has. Two factors

affect ∆tk. First, the local rate of activity in the system at object k. For a face,

this is the flux fk; for a cell it may be the rate of the local PDE (i.e. the combined

effect of all the fluxes of the cell), for a particle, the velocity. The update timestep

∆tk should decrease as the instantaneous rate of activity increases. The combined

effect of the above is that a domain part (face, cell, particle or so on) will experience

events with shorter timesteps and therefore more events when it is more active. The

second factor is some user controlled measure of how much change should be allowed

to take place in an event. In our work we take this to be a discrete unit of mass

∆M (the ‘mass unit’) which is expected to travel through any face in an event. The

timestep ∆tk should decrease as ∆M decreases, leading to convergence.

The assumption implicit here is that, in order to obtain some global level of accuracy,

a timestep must be inversely proportional to the local rate of activity. Asynchronous

schemes self-adaptively use smaller timesteps and more events where and when lo-

cal rates of activity are greater. In this way they are intended to efficiently balance

computational effort (many small ∆t events being more expensive than few large

∆t ones).

The face-based Asynchronous scheme presented here can be applied in one, two or

three spatial dimensions, and can be thought of as either simulating PDEs like (2.1),

using the form of the flux term such as (2.2), or conversely by starting with the phys-

ical flux (2.2) at cell interfaces, resulting in a system with behaviour described by a

PDE (2.2). The mass unit ∆M is here a global value, i.e., it is taken to be the same

across the whole domain Ω. This parameter can be used to control the accuracy

or computational expense of the scheme, analogous to the fixed timestep length in

fixed time step scheme or the tolerance in an adaptive timestepping scheme. In our
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analysis, §4.1, and experiments, §3.1, we are particularly interested in showing that

the error of our asynchronous schemes converges to zero as ∆M → 0 (when com-

pared to the exact solution of the corresponding finite volume discretisation of the

same system). There is discussion in [1] on the possibility of locally varying ∆M (or

the analogue to it used there). In that case analogies with adaptive timestepping

methods become more apparent.

Let us discuss sources of error. Asynchronous schemes have an error due to having

neighbouring cells and faces with different local times. For example, in the standard

FV discretisation a flux fk on face k may be an approximation from a finite difference

formula such as (2.6). This has an error which decreases as the grid becomes finer,

i.e., as the dimensions of the cell ∆x→ 0. In addition, in an asynchronous scheme

the concentrations in cells j1 and j2 may be at different times, adding another source

of error. A reasonable assumption is that this error goes to zero as ∆M → 0.

While traditional PDE solvers rely on efficient linear algebra solvers, and exponential

integrators rely on efficient approximation of the matrix exponential, asynchronous

schemes rely on an efficient way of ordering the pending events. The list of pending

events is typically stored in a binary tree or custom priority queue, adding some

additional complexity to the implementation. A custom type of priority queue is

described in [1], we use our own implementation of this description here (in detail

The Appendix §9.1.). The same priority queue design can be found in [71], where

it is a component of the DES type simulation of a chemical reaction system there.

2.3.1 Comparison of BAS With Other Schemes

We can compare this scheme with existing schemes of the same class. The scheme of

[1] is also designed for conservation law systems and is cell based, with a governing

PDE divided onto individual cells, and each cell experiencing asynchronous updates.

This scheme was only tested for one dimensional systems, and is equipped with some

innovative (though complicating) features which aim to improve its efficiency (see

§2.5.3). In contrast, our scheme has faces as the event experiencing elements, and
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is based on interface fluxes instead of the governing PDE. We have attempted to

design here the simplest scheme of this class we can conceive of, for simplicity of

presentation of the DES concept applied to continuous systems, and to investigate

the efficacy and properties of such a scheme.

The scheme presented in [66] can be called a face based scheme using our terminol-

ogy. Again designed to be applied to conservation law systems, this scheme has flux

terms (i.e., faces) and source terms as the elements which experience asynchronous

events, though only cells possess times values - an event on a face will update the

two adjacent cells with different timesteps according to their individual times and

the update time. Interestingly, this scheme does not make use of a ∆M or equiva-

lent - update times are always calculated according to a Courant–Friedrichs–Lewy

(CFL) criterion. This precludes what is perhaps the most interesting observation of

this current work - that even the most basic face based Asynchronous scheme, and

modifications thereof, seems to converge with first order to the exact solution as the

control parameter, ∆M or equivalent, decreases to zero, in dimensions one two or

three.

The goal of asynchronous schemes may be compared with, for example, adaptive

time stepping [72] schemes, where the local error after each timestep is estimated,

and the step repeated with a smaller ∆t if this is found too large, or local timestep-

ping [73, 68, 74] schemes (LTS), where the spatial grid is refined in space in order

to better capture more active regions, and a corresponding local timestep is used to

ensure a local CFL condition. Local timestepping schemes also exist where the grid

is not refined spatially and the local timesteps are varied to better capture activity

according to local rates. See for example [75], where a binary tree is used to sched-

ule the order in which cells will update (similar to the methodology presented here,

as will be seen), but full asynchronicity is avoided (unlike here) by implementing

a standard LTS interpolation procedure between adjacent cells at different times,

when approximating spatial derivatives.

There is also some similarity here with the modelling philosophy involved with the

reaction diffusion master equation (RDME) [76]. With the RDME, space is divided
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into a mesh, and diffusion is modelled as a random walk of molecules or particles

along this grid. Reactions occur, also stochastically, between molecules within the

same cell according to a given rate. The RDME itself is a differential equation ex-

pressing the rate of change of a conditional probability, the probability of there being

a certain number of molecules of a certain species present at given time. The typical

simulation method associated with this modelling philosophy is the Gillespie method

[77] and derivatives, see [78, 71] for example. According to the terminology we are

using, the Gillespie method can fairly be described as a DES method. The heart of

this method is the (stochastic) calculation of the next time when a chemical reaction

or particle motion will occur, followed by an update of the system at that time. A

different expected time is generated for each reaction and the reaction with the low-

est expected time is executed. An analogy to this can be drawn with the schemes to

be presented here, especially with focus on the expected update time t̂k (see §2.2).

We have already mentioned [71] as using a similar priority queue structure; there a

dependency graph is used to determine if the expected time for a reaction needs to

be updated after a system update. This is similar to the associated face concept and

the set F̃k used here, which determines which faces need to have their fluxes and

thus update times re-calculated after an event. In general Gillespie-type algorithms

are based on discrete events for simulating discrete systems (systems of particles).

The schemes here differ from the Gillespie method and its variants in the following

ways. Firstly the scale of interest is different, between the scale of counting individ-

ual molecules and the scale at which Fick’s law of diffusion or bulk moment due to

advection is expected to be appropriate. Secondly the schemes here are determin-

istic. Stochastic effects can be incorporated by either using, for example, random

diffusivity fields (§3.1.4), or potentially by adding a stochastic component to the

computation of update times (this would be a further research topic). (Also, we

note that a stochastic component would have a different meaning than it does in

a particle simulation. The random motion of particles is supposed to be subsumed

into the deterministic Fickian diffusion equation. Adding a stochastic component

to this would model something like inhomogeneities in the diffusivity field at small
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scale, or represent some correction to the upscaling theory that Fickian diffusion

derives from). Thirdly the schemes here are unambiguously asynchronous, with

adjacent cells being allowed to exist at different times simultaneously, and the asyn-

chronous data from these cells being combined in spatial derivative approximations

(and this turns out to not be pathological). Gillespie-type schemes are based on

discrete events, but they model discrete systems.

An interesting comparison with the Gillespie method is as follows. The Gillespie

method does not approximate the RDME (as is often intractable) directly, but

is instead based on underlying concepts (reaction propensity from which expected

reaction times are derived, and so on), and simulates the solution to an RDME with-

out making use of it in the implementation [77, §1]. The face-based Asynchronous

schemes presented here analogously to this, and to [65], simulate the solution to the

(finite volume discretisation of) (2.1) without referencing the PDE itself in imple-

mentation.

By advancing different regions at different rates, Asynchronous schemes like BAS

can be viewed as mixing the temporal and spatial components of the solution. Other

methodologies exist which do this much more explicitly. For example, Space-Time

Discontinuous Galerkin methods (see e.g. [79]) mesh and discretise the space-time

domain, as opposed to just the space domain, in a way similar to the finite volume

discretisation method. For example, if the spatial domain is two dimensional, then

the mesh will be generated over the three dimensional space-time domain, and the

governing equation discretised over this mesh. Moreover, the dependency of space-

time elements on each other can be analysed in terms of their dihedral angles. See

for example, [80]. It is thus possible to identify space-time elements as independent

and solve them in parallel. Space-Time DG schemes do not naturally attempt to

prioritise high activity areas of the domain for computational attention like BAS

or related schemes. The theoretical understanding of spatial-temporal dependence

that can be utilised in space-time DG schemes would clearly be a huge advantage for

the development of more sophisticated schemes in the same class as BAS. Potential

research attempting to apply the discrete event simulation methodology to a space
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time DG mesh may be very promising.

BAS and related schemes order local update events according to activity. This

can be compared with the cascading method of Appleyard and Cheshire [81], and

methods related to and derived from this, for example [82]. Note that we use the

term ‘cascading’ to describe a type of scheme below; an explicit connection with

[81] is not implied. The cascading method of Appleyard and Cheshire starts with

the spatial domain discretised in a standard way, and a standard implicit temporal

discretisation, resulting in a nonlinear algebraic system of equations to be solved

for each timestep update. The standard approach is to use the Newton iteration

or some modification. In [81] the Newton algorithm is augmented with a cascad-

ing sweep though the cells of the spatial grid, producing an approximation to the

solution variable cell by cell, treating each cell as an independent system. This is

similar to BAS treating each face and adjacent pair of cells as an independent sys-

tem during an event. The algorithm of [81] is not asynchronous and does not incur

an asynchronicity error as a result of its independent cell solves, because the solves

are ordered according to the velocity field, such that the cells are solved in order of

dependency (this is not always possible, in which case the process must iterate). The

cascading scheme of [81] does not attempt to focus computational work in regions

and times of significant activity like BAS and related schemes.

We may also compare BAS and related schemes with streamline methods, see [83]

and, for example, [84, 85]. In a streamline method the velocity field is calculated

on a standard spatial mesh, after which the streamlines for the velocity field are

found. The solution is updated by solving along the streamlines. Solving along a

streamline is a simpler problem than solving over the whole grid - there is thus a

similarity to BAS solving a succession of simple one-face systems or schemes like

those in [1] solving one-systems. Consideration of the underlying physics is used in

streamline methods to allow a simpler approximation technique, in BAS it is used

to identify a concept that can be used to order events (i.e., the flux). Streamline

methods have no inherent asynchronicity by design.
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2.4 Connection Matrices

We introduce here the concept of connection matrices, which we can then use for

designing improvements in §2.5.1 and in our analysis §4.1. One event in the scheme

of Algorithm 2 is the transfer of mass across the active face k, between the two cells

j1 and j2 adjacent to k. In effect, during the event, the face k and the two cells are

being considered as an independent system from the rest of the domain, i.e., like in

Figure 2.2 (b). The only free variables are the masses mj1 and mj2 in the two cells.

Thus, with the finite volume discretisation of the flux in place, the local flow of mass

across the face may be considered as a 2 × 2 ODE system. Consider (2.9) for only

two cells, after multiplying out each cell equation by the volume Vj, we have

d

dt

 mj1

mj2

 =

 −ak bk

ak −bk


 mj1

mj2

 =

 Akfk

−Akfk

 . (2.13)

The non-negative scalars ak, bk are functions of the diffusivity Dj and velocity vj

of the two cells, the distance between their centres, and the area of the face k.

Recalling equations (2.5), (2.6) and (2.7), we can see that, if j1 is the upwind cell,

then a and b are,

ak = D̄k
1

Vj1∆xk
+ v, bk = D̄k

1

Vj2∆xk
,

or, if j2 is the upwind cell,

ak = D̄k
1

Vj1∆xk
, bk = D̄k

1

Vj2∆xk
+ v,

where v is the scalar product of the velocity at the centre of the face, with the unit

vector in the direction of the line connecting the centres of the two cells, pointing

from the upwind into the downwind cell. Thus we see that ak and bk are indeed

non-negative, since D̄k and v are both non-negative.

The matrix in (2.13) is an example of what we henceforth refer to as a local con-

nection matrix L̃k. The corresponding global connection matrix Lk is the sparse
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matrix with nonzero elements at (j1, j1), (j1, j2), (j2, j1) and (j2, j2);

Lk ≡


−ak bk

ak −bk


∈ RJ×J . (2.14)

The structure of the connection matrix reflects the conservation of mass between

the two adjacent cells (since the column sum is zero). The connection matrix Lk

associated with face k describes the relationship between the two cells j1 and j2

adjacent to face k in the discretisation (2.9), and thus has nonzero entries only in

columns and rows j1 and j2.

Let m be the vector of all mass values in the system and c the vector of all concen-

tration values in the system, related by c = mV, where V is the diagonal matrix

with entries 1
Vj

, i.e., the inverse of the volume in each cell. The global ODE system

for m can be accumulated from the connection global matrices on each face, that is,

dm

dt
=
∑
k∈F

Lkm.

Right multiplying by V gives

dc

dt
=
∑
k∈F

Lkc,

and we see that the system discretisation matrix L in (2.9) is accumulated from the

connection global matrices on every face, that is,

L =
∑
k∈F

Lk. (2.15)

Connection matrices are useful for re-expressing our schemes. Consider the local

description of an event across face k with adjacent cells j1, j2. Lines 5 − 7 in

Algorithm 2 describe an update that is equivalent to an Euler type step for solving

50



Chapter 2: Face Based Asynchronous Schemes

(2.13), i.e.,  mj1

mj2

← (I + ∆tkL̃k)

 mj1

mj2

 , (2.16)

where I is the identity matrix. Alternatively, using the J ×J connection matrix Lk,

then we can express event updates in terms of the entire system. The full system

version of (2.16) is

m← (I + ∆tkLk)m. (2.17)

Due to the sparsity of Lk, clearly only the cells j1, j2 are affected by (2.17) even

though the equation describes the entire system. Writing an event like this will be

used later in our analysis - see §4.5.

We now describe properties of global connection matrices. A connection matrix

acting on any vector produces a vector pointing in only one direction in the solution

space. That is, the action of a connection matrix Lk on any vector x is a scalar

multiple of a vector ẑk, determined by Lk. Consider a connection matrix Lk with

non-empty columns and rows j1, j2, then

Lkx = (bkxj2 − akxj1)ẑk, (2.18)

where ẑk = (0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0)T , where the non-zero entries are at j1

and j2. It follows that ẑk is an eigenvector of Lk and the corresponding eigenvalue

can be found,

Lkẑk = λkẑk λk = −(ak + bk), (2.19)

thus the eigenvalue λk is negative. From this we can prove the following Lemma.

Lemma 2.4.1. Let Lk be a connection matrix corresponding to face k, which has

adjacent cells j1, j2. Let ẑk be the eigenvector of Lk be with eigenvalue λk, according

to (2.19). Then, for any scalar s and vector x,

(esLk − I)x = s(bkxj2 − akxj1)ϕ1(−s(ak + bk))ẑk, (2.20)

where the ϕ−function ϕ1(·) is as given by (1.14) in §1.4.1.
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Proof. We have that

(esLk − I)x =
∞∑
i=1

(sLk)
i

i!
x = s(bkxj2 − akxj1)

∞∑
i=1

(sLk)
i−1

i!
ẑk.

Since ẑk is an eigenvalue of Lk, the sum becomes a scalar sum of powers of the

eigenvalue λk, and we can shift the index to get

(esLk − I)x = s(bkxj2 − akxj1)
∞∑
i=0

(sλk)
i

(i+ 1)!
ẑk.

The series is ϕ1(sλk), by (1.14), and using (2.19) we have (2.20).

As a consequence we can write

esLkx = x + ∆Me(s)ẑk, (2.21)

where the parameter ∆Me(s) is given by

∆Me(s) = s(bkxj2 − akxj1)ϕ1(−s(ak + bk)), (2.22)

which is the key to a new scheme introduced in §2.5.1. A crucial property of that

scheme is a consequence of the following observation. We can show that if the j1, j2

entries in x (i.e. xj1 and xj2) are both non-negative, then the j1, j2 entries in esLkx

are also non-negative.

Corollary 2.4.2. With the same assumptions as in Lemma 2.4.1, the j1, j2 entries

in esLkx are given by xj1 + ∆Me(s) and xj2 − ∆Me(s) respectively. Both of these

are non-negative if xj1 and xj2 are non-negative.

Proof. The first claim follows simply from (2.21) and the form of ẑk. For the second

claim, consider ∆Me(s) re-written as

∆Me(s) = (1− e−s(ak+bk))
(bkxj2 − akxj1)

ak + bk
.

The (1− e−s(ak+bk)) part is a monotonically increasing function, from 0 when s = 0

to 1 as s → ∞, so it is in [0, 1). The other part of ∆Me(s) is
(bkxj2−akxj1 )

ak+bk
and can
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be either positive or negative. We can consider each case separately.

If
(bkxj2−akxj1 )

a+b
≥ 0, then

0 ≤ ∆Me(s) <
(bkxj2 − akxj1)

ak + bk
,

and so,

xj1 ≤ xj1 + ∆Me(s) < xj1 +
(bkxj2 − akxj1)

ak + bk
,

and

xj2 ≥ xj2 −∆Me(s) > xj2 −
(bkxj2 − akxj1)

ak + bk
=
ak(xj1 + xj2)

ak + bk
,

so that both xj1 + ∆Me(s) and xj2 −∆Me(s) are non-negative.

If
(bkxj2−akxj1 )

ak+bk
≤ 0 then,

0 ≥ ∆Me(s) >
(bkxj2 − akxj1)

ak + bk
,

leading to

xj1 ≥ xj1 + ∆Me(s) > xj1 +
(bkxj2 − akxj1)

ak + bk
=
bk(xj1 + xj2)

ak + bk
,

and

xj2 ≤ xj2 −∆Me(s) < xj2 −
(bkxj2 − akxj1)

ak + bk
.

Thus we have that xj1+∆Me(s) and xj2−∆Me(s) are non-negative in either case.

Another useful property of connection matrices is to re-express the timestep

implicitly defined by (2.10) ( i.e., ∆tk = ∆M
|fk|Ak

). We use the properties of the

connection matrix Lk (see (2.13)) to express the flux from (2.6) as follows,

|fk|Ak =
||Lkm||√

2
,

where ||Lkm|| is the Euclidean norm of Lkm, and m is the current mass vector of

the system, like in the expression (2.17). The result follows from the fact that the

only two nonzero entries of ||Lkm|| are +fkAk and −fkAk, from (2.13) and (2.18).
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Then,

∆tk =

√
2∆M

||Lkm||
. (2.23)

We make use of (2.23) in our analysis in §4.1.

2.5 Modifications to BAS

It is possible to design modifications to the basic face based asynchronous scheme

described in §2.2. We describe here two potential improvements: the use of a mass-

passed value, and exact mass transfer across the face. The mass-passed value is

an attempt to improve the synchronisation error between related faces, by tracking

the mass that would have passed through faces near the event face. The exact

mass transfer eliminates the error from the Euler discretisation of the mass transfer

across a face. We use acronyms to refer to the new schemes. As the Basic face-based

Asynchronous Scheme is BAS, the modification which tracks the mass-passed value

is BAST. The Exact mass transfer Asynchronous Scheme is then EAS. A fourth

scheme incorporating both modifications is EAST.

2.5.1 Exact Mass Transfer Across a Face - the EAS Scheme

Here is a practical consequence of the concept of connection matrices introduced in

§2.4. The exponential mass passing idea is based on the exact solution to (2.13)

over the timestep ∆tk, instead of the Euler-type approximation (2.16) which is used

in Algorithm 2 lines 5− 7. The step is,

 mj1

mj2

← e∆tkL̃k

 mj1

mj2

 . (2.24)

In this way the mass transferred during in an event is not the mass unit ∆M ,

however ∆M is still used to calculate the timestep ∆tk (equation (2.10)). This is

done in order to allow us to use ∆M as a control parameter as in the other schemes.
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We may write a global analogue to (2.24) in the same way as (2.17) and (2.16),

m← e∆tkLkm (2.25)

The special structure of the connection matrix allows the matrix exponential to be

replaced with a scalar computation. This is a result of Lemma 2.4.1. Using equation

(2.21), we can write (2.25) as

m← esLkm = m + ∆Me(∆t)ẑk,

and thus only need to calculate ∆Me(∆t) according to (2.22), and add or subtract

it to each of the relevant two cells, during an event. The parameters ak, bk, λk for

a face k can be pre-computed to make this more efficient. Line 5 of Algorithm 2 is

replaced with the computation of ∆Me(∆t) then lines 6− 7 are the same with δM

replaced by ∆Me(∆t).

The aim of exponential mass transfer is to take advantage of the fact that only tiny

subsystems are updated during an event, and cheaply provide exact solutions on

those subsystems. It is not expected to help with asynchronisation error (i.e., the

fact that adjacent cells may be at different times, or the error in decoupling the faces

for an event). An additional property of the exact mass transfer scheme is that from

Corollary 2.4.2, an event will never overdraw a cell, thus preserving the positivity

of the solution.

The approach described here has some similarities with the approximate Riemann

Solvers of Roe, see [86] and, for example, [87]. In a Roe-type solver, the spatial dis-

cretisation is viewed as producing a series of Riemann problems (i.e., a conservation

equation with discontinuous initial data), one at each face in the grid. Each Rie-

mann problem can be approximately solved by introducing a matrix approximation

at the face with certain properties. It may be an interesting approach in future work

to attempt to apply a discrete event methodology to true Roe-type solver.
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2.5.2 Using A Mass-Passed Tracking Value - the BAST Scheme

When an event occurs in the basic scheme, only one face is updated, while the

associated faces are not. Consider adding an extra parameter to each face k, which

is intended to track the mass that the face should have passed during an event of

an associated face. Let this parameter be called the mass passed value, ∆Mp,k.

We describe the implementation of ∆Mp,k to illustrate its intended function. First,

for every face it is initialised to zero, and reset to zero when the face has an event. In

Algorithm 2, during the loop of (lines 9-12) over each face l in the set of associated

faces F̃k of the active face k, except k itself, the mass passed value is updated as

∆Mp,l = ∆Mp,l + (t̂k − tl)Alfl. (2.26)

Compare this to the second equation in (2.12). In (2.26), the mass-passed tracking

value ∆Mp,l is incremented by the amount of mass that would have passed through

face l during a timestep of length t̂k − tl. Also, in the modified scheme every face of

the cells j1, j2 has its time updated at this point,

tl = t̂k,

as though these faces have also had events, although no transfer has occurred for

these faces. The mass passed value effectively tracks the mass the faces would have

passed in the time [tl, t̂k].

The mass passed value then adjusts the next event for a face k, depending on the

size of ∆Mp,k, as follows. The timestep approximation (2.11) is replaced with

∆M −∆Mp,k

t̂k − tk
≈ dm

dt
= |fk|Ak,

leading to the modified version of (2.10), the equation for t̂k,

t̂k =


tk +

∆M−∆Mp,k

|fk|Ak
if this ≤ T

T otherwise.

(2.27)

56



Chapter 2: Face Based Asynchronous Schemes

Thus, faces will have increased priority for events if they have greater mass passed

values. We can implement both the mass tracking and the exaxt mass transfer

modifications to generate a fourth scheme, which we will call EAST. Unlike EAS,

this scheme will be capable of overdrawing cells, since Corollary 2.4.2 does not apply

to the ∆Mp value added to ∆Me during an event.

2.5.3 The Cascading or ‘Flux Capacitor’ Concept of [1]

A crucial innovation in [1] is allowing cells to trigger their own events if they have

been subject to too much activity without an event - each cell has a ‘flux capacitor’

value assigned, which is incremented each time a neighbouring cell has an event,

and reset to zero when the cell itself has an event. The concept inspired our ‘mass

passed’ value, §2.5.2. However, instead of affecting the update time of faces (or

cells), the job of the flux capacitor value is, if and when it exceeds a certain thresh-

old, to trigger a new event its cell, independent of its update time and the priority

queue.

In a situation such as an advancing front or simply a region of high activity, this

can lead to cells (or faces) constantly triggering their neighbours, following the path

of high activity and ignoring the costly update time and priority queue calculations

temporarily. This further emphasises the objective of DES methods to focus atten-

tion on the most active parts of the domain.

We have implemented this concept in our face-based Asynchronous schemes, using

the similarity with the mass-tracking concept. These are mass-tracking schemes

with the following modifications. First, the dependence of update time on ∆Mp,k is

removed (i.e., instead of (2.27), we use the basic (2.10)). Second, when some face

j has its ∆Mp,j incremented as part of an event on an associated face k, then an

event is automatically triggered on j if ∆Mp,j > ∆M . We note there is potential to

use other threshold values than the mass unit ∆M , but it seems to work well; see

§3.1.

Because we expect these schemes to produce cascades of ‘cheap’ events along fronts

or regions of very high activity, we refer to them as cascading schemes, however the
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underlying concept is of course nothing but the ‘flux capacitor’ of [1]. We have the

basic scheme, BAS, augmented with the concept, which we will abbreviate as BAS-

casc, and is analogous to BAST. We also have the exact mass type scheme, EAS,

augmented with the concept, abbreviated as EAS-casc and analogous to EAST.

2.6 Adding a Reaction Term

We have experimented with including a reaction term, so that we may simulate

conservation equations of the form

dc(x, t)

dt
= ∇f(c(x, t)) + r(c(x)), t ∈ R, x ∈ Ω, (2.28)

(i.e., (2.1) with a reaction term r. It is in principle possible to also apply our

method to non-autonomous reaction terms r = r(cx, t). We have found that a simple

leapfrog implementation of the reaction during events is effective. We describe the

additions to the BAS method now. The first modification is that each cell now has

its own independent time tj. Now consider lines 5-7 of Algorithm 2, in which mass

is transferred, replaced by the following method.

1. Calculate timestep values for each of the two cells, as ∆tj1 = t̂k − tj1 and

∆tj2 = t̂k − tj2 .

2. Update the mass in both the cells according to the reaction term, using an

Euler type step. For each cell use half the timestep for the cell. That is,

perform the update,

mj1 ← mj1 + Vj1
∆tj1

2
r

(
mj1

Vj1

)
,

mj2 ← mj2 + Vj2
∆tj2

2
r

(
mj2

Vj2

)
,

3. The mass transfer across the face proceeds exactly as in the original scheme;

lines 5-7 of Algorithm 2.

4. Repeat step 2.
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Also, at line 8 of the algorithm, we set the cell times to be t̂k alongside the face

time. That is, tj1 ← t̂k, tj2 ← t̂k.

We now clarify this process. First consider step 2). The first thing to note is that

it can be expressed in terms of concentration instead of mass simply as,

cj1 ← cj1 +
∆tj1

2
r (cj1) ,

cj2 ← cj2 +
∆tj2

2
r (cj2) .

Ignoring for the moment the half timesteps, this is a single step of the Euler method

(though with different timesteps for each cell) for the system consisting only of cells

j1 and j2, and governed by the reaction-term-only PDE,

dc(x, t)

dt
= r(c(x)), t ∈ R, x ∈ Ω. (2.29)

This is analogous to how in BAS we consider the system consisting only of the two

cells j1 and j2 (and the internal face k), governed by the flux PDE (2.5). Step 4)

corresponds to step 2) by ‘completing’ the halved Euler step. Steps 2) through 4)

are thus simply an operator splitting method, applied to the tiny two cell subsystem

considered by each event. Specifically it a leapfrog method, the simplest form of

operator splitting.

This is a simple extension of the concept of our face based schemes to systems

with reaction or source terms; the only technicality is the introduction of time

values assigned to cells as well as faces, which is required to define timesteps for the

reaction steps in a sensible way. This method retains the interesting property of

needing to be explicitly based on a PDE. Indeed, the scheme can be implemented

based on (2.5) for the faces and (2.29) for the cells, without any use or reference

to (2.28). The modifications described here to BAS can be applied to any of our

schemes; BAS, BAST, EAS and EAST.

We can imagine this method having difficulty with situations or parts of a domain

where there is no flux between cells but still reactions within the cells changing the

concentration values there - in this case the reaction activity could be ‘missed’ by
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the lack of events.
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Face Based Asynchronous

Schemes - Numerical Experiments

3.1 Numerical Results for Systems Correspond-

ing to Linear PDEs

Here we present some numerical experiments with the new schemes which demon-

strate convergence and the relationship between scheme parameters such as N the

total number of events, ∆M the mass unit and the average time step ∆t. Here the

test systems are linear PDEs, which produce ODE systems of the form (2.9) after

a finite volume discretisation. The systems we investigate are advection-diffusion

systems of the form (2.3), which we restate here for convenience,

dc(x, t)

dt
= ∇2D(x)(c(x, t)) +∇v(x)c(x, t), (3.1)

with different diffusivity D(x) and velocity v(x) fields.

For our error estimations, see §1.5.2, we proceed as follows. For our comparison

solve we use the exact solution of (2.9), i.e.,

ucomp = c(T ) = eTLc(0),
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where the matrix exponential eTL is approximated to very high accuracy by a Krylov

subspace projection method, namely the code phipm [55]. T denotes the final sim-

ulation time. If the Finite Volume discretisation of the system has K cells, then

the concentration vector c(t) is c(t) ∈ RK . In our plots we also include solutions of

(2.9) produced by the classical backwards Euler method, for comparison.

We used the package MRST [88] to produce our grids in Matlab for these examples.

These grids were then used to create corresponding finite volume matrices for the

phipm and classical solvers, and used to create corresponding grid objects in our

Asynchronous schemes, which are implemented in C++. The grids we use are all

regular Cartesian grids. See §4.6 for a discussion of how our methods might be

extended to nonuniform grids.

With our results we include plots showing the concentration of events in the spatial

domain, for example Figure 3.8 b). These ’heat maps’ show the logarithm of the

number events each cell has had during the solve (i.e., every time a face has an

event, the two cells it is adjacent to are each considered to have an event). These

heat maps of events show clearly how the asynchronous schemes vary computational

effort across the spatial domain.

We will often compare the new schemes against a classical semi-implicit solver code.

Applied to a semi-linear ODE system, the semi-implicit solver advances with an im-

plicit time discretisation for the linear part and explicit time discretisation for the

nonlinear part. Since the systems in this section are linear, we are effectively com-

paring against a classical implicit solver. We identify this scheme as ‘Implicit-Solver’

on our plots.

3.1.1 Fracture with High Péclet Number

In this example a single layer of cells is used, making the problem effectively two

dimensional. The domain is Ω = 10 × 10 × 10 metres, divided into 100 × 100 cells

of equal size. Thus each cell has volume 0.1m3 and each internal face has area 1m2.

The PDE to be solved is (3.1), and the diffusivity and velocity fields were prepared

as follows.
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A fracture in the domain is represented by having a line of cells which we will give

certain properties. These cells were chosen by a weighted random walk through

the grid (weighted to favour moving in the positive y-direction so that the fracture

would bisect the domain). This process started on an initial cell which was marked

as being in the fracture, then randomly chose a neighbour of the cell and repeated

the process. This was done once to prepare the grid before the main tests. In this

example, the fracture cells differs from the rest of the domain in that they have

different permeability values. This has an effect on the pressure and thus velocity

fields in the domain, as given by (1.6) and (1.1).

We use a permeability matrix of the form

K =

 kx 0

0 ky

 .

We set kx = 1 in all cells except on the x = 10 boundary where it was set to zero,

and ky = 2000 on the fracture cells and ky = 1 in all other cells, except on the

y = 10 boundary where it was set to zero. See Figure 3.1 a). This intended to cause

a large velocity in the y-direction inside the fracture, and a small velocity elsewhere.

We use (1.6) to find a pressure field for this system. Dirchlet boundary conditions

were imposed; with p(x, 0) = 1, p(x, 10) = 0, and no-flow conditions on the other

edges. That is, high pressure along the y = 0 edge of the domain and low pressure

at the y = 10 edge of the domain, creating a gradient. We then approximate the

solution to (1.6) (a finite volume discretisation was used to produce a linear system

which was then solved). The resulting pressure field can be seen in Figure 3.1 b).

We then used a finite difference approximation of (1.1) (with φ, µ set to one and g

set to zero) to find the resulting velocity field. The x- and y- velocities can be seen

in Figure 3.1 c) and d), on a logarithmic scale. The y-velocity is extremely high

in the fracture compared to elsewhere in the domain; this is expected to produce

highly localised activity. Some streamlines are shown in Figure 3.1 e); here the flow

is in the y-direction, i.e. bottom to top in the plot.

In every cell we set the diffusivity D = 0.01. A measure of the relative importance

63



Chapter 3: Face Based Asynchronous Schemes - Numerical Experiments

of advection compared to diffusion in a cell k is the Péclet number, Pek;

Pek =
||vk||∞
|Dk|

,

where vk and Dk are the velocity and diffusivity for the cell k, respectively. The

infinity norm || · ||∞ for a vector is defined by ||(x1, . . . xn)T ||∞ = max{|x1|, . . . |xn|}.

We show the logarithm of the Péclet number in Figure 3.1 f). It varies by five orders

of magnitude in the domain.

With the velocity and diffusivity fields thus prepared, we approximate the ADR

(1.4) on this domain. Zero Neumann boundary conditions (‘no flow’) were applied

on every boundary, and the initial condition was c(x) = 0 everywhere except for

x = (5.95, 0.05)T , where c(x) = 1. That is, there is a single cell with concentration

1 on the bottom edge of the domain, close to the fracture. The final time was

T = 17. The final solution approximated with schemes using ∆M = 10−8 is shown

in Figure 3.2 a), c), e), and g). In Figure 3.2 b), d), f) and h) we show heat maps

of the logarithm of the number of events experienced by a cell during the solve. We

consider a cell to have had an event if one of its faces has an event. These plots

shows how the activity is localised, as the number of events varies in seven orders of

magnitude between a large part of the domain and the fracture. We note that these

high accuracy solves are very similar for the schemes, as they all seem to converge

to the correct solution for small ∆M (as shown in the following). The heat maps

of events are also very similar, except for BAS which has a significant amount of

activity throughout the domain.

The error was estimated as described at the start of this section. Figure 3.3 a) shows

the convergence of the schemes with respect to ∆M ; which appears to be first order.

BAS is notably less accurate than the three modified schemes. Figure 3.3 b) shows

efficiency by plotting error against cputime. For comparison we include two classical

schemes. These are the semi-implicit scheme (actually fully implicit in this case since

there is no nonlinearity), and forward Euler, the simplest scheme. The results for

the two classical schemes are marked with triangles to distinguish them. We see that

the improved asynchronous schemes are more efficient than the implicit solver for
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this problem. Surprisingly, the Euler scheme is more efficient than all other schemes

for this problem, owing largely to its speed of execution (although stability is an

issue). We have only plotted the results for Euler at the timestep values where it

is stable. In most situations we expect instability to make Euler impractical; here

it is able to out-compete the implicit solver and the implicit schemes because the

relatively coarse mesh allows it to have a significant regime of stability.

In Figure 3.4 we show various parameter relations for the schemes. Plot a) shows

error against average timestep ∆t. Here the error of the schemes seems to be first

order with respect to average ∆t. In plot b) we show the total number of events N

in a solve against the mass unit ∆M . Another strong relation can be observed; it

seems that N is of order −1 with respect to ∆M . Plot c) shows average ∆t against

∆M , and seems to imply another correlation of order one. Finally, plot d) shows

average ∆t against N , and implies that average ∆t is order −1 with respect to N .
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a) b)

c) d)

e)
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Figure 3.1: Permeability, pressure and velocity fields for the fracture example with
varying velocity, §3.1.1. a) ky, the permeability in the y-direction. b) The calcu-
lated pressure field. c) The calculated velocity field in the x-direction, logarithmic
scale. d) The calculated velocity field in the y-direction, logarithmic scale. e) Some
streamlines of the calculated velocity field; flow is from bottom to top. f) Péclet
number, logarithmic scale.
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a) b)

c) d)

e) f)

g) h)

Figure 3.2: Final state of the first fracture example, approximated with each of the
new schemes, with ∆M = 10−8. a), c), e), g) Concentration field. b), d), f), h)
Events per cell, logarithmic scale.
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Figure 3.3: Convergence in ∆M and efficiency for the first fracture example. See
§3.1.1.
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Figure 3.4: Further Results for the first fracture example as ∆M is reduced. See
§3.1.1.
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With Greater T

We repeat the experiment in the previous section with T = 170. We see that the

same relationships between parameters hold for the asynchronous schemes for this

longer timescale; Figures 3.5, 3.6. We have do not show the results with the classical

Euler solver in these plots as it is only stable for the smallest two timesteps used

(the timestep sizes are larger than in the previous example). The timestep range

was from 0.017 to 170. We note that unlike for the T=17 experiment, here the

classical implicit solver is more efficient than the asynchronous schemes; see Figure

3.5 b). A heat map of the logarithm of the number of events for each cell is given

in Figure 3.7 for the BAST solver with ∆M = 10−8, showing the increased activity

over time; compare to Figure 3.2 b).
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Figure 3.5: Convergence in ∆M and efficiency for the first fracture example with
T = 170. See §3.1.1.
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Figure 3.6: Further Results for the first fracture example with T = 170. See §3.1.1.

Figure 3.7: Heat map of logarithm of number of events per cell for the first fracture
example with T = 170. See §3.1.1.
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3.1.2 Fracture System with Varying Diffusivity

In this example the grid is the same as in §3.1.1. The same fracture structure is

used, only now we set the diffusivity to be D = 100 on the fracture and D = 0.1

elsewhere. Figure 3.8 a) shows the solution at t = 0.8, and Figure 3.8 c) shows the

solution at t = 2.4, as calculated by BAST with ∆M = 10−9. Figure 3.8 b) and

d) are logarithmic heat maps of events for the solves corresponding to Figure 3.8

a) and c). It is interesting to note that the fracture cells can easily be identified in

Figure 3.8 b), as the jagged line with extremely high activity.

In contrast to the previous example, we specify a simple velocity field. The velocity

field was set to be uniformly one in the x-direction and zero in the other directions in

the domain, i.e., v(x) = (1, 0, 0)T , to the right in Figure 3.8. The initial condition

was c(x) = 0 everywhere except at x = (4.95, 9.95)T where c(x) = 1.

In Figure 3.9 are plots showing the convergence and efficiency of the schemes. In

plot a) the estimated error is plotted against the mass unit ∆M , and we clearly

observe that the error for all our schemes is O(∆M) for sufficiently small ∆M . In

plot b) the error is plotted against cputime to demonstrate efficiency.

In Figure 3.10 we show relationships between parameters such as ∆M , the total

number of events N , and the average timestep. In Figure 3.10 a) the estimated

error is plotted against timestep, ∆t. For the four asynchronous schemes this is

the average timestep across all events; for the backwards Euler solver it is the fixed

timestep that was used. The implicit scheme has its classical O(∆t) error; interest-

ingly the error of the asynchronous schemes seems to also be first order with respect

to the average timestep. Plot b) shows the total number of events N against ∆M .

In plot Figure 3.10 c) the average timestep is plotted against the mass unit, and

again there is a strong relation between the parameters for small enough mass unit.

We appear to have ∆t = O(∆M). It is interesting that for schemes BAS and EAS

the relations are the same in the limit despite the lack of obvious similarity between

the schemes. For BAST and EAST too relationship is also the same in the limit,

and these two schemes have smaller average timestep that BAS and EAS for all

mass unit values. Plot d) shows average timestep against total events, and we have
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a clear ∆t = O(N) for BAS and and EAS (again having the same relation), and a

very similar relation for BAST and EAST.

In Figure 3.9 a) and b) we see that the mass tracking and exact mass passing mod-

ifications improve the accuracy and thus the efficiency of the basic asynchronous

face based scheme. For small ∆M EAS and BAST are the most accurate schemes,

with BAST performing slightly better. We can observe at large ∆M that EAS is

more accurate than BAST; this would be expected since BAST would severely over-

draw cells of mass (i.e., producing a negative concentration) for large ∆M , while

EAS is incapable of overdrawing at all. It is interesting that EAST, combining both

the mass tracking and exact mass passing, is worse in terms of accuracy than both

BAST and EAS, suggesting that the modifications are mutually incompatible. We

can see from Figure 3.9 b) that the classical backwards Euler solver out-competes

our schemes in terms of efficiency. We will discuss the efficiency of these particular

implementation in the conclusion to this chapter.

For Figure 3.10 b), it is interesting how for all schemes the relationship between N

and ∆M is the same for sufficiently small ∆M , as we see clearly N = O(∆M−1).

For larger mass unit values we observe that N is unchanging with respect to ∆M

for BAS and EAST, although from plot Figure 3.9 a) we can see that the error is

still decreasing for that range of mass unit values.

Plots Figure 3.10 c) and d), and to some extent b) (for large mass unit values),

distinguish the schemes which use mass passed tracking (BAST and EAST) from

those that don’t (BAS and EAS). For large ∆M BAS uses the most events, while

the two tracking schemes use less and EAS uses least of all (plot b). EAS uses by far

larger timestep values on average (corresponding with its small number of events),

and the tracking methods have the smallest timestep values on average (plot c). In

plot d) we see that for a given number of events N , the tracking schemes will have

a smaller average timestep for each event. The differences can be explained by the

construction of the tracking methods. Recall that when a face k has an event in a

mass tracking scheme, each associated face in F̃k has a pseudo event in that the mass

passed value for each face in F̃k is incremented. The mass passed value then has-
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tens future events, leading to shorter timesteps on average. See §2.5.2. Effectively

the timesteps for the tracking schemes in Figure 3.10 c) and d) are systematically

smaller because we do not record the ‘effective’ timestep length related to the mass

passed value. We note that plot Figure 3.9 a) indicates that BAST having much

smaller error than BAS, indicates that the attempt to increase coupling between

faces represented by the mass tracking scheme, if quite successful. It is also interest-

ing that at very large ∆M , Figure 3.10 plot b) shows us that EAS has the smallest

number of events during a solve. This may be due to the overdrawing of cells. EAS

is the only scheme guaranteed not to overdraw at all, and it is possible that in a

large ∆M regime the other three schemes will produce ‘wasted events’, where mass

is passed back and forth between cells to some extent.

The strong relations between parameters in Figure 3.10 plots b), c) and d) are highly

interesting. The relation ∆t = O(∆M) implied by plot c) may be naively inferred

from (2.23), however we cannot take this for granted since after any number of events

the mass vector m can be expected to be different if a different value of ∆M is used

for the solve. Thus we cannot rule out a priori that the denominator ||Lkm|| in

(2.23) has some dependence on ∆M . The strong linear relationship (for sufficiently

small ∆M) indicated in plot c) is promising, however it does provide information

only on the average timestep over all events in a solve, and ideally further analysis is

required to establish the relationship between ∆tk and ∆M . Plot b) indicates that

for sufficiently small ∆M , the total number of events over the solve, for a given ∆M ,

is the same or almost the same, for each of our four different types of solver. One

thing this could possibly indicate is the existence of some ‘preferred path’ of events,

that is, an ordering of faces on which events occur, which in the limit ∆M → 0 all

our schemes follow. This is merely a conjecture, but warrants further investigation.

For this experiment we also tested the cascading schemes described in §2.5.3. We

compare these results with the results for the mass tracking schemes in Figure 3.11

and Figure 3.12; these have the same format as Figure 3.9 and Figure 3.10 respec-

tively. We differentiate the cascading schemes by plotting them with star points. It

is interesting that, although we might assume their behaviour to be quite different
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due to the possibility of automatically triggered events, the cascading schemes seem

to exhibit the same parameter relations described in plots a) through d) in Figure

3.10 described above.

We can also see from Figure 3.11 plot a) that BAS-casc has comparable accuracy to

BAST. By contrast, EAS-casc has worse - it is in fact worse than EAS. It appears

that, similar to the situation with EAST, the exact mass transfer modification does

not interact well with the cascading modification.

The most efficient Asynchronous scheme is BAS-casc, which is comparable to the

classical scheme. It was shown in Figure 3.11 a) that BAS-casc has similar accuracy

to BAST at small ∆M ; in plot b) it is revealed that BAS-casc has a faster runtime

and thus a better efficiency. This is presumably due to much more of the events in

the BAS-casc run being the cheaper automatically triggered events.

In Figure 3.13 we demonstrate the effects of using an unsuitably large ∆M value

for the solve; in this case ∆M = 10−5 is clearly large enough to be problematic.

The effects we call ‘checkerboarding’, and the overdrawing of mass from cells are in

evidence (we alluded to these effects in §2.2). We see how EAS (plot c) uniquely

does not allow overdrawing and seems to have the smoothest, most physical solu-

tion. The most primitive scheme BAS (plot a) seems to have severe problems with

artificial advection at this value of ∆M . Comparing Figure 3.13 to Figure 3.8 c), the

most qualitatively correct scheme (with respect to general plume shape) appears to

be EAST (plot d), albeit with a highly nonsmooth solution and plenty of overdrawn

cells. Referring to Figure 3.9 a), we see that at this value of ∆M , EAST indeed has

the smallest error norm, but the error norm for EAS is only slightly larger, possibly

owing to the increased smoothness of the solution. From Figure 3.8 a) and c), and

Figure 3.9 a), we have evidence that our class of face based asynchronous schemes

can produce high accuracy results in sufficiently small ∆M regimes. From Figure

3.13 we also have the unsurprising result that, in regimes of unsuitably large ∆M ,

these schemes produce results that lack physical correctness. Most clearly they can

produce schemes lacking smoothness and positivity (a,b,d).
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a) b)

c) d)

Figure 3.8: A 100 × 100 test advection diffusion system with a ‘fracture’ (line of
high diffusivity). a) The system evolved up to t = 0.8. b) Heat map of logarithm of
events per cell corresponding to a). c) The system evolved from t = 0.8 to t = 2.4.
d) Heat map of logarithm of events per cell corresponding to c). Note that the
colour scales in a) and c) differ by roughly an order of magnitude. The Maps of
events make it clear where the fracture is, and show that the scheme is focusing
effort there, where the system is evolving the fastest. These results were produced
by the BAST scheme with ∆M = 10−9.
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Figure 3.9: Results for the fracture system in Figure 3.8 concerning error convergence
in ∆M and efficiency. For discussion see text; §3.1.2.
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Figure 3.10: Results for the fracture system in Figure 3.8 concerning relationships
between parameters. For discussion see text; §3.1.2.
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Figure 3.11: Results for the fracture system in Figure 3.8 concerning error con-
vergence in ∆M and efficiency, comparing the mass-tracking with the cascading
schemes. For discussion see text; §3.1.2.

76



Chapter 3: Face Based Asynchronous Schemes - Numerical Experiments

a)

10 -10 10 -5 10 0 10 5

∆ t (average for asynchronous schemes)

10 -10

10 -5

E
s
ti
m

a
te

d
 E

rr
o
r 

(E
u
c
lid

e
a
n
 n

o
rm

)

BAST

EAST

BAS-casc

EAS-casc

Implicit Solver

b)

∆ M

10 -10 10 -8 10 -6 10 -4 10 -2

N
 (

to
ta

l 
e
v
e
n
ts

)

10 3

10 5

10 7

10 9

BAST

EAST

BAS-casc

EAS-casc

slope -1

c)

∆ M

10 -10 10 -8 10 -6 10 -4 10 -2

A
v
e
ra

g
e
 
∆

 t

10 -8

10 -6

10 -4

10 -2

10 0

10 2

BAST

EAST

BAS-casc

EAS-casc

slope 1

d)

N (total events)

10 4 10 6 10 8 10 10

A
v
e
ra

g
e
 
∆

 t

10 -8

10 -6

10 -4

10 -2

10 0

BAST

EAST

BAS-casc

EAS-casc

slope -1

Figure 3.12: Results for the fracture system in Figure 3.8 concerning relationships
between parameters, comparing the mass-tracking with the cascading schemes. For
discussion see text; §3.1.2.
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a) BAS b) BAST

c) EAS d) EAST

Figure 3.13: Demonstrating the effects of using unsuitably large ∆M (10−5) val-
ues for the asynchronous schemes, for the fracture example. Here we can observe
‘checkerboarding’ (where concentration does not vary smoothly in space, causing ad-
jacent cells to seem to alternate in colour like a checker board ), and the overdrawing
of cells (where more mass is removed than is present in a cell, causing the mass and
thus concentration to become negative). These plots are to be compared to Figure
3.8 c). On each plot we have included the minimum concentration value on the
domain, to demonstrate the overdrawing effect. EAS does not cause overdrawing by
design, and also seems to suffer least from checkerboarding (plot c). Also interesting
is that BAS seems to have caused artificially increased advection (plot a).

78



Chapter 3: Face Based Asynchronous Schemes - Numerical Experiments

3.1.3 A Three Dimensional Example

In this example the domain is Ω = 10 × 10 × 10 metres again, discretised into

40 × 40 × 32 cells, for a total of 51200 cells in the system. We solve (3.1) with a

diffusivity field that is uniformly D(x) = 2 and a constant velocity field v(x) =

(0.1, 1.1, 0)T . The initial condition is sinusoidal, varying between 0 and 1, on the

line of cells where y = z = 0, and zero elsewhere. The final time was T = 2.4.

We show the state of the system at the final time T in Figure 3.14 a), as produced by

BAST with ∆M = 1.9532×10−10. This solution is very accurate to our comparison

solve produced using the exponential integrator; see Figure 3.15 a). Plot b) in

Figure 3.14 shows the logarithm of the number of events experienced by each cell

during the same BAST solve. We see again how the scheme automatically focuses

more computational effort, in the form of transfer events, at different areas of the

domain according to local rate of activity. There is about a difference of five orders

of magnitude in number of events between the least and most active cells in Figure

3.14 b).

In Figure 3.15 we present comparisons of various parameters for the schemes; the

format is the same as Figure 3.9 and Figure 3.10, and many of the conclusions

similar. In Figure 3.15 a) first order convergence of the schemes with ∆M , for

sufficiently small ∆M , is again observed. Plot b) compares the efficiency by plotting

the estimated error against cputime. From plots a) and b) we can see that EAS

is the most accurate and efficient scheme for large ∆M , while BAST is slightly

more accurate and increasingly the most efficient as ∆M decreases. These are the

same conclusions as for the previous example. We do not include comparison with

a classical solver for this example.

Plots a) through d) in Figure 3.16 indicate relationships between the parameters

∆M , N (total number of events), average ∆t, and error, of the schemes. The plots

imply the same relationships as in the previous example. The relationships are as

follows. From plot a), Error = O(∆t(average)) for sufficiently small ∆M (although

BAST and BAS appear to have steeper slopes at certain parts of the plot). From

plot b), for sufficiently small ∆M , N = O(∆M), and there is also, just as observed
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in Figure 3.10 apparently a single line on the log (N) vs log (∆M) plot that the

plots for all schemes seem to converge to. See §3.1.2 for discussion. From plot c), we

have that ∆t(average) = O(∆M) for ∆M sufficiently small, and finally from plot

f), ∆t(average) = O(N). The last relation for plot d) may not hold for BAS and

BAST for ∆M too large - observe the change in slope for the smallest N value.

In Figure 3.17 we have displayed the effects of using inappropriately large ∆M .

We can draw similar conclusions as from Figure 3.13. All schemes have suffered

loss of continuity (’checkerboarding’) to some extent, EAS the least. All schemes

except EAS have overdrawn cells (i.e., negative concentration values).From plot

a) we observe that BAS has some problem with increased advection, comparable to

Figure 3.13 a). EAS appears to preferable if a large ∆M solve is necessary, as already

mentioned in discussion of Figure 3.15 a) and b). However it is clear from Figure

3.15 and Figure 3.17 that a small ∆M is preferable. In general for a sufficiently

small ∆M all the schemes appear to enter a regime of first order convergence, and

a high level of correlation between parameters.

a) b)

Figure 3.14: Three dimensional advection-diffusion system, see §3.1.3. a) result
using BAST and ∆M = 1.9532 × 10−10. b) heat map of logarithm of number of
events per cell for the same solve.
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Figure 3.15: Results for the 3D system in Figure 3.14 concerning error convergence
in ∆M and efficiency. For discussion see text; §3.1.3.
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Figure 3.16: Results for the 3D system in Figure 3.14 concerning relationships be-
tween parameters. For discussion see text; §3.1.3.
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a) BAS b) BAST

c) EAS d) EAST

Figure 3.17: Effect of using unsuitably large ∆M (1.9532× 10−6) values with each
of the schemes with the 3D example of §3.1.3. Compare to Figure 3.14 a). The
minimum value of u in any cell in the domain is displayed to demonstrate the
overdrawing effect.
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3.1.4 Diffusion With a Random Diffusivity Field

The third test is in two dimensions, with a random diffusivity field. The PDE is

again (3.1). The domain is again Ω = 10 × 10 × 10 metres and discretised into

100 × 100 × 1 cells. The diffusivity field is as follows. We prepared a Normal,

mean-zero, random field ψ(x) over the cells with correlation function

C(X, Y ) = e
||X−Y ||

l ,

with the correlation length between the x and y directions being l = 9. The diffusiv-

ity field used was then D(x) = 10.0ψ(x). The field was generated using the standard

Cholesky technique (see for example [59]); there was no need for approximation due

to the relatively small number of cells. The velocity field was uniformly zero.

For this test the concentration was c(x) = 0 for all x except at x = (4.95, 5.05)T

where c(x) = 0. The boundary conditions were no-flow on all boundaries.

In Figure 3.18 is displayed the comparison solve (produced by the exponential inte-

grator), the diffusivity field, the solve produced by BAST with ∆M = 10−9, and the

logarithm of the number of events for the same solve. There is a difference of about

six orders of magnitude between the most and least active parts of the domain.

In Figure 3.19 and Figure 3.20 are convergence and efficiency results and parameter

relations for this system. Broadly, most of the conclusions are the same as from

from previous experiments. See the discussions in §3.1.2 and §3.1.3. There are some

differences for this system, however.

In Figure 3.19 a) there is clearly a decrease in the error as ∆M decreases - all the

schemes appear to converge. However the plots for every scheme are not as straight

and clearly first order for sufficiently small ∆M as with the previous examples. In-

deed, here it seems that BAS, BAST, and EAST are all quite neatly first order for

large ∆M , before the plots become slightly erratic for smaller ∆M . EAS seems to

be converging of quite low order at large ∆M .

Generally, the implications of of Figure 3.20 a) through d) are the same as for Figure

3.11 and Figure 3.16 a) through d), discussed in §3.1.2 and §3.1.3. Note in particu-
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lar that again the lines for every scheme seem to converge together in plot b), as in

the other examples. The implication from plot a) that Error = O(∆t(average)), for

sufficiently small ∆M , may be called into question for this example. It is certainly

true for EAS, but BAST again seems to have a steeper relation for the smallest

∆t(average). We have talked about a small ∆M regime in which the parameters of

the schemes have strong correlation, most noticeable in plots a), b) and c) of Figures

3.11, 3.16 and 3.20. Comparing the three figures, and particularly Figure 3.20 with

Figure 3.10 (the two systems have the same size domain and discretisation), we

can see that this small ∆M regime starts at a comparatively smaller value for this

random diffusivity field example. That is,in the plots a), b) and c) of Figure 3.20,

the less of the regime where there is clear first order correlation between parameters

is visible. This is likely due to the increased complexity of the system due to the

random diffusivity field.

Finally we have Figure 3.21, demonstrating the effect of using too large ∆M values.

The discussion for this figure differs little from corresponding discussion in for the

previous examples. It is interesting that BAS still fares by far the worst, but this

time the main problem cannot be identified as related to advection (there is none).

The loss of continuity for BAST and EAST (plots b) and d) seems possibly worse

for this example. The extent to which EAS does not suffer continuity problems

compared to the other schemes is very marked here.
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a) b)

c) d)

Figure 3.18: Two dimensional diffusion example with random diffusivity field. Plot
a) shows the comparison solve using the exponential integrator. Plot b) shows
the logarithm of the diffusivity field. Plot c) shows the solution using BAST and
∆M = 10−9. Plot d) shows the logarithm of events for each cell as a heat map.

a)

10 -10 10 -8 10 -6 10 -4 10 -2

∆ M

10 -10

10 -5

10 0

E
s
ti
m

a
te

d
 E

rr
o
r 

(S
c
a
le

d
 E

u
c
lid

e
a
n
 n

o
rm

)

BAS

BAST

EAS

EAST

slope 1

b)

10 -1 10 1 10 3

cputime

10 -10

10 -8

10 -6

10 -4

10 -2

E
s
ti
m

a
te

d
 E

rr
o
r 

(S
c
a
le

d
 E

u
c
lid

e
a
n
 n

o
rm

)

BAS

BAST

EAS

EAST

Implicit Solver

Figure 3.19: Results for the 2D diffusion example with random diffusivity field from
Figure 3.18, concerning error convergence in ∆M and efficiency. For discussion see
§3.1.4.
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Figure 3.20: Results for the 2D diffusion example with random diffusivity field from
Figure 3.18, concerning relationships between parameters. For discussion see §3.1.4.

a) BAS b) BAST

c) EAS d) EAST

Figure 3.21: Demonstrating the effects of using unsuitably large ∆M for the random
diffusivity field example of §3.1.4. Compare to Figure 3.18 a) and c). The minimum
value of u is included to demonstrate the overdrawing effect.
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3.2 Tests for the Reaction Term Scheme

These tests proceed in a similar way to the previous section, except now a full

semilinear PDE is used, and the reaction term modification to the Asynchronous

schemes is used. We will compare against the same semi-implicit solver as in the

previous section, which is now acting truly as a semi-linear scheme as the PDE is

semilinear.

3.2.1 Reaction-diffusion test system

This experiment is a simple small reaction-diffusion system in two dimensions with

a Cartesian grid, intended to test the leapfrog type reaction term implementation

described above. The velocity field was uniformly zero. The reaction term used is

r(c) = − c

1 + c
,

which is a Langumiur-type reaction term, which can be used to model, for example,

mass in the system adsorbing to the walls of the porous medium and thus being lost

(see for example, [89], [40]). In our example a high concentration in the centre of the

domain diffuses outwards (the diffusivity field is uniform) while reacting according

to this term. The final time is T = 1 and the domain, discretisation, boundary

conditions and initial condition are the same as in §3.1.4.

The results figures follow the same pattern as in §3.1. In Figure 3.22 we show the

best solution, produced again by BAST. In Figure 3.23 we show the convergence

and parameter relations of the schemes. In addition to comparing against the semi-

implicit classical scheme, we compare against the exponential integrator ETD1 in

plots Figure 3.23 b) and Figure 3.24 a). Interestingly, the parameter relations re-

vealed in Figure 3.24 plots a) through d) are the same as those from the experiments

in §3.1. Again, Figure 3.23 plot a) shows that error of the schemes converge to zero

as ∆M decreases to zero. The schemes are still first order with the complication of a

reaction term. In this example EAS is more accurate and efficient than is expected

at this point - in plot b) we see that it has efficiency comparable to BAST, and in
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plot a), is only slightly less accurate.

We show in Figure 3.25 the results of using an unsuitably large ∆M . The observa-

tions are in line with the experiments for linear systems. Every scheme overdraws

except EAS, which also produces a much smoother solution. The solution produced

by BAS is the most problematic, in that it seems to not reproduce the correct

circular shape of the plume; instead it is a rounded square shape.

a) b)

Figure 3.22: Two dimensional reaction-diffusion system. Left: solution with BAST
with ∆M = 10−9. Right: heat map of logarithm of events for each cell.
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Figure 3.23: Results for the reaction-diffusion system in Figure 3.22, concerning
error convergence in ∆M and efficiency. For discussion see text; §3.2.1.
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Figure 3.24: Results for the reaction-diffusion system in Figure 3.22, concerning
relationships between parameters. For discussion see text; §3.2.1.
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a) BAS b) BAST

c) EAS d) EAST

Figure 3.25: Effect of using unsuitably large ∆M (10−7) values with each of the
schemes with the reaction-diffusion example of §3.2.1. Compare to Figure 3.22 a).
The minimum value of u in any cell in the domain is displayed to demonstrate the
overdrawing effect.
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3.2.2 Reaction Advection Diffusion Example

In this example we use the same grid, velocity field, diffusivity field, initial condition,

and boundary conditions as in §3.1.2. We again add a Langmuir type reaction term,

r(c,x) = −ε(x)
c

1 + c
,

where we have introduced a spatial dependence by the factor ε;

ε(x) =
0.02

D(x)2
.

In this way the reaction occurs much slower in the fracture than the rest of the

domain. Physically this represents the solute species being much less likely to adsorb

to the walls of the porous medium, and be lost, within the fracture. The final time

is T = 2.4.

In Figures 3.26, 3.27, 3.28 we show the final state of the system, the convergence

and efficiency results, and the parameter relations for the schemes. The layout is

the same as with all the previous examples. The conclusions are largely the same.

a) b)

Figure 3.26: Two dimensional reaction-diffusion-advection system. Left: solution
with BAST with ∆M = 10−9. Right: heat map of logarithm of events for each cell.
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Figure 3.27: Results for the reaction-diffusion-advection system in Figure 3.26, con-
cerning error convergence in ∆M and efficiency. For discussion see text; §3.2.2.
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Figure 3.28: Results for the reaction-diffusion-advection system in Figure 3.22, con-
cerning relationships between parameters. For discussion see text; §3.2.2.
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3.3 Conclusions from Numerical Tests

From these tests we see that the new asynchronous schemes converge in error, for

fixed grids, as ∆M → 0. The order of convergence is indicated to be roughly

O(∆M) according to the results. There also seems to be a regime of sufficiently

low ∆M in which parameter relationships emerge. These relationships are, Error =

O(∆t (average)), N = O(∆M−1), ∆t (average) = O(∆M), and ∆t (average) =

O(N−1). These relationships suggest further theoretical investigation, which is

started in the next chapter. The convergence results also indicate the basic viability

of the face based asynchronous schemes, and the fact that the same conclusions can

be drawn for BAS and three different modified schemes, implies the existence of

a large space of possible viable schemes of this class, some of which may exhibit

interesting or useful properties.

We note that the relation ∆t (average) = O(N−1) can be explained a priori, follow-

ing from the fact that every face will have timesteps summing to T , and that N is the

sum of the number of events on each face. The way that ∆t (average) is calculated

for the non-tracking schemes BAS and EAS is then equivalent to ∆t (average) = TK
N

,

where K is the number of faces. This must be modified for the tracking schemes but

a similar a priori relation can certainly be found. We note further that then the re-

lationship ∆t (average) = O(∆M) is equivalent to O(N−1) = O(∆M), so that these

two observed relations are equivalent. Also, the relations ∆t (average) = O(∆M)

and Error = O(∆M) together imply Error = O(∆t (average)).

This leaves the observed relations Error = O(∆M) and N = O(∆M−1) as indepen-

dent and needing explanation, and highly interesting. The relation N = O(∆M−1)

may seem to follow naturally from the construction of the schemes, but showing this

rigorously while taking account of the asynchronous nature of the schemes is highly

difficult.

Our current implementations of these four face based asynchronous schemes per-

form poorly, with respect to efficiency, compared to classical schemes. This may

be because the face based asynchronous approach is inherently inefficient, or per-

haps an alternative implementation may provide greater efficiency. While care was
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taken in optimizing our codes, they remain essentially demonstration pieces. For

obvious reasons the implementation of DES based schemes for continuous systems

such as these is not as well understood as for classical schemes. Our schemes are

also essentially quite primitive - BAS is the simplest scheme of this type we could

develop based on mass conserving exchanges based on flux; the other schemes add

complexity to this for improved performance. For this current work, it is interesting

that even these primitive asynchronous schemes appear to converge with a definite

order, and on domains with dimension greater than one.
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Chapter 4

Face Based Asynchronous

Schemes - Analysis

4.1 Analysis of the New Schemes

We present some analytical results for the new schemes, which are first steps towards

convergence results explaining the behaviour observed in Chapter 3. First some

useful notation.

Let the set of all face connection matrices be

L = {L1, . . . , LK}. (4.1)

Further, let the events be indexed with i = 1, 2, . . . , n where n is the total number

of events so far. We will use N to denote the total number of events for a finished

solve, that is, one where every face time tk has value T . In each event i, there will

be a corresponding face with index ki ∈ F which is the face that has the event. We

allow that ki and N change as the mass unit ∆M changes and produces a different

path of events. Let the event timestep be δti, which is the same as the face timestep

∆tki defined by (2.23),

δti = ∆tki =

√
2∆M

||Lkimi−1||
,
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where ki is such that

tki + ∆tki = min
k∈F
{tk + ∆tk}.

4.2 Convergence of BAS with One Internal Face

We prove convergence of our scheme for the simplified case of two cells and one

internal face, see Figure 2.2 (b). Here there are only two mass (or equivalently

concentration) values. Since there is only one face, there is only one connection

matrix, which we call L (in this simple system the finite volume matrix from (2.9),

and the general and local connection matrices L̃1, L1, are all the same). Let the

direction vector associated with the connection matrix be ẑ, and let the normalised

version of this be z = 1√
2
ẑ. Let the vector of the mass values be m, and let mn

be this vector after the nth event. Let the initial condition of the system be m0.

First we consider the nature of the true solution. The true solution is m(t) = etLm0

which is the solution of the ODE

dm(t)

dt
= Lm(t).

The matrix exponential solution may be expressed in terms of z using the following

arguments. The true solution is,

m(t) = etLm0 = m0 + (etL − I)m0.

A line of argument similar to Lemma 2.4.1 follows. We have,

(etL − I)m0 =
∞∑
i=1

(tL)i

i!
m0.

Using the properties of the connection matrix, we have that Lm0 = ||Lm0||z. Thus,

(etL − I)m0 = t||Lm0||
∞∑
i=1

(tL)i−1

i!
z.
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From this it follows that

(etL − I)m0 = t||Lm0||ϕ1(tλ)z, (4.2)

where λ is the eigenvalue of L satisfying Lz = λz, from (2.19). Then, letting,

α(t) ≡ t||Lm0||ϕ1(tλ), (4.3)

we have,

m(t) = m0 + α(t)z.

We see that the true solution is confined to a single direction, z, which is a result of

mass conservation.

Now we consider the asynchronous scheme. From (2.17), and using the notation of

the event timestep, the mass of the system after n events may be expressed as

mn =
n∏
i=1

(I + δtiL)m0.

The mass is updated in an event as

mn+1 = mn +

√
2∆M

||Lmn||
Lmn = mn +

√
2∆Mz, (4.4)

where we have used (2.23). We have assumed that the direction of mass transfer is

consistent across the whole solve, i.e., that there is never a −
√

2∆Mz event. This

is justified since in this simple two cell system, we expect equilibrium to be reached

before the net flow changes direction. This may not be the case in the context of

discrete events, though it should be true as ∆M → 0. From (4.4), the state after n

events of the scheme is,

mn = m0 +
√

2∆Mnz. (4.5)

We may use (4.5) to re-express (2.23) as,

∆t1,i =

√
2∆M

||Lm0||+
√

2∆Miλ
, (4.6)
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having multiplied through by L and using the fact that the norm of z is unity. We

note that we know λ which we know to be negative from §2.4.

We see from (4.5) that the asynchronous scheme only progresses in a fixed direction,

z, like the true solution.

Next we need to find the stopping condition for the scheme. Consider some event

number n, with corresponding system time tn. The time is given by summing (4.6),

t1,n =
n−1∑
i=0

√
2∆M

||Lm0||+ i
√

2∆Mλ
. (4.7)

We can interpret (4.7) as a simple rectangular quadrature approximation to an

integral of the function f(x) =
√

2
||Lm0||+x

√
2λ

, with quadrature points ∆Mi, i =

1, 2, . . . , n− 1 (see for example Chapter 4 of [90]). Since this function is concave the

quadrature is an overestimation. The true integral is well known, and we have,

t1,n =
1

λ
ln

(
||Lm0||+ n∆M

√
2λ

||Lm0||

)
+ EQ(∆M,n).

Note that both λ and the logarithm are negative. The quadrature error EQ(∆M,n)

is positive and assumed to be O(∆M). From (4.7) we have,

t1,n ≥
1

λ
ln

(
||Lm0||+ n∆M

√
2λ

||Lm0||

)
,

which re-arranges to,

||Lm0||
(
et1,nλ − 1

)
√

2λ∆M
≥ n,

and from (4.3) we have

α(t1,n)√
2∆M

≥ n,

so that

α(tn)− n
√

2∆M ≥ 0. (4.8)

We also have that t1,n+1 ≥ t1,n, i.e.,

1

λ
ln

(
||Lm0||+ (n+ 1)∆M

√
2λ

||Lm0||

)
+ EQ(∆M,n+ 1) ≥ t1,n,
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which by re-arrangements similar to those which lead to (4.8), gives

n+ 1 ≥ ||Lm0||
(eλ(t1,n−EQ(∆M,n+1)) − 1)√

2∆Mλ
. (4.9)

In order to relate (4.9) to α(t1,n) in (4.3) we compare the exponential terms in each.

Since EQ(∆M,N+1) is positive and λ negative, we have λ(t1,n−EQ(∆M,n+1)) >

λt1,n and eλ(t1,n−EQ(∆M,N+1)) > eλt1,n , so that (4.9) gives us

n ≥ α(t1,n)√
2∆M

,

and combining this with (4.8) gives

√
2∆M ≥ α(t1,n)− n

√
2∆M ≥ 0,

thus

|α(t1,n)− n
√

2∆M | ≤
√

2∆M.

Thus we have proven that in the one face scenario that the scheme at time t1,n stays

within a bounded distance of the true solution at time t1,n, and that that distance

decreases with ∆M . It would be interesting in future work to investigate if this is

true in general.

Now, using n = N , the number of events at which the scheme reaches the target

time T, we can express the error of the scheme as

E = ||m(t)−mN || = ||m0 + α(T )z−m0 −N
√

2∆Mz−M ′z||, (4.10)

where M ′ is the amount of mass transferred in the final synchronisation step, satis-

fying M ′ ≤ ∆M . Equation (4.10) simplifies to

E = |α(T )−N
√

2∆M −M ′| ≤ |M ′|+ |α(T )−N
√

2∆M | ≤ (1 +
√

2)∆M,

which is first order convergence in ∆M .
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4.3 Towards a General Convergence Result for

BAS

Here we present a framework for extending the analysis of BAS (§4.2) to an arbitrary

number of faces. We use connection matrices again; see §2.4. In particular we use

the fact that the action of a connection matrix Li on any vector y produces a scalar,

determined by y, multiplying a direction vector ẑi. For two connection matrices Li

and Lj, with corresponding direction vectors ẑi, ẑj, define ci,j to be such that

Liẑj = ci,j ẑi,

and vice versa for cj,i. The eigenvalue of Li from (2.19) is then λi = ci,i. Define the

matrix C as having the entries (C)i,j = ci,j. Let L be the sum of some connection

matrices, L =
∑K

k Lk. Consider the action of L on some vector m0,

Lm0 =
K∑
k

fkẑk,

where we have defined fk by Lkm0 = fkẑk, using (2.18). Let Ẑ be the matrix whose

kth column is ẑk, and let f0 be the vector whose kth entry is fk, then

Lm0 = Ẑf0.

Now consider,

LiLm0 =
K∑
k

fkci,kẑi = ẑi(ci,1, . . . , ci,K)f0.

Then

L2m0 =
K∑
i

ẑi(ci,1, . . . , ci,K)f0 = ẐCf0,

where the sum is over the action of each Li on the Lu0. Indeed, for any arbitrary y,

LẐy =
K∑
i

ẑi(ci,1, . . . , ci,K)y = ẐCy.

100



Chapter 4: Face Based Asynchronous Schemes - Analysis

From this we have

Lnm0 = ẐCn−1f0.

We can use this to generalise the re-expression of etLm0 given in §4.2; (4.2). For,

etLm0 = m0 +
∞∑
i=1

(tL)i

i!
m0,

which is

etLm0 = m0 + Ẑ
∞∑
i=1

tiCi−1

i!
f0,

and again we use the definition of ϕ1,

etLm0 = m0 + tẐϕ1(tC)f0.

For the scheme BAS, after some total number of events n, let nk be the number of

events experienced by face k. Let n be the vector whose kth entry is nk. Then the

state of BAS can be expressed as,

mn = m0 + ∆MẐn,

analogously to (4.5). Note that we are again assuming that the direction of mass

transfer is consistent across the whole solve, which may not be completely justified

in all cases. To prove convergence we would need to show that

∆MẐn→ tẐϕ1(tC)f0 (4.11)

as ∆M → 0, when n evolves according to the rules of the scheme (the face with the

lowest update time being the one updated during an event, and so on). Alternatively

we may attempt to show something like

∆MCn + f0 = etCf0,
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in the limit ∆M → 0, which could then rearrange to yield (4.11). It is interesting

to note that the left hand side is a vector of the fluxes of each face. To see this

consider the action of a Lk on mn,

Lkmn = ∆M(ck,1, . . . ck,K)nẑk.

The vector on the right hand side has only two nonzero entries, the positive and

negative of the flux across face k. Since ẑk has only nonzero entries −1 and 1, the

flux across face k is the coefficient of the right hand side, ∆M(ck,1, . . . ck,K)n. Thus

we have,

flux across each face = ∆MCn + f0.

We now pursue a heuristic argument towards showing (4.11). First we approximate

∆Mn by a continuous variable, x = ∆Mn. We assume that in the limit ∆M → 0

this is justifiable, as ∆M becomes so small that integer multiples of ∆M become

effectively continuous. We wish to argue that

dx

dt
= Cx + f0. (4.12)

Given that x(0) = 0, the solution to this is

x(t) = tϕ1(tC)f0,

from which (4.11) would follow. Note that the right hand side of (4.12) is, again,

the flux. We must interpret the t in the derivative as the system time, i.e. the time

of the face which has most recently updated. Since mn = m0 + Ẑx, x is the vector

of displacements along each direction vector ẑ, from the starting point of m0. Thus

(4.12), if true, implies that the rate of change of the solution in the direction of a ẑ

associated with a face k, with respect to the system time, is equal to the flux across

face k.

We can ask if anything in the construction of the scheme indicates the potential for

this behaviour. Interestingly, we can examine (2.10), the equation for determining
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update time for a face. We restate it here for convenience,

t̂k = tk +
∆M

fk
,

where fk is the flux across the face k, t̂k is the update time of the face, and tk is

the time of the face. If the face is chosen for an event (by having a lowest update

time), then it updates with timestep ∆tk = t̂k− tk. We may re-arrange to ∆M
∆t

= fk.

Heuristically, in the limit ∆M → 0 we may replace the fraction with dxk
dt

, and write

dxk
dt

= fk.

A vector of these values would give (4.12). There is however the need to bridge the

gap between the asynchronous nature of the algorithm and the synchronous nature

of the ODE (4.12). For this we would have to assume or demonstrate that in the

limit ∆M → 0, the individual face times tk tend towards being equal or arbitrarily

close to the entire system time t. This is a potential subject of further work.

4.4 Assumptions of Parameter Relations

Identifying relationships between the parameters such as ∆M , N , and individual

event timesteps δti would be essential for a full analysis of the schemes presented

here and of DES based Asynchronous schemes in general. Some relationships are

heavily implied by our results in §3.1; others suggest themselves from the form of

the scheme, but there are subtleties to consider. We first state three assumptions

that we base on the form of the schemes, which we will use in the next section in a

sketch proof of convergence for EAS, and then discuss these assumptions.

Assumption 4.4.1. There exists a positive real d1 such that

δtn = O
(
∆Md1

)
, n = 1, . . . , N.
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That is, for an event number n, if ∆M is small enough that event n occurs (i.e.,

that n < N , see Assumption 4.4.2), the event timestep decreases as ∆M decreases,

for ∆M sufficiently small. The source for this is the observed numerical results (plot

c) in all of Figures 3.10, 3.16 and 3.20), and (2.23), which implies a proportionality

between the timestep ∆t and ∆M . However, we must observe that the denominator

in the right hand side of (2.23) may have some dependence on ∆M since the ordering

of events may depend on ∆M . This means that ||Lkm|| is different for different ∆M

values for given n. Ideally we would like to identify a C such that 1
||Lkm||

≤ C, or

equivalently

||Lkm|| ≥ 1/C,

which is the same as claiming that, for any event n and ∆M value, the flux across

the face k chosen for an event is bounded below by some constant 1/C. A face k is

chosen for an event due to a combination of low tk and high flux; this might make the

existence of such a bound seem reasonable, but this is not conclusive for all cases.

Our numerical results that support the assumption indicate that the exponent has

a value around d1 = 1.

Assumption 4.4.2. The number of events N increases as ∆M decreases, and there

exists a positive real number d2 such that

N = O
(
∆M−d2

)
.

As well as being implied strongly by our numerical results (plot b) in all of

Figures 3.10, 3.16 and 3.20), this assumption should follow from the construction of

the algorithms as long as the initial data is such that there is some activity in the

domain (i.e., a nonzero flux). A first event must then occur, with timestep directly

proportional to ∆M by (2.23), that is if k is the face with the greatest flux initially,

the initial timestep will be ∆t =
√

2
||Lkm0|| . This is clearly proportional to ∆M as every

other parameter on the right hand side is constant. There will be a ∆M sufficiently

small that the initial timestep is less than the final time T , so that at least two
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events must occur on that face in order to bring its individual time up to T and end

the solve. We can then consider values of ∆M small enough that the corresponding

timesteps are small enough that arbitrarily many events on the first face, then its

associated faces and so on, must occur. This follows from the proportionality of ∆t

and ∆M given by (2.23), again considering the caveat discussed after Assumption

4.4.1. Our numerical results imply that d2 = 1.

Bringing together Assumptions 4.4.1 and 4.4.2 gives a third parameter relation.

Remark 4.4.3. Given Assumptions 4.4.1 and 4.4.2, as N increases, the event

timestep decreases; there exists a positive real d3 such that

δtn = O
(
N−d3

)
, n = 1, . . . , N.

This is supported by our numerical results (plot d) in all of Figures 3.10, 3.16

and 3.20, for the average ∆t, with d3 = 1.

4.5 Analysis of EAS

We consider the linear ODE system (2.9), after dividing each row by Vk to produce

an equation for the mass values, i.e., dm
dt

= Lm. The exact solution is,

m(T ) = exp

(
T

K∑
k=1

Lk

)
m(0), (4.13)

where we have expressed TL = T
∑K

k=1 Lk, as a sum of the connection matrices.

The approximation produced by EAS after n events is

mn =
n∏
i=1

exp(δtiLki)m(0) = exp (Zn)m(0), (4.14)
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where Lki ∈ L is the connection matrix chosen for the ith event, and Zn is to be

determined. The iterative formula for mn is

mn+1 = exp (δtn+1Lkn+1)mn = exp (δtn+1Lkn+1) exp (Zn)m(0). (4.15)

We can make use of the Baker-Campell-Hausdorff (BCH) formula (see for example,

[91]), which states that, for operators A, B,

exp (A) exp (B) = exp (C), (4.16)

with

C = A+B +
1

2
[A,B] +

1

12
[A, [A,B]]− 1

12
[B, [B,A]] + . . . , (4.17)

where the Lie bracket [·] is defined as [A,B] = AB − BA A,B ∈ RJ×J . We have

an iterative formula for Zn from (4.15), by taking A = δtn+1Lkn+1 and B = Zn in

(4.17),

Zn+1 = δtn+1Lkn+1 + Zn +
1

2
[δtn+1Lkn+1 , Zn]

+
1

12
[δtn+1Lkn+1 , [δtn+1Lkn+1 , Zn]]− 1

12
[Zn, [Zn, δtn+1Lkn+1 ]] + . . . .

(4.18)

An alternative expression of (4.17) is the Goldberg series [92], see also for example

[93]. The Goldberg series is a double sum of words made of the operators A and B; a

word here means a simple multiplicative term, for example A, B, ABA, AABB are

all examples of words made from A and B. A word of length i is made of i instances

of the operators, for example A and B are length one, ABA of length three and

AABB length four. There are 2i words of length i that can be made from operators

A and B (3i if there were three operators, and so on). For the purposes of writing

a sum over the words, let W (j, i, A,B) be the jth word of length i (j = 1, . . . , 2i)

made from A and B. For example, W (j, 1, A,B) could be A or B; ABA would be

one of the W (j, 3, A,B); AABB would be one of the W (j, 4, A,B), and so on. Then,
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Goldberg’s exponential series for C in (4.16) is

C = A+B +
∞∑
i=2

2i∑
j=1

g(j, i,X, Y )W (j, iX, Y ). (4.19)

The Goldberg coefficients g(j, i,X, Y ) corresponding to each word are rational num-

bers, and listings and discussions of the calculations of these can be found in [94].

An advantage of EAS is that it the scheme can be written in exponential form (4.14),

which lends itself to analysis using the BCH. In the spirit of analysis of symplec-

tic operator splitting schemes [95], we can attempt to prove convergence of mN to

m(T ), by proving convergence of ZN to TL = T
∑K

k=1 Lk, where N is the number

of events in the EAS solve (i.e., the number of events after which the scheme has

brought the individual time on every face to T ). We demonstrate here how such an

argument may proceed.

It will be useful to express Zn from (4.14) in a modified form of (4.19). We use

words made from the event timesteps instead of operators. Let ŵ(j, i, n) be the

jth word of length i, made from elements of the set {δt1, . . . , δtn}. Because the

timesteps are scalars they commute, unlike the operator words that make up the

Goldburg series. For example, ABA 6= BAA, but δt1δt2δt1 and δt2δt1δt1 are both

equal to δt21δt2. Because of this the number of possible words ŵ(j, i, n) is given by

the multiset coefficient
(
n+i−1

i

)
. We write

Zn =
∞∑
i=1

(n+i−1
i )∑

j=1

ĝ(j, i, n)ŵ(j, i, n), (4.20)

where the modified coefficients ĝ(j, i, n) are not rational numbers but linear combina-

tions of operator words made from elements of the set {Lk1 , . . . , Lkn}. An example

is helpful. Consider advancing from n = 1 to n = 2. Clearly Z1 = δt1Lk1 , and
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expanding (4.18) gives us

Z2 = δt1Lk1 + δt2Lk2

+
1

2
δt1δt2Lk1Lk2 −

1

2
δt1δt2Lk2Lk1

+
1

12
δt21δt2Lk1Lk1Lk2 −

1

6
δt21δt2Lk1Lk2Lk1 +

1

12
δt21δt2Lk2Lk1Lk1

− 1

12
δt1δt

2
2Lk2Lk2Lk1 +

1

6
δt1δt

2
2Lk2Lk1Lk2 −

1

12
δt1δt

2
2Lk1Lk2Lk2

+ . . .

Collecting the timestep words this is

Z2 = δt1Lk1 + δt2Lk2

+ δt1δt2

(
1

2
Lk1Lk2 −

1

2
Lk2Lk1

)
+ δt21δt2

(
1

12
Lk1Lk1Lk2 −

1

6
Lk1Lk2Lk1 +

1

12
Lk2Lk1Lk1

)
+ δt1δt

2
2

(
− 1

12
Lk2Lk2Lk1 +

1

6
Lk2Lk1Lk2 −

1

12
Lk1Lk2Lk2

)
+ . . .

In the form of (4.20) this is,

Z2 =
∞∑
i=1

(2−i−1
i )∑
j

ŵ(j, i, 2)ĝ(j, i, 2).

Of the three possible length two words, only δt1δt2 has a nonzero ĝ coefficient, which

is
(

1
2
Lk1Lk2 − 1

2
Lk2Lk1

)
. Of the four possible length three words, only δt21δt2 and

δt1δt
2
2 have nonzero ĝ; the ĝ for δt21δt2 is

(
1
12
Lk1Lk1Lk2 − 1

6
Lk1Lk2Lk1 + 1

12
Lk2Lk1Lk1

)
,

and so on.

We consider the length one words in (4.20). Let the sum of all the length one

words in Zn be Sn. From (4.18) it is clear that Sn+1 = Sn + δtn+1Lkn+1 , and since

S1 = Z1 = δt1Lk1 , each timestep word in Sn has a coefficient Lk ∈ L, with L given

by (4.1). Thus we can write

Sn =
K∑
k=1

tkLk, (4.21)
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where tk is the sum of the δt for every event which has used Lk as the event operator,

i.e., every event on face k. Then, tk is nothing but the face time defined in §2.2.

The algorithm guarantees that at event N , tk = T for every face. This leads to

ZN = T
K∑
k=1

Lk +
∞∑
i=2

(N+i−1
i )∑

j=1

ĝ(j, i, N)ŵ(j, i, N). (4.22)

We can write

Zn = Sn +Rn.

Comparing (4.22) to (4.13) leads to

Conjecture 4.5.1.

RN =
∞∑
i=2

(N+i−1
i )∑

j=1

ĝ(j, i, N)ŵ(j, i, N)→ 0

as N →∞.

To prove Conjecture 4.5.1 we might invoke Remark 4.4.3 and assume that a

length i timestep word is O(N−d3i). Then as N →∞,

RN →
∞∑
i=2

(N+i−1
i )∑

j=1

ĝ(j, i, N)O(N−d3i) =
∞∑
i=2

C(i, N)O(N−d3i),

where C(i, N) is some bound on the sum of the ĝ(j, i, N) for a given i. Proving a

desirable bound C(i, N) would require two results. First, we must ensure that no

ĝ(j, i, N) becomes unboundedly large (in some norm). Second, we must ensure that

the number of nonzero ĝ(j, i, N) for a given i is sufficiently bounded.

Concerning the first required result, the ĝ(j, i, N) are linear combinations of operator

words and these words have the potential to become arbitrarily long as N → ∞.

This may not be pathological if we consider the actions of connection matrices on

each other. Consider the product LkLk′ . Unless Lk and Lk are associated faces, the

product is an empty matrix. Typically the size of a set of associated faces is much

smaller than the size of the set L of all connection matrices. Thus as the length of

an operator word becomes arbitrarily large, the chance of it including a null pairing
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of connection matrices like this may become extremely high or certain.

For the second result, we can immediately place an upper bound on the number

of ĝ(j, i, N) as
(
N+i−1

i

)
, which is O(N i) as N → ∞. Assuming we have the first

required result, we would then have

RN =
∞∑
i=2

O(N (1−d3)i), (4.23)

which proves Conjecture 4.5.1 if d3 > 1. With Assumption 4.4.2, this becomes

O(∆M−2d2(1−d3)) and we have a very rough convergence result that does not con-

sider the ordering of events, or the initial condition. This outlines how a convergence

result for EAS may be formulated by taking advantage of the ability to write that

scheme as a product of exponentials. A complete result will have to take into account

the initial condition and how this affects event ordering, how the scheme handles

event ordering in general, and unique properties of the connection matrices.

As remarked in §4.4, d3 seems to be most likely 1 and thus too small to guaran-

tee convergence by (4.23). To move towards remedying this, we can make more

detailed observations on the nature of C(i, n). For example, we can observe that

since the Golding coefficients are zero for operator words of the form X i, Y i, there

will consequently be no timestep words of the form δti1, . . . δt
i
n in Zn, so that C(i, n)

is bounded above by
(
n+i−1

i

)
− n. This is however still O(ni) as N → ∞. Since

we have observed empirically that EAS does converge as ∆M → 0, it seems likely

that the true upper bound on C(i, n) really is still lower. Deeper observation of the

properties of the Lk are required.

We will present an illustrative argument. We consider going from n to n+ 1 events,

and examine only the second order terms (i.e., timestep words of length 2). The

length two words in Zn+1 are all of length two words in Zn, plus the words of length

two produced by the action of the term 1
2

[
δtn+1Lkn+1 , Zn

]
(from (4.18)). The length

two words from this will be produced from the length one words in Zn, since this

term takes timestep words and adds δtn+1 to them.

There are exactly n length one words in Zn, as a consequence of the construction of

the scheme. Thus in moving from event n to n + 1, at most n additional words of
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length two are created, or, C(i, n + 1) ≤ C(i, n) + n. This bound must actually be

lower for C(i, n) to be less than order n2.

Assume that n is sufficiently large, and the path of the events sufficiently intensive,

that every single connection matrix Lk ∈ L has been used in an event, and that

n > K. That is, every tk > 0 for every tk appearing in (4.21). Now there are

only a small set of Lk ∈ L which do not have the property Lkn+1Lk = 0 (the set of

associated faces for face kn+1 is less than the set of all faces), as discussed earlier.

These are the only terms which are not set to zero by the term 1
2

[
δtn+1Lkn+1 , Zn

]
which produces new length two words. Thus, given the assumption that every con-

nection matrix has had at least one event, then moving from n to n+ 1 events will

increase the number of length two words by less than n, due to the properties of

the connection matrices.

This is an example of how the special properties of the operators used to express

the scheme can improve the convergence results. More are no doubt possible. It is

also possible to extend the analysis to schemes which are not EAS. Given that EAS

converges, we would have to allow that each step of the scheme does not produce

the action of another exponential eδtn+1Lkn+1 , but rather an approximation of it,

eδtn+1Lkn+1 +En+1(δtn+1) for example. The extra error would then accumulate, and

we would have to show that this is bounded by ∆M again.

4.6 Extensions and Conclusions

In this chapter we have introduced new DES based Asynchronous schemes for

advection-diffusion and advection-diffusion-reaction systems. Numerical tests in di-

mensions up to three have revealed convergence of these schemes to corresponding

classical solutions as a control parameter ∆M decreases to zero, as well as indicating

other interesting relationships between parameters. Some framework has been laid

down for progress towards rigorous analysis of these schemes.

Our schemes include the most basic possible example of the class, along with others

incorporating various modifications. All of these schemes have been successful in our

numerical experiments; this indicates that there exist a wide variety of potentially
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effective DES based Asynchronous schemes to be discovered. Finding the most effec-

tive modifications and implementations for these schemes is essential for achieving

their potential. In particular we have found that the mass-tracking concept to be

especially effective for improving the face based schemes here. We have also demon-

strated that the flux capacitor concept of [1] can be applied to face based schemes,

and has great potential for the design of fast efficient Asynchronous schemes. In

general our schemes as implemented here do not outperform classical schemes. Our

codes remain essentially demonstration pieces.

We should specifically note the question of extending these face based Asynchrounous

schemes to nonuniform, non Cartesian grids. These methods are based on an under-

lying Finite Volume discretisation, and it is well known that for such a discretisation

on a nonuniform grid to be consistent spatially (i.e., converge to the correct PDE

as the grid size decreases to zero), the spatial derivative approximations across a

face must include data from more cells than the two immediately adjacent to the

face (see §1.3). For our purposes this means that the set of associated faces, F̃k of

some face k must be larger, in the case of a nonuniform grid; to include the faces

of all cells which contribute data to the spatial derivative approximation across k.

The algorithm would proceed as usual, with a different F̃k for each face as well as

a different equation for the flux, e.g. (2.7) may be replaced with an approximation

from a MPFA scheme (see e.g. [19]). Such an implementation, and an investigation

into possible ways of improving efficiency in such a case, remain subjects of potential

further research.

Another possibility to expand the schemes is to attempt to add stochastic forcing.

The aim would be to have a stochastic scheme which approximates a version of the

PDE (2.28) with a stochastic forcing term. One possible way to do this is to add

some kind of stochastic forcing to either (2.12) or (2.10).
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Chapter 5

Krylov Subspace Recycling

5.1 Introduction

In this chapter we leave Asynchronous methods and consider Exponential Integrator

schemes. We consider the numerical integration of a large system of semilinear ODEs

of the form

du

dt
= Lu+ F (t, u(t))

u(0) = u0, t ∈ [0,∞)

(5.1)

with u, F (t, u(t)) ∈ RN and L ∈ RN×N a matrix. We are concerned with the

approximation of (5.1) by Exponential Integrators (§1.4). We recall the scheme

ETD1 can be written as

uetdn+1 = uetdn + ∆tϕ1(∆tL)
(
Lun + F etd

n

)
. (5.2)

where uetdn ≈ u(tn) at discrete times tn, and

F etd
n ≡ F (tn, u

etd
n ).

It is useful to introduce the additional notation

getdn ≡ Luetdn + F (tn, u
etd
n ).
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This allows us to write (5.2) as

uetdn+1 = uetdn + ∆tϕ1(∆tL)getdn ,

which will be useful later.

Recalling §1.4.1, the function ϕ1 is part of a family of matrix exponential functions

defined by

ϕ0(z) = ez, ϕ1(z) = z−1 (ez − I) ,

and in general

ϕk+1(z) = z−1

(
ϕk −

I

k!

)
, (5.3)

where I is the identity matrix, which appear in all exponential integrator schemes;

see [55]. In particular we use ϕ1, and for brevity we will later use the following

notation,

pτ ≡ τϕ1(τL). (5.4)

We can then re-write (5.2) as

uetdn+1 = uetdn + p∆t (Lun + Fn) . (5.5)

We consider the Krylov projection method for approximating terms like ϕ1(∆tL)gn

in (5.2). In the Krylov method, this term is approximated on a Krylov subspace

defined by the vector gn and the matrix L. Typically the subspace is recomputed, in

the form of a matrix of basis vectors Vm, every time the solution vector, un in (5.2),

is updated (and thus also gn). This is done using a call to the Arnoldi algorithm

[53], and is often the most expensive part of each step. It is possible to ‘recycle’ this

matrix at least once, as demonstrated in [96]. Here we investigate this possibility

further.

We examine the effect of splitting the single step of (5.2) of length ∆t in to S substeps

of length δt = ∆t
S

, through which the Krylov subspace and matrices are recycled.

By deriving expressions for the local error, we show that the scheme remains locally

second order for any number S of substeps, and that the leading term of the local
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error decreases. We then examine the possibility of using the extra information from

the substeps to form a corrector to increase the overall order of the scheme.

The chapter is arranged as follows. In Section 2 we describe the Krylov subspace

projection method for approximating the action of ϕ−functions on vectors. In sec-

tion 3 we describe the concept of recycling the Krylov subspace across substeps in

order to increase the accuracy of the scheme, and show that the leading term of the

local error of the scheme decreases as the number of substeps uses increases. We

then prove a lemma to express the local error expression at arbitrary order. With

this information about the local error expansion, and the extra information from the

substeps taken, it is possible to construct correctors for the scheme the increase the

accuracy and local order of the scheme. We demonstrate one simple such corrector

in Section 4. Numerical examples demonstrating the effectiveness of this scheme are

presented in Section 5.

5.2 The Krylov Subspace Projection Method

We describe the Krylov subspace projection method for approximating ϕ1(∆tL) in

(5.2). We motivate this by showing how the leading powers of ∆tL in L are captured

by the subspace.

Recalling (1.14), the series definition of ϕ1(∆tL) is,

ϕ1(∆tL) ≡
∞∑
k=0

(∆tL)k

(k + 1)!
. (5.6)

The challenge in using the scheme (5.2) is to efficiently compute, or approximate,

the action of ϕ1 on the vector getdn . Using (5.6) we can re-write the scheme in (5.2)

as

uetdn+1 = uetdn + ∆t
∞∑
k=0

(∆tL)k

(k + 1)!
getdn . (5.7)

The sum in (5.6) is useful in motivating a polynomial Krylov subspace approxima-

tion. The m-dimensional Krylov subspace for the matrix L and vector g ∈ RN is

defined by:

Km(L, g) = span{g, Lg, . . . , Lm−1g}. (5.8)
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If the sum in (5.6) is approximated by the first m terms, this is equivalent to ap-

proximation in the subspace Km(L, getdn ) in (5.8). We now derive some simple results

about the general subspace Km(L, g), with arbitrary vector g, before using the re-

sults with g = getdn to demonstrate how they are used in the evaluation of (5.2).

The Arnoldi algorithm (see e.g. [55], [53]), a modified GramSchmidt process, is used

to produce an orthonormal basis {v1, . . . , vn} for the space Km(L, g) such that

span{v1, v2, . . . , vm} = span{g, Lg, . . . , Lm−1g}. (5.9)

It produces two matrices Vm ∈ RN×m, whose columns are the vk, and an upper

Hessenburg matrix Hm ∈ Rm×m. The matrices L,Hm and Vm are related by

L = V T
mHmV

T , (5.10)

see, for example, equation (2) in [53], of which (5.10) is a consequence. From (5.10)

if follows that,

VmHmV
T
m = VmV

T
mLVmV

T
m . (5.11)

For any x ∈ Km(L, g),

VmV
T
mx = x,

since VmV
T
mx represents the orthogonal projection into the space Km(L, g). There-

fore, since Lkg ∈ Km(L, gn), we also have that

VmV
T
mL

kg = Lkg

for 0 ≤ k ≤ m− 1. We now consider the relationship between Lkg and VmH
k
mV

T
m g.

Lemma 5.2.1. Assume 0 ≤ k ≤ m − 1. Then for Hm, Vm corresponding to the

Krylov subspace K(L, g),

VmH
k
mV

T
m g = Lkg. (5.12)

Proof. We have that VmH
k
mV

T
m = (VmHmV

T
m )k since V T

mVm = I. Let π ≡ VmV
T
m , the
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projector into K(L, g), so that (5.11) can be more briefly written VmHmV
T
m = πLπ.

Then by (5.11) we find

VmH
k
mV

T
m g = (πLπ)kg

= (πLπ)k−1πLπg = (πLπ)k−1Lg

= (πLπ)k−2πLπLg = (πLπ)k−2L2g

= . . . = Lkg.

Now consider using the vector g = getdn , to generate the subspace Km(L, getdn ),

and the corresponding matrices Hm, Vm, by the Arnoldi algorithm. By Lemma 5.2.1

we have that, up to k = m,

VmH
k
mV

T
m g

etd
n = Lkgetdn .

Thus, inserting the approximation L ≈ VmH
k
mV

T
m in ϕ1(∆tL) the first m terms in

the sum in (5.7) are correctly approximated. The Krylov approximation is then

∆tϕ1(∆tL)gn ≈ ∆tϕ1(∆tVmHmV
T
m )gn = ∆tVmϕ1(∆tHm)V T

m gn

= ||gn||∆tVmϕ1(∆tHm)e1.

(5.13)

Let us introduce a shorthand notation for the Krylov approximation of the ϕ−function.

Analogous to (5.4), let

p̃τ ≡ τVmϕ1(τHm)V T
m ≈ pτ (5.14)

for some τ ∈ R. Using (5.13) and (5.14) we then approximate (5.5) by

uetdn+1 = uetdn + p̃∆t (Lun + Fn) .

The key here is that the ϕ1(∆tHm) now needs to be evaluated instead of ϕ1(∆tL).

m is chosen such that m � N , and a classical method such as a rational Padé is

used for ϕ1(∆tHm), which would be prohibitively expensive for ϕ1(∆tL) for large N .

One step of the ETD1 scheme (5.2), under the approximation ϕ1(∆tL) ≈ Vmϕ1(∆tHm)V t
m,
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becomes

un+1 = un + ∆tVmϕ1(∆tH)V T
m gn

= ||gn||∆tVmϕ1(∆tH)e1,

(5.15)

where e1 is the first basis vector in Rm.

5.3 Recycling the Krylov subspace

In the Krylov subspace projection method described in §5.2, the subspace Km(L, gn)

and thus the matrices Hm and Vm depend on gn. At each step it is understood that a

new subspace must be formed, and Hm, Vm be re-generated by the Arnoldi method,

since gn changes. In [96] it is demonstrated that splitting the timestep into two

substeps, and recycling Hm and Vm, i.e. recycling the Krylov subspace, can be

viable (in that it does not decrease the local order of the scheme, and apparently

decreases the error). Here we expand on this concept with a more detailed analysis

of the effect of this kind of recycled substepping applied to the locally second order

ETD1 scheme (5.2).

The idea is to replace a single step of length ∆t of (5.15) with S substeps of length δt,

such that ∆t = Sδt. We denote the approximations used in this scheme analogously

to the notation for ETD1 earlier, without the etd subscript, and extend the notation

slightly to keep track of substeps. Thus,

un+ i
S
≈ u(tn + iδt);

and

Fn+ j−1
S
≈ F (tn + iδt, un+ i

S
).

At the start of the step we calculate Hm, Vm, from gn,

un+ 1
S

= un + δtVmϕ1(δtHm)V T
m gn, (5.16)
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and for the remaining S − 1 steps,

un+ j
S

= un+ j−1
S

+ δtVmϕ1(δtHm)V T
m

(
Lun+ j−1

S
+ Fn+ j−1

S

)
, 1 < j ≤ S, (5.17)

where the matrices Hm and Vm are not re-calculated for any substep, j > 1. We call

substeps of the form (5.17) ‘recycled steps’ and substeps of the form (5.16) ‘initial

steps’. The approximation to u(tn + ∆t) at the end of the step of length ∆t is then

given by

un+1 = un+S−1
S

+ δtVmϕ1(δtHm)V T
m

(
Lun+S−1

S
+ Fn+S−1

S

)
. (5.18)

The recycling steps (5.16), (5.17) can be succinctly expressed using the definition of

p̃τ :

un+ 1
S

= un + p̃δt (Lun + Fn) , (5.19)

un+ j
S

= un+ j−1
S

+ p̃δt

(
Lun+ j−1

S
+ Fn+ j−1

S

)
, 1 < j ≤ S. (5.20)

5.3.1 The local error of the recycling scheme

We now derive an expression for the local error of the scheme defined by (5.16),

(5.17). In particular this is used to derive an expression for the leading term of

the local error, and here show that the leading term decreases with the number of

substeps S. As we are examining the local error, we use the local error assumption

that un = u(tn), i.e. that the value at the start of the step is exact and thus the

error is only over one step.

We also make an assumption about the accuracy of the initial Krylov approximation

with respect to the error of the scheme. Let the error in the polynomial Krylov

approximation over a single step (including the error from the approximation of

ϕ1(τHm) using, e.g. Padé approximation), with subspace dimension of size m, be

given by Emn+1, so that,

p̃τgn = pτgn + Emn+1. (5.21)
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Assumption 5.3.1. The Krylov approximation error Emn+1 is much less than the

error of ETD1, and thus does not affect the leading term of the local error of ETD1.

Bounds on Emn+1 can be found in for example [54, 53]. Practically, we can always

reduce ∆t or increase m until Assumption 5.3.1 is satisfied.

For the local error of the recycling scheme, the following result will be used.

Lemma 5.3.2. For any τ1, τ2 ∈ R, and any vector v ∈ RN ,

pτ1v + pτ2 (Lpτ1v + v) = pτ1+τ2v,

and the same relation holds for the Krylov approximations, that is,

p̃τ1v + p̃τ2 (Lp̃τ1v + v) = p̃τ1+τ2v.

Proof. We prove the second equation. The first can be proved using an almost

identical argument, replacing p̃τ by pτ where appropriate.

By the definitions of p̃τ , and ϕ1, i.e. p̃τ = V ϕ1(τHm)V T
m = VmH

−1
m

(
eτ2Hm − I

)
V T
m

we have

p̃τ2 (Lp̃τ1v + v) = VmH
−1
m

(
eτ2Hm − I

)
V T
m

(
LVmH

−1
m

(
eτ1Hm − I

)
V T
m + I

)
v.

Simplifying and making use of Hm = V T
mLVm (5.10) this becomes

p̃τ2 (Lp̃τ1v + v) = VmH
−1
m

(
e(τ2+τ1)Hm − eτ1Hm

)
V T
m v.

Now using the definition of p̃τ1 ,

p̃τ1v + p̃τ2 (Lp̃τ1v + v)

= VmH
−1
m

(
eτ1Hm − I

)
V T
m v + VmH

−1
m

(
e(τ2+τ1)Hm − eτ1Hm

)
V T
m v

= VmH
−1
m

(
e(τ2+τ1)Hm − I

)
V T
m v,

(5.22)
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which is p̃τ1+τ2v as desired.

Without recycling substeps, a single ETD1 step (5.2) of length ∆t, using the

polynomial Krylov approximation, would be:

uetdn+1 = uetdn + p̃∆tg
etd
n . (5.23)

The errors in this approximation, arising from both the use of the Krylov approx-

imation (see e.g. [45]) and the ETD1 scheme are well known (see e.g. [22], [29]).

We wish to compare uetdn+1 with the un+1 obtained after some number S of recycled

substeps. We can write

un+1 = un + p̃∆tgn +RS
n+1,

where RS
n+1 represents the deviation from (5.23). Then we have:

Lemma 5.3.3. The approximation un+ j
S

produced by j substeps of the recycling

scheme (5.19), (5.20), satisfies

un+ j
S

= un + p̃jδtgn +RS
n+ j

S

, (5.24)

with

RS
n+ j

S

=

j∑
k=1

(I + p̃δtL)j−kp̃δt(Fn+ k−1
S
− Fn). (5.25)

Proof. By induction. First, for the case j = 1, un+ 1
S

is given by (5.19) and RS
n+ j

S

is

required to be zero. Equation (5.25) gives RS
n+ 1

S

= p̃δt(Fn+ 0
S
− Fn) = 0 as desired.

Assume now (5.24) holds for some j ≥ 1. Then un+ j+1
S

is obtained by a step of

(5.20),

un+ j+1
S

= un+ j
S

+ p̃δt

(
Lun+ j

S
+ Fn+ j

S

)
using (5.24) we find,

un+ j+1
S

= un+ j
S

+ p̃δt

(
Lun + Lp̃jδtgn + LRS

n+ j
S

+ Fn+ j
S

)
,
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and since Lun = gn − F (tn, u(tn)),

un+ j+1
S

= un+ j
S

+ p̃δt

(
gn + Lp̃δtgn + LRS

n+ j
S

+ Fn+ j
S
− F (tn, u(tn))

)
= un+ j

S
+ p̃δt (gn + Lp̃δtgn) + p̃δtLR

S
n+ j

S

+ p̃δt(Fn+ j
S
− Fn)

= un + p̃jδtgn + p̃δt (gn + Lp̃δtgn) + (I + p̃δtL)RS
n+ j

S

+ p̃δt(Fn+ j
S
− Fn).

Thus by Lemma 5.3.2 we have that,

un+ j+1
S

= un + p̃(j+1)δtgn + p̃δt(Fn+ j
S
− Fn) + (I + p̃δtL)RS

n+ j
S

.

To complete the proof we require that:

RS
n+ j+1

S

= p̃δt(Fn+ j
S
− Fn) + (I + p̃δtL)RS

n+ j
S

. (5.26)

By the induction hypothesis that (5.25) holds for j,

p̃δt(Fn+ j
S
− Fn) + (I + p̃δtL)RS

n+ j
S

= p̃δt(Fn+ j
S
− Fn) + (I + p̃δtL)

j∑
k=1

(I + p̃δtL)j−kp̃δt(Fn+ j−1
S
− Fn)

=

j+1∑
k=1

(I + p̃δtL)j+1−kp̃δt(Fn+ k−1
S
− Fn) = RS

n+ j+1
S

.

(5.27)

Hence the lemma is proved.

At the end of S substeps of a substepping scheme (5.19), (5.20) we have

un+1 = un + p̃∆tgn +RS
n+1, (5.28)

with

RS
n+1 =

S∑
k=1

(I + p̃δtL)S−kp̃δt(Fn+ k−1
S
− Fn). (5.29)

Using (5.29) we now express the leading order term of the local error in terms of S.

First we examine the leading order term of RS
n+1.
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Lemma 5.3.4. The term RS
n+ j

S

in Lemma 5.3.3, when expanded in powers of ∆t,

satisfies

RS
n+ j

S

=
j(j − 1)

2
δt2VmV

T
m

dF (tn, un)

dt
+O(∆t3). (5.30)

Proof. By induction. Since (Fn+ 0
S
−Fn) = 0, then, RS

n+ 1
S

= 0, so that (5.30) is true

for j = 1.

Now assume the result holds for some j. Then we can express the term Fn+ j
S

follows:

F (tn+ j
S
, un+ j

S
) = F (tn+ j

S
, un + (jδtgn +O(δt2)))

= F (tn+ j
S
, un) +

∂F

∂u
(tn+ j

S
, un)(jδtgn +O(δt2)) +O(δt2)

= F (tn, un) + jδt
∂F

∂t
(tn, un) + jδt

∂F

∂u
(tn, un)gn +O(δt2)

= F (tn, un) + jδt
dF

dt
(tn, un) +O(δt2).

We thus have that

(Fn+ j
S
− Fn) = jδt

dF

dt
(tn, un) +O(δt2). (5.31)

We then insert (5.31) into the inductive expression (5.43) for RS
n+ j

S

and use the

expansion p̃δt = δtVmV
T
m +O(δt2) to give,

RS
n+ j+1

S

= δtVmV
T
m jδt

dF

dt
(tn, un) + (I + δtVmV

T
mL)RS

n+ j
S

+O(δt3).

Using the induction assumption (5.30),

RS
n+ j+1

S

= δtVmV
T
m jδt

dF

dt
(tn, un) +

j(j − 1)

2
δt2VmV

T
m

dF (tn, un)

dt
+O(∆t3),

Noting that ∆t = Sδt we can write O(∆t3) as O(δt3). Collecting terms we have,

RS
n+ j+1

S

=

(
j(j − 1)

2
+ j

)
δt2VmV

T
m

dF (tn, un)

dt
+O(∆t3).

The lemma follows since j(j−1)
2

+j = j(j+1)
2

, which completes the induction argument.
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The leading local error term of the ETD1 scheme without substeps is well known

to be ∆t2

2
dF (t)
dt

(see [29]), so that we can finally recover the leading term from Lemma

5.3.3.

Corollary 5.3.5. It follows from (5.24), the leading term of the recycling scheme

after j steps is

un+ j
S

= un + jδtgn +
j2δt2

2
Lgn +

j(j − 1)

2
δt2VmV

T
m

dF (tn, un)

dt
+O(δt3). (5.32)

Corollary 5.3.6. The local error u(tn + ∆t) − un+1 of an ETD1 Krylov recycling

scheme is second order for any number S of recycled substeps. Moreover, the local

error after j recycled steps is

u(tn + jδt)− un+ j
S

= u(t) + jδtg(tn) +
(jδt)2

2

(
Lg(tn) +

df(t)

dt

)
− (un + jδtgn +

j2δt2

2
Lgn +

j(j − 1)

2
VmV

T
m δt

2dF (tn, un)

dt
) +O(δt3)

=
(jδt)2

2

(
I − j − 1

j
VmV

T
m

)
df(t)

dt
+O(δt3).

(5.33)

In particular

u(tn + ∆t)− un+1 =
δt2

2

(
S2 − S(S − 1)VmV

T
m

) df(t)

dt
+O(δt2), (5.34)

or in terms of ∆t

u(tn + ∆t)− un+1 =
∆t2

2

(
I − S − 1

S
VmV

T
m

)
df(t)

dt
+O(∆t2). (5.35)

It is interesting to compare (5.35) with the leading term of the local error of

regular ETD1, ∆t2

2
df
dt

. Since VmV
T
m is the orthogonal projector into K, then we can

see that the ∆t2

2
S−1
S
VmV

T
m
df(t)
dt

part in (5.35) is the projection of the ETD1 error into

K, multiplied by a factor S−1
S
≤ 1. Thus, in the leading term, according to (5.35),

the recycling scheme reduces the error of ETD1 by effectively eliminating the part

of the error which lives in K. In the limit S →∞, the entirety of the error in K will
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be eliminated. The effectiveness of the recycling scheme will therefore be affected

by how much of df(t)
dt

can be found in K.

Corollary 5.3.6 shows that using S > 1 recycled substeps is advantageous over the

basic ETD1 scheme, in the sense of reducing the magnitude of the leading local error

term, whenever ∣∣∣∣∣∣∣∣(I − S − 1

S
VmV

T
m

)
df(t)

dt

∣∣∣∣∣∣∣∣ < ∣∣∣∣∣∣∣∣df(t)

dt

∣∣∣∣∣∣∣∣ , (5.36)

where ||·|| is a given vector norm. We can go further and show that increasing S

will decrease the Euclidean norm || · ||2 of the leading term of the local error. This

is done in Lemma 5.3.8 below; first we require a result on VmV
T
m , the projector into

the Krylov Supspace K.

Remark 5.3.7. Let x 6= 0 be a vector such that VmV
T
mx 6= 0, then

∣∣∣∣(I − αVmV T
m

)
x
∣∣∣∣2

2
= ||x||22 + [(1− α)2 − 1]

∣∣∣∣VmV T
mx
∣∣∣∣2

2
, (5.37)

for α ∈ R.

Proof. An elementary result for orthogonal projectors (see, e.g. [97]) is that

||x||22 =
∣∣∣∣VmV T

mx
∣∣∣∣2

2
+
∣∣∣∣(I − VmV T

m )x
∣∣∣∣2

2
, (5.38)

which follows from VmV
T
mx⊥(I − VmV

T
m )x (the orthogonality of VmV

T
mx and (I −

VmV
T
m )x) and the definition of the Euclidean norm. Equation (5.37) is a generalisa-

tion of (5.38) as can be shown as follows.

Write x − αVmV T
mx = (I − VmV T

m )x + (1 − α)VmV
T
mx, and then, noting that (I −

VmV
T
m )x⊥(1− α)VmV

T
mx,

∣∣∣∣x− αVmV T
mx
∣∣∣∣2

2
=(

(I − VmV T
m )x+ (1− α)VmV

T
mx
)T (

(I − VmV T
m )x+ (1− α)VmV

T
mx
)

=
∣∣∣∣(I − VmV T

m )x
∣∣∣∣2

2
+ (1− α)2

∣∣∣∣VmV T
mx
∣∣∣∣2

2
,

(5.39)

then using (5.38) to substitute for
∣∣∣∣(I − VmV T

m )x
∣∣∣∣2

2
yields (5.37).

Lemma 5.3.8. Assume df(t)
dt
6= 0 and VmV

T
m
df(t)
dt
6= 0. Let Err1 be the local error
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using the recycling scheme over a timestep of length ∆t with S1 ≥ 1 substeps, and

Err2 the local error after using the recycling scheme over a timestep of the same

length with S2 substeps. Let S2 > S1. Then,

||Err2||2 < ||Err1||2 .

Proof. The local error is given in Corollary (5.3.6). Let Sk−1
Sk
≡ βk, k = 1, 2. We

need to show that

∣∣∣∣∣∣∣∣(I − β2VmV
T
m

) df(t)

dt

∣∣∣∣∣∣∣∣
2

<

∣∣∣∣∣∣∣∣(I − β1VmV
T
m

) df(t)

dt

∣∣∣∣∣∣∣∣
2

.

Let x ≡
(
I − β1VmV

T
m

) df(t)
dt

, then
(
I − β2VmV

T
m

) df(t)
dt

= x−
(
β1−β2

β1−1

)
VmV

T
mx (show-

ing this involves using VmV
T
mVmV

T
m = VmV

T
m ). Letting γ ≡ β1−β2

β1−1
, we then need to

show ∣∣∣∣(I − γVmV T
m

)
x
∣∣∣∣

2
< ||x||2 . (5.40)

Note that we have that VmV
T
mx 6= 0 from the assumptions. This is because,

VmV
T
mx =

(
VmV

T
m − β1VmV

T
m

) df(t)

dt
,

since VmV
T
mVmV

T
m
df(t)
dt

= VmV
T
m
df(t)
dt

, as VmV
T
m
df(t)
dt

is already entirely within K. Then,

VmV
T
mx = (1− β1)VmV

T
m

df(t)

dt
.

We have that 1− β1 = 1
S1
6= 0 and VmV

T
m
df(t)
dt
6= 0, so that VmV

T
mx 6= 0.

To prove the lemma we apply (5.37) to x, with γ in place of α. If we have that

[(1− γ)2 − 1] < 0, then (5.40) is true since VmV
T
mx 6= 0. An equivalent requirement

is γ ∈ (0, 2). Some algebra gives us γ = 1 − S1

S2
. Since S2 > S1, it follows that

γ ∈ (0, 2).

From Lemma (5.3.8) we can see that any number S of recycled Krylov substeps

will not only maintain the local error order of the ETD1 scheme, but will also de-
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crease the 2-norm of the leading term with increasing S. Note that the leading term

does not tend towards zero as S → ∞, but towards a constant. We thus expect

diminishing returns in the increase in accuracy with increasing S, and the existence

of an optimal S for efficiency.

5.4 Substepping with the scheme EEM

As an aside we show here how it is possible to apply the analysis of the substepping

method to the locally third order exponential integrator scheme EEM. EEM is closely

related to ETD1, but can be applied to an ODE that is not semilinear. Applied to

the ODE,

du

dt
= g(u),

where g(u) may not be semilinear, the scheme EEM is

un+1 = un + ∆tϕ1(∆tJn)gn.

Here J(u) = ∂u
∂g

is the Jacobian of g and Jn = J(un). Note that EEM is just

ETD1 with L replaced by Jn; and indeed is identical in principal to ROS1; here

we call EEM the scheme applied to a nonlinear PDE and ROS1 the application to

a semilinear one. The Jacobian Jn will change each timestep, but is kept fixed for

the entire step, including recycling substeps. Therefore an S step recycling scheme

can be defined on EEM in exactly the same way as the recycling scheme for ETD1.

Note that the Krylov subspace will be generated for J and g in the EEM case, i.e.

K = K(Jn, gn).

We can apply Lemma 5.3.3 to the EEM substepping scheme just by replacing L

with Jn and recognising that thus Fn+ j+1
S

= gn+ j+1
S
− Lun+ j+1

S
becomes Fn+ j+1

S
=

gn+ j+1
S
− Jnun+ j+1

S
.

Corollary 5.4.1. When applying the Krylov subspace recycling scheme to EEM, the
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approximation satisfies

un+ j
S

= un + p̃jδtgn +RS
n+ j

S

, (5.41)

where now the approximate ϕ−function

p̃τ ≡ τVmϕ1(τHm)V T
m (5.42)

approximates

τϕ1(τJ)

and the Krylov subspace is generated from J and gn. The remainder RS
n+ j

S

satisfies

the recursion relation,

RS
n+ j+1

S

= p̃δt(Fn+ j
S
− Fn) + (I + p̃δtL)RS

n+ j
S

, (5.43)

where Fn+ j+1
S

= gn+ j+1
S
− Jnun+ j+1

S
.

Proof. Following through the argument of Lemma 5.3.3 with the new definitions

gives proof of (5.43), which is analgous to equation (5.25) in Lemma 5.3.3.

The remainder for the recycling-EEM scheme is therefore essentially the same in

form as the ETD1 recycling scheme, however the Taylor expansion of the remainder

is different. We use some results from vector calculus. Let Ĵi be the Hessian matrix


(ĝi)x1x1 (ĝi)x1x2 . . .

(ĝi)x2x1 (ĝi)x2x2 . . .

. . . . . . . . .

 ,

where ĝi is the ith entry of the vector g. Then let the tensor Ĵ be a vector with the

matrix Ĵi in its ith entry. It can be shown that the Taylor series of a vector function

g(x) satisfies

g(x+ ∆x) = g(x) + J∆x+
1

2
∆xT Ĵ∆x+O(∆x3)
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It can also be shown that

dx

dt
Ĵ =

d

dt
J

see the Appendix §9.2 for proofs. And following from these it is possible to show

that the leading term of the local error of EEM is

1

6
∆t3gT Ĵg.

We then proceed in an analogy to Lemma 5.3.4, Taylor expanding the remainder

RS
n+ j

S

from (5.43) to find the local error of the EEM scheme with recycled substeps.

Lemma 5.4.2. For the EEM recycling scheme, the leading term of RS
n+ j

S

satisfies

RS
n+ j

S

= α(j)δt3VmV
T
m g

T
n Ĵgn +O(δt4)

Where the function α(j) satisfies

α(j) =
j3

6
− j2

4
+

j

12
=

2j3 − 3j2 + j

24
.

Proof. By induction. The base case is true for j = 1 with α(1) = 0 since there is no

recycling at that step. Assume true for some j. Consider gn+ j
S

,

gn+ j
S

= g(un+ j
S

) = g(u(t) + jδtg(t) +
1

2
(jδt)2Jg +O(δt3)),

to second order this is

gn+ j
S

= gn + J

(
jδtgn +

1

2
(jδt)2Jgn

)
+

(jδt)2

2
gTn Ĵgn +O(δt3),
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where we have made use of the local error assumption u(tn) = un. Then,

Fn+ j
S
− Fn

= gn+ j
S
− gn − Jun+ j

S
+ Jun

=

(
J

(
jδtgn +

1

2
(jδt)2Jgn

)
+

(jδt)2

2
gTn Ĵgn

)
− J

(
jδtgn +

(jδt)2

2
Jgn

)
+O(δt3),

(5.44)

where we have used that un+ j
S

= unjδtgn + (jδt)2

2
Jgn + O(δt3) up to second order,

since the induction assumption states that R has zero contribution to second order.

Equation (5.44) cancels to give

Fn+ j
S
− Fn =

(jδt)2

2
gTn Ĵgn +O(δt3)

Now consider

p̃δt

(
Fn+ j

S
− Fn

)
=
j2(δt)3

2
VmV

T
m g

T
n Ĵgn +O(δt4)

The induction relation for RS
n+ j+1

S

then gives us

RS
n+ j+1

S

=
j2(δt)3

2
VmV

T
m g

T
n Ĵgn + (I + p̃δtJ)RS

n+ j
S

+O(δt4)

To leading order this is

RS
n+ j+1

S

=

(
j2

2
+ α(j)

)
δt3VmV

T
m g

T
n Ĵgn +O(δt4)

So

α(j + 1) =
j2

2
+ α(j), α(1) = 0

which is satisfied by

α(j) =
j3

6
− j2

4
+

j

12
=

2j3 − 3j2 + j

24
.
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We now combine the leading term of the remainder R and the known local error

of EEM to find the local error of the new recycling scheme.

Corollary 5.4.3. The leading term of the local error of the S step recycling scheme

for EEM at the end of a timestep is

∆t3

6

(
I −

(
2S2 − 3S + 1

2S2

)
VmV

T
m

)
gT Ĵg.

From this we can predict similar properties to the ETD1 recycling scheme. This

effectively extends the work of [96] (Caarr, Moroney, Turner), where the recycling

substepping EEM scheme was used for a single substep.

5.4.1 Efficiency

We now examine the possibility of an optimal S for efficiency. We define the effi-

ciency of the S substep scheme over one step as

EFFICIENCY(S) ≡ 1

COST(S)× E(S)
,

where COST(S) is the time cost of the step, and E(S) the error. We represent an

improvement in efficiency of the recycling scheme over the standard S = 1 scheme

by an improvement factor X as follows,

EFFICIENCY(S) = X EFFICIENCY(1). (5.45)

The larger X is, the greater the improvement provided by the recycling scheme. If

X < 1, then the substepping scheme is less efficient. We examine the factors that

affect the magnitude of X.

We consider the cost of a whole step with recycling as the sum of two components.

First, CI(m,N), the initial part of the step, including the call to the Arnoldi al-

gorithm and then the generation of the matrix ϕ1(δtHm). The dependence of the

cost upon the Krylov subspace size m and the system size N is included implicitly.

The cost of the individual substeps is given by Cs(m,N), the cost of the subsequent
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parts. This is the cost of the vector and matrix operations to form the solution at

every substep. We have that

COST(S) ≡ CI(m,N) + SCs(m,N).

Let us use for the error the leading term previously calculated: For the error we use

the Euclidean norm of leading term given in (5.35),

E(S) ≡ ∆t2

2

∣∣∣∣∣∣∣∣(I − S − 1

S
V V T

)
df

dt

∣∣∣∣∣∣∣∣
2

.

Then equation (5.45) takes the form

1

E(S) (CI(m,N) + SCs(m,N))
=

X

E(1) (CI(m,N) + Cs(m,N))
,

which after some rearrangement gives

X =
E(1)

E(S)

1 + CI(m,N)
Cs(m,N)

CI(m,N)
Cs(m,N)

+ S
.

We denote the ratio rIS ≡ CI(m,N)
Cs(m,N)

. This ratio will be important later. Then,

X =
E(1)

E(S)

rIS + 1

rIS + S
. (5.46)

We can express (5.46) in terms of vector norms. Let

Nf ≡
∣∣∣∣∣∣∣∣dfdt

∣∣∣∣∣∣∣∣
2

, NV f ≡
∣∣∣∣∣∣∣∣V V T df

dt

∣∣∣∣∣∣∣∣
2

.

By applying (5.37) to E(S), we have that

2

∆t2
E(S)2 = N2

f −
(

1− 1

S2

)
N2
V f .
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We define

d ≡ 1

Nf

√
N2
f −

(
1− 1

S2

)
N2
V f =

√
1−

(
1− 1

S2

)(
NV f

Nf

)2

, (5.47)

so that E(S) = ∆t2

2
dNf . As a particular case, E(1) = ∆t2

2
Nf . Consequently (5.46)

becomes

X =
1

d

rIS + 1

rIS + S
. (5.48)

From (5.48), we see that the magnitude of X is determined by the variables S, rIS

and d. Since d is itself determined by S and the ratio
NV f

Nf
in (5.47), we have that

X is determined by S, rIS and
NV f

Nf
.

Increasing the ratio rIS ≡ CI(m,N)
Cs(m,N)

simply makes X larger in (5.48) (the function

1+y
S+y

is an increasing function in y for S > 1 and constant for S = 1). Recall that

the justification for using recycling is that the cost of calling Arnoldi (included in

CI(m,N)) is the dominant cost in a step, so that one or more recycled steps (costing

Cs(m,N)) can be added without greatly increasing cost. This is expressed by a large

rIS. We expect this ratio to increase with m as this will increase the cost of Arnoldi

more than increasing the cost of the subsequent matrix vector multiplications.

Decreasing d will increase X in (5.48). From (5.47), we see that increasing S de-

creases d to the limit

√
1−

(
NV f

Nf

)2

. The other effect of increasing S will be to

decrease the rIS+1
rIS+S

term in (5.48) to the limit 0. This expresses an effect of dimin-

ishing returns in increasing S. While increasing S may increase efficiency initially,

there is guaranteed to be a S high enough which takes X below 1 and makes the

recycling scheme less efficient than ETD1.

As the ratio
NV f

Nf
is increased, d will decrease and thus X will increase. Since

NV f

Nf
=
||V V T df

dt
||

|| df
dt
||

, this is a measure of how much of df
dt

can be found in K. This corre-

sponds to the discussion after Corollary 5.3.6.

Predicting the size of the ratio
||V V T df

dt
||

|| df
dt
||

is not simple a priori. Trivially, it depends

weakly on the ratio of m to N - the size of the subspace versus the size of the vectors

projected into it, so that we expect worse results with large N . Also important is

the form of f - since the Krylov subspace is based on the vector Lu+f ; the amount

133



Chapter 5: Krylov Subspace Recycling

of df
dt

that lives in K may be expected to increase if f is made closer to a linear

function.

5.5 Using the additional substeps for correctors

Given (5.21), the ETD1 step (5.23) is

uetd1
n+1 = uetdn + p∆tgn + Emn+1, (5.49)

and the substepping error expression (5.28) can be expressed as

un+1 = un + p∆tgn + Emn +RS
n+1. (5.50)

Using variation of constants and a Taylor series expansion of F (t, u(t)), the exact

solution of (5.1) can be expressed as a power series [22],[29],

u(tn + ∆t) = e∆tLu(tn) +
k∑
k=1

∆tkϕk(∆tL)F (k−1)(tn, un) +O(∆tk), (5.51)

with F (k)(tn, un) = dkF
dtk

(tn, un). Under the local error assumption un = u(tn), the

local error of the ETD1 step given in (5.2) is

Eetd
n+1 ≡ u(tn + ∆t)− uetdn + p∆tgn =

∞∑
k=2

∆tkϕk(∆tL)F (k−1)(tn). (5.52)

Since the approximation from a substepping scheme is related to the approximation

from the ETD1 scheme (over one step) by un+1 = uetdn+1 + RS
n+1, we have the local

error for the recycling scheme:

u(tn + ∆t)− un = Eetd
n+1 − Emn+1 −RS

n+1. (5.53)

The terms of error expression (5.53) at arbitrary order can be found using (5.51),

Lemma 5.3.3, and the information on Krylov projection methods in §5.2. We can

see that the expansion will consist of terms involving the value of F or derivatives
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thereof at various substeps. These terms can be approximated by finite differences

of the values for F at the different substeps, and used as a corrector to eliminate

terms for the error. We now proceed with an example of this.

We consider extrapolation in the leading error in the case of two substeps, that is

S ≡ 2. Assume that the error from the Krylov approximation, Emn is negligible

compared to En and Rn, so that it does not introduce any terms at the first and

second and third order expansion of En and Rn. Then we can express exactly the

leading second and third order error terms.

First we have the leading terms of Eetd
n from (5.52),

Eetd
n = ∆t2ϕ2(∆tL)F (1)(tn, un) + ∆t3ϕ3(∆tL)F (2)(tn, un) +O(∆t4)

=
∆t2

2!
F (1) +

∆t3L

3!
F (1) +

∆t3

3!
F (2) +O(∆t4).

(5.54)

We also have the leading terms of R2
n+1 (recall that here the superscript 2 indicates

that the scheme consists of two substeps after each Arnoldi evaluation),

R2
n+1 = p̃∆t

2
(Fn+ 1

2
− Fn)

=
∆t

2
Vm

(
I +

∆tHm

2
+ . . .

)
V T
m (Fn+ 1

2
− Fn)

=
∆t

2
VmV

T
m (Fn+ 1

2
− Fn) + Vm

∆t2Hm

4
V T
m (Fn+ 1

2
− Fn) +O(∆t3).

(5.55)

Note that the terms in (5.55) are an order higher than written since Fn+ 1
2
− Fn =

∆t
2
F (1)(tn, un) +O(∆t2). We then have that

u(tn + ∆t) = un+1

+
∆t2

2!
F (1) − ∆t

2
VmV

T
m (Fn+ 1

2
− Fn)

+
∆t3L

3!
F (1) +

∆t3

3!
F (2) − Vm

∆t2Hm

4
V T
m (Fn+ 1

2
− Fn) +O(∆t4).

(5.56)

The idea now is as follows. Define a corrected approximation:

u
(c)
n+1 ≡ un+1 + C − ∆t

2
VmV

T
m (Fn+ 1

2
− Fn). (5.57)
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In (5.57), C is a corrector intended to cancel out some of the leading terms in (5.56).

The term ∆t
2
VmV

T
m (Fn+ 1

2
−Fn) is the only leading term in (5.56) to involve the matrix

Vm, and so is added directly to the corrected approximation (5.57) to allow C to be

free of dependence on the matrix Vm. Indeed, C will be a linear combination of the

the three function values of F , Fn, Fn+ 1
2

and Fn+1, available at the end of the full

step. The approximation to u produced by substeps of the scheme, and thus also to

F , is locally second order. We define the C term as follows, with coefficients α, β,

γ to be chosen later.

C ≡ ∆tαFn + ∆tβFn+ 1
2

+ ∆tγFn+1

= ∆tαF (tn) + ∆tβF

(
tn +

∆t

2

)
+ ∆tγF (tn + ∆t) + ∆t3Ec +O(∆t4)

= ∆t (α + β + γ)F + ∆t2
(
β

2
+ γ

)
F (1) +

∆t3

2

(
β

4
+ γ

)
F (2) + ∆t3Ec +O(∆t4)

(5.58)

where we have used that Fn = F (tn, u(tn)) (under the local error assumptions),

Fn+ 1
2

= F
(
tn + ∆t

2

)
+ O(∆t2) and so on. The new term ∆t3Ec is introduced to

represent the O(∆t3) error in writing ∆tFn+ 1
2

as ∆tF
(
tn + ∆t

2

)
, and so on.

From (5.58), we must choose the coefficients to satisfy the two conditions

α + β + γ = 0,

β

2
+ γ =

1

2
.

With these values of the parameters, the local error of the corrected approxima-
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tion is

u(tn + ∆t)− u(c)
n+1 =

∆t3

3!
F (2) − Vm

∆t2Hm

4
V T
m (Fn+ 1

2
− Fn) +

∆t3

2

(
β

4
+ γ

)
F (2)

−∆t3Ec +O(∆t4)

=
∆t3

3!
F (2) − Vm

∆t2Hm

8
V T
mF

(1) +
∆t3

2

(
β

4
+ γ

)
F (2)

−∆t3Ec +O(∆t4).

(5.59)

We have three coefficients to determine, and two constraints. We are therefore in a

position to pick another constraint to reduce the new leading error in (5.59). It would

be helpful to know the form of the error term Ec, introduced by the approximation

of F in (5.58). We have:

Fn+ 1
2

= F

(
tn+ 1

2
, u
(
tn+ 1

2

)
− ∆t2

8
F ′ +O(∆t3)

)
= F

(
tn+ 1

2
, u
(
tn+ 1

2

))
− ∆t2

8

∂F

∂u
F ′ +O(∆t3),

(5.60)

using (5.33). Recall that ∂F
∂u

is the Jacboian. We also have

Fn+ 2
2

= F

(
tn+1, u (tn+1)− ∆t2

2

(
I − 1

2
VmV

T
m

)
dF (t)

dt
+O(∆t3)

)
= F (tn+1, u (tn+1))− ∆t2

2

∂F

∂u

(
I − 1

2
VmV

T
m

)
dF (tn)

dt
+O(∆t3),

(5.61)

Ec is then

−β 1

8

∂F

∂u

dF (tn)

dt
− γ 1

2

∂F

∂u

(
I − 1

2
VmV

T
m

)
dF (tn)

dt
.

Substituting into (5.59):

u(tn + ∆t)− u(c)
n+1 =

+
∆t3

3!
F (2) − ∆t2

4
VmHmV

T
m (Fn+ 1

2
− Fn)− ∆t3

2

(
β

4
+ γ

)
F (2)

−∆t3
∂F

∂u

((
β

8
+
γ

2

)
I − γ

4
VmV

T
m

)
dF (tn)

dt
.

(5.62)
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We have the option here to use the final constraint to eliminate the coefficient of

F (2) in the leading term:

∆t3

3!
− ∆t3

2

(
β

4
+ γ

)
= 0.

Note that Ec cannot be eliminated without taking the inverse of VmV
T
m , so this is not

an efficient option. It can be seen that the values that satisfy the three constraints

are:

α = −5

6
, β =

2

3
, γ =

1

6
.

Of course Ec also depends on the values of α, β, γ, so the magnitude of the third

order term will be affected by the choice of these values also through Ec. With the

choices given above, the Ec term in (5.62) becomes:

−∆t3
∂F

∂u

(
2

12
I − 1

24
VmV

T
m

)
dF (tn)

dt
.

Here we have used all the extra information from the two substeps in order to

completely eliminate the lowest order from the local error, and a part of the new

leading order term for the scheme. A more thorough use of the error expressions in

the lemmas here may give rise to recycling schemes that use more substeps and are

able to completely eliminate higher order terms from the error, leading to a kind

of new exponential Runge-Kutta framework involving recycled Krylov subspaces.

Below we demonstrate the efficacy of our two-step corrected recycling scheme with

numerical examples.

5.6 Numerical Results

Here perform numerical tests on the schemes. To estimate the error we produced

a low ∆t comparison solve ucomp with ETD2 (1.18). Our ETD2 implementation

uses phipm.m [55] for each timestep; which requires the following parameters: an

initial Krylov subspace dimension, and an error tolerance. For our comparison solve

runs, we used 30 and 10−7 respectively for these parameters. See §1.5.2 for details
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on estimating error and the norm used.

In our tests we compare the 2-step corrector scheme against ETD2 and ROS2 (1.21),

which are both also second order. Like ETD2, our ROS2 implementation is powered

by phipm.m. For these runs of ETD2 and ROS2, we gave phipm.m the parameters

of 30 for the initial Krylov subspace dimension, and 10−7 for the error tolerance.

To implement our schemes the substepping scheme and the 2-step corrector scheme,

we used the function phipade.m [46] to evaluate the ϕ−functions of Hm in matrix

form. Our schemes require the size m of the Krylov subspace dimension to use. We

used m = 30 for all tests.

5.6.1 Allen-Cahn type Reaction Diffusion

The Allen-Cahn reaction term is

F (u) = u− u3,

so we approximate the solution to the PDE,

du

dt
= ∇2Du+ u− u3.

A reaction-diffusion system with this reaction term and u ∈ [−1, 1] can be inter-

preted as a 2-phase system, where u = 1 represents complete saturation of one phase,

and u = −1 represents complete saturation of the second phase. The reaction term

tends to cause the system to evolve towards sharp fronts between regions of the first

and second phase.

The (1D) spatial domain for this experiment was Ω = [0, 100] ⊂ R. This was dis-

cretised into a grid of N = 100 cells. The discretisation was finite volume; the

boundary conditions were no flow, i.e., ∂u
∂x

= 0 where x = 0 or x = 100. There

was a uniform diffusivity field of D(x) = 1.0, and no advection. The final time was

T = 1.0. The initial condition was u(x, 0) = cos
(

2πx
N

)
.

In Figure 5.1 we show the initial and final conditions of the system. The comparison

solve was produced by ETD2 with ∆t = 10−4. Also shown is the result produced
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by the recycling scheme with 2 substeps and ∆t = 10−3.

In Figure 5.2 a) and c) we show the estimated error against ∆t, for the recycling

scheme with varying number of substeps S. The behaviour is as expected; increasing

S decreases the error. The scheme is also first order as predicted. The diminishing

returns of increasing S (see (5.35)) can also be observed; for example compare the

significant increase in accuracy in increasing S from 1 to 5, with the lesser increase

in accuracy in increasing S from 5 to 10. Figure 5.2 shows this more emphatically

- the increase in accuracy in increasing S from 10 to 50 is significant, but the effect

of increasing S from 50 to 100 is very small. The limiting value of the error with

respect to S discussed above is clearly close to being reached here.

In Figure 5.2 b) and d) we plot estimated error against cputime to demonstrate the

efficiency of the scheme with varying S. In this case increasing S appears to increase

efficiency until an optimal S is reached, after which it decreases, as predicted. Fig-

ure 5.2 d) shows that the optimal S lies between 50 and 100 for this system.

In Figure 5.3 we compare the 2-step corrector (§5.5) with two other second order

exponential integrators, ETD2 and ROS2. Plot a) shows estimated error against

∆t again. The corrector scheme is second order as intended, and has quite high

accuracy compared to the other two schemes, possibly due to the heuristic attempt

to decrease the error in the leading term (see discussion in §5.5). In plot b) we

investigate efficiency; we see that the 2-step corrector is of comparable efficiency to

ROS2.

In Figure 5.2 b) we see that for the same cputime, increasing S from 1 to 10 de-

creases the estimated error by roughly an order of magnitude. We can see in Figure

5.2 d) that increasing S from 10 to 50 can further decrease error for a fixed cputime,

though less significantly. Comparing a fixed cputime in Figure 5.2 b) and Figure

5.3 b) indicates that the second order, 2-step corrector method can produce error

more than one order of magnitude smaller than the first order recycling scheme with

S = 10.

140



Chapter 5: Krylov Subspace Recycling

0 20 40 60 80 100
-1

-0.5

0

0.5

1

Initial condition

Comparison solve
2-step, ∆ t = 0.001

Figure 5.1: The initial and final states of the Allen-Cahn type Reaction Diffusion
used.

a)

10 -3 10 -2 10 -1

∆ t

10 -6

10 -5

10 -4

10 -3

10 -2

E
s
ti
m

a
te

d
 E

rr
o
r 

(S
c
a
le

d
 E

u
c
lid

e
a
n
 N

o
rm

)

1-step

2-step

5-step

10-step

slope 1

b)

10 -2 10 -1 10 0 10 1

cputime

10 -6

10 -5

10 -4

10 -3

10 -2

E
s
ti
m

a
te

d
 E

rr
o
r 

(S
c
a
le

d
 E

u
c
lid

e
a
n
 N

o
rm

)

1-step

2-step

5-step

10-step

c)

10 -3 10 -2 10 -1

∆ t

10 -6

10 -5

10 -4

10 -3

E
s
ti
m

a
te

d
 E

rr
o
r 

(S
c
a
le

d
 E

u
c
lid

e
a
n
 N

o
rm

)

10-step

50-step

100-step

slope 1

d)

10 -2 10 -1 10 0 10 1

cputime

10 -6

10 -5

10 -4

10 -3

E
s
ti
m

a
te

d
 E

rr
o
r 

(S
c
a
le

d
 E

u
c
lid

e
a
n
 N

o
rm

)

10-step

50-step

100-step

Figure 5.2: Results for the substepping schemes applied to the Allen-Cahn type
system. a) and c) display Estimated error against timestep ∆t. b) and d) display
estimated error against cputime, showing efficiency.
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Figure 5.3: AC system, Comparing the second order recycling-corrector scheme
with ETD2 and ROS2. a) Estimated error against timestep ∆t. b) Estimated error
against cputime.
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5.6.2 Fracture system with Langmuir-type reaction

This is the same grid and domain as in §3.1.2. We have introduced a Langmuir-type

reaction term, that is,

F (u,x) = −ε(x)
u

1 + u
,

where we define the coefficient ε as,

ε(x) =
0.02

D(x)2
,

so we approximate the solution to the PDE,

du

dt
= ∇ · (∇Du+ vu)− ε(x)

u

1 + u
.

where D(x) is the diffusivity. Recall that the grid is produced such that there is a

line of cells, produced by a weighted random walk, where the diffusivity D is 100,

representing a fracture. The other cells in the grid have diffusivity value 0.1. Thus

the value of ε is much lower in the fracture than the rest of the domain (2 × 10−6

compared to 2, respectively). Physically this represents the solute species being

much less likely to adsorb to the walls of the porous medium, and be lost, within

the fracture. The grid and domain dimensions, initial and boundary conditions, and

advection are all the same as the example in §3.1.2. The final time is T = 2.4.

In Figure 5.4 we show the final state of the system at time T . The result in plot a)

was produced with the 2-step recycling scheme with a timestep ∆t = 2.4×10−4. Plot

b) shows the high accuracy comparison ETD2 solve, produced with ∆t = 2.4×10−5.

In Figure 5.5 we demonstrate the effect of increasing the number of substeps S on

the error. Figure 5.5 a) shows estimated error against timestep ∆t, for schemes

using up to S = 10 substeps, while Figure 5.5 c) shows the same for schemes using

S between 10 and 100. For sufficiently low ∆t we have the predicted results, with

the error being first order with respect to ∆t, and decreasing as S increases. For

∆t too large, this is not the case. Here the Krylov subspace dimension m is most

likely the limiting factor as Assumption 5.3.1 becomes invalid. In Figure 5.5 b) and
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d) we show the efficiency by plotting the estimated error against cputime. For ∆t

low enough that the substepping schemes are effective, the scheme with 10 substeps

is the most efficient.

We can see the existence of an optimal S for efficiency, as predicted, in Figure 5.5

d), where the scheme using S = 50 is more efficient than the scheme using S = 100.

Any increase in accuracy by increasing S from 50 to 100 is extremely small (indeed,

it is unnoticeable in Figure 5.5 c), and not enough to offset the increase in cputime.

In fact, Figure 5.5 d) shows that for this experiment the scheme using S = 10 is

more efficient than both the S = 50 and S = 100 schemes. Figure 5.5 c) shows that

the S = 10 scheme is also slightly more accurate than both. This is likely because

at S = 10 the improvement in accuracy is already close to the limiting value, and

greatly increasing S to 50 or 100 only accumulates rounding errors without further

benefit. Figure 5.5 a) shows that the improvement from S = 1 to S = 10 is quite

significant on its own.

In Figure 5.6 we compare the 2-step corrector scheme against two other second

order exponential integrators, ETD2 and ROS2. Figure 5.6 a) shows estimated

error against ∆t, and we see that, like Figure 5.5 a), the Krylov recycling scheme

does not function as intended above a certain ∆t threshold; again this is due to the

timestep being too large with respect to m. The standard exponential integrators do

not have this problem, as their timesteps are driven by phipm.m, which takes extra

(non-recycled, linear) substeps to achieve a desired error. Below the ∆t threshold,

the 2-step corrector scheme functions exactly as intended, exhibiting second order

convergence and high accuracy. In Figure 5.6 b) we can observe that the 2-step

corrector scheme is more efficient than the other two schemes for lower ∆t, and of

comparable efficiency for larger ∆t.

It is interesting to compare Figure 5.5 a) and Figure 5.6 a) and note that the

threshold ∆t for the corrector scheme seems to be lower than for the substepping

schemes.

In Figure 5.5 b) we can again see that for a fixed cputime, increasing S from 1 to

10 decreases error by roughly one order of magnitude; however Figure 5.5 d) shows
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no improvement in increasing S from 10 to 50. Comparing Figure 5.5 b) and Figure

5.6 b) shows that the second order corrector scheme can be almost three orders of

magnitude more accurate for a fixed cputime than the first order recycling scheme

with S = 10.

a) b)

Figure 5.4: The final state of the fracture system with Langmuir type reaction. a)
Result produced by the 2-step scheme with ∆t = 2.4× 10−4. b) Result produced by
ETD2 with ∆t = 2.4× 10−5.
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Figure 5.5: Results for the substepping schemes applied to the Langmuir type re-
action system. a) and c) display Estimated error against timestep ∆t. b) and d)
display estimated error against cputime, showing efficiency. In c), points for the
50 step scheme are marked with circles, and points with the 100 step scheme are
marked with triangles, to help distinguish the (very similar) results for the two
schemes. This is also done in plot d) for consistency.
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Figure 5.6: Langmuir type reaction system, Comparing the second order recycling-
corrector scheme with ETD2 and ROS2. a) Estimated error against timestep ∆t.
b) Estimated error against cputime.
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5.7 Conclusions

We have extended the notion of recycling a Krylov subspace for increased accuracy

in the sense of [96]. We have applied this method to the first order ETD1 scheme

and examined the effect of taking an arbitrary number S of substeps. The local

error has been expressed in terms of S, and the expression shows that the local

error will decrease with S down to a finite limit. Consideration of this has led to the

suggestion that there exists an optimal S at which a maximal efficiency increase can

be gained by using this method. Both of these have also been demonstrated with

numerical experiments. An second order modification of this scheme which uses the

additional information at the substeps to form a corrector has been developed and

shown to be successful, with efficiency comparable to or slightly better than ETD2

and ROS2 in our tests.

The schemes currently rely on Assumption 5.3.1, essentially requiring that ∆t be

sufficiently small and m be sufficiently large, to be effective. Numerical experiments

have shown how having ∆t too large can cause the schemes to become inaccurate

as the error of the initial Krylov approximation becomes significant. It is already

well established how the Krylov approximation error can be controlled by adapt-

ing m and the use of non-recycling substeps. Applying these techniques to the

schemes presented here in future work would allow them to be effective over wider

∆t ranges. Currently, the schemes seem to be quite successful in providing accuracy

improvements over ETD1, when ∆t is not large enough to invalidate Assumption

5.3.1.
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Semi-Exponential Runge-Kutta

Type Methods

6.1 Introduction

Again we consider the semilinear ODE, restated here for convenience,

du

dt
= Lu+ F (t, u(t))

u(0) = u0, t ∈ [0,∞),

(6.1)

which has exact solution satisfying [29]

u (tn + ∆t) = u (tn)+∆tϕ1(∆tL)(Lun+F )+
Υ∑
υ=2

(∆tL)υ ϕυ (∆t)F (υ−1)(tn, u(tn))+O(∆tΥ+1).

(6.2)

where the first two terms constitute the scheme ETD1, see §1.4.1. Higher order

ETD schemes are constructed by approximating the successive ϕ terms in the sum.

Typically a j+ 1 (local) order ETD or Runge-Kutta ETD (RKETD) scheme is con-

structed by finding a way to approximate the terms up to j in the sum. This is

done to increase the stiff order of the scheme, as described in §1.5.3. The aim here

is to develop a new class of RKETD schemes that, in principle, only require one

matrix exponential evaluation. Specifically, we investigate here the effect of lifting

this requirement to produce cheaper exponential integrator schemes, with possibly
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worse stiff order properties. The idea is that each function ϕj is itself a power series

in ∆t, and evaluating the first term (order O(1)) is sufficient for a classical order

condition. This type of idea is referred to as ‘weakening’ the order condition in [29],

where an order condition for the scheme to match the term involving ∆tjϕj(∆tL), is

replaced with a condition to match ∆tjϕj(0). We see that this makes the condition

into one for just the leading term (independent of ∆tL; of order O(1)). This still

gives the desired (nonstiff) order but allows the rest of the ϕ function to escape into

higher order terms, producing a slightly less accurate scheme as a result.

The design of the schemes is based on two key ideas. The first is mentioned above,

that we shall make no attempt to match the successive ϕk terms in the sum in (6.2).

Instead we shall work only with ETD1 approximations, and the resulting error terms

of the desired order will be corrected for successively in an RK-type fashion. In other

words, apart from the ETD1 part, every single order condition will be ‘weakened’.

The second idea is to use the linearity of the ETD1 part, or more specifically of

ϕ1, to allow us to evaluate the ETD1 approximation at different intermediate points

of the timestep, having only evaluated a single matrix exponential. This is done

using a result derivable from Lemma 5.3.2. The specific form we need is

Corollary 6.1.1. For a vector v, the ϕ1 function satisfies

2δtϕ1(2δtL)v = δtϕ1(δtL)v + δtϕ1(δtL) (Lδtϕ1(δtL)v + v) , (6.3)

and similarly for the Krylov approximation Vmϕ1(2δtHm)V T
m ≈ ϕ1(2δtL).

Proof. Let τ1 = τ2 = δt in Lemma 5.3.2 and apply the definitions of pδt (5.4) and

p̃δt (5.14).

Corollary 6.1.1 tells us that, having evaluated the matrix exponential function

ϕ1(δtL) once for one substep value δt, it is possible to produce the value at suc-

cessive integer multiples of δt, with only the cost of a few more matrix - vector

multiplications. This can be used to evaluate ETD1 solutions at different parts of

the timestep.
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Corollary 6.1.1 holds for Krylov approximations, i.e. if we surround each ϕ function

with the matrices V , V T and replace L with H, which will be used in practice. We

formulate the scheme here with the assumption of ‘perfect’ matrix exponentials -

without reference to the error or the approximation in the initial ETD1 solve. Since

in practice we use Krylov subspace projection, this means we use Assumption 5.3.1.

We will use the code phipm [55] to ensure that this is met.

Work with similar aims include the RKETD type solvers of Tokman [31, 32, 33]

which achieve a high classical order with few matrix exponential evaluations, and

also [98], which moves a lot of the activity within the Krylov subspace, greatly

reducing the overall work.

6.2 Method for the Semi-Exponential RK Scheme

6.2.1 General scheme

The general idea of the scheme is as follows.

• Starting with un ≈ u(tn), the goal is as always to generate the approximation

at the next timestep un+1 ≈ u(tn + ∆t).

• We split the timestep ∆t into S smaller substeps of length δt, such that ∆t =

Sδt.

• Corollary 6.1.1 is then used to generate S ETD1 approximations, one at each

substep. These are locally second order approximations to u(tn + δt), u(tn +

2δt), . . . , u(tn + ∆t).

• The form of the local error for these approximations is known and can be

approximated to form correctors. The locally second order approximations

are used together to calculate finite difference correctors, which can at best be

third order accurate.

• After applying the correctors we now have locally third order approximations

for u(tn + δt), u(tn + 2δt), . . . , u(tn + ∆t).
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• The process can be repeated until we have S order accuracy.

For our approximations produced by the scheme, there are three things to keep track

of. First the timestep level, which is familiar and represented with a subscript n,

i.e. un. There is also the substep level, which we will represent with a subscript i,

where i ∈ {0, . . . , S}, and the correction stage level, which we will represent with a

subscript j, where j ∈ {0, . . . , S− 1}. That is, let un,i,j be the approximation at the

nth timestep, on the ith substep (so that un,i,j ≈ u(tn + iδt)), after the application

of the jth stage of correctors. Consider the start of the step as just described. The

scheme uses 6.1.1 to first produce every un,i,0. The definition is

un,i,0 ≡ un + iδtϕ1 (iδtL) (Lun + F (tn, un)) ≈ u(tn + iδt). (6.4)

The scheme then proceeds to successively generate the corrected approximations

un,i,1, un,i,2, and so on up to un,i,S−1. The general definition is

un,i,j ≡ un + iδtϕ1 (iδtL) (Lun + F (un))

+ Corrector from stage j

≈ u(tn + iδt).

(6.5)

The form of the correctors and how they are calculated discussed is discussed below.

We now fix some notation. Recall that un,i,j ∈ RK , where K is the number of cells

in the spatial discretisation. It will be convenient to group vectors like this together

in matrices. We will use the hat ·̂ notation for matrices composed of vectors like

this. Let

ûn,j = (un,0,j, . . . , un,S,j) ∈ RK×S+1 (6.6)

be the matrix which has un,i,j as its ith column, so that ûn,j contains the approxi-

mation at every substep after the jth corrector stage. Next, let

F̂n,j = (F (un,0,j), . . . , F (un,S,j)) ∈ RR×S+1
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be the matrix which has F (un,i,j) as its ith column, i.e. containing the evaluation of

the nonlinearity function F with the approximation at every substep after the jth

corrector stage.

The corresponding exact versions are

ˆu(tn) = (u (tn) , u (tn + δt) . . . , u (tn + ∆t)) ,

and

ˆF (tn) = (F (u (tn)) , F (u (tn + δt)) , . . . , F (u (tn + ∆t))) .

We will need to consider the time derivatives of F (u(tn)). Let

F (ζ) =
dζ

dtζ
F (u(tn)),

and let

d̂F =
(
∆tF (1),∆t2F (2) . . . ,∆tSF (S)

)
∈ RK×S.

6.2.2 Corrector for ûn,j

Restating (6.2) using the notation introduced above, the true solution of the semi-

linear equation (6.1) is,

u (tn + iδt) = u (tn) + iδtϕ1(iδtL)
Υ∑
υ=2

(iδtL)υ ϕυ (iδt)F (υ−1)(tn, u(tn)) +O(δtΥ+1).

(6.7)

We can use this to express the local error of the un,i,0. See §1.5.1 for a description

of local error. Let uloc
n,i be the result of replacing un with u(tn) in (6.4). That is,

uloc
n,i ≡ u(tn) + iδtϕ1 (iδtL) (Lun + F (u(tn))). (6.8)

The local error of un,i,0 is then given by

Eloc
n,i ≡ u (tn + iδt)− uloc

n,i ,
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which we can now express using (6.7) and (6.8) as

Eloc
n,i =

Υ∑
υ=2

(iδt)υ ϕυ (iδtL)F (υ−1)(tn, u(tn)) +O(δtΥ+1). (6.9)

Using the series expansion of the ϕ−functions (1.15) this is,

Eloc
n,i =

Υ∑
υ=2

(iδt)υ
∞∑
η=0

1

(υ + η)!
(iδt)ηLηF (υ−1)(tn, u(tn)) +O(δtΥ+1).

We can move all the terms in the sum which are of order greater than Υ in δt into

the O(δtΥ+1) to get,

Eloc
n,i =

Υ∑
υ=2

(iδt)υ
Υ−υ∑
η=0

1

(υ + η)!
(iδt)ηLηF (υ−1)(tn, u(tn)) +O(δtΥ+1).

Changing the order of the sums and using iδt = i
S

∆t we get,

Eloc
n,i =

Υ−2∑
η=0

(∆t)η+1
Υ−η∑
υ=2

1

(υ + η)!
(∆t)υ−1

(
i

S

)υ+η

LηF (υ−1)(tn, u(tn)) +O(∆tΥ+1).

(6.10)

Next we define the following vector,

xη,i ≡



(
i
s

)η+2 1
(η+2)!(

i
s

)η+3 1
(η+3)!

...(
i
s

)η+S 1
(η+S)!


.

This allows us to express the inner sum in (6.10) in terms of d̂F and xη,i,

Eloc
n,i =

Υ−2∑
η=0

(∆t)η+1 Lηd̂F [:, 1 : Υ− η − 1]xSη,i[1 : Υ− η − 1] +O(∆tΥ+1), (6.11)

where we have used Matlab style indexing for matrices and vectors. In general

for a matrix A, A[x, y] denotes the entry at row x and column y of A. Numbers

separated by a colon are a range; xSη,i[1 : Υ − η − 1] in (6.11) denotes the entries 1

through Υ− η − 1 of the vector xSη,i. In the general expression A[x, y], x and y can
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be replaced with ranges or a single colon. A single colon means ‘all rows’, or ‘all

columns’; d̂F [:, 1 : Υ − η − 1] in (6.11) denotes every row of columns one through

Υ− η − 1 of d̂F .

We are interested in a matrix determined by

ÊS
n ≡

(
Eloc
n,0, E

loc
n,1, . . . , E

loc
n,S

)
, (6.12)

to use as a corrector for ûn,i (6.6). The semi-exponential RK scheme proceeds by

producing successively more accurate approximations to the matrix ÊS
n in (6.12).

From (6.11) we have an expression for each column of ÊS
n , which we will use to

define these correctors. Define the matrix x̂Sj as,

x̂Sj ≡
(
0,xSj,0,x

S
j,1, . . . ,x

S
j,S

)
∈ RS−1×S+1,

where 0 ∈ RS−1 is the column vector with all entries zero. Then from (6.11), we see

that the ith column of the matrix given by

Υ−2∑
η=0

∆tη+1Lηd̂F [:, 1 : Υ− η − 1]x̂Sη [1 : Υ− η − 1, :]

is Eloc
n,i +O(∆tΥ+1). We have the shown the following.

Lemma 6.2.1. The local error of ûn,j can be expressed as follows.

ÊS
n ≡

(
Eloc
n,0, E

loc
n,1, . . . , E

loc
n,S

)
=

Υ−2∑
η=0

∆tη+1Lηd̂F [:, 1 : Υ− η − 1]x̂Sη [1 : Υ− η − 1, :] +O(∆tΥ+1)
(6.13)

We have written this result in terms of generally oversized dF and x̂Sη for practical

convenience, which we now explain. Over the S internal stages of the scheme, (6.13)

is used to produce correctors up to second order for the first stage, third order for

the second stage, and so on, up to order S + 1 for the final stage. It is therefore

better to calculate once and for all each x̂Sη ∈ RS×S+1 suitable for use at the S + 1
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stage, and use the appropriate submatrices for preceding stages. The way we have

written Lemma 6.2.1 makes it explicit which columns of the x̂Sη are to be used.

6.2.3 Differencing to Approximate dF

Given the ability to calculate d̂F , we could use Lemma 6.2.1 to extrapolate Ûn,s to

arbitrary order. This is not possible in general, so we approximate the derivatives

using finite differences.

First we consider a linear combination,

χ ≡
S∑
i=0

αiF

(
t+

i

S
∆t

)
.

Taylor expansion gives

χ =
S∑
i=0

βi∆t
iF (i) (t) +O(∆tS+1),

where the relationships between the α and β parameters are given by


1

(
1
S

)0 (
2
S

)0
. . .

(
S
S

)0

1
(

1
S

)1 (
2
S

)1
. . .

(
S
S

)1

. . . . . . . . . . . . . . .




α1

α2

. . .

 =


β1

β2

. . .


Let αk be the vector of α coefficients that solves this matrix equation when all the

β values are zero except βk. Then we see that Fkαk = ∆tkF (k) + O(∆tS+1). Then

we can define a differencing matrix D̂ as the matrix having αk as its kth column.

This provides a way to approximate dF .

Remark 6.2.2. Let D̂ ≡ (α1, α2, . . . , αS) , then,

F̂ (tn)D̂ = d̂F +O(∆tS+1).

If

F̂n,j = F̂ (tn) +O(∆tΥ+1),
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with Υ < S, then

F̂n,jD̂ = d̂F +O(∆tΥ+1).

It is straightforward to mechanically produce D̂ once and for all for a given

scheme; we implemented a simple Matlab function to do so.

Remark 6.2.2 shows how we can use F̂n,s to approximate dF , since this is what is

available instead of Fk. The limit on the accuracy of F̂n,s limits the accuracy of the

approximation to d̂F and thus the accuracy of the correction to ûn,j. We proceed

with the standard Runge-Kutta methodology here, building increasingly accurate

approximations using previous approximations.

6.3 Matrices for Second, Third and Fourth Order

Schemes

We simply state the D and X matrices for the schemes here.

6.3.1 Second Order

The second order scheme uses S = 2 substeps. The matrices are,

D̂ =

 −1

1

 ,

and,

x̂2
0 =

 0 1
2!

0 1
3!

 .
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6.3.2 Third Order

The third order scheme uses S = 3 substeps. The matrices are;

D̂ =


−3 4

4 −8

−1 4

 ,

x̂3
0 is ,

x̂3
0 =

 0
(

1
2

)2 1
2!
, 1

2!

0
(

1
2

)3 1
3!
, 1

3!


and x̂3

1 is

x̂3
1 =

 0
(

1
2

)2 1
3!
, 1

3!

0
(

1
2

)3 1
4!
, 1

4!

 .

6.3.3 Fourth Order

The fourth order scheme uses S = 4 substeps. The matrices are;

D̂ =



−5.5 18 −27

9 −45 81

−4.5 36 −81

1 −9 27


.

x̂4
0 is,

x̂4
0 =


0
(

1
3

)2 1
2!
,
(

2
3

)2 1
2!
, 1

2!

0
(

1
3

)3 1
3!
,
(

2
3

)3 1
3!
, 1

3!

0
(

1
3

)4 1
4!
,
(

2
3

)4 1
4!
, 1

4!

 ,

and x̂4
1 is

x̂4
1 =


0
(

1
3

)2 1
3!
,
(

2
3

)2 1
3!
, 1

3!

0
(

1
3

)3 1
4!
,
(

2
3

)3 1
4!
, 1

4!

0
(

1
3

)4 1
5!
,
(

2
3

)4 1
5!
, 1

5!
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and x̂4
2 is

x̂4
2 =


0
(

1
3

)2 1
4!
,
(

2
3

)2 1
4!
, 1

4!

0
(

1
3

)3 1
5!
,
(

2
3

)3 1
5!
, 1

5!

0
(

1
3

)4 1
6!
,
(

2
3

)4 1
6!
, 1

6!

 .

6.3.4 Algorithm for the Scheme

Using Remark 6.2.2, we can use F̂n,s to generate a finite difference approximation

to the local error given by (6.13),

Υ−2∑
η=0

∆tη+1LηF̂n,sD̂[:,Υ− η − 1]x̂Sη [1 : Υ− η − 1, :]

=
Υ−2∑
η=0

∆tη+1Lηd̂F [:, 1 : Υ− η − 1]x̂Sη [1 : Υ− η − 1, :] +O(∆tΥ+1),

(6.14)

if

F̂n,j = F̂ (tn) +O(∆tΥ+1).

Algorithm 3 demonstrates one step of the scheme. Line 1 is the formation of ûn,0

from the previous step’s result ûn using Remark 6.1.1. Lines 2 through 5 are the

loop over each of the S internal stages. At each internal stage a new ûn,s is produced

using the ûn,s−1 from the previous stage. Each ûn,s is one order more accurate than

the previous. At line 3, F̂n,s is produced simply by the action of F on each column

of ûn,s−1. Line 4 is the application of the corrector already discussed at length.

Finally, line 6 takes the final column of ûn,S, which approximates u(t + ∆t), as the

final result for this timestep, ûn+1. The scheme then moves on to another timestep.

Data: un from previous step, Precomputed: D̂ and x̂S1 , . . . , x̂
S
S−1.

1 ûn,0 = (un,0,0, . . . , un,S,0) ;
2 for s = 1 : S − 1 do

3 F̂n,s = F (ûn,s−1) ;

4 ûn,s = ûn,0 +
∑s−1

η=0 ∆tη+1LηF̂n,sD̂[:,Υ− η]x̂Sη [1 : Υ− η, :] ;

5 end
6 un+1 = ûn,S−1(:, S + 1) ;

Algorithm 3: The algorithm for one timestep of the semi RK scheme
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6.4 A Third order example

As an example, we look at one step of the third order scheme in detail. The matrices

for the scheme are stated above in §6.3.2.

First the initial substep values are generated by Remark 6.1.1. That is,

un,0,0 = un−1

un,1,0 = un +
1

2
∆tϕ1

(
1

2
∆tL

)
(Lun + F )

un,2,0 = un + ∆tϕ1 (∆tL) (Lun + F ),

and,

ûn,0 = (un,0,0, un,1,0, un,2,0) .

Also,

F̂n,0 = (F (un,0,0), F (un,1,0), F (un,2,0)) .

The local errors for each of these are known;

Eloc
n,1 =

∆t2

4

1

2

dF

dt
(tn) +

∆t3

8

1

6
L
dF

dt
(tn) +

∆t3

8

1

6

d2F

dt2
(tn) +O(∆t4)

and

Eloc
n,1 = ∆t2

1

2

dF

dt
(tn) + ∆t3

1

6
L
dF

dt
(tn) + ∆t3

1

6

d2F

dt2
(tn) +O(∆t4),

then the local error is

ÊS
n =

(
0, Eloc

n,1, E
loc
n,1

)
+O(∆t4),

from (6.2). This corresponds to (6.13),

ÊS
n = ∆td̂F x̂3

0 + ∆t2LdF [:, 1]x̂3
0[1, :] +O(∆t4). (6.15)

The goal is to use the right hand side of this equation as a corrector. We can

approximate d̂F using F̂n,0D̂. The accuracy of the approximation is limited by how

well F̂n,0 approximates d̂F , i.e. F̂n,0 = Fn + O(∆t2), so F̂n,0D̂ = d̂F + O(∆t2).
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Attempting to approximate (6.15) would give us

∆tF̂n,0D̂x̂
3
0 + ∆t2LF̂n,0D̂[:, 1]x̂3

0[1, :] = ∆tdFX1 + ∆t2LdF [:, 1]x̂3
0[1, :] +O(∆t3).

There is no point attempting to eliminate the third order terms in (6.15) (i.e.

∆t2LF̂n,0D̂(:, 1)X2(1, :)) in this way due to the additional third order error added by

the approximation ∆tF̂n,0D̂x̂
3
0. Instead we eliminate only the second order terms.

Focusing on the second order terms, (6.15) becomes

Eloc
n,1 = ∆td̂F [:, 1]x̂3

0[:, 1] +O(∆t3).

Attempting to approximate this with F̂n,0D̂ is successful,

∆tF̂n,0D̂[:, 1]x̂3
0[:, 1] = ∆td̂F [:, 1]x̂3

0[:, 1] +O(∆t3),

and thus we can make the new third order approximation

ûn,1 ≡ ûn,0 + ∆tF̂n,0D̂[:, 1]x̂3
0[:, 1],

which has local error O(∆t3).

This concludes stage s = 1. Stage s = 2 begins with a new generation of F evalua-

tions,

F̂n,1 ≡ (F (un,0,1), F (un,1,1), F (un,2,1)) = F̂ (tn) +O(∆t3).

Now we can approximate (6.15) completely,

∆tF̂n,1D̂x̂
3
0 + ∆t2LF̂n,1D̂[:, 1]x̂3

1[1, :] = ∆td̂F x̂3
0 + ∆t2Ld̂F [:, 1]x̂3

1[1, :] +O(∆t4).

Thus we define,

ûn,1 ≡ ûn,0 + ∆tF̂n,1D̂x̂
3
0 + ∆t2LF̂n,1D̂[:, 1]x̂3

1[1, :]
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which satisfies has local error O(∆t4).

This concludes stage s = 2. We cannot proceed further since we are limited by the

accuracy of the approximation D̂F̂ (tn), i.e. we would require more internal steps

to generate any better finite difference approximations. Thus we produce the final

result from the timestep as the best approximation of u(tn + ∆t),

un+1 ≡ ûn,2[:, 3].

6.5 Numerical Results

For error estimation we used the 4th order exponential Runge Kutta method of

Strehmel and Weiner as quoted in [29], table (5.17), and given originally in [99]. For

shorthand we refer to this method as ‘RKETD4-sw’ here. Our implementation of

RKETD4-sw calls phipm.m four times per timestep, once for each internal stage.

For our comparison solves we gave phipm.m the parameters 30 and 10−15 for initial

Krylov subspace dimension and substep error tolerance, respectively.

We compare our methods with a third order exponential Runge Kutta method,

which is given in table (5.8) of [29], and with RKETD4-sw. We refer to the third

order method as ‘RKETD3’ here, and its implementation is similar to RKETD4-sw,

with three calls to phipm.m each timestep. For these tests, phipm.m was given

parameters 30 and 10−9 for initial Krylov subspace dimension and substep error

tolerance, respectively.

For our schemes, which we refer to as ‘Semi-RKETD3’ for the third order scheme

and ‘Semi-RKETD4’ for the fourth order, the Krylov subspace dimension m = 30

was used.

6.5.1 Allen-Cahn type Reaction Diffusion

This is the same system, domain and grid as §5.6.1. We performed tests with two

variations of the system, one with D(x) = 1 as in §5.6.1, and one with D(x) = 0.01.

The comparison solve used ∆t = 10−6.

The results for the small D system are in Figure 6.1, while the results for the larger
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D system are in Figure 6.2. Plot a) in both figures shows the error convergence.

Semi-RKETD3 is order three as expected for both systems; however Semi-RKETD4

is only fourth order for the low D system; its order has been reduced to three as

might be expected as the system is more stiff.

Plot b) in both Figures 6.1 and 6.2 shows error against cputime, demonstrating

efficiency. For the small D system, 6.1 b) shows Semi-RKETD4 is more efficient

than RKETD4-sw, due to having almost identical error (plot a) but faster execution

time. For the large D system, 6.2 b) shows Semi-RKETD4 is only more efficient

than RKETD4-sw for low cputime (corresponding to low ∆t). Semi-RKETD4 is

still faster, but also less accurate due to the order reduction (plot a).

In both systems Semi-RKETD3 is more efficient than RKETD3 (Figures 6.1 and 6.2

b). This is because Semi-RKETD3 has faster execution time but almost identical

error (Figures 6.1 and 6.2 a). We had expected Semi-RKETD3 to be less accurate

than a corresponding third order RKETD method, and indeed it is in both cases,

but the difference is slight here.

We can compare Figure 6.2 b) with Figure 5.3 b), from chapter 5. Comparing the

second order corrector scheme from Chapter 5 with the second order Semi-RKETD2

from this chapter, the two plots indicate that the corrector scheme is more accurate

than Semi-RKETD2. This may be because of the heuristic attempt to eliminate part

of the leading term of the local error in the construction of the corrector scheme.

The third order schemes, Semi-RKETD3 and Semi-RKETD4, are more accurate

than the second order corrector scheme for a fixed cputime.
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Figure 6.1: Results for the 3rd and 4th order Semi-ETDRK schemes applied to
the Allen-Cahn type system with uniform diffusivity D = 0.01. a) Estimated error
against timestep ∆t. b) Estimated error against cputime, showing efficiency.
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Figure 6.2: Results for the 3rd and 4th order Semi-ETDRK schemes applied to the
Allen-Cahn type system with uniform diffusivity D = 1. a) Estimated error against
timestep ∆t. b) Estimated error against cputime, showing efficiency.
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6.5.2 Fracture system

We use the same example as §5.6.2. Our comparison solve uses ∆t = 2.4 × 10−5.

Figure 6.3 shows the results. Again we see the order reduction phenomenon as

Semi-RKETD4 is third order. There is also a ∆t above which Semi-RKETD3 and

Semi-RKETD4 are highly inaccurate. From Figure 6.3 we see that Semi-RKETD4 is

of comparable efficiency or slightly better than RKETD4-sw when ∆t is low enough

that it is stable.

We can compare Figure 6.3 b) with Figure 5.6 b) from the previous chapter. We can

compare the second order schemes; the 2-step corrector scheme from Chapter 5 and

Semi-RKETD2 from this chapter. For larger cputime values, e.g. 102, the efficiency

is roughly similar. For smaller cuptime values, e.g. around 100, Semi-RKETD2

appears to produce smaller error.
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Figure 6.3: Results for the 3rd and 4th order Semi-ETDRK schemes applied to the
fracture system with Langmuir reaction. a) Estimated error against timestep ∆t.
b) Estimated error against cputime, showing efficiency.

6.6 Conclusions

The schemes developed here are ‘semi-exponential’ integrators; some of the advan-

tageous stiff order properties of regular exponential integrators schemes have been

deliberately abandoned in order to produce faster schemes. This is reflected in our

numerical experiments - the new schemes will typically not converge with order

greater than three in most circumstances, whereas regular exponential integrators

will. For moderately low ∆t, the new schemes exhibit efficiency comparable to ex-
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isting RKETD schemes. Some of our results indicate the potential for rapid growth

of error, or even instability, for higher ∆t ranges. This is not surprising as the new

schemes can be expected to sacrifice some of the superior stability properties of full

exponential integrator schemes. When applied in the appropriate ∆t range and to

suitable (perhaps not highly stiff) systems, the new schemes could be competitive,

providing increased efficiency due to reduced cputimes. Future work could include

adaptive schemes which prevent potential instability problems.
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Chapter 7

Schemes that are asynchronous

due to communication delay

7.1 Introduction

A different form of asynchronicity, compared to that introduced in Chapter 2, has

the potential to play a large part in the design of schemes for very high scale parallel

computing. For machines with very many cores (at the so called exa- or peta-scales),

communication between the processor cores can become the limiting factor for effi-

ciency, and it has been suggested that new numerical schemes should be designed to

take fuller advantage of the exascale, which are robust to potentially large, random

communication delays [100].

The schemes examined in Chapter 1 do not lend themselves naturally to large scale

paralellization in this way (though a parallel version of a DES code for plasma sim-

ulation does exist and can be considered [69]), however our experiments in Chapter

3 do demonstrate that it is possible for schemes to exist that are robust to signif-

icant and uncontrolled asynchronicity. Some first steps towards schemes with the

suited properties for adaptation to the exascale were taken in [101], where analy-

sis and experimentation were performed on asynchronous schemes for linear PDEs

in one dimension. Essentially a standard domain decomposition (e.g., [102]) was

assumed, with the spatial domain mapped onto separate processing elements, with

overlap regions that allow information from one subdomain to affect the neighbour-
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ing subdomain, and so on. Typically after each timestep to evolve its subdomain, a

processing element must transmit its new data in its overlap regions to the processing

elements containing the neighbouring subdomains, and await the latest information

from its neighbours about their evolution. In essence the processing elements must

synchronise; a potentially very expensive process for highly parallel machines. The

innovation in [101] was to allow random communication delays, where a processing

element may with some probability use overlap data from a previous step and not

wait for fresh data from a processing element containing a neighbouring subdomain.

The first schemes analysed in [101] were straightforward finite difference discretisa-

tions for spatial derivatives and Euler-type first order stepping in time. These were

applied to linear advection-diffusion PDEs. With the random communication de-

lays, these were shown to have the same sufficient stability constraints as without the

delays. The error was also analysed and additional terms of order ∆t
∆x2 were shown

to be present on overlap nodes. Thus order reduction was shown to be theoretically

possible in overlap regions if the ratio ∆t
∆x2 is kept constant, which can be avoided,

and also modifications to the scheme to avoid this problem were introduced. Overall

it was demonstrated that robustness to communication delays is quite possible when

forward Euler timestepping is used.

Here we examine schemes for linear PDEs in one dimension (particularly advection-

diffusion systems), which are discretised in space by finite difference or finite volume

methods (equivalent in 1D, when the numerical flux is taken to be a simple two cell

finite difference type as used in earlier chapters), and then stepped forward in time

by taking the matrix exponential of the resulting ODE system. The same domain

decomposition with communication delays is applied as in [101], discussed above.

This is inspired by the recent popularity of Exponential Integrators for solving semi-

linear ODE systems (see [22], [34] for example, and §1.4 §5.1 here). It is now possible

to efficiently and accurately approximate the action of a matrix exponential on a

vector by methods based on Krylov subspace projection [55] or Leja point interpo-

lation [52]. Thus it is of interest how schemes based on matrix exponentials or their

approximations might adapt to asynchronous large scale parallelization.
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We describe domain decomposed exponential timestepping schemes with and with-

out random communication delay in §7.2. We present several numerical examples of

these schemes in §7.3 and some conclusions in §7.4.3. We do not analytically prove

any properties for the schemes described here, but it should be straightforward to

reproduce something like the analysis in [101] given the formulations given in §7.2.

7.2 Method

We start by describing the basic domain decomposition. Consider a one dimensional

domain Ω consisting of N nodes. Decompose this domain into D subdomains, which

do not overlap and which together cover the whole of Ω. Consider the subdomains

indexed by d, and let ds be the starting node of domain d, and de be the ending node

of domain d, so that domain d contains the nodes indexed by {ds, ds + 1, . . . , de}.

Assign to D different processing elements one of the subdomains. The processing

element is then responsible for advancing its subdomain from the initial condition

data at time t = 0, to the final state at time t = T . Each processing element

calculates the evolution of its subdomain in parallel with the others.

Of course, the state of the system in one subdomain at any given time can affect the

evolution of the system in other subdomains at any future time, so the evolution

of all the D different subdomains cannot proceed completely in parallel. Consider

extensions of each domain d which overlap with neighbouring domains, and let ol

be the (fixed) length of the overlap regions. Refer to Figure 7.1; and consider a

subdomain d to be adjacent to another subdomain d′. Define the start and end

nodes of the extension of domain d by dS ≡ ds − ol and dE ≡ dE + ol respectively.

The domain d then uses data from its extension {dS, . . . , dE} to calculate the data at

the next timestep in the interior of d, {ds, . . . , de}. The overlap regions {dS, . . . ds−1}

and {de + 1, . . . dE} lie within the interiors of adjacent subdomains, for example the

right overlap region of domain d lies within subdomain d′ in Figure 7.1. After each

timestep, the overlap regions of a subdomain are updated with the appropriate data

from the interior of neighbouring subdomains. That is, the data is communicated

between the appropriate processing elements and stored in local memory there, to
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Figure 7.1: Domains and overlaps for simple one dimensional domain decomposition.
Illustrates our terminology. Here we show two adjacent domains labelled d and d′.
The size of a domain here is four nodes, and the overlap length, ol, is two nodes.

be used for the next timestep. In this way the state of the system in one subdomain

affects the system in other subdomains in the future.

We now describe a simple domain decomposition scheme for linear PDEs which

is based on locally evaluating the matrix exponential. This can be applied to any

linear PDE in principle; we focus here on the diffusion equation,

du

dt
= ∇ ·D∇u. (7.1)

We may consider the spatial discretisation as a finite volume type, with each node as

the centre of a cell and cell faces being equidistant between neighbouring nodes. We

may express the relationship between two adjacent nodes through a face k by the

connection matrix Lk (already introduced in §2.4). The spatial semi-discretisation

of the PDE will then be

du

dt
=

∑
faces k

Lku. (7.2)

Define the sum of connection matrices Lk1 , . . . Lk2 to be Lk1,k2 , i.e.,

Lk1,k2 =

k2∑
k=k1

Lk, (7.3)
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and the solution vector restriction uk1,k2 to be

uk1,k2 = [0, . . . , uk1 , . . . , uk2 , 0, . . .]
T . (7.4)

Then we consider part of the ODE system (7.2) on a domain d,

dudS ,dE
dt

= LdS+1,dEudS ,dE . (7.5)

Note that the subscript on LdS+1,dE follows since, in this one dimensional setting,

the connection matrix Lk for face acts on nodes k− 1 and k. Thus the accumulated

connection matrix LdS+1,dE will act on every node in udS ,dE .

Since LdS ,dE is nonzero only inside a block and udS ,dE has only nonzero entries in

a range, the solution to (7.5) (which is a matrix exponential) can be found using a

smaller matrix than the whole domain, and thus more cheaply. Note that the way

connection matrices are defined means that we are essentially imposing Neumann

boundary conditions on each domain by default. That is, there are zero Neumann

boundary conditions (no-flow) on the edge of each domain’s overlaps. Now we define

the update rule for the subdomain d as

un+1
dS ,dE

= e∆tLdS+1,dE undS ,dE . (7.6)

After each timestep the overlap regions for subdomain d are overwritten by the

appropriate data in the neighbouring domains (d− 1) and (d+ 1) as follows,

udS ,dE(dS : ds − 1)← u(d−1)S ,(d−1)E(dS : ds − 1)

udS ,dE(de + 1 : dE)← u(d+1)S ,(d+1)E(de + 1 : dE),

(7.7)

where we have used Matlab notation for vector indexing. Finally after n timesteps

on each domain we can reconstruct the whole system as

un =
D∑
d=1

Ids,deu
n
dS ,dE

, (7.8)
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where Ids,de is the restricting identity matrix with

Ids,de =



0

1

. . .

1

0



}
Rows 0 to ds − 1Rows ds to de

}
Rows de + 1 to N

.

Now the modification of the scheme which allows communication delay is simply

to allow the possibility of (7.7) not happing on some occasions; thus allowing that

sometimes interprocessor communication does not happen fast enough and stale

data is used during some updates on some processors. This would correspond in

practice to the processor waiting for some fixed amount of (wallclock) time for new

data, before proceeding with stored data.

Another expression of the scheme (allowing and not allowing communication delay),

closer to the language of [101], is as follows. We can observe that the scheme

presented is equivalent to

un+1 =
D∑
d=1

Ids,dee
∆tLdS+1,dE undS ,dE . (7.9)

The communication delay scheme is then

un+1 =
D∑
d=1

Ids,dee
∆tLdS+1,dE (Îndun + Īndun−1), (7.10)
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where the matrix Înd is the diagonal matrix with entries (Înd )i,i = 1 for i = ds, . . . , de,

(Înd )i,i = rnd for i = dS, . . . , ds − 1, de + 1, . . . , dE, and all other entries zero. That is,

Īnd =



0

rnd
. . .

rnd

1

. . .

1

rnd
. . .

rnd

0



}
Rows 0 to dS − 1Rows dS to ds − 1

Rows ds to de

Rows de + 1 to dE

}
Rows dE + 1 to N

The matrix Īnd is the diagonal matrix with (Īnd )i,i = 1 − rnd for i = dS, . . . , ds −

1, de + 1, . . . , dE (the same indexes for which Înd has entries rnd ); and zero for all

other entries. Thus Înd + Īnd = IdS ,dE . That is,

Înd =



0

1− rnd
. . .

1− rnd

0

. . .

0

1− rnd
. . .

1− rnd

0



}
Rows 0 to dS − 1Rows dS to ds − 1

Rows ds to de

Rows de + 1 to dE

}
Rows dE + 1 to N
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The random variable rnd represents communication delay and can take values either

0 or 1. If rnd = 1 then Înd = IdS ,dE , Īnd is the empty matrix in and the update (7.10),

the partial solution on domain d is updated using entirely new data - there is no

delay in communication. If rnd = 0 there is a communication delay and domain d

updates using data from one timestep behind.

We have described here only the possibility of delays by one step. We introduce a

formulation allowing longer communication delays later in §7.4.

In addition to (7.10) we also describe the scheme as Algorithm 4, which more clearly

illustrates the parallel concepts such as domain decomposition and communication

delay. Most of Algorithm 4 is split over the domains d as shown by line 1. Lines

2 and 3 are preparation of the 1D domain. In line 4 the restriction of the solution

vector u to the nodes of the domain d plus the overlap nodes is prepared, as is

the corresponding discretisation matrix for the domain LdS ,dE . In line 5 the main

timestepping loop for the domain d begins. Line 6 checks that new data for the

overlap regions is available, and the data for the overlap nodes in udS ,dE is updated if

it is (lines 7 and 8), this is (7.7). Note that for the very first timestep the if statement

starting at line 6 can be ignored since d is starting from the initial conditions. Lines

10 and 11 are the update of the solution according to (7.6). We denote the time as

td because it is local to the domain d. In line 12 the data from the internal nodes

of d which are overlap nodes for other domains, is transmitted to the appropriate

other nodes. Finally in line 15 the data from all domains is brought together and

the final solution is made from the internal nodes of each domain according to (7.8).

Lines 6 and 12 in Algorithm 4 represent the communication of data between domains

(and thus processing elements) and the possibility of communication delay (the if

statement at line 6). Note that in our experiments we simulate this communication

on a serial implementation. Essentially the freshest overlap data is always available

so that line 12 is irrelevant, and lines 7 and 8 are either carried out or not depending

on the evaluation of some random variable (replacing line 6) which we can control

the properties of.
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Data: Grid structure, Initial concentration values, T , number of overlap
nodes ol.

1 Parfor Each Domain d do
2 Get start and end nodes ds, de ;
3 Get start and end nodes with overlap, dS = ds − ol and dE = de + ol ;
4 Prepare udS ,dE and LdS+1,dE ;
5 while td < T do
6 if New overlap data available then
7 Replace udS ,dE(dS : ds − 1) with new data ;
8 Replace udS ,dE(de + 1 : dE) with new data ;

9 end

10 udS ,dE = e∆tLdS,dE udS ,dE ;
11 td = td + ∆t ;
12 Transmit udS ,dE(ds : ds + ol) and udS ,dE(de − ol : de) to other domains

as new overlap data ;

13 end

14 end
15 u =

∑
d Ids,deudS ,dE

Algorithm 4: Pseudo code for the exponential DD scheme with communica-
tion delay. See text for full description.

7.2.1 A Stability Result

Here we follow a similar argument to [101, §3], which relates the stability of the

communication-delay forward Euler scheme to the stability of the underlying forward

Euler scheme. There it is shown that if the underlying Euler scheme satisfies a

sufficient stability condition, then so does the communication delay scheme.

Similar to [101, §3], we consider the following re-expression of (7.10),

 un+1

un

 =

 ∑D
d=1 Ids,dee

∆tLdS+1,dE Înd
∑D

d=1 Ids,dee
∆tLdS+1,dE Īnd

0 I


 un

un−1

 .

(7.11)

Let the matrix be

Mn ≡

 ∑D
d=1 Ids,dee

∆tLdS+1,dE Înd
∑D

d=1 Ids,dee
∆tLdS+1,dE Īnd

0 I

 . (7.12)
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The final approximation produced by the scheme will be

 uN

uN−1

 = MN−1MN−2 . . .M2

 u2

u1

 , (7.13)

and a sufficient condition for stability is that the infinity norm of the accumulation

MN−1MN−2 . . .M2 is less than or equal to one; i.e.

||MN−1MN−2 . . .M2||∞ ≤ 1,

a sufficient condition for which is

||Mn||∞ ≤ 1 n ∈ [2, N − 1].

Ideally we would like to have that this holds if the underlying ODE system produced

by the spatial discretisation is stable. It is straightforward to show stability in the

case of the following, slightly stronger assumption.

Assumption 7.2.1. The underlying ODE system in every domain d satisfies the

sufficient stability condition in the sense that,

||e∆tLdS+1,dE ||∞ ≤ 1, ∀∆t > 0.

This requires all the eigenvalues of LdS+1,dE to be negative.

Then,

Lemma 7.2.2. Given Assumption 7.2.1, then

||Mn||∞ ≤ 1,

and so the exponential communication delay scheme is stable.

Proof. We will show that the absolute sum of every row of M is either 1, or bounded

by ||e∆tLdS+1,dE ||∞ for some d. Therefore every row sum of Mn is less than or equal
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to one by Assumption 7.2.1.

For every row in the ‘bottom half’ of Mn - the (0, I) part - the absolute row sum is

1. Consider the other rows, which depend on exponential terms.

The non-overlapping structure of the identity like matrices Ids,de ensures that every

row of the upper part of Mn is contributed to by only one domain d, despite the

sum in (7.12). That is, every row in the upper part of Mn is a row from

(Ids,dee
∆tLdS+1,dE Înd , Ids,dee

∆tLdS+1,dE Īnd ) ≡Mn,d,

for some d. Now also the other two identity like matrices Īnd and Înd do not

overlap and have entries either zero or unity, so that the columns of Mn,d are

either empty or columns of e∆tLdS+1,dE , and each column of e∆tLdS+1,dE appears

only once in Mn,d. Thus considering the absolute row sums of Mn,d we have that

||Mn,d||∞ = ||e∆tLdS+1,dE ||∞. So every row in the upper part of Mn is bounded by a

||e∆tLdS+1,dE ||∞ for some d.

7.3 Numerical Results

Here we present experiments using the schemes described above. Our results are

in Figure 7.2 through Figure 7.3. We describe the figures here. It is necessary to

denote schemes and their parameters (subdomains used, number of cells in overlap)

by a key. We write exp for the exponential domain decomposition method with no

communication delay, expN for the same exponential method with communication

delay (take N to stand for ‘noise’ or ‘noisy communication’), and euN for the Euler

stepping method with communication delay. When a scheme uses x subdomains

and has an overlap of y cells, we write ‘xDOy’. So for example, exp 2DO1 is the

synchronous exponential solver with two subdomains and an overlap of one cell,

while euN 5DO3 is the Euler stepping method with five subdomains and an overlap

of three cells. In all the experiments in this chapter the test PDE is the diffusion

equation (7.1). In Figure 7.2 through Figure 7.3, the ordering of plots is as follows.

Plot a) shows the initial condition alongside the true solution (we calculate this as
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simply by taking the matrix exponential of the discretisation matrix, multiplied by

the final time T , and multiplying this by the initial condition vector). The approx-

imate solution produced by one of the expN schemes is also shown in plot a) for

comparison. In plot b) we present error against timestep ∆t for the synchronous

exponential solvers. It is useful to see how these schemes behave before the commu-

nication delay is added, and this will be discussed below.

For our experiments we used a single processor and simulated communication delay

by having the schemes randomly not update overlap regions according to a certain

probability. We chose to look at a twenty percent chance and a fifty percent chance

of communication failure. Note that communication can only be delayed by one

step in these examples. As the experiments are stochastic, each run was repeated

10 times and the mean error calculated; this is what is reported.

7.3.1 System One - Simple Diffusion

In experiment one, Figure 7.2, we have a 100 node system with diffusivity uniformly

set to unity. The final time is T = 100.0s, and the domain has size 100.0m. There

are no-flow conditions on the boundaries. Plot a) shows the initial condition, the

exact solution, and the approximation produced by one of the schemes.

Plot b) shows the results with no communication delay. It is interesting to note that

the number of overlap nodes seems to be of great importance for these schemes, as

increasing only from one to two to three causes a huge improvement in accuracy and

convergence rate. Increasing the number of domains worsens the performance of the

schemes, as would be expected. We use solvers with two and five domains here to

illustrate the difference. Of course, if the number of domains were one, the solver

would be exact. While the number of domains makes a difference, it is the overlap

that is of greater importance, as it appears to determine the rate of convergence.

All this remains true when we introduce communication delay. Plots c) and d) show

the results with twenty percent and fifty percent chance of communication delay

respectively. All the previous comments about overlap and number of domains still
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hold true, but it can be observed that communication delays make the schemes less

accurate, with increases in error of over an order of magnitude for fifty percent com-

munication delay chance. The schemes still exhibit convergence and stability.

In plots e) and f) we show results with simple Euler-type DD-communication delay

schemes. The communication delay probabilities are the same. These schemes are

unstable and we do not plot our results for ∆t > 0.667 (150 timesteps) as the error

increases by several orders of magnitude at this point and renders the plots unread-

able. It is interesting that, while the number of domains is clearly important, the

number of overlap nodes makes seems to make minimal difference for these Euler-

type schemes.

Finally in plots g) and h), we compare the exponential and Euler-type schemes for

accuracy.
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Figure 7.2: Experiment one. See §7.3.1 for details.
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7.3.2 System Two - Random Diffusivity Field

The next experiment, Figure 7.3, takes place on the same domain as experiment

one, but now the diffusivity field is random. For simplicity the field was simply

generated by picking uniform random numbers between zero and unity. Thus there

is no, for example, spatial correlation in the diffusivity, which is unphysical but is

an interesting test for the schemes. A different initial condition can also be seen

in plot a). The boundary conditions are again no-flow, and the final time is again

T = 100.0s.

The results for this experiment lead to the same conclusions as the previous one.

We see the same observations about the effect of overlap on the exponential type

schemes; how the communication delay worsens accuracy but does not prevent con-

vergence, and the stability of the exponential type schemes.

180



Chapter 7: Schemes that are asynchronous due to communication delay

a)

0 20 40 60 80 100

x

0

0.005

0.01

0.015

0.02

0.025

0.03

u

Initial Condition

True solution

expN 2DO2

b)

10 -1 10 0 10 1 10 2

∆ t

10 -10

10 -8

10 -6

10 -4

10 -2

E
rr

o
r

No delay, exp solvers

exp 2DO1

exp 2DO2

exp 2DO3

exp 5DO1

exp 5DO2

exp 5DO3

c)

10 -1 10 0 10 1 10 2

∆ t

10 -9

10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

E
rr

o
r

20% delay chance, exp solvers

expN 2DO1

expN 2DO2

expN 2DO3

expN 5DO1

expN 5DO2

expN 5DO3

d)

10 -1 10 0 10 1 10 2

∆ t

10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

E
rr

o
r

50% delay chance, exp solvers

expN 2DO1

expN 2DO2

expN 2DO3

expN 5DO1

expN 5DO2

expN 5DO3

e)

0.1 0.2 0.3 0.4 0.5

∆ t

1

1.5

2

2.5

3

3.5

4

E
rr

o
r

×10
-6 20% delay chance, eu solvers

euN 2DO1

euN 2DO2

euN 2DO3

euN 5DO1

euN 5DO2

euN 5DO3

f)

0.1 0.2 0.3 0.4 0.5

∆ t

4

6

8

10

12

14

E
rr

o
r

×10
-6 50% delay chance, eu solvers

euN 2DO1

euN 2DO2

euN 2DO3

euN 5DO1

euN 5DO2

euN 5DO3

g)

10 -1 10 0 10 1 10 2

∆ t

10 -9

10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

E
rr

o
r

20% delay chance, comparing best

euN 2DO3

euN 5DO3

expN 2DO3

expN 5DO3

h)

10 -1 10 0 10 1 10 2

∆ t

10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

E
rr

o
r

50% delay chance, comparing best

euN 2DO3

euN 5DO3

expN 2DO3

expN 5DO3

Figure 7.3: Experiment two. See §7.3.2 for details.
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7.4 Allowing More Previous Steps

In a more realistic situation we would expect communication delays of more than

one step to occur. In this section we investigate simulations of communication-delay

schemes where this is the case. Now, at the point where a domain would receive

information from its neighbouring domain from the previous step, it has a chance

of receiving the information from that domain at an older step.

For example, consider a domain d which has an overlap with a neighbour domain d′.

Domain d has just calculated its values step n and needs information from domain

d′ in the overlap region, at step n, in order to calculate its values for step n + 1.

In the previous schemes this information either is or is not communicated in time.

If it is not, then domain d will proceed with the progression from step n to step

n+ 1 using its own stored values for the overlap region. In the schemes we propose

here, it is possible for domain d to receive, with the probability specified below, the

overlap region information from d′ at step n, or n− 1, or n− 2, . . . n−psteps, where

the parameter psteps is defined in advance by the user.

For our experiments here, we have chosen to have the probability of d receiving older

steps described by an exponential probability distribution, with step n being most

likely and step psteps being least likely. Moreover, when the random value indicates

that a step older than n − psteps be used, then domain d instead updates using

its own stored values instead, behaving like the schemes in the previous section.

Depending on the particular exponential distribution used, there can result quite a

significant number of such events. It seems reasonable to impose some limit on how

‘out of date’ information can be before it can be used, which is why we have imple-

mented the psteps parameter. It also seems reasonable to have the domain proceed

with its own stored data, as in the previous sections, when the only information

available is judged to be too old, since this strategy seems to be successful in the

previous sections. One caveat of the current method is that it is possible for newer

data to be overwritten with data from an older step. That is, consider some domain

d updating on step n with data from step n1 < n from an adjacent domain. Then

it is possible for a later step on d to update with data from step n2 < n1, which
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is likely undesirable. We presume that a real parallel implementation would have

measures to prevent this.

The exponential distribution requires a mean to be defined, for our experiments it

is defined as a factor of psteps. That is, we introduce another parameter called

normfac and the mean of the exponential distribution is then defined to be

psteps× normfac.

For example, we might have defined psteps = 20 and normfac = 0.25, in which case

the exponential distribution used has a norm of 5. We used the built in Matlab

function exprnd for the random number generation in our experiments.

We have repeated our experiments from §7.3 with the new schemes described here,

and the results follow in Figure 7.4 and Figure 7.6. Again, we have not implemented

a truly asynchronous processing application, but simulated one in Matlab, and are

now simulating a communication delay following an exponential distribution.

We note here that it would be straightforward to extend the stability result of §7.2.1

to this scheme. Expressing this scheme in the same manner as (7.10) is a simple

matter of defining psteps many non-overlapping identity-like matrices like Īnd and Înd

instead of two, to represent the effect of information from previous steps being used.

The matrix Mn in §7.3 would then have psteps horizontal block elements instead of

two. The argument for stability would then be essentially the same.

7.4.1 Numerical Results - System One

This is the same system as in §7.3.1. The results for the new schemes with a variety

of domains, overlaps, and values of psteps and normfac is given in Figure 7.4. We

also show in Figure 7.5 some examples of how the communication delay for the new

schemes follows an exponential distribution, up to the imposition of a maximum

delay of psteps. See the figure caption for full details.

From Figure 7.4 we see that conclusions similar to those for the previous schemes can

be drawn. The schemes will converge at first order or slightly worse for sufficiently

low ∆t; and increasing the number of domains decreases accuracy while increasing
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the overlap width between domains increases it. However it does seem that in many

of the plots there is little difference between using two domains with an overlap of

two and two domains with an overlap of three.

Regarding the factor psteps, we see from comparing the pairs of plots a) and b);

c) and d); and e) and f), that increasing psteps for fixed normfac seems to cause

a decrease in accuracy. Increasing psteps for fixed normfac means allowing ‘older’

information to be used for domain updates, and fewer events in which domains

disregard information from their neighbours in favour of updating using their own

stored information in the overlap zones from the previous step. If increasing psteps

makes the accuracy of the schemes worse, this might indicate that the method of

the schemes of the previous sections is advantageous, at least for the diffusion-only

systems looked at here.

By comparing the triplets of plots a), c), e) and b), d), f), we can examine the

effect of increasing normfac with a fixed psteps. We see a decrease in accuracy as

we increase normfac in this way. Since increasing normfac increases the norm of the

exponential distribution, this will increase the average ‘age’ of previous steps used,

which likely explains the decrease in accuracy.

We can observe a certain amount of clustering of the lines for the scheme with two

domains in some of the plots, when psteps is greater (plots b) d) and f)), however

in all the plots the lines for the scheme with two domains and overlap two (2DO2)

and for the scheme with two domains and overlap three (2DO3) seem to converge

together as ∆t → 0. Perhaps by allowing information from older steps to be used

a limiting factor has been introduced, preventing the increase in accuracy we might

have expected from increasing the overlap width.
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Figure 7.4: Results for the first system, showing error against timestep, for various
values of psteps and normfac.
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Figure 7.5: Demonstrating how communication delay is made to follow an expo-
nential distribution, for system 1, for a few different domains, overlaps, and values
of psteps and normfac. To read these plots, consider a domain at timestep n − 1
requiring information from a neighbouring domain also at time n − 1 in order to
progress. According to the random number generator, information at a step n − i
will be transmitted. The vertical axis of the plots is that number i. The horizontal
axis of the plots is the frequency, across every timestep across every domain, for
one solve with 1000 timesteps. The information is only considered acceptable if
i ≤ psteps. On each plot, psteps is shown as a yellow line. The single point plotted
to the right of the yellow line is the sum of every time the exponential distribution
gave a value i > psteps. In this case the information from step n−i was not used and
the domain proceeded with its own stored information instead. It can be seen that
certain combinations of parameters (plots c) and d)) can cause this to happen very
often. The mean of the exponential distribution used is given by psteps× normfac
and is plotted as a red line in the plots.
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7.4.2 Numerical Results - System Two

This is the same system as in §7.3.2. The results for the new schemes with a variety

of domains, overlaps, and values of psteps and normfac is given in Figure 7.6. Like

in the previous sections, we also show in Figure 7.7 some examples of how the com-

munication delay for the new schemes follows an exponential distribution, up to the

imposition of a maximum delay of psteps. See the figure caption in Figure 7.5 for a

full description.

The conclusions we can draw from Figure 7.6 are largely the same as those we can

draw from Figure 7.4, and elaborated in §7.4. The same connections between num-

ber of domains, overlap, and accuracy can be observed, as can the roughly first order

convergence of all the schemes. By comparing the pairs of plots a) and b); c) and

d); and e) and f), we can observe the effect of increasing psteps for fixed normfac,

and like in the previous example, we see that this decreases accuracy. By comparing

the triplets of plots a), c), e) and b), d), f), we can examine the effect of increasing

normfac with a fixed psteps. Again like the previous experiments, this seems to

decrease the accuracy of the schemes.

We can observe similar clustering of the lines for the schemes in the plots, as de-

scribed for the previous experiment. The clustering seems to be affecting also the

schemes with five domains in this experiment, especially at larger psteps and normfac

values (see plot f) for example).
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Figure 7.6: Results for the second system, showing error against timestep, for various
values of psteps and normfac.
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Figure 7.7: Demonstrating how communication delay is made to follow an exponen-
tial distribution, for system 1, for a few different domains, overlaps, and values of
psteps and normfac. See the caption for Figure 7.5 for a full explanation.
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7.4.3 Conclusions

The concept of domain decomposition schemes that allow communication delay, in-

troduced in [101], has been extended by the introduction of a scheme which advances

by means of a local matrix exponential on each domain, and which allows random

communication delay of data in overlap regions between domains. This scheme has

been tested for one dimensional diffusion problems, and has been demonstrated to

converge to the correct solution as the timestep value decreases to zero. The accu-

racy of the scheme is worsened by increasing both the probability of communication

delay and the number of domains, as would be expected, but convergence is not

prevented by communication delay.

The exponential scheme seems to be especially sensitive to the size of the overlap

region between domains, with an increase of even one or two nodes causing a sig-

nificant increase in convergence rate. The effect of a moderate size overlap region is

not nullified by a high probability of communication delay. Such schemes may be

expected to provide high accuracy in general if sufficiently large overlap regions are

allowed. It is worth noting that larger overlap regions might increase the probabil-

ity of communication delay as more data would need to be communicated between

nodes. There may be optimal values of ol which provide maximal efficiency by bal-

ancing these two effects.

By introducing the possibility for the schemes to use older steps according to an ex-

ponential distribution we have attempted to make the simulation of communication

delay more realistic. The schemes still converge, which is promising. The same rela-

tions between domain number and overlap width can be observed; in general, fewer

domains and wider overlaps are better. We also introduced the psteps parameter

to allow us to define a limit on how long a communication delay can be tolerated

before information is discarded and a domain proceeds with its own stored data,

as in the schemes described at the start of this chapter. This seems like a reason-

able precaution. We can observe from our results that increasing psteps with fixed

normfac tends to decrease the accuracy of our new schemes. The effect of psteps

with fixed normfac is to allow older steps to be used and decrease the number of
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instances when a domain will proceed using its own stored data. The observation

that this decreases the accuracy of the schemes may indicate that allowing domains

to proceed with their own data is a beneficial strategy, at least for the simple diffu-

sion problems we have used for our examples.

Overall we have added a modest contribution to the promising results of [101], by

providing experimental results of how another type of scheme, linear exponential

integrators, can be resistant to communication delay in a domain decomposition.
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Conclusion

In Chapter 2 we advanced the Discrete Event methodology of [1] by developing

schemes for this methodology in a new paradigm (face-based as opposed to cell-

based events). The scheme BAS was presented, which is the simplest scheme of this

class we can design. BAS is based on the underlying physics of the system being

simulated in that it is based on inter-cell flux.

Modifications to BAS were then introduced. The mass tracking concept attempts

to reduce the error introduced by decoupling events on faces of the same cell. The

exact mass transfer method takes advantage of the simplicity of the reduced system

that must be approximated at each cell face by exactly solving the linear ODE there.

We adapted the ‘flux capacitor’ concept introduced in [1] to produce ‘cascading’ ver-

sions of the schemes, where additional events can be triggered on high activity faces,

bypassing the priority queue that schedules pending events. Finally a leapfrog-like

method for including reaction terms in each of the new schemes was introduced.

In Chapter 3 numeral tests were performed on the new schemes. The most impor-

tant result from these is the convergence of every scheme, with apparent first order,

in ∆M , where the mass unit ∆M is a global control on the amount of mass that

can be transferred in each event. Decreasing ∆M increases accuracy at the cost of

increasing cputime, so it appears that ∆M in this way acts like the timestep length

in fixed timestep schemes or the error tolerance in adaptive timestepping schemes.

From the numerical tests in Chapter 3 a number of relations between scheme param-

eters were strongly implied, these were, Error = O(∆t (average)), N = O(∆M−1)
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(where N is the total amount of events in the course of the solve), ∆t (average) =

O(∆M), and ∆t (average) = O(N−1). These relations seem to become valid as ∆M

becomes sufficiently low.

In Chapter 4 we presented results towards analysis of the new schemes. The con-

vergence of BAS with ∆M in a very simplified scenario was proved, and the steps

for a potential proof for BAS in general were laid out. Similarly, analysis of the

convergence of EAS was performed, which takes advantage of the structure of EAS

to express it as a product of matrix exponentials, which can be examined using the

BCH formula. Possible further work was discussed in §4.6.

In Chapter 5 we developed a first order ETD-like scheme which recycles the Krylov

subspace up to S times to produce S substeps each timestep. The S = 1 case corre-

sponds to ETD1. The cheap extra substeps provide additional accuracy, and it was

proved that increasing S decreases the local error of the scheme to a limiting value.

It was thus conjectured that there exists an optimal S, dependent on the underly-

ing problem and other scheme parameters, to provide optimal efficiency. Numerical

testing bore this out, and showed that using an S greater than 1 can indeed increase

efficiency. A second order corrector scheme was also developed, which uses the data

at the substeps to approximate the leading term of the error in the scheme, to cal-

culate a corrector and increase accuracy.

In Chapter 6 we schematically developed a class of ‘semi-exponential’ Runge Kutta

like methods. These methods satisfy the requirements of being an ETD-type scheme

up to agreeing with ETD1, and beyond that satisfy classical order conditions. They

can be implemented with a single matrix exponential approximation per timestep,

but this comes as a compromise for sacrificing some of the stability and stiff order

properties of true exponential integrators.

Numerical tests show these new schemes are generally effective up to order three,

but the fourth order scheme is generally reduced to third order, likely a result of

sacrificing the stiff order properties of true exponential integrators. The schemes

also do not fare well for large ∆t values, but can be competitively efficient when ∆t

is not too great.
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In Chapter 7 the concept of domain decomposition schemes that allow communica-

tion delay, introduced in [101], was been extended by the introduction of a scheme

which advances by means of a local matrix exponential on each domain, essentially

a linear exponential integrator. It was shown that such a scheme has favourable sta-

bility properties in spite of the communication delay. Experiments were performed

with the new scheme, showing convergence to a correct solution and general reliabil-

ity for various numbers of domains, communication delay probability, and number

of previous steps allowed. This chapter added contribution to the promising results

of [101], by providing experimental results of how another type of scheme, linear

exponential integrators, can be resistant to communication delay in a domain de-

composition.

We finish with some final concluding remarks. For practical use, in the reliable effi-

cient simulation of porous media systems, the scheme of choice from this work would

be the Krylov recycling schemes of Chapter 5. The methodology introduced there

builds on an already well established exponential integrator scheme and provides

a way to improve efficiency by adding recycled substeps. Currently the method

requires ∆t to be sufficiently small or the Krylov subspace dimension m to be suffi-

ciently great that the error of the initial Krylov approximation is not dominant over

the scheme error. Technology exists in the literature to control the Krylov error

using adaptive (non-recycling) substeps and adaptive varying of m. An implemen-

tation incorporating both this and recycling substeps could provide a scheme that

is advantageous in general.

The two classes of Asynchronous scheme discussed in this thesis, the DES based

methodology of Chapters 2, 3, and 4, and the communication delay scheme of Chap-

ter 7, are essentially proofs of concept. The work in these chapters introduces new

schemes that use the concept of asynchronicity in different ways.

In Chapters 2, 3, and 4 a new class of schemes within the discrete event simulation

paradigm have been developed, and numerical evidence strongly indicates that they

are ‘correct’ in the sense of converging to a reliable solution (agreeing with a classical

solve) when the parameter ∆M is decreased. The current implementations of these
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schemes are not competitively efficient, see §3.3 for more detailed discussion of this,

but their general level of success indicates that it should be possible to design a wide

range of viable asynchronous schemes of this type, some of which may prove well

suited to fast, efficient simulation of certain problems.

The communication delay scheme of Chapter 7 contributes to the ongoing study of

schemes that are robust to random communication delays, as already discussed.

Overall, multiple new types of scheme have been developed, some belonging to the

class of exponential integrators (Chapters 5 and 6), and some that can be described

as asynchronous (the discrete event based schemes of Chapter 2, 3, 4; and the com-

munication delay scheme of Chapter 7). Some schemes can be described as belonging

to both classes: the EAS scheme introduced in Chapter 2 can be thought of applying

an exponential integrator to the reduced system on a face during each event; and

the communication delay scheme in Chapter 7 is essentially a domain decomposed

exponential integrator applied to a simple linear problem.
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Appendix

9.1 Priority Queue for Asynchronous Schemes

For reference, we describe here the priority queue used for the schemes in Chapters

2, 3, and 4. It is a straightforward modification of a textbook implementation; see

for example [103], or [104, Chapter 4] or [105, §1.9.4].

9.1.1 Binary Heap

The standard way to implement a priority queue is a binary heap. The heap itself

can be represented by a single C++ vector. Consider a vector of face update times

called heap. Let the entries of heap be indexed by i, so that we will call the update

time stored in entry i of heap, t̂i. In order to function as a priority queue we must be

able to access the minimum t̂i from heap at any time. A simple but inefficient way

to do this would be to keep heap totally ordered, but of course this would require

an expensive re-sort every time there is a change. Instead heap has the following

properties:

• Each entry of heap has two ‘children’. Entry i of heap has children 2i and

2i+ 1, if the indexing is such that i starts at one. It follows that the ‘parent’

of an entry can be found by calculating floor(i/2). For example, entry 1 has

children 2 and 3. Entry 3 has children 6 and 7. The parent of entry 11 is entry

5.
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• The update time value t̂i stored in entry i is less than that of its children, that

is, t̂i < t̂2i t̂i < t̂2i+1. This is called the heap property.

The heap property imposes a partial ordering that is more efficient to maintain as

the priority queue is operated on. The structure will function as a priority queue

since we are always able to access the minimum update time, since it will always

be in entry 1. When a new entry is added to the queue, it is added at the end,

then the queue is re-sorted by swapping the new entry with its parent until the heap

property is restored. This can be done in O(log n) time, as does a corresponding

procedure for sorting an element down through the heap. Construction of the queue

is performed simply by sequentially adding the times at the end of the queue and

sorting them into the heap until all are present.

This is a textbook implementation of a priority queue as a binary heap. We need

to be able to access a particular face k, at any point, to adjust its update time and

thus position in the heap. This can be done by adding additional vectors to keep

track of a face’s position in heap.

9.1.2 Accessible Binary Heap

Each entry t̂i in heap must correspond to a unique face index k, for t̂i is the update

time for one of the faces. In addition to heap, we therefore keep an additional vector,

faces, which contains the faces 1, . . . , K arranged in order of priority. This vector

can be maintained as a binary heap by simply having it mimic the vector heap -

whenever a sorting procedure would swap two entries in heap, they are also swapped

in faces. With this addition the priority queue can output both the lowest update

time (the first entry in heap), and the index of the face with this time (the first

entry in faces).

This still does not allow us to access a face by its index k and change its position

in the priority queue by adjusting its update time. To this end we introduce a third

vector, called positions. Now, entry k of positions always corresponds to face k.

That is, entry 1 of positions corresponds to face 1, entry 2 to face 2, and so on. The

value of entry k in positions, is the entry number of face k in the vectors heap and
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faces. For example, say the third entry of heap contains the update time for the

face with index 10. Then positions(10) = 3. Thus we have a straightforward way

of accessing the update time for a face in the priority queue, given the face’s unique

index k. Like with faces, we keep positions up to date by updating it every time

there is a swap of elements in heap during a re-sort procure.

In practice we use the positions vector to adjust the priority queue every time we

re-calculate the update time on the face. The appropriate entry in heap is found

and adjusted, then a sort-up or sort-down procedure is called as necessary to restore

the heap property.

9.2 Some Vector Calculus Results

We prove a needed vector calculus result for Chapter 5 here. Consider a vector

function g taking vector argument x,

g = g(x), g ∈ RM , x ∈ RN .

Let Ĵi be the Hessian matrix


(ĝi)x1x1 (ĝi)x1x2 . . .

(ĝi)x2x1 (ĝi)x2x2 . . .

. . . . . . . . .

 ,

where ĝi is the ith entry of the vector g. Then let the tensor Ĵ be a vector with the

matrix Ĵi in its ith entry. The Taylor series of a vector function g(x) satisfies

g(x+ ∆x) = g(x) + J∆x+
1

2
∆xT Ĵ∆x+O(∆x3).

We will show that the second order term is indeed

1

2
∆xT Ĵ∆x.
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We will do this by showing that the second order term of the Taylor series of gi(x+

∆x) is

∆xT Ĵi∆x.

so that the claim above follows.

Define a simple ‘filtering’ of ∆x ≡ (∆x1,∆x2, . . . ,∆xN)T as follows:

F(n)∆x = (0, 0, . . . , 0,∆xn+1∆xn+2, . . . ,∆xN)T ,

i.e., ∆x with the first n elements replaced by 0.

Expanding gi(x+ ∆x) in the ∆x1 argument,

gi(x+ ∆x)

= gi(x+ F(1)∆x) + ∆x1(gi)x1(x+ F(1)∆x)

+
∆x2

1

2
(gi)x1x1(x+ F(1)∆x) +O(∆x3

1).

(9.1)

After expanding the term gi(x+ F(1)∆x) in every argument we get

gi(x+ ∆x)

= gi(x) +
N∑
j=1

∆xj(gi)xj(x+ F(j)∆x)

+
N∑
j=1

∆x2
j

2
(gi)xjxj(x+ F(j)∆x) +O(∆x3

1,∆x
3
2, . . . ,∆x

3
N).

(9.2)

For brevity we will from now on write the higher term denoting higher orders

O(∆x3
1,∆x

3
2, . . . ,∆x

3
N) as simply O(∆x3). To leading order, we have that

(gi)xjxj(x+ F(j)∆x) = (gi)xjxj(x) +O(∆x1,∆x2, . . . ,∆xN),
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so we can simplify the last term in (9.2),

gi(x+ ∆x)

= gi(x) +
N∑
j=1

∆xj(gi)xj(x+ F(j)∆x)

+
N∑
j=1

∆x2
j

2
(gi)xjxj(x) +O(∆x3)

(9.3)

by moving higher order terms into the O(∆x3) part.

Next consider the expansion

(gi)xj(x+ F(j)∆x)

= (gi)xj(x+ F(j + 1)∆x)

+ ∆xj+1(gi)xjxj+1
(x+ F(j + 1)∆x) +O(∆t3)

(9.4)

Repeatedly expanding gives us, up to first order terms,

(gi)xj(x+ F(j)∆x)

= (gi)xj(x)

+
N∑

k=j+1

∆xk(gi)xjxk(x+ F(j + 1)∆x) +O(∆x2).

(9.5)

Again moving the higher order parts of the expansion of (gi)xjxk(x + F(j + 1)∆x)

in to O(∆x2) gives,

(gi)xj(x+ F(j)∆x)

= (gi)xj(x)

+
N∑

k=j+1

∆xk(gi)xjxk(x) +O(∆x2)

(9.6)

We then substitute (9.6) into (9.3), and the second order terms collect as,

N∑
j=1

∆xj

N∑
k=j+1

∆xk(gi)xjxk(x) +
N∑
j=1

∆x2
j

2
(gi)xjxj(x). (9.7)
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Now consider

∆xT Ĵi∆x = ∆xT


∑N

k=1 ∆xk(gi)x1xk∑N
k=1 ∆xk(gi)x2xk

. . .



=
N∑
j=1

∆xj

N∑
k=1

∆xk(gi)xjxk

=
N∑
j=1

∆xj

(
j−1∑
k=1

∆xk(gi)xjxk + ∆xj(gi)xjxj +
N∑

k=j+1

∆xk(gi)xjxk

) (9.8)

That is,

1

2
∆xT Ĵi∆x =

1

2

N∑
j=1

∆xj

j−1∑
k=1

∆xk(gi)xjxk +
1

2

N∑
j=1

∆xj
∑
k=j+1

∆xk(gi)xjxk

+
N∑
j=1

∆x2
j

2
(gi)xjxj

(9.9)

The claim follows from showing (9.7) and (9.9) are equivalent, which requires the

proof the following.

N∑
j=1

∆xj

j−1∑
k=1

∆xk(gi)xjxk =
N∑
j=1

∆xj

N∑
k=j+1

∆xk(gi)xjxk .

This is equivalent to,

N∑
j=1

j−1∑
k=1

β(j, k) =
N∑
j=1

N∑
k=j+1

β(j, k),

where the function β(j, k) ≡ ∆xj∆xk(gi)xjxk is symmetric, that is, β(j, k) = β(k, j).

Now consider the double sum on the left hand side of the equation. It can be viewed

as the sum of all the elements of the lower triangular part of a a matrix β with

elements (β)j,k = β(j, k). Similarly, the right hand side of the equation can be

viewed as the sum of all the elements of the upper triangular part of β. Since β(j, k)

is symmetric, the matrix β is symmetric, and thus the two sums are equal. This
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completes the proof of the claim.

It can also be shown that, if x = x(t) then

dx

dt
Ĵ =

d

dt
J,

where J = ∂g
∂x

is the Jacobian of g. Consider

d

dt
J =

d

dt


(g1)x1 (g1)x2 . . .

(g2)x1 (g2)x2 . . .

. . . . . . . . .

 ,

each entry becomes a series

d

dt
J =


∑

j=1 (g1)x1xj(xj)t
∑

j=1 (g1)x2xj(xj)t . . .∑
j=1 (g2)x1xj(xj)t

∑
j=1 (g2)x2xj(xj)t . . .

. . . . . . . . .

 .

Now consider

dx

dt
Ĵi.

It is the row vector,

dx

dt
Ĵi =

(∑
j=1

(gi)x1xj(xj)t,
∑
j=1

(gi)x2xj(xj)t . . .

)
.

So that we have

dx

dt
Ĵ =

d

dt
J.
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