
Model Checking Web Applications

by

Mohammed Yahya Alzahrani

Submitted for the degree Doctor of Philosophy

Department of Computer Science

School of Mathematical and Computer Sciences

Heriot-Watt University

December 2015

The copyright in this thesis is owned by the author. Any quotation from the thesis or use of any of

the information contained in it must acknowledge this thesis as the source of the quotation or

information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ROS: The Research Output Service. Heriot-Watt University Edinburgh

https://core.ac.uk/display/77036215?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

The modelling of web-based applications can assist in capturing and understanding their behaviour.

The development of such applications requires the use of sound methodologies to ensure that the

intended and actual behaviour are the same.

As a verification technique, model checking can assist in finding design flaws and simplifying the

design of a web application, and as a result the design and the security of the web application can

be improved. Model checking has the advantage of using an exhaustive search of the state space of

a system to determine if the specifications are true or not in a given model.

In this thesis we present novel approaches in modelling and verifying web applications’ properties

to ensure their design correctness and security. Since the actions in web applications rely on both

the user input and the server status; we propose an approach for modelling and verifying dynamic

navigation properties. The Spin model checker has been used successfully in verifying communication

protocols. However, the current version of Spin does not support modelling time. We integrate

discrete time in the Spin model to allow the modelling of realistic properties that rely on time

constraints and to analyse the sequence of actions and time. Examining the sequence of actions in

web applications assists in understanding their behaviour in different scenarios such as navigation

errors and in the presence of an intruder. The model checker Uppaal is presented in the literature

as an alternative to Spin when modelling real-time systems. We develop models with real time

constraints in Uppaal in order to validate the results from the Spin models and to compare the

differences between modelling with real time and with discrete time as in Spin. We also compare

the complexity and expressiveness of each model checker in verifying web applications’ properties.

The web application models in our research are developed gradually to ensure their correctness and

to manage the complexities of specifying the security and navigation properties. We analyse the

compromised model to compare the differences in the sequence of actions and time with the secure

model to assist in improving early detections of malicious behaviour in web applications.

i

To my parents

ii

Acknowledgements

I am grateful to my supervisor Dr. Lilia Georgieva for her guidance, support and

encouragement throughout my research. Her extensive comments during the early

stages of my Ph.D. to the writing up helped me to understand my research. Without

her inspiration, knowledge and enthusiasm, this work would never have been finished.

I am also grateful to Professor Gerard Holzmann for his support and patience in

answering my questions regarding the Spin models.

I would also like to thank Vaggelis for all the encouragement and support during my

Ph.D.

Also, many thanks to my office colleagues Prabhat and Konstantina for their support

and useful comments.

My gratitude goes to Nesreen for being an endless source of inspiration and for sup-

porting for me to undertake my Ph.D.

Last but not least, I am so grateful for my parents and my siblings (Elham, Seham, Ali,

Wafaa, Waleed and Dana) whose constant encouragement, love and support helped

me throughout my Ph.D. It is to them that I dedicate this work.

iii

Contents

Abstract i

Acknowledgements iii

Contents iv

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Web Applications . 1

1.2 Formal Methods . 4

1.3 State of the Problem . 6

1.4 Research Aims and Objectives . 6

1.5 Research Methodology . 7

1.6 Contributions . 10

1.7 Publications . 12

1.8 Structure of Thesis . 13

2 Background and Related Work 15

2.1 Web Applications . 15

2.1.1 Security Threats for Web Applications 19

2.2 Web Navigation Properties . 22

2.3 Web Security Properties . 24

2.3.1 Session Management . 27

2.3.2 Authentication . 28

2.3.3 Control-Flow . 29

2.4 Model Checking . 31

2.4.1 Model Checking Tools . 34

2.5 Temporal Logic . 35

2.5.1 Linear Temporal Logic (LTL) 36

2.5.2 Computational Tree Logic (CTL) 37

2.5.3 Temporal Logic Patterns . 39
iv

Contents v

2.6 Timed Automata Theory . 40

2.6.1 Formal Syntax . 41

2.7 Modelling an Intruder (Man in the Middle) 43

2.8 Conclusions . 44

3 Modelling in SPIN 46

3.1 The SPIN Model Checker . 46

3.1.1 Promela . 48

3.1.2 Verification in Spin . 53

3.1.3 Modelling Time in SPIN . 55

3.2 Modelling Web Applications in Spin 56

3.2.1 Model without Timer . 58

3.2.1.1 Simulation and Verification Results of Model without
Timer . 64

3.2.2 Modelling Dynamic Navigation 79

3.2.2.1 Simulation and Verification Results of the Dynamic
Navigation Model . 82

3.2.3 Modelling with Time Constraints 85

3.2.3.1 Simulation and Verification Results of Timed Model . 90

3.2.4 Adding an Intruder to the Model 90

3.2.4.1 Simulation and Verification Results of Model with In-
truder . 93

3.3 Summary . 95

4 Modelling in UPPAAL 97

4.1 The Uppaal Model Checker . 97

4.1.1 The Modelling Language . 98

4.1.2 Modelling Time in UPPAAL 101

Locations in UPPAAL 105

4.2 Modelling Web Applications in Uppaal 105

4.2.1 Model without Time Constraints 106

4.2.1.1 Simulation and Verification Results of Model without
Time Constraints . 110

4.2.2 Modelling Dynamic Navigation 112

4.2.2.1 Simulation and Verification Results of Dynamic Nav-
igation Model . 114

4.2.3 Modelling with Time Constraints 115

4.2.3.1 Simulation and Verification Results of Timed Model . 116

4.2.4 Adding an Intruder to the Model 117

4.2.4.1 Simulation and Verification Results of Model with In-
truder . 118

4.3 Summary . 119

5 Comparison 121

5.1 Modelling Web Applications in Spin 121

Contents vi

5.2 Modelling Web Applications in Uppaal 125

5.3 Comparison . 127

5.4 Summary . 130

6 Conclusion 131

6.1 An Overview of the Research . 131

6.2 Summary of Thesis Contributions to Research Areas 133

6.2.1 Contributions to Model Checking Web Applications 133

6.2.2 Contributions to Model Checking Timed Models of Web Appli-
cations . 134

6.2.3 Contributions to Modelling Security Properties of Applications . 134

6.3 Future Work . 135

Bibliography 136

Appendix A 145

List of Figures

1.1 Model Checking Web Application Properties. 9

2.1 Overview of Web Applications [Li and Xue, 2014] 18

2.2 Percentage of Common Vulnerability Types in Web Applications [Cen-
zic, 2014] . 20

2.3 Model Checking Process. 32

2.4 Attack Example . 43

3.1 Model of Online Banking. 57

3.2 Safety Verification of Model without Timer 65

3.3 Message Sequence Chart of Model without Timer. 65

3.4 Page Sequence and LTL Proposition Letters. 66

3.5 Verification Result of Property 3.1 . 67

3.6 Verification Result of Property 3.2 . 68

3.7 Verification Result of Property 3.3 . 69

3.8 Verification Result of Property 3.4 . 69

3.9 Verification Result of Property 3.5 . 71

3.10 Never Claim for Property 3.5 . 72

3.11 Verification Result of Property 3.6 . 73

3.12 Never Claim for Property 3.6 . 74

3.13 Verification Error Result of Property 3.13 75

3.14 Error-trail File of Property 3.13 . 75

3.15 Verification Result of Property 3.7 . 76

3.16 Verification Error Result of Property 3.7 77

3.17 Verification Result of Property 3.8 . 77

3.18 Verification Result of Property 3.9 . 78

3.19 Safety Verification Result of Dynamic Navigation Model 82

3.20 Message Exchange Sample of Dynamic Navigation Model 83

3.21 Verification Result of Property 3.10 . 84

3.22 Verification Result of Global Variable Assertions 84

3.23 Verification Result of Property 3.12 . 85

3.24 Simulation Chart of the Discrete Time Model. 88

3.25 Simulation Results of the Discrete Time Model 89

3.26 Verification Result of Property 3.13 . 90

3.27 Secure Model. 94

3.28 Model with Intruder. 95

vii

List of Figures viii

4.1 Path Formulas Supported in uppaal. 100

4.2 The Automata P1 with Obs Observer. 101

4.3 Possible Behaviour of the First Example. 102

4.4 uppaal Verification Example. 103

4.5 uppaal Behaviour with Invariant. 103

4.6 uppaal Behaviour with Guard. 104

4.7 Location Types in uppaal. 105

4.8 Client Automaton. 109

4.9 Server Automaton. 110

4.10 Simulation Result of Model without Time Constraints. 111

4.11 Verification Result of CTL Formula 4.1 111

4.12 Dynamic Client Automaton. 113

4.13 Dynamic Server Automaton. 114

4.14 Verification Results of CTL Formula 4.6 114

4.15 Timed Client Automaton. 116

4.16 Timed Server Automaton. 116

4.17 Intruder Automaton. 118

List of Tables

2.1 Navigation Properties [Stock et al., 2014]. 22

2.2 Session Management Properties [Stock et al., 2014]. 28

2.3 Authentication Properties [Stock et al., 2014]. 29

2.4 Control-Flow Properties [Stock et al., 2014]. 30

2.5 LTL formula operators with their mathematical and spin notation . . . 37

2.6 Temporal Logic Patterns . 39

3.1 Operators in Promela. 50

3.2 Verification Results of Properties for Model without Time. 78

3.3 Verification Results of the Secure and the Compromised Model. 94

4.1 CTL Syntax in uppaal . 99

4.2 Verification Results of the Secure Model and Compromised Model in
Uppaal. 118

5.1 Web Applications’ Properties Stock et al. [2014]. 123

5.2 Comparison of Number of States between Spin and Uppaal. 127

ix

Chapter 1

Introduction

In this chapter we first discuss the challenges of web applications’ development that

lead to security and design vulnerabilities. In Section 1.2 we provide an overview

of the formal methods and present the model checking advantages over alternative

verification methods. We then present the state of problem of our research in Section

1.3. In Section 1.4 we list and discuss the research aims and objectives. In Section

1.5 we present the research methodology. In Section 1.6 we show the contributions of

our research. We conclude with a structure of the following chapters in Section 1.8.

1.1 Web Applications

Web applications are common in today’s economic and social life. Such applications

provide business services to customers, business to business communications, and

various services to users around the world. Online businesses use web applications

to reach more clients and to improve their services. Sectors such as banking, travel,

education and governmental services rely on web applications to promote and increase

1

Chapter 1. Introduction 2

their operations [Ginige and Murugesan, 2001, Homma et al., 2011, Miao and Zeng,

2007]. The rapid spread of web applications in the areas of communications and

business services has promoted them to one of the leading and most essential branches

of the software development industry [Offutt, 2002]. Along with the increased demand

for web applications, concerns have been raised about design flaws that are able to

cause vulnerabilities in security and navigation properties [Huang and Lee, 2005].

The development of web applications has been evolving rapidly, resulting in poor

quality, security vulnerabilities and maintenance challenges [Murugesan and Desh-

pande, 2002]. Unstable design and development processes, as well as poor project

management practices are the main reasons for such problems [Ginige, 2002]. The

data handled by web applications often contains sensitive values (e.g. credit card

numbers) for both users and service providers. In 2015, the attack of several or-

ganizations’ web applications was considered the most popular method that led to

sensitive data disclosure [Hesseldahl, 2015, Solutions, 2015].

Web application vulnerabilities, which lead to the compromise of sensitive information,

are regularly reported [Falk et al., 2008, Jovanovic et al., 2006], as indicated by the

following reports:

• According to a report by [Cenzic, 2014], 96% of tested web applications in 2013

had vulnerabilities categorised as high risk. In addition, an average number of

14 vulnerabilities per web application found in 2013 due to design errors.

• A recent report by [Hoff, 2013] showed that there were more than 800 reported

hacking incidents in 2012 alone, and 70% of those were carried out through web

application vulnerabilities.

Chapter 1. Introduction 3

• A study carried out by [Falk et al., 2008] showed that 75% of online banking

web sites have at least one major security flaw.

• In 2010, more than 8,000 online banking clients’ credentials were stolen from a

server where they were stored as plain text [Fundation, 2010].

A report by [Solutions, 2015] stated: “ by tracking user behaviour and using some

form of fraud detection to get an early warning of suspicious behaviour ...can help to

identify malicious activity before your last bit of sensitive data is fully exfiltrated.”

Larger and more complex web applications will also increase the need for rigorous

methods of developing high quality applications that are secure and easy to maintain

[Lee and Shirani, 2004, Ricca and Tonella, 2001, Taylor et al., 2002]. The develop-

ment of such applications requires the use of sound methodologies to ensure that the

intended and actual behaviour are the same. Also, web applications must satisfy es-

sential security properties, such as authentication, session management and navigation

properties [Stock et al., 2014].

In this thesis we apply model checking for the simulation and verification of time

sensitive web applications. We model security and navigation properties which include

session management properties, authentication properties and control flow properties.

We use the model checking tools Spin [Holzmann, 2004] and Uppaal [Amnell et al.,

2001] to verify an online banking web application of a client communicating with a

server to complete a transaction.

Chapter 1. Introduction 4

1.2 Formal Methods

Formal methods are mathematical based languages, techniques and tools for verify-

ing hardware and software systems. The process of using formal methods does not

guarantee the correctness of a given system, but they can assist in increasing the un-

derstanding of a system’s inconsistencies and incompleteness that can lead to design

errors [Clarke and Wing, 1996].

Traditional validation techniques, such as testing, can be effective in the early stages

of debugging. However, testing can not detect all the errors and in some cases it can

miss errors in systems that have very large number of states, as the testing process

can only explore part of the possible behaviour of the system. Furthermore, it is

not evident when they have reached their limit, nor is there a clear estimate of the

remaining number of bugs [Clarke et al., 1999, Donini et al., 2006].

In contrast, theorem proving and proof checking do not have this shortcoming. How-

ever, they are time consuming and often require that the design team includes an ex-

pert in both the language used to model the system and the mathematical background

of the language. In addition, theorem proving is complex when timing requirements

are included in verification [Davis, 2000].

An alternative approach is formal verification, which can exhaustively explore the

possible behaviour of a system. In contrast to testing, where only some parts of

the behaviour are explored, formal verification can show that a design is correct by

exploring all possible states; thus not allowing a security vulnerability or design flaw

[Clarke et al., 1999].

Model checking tools have played a key role in the design of concurrent and distributed

systems and have also been reported in industrial applications [Baier et al., 2008,

Chapter 1. Introduction 5

Clarke, 2008, Holzmann, 2004]. The model checking process assists designers to ensure

the correctness of a system in the early stages of development.

In order for a model checking tool to verify a web application model, three main tasks

need to be carried out. The first task is modelling, in which the systems’ design

is converted into a formalism that is accepted by the model checker tool. In some

cases, this is a straightforward task, while complex systems may require the use of

abstraction to eliminate unrelated or non-essential system details.

The second task is specification; stating the properties of the model that the system

must satisfy. Model checking tools commonly use temporal logic, which can assert how

the behaviour of the system evolves over time. The final task is verification. Ideally,

this task is performed in a completely automated fashion. The model checker tool

will provide an error trace (counterexample) that assists in locating where an error

occurred in the case of a negative result. Each of these are examined and demonstrated

further in Chapter 2.

Model checking has two important advantages over other techniques [Baier et al.,

2008, Clarke, 2008, Clarke et al., 1999]:

• The process is fully automatic, so the user does not need to be an expert in

mathematical disciplines such as logic and theorem proving.

• The model checker tool provides a (counterexample) that shows where the er-

ror has occurred if the property fails. This error trace provides an insight to

understand the reason for the error, as well as essential clues to fix the problem.

The main disadvantage of model checking is the state explosion problem where the

number of states of a system to be analysed or verified increases significantly in the

state space [Holzmann, 2004, McMillan, 1992, Valmari, 1998].

Chapter 1. Introduction 6

1.3 State of the Problem

Web applications are dynamically changing and evolving. They are used in services

such as banking, governmental and health sectors [Homma et al., 2011, Huang and

Lee, 2005, Krishnamurthi, 2006], as web application often involve the transmission of

sensitive data and they need to ensure correctness to avoid vulnerabilities. Security is

a major concern for developers, since simple errors could lead to the loss of valuable

information and threaten the privacy of online users. As a result, the need for auto-

mated tools that detect vulnerabilities and protect users against attacks is evident.

Verifying web applications using model checking is an emerging research area, and

there is a clear gap between the theory and practice. This research investigates web

application behaviour under different situations (e.g. in the presence of an attacker

or different server status). Realistic web application models are built and extended

with time constraints to verify and analyse their behaviour.

1.4 Research Aims and Objectives

In this research we apply model checking for modelling and verifying web application

behaviour under different scenarios. In particular, the focus is on web application

security and navigation properties. This aim can be achieved by fulfilling three inter-

connected objectives, as follows:

• Develop web application models that extend and verify its properties by adding

time constraints to achieve realistic models. In addition, secure models will be

investigated and compared with a model in the presence of an attacker to study

the weaknesses of the specifications and the sequence of timing and actions.

Chapter 1. Introduction 7

The results could capture the behaviour of the attacker in order to identify

vulnerabilities in the models and to analyse compromised and secure models.

• Apply model checking to verify web applications’ behaviour and compare it with

other verification methods.

• Finally, we present a critical review of the formal methods and investigate the

landscape of web application modelling and verification techniques.

In this thesis we present a novel approach for the modelling of web applications.

We gradually include features to the models in verify additional properties in each

model. We integrate discrete time in the Spin model checker [Holzmann, 2004] to

model properties that rely on time constraints. The advantage of using discrete time

is that we were able to capture the value of time at each step in order to compare the

behaviour of different models. Uppaal [Amnell et al., 2001] uses real time modelling,

which we first use to validate the results obtained from the Spin. Secondly, we

compare both tools in the context of verifying web applications.

1.5 Research Methodology

Modelling can provide significant benefits to web application development. The view

of a system shifts from basic implementation to more detailed aspects, such as security

that will improve the quality of the final product. Model checking assists in under-

standing the interactions and states of web applications, reducing design flaws and

ensuring consistent conditions and well-defined behaviour [Schätz, 2004]. Additional

benefits of model checking for web applications are [Baier et al., 2008, Clarke, 2008,

Clarke et al., 1999]:

Chapter 1. Introduction 8

Modelling phase: Describing and analysing the high-level, abstract and non-deterministic

behaviour of the application avoids the cost of implementation details that could

complicate the design. Errors can be caught more easily earlier in a less expen-

sive development phase.

Properties definition The properties of the web application model to be verified

are defined by using temporal logic formulas, for example in Spin the Linear

Temporal Logic (LTL) [Burstall, 1974, Kröger, 1977, Pnueli, 1981] is used, while

Uppaal uses a subset of the Computation Tree Logic (CTL) [Huth and Ryan,

2006].

Simulation phase: Using simulation and verification to analyse the model and in-

teractions, we identify potential issues, such as the undesired behaviour of the

system and modelling errors.

Verification phase: In this phase we verify that the model guarantees the properties

of the system in different scenarios. If the property fails, the model checking fail-

ure analysis assists in finding the error through a trace. We either use temporal

logic formulas or simple assertions.

Figure 1.1 shows the process we will use in Chapters 3 and 4 to analyse and verify

the properties of web applications.

Chapter 1. Introduction 9

Figure 1.1: Model Checking Web Application Properties.

According to [Fenton and Bieman, 2014], a formal experiment is a rigorous and con-

trolled investigation of a model in which important variables are identified and changed

such that the outcome can be validated. [Mendes and Mosley, 2006] stated that for-

mal investigation is best suited to the web applications research community, as it is

applicable across various types of projects and processes. In a formal investigation a

variable is manipulated such that all possible variable value are validated.

The formal analysis framework used in this research consists of four components. The

application and properties are expressed using formal semantics. A formal language

is then used to describe the system. Next, a formal language is used to describe the

property under analysis. Finally, a formal technique checks whether the application

satisfies the property.

In our research, we are interested in the verification of the applications’ behaviour

properties, rather than the data transmission properties. We model both web page

transactions and the input of web applications, as the dynamic nature of web appli-

cations means that the input could lead to different pages (e.g. wrong authentication

credentials). The dynamic nature of web applications could be affected by different

input from the user, or by the server state.

Chapter 1. Introduction 10

As spin does not support the modelling of time constraints, it will be extended with

discrete time, enabling the construction of realistic web application models. In the

model checking of timed models, discrete time is preferred to reduce the risk of state

space explosion [Valmari, 1998], which is one drawback of model checking. Modelling

with real time could result in an increase of the system’s states up to an intractable

level. The state space explosion problem will be discussed in Chapter 2.

1.6 Contributions

In this thesis, we made the following contributions:

• The challenges in adopting model checking for the analysis and verification of

web applications are critically reviewed. The usage of model checking is ex-

amined for critical properties of web applications, such as security, navigation

and time-sensitive properties. After providing background information on the

current challenges in verifying web applications, methods are devised to develop

more secure and easy-to-maintain web applications. In Chapter 2 we present

and discuss the challenges in more detail.

• We design a novel web application model and extend it with the novel approach

of time constraints to enable the modelling of web application properties. The

time constraints assist in time stamping the messages exchanged between par-

ties in the communication and also in the analysis of the sequence of actions. By

adding time we are able to express properties, such as modelling session manage-

ment properties and dynamic navigation properties, where a timeout can lead

to different pages. Chapter 3 describes the steps in modelling time constraints.

Chapter 1. Introduction 11

• We develop web application models in the Spin model checker. We first analyse

the models without time constraints to understand the difference when we add

time and to ensure the correctness of the models. We then model dynamic

navigation properties by showing how different input from both sides could affect

the simulation and verification process. We then introduce a novel approach

for modelling the discrete time process so we can model further time-related

properties such as session management properties. Finally, we add an intruder to

the model to analyse the behaviour of the system in different scenarios. Chapter

3 describes the modelling steps in further detail.

• By analysing the time sequence and action sequence within a web application

session, we can identify the difference between a secure session and a compro-

mised session, with the presence of an intruder. Understanding the web appli-

cation behaviour in different scenarios leads to an improved security and more

stable development. Furthermore, our approach can assist in developing meth-

ods to detect malicious behaviour at early stages. This is analysed in Chapter

4.

• In addition to modelling the static properties of web applications, a novel ap-

proach was developed for modelling the dynamic properties of web applications,

in which a single input can lead to different pages based on time constraints and

server state. As highlighted in the literature review, there is a gap in modelling

the dynamic navigation properties of web applications. Our research shows how

it is possible to model web applications using the model checking tool’s existing

capabilities, resulting in simplified models that contain security and navigation

properties. We present the models in further detail in Chapter 3 and Chapter

4.

Chapter 1. Introduction 12

• We verify web applications’ properties in the Uppaal real-time model checker.

Uppaal has a graphical editor which makes it easy to design a system model,

along with a graphical simulator that shows the possible dynamic behaviour of

a system description. We compare the models in Chapter 5.

• A comparison was made between the Spin and Uppaal model checkers for

web application analysis and verification. This comparison aims to answer the

following questions:

– What is the complexity and expressiveness level of the model checking tool

to verify the properties of web applications models?

– To what extent can the property specification language be adapted to the

specification of web application properties?

– How capable is the model checker for verifying models without resulting in

a state explosion problem?

– How are the results different when integrating a simple timing constraint

into Spin, in contrast to Uppaal, which is based on timed automata spec-

ifications?

The outcome results validate the rationale for using model checking in web

application development, as explained in Chapter 5.

1.7 Publications

Part of the work presented in this thesis has been published and presented in peer-

reviewed conferences and workshops:

Chapter 1. Introduction 13

1. Alzahrani,M. & Georgieva, L. (2012) Modelling Trusted Web Applications. 1st

International Workshop on Trustworthy Multi-Agent Systems. KES-AMSTA

Special Session, Dubrovnik, Croatia, 25-27 June.

2. Alzahrani,M. & Georgieva, L. (2012) Analysing Data-Sensitive and Time-Sensitive

Web Applications at the 19th Automated Reasoning Workshop, University of

Manchester. 2nd-4th April.

3. Alzahrani,M. & Georgieva, L. (2013) Comparative analysis of time-sensitive

web applications using Spin and Uppaal at the 20th Automated Reasoning

Workshop, University of Dundee on 11-12 April.

4. Alzahrani,M. (2015) Model Checking Web Applications using Spin and Uppaal

at 15th International Workshop on Automated Verification of Critical Systems,

Edinburgh, 1-4 September.

1.8 Structure of Thesis

The remainder of this thesis is organised as follows:

Chapter 2 summarises the background on web application fundamentals and prop-

erties, and provides a comparison of the analysis and verification methods found

in the literature. Model checking and the tools used in this research are then

described, as a basis for subsequent chapters.

Chapter 3 presents the first model checker, Spin. First the tool and its input lan-

guage Promela are described. Second, the web application is modelled, and

Chapter 1. Introduction 14

a description of the steps followed during the modelling and verification is pro-

vided. The secure and compromised models are presented, and then the simu-

lation and verification results are shown.

Chapter 4 describes the second model checking tool, Uppaal. First a brief de-

scription of the tool is presented, followed by background information on timed

automata theory as a basis for modelling web applications. A comparison of the

secure and compromised models is made, and subsequently, the simulation and

verification results are provided.

Chapter 5 provides a comparison between the results obtained from Chapter 3 and

Chapter 4. The results of the experiments are analysed, illustrating the differ-

ences between the tools, as well as the challenges of modelling web applications.

Chapter 6 assesses the results that were obtained and presents conclusions, contri-

butions, limitations and possible future work.

f

Chapter 2

Background and Related Work

This chapter describes the development process of web applications and the challenges

arising in both the design and implementation phases. We then outline evolving trends

and discuss related work. We then present an overview of model checking principles for

web applications. Moreover, we list the verification requirements for web applications.

The OWASP Application Security Verification Standard [Stock et al., 2014], which is

updated annually, is used to illustrate a list of verification properties. This chapter

provides the research context and lays the foundation for the modelling and analysis

work described in the next chapters.

2.1 Web Applications

Web applications enable much of today’s online business; including banking, social

networking and governmental activities, to thrive. As a result of the rapid develop-

ment of new programming models and technologies, web applications are evolving

15

Chapter 2. Background and Literature Review 16

continuously. The results of such rapid change for web applications brings new chal-

lenges [Alpuente et al., 2010, Armando et al., 2010, Conallen, 1999, Di Sciascio et al.,

2003].

The security of web applications is a challenging task. Security is a continuous process

of identifying and analysing potential threats [MSDN, 2011].

Furthermore, new security challenges emerge due to the increasing amount of appli-

cation code being moved to the client’s side. With larger amounts of code exposed to

the user comes greater vulnerability risks. Attackers are able to gain knowledge of the

code and are therefore, more likely to compromise the server-side application state.

The data protected by web applications are security sensitive in most cases, including

credit card details and personal information, and are typically significantly valuable

for both users and service providers. Emerging types of attacks, such as the HTTP

parameter pollution attack, place a wider range of web applications at risk [Balduzzi

et al., 2011]. As a result, major companies offer rewards for finding vulnerabilities

within their web applications [Google, 2015].

This inherent complexity poses challenges to the modelling, analysis and verification

of this type of application. Some of these challenges are summarised below [Alalfi

et al., 2009, Li and Xue, 2014]:

• The complex nature of the web application environment may lead to integration

difficulties with other diverse hardware and software platforms. The analysis of

many components could make the verification extremely difficult.

• The dynamic behaviour, such as the dynamic interaction between clients and

servers, and the continual changes in the system’s context and web technologies

can be another major challenge.

Chapter 2. Background and Literature Review 17

• Web applications may have several entry points, allowing interaction with the

system in a way that cannot be predicted (due to design errors) and that cannot

be blocked by the web application.

• Another challenge is the efficient monitoring and tracking of outputs of web

applications. Examining the change of states between different components is

often difficult to analyse.

The early websites only contained a collection of documents with static content, en-

coded in the HyperText Markup Language (HTML). Since then, web applications

have evolved from static hypermedia to complex and dynamic infrastructures. In ad-

dition, development technologies shifts the focus of web applications from information

delivery only, to include application execution [Casteleyn et al., 2009].

New technologies have been developed to enable web applications to change from

simple static HTML pages to dynamic web pages that are able to interact with other

systems [Casteleyn et al., 2009, Conallen, 1999]. Web pages and various elements of

web applications are stored on the server. Users primarily interact with the browser;

the request from the client’s side is sent to the web server and in turn to the database

management system. Servers respond to the user’s request and carry out data pro-

cessing to complete the transaction. The processed results are then returned to the

user via the web browser.

Web applications are commonly designed as a three-tiered architecture (shown in

Figure 2.1) and consist of the following components:

Web browser is the software application that serves as a user interface for presenting

information.

Chapter 2. Background and Literature Review 18

Web application server manages the dynamic flow-control of the web application.

The web application server receives user input via the web browser and results

from the database server. The code is constructed dynamically and the challenge

arises when checking or modifying the incoming data before processing it or when

passing it to the lower tiers for execution. Failure in this process can lead to

compromising the security of the web application.

Database server provides management and database persistent functionality.

Figure 2.1: Overview of Web Applications [Li and Xue, 2014]

Accordingly, the features that differentiate web applications from traditional software

and information systems can be summarised below [Casteleyn et al., 2009, Fraternali,

1999]:

• Accessibility: Users with different levels of computing skills and with different

needs are able to access web applications.

• Data management: The data in web applications is distributed in different for-

mats and using various technologies.

• Architecture complexity: Web application accessibility requires distributed, multi-

tier architectures to access the full range of information and services.

Chapter 2. Background and Literature Review 19

2.1.1 Security Threats for Web Applications

Web applications are built on complex systems consisting of various components and

technologies. The current web application development and testing frameworks offer

limited support for security validation. Web application development is an error-prone

process, and the implementation of security metrics requires substantial effort [Alalfi

et al., 2009]. Security relies on the following attributes [MSDN, 2011]:

• Authentication: The process of knowing who is accessing the information on the

server. All principals of a communication need to prove their identities in order

to gain access.

• Authorization: The process of controlling the information and actions that an

authenticated principal is permitted to access.

• Auditing: Developing effective auditing prevent clients from denying their trans-

actions.

• Integrity: Ensuring that transmitted data is protected from accidental or delib-

erate malicious modification.

• Confidentiality: Ensuring that the data remains private and confidential from

unauthorized users or eavesdroppers who monitor the flow of traffic across a

network.

• Availability: Ensuring that systems remain available for legitimate users. Denial

of service attacks cause the system to crash so that other users cannot gain

access.

A large number of web applications deployed on the Internet are open to security

vulnerabilities. According to a report by [Cenzic, 2014], 96% of tested web applications

Chapter 2. Background and Literature Review 20

in 2013 had vulnerabilities categorised as “ high risk”. In addition, in 2013 an average

of 14 vulnerabilities was estimated per web application. A recent report by [Hoff,

2013] showed that in 2012 alone there were more than 800 reported hacking incidents;

70% of those were carried out by exploring web application vulnerabilities.

Figure 2.2 shows the percentage of web applications with respective different common

types of vulnerabilities. This increases the difficulty of finding a universal solution

for each type, as each one requires a different fix. The three main categories of

threats were: session management vulnerabilities; (found in 79% of web applications

in 2013); Cross-Site Scripting (XSS) vulnerabilities; (60%); and authentication and

authorisation vulnerabilities (56%).

Figure 2.2: Percentage of Common Vulnerability Types in Web Applications
[Cenzic, 2014]

The development of web applications requires careful consideration with a focus on

security and navigation correctness. The use of model-based verification assists in

capturing the system’s behaviour. Furthermore, model-based verification can simplify

future analysis in order to improve or measure the quality of the system.

In addition, modelling plays an important role during the the software development

phase by formally defining the requirements and providing exhaustive detail. A cen-

tral goal of model-based development is to enable an analysis of the system, thus

Chapter 2. Background and Literature Review 21

ensuring quality at model level. There is a need to consider certain properties of the

system prior to implementation, such as deadlock freedom, timing consistency and

the availability of memory resources [Engels et al., 2003].

Following traditional software verification, the use of forward engineering-based ver-

ification simplifies the development process and establishes a basis for later phases,

such as verification. On the other hand, the use of reverse engineering methods

to extract models from existing applications simplifies maintenance and evaluation.

Forward-engineering verification employed in early development stages enables error

detection, alleviating the costs and effort of rectification with respect to errors in later

development stages [Huth and Ryan, 2006].

Web application modelling is viewed from different perspectives based on the purpose

of the verification.

In order to present and discuss the level of modelling and the scope of properties under

this research, we will demonstrate and discuss primary web application properties and

the attempts of both researchers and the industry to ensure correctness.

According to a survey carried out by [Alalfi et al., 2009], the level of web applications

modelling can be viewed from three perspectives: web navigation, web behaviour and

web content. Web content properties are outside the scope of this research, since they

mostly rely on checking the programming language and content components used.

The other two perspectives of web properties; web navigation and web behaviour are

discussed, along with related work, in the following sections.

Chapter 2. Background and Literature Review 22

2.2 Web Navigation Properties

Navigation within a web application is key to ensuring both its security and usability

[Kappel et al., 2006]. The web navigation properties are divided into three categories.

First, static navigation properties address properties such as broken links, reachability

(e.g., links to home page), consistency of frame structure and cost of navigation, such

as the longest path analysis.

Second are dynamic navigation properties, whereby some links may lead to different

web pages depending on the input. Input can be provided by either the user or the

system. The action then depends on the server that uses information, such as session

information, time or date, to apply access control and user privileges.

The third category of properties is interaction navigation analysis, which focuses on

properties outside the control of the web application, such as user interaction with

the web browser, e.g., the back and forward buttons. Table 2.1 lists an example of

navigation properties.

Property Description

d1 The page is reachable from the top page and always has a next page in
the transition.

d2 Every page is reachable from the top page.
d3 The top page is reachable from all pages.
d4 Eventually a chosen-page is visited.
d5 The first page is the login-page and the next page is either the login-

error-page or the home-page.
d6 Whenever the login-page is visited, the next page is either the login-error-

page or the login-success-page.

Table 2.1: Navigation Properties [Stock et al., 2014].

The work of [Homma et al., 2011] uses the Spin model checker [Holzmann, 2004] to

model web application navigation properties. The authors propose a method to use

Chapter 2. Background and Literature Review 23

two finite state automata, with the first representing page transitions and the second

modelling the internal state transitions of the web application.

[Castelluccia et al., 2006, Di Sciascio et al., 2003] modelled web applications as a

directed graph in which pages, links, windows and actions are represented as states.

The implemented prototype system embeds a component which automatically imports

web applications design from a UML tool; and then Computational Tree Logic (CTL)

specifications are added and translated as source code for the NuSMV model checker

[Cimatti et al., 2000]. The main advantage of this method is the ability to perform

a priori verification of the web application design by applying the verification process

to the UML-design of the web application in a single automated process using the

verification tool WAver.

[Ricca and Tonella, 2000, 2001] propose a model of web applications using a UML

class diagram. The model is used for reachability checking and semi-automatic test

case generation.

[Han and Hofmeister, 2006] present an approach that uses state charts to formally

model the adaptive navigation of web applications and checks for unreachable web

pages. This model only focuses on user mode (e.g., whether the user is logged in or

not) and page history (e.g., what pages the user has previously visited).

The work of [Haydar et al., 2005] proposes a way to discriminate states of interest by

introducing a specialised operator for Linear Temporal Logic (LTL), which is used to

verify web applications. This focuses more on the distinction of states; rather than

on the modelling of web applications.

In [Yuen et al., 2006], the authors propose a behavioural model of web applications,

called Web Automata, which is based on the Model, View and Control (MVC) model

architecture. They model the behaviour of a web application with dynamic content

Chapter 2. Background and Literature Review 24

as an extension of links-automata with the constraint logic feature of Extended Finite

Automata (EFA). They also present a testing framework for web applications based

on the behavioural model.

In [Haydar et al., 2004] the authors present a formal approach for modelling web

applications using communicating automata. They observe the external behaviour

of an explored part of a web application using a monitoring tool. The observed

behaviour is then converted into communicating automata representing all windows,

frames and frame sets of the application being tested by intercepting HTTP requests

and responses using a proxy server. Their model differs from the one proposed in this

research, as it focuses on external behaviour.

The approaches described in this section use either the graph-based model or UML

to represent the navigation properties of a web application. UML is considered as the

modelling standard for a wide range of applications and systems [Alalfi et al., 2009].

However, UML is not a suitable method for the verification of web applications as the

models need to be translated into formal specifications. The alternative method is to

use graph-based modelling methods that can be directly translated to a verification

form that is accepted by model checking tools. From the research listed in this section,

we identify the need for a sound method that also includes the dynamic behaviour of

web applications.

2.3 Web Security Properties

Since web applications are developed with availability across the Internet their se-

curity is a major concern for developers and users [Huang and Lee, 2005, McClure

et al., 2003, Tracy et al., 2002]. Web application developers review web application

Chapter 2. Background and Literature Review 25

vulnerabilities regularly. The Open Web Application Security Project (OWASP) is

concerned with web application security, and publishes a list of the most recent attacks

of web applications each year [OWASP, 2013], as well as general guidance for building

and verifying web applications. In addition, technical reports are published by other

organisations, such as Microsoft, which focus on developing secure web applications

using the .NET framework [Microsoft, 2011]. The Web Applications Security Con-

sortium (WASC) published a report on security threat classifications [WASC, 2011],

summarising the most common security threats of web applications.

The modelling of web behaviour properties is divided into two categories. The first

category is security properties, which focuses on access control and session control

mechanisms. Security properties are related to navigation properties. For example, a

wrongly designed navigation link could lead to unauthorised access to sensitive infor-

mation in the web application. The second category of web behaviour is instruction

processing properties ; this type of modelling addresses issues related to execution and

state changes at both ends, without communicating with each other.

Predicting the kinds of attacks that could affect the security of a web application

is challenging when observing the diversity of these attacks. However, by modelling

specific web application properties, it is possible to model the cause and effects of the

attacks [Corin et al., 2003].

According to a survey by [Li and Xue, 2014], the three primary security aspects that

should be considered to achieve an accepted level of security are:

• User inputs are potentially dangerous and cannot be trusted in an open envi-

ronment. Thus, input validation is an essential aspect of the web application

Chapter 2. Background and Literature Review 26

security to detect untrusted user inputs. Due to the unique features of web ap-

plications in contrast with other applications, input validation is a challenging

task.

• It is equally as important to employ session management to correlate web re-

quests from the same user into one web session during a certain period of time.

Communication between a user and a server is carried out through HTTP, which

is a stateless protocol. As a result, multiple inputs from the same user are

processed as independent requests originating from multiple users of the web

application. The session variables can be stored either at the client side (via

cookies) or at the server side (using files or databases). In the latter case, a

unique identifier session ID is assigned to index the explicit session variables,

which are stored at the server side and issued to the client.

• Additionally, the implementation of control flow between the user and server

must be accurate to protect sensitive information. This can be achieved ex-

plicitly through source code security checks or implicitly through the navigation

paths presented to users. Security checks examine the state of a web application

by relying on session variables and persistent objects in the database before re-

vealing sensitive information to the user. Authentication and authorisation are

the most common mechanisms for control flow in data-sensitive web applica-

tions, enabling an application to restrict its sensitive information and privileged

operations from authorised users.

In this research, the focus is on the three primary aspects of session management,

authentication properties and control flow properties. The remainder of this chapter

describes and discusses the aforementioned security aspects and the most common

attacks that can exploit vulnerabilities.

Chapter 2. Background and Literature Review 27

2.3.1 Session Management

Web application session management is essential to track and record user input and to

maintain accurate application states. Session management is accomplished through

collaboration between the client and the server. The simplest approach is for the

server to send a unique identifier (i.e. session ID) to the client.

Since the session ID is the sole proof of the client’s identity, its confidentiality, au-

thenticity and integrity need to be secured in order to avoid session hijacking. First,

a session ID should be randomly generated for each user’s visit and should expire

after a short period of inactivity timeout. Second, transmissions between the parties

should be protected by a secure transport layer protocol (i.e. SSL security protocol),

to ensure that attackers are unable to deduce the session ID and eventually control

the session. Finally, the user should make sure that the session ID provided by the

server is unique by not adopting a session ID from an external source. Attackers can

set a session ID to a value that is known to them.

A web session is formed as a pair of network HTTP request and response transactions

associated with the same user. Complex web applications require the retention of

information or status about each user for the duration of multiple requests [Stock

et al., 2014]. Therefore, sessions provide the ability to establish variables, such as

access rights and localisation settings, which will apply to each interaction between

the user and the web application for the duration of the session.

Web applications create sessions to keep track of anonymous users after the very

first user request. An example is saving the preferences of the user’s language. In

addition, web applications make use of sessions once the user has been authenticated.

The process ensures the ability to associate the user to any following requests, and

Chapter 2. Background and Literature Review 28

also employs security access controls, enables authorised access to the user’s private

data and enhances the usability of the application.

Table 2.2 lists examples of the session management properties:

Property Description

b1 Verify that sessions are invalidated when the user logs out.

b2 Verify that sessions time-out after a specified period of inactivity.

b3 Verify that the application does not permit duplicate concurrent user

sessions, originating from different machines.

b4 Verify that sessions time-out after an administratively-configurable max-

imum time period regardless of activity (an absolute time-out).

Table 2.2: Session Management Properties [Stock et al., 2014].

2.3.2 Authentication

Authentication is the process of verifying that an individual or entity is who they

claim to be. Authentication is commonly performed by submitting a user name or

ID and one or more items of private information that only a given user should know

[Stock et al., 2014]. A session record is then created with a cookie set, which the

browser will send with each subsequent request to the application. The application

then shows data related to the authenticated user (e.g., shopping cart content, posts,

and stored files) during their use of the application. Table 2.3 lists the most important

web application (authentication properties).

Chapter 2. Background and Literature Review 29

Property Description

a1 Verify that all pages and resources require authentication except those

specifically intended to be public.

a2 Verify that all authentication controls are enforced on the server side.

a3 Verify that re-authentication is required before any application-specific

sensitive operations are permitted as per the risk profile of the applica-

tion.

a4 Verify that a failure of the authentication controls ensures that attackers

cannot log in.

Table 2.3: Authentication Properties [Stock et al., 2014].

2.3.3 Control-Flow

Each web application maintains its own application control flow (also known as busi-

ness logic). Ensuring the correctness of the control flow is key to a secure web appli-

cation, and this mainly depends on the intended functionality of the application. The

main logic property is that users can only access authorised information and perform

operations allowed by the intended work flow of the web application [Li and Xue,

2014].

Web developers attempt to prevent such vulnerabilities. The interface-hiding mech-

anism, which uses the principle of security through obscurity, has been widely used

as an access control mechanism in web applications. However, this mechanism alone

is not sufficient to ensure the control flow of web applications. Attackers can simply

expose hidden links to access unauthorised information and operations. Secondly,

developers may manually use explicit security checks prior to all sensitive operations.

Chapter 2. Background and Literature Review 30

It is difficult to check and anticipate all possible execution paths that may lead to a

security vulnerability. It is likely that there will be a missing security check on certain

paths that will lead vulnerabilities to be exposed to attackers.

As discussed above, control flow vulnerabilities depend on the intended purpose of a

web application. For example, an online banking website may have a certain vulnera-

bility that allows attackers to bypass vital security pages or steps. The 2013 OWASP

report states that top ten security risks for web applications [Stock et al., 2014] can be

attributed to application logic vulnerabilities (i.e. missing functional access control,

invalid redirects and/or forwards). Table 2.4 lists control-flow vulnerabilities.

Property Description

c1 Verify that the application does not allow spoofed high value transac-

tions, such as allowing Attacker User A to process a transaction as Vic-

tim User B by tampering with or replaying a session, transaction state,

transaction or user IDs.

c2 Verify that the application is protected against information disclosure

attacks, such as direct object reference, tampering, session brute force.

c3 Verify that the application will only process business logic flows in se-

quential step order, with all steps being processed in realistic human

time, and restricting out of order, skip steps, process steps from another

user, or submitting transactions too quickly.

Table 2.4: Control-Flow Properties [Stock et al., 2014].

Chapter 2. Background and Literature Review 31

2.4 Model Checking

Model checking is based on a collection of techniques for the automatic analysis of a

system. A formal definition of model checking is

“ Model checking is an automated technique that, given a finite state model of a

system and a formal property, systematically checks whether this property holds for

(a given state in) that model [Baier et al., 2008].”

The model checker tool takes as input the description of the system and the properties

of that system. The system, in most cases, is defined as a finite state system, and

its properties are expressed as temporal logic formulas. The model checker verifies

whether the properties hold or not. In most cases, if a property does not hold, the

model checker provides a counterexample.

In practice, the model of the system being analysed is approximate, thus the results

are limited. Errors in the model may still remain after the verification. When applying

model checking to a system’s design, three main phases may be identified, as described

in [Baier et al., 2008, Clarke, 2008, Clarke et al., 1999]:

• Modelling Phase. The modelling phase consists of modelling the system in a

language acceptable to the one used by the model checker, then using the sim-

ulation on the model and finally using the property specification language to

formalise the property to be checked.

• Running Phase. The system is checked to see if the properties defined using the

model checker hold.

Chapter 2. Background and Literature Review 32

• Analysis Phase. This phase checks whether the properties specified are satisfied

or not. Depending on the result, the model is then refined, the properties are

re-designed and the process is repeated.

Figure 2.3: Model Checking Process.

Figure 2.3 gives an overview of the model checking approach. The requirements of

the system under consideration are first identified and these requirements are then

formalised in a property specification language. The system is then modelled in a

language acceptable to the model checker. A combination of the model and the

properties of the model are fed into the model checker. The model checker outputs

the results as ‘satisfied’ if no property is ‘violated,’ or ‘violated’ if a property fails. To

build any model for verification purposes, there are guidelines to be followed, in order

to correctly model the system under consideration.

The problem of model checking can easily be stated as defined by [Clarke, 2008]:

Let M be a Kripke structure [Kripke, 2007] which is graphical transition system that

represent the behaviour of a system . Let f be a formula of temporal logic (i.e. the

specification). Find all states s of M such that M,s |= f (see Figure 2.3). The term

model refers to whether the structure M was a model for the formula f. It does imply

the abstract model of the system under study.

Some of the main advantages of model checking over other verification techniques,

such as automated theorem proving or proof checking [Clarke, 2008], are:

Chapter 2. Background and Literature Review 33

• The checking process is automatic. Users need to enter a formal description of

the system model and its specifications and the model checking tool will produce

a result.

• Model checking is faster than traditional verification techniques (i.e. testing),

and therefore it saves time and expense.

• The model checker produces a counterexample if the specification is not satisfied.

Counterexamples are important to show the reason why the specification does

not hold; this assists in the debugging of complex systems.

• It can evaluate partial specifications. In complex systems, model checking can

be used during the design phase.

• Temporal logic can express essential properties for reasoning about concurrent

systems.

In contrast, one of the main disadvantages of model checking is the state explosion

problem, since model checking searches the state space of a system, which may increase

exponentially with the system’s description size.

This problem comes from having so many possible, interleaved interactions between

processes that the state space grows exponentially compared to the number of pro-

cesses. If such behaviour is inherent to the system, the only way out of it is to use

bit-state hashing, which implies only partial checking of the state space. This is based

on the idea that the presence of errors is easier to detect than their absence [Bosnacki,

1998, Clarke, 2008]. Partial-order reduction, which is used by the Spin model checker,

is one of the most effective solutions to this problem [Clarke, 2008]. Partial-order re-

duction means that instead of generating all possible, interleaving execution paths

in the state space, it is possible to generate only representatives of certain classes of

Chapter 2. Background and Literature Review 34

execution paths. As [Holzmann, 1997] describes, the reduction is based on the obser-

vation that the validity of an LTL formula is often insensitive to the order in which

concurrent or independently executed events are interleaved in the depth-first search.

This makes it possible to record state changes and in this way to ascertain that two

different paths of execution are the same, which in turn enables the verifier to remove

the other paths, as they would not contribute anything new to the verification. In

contrast, state compression means simply compressing the state data, which naturally

incurs runtime overhead. Both partial-order reduction and state compression are

guaranteed not to make the system states unreachable [Holzmann, 1997].

2.4.1 Model Checking Tools

Model checking tools are being developed continuously in both industry and the re-

search community. Tools such as ProVerif [Blanchet, 2001], Scyther [Cremers,

2008], NuSMV [Cimatti et al., 2000] and Tamarin [Meier et al., 2013] are examples

of model checking tools used for the verification of security protocols and can provide

simulation and verification of their properties. Each of the tools has a different level of

ability to model specific properties of the system under verification. Moreover, tools

such as ProVerif provide support for modelling intruders and cryptographic primitives.

The Spin model checker [Holzmann, 2004] is the primary tool used in this research;

it was chosen for its simplicity and high degree of expressiveness. In contrast to

other model checkers, Spin has the ability to provide insights into the first stages of

modelling through its simulation charts. Since Spin does not support the modelling

of time we integrate discrete time into the models.

Chapter 2. Background and Literature Review 35

The second model checker used in our research is Uppaal [Amnell et al., 2001].

Uppaal is used for the verification of real-time systems. The graphical editor of

Uppaal makes it easy to design a system model, along with a graphical simulator

that shows the possible dynamic behaviour of a system description.

2.5 Temporal Logic

Temporal logics are used to describe event sequences in time without the explicit use

of time. Temporal logics were developed to investigate how time is used in natural lan-

guage arguments by philosophers and linguists [Clarke, 2008, Hughes and Cresswell,

1996]. This work uses two model checking tools: the Spin model checker uses LTL,

while the Uppaal model checker use CTL for verification [Burstall, 1974, Kröger,

1977, Pnueli, 1981].

The usage of temporal logics for reasoning about systems was proposed by [Burstall,

1974, Kröger, 1977, Pnueli, 1981]. The two most-used branches of temporal logic

are the Linear-time Temporal Logic (LTL) and the Computation Tree Logic (CTL).

LTL considers every event in time as having a unique possible future; the events are

checked over a classical timeline. In contrast, CTL expresses each moment in time

as having several possible futures. Thus, CTL views the structure of time as a tree,

rooted in the current time with any number of branching paths from each node of

the tree. LTL and CTL have a common subset of properties, but neither of them

completes the other one. Properties exist that are expressible in LTL but cannot be

expressed in CTL, and vice versa. CTL* is another temporal logic that contains both

LTL and CTL.

Commonly, three different types of properties are distinguished in verification:

Chapter 2. Background and Literature Review 36

Safety Property: Describes a behaviour that may not occur on any path (”Some-

thing bad may not happen”). In order to verify a safety property, all execution paths

need to be exhaustively checked.

Invariance Property: Describes a behaviour that must hold on all paths.

Liveness Property: A liveness property implies that ”something good eventually

happens”, and a certain state will always be reached in a system.

2.5.1 Linear Temporal Logic (LTL)

Linear Temporal Logic (LTL) [Fisher, 2011, Holzmann, 1997, Venema, 2001] reasons

over linear traces through time. At each time instant, there is only one real future

state that will occur. Traditionally, that timeline is defined as starting “now,” in the

current time step, and progressing infinitely into the future.

Syntax of LTL formulas are composed of a finite set Prop of atomic proposition vari-

ables (denoted by letters p, q,...), the Boolean connectives ¬,∧,∨,→ and the temporal

connectives U(until), X (next time), G (globally, also known as the � sample) and F

(eventually, also known as the ♦ sample). Intuitively, the Xϕ states that ϕ is true in

the next time step after the current one. The ϕUψ states that either ψ is true now or

ϕ is true now and ϕ remains true until such a time when ψ holds. Finally, �ϕ means

that ϕ is true in every step, while ♦ϕ designates that ϕ must either be true now or

at some future time step. Table 2.5 lists all the operators used in LTL formulas and

their equivalent used in the Spin model checker verification:

Formally, an LTL formula ϕ has the following syntax, where p is an atomic proposition

from some set atoms:

Chapter 2. Background and Literature Review 37

Operator Math or Logic spin
not ¬ or p !
and ∧ &&
or ∨ ||
implies → − >
equivalent ↔ < − >
until U U
always or globally � or G []
eventually or in the future ♦ or F <>
next X X

Table 2.5: LTL formula operators with their mathematical and spin notation

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Gϕ | Fϕ | Uϕ | Xϕ

For example, we verify a navigation property “ the home page is always followed by

an account page” in a web application model. We use the LTL formula in 2.1 where

p is defined in the Spin model checker as the home page and q as the account page

and ♦ means eventually.

([](p− ><> q)) (2.1)

More properties will be expressed in LTL later in Chapter 3.

2.5.2 Computational Tree Logic (CTL)

Computational Tree Logic (CTL)[Fisher, 2011] is a branching time logic that reasons

over many possible traces through time. Unlike LTL, for which every time instance

has exactly one immediate successor, CTL has a finite, non-zero number of immediate

Chapter 2. Background and Literature Review 38

successors. CTL was the first logic to be used in model checking [Clarke and Emerson,

1982]. The CTL branching timeline starts in the current time step and may progress

to any one of potentially many possible infinite futures. Furthermore, in reasoning

along a timeline, CTL operators must also reason and include all possible branches.

CTL is similar to LTL, in so far as the temporal operators are all two-part operators,

with one part specifying the location to occur along a future timeline and another

specifying whether this action takes place on at least one branch or all branches. The

path operators are:

• A: On all future paths, starting from the initial state.

• E: On some future paths, starting from the initial state.

The second model checker used in this research, Uppaal, uses a simplified subset of

CTL. The properties of web applications are expressed in CTL.

For the purpose of understanding the logical expressiveness of LTL and CTL in verify-

ing web application properties, we consider the differences between the logics. [Vardi,

2001] states that the linear and branching time logics correspond to two distinct views

of time, and therefore LTL and CTL are expressively incomparable. In general, CTL

allows explicit existential quantification over paths, which gives it an expressive na-

ture in cases where there is a need to reason about the possibility of the existence of

a specific path through the transition system Model M. This includes instances such

as when M is best modelled as a computation tree, such as the dynamic nature of

multi-pages from a single page. For example, there are no LTL matches of the CTL

formulae A Xp, since LTL cannot express the possibility of p occurring on some path

but not all paths next time or in the future. Moreover, it is impossible to express in

LTL scenarios where distinct behaviour on distinct branches occurs at the same time.

Chapter 2. Background and Literature Review 39

On the other hand, it is difficult to use the CTL logic in situations where the same

behaviour may occur on distinct branches at distinct times; here the ability of LTL

to describe individual paths is important and useful. [Vardi, 2001] explains that the

former rarely happens, and LTL is found to be more expressive in other ways than

CTL.

A further comparison between the logics will be discussed in Chapter 5.

2.5.3 Temporal Logic Patterns

Temporal logic formalisms are commonly used to describe states and event sequences

in systems. Defining temporal formulas can be a straight-forward process if the prop-

erty is small. However, when there is a need to verify complex properties, it is advis-

able to use the formula patterns described in [Dwyer et al., 1999, Salamah et al., 2005].

Table 2.6 shows the temporal patterns that were collected from research studies:

Pattern Description

Absence A given state q does not occur within a state scope.

Existence A state q must occur within a scope.

Bounded Existence A given state q must occur a number of times in a scope.

Universality A state q must occur through the scope.

Precedence A given state p must always be preceded by a state q within a

scope.

Response A given state p must always be followed by a given state q within

a scope.

Table 2.6: Temporal Logic Patterns

Chapter 2. Background and Literature Review 40

[Corbett et al., 2000] developed pattern scopes, where the execution of the temporal

formula takes place in a specified region of the scope. There are five basic scopes

where a pattern can hold:

• Globally: A given state must hold throughout the system’s execution.

• After: A given state p must occur after the first occurrence of a state q.

• Before: A given state p must occur before the first occurrence of a state q.

• Between: A given state p must occur between a pair of designated states.

• After and until: The state must occur after one state until the next occurrence

of another state.

The use of the temporal logic patterns assists in reducing the complexity of using tem-

poral logic formulas. We use the patterns in verifying properties in Spin in Chapter

3.

2.6 Timed Automata Theory

The second model checker used in this research, Uppaal, is based on the theory of

timed automata, hence the importance of introducing the theory in this section.

Timed automata theory [Alur and Dill, 1994, Bengtsson and Yi, 2004, Kourkouli

and Hassapis, 2005] is defined as a formal framework for modelling and analysing the

behaviour of real-time systems. Real-time systems are described as systems that must

fulfil time constraints, such as deadlines, response time, communication delays and

execution. In secure web applications, time constraints are crucial to deliver security

to both the user and the web application. Timed automata are finite-state directed

Chapter 2. Background and Literature Review 41

graphs extended with real clock variables; time can elapse when it is in a state. When

a transition occurs, some of the clocks may be reset to zero, and the reading of a clock

is equal to the time that has elapsed since the last time the clock was reset.

Clock constraints, called guards, are used with each transition to restrict the be-

haviour of the automaton. A transition represented by an edge can be accepted when

the clock’s values satisfy the guard labelled on the edge. A clock constraint is also

associated with each location of automaton; this is called the invariant of the location.

Time can elapse in the location only as long as the invariant of the location is true.

Timed automata theory can assist in reachability analysis by determining a final state

or a set of final states; the analysis should determine if those states are reachable by

means of triggering transitions from the initial state.

The rest of this section discusses formal definitions of the syntax and semantics for

timed automata based on [Behrmann et al., 2004, Bengtsson and Yi, 2004].

2.6.1 Formal Syntax

Let X be a set of clock variables, then the set Φ (X) of clock constraints φ is defined

by the grammar φ ::= x ∼ c|φ1∧φ2, where x ∈ X, c ∈ N, and ∼∈ {<,6,=,>, >}. A

clock interpretation ν for a set X is a mapping from X to R+ where R+ denotes the

positive real numbers including zero. A clock interpretation ν for X satisfies a clock

constraint φ over X, denoted by ν |= φ, if and only if φ evaluates to true with the

values for the clocks given by ν. For δ ∈ R+, ν + δ denotes the clock interpretation

which maps every clock x to the value ν(x) + δ. For a set Y ⊆ X, ν [Y:= 0] denotes

the clock interpretation for X which assigns 0 to each x ∈ Y and agrees with ν over

Chapter 2. Background and Literature Review 42

the rest of the clocks. We let Γ(X) denote the set of all the clock interpretations for X.

Definition 1 (Timed Automaton) A timed automaton then is a tuple (L, l0,Σ,

X, I, E), where

• L is a finite set of locations.

• l0 ∈ L is the initial location.

• Σ is a finite set of labels.

• X is a finite set of clocks.

• I is a mapping that labels each location l ∈ L with some clock constraints in Φ

(X) (the location invariant).

• E ⊆ L × Σ × Φ (X) × 2x × L is a set of edges.

An edge (l,a,φ, λ, l
′
) represents a transition from location l to location l

′
on the sym-

bol a. The clock constraint φ specifies when the edge is enabled and the set λ ⊆ X

gives the clocks to be reset with this edge. The semantics of a timed automaton (L,

l0,Σ, X, I, E) are defined by associating a transition system with it. A state is a pair

(l, ν), where l ∈ L, and ν ∈ Γ(X) such that ν |= L (l). The initial state is (l0, ν0),

where ν0(x) = 0 for all x ∈ X. There are two types of transitions (let δ ∈ R+ and let

a ∈ Σ). First, ((l, ν) , (l, ν + δ)) is a δ-delay transition iff ν + δ
′ |= I(l) for all 0

6 δ
′
6 δ. Second, ((l, ν) , (l

′
, ν

′
)) is an a-action transition iff an edge (l,a,φ, λ, l

′
)

exists such that ν |= φ, ν
′

= ν[λ := 0] and ν
′ |= I (l

′
).

Chapter 2. Background and Literature Review 43

Figure 2.4: Attack Example

2.7 Modelling an Intruder (Man in the Middle)

In this section, we provide a description of the attack model used later in the modelling

of a compromised system in the Spin and Uppaal chapters.

An intruder can tamper with the contents of individual messages during their trans-

mission from the source to the destination. In the presence of such an intruder with

certain rights, the aim is to validate whether the security specifications under study

behave in a secure manner. Such tampering may go undetected; that is, the attacker

may disguise itself to impersonate the trusted source. The attacker may tamper with

the message to achieve denial-of-service (DoS) or replay attacks, in order to initiate its

own session with one of the parties. Figure 2.4 illustrates the concept in more detail.

In this figure, The user sends messages to the server. An attacker intercepts the mes-

sages, tampers with them and then forwards the modified messages to the server. This

kind of tampering may go undetected, resulting in attacks, such as denial-of-service

and replay attacks.

It is assumed that the attacker in this model has the abilities specified by [Dolev and

Yao, 1983]. These are the ability to:

• Overhear and intercept all the messages over the network.

Chapter 2. Background and Literature Review 44

• Modify the messages.

• Generate new messages using information from overheard messages and some

prior information.

• Send a new or captured message to another entity in the system.

The intruder collects knowledge about both parties. The knowledge is used during a

session to create and send the intruder’s own messages or to tamper with other agent

communication.

SSL security protocol [Frier et al., 1996, Rescorla, 2001] is considered secure. However,

intruders now attack the communication process not the SSL protocol itself. The

process is used to attack the transition from an unsecured connection to a secure one,

in this case from HTTP to HTTPS, where the intruder is attacking the bridge and

can act as man-in-the-middle in an SSL connection before the communication occurs.

Tools such as the SSLstrip assist in breaking the communication [Elks, 2011, Gangan,

2015].

2.8 Conclusions

This chapter discussed the main concepts of our research. The chapter provided the

background for later chapters. The chapter can be summarized as follows:

• In Section 2.1, we discussed web application development challenges. The dy-

namic nature of web applications was identified as the main challenge. In Chap-

ter 3, we show how it is possible to model the dynamic navigation of web appli-

cations.

Chapter 2. Background and Literature Review 45

• Section 2.2 identified navigation properties of web applications and discussed

related work. We distinguished our research from related work by verification

of both static and dynamic properties in a simple model.

• In Section 2.3, we discussed web application security properties. Session man-

agement, authentication and control flow vulnerabilities were analysed with a

focus on the main properties.

• Model Checking theory was presented in section 2.4, with a brief presentation

and comparison with other verification techniques.

• Section 2.5 is a primary section of our research. The temporal logic branches

LTL and CTL will be used to verify properties in the following chapters. We

discussed and compared both logics. We also listed the key logic patterns in

Section 2.5.3 that will assist in verifying complex properties.

• Section 2.6 presented the timed automata theory and its formal syntax.

• Since we use an intruder to show the differences in the sequence of actions and

timing in our models, Section 2.7 discussed how an intruder is modelled.

The next chapter presents the first model checking tool, Spin, and describes how it

is used to model and verify a web application.

Chapter 3

Modelling in SPIN

This chapter discusses the Spin model checker used to model a web application and

verifies the properties discussed in Chapter 2. Firstly, an overview of Spin and its

input language Promela is given. Secondly, as Spin does not support the modelling

time concept, the integration of time into Promela is discussed, along with examples

from existing literature. There is then a detailed modelling of the web application

example (online banking web application). Finally, the properties are verified and

there is a discussion of the verification options in Spin.

3.1 The SPIN Model Checker

Spin is an explicit state model checker, developed by Gerard J. Holzmann [Holzmann,

2004] for verifying communication protocols. The specification language used for Spin

is called Promela. Spin can be used in two methods, as a simulator and as a verifier.

In the former, Spin provides the advantage of creating a quick impression of the system

behaviour as it is being built. Spin uses a graphical user interface (ispin) in which a

46

Chapter 3. Modelling in Spin 47

model can be visualised during the simulation runs, and therefore assists in debugging

the model from the first stages. Moreover, when the verifier is used, the simulator

displays the error trace if an error is found. To tackle and reduce the state explosion

problem; Spin provides advanced features:

• partial-order reduction in order to reduce the number of reachable states;

• bit-state hashing;

• state compression in order to reduce the amount of memory needed to store all

the states.

The Spin model checker has three main components:

Simulator In the first stages of modelling a system, the simulator has three options

to check the correctness of the model: random, interactive or guided simula-

tion. With a random simulation Spin chooses non-deterministically among all

executable statements which one to execute next. Whereas in an interactive

simulation, Spin gives the user the option to choose from all possible state-

ments. A guided simulation option is only activated when there is an invalid

verification, i.e. if a property is not satisfied, the guided simulation will show

the trail that leads to the counterexample.

LTL Translator An LTL formula is used to define a property ϕ, that should hold for

a given system model. The Spin verifier will, at this point, show the opposite,

meaning the negated LTL formula ¬ϕ is translated into a never claim to verify

the model. Propositional variables in an LTL formula can only be variables of

the Boolean type, which are defined as global variables or symbols in the model.

Chapter 3. Modelling in Spin 48

Verifier Generator The verifier generates a C program for the model that is checked

by the program pan for counterexamples to a specified property ϕ

3.1.1 Promela

The Promela modelling language is a non-deterministic, multi-process language.

The name Promela is an acronym for Process Meta-Language. It is not meant to be

an implementation language, but rather a model description language. The emphasis

therefore is on modelling on process synchronisation and coordination, and not on

computation. This section is not meant to give a complete overview of Promela,

but rather a brief introduction to enable the following implementation models to be

understood. A further explanation of the language can be found in [Holzmann, 2004].

The basis building of Promela consists of asynchronous processes, buffered and

unbuffered message channels, synchronising statements and structured data.

In order to create a model in Spin, first a process is declared. Processes are the only

active components in Promela; messages and variable states are only changed or

inspected by a process. A process is declared using the keyword proctype.

1 proctype Client () {

2 /* code for Client */

3 }

This process type is named Client, and in the declaration body a list of local decla-

rations and/or statements are added. A process is either executed by the call run or

by adding the prefixed active statement before the proctype statement.

Processes communicate with each other through channels and global variables. There

are four basic variable types: bit or bool (1 bit), byte (8 bits), short (16 bits), and

Chapter 3. Modelling in Spin 49

int (32 bits). Variables can be defined as global or local within each process. It is

recommended to use a data type with as few bits as possible to reduce the state space

during the verification phase. The variable type mtype, can be used to define the

symbolic names of numeric constants. A mtype is used in a web application model to

identify each message and to keep track of the sequence of communication. Table 3.1

shows the operators used in Promela. The symbols can be defined using (define).

The scope of a symbol is global, and an expression is a fixed number, a boolean

expression, or an expression that assigns a value to the symbol.

Channels in Promela are used for processes to communicate with each other. A

channel is defined using the keyword chan. There exist two types of channel in

Promela, asynchronous or synchronous (rendezvous): The asynchronous channels

are buffers that can store a finite number of elements. The synchronous channels

have a length of zero. A channel is blocked unless there is a message waiting and the

message matches the pattern of the receive statement. Likewise, writing to a channel

is blocked if the channel is full. In the case of a synchronous channel, reading from

it will always be blocked until the sender is ready to send, and the channel is always

full until the receiver is ready to receive. The capacity of the buffer and the type of

message can be given as parameters when the channel is declared. For example:

1 chan network = [0] of { mtype }

2 network!login /*send the message "login"*/

3 network?login /* receive the message login*/

4 network?x /* receive the message , and store in variable x*/

5 network?eval(x); /* receive the message , only if it contains x*/

6 network?_ /* receive the message , and do not store it*/

In this Promela code, a channel called network is initialised as a synchronous channel

with a length of zero. The message type is mtype. To send or to receive a message

the symbols ! and ? are used. If a process sends a message, the other process can

Chapter 3. Modelling in Spin 50

receive this message and has the option to store its value to x of the same type mtype.

With network ? eval(login); the message is only received and removed from the

channel if the message’s content is equal to the value of the variable x. The predefined

write-only is used to receive a message if the value of the message is irrelevant.

Operators Associativity Comment

()[] . Left to right Parentheses, array brackets, field selection
! v ++ – Right to left Negation, complement, increment, decre-

ment
* / % Left to right Multiplication, division, modulo
+ - Left to right Addition, subtraction
<<>> Left to right Left and right shift
<<= >>= Left to right Relational operators
==, ! = Left to right Equal, unequal
& Left to right Bitwise and
∧ Left to right Bitwise exclusive or
| Left to right Bitwise or
&& Left to right Logical and
|| Left to right Logical or
− >: Right to left Conditional expression operators
= Right to left Assignment

Table 3.1: Operators in Promela.

In Promela, the control statements are selection, repetition and jump. Spin

executes the statements sequentially in the process body. If a statement blocks (eval-

uates to false), no other statement in the process can execute until the statement

evaluates to true, which may be the result of a variable assignment or a sent message.

In order to alter the process flow, Promela has two kinds of loop constructs: selection

and repetitive constructs. The constructs consist of one or more option sequences. A

sequence begins with a guard, and if the guard evaluates to true, the option sequence

is chosen for execution.

Selection Construct A selection construct starts with the keyword if and ends

Chapter 3. Modelling in Spin 51

with the keyword fi. In between, several statements are defined. Each state-

ment starts with a double colon, followed by a statement called guard that either

evaluates to true or false, an arrow, and then a sequence of statements.

An example of a simple selection construct:

1 if

2 :: (statue != HomePage) -> option 1

3 :: (status == HomePage) -> option 2

4 fi

Here, at most one option from the list will be executed. If more than one guard

is true, the selection between them then becomes non-deterministic. A guard

can be any Promela statement or expression which blocks until at least one

guard is true. In the case that all the guard conditions in a loop construct eval-

uate to false, then there is no available option for execution and the execution

process blocks. A special guard else statement is used in selection or repetition

structures to define a condition that is true, if and only if, all other guard con-

ditions in the sequence structure evaluate to false. In contrast to the predefined

keyword timeout, else provides an escape clause at the process level, while

timeout does so at the system level.

Repetition Construct The repetition construct starts with the keyword do and

ends with od. It has the same syntax as the selection statements with guards and

is followed by different statements. After the sequence of statements executed

is finished, the loop is automatically repeated from the start, while the selection

construct moves on to the next statement. The repetition construct can be

broken by either transferring control explicitly with a goto statement or by

executing a break statement.

An example of a simple repetitive construct:

Chapter 3. Modelling in Spin 52

1 do

2 :: (timer != 0) -> timer ++

3 :: (timer == 0) -> break

4 od

The body of the loop in this example will stop when the process reaches zero.

If (timer == 0) the loop is exited. In the case of (timer != 0) the process

increments the timer, and then continues around the timer. The keyword break

is used here to exit the loop and the process executes the statements following

the keyword od.

Jump statements In Promela it is possible to use the prefixed keyword goto with

a label to jump to another statement within the same process. Moreover, labels

are needed for the LTL formulae at the verification phase and there are three

special labels end, progress and accept which will be discussed later in the

verification section. Labels are marked with a single colon and put in front

of a selection or repetition construct. Here is an example as used in the web

application model to check the guard statement and then to move to another

label that represent a different (Page).

1 HomePage:

2 statement 1 ; statement 2 -> goto AccountPage

3 AccountPage:

In Spin an internal location counter points in every process to the statement that

executes next. As Spin cannot execute two statements at the same time, in every

step it chooses non-deterministically between one of the executable statements of all

processes. After executing the first statement, Spin chooses another possible state-

ment from the same process. In some cases it is important to group a sequence of

Chapter 3. Modelling in Spin 53

statements into one logical group that is be executed as one indivisible unit, non-

interleaved by other processes. Promela provides two structures to avoid this: an

atomic block or d step block, which abstracts the statements into one state change.

Neither allow the interference of other processes until the statement sequence has fin-

ished. This is useful for reducing the size of the state space and avoiding unnecessary

and trivial state changes. The atomic allows non-determinism while the d step can

be executed significantly more efficiently by the verifier, but d step does not allow

non-deterministic selection.

3.1.2 Verification in Spin

Spin offers the following ways to express correctness properties:

Assertions A basic assertion expresses invariants and can occur anywhere in the

model in the form of: assert(expression). Assertions are the only constructs

that are checked during the simulation phase. As long as the expression provided

is evaluated to a true or a non-zero integer value, the assertion statement has no

effect on the simulation process. If the assertion is false, Spin reports an error

and exits.

Trace assertions are similar to basic assertions but apply to channels. They are

used to monitor the event sequences of messages exchanged between the pro-

cesses. These events do not generate a new behaviour but they are required to

match send or receive events on the same channels in the model.

Never Claim A never claim is used to express finite or infinite system behaviour that

should never occur. It can be generated automatically from an LTL formula. In

contrast to trace assertions, never claims match boolean propositions on system

Chapter 3. Modelling in Spin 54

states, while trace assertions match event occurrences that can occur in the

transitions between system states.

Meta labels Promela uses special labels with the goto keyword, and it is evaluated

during the run of the verification phase. The possible label types are: end,

progress and accept. The first label type is the End-state labels that are used

in Spin for the verifier to be able to distinguish between valid and invalid end-

states. When a timeout occurs, end-states are evaluated. Statements can be

made valid end-states by adding the label end. In this case all other end-states

are considered to be invalid.

The Progress-state labels are used to specify a liveness property. These labels

are used to mark a state where effective progress is being made in an execution.

For example, when a sequence number is being incremented or when a valid

message is accepted by a receiver in a communication protocol. The last label

type is the Accept-state labels which are mostly used in never claims that are

generated from LTL formulae. States can be marked as accept to ensure that

when the model is verified, the state must be reached at least once.

Promela has no mechanism for expressing time related properties or clocks. The

timeout statement is the only approach in this direction; its value becomes true when

there are no executable statements in the system. There are attempts to model real

time in Promela, which are presented in the next section with examples from the

literature about integrating time constraints into Spin.

Chapter 3. Modelling in Spin 55

3.1.3 Modelling Time in SPIN

The Promela language is designed to specify systems of asynchronous processes and

for proving functional correctness of a given model. It abstracts from the behaviour

of the processes’ scheduler and from any assumptions about the speed of execution. If

integrating time or clock variables to Spin, this could lead to an increase in execution

time and memory and may reach a state explosion problem. There are methods to

simulate time in Spin such as an abstraction of time using constraints that is true or

not, or by adding a process that controls time.

An example is the work of [Bosnacki, 1998], that creates a set of macros at the start

of the model which add discrete time. However, by adding an extra timer process, the

system can be difficult to follow and even predicting the outcome and the number of

states can increase rapidly. In addition, all actions that take time have to synchronize

on time and the passing of time acts like a scheduler for the model; this makes the

model hard to analyse. [Tripakis and Courcoubetis, 1996] extended Spin with timed

Büchi automata, and created an extension called RT-Promela. The drawback is

that it uses an old version of Spin (version 2.9) while the current version is 6.1.

The work of [Brinksma et al., 2002, Ruys, 2003] used the Variable time advance

method. By creating a variable that simulates time and changes forward to the next

moment in time when some event triggers a state transition, all intervening time is

skipped.

In order to model realistic web application properties that include time, a model will

need to include time constraints to represent time-out situations and to keep track of

the sequence of time and actions between different models.

Chapter 3. Modelling in Spin 56

3.2 Modelling Web Applications in Spin

The rest of this chapter will show how we develop a model of a simple transaction

between a client and a server. For this purpose we use the model design approach

developed by [Holzmann, 2004]. In order to achieve a correct model and to reduce

the level of complexity, we start with the basic structure that captures the essential

characteristics of the model. We then evolve the model gradually to cover more

properties. As a result, we can analyse the behaviour of the model after each addition.

In the case that the complexity grows rapidly, we use the verification tool to check

that the model is built accurately and the results are correct. Failing to follow such

an approach could lead to a complex model and a time consuming process with no

clear results.

For modelling a web application in Spin we start modelling gradually and then add

a function with each step. The structure of developing our model is as follows:

• The first model in section 3.2.1 will only contain one session of the client logging

into his/her online banking account to make a simple transaction, as shown in

Figure 3.1 and the model terminates at the end of the run. We examine the

basic properties of authentication, navigation and session management at this

stage of the model.

• In the second model in section 3.2.2 we model a dynamic page navigation where

different input lead to different pages. We keep the model simple and verify

further properties since now the client can logout and re-login, the sequence of

actions will be different.

Chapter 3. Modelling in Spin 57

Figure 3.1: Model of Online Banking.

• In the third model we introduce a novel approach for modelling discrete time

in Spin. We add an extra process that controls the session, and we then verify

properties that rely on timing, such as session management properties.

• The final model in section 3.2.4 includes an intruder that becomes active in the

middle of the communication. We examine the difference in the sequence of

actions and timing between a secure model and a compromised model.

Each model will include a description of the processes involved, and we show the

outcome of the simulation phase of the first execution. We then show how to verify

the properties in Spin, and we will include the result for each property. The results

from Spin show the following:

• Property verification result, if the output result shows zero then there is no

error found, but if the output shows one then the property does not hold for the

model under verification.

• Depth reached.

Chapter 3. Modelling in Spin 58

• Number of States (stored and matched).

• Number of transitions.

• Total actual memory usage.

• Elapsed verification time.

In the verification phase in each model we use different approaches to verification

as discussed in section 3.1.2 depending on the properties. Some properties can be

checked by assertions in the code, while in other properties it is more effective to use

LTL formulas.

3.2.1 Model without Timer

The first experiment of modelling a web application is without the addition of time

constraints. This will assist in understanding the difference between both models

(with timed constraints and without the notion of time) in terms of timing, modelling

complexity, and verification results. In the first stage in explaining the process of the

first model we explain the symbolic names (mtype) used to define the names of the

range of messages used in the interprocess message exchange and all the variables that

keep track of the client’s location and status. Then, the specification of the client-side

in Promela will be discussed. Finally, the possible properties’ verification will be

discussed.

In this example a model is created in Promela containing a client communicating

with a server to enter his account and proceeding with a simple transaction (e.g.

making a payment). At each stage of the communication a record of the client’s

location and status (i.e. logged-in or logged-out) will be saved to two global variables

Chapter 3. Modelling in Spin 59

(Status and Page) in order to be used for the verification when the properties are

specified using LTL and for the flow control of the model.

1 mtype page = err;

2 mtype Status = err;

3 mtype partnerA = err;

4 mtype partnerB = err;

5 mtype statusA = err;

6 mtype statusB = err;

Listing 3.1: Global variables of first model

The global variables shown in listing 3.1 are first used to track the message exchange

and the status of both the client and server in the model, and also to assist in the

authentication phase. Six variables are defined to keep track of the communication

and to check the LTL properties in a later phase:

The first two global variables Status and page are used to keep track of the location

of the client and the status of the communication (logged-in, logged-out and timed-

out). partnerA is set to true when the client sends a request to login with the server.

PartnerB is set to true when the client is known to the server. StatusA is set to

true when the authentication is acknowledged by the server. StatusB is similar as

the client is now authenticated to the server. We assign each of the variables to the

symbolic name err to avoid being left uninitialised, the value of the variable is zero,

and in this case it is outside the value range of possible mtype values.

Next we declare the symbolic names mtype as in listing 3.2; which is used to define

the names of the range of messages used in an interprocess message exchange. The

first set represent messages that the client sends in order to navigate within the web

application. While the second set is used by the status variables Status and Page, and

Chapter 3. Modelling in Spin 60

is also used by the client process when creating new messages. Spin parser assigns a

unique positive integer value to each name which represents it internally. The Status

and Page variables can take any value from the mtype declaration. To represent a

simple abstract of an encrypted message, the typedef in line 5 is used to declare an

abstract of an encrypted message Crypt that contains two entries: a session id and

the content that represents the request and the response between the client and the

server in the model. It will be used at the server side in order to check the content

and to process an action.

1 mtype = {ok , err , ack , msg1 , msg2 , msg3 , msg4 , msg5 ,

2 Logout , sessionId , user , server };

3 mtype = {home , account , payment , confirm , logout , error , login

};

5 typedef Crypt { mtype session , content1}

Listing 3.2: Symbolic names of first model

The network in listing 3.3 is modelled as a global single message channel that is shared

by all on the network. In order to keep the model simple and to reduce the size of

the model, synchronous communication is used which is shown by a buffer length of

0. We define a message on the network as triple that consists of a message number,

the intended receiver, and the encrypted message Crypt which contains the values of

the session id and the type of request.

1 chan network = [0] of {mtype , mtype , Crypt};

Listing 3.3: Channel of first model

The first process in the model is the client process that initiates the communication

with the server process as shown in listing 3.4. At the start, the client process is

Chapter 3. Modelling in Spin 61

declared with the prefix active defining that it starts automatically during the ex-

ecution. At first the client assemble a message (msg1) that contains the session id

and the client id to the server. This exchange represents the request to login to his

account. If the server process replies with a (ack) it will then be checked using the

condition as shown in line 13, that it is from the server and that the session id is the

same. Then it will set the global variable statusB to ok. The authentication process

is a simple abstract that only serves the model requirements.

1 active proctype Client ()

3 Crypt messageUS; /* encrypted message to Server */

4 Crypt data; /* received encrypted message */

5 A:

6 partnerA = server;

8 /* login message */

9 messageUS.session = sessionId;

10 messageUS.content1 = user;

11 network! msg1 (partnerA , messageUS);

12 network? ack (partnerA , data);

13 (data.session == sessionId) && (data.content1 == server)

14 statusB = ok;

Listing 3.4: Client process of first model

In each message as in 3.5, the client sends his session id and the request for each page

by changing the messageUS.content1 to a page name as declared in the symbolic

names set mtype, and then waits for a response from the server side. Since there is

Chapter 3. Modelling in Spin 62

no timer, at this stage it is only a normal session with no time-out. At the end of the

session the client requests to logout and then the session terminates.

1 /* Second message */

2 messageUS.session = sessionId;

3 messageUS.content1 = account;

4 network! msg2 (partnerA , messageUS);

5 network? ack (partnerA , data);

Listing 3.5: Second message at the client process

Secondly, the server process receives the client messages and control the session. At

this side of the communication, the server keeps track of the status of the client and

the location at each page using the global variables we declared at the beginning.

Firstly, the first action at the Server process 3.6 shown in listing is labelled with

a position label (HomePage) that represents the pages of the web application model.

When it receives the first message and its contents (session id, user id) it then starts

a selection statement (if - fi). The first statement after a double colon has a

guard statement: (data.session == sessionId)&& (data.content1 == user). If

at this stage the client id or the session id is not correct then it will execute the

goto HomePage jump statement and redirect the user again from the start. If it is

successful, the variable statusA representing the authentication stage is set to ok,

and the global variable Status is set to login. The global variable page is changed

on each page to the current location, and first it is set to home. At the end of the

statement the goto AccountPage jump statement is used to move to the next page.

1 active proctype Server ()

2 mtype sessionId;

3 Crypt messageSU; /* encrypted message to the user */

Chapter 3. Modelling in Spin 63

4 Crypt data; /* received encrypted message */

5 partnerB = user;

6 messageSU.session = sessionId;

7 messageSU.content1 = server;

8 HomePage: page = home;

9 network? msg1 (partnerB , data);

10 if

11 ::(data.session == sessionId) && (data.content1 == user) ->

12 network ! ack (partnerB , messageSU);

13 statusA = ok;

14 Status = login;

15 goto AccountPage;

16 ::else -> goto HomePage;

17 fi;

18

Listing 3.6: Server process of first model

When the server receives the second message as in listing 3.7, it will start another

selection statement (if - fi) that is similar to the first statement to check the

session id, and the content of the message. At this stage the client requests to move

to the account page. An assertion assert (page == home && Status == login)

is made after receiving the second message that the page sequence is correct and the

client is logged in.

1 AccountPage:

2 network? msg2 (partnerB , data);

3 assert (page == home && Status == login)

Chapter 3. Modelling in Spin 64

5 if ::(data.session == sessionId)&&(data.content1 == account) ->

6 page = account;

7 network ! ack (partnerB ,messageSU);

8 goto PaymentPage;

10 ::else -> goto HomePage;

11 fi;

Listing 3.7: Second message of the server process

3.2.1.1 Simulation and Verification Results of Model without Timer

In order to understand the behaviour of the model and the properties the model

captures, simulations are performed at the first stage. The simulation phase allows

the detection of any early mistakes in the model design and any deviation from the

expected behaviour of the model. First the model is checked for safety properties

such as deadlocks or assertion violations. The following command produces a result

that verifies that the model is deadlock free and there are no assertion violations.

Figure 3.2 shows the result of the check. The verification run confirms that there are

no problems and that the model is still simple with only 53 states. There were no

unreachable states, meaning that the flow of our model is correct. The elapsed time

shows zero, as the model is still simple and does not take time to verify.

$ spin -run -DSAFTY Session1.pml

The sequence chart in Figure 3.3 assists in the simulation stage to understand how

the parties in the communication exchange messages. We can see that the messages

start from msg1 to msg5 by changing the content of the message to the page name.

Chapter 3. Modelling in Spin 65

State-vector 40 byte, depth reached 51, errors: 0

53 states, stored

4 states, matched

57 transitions (= stored+matched)

128.730 total actual memory usage

unreached in proctype Server

(0 of 51 states)

unreached in proctype User

(0 of 25 states)

pan: elapsed time 0 seconds

Figure 3.2: Safety Verification of Model without Timer

The result proves the correct sequence as we intended for the first model. Later when

we add more to the model, the sequence chart will show how it is different.

Figure 3.3: Message Sequence Chart of Model without Timer.

In listing 3.8 we verify the sequence of messages and the correctness of the model

behaviour, by using the trace assertion to specify the order of messages exchanged

between processes. We need to include all the network activity from sending and

Chapter 3. Modelling in Spin 66

receiving. In the case the order is incorrect, the verifier will show an assertion violation

at the run result.

1 trace

2 {do

3 :: network!msg1;network?msg1;

4 :: network!ack;network?ack;

5 :: network!msg2;network?msg2;

6 :: network!msg3;network?msg3;

7 :: network!msg4;network?msg4;

8 :: network!msg5;network?msg5;

9 od;}

Listing 3.8: Trace assertion for first model

Figure 3.4: Page Sequence and LTL Proposition Letters.

For the next step, we use LTL to verify authentication, navigation and session man-

agement properties. We created Figure 3.4 to represent the sequence of the pages

in the first model. This shows a finite number of pages that represent the correct

navigation path. Each page is labelled with a propositional symbol. Each LTL for-

mula will contain a condition based on a global variable, or a remote reference a label

in the model that represent pages, for example Server@HomePage returns nonzero if

and only if the location counter of the server process is at the point labelled by the

HomePage. In listing 3.9 we define all the pages and give them a propositional symbol

as shown in Figure 3.4.

Chapter 3. Modelling in Spin 67

1 #define p (Server@HomePage)

2 #define q (Server@AccountPage)

3 #define r (Server@PaymentPage)

4 #define s (Server@ConfirmtPage)

5 #define z (Server@Logoutpage)

Listing 3.9: Pages references at first model

The first LTL formula (3.1) is to verify an abstract authentication, and each of the

parties in the communication need to ensure that they are communicating with the

intended agent. Figure 3.5 shows the result that the formula is correct in the model.

Since the authentication is at the start of the model, Spin finds a result fast and the

number of states stored is lower than in the first run. The transitions increased in the

verification when Spin generates a never claim automaton to verify the property.

<> (partnerA == server&& partnerB == user)− >

<> (statusA == ok&& statusB == ok)

(3.1)

State-vector 48 byte, depth reached 26, errors: 0

33 states, stored (49 visited)

16 states, matched

65 transitions (= visited+matched)

128.730 total actual memory usage

pan: elapsed time 0 seconds

Figure 3.5: Verification Result of Property 3.1

Chapter 3. Modelling in Spin 68

The next LTL formula 3.2 is another way to verify a successful authentication for the

model. Figure 3.6 shows the result from the verification, and since the condition is at

the start of the execution, the number of states is smaller than the formula (3.1).

<> (statusA == ok&& statusB == ok) (3.2)

State-vector 48 byte, depth reached 26, errors: 0

17 states, stored (34 visited)

13 states, matched

47 transitions (= visited+matched)

128.730 total actual memory usage

pan: elapsed time 0 seconds

Figure 3.6: Verification Result of Property 3.2

In LTL formula 3.3 we verify that the client is in a logged in status at the account

page and cannot bypass the authentication process at the start. Also, the same LTL

formula could be applied to all other pages. Figure 3.7 shows the result. Since the

formula is more complex we notice that the depth reached 99 from the initial system

state, and the number of transitions increased.

[] ((page == account)− ><> (statusA == ok&& statusB == ok)) (3.3)

Chapter 3. Modelling in Spin 69

State-vector 48 byte, depth reached 99, errors: 0

59 states, stored

6 states, matched

65 transitions (= stored+matched)

128.730 total actual memory usage

pan: elapsed time 0 seconds

Figure 3.7: Verification Result of Property 3.3

In LTL formula 3.4 the position state label is used to ensure that the client is

at status login when he is at the payment page. The symbol letter r refers to

Server@PaymentPage as explained in listing 3.9. Figure 3.8 shows the results of the

verification with an increase in the number of states, transitions and depth reached,

due to the location of the page under verification.

[] (r)− ><> Status == login (3.4)

State-vector 48 byte, depth reached 112, errors: 0

68 states, stored

9 states, matched

77 transitions (= stored+matched)

128.730 total actual memory usage

pan: elapsed time 0 seconds

Figure 3.8: Verification Result of Property 3.4

The next step is to verify navigation properties, and Spin can check the sequence

and order of pages in the model by using LTL patterns as discussed early in the

background chapter, section 2.5.3. We use the response and precedence patterns to

Chapter 3. Modelling in Spin 70

verify the order of states (i.e.pages and session status). The first property we check is

that the home page is always followed by an account page. We use the global response

pattern in formula 3.5 where p is defined as the home page and q as the account page.

Running a verification of this formula shows no errors and the number of transitions

has increased compared to the previous results as shown in Figure 3.9.

The reason for the increase is that Spin generates a more complex never claim au-

tomaton for the LTL formula 3.5. To understand how the never claim works, we can

generate it using the command (spin -f ’[](p -> <>q)’). The result in Figure

3.10 shows the never claim that is included during the verification run of the LTL for-

mula. The guard condition (1) in all the repetition loops is equivalent to the boolean

value true, and (‖) is a symbol of the logical operator (or). We do not generate a

never claim for each verification as in the latest version of Spin it is possible just

to write the LTL formula at the end of the Promela code using the command ltl

name formula. Spin does not search for system executions that satisfy the property

but in executions that violate it, meaning in property 3.5 we verify that p becomes

true first and then q.

([](p− ><> q)) (3.5)

Chapter 3. Modelling in Spin 71

State-vector 48 byte, depth reached 93, errors: 0

71 states, stored (89 visited)

25 states, matched

114 transitions (= visited+matched)

0 atomic steps

128.730 total actual memory usage

pan: elapsed time 0 seconds

Figure 3.9: Verification Result of Property 3.5

Chapter 3. Modelling in Spin 72

never { /* [](p -> <>q) */

T0_init:

do

:: (((! ((p))) || ((q)))) -> goto accept_S20

:: (1) -> goto T0_S27

od;

accept_S20:

do

:: (((! ((p))) || ((q)))) -> goto T0_init

:: (1) -> goto T0_S27

od;

accept_S27:

do

:: ((q)) -> goto T0_init

:: (1) -> goto T0_S27

od;

T0_S27:

do

:: ((q)) -> goto accept_S20

:: (1) -> goto T0_S27

:: ((q)) -> goto accept_S27

od;

}

Figure 3.10: Never Claim for Property 3.5

We can also use a specific precedence LTL formula pattern in 3.6 which means that

the account page q cannot become true until the home page p is true. Both LTL

formulas 3.5 and 3.6 could be applied to all other pages in the model by changing the

proposition symbol letter. Though both formulas specify the same meaning of the

Chapter 3. Modelling in Spin 73

order of pages. We compare the differences in the number of states between a simple

formula and a complex formula.

(! q U p) (3.6)

State-vector 48 byte, depth reached 8, errors: 0

7 states, stored (14 visited)

4 states, matched

18 transitions (= visited+matched)

0 atomic steps

128.730 total actual memory usage

pan: elapsed time 0 seconds

Figure 3.11: Verification Result of Property 3.6

Figure 3.6 shows that the number of states and depth reached is smaller than the

result in 3.5, though the formula serves the same purpose as pages order. The reason

for this is that it finds that the home page p is true at the start of the execution and

then it is followed by the account page. The number of transitions is also lower (18

transitions) since the never claim generated by Spin has less checking loops, as shown

in Figure 3.12.

In order to check that the LTL formula we used is correct, we can do the opposite

and change the order of pages such as the account page comes before the home page

in the LTL formula !p U q. When we run the verification, an error is reported in

Figure 3.13 with an increase in the number of states, translations and depth reach.

Chapter 3. Modelling in Spin 74

never { /* !q U p */

T0_init:

do

:: atomic { ((p)) -> assert(!((p))) }

:: (! ((q))) -> goto T0_init

od;

accept_all:

skip

}

Figure 3.12: Never Claim for Property 3.6

When an error is reported Spin produces a error-trail file. We use the trace file

to locate the state where the property is violated, using the command (spin -t

-p file.pml). The option (-t) refers to the trace file while (-p) prints all the

statements from the start of the verification.

Since we kept the model small, this made it easy to verify and follow the sequence

of actions. We know that the account page comes after the home page and we asked

to prove that the home page becomes true after the account page. In Figure 3.14

Spin shows that an assertion is violated after both parties in the model prepare the

messages to send and the verifier finds that the server is at the home page.

Chapter 3. Modelling in Spin 75

State-vector 48 byte, depth reached 30, errors: 1

19 states, stored (33 visited)

13 states, matched

46 transitions (= visited+matched)

0 atomic steps

hash conflicts: 0 (resolved)

128.730 total actual memory usage

pan: elapsed time 0 seconds

Figure 3.13: Verification Error Result of Property 3.13

spin -t -p Session1.pml

ltl m1: (! ((Server@HomePage))) U ((Server@AccountPage))

starting claim 2

using statement merging

Never claim moves to line 4 [(!((Server._p==AccountPage)))]

2:proc 1 (User:1) Session1.pml:115 (state 1)[partnerA = server]

4:proc 1 (User:1) Session1.pml:120 (state 2)[messageUS.session = sessionId]

4:proc 1 (User:1) Session1.pml:121 (state 3)[messageUS.content1 = user]

6:proc 0 (Server:1) Session1.pml:37 (state 1)[partnerB = user]

8:proc 0 (Server:1) Session1.pml:40 (state 2)[messageSU.session = sessionId]

8:proc 0 (Server:1) Session1.pml:41 (state 3)[messageSU.content1 = server]

spin: _spin_nvr.tmp:5, Error: assertion violated

spin: text of failed assertion:

assert(!((!(!((Server._p==HomePage)))&&!((Server._p==AccountPage)))))

Never claim moves to line 5

[assert(!((!(!((Server._p==HomePage)))&&!((Server._p==AccountPage)))))]

spin: trail ends after 9 steps

Figure 3.14: Error-trail File of Property 3.13

Chapter 3. Modelling in Spin 76

Until this stage, we checked simple LTL formulas. We need to check that a certain

action becomes true after a step and until another action occurs. For example, after

the login the status global variable is set to ’login’ and remains true until the logout

page. In this scenario we can use a more complex LTL formula shown in the LTL

formula 3.7, the symbol p is defined as Server@HomePage, while the z symbol is defined

as Server@LogoutPage and the symbol m is a new definition with the condition #

define Status ==login. We verify that the condition is true after the login page

until the logout page. The results in Figure 3.15 shows no errors and the behaviour

of the model is correct. The number of transitions is still small at this stage of the

model.

[] (p&& ! z− > (! z U (m&& ! z))) (3.7)

State-vector 48 byte, depth reached 93, errors: 0

71 states, stored (89 visited)

25 states, matched

114 transitions (= visited+matched)

0 atomic steps

128.730 total actual memory usage

pan: elapsed time 0 seconds

Figure 3.15: Verification Result of Property 3.7

Again for the same LTL formula 3.7 we can modify the condition to # define Status

==logout, meaning that during the session the status of the client was inactive. The

results in Figure 3.16 shows an error is located and now the elapsed time has increased

Chapter 3. Modelling in Spin 77

to (0.03) considering the size of the model. This is due to the complexity of proving

this property.

State-vector 48 byte, depth reached 74, errors: 1

34 states, stored

0 states, matched

34 transitions (= stored+matched)

128.730 total actual memory usage

pan: elapsed time 0.03 seconds

Figure 3.16: Verification Error Result of Property 3.7

We also use the same value of the global variable # define Status ==logout and

check that after the logout page the session expires, as shown if LTL response formula

3.8, the z symbol is defined as Server@LogoutPage. The result shows no errors were

found, as in 3.17

[] (z− > <> m) (3.8)

State-vector 48 byte, depth reached 93, errors: 0

56 states, stored (59 visited)

8 states, matched

67 transitions (= visited+matched)

128.730 total actual memory usage

pan: elapsed time 0 second

Figure 3.17: Verification Result of Property 3.8

Chapter 3. Modelling in Spin 78

It is also possible to check the status of the session on each page such as in 3.9. Where

q is the account page and m is defined as # define Status ==login. Furthermore,

changing the page locations using the current formula with different conditions makes

it possible to understand the behaviour of the model. The results in Figure 3.18 show

no errors were found, and since the account page is at the start it was possible with

a small number of states and transitions.

<> (q&&m) (3.9)

State-vector 48 byte, depth reached 30, errors: 0

24 states, stored (48 visited)

27 states, matched

75 transitions

128.730 total actual memory usage

pan: elapsed time 0 second

Figure 3.18: Verification Result of Property 3.9

LTL formula Depth reached States Stored Transitions Total Memory (Mb) Time (sec)
3.1 26 33 65 128.730 0
3.2 26 17 47 128.730 0
3.3 99 59 65 128.730 0
3.4 112 68 77 128.730 0
3.5 93 71 114 128.730 0
3.6 8 7 18 128.730 0
3.7 93 71 114 128.730 0
3.8 93 56 67 128.730 0
3.9 30 24 75 128.730 0

Table 3.2: Verification Results of Properties for Model without Time.

In Table 3.2 we list all the verification results for the first model. We notice that by

keeping the model simple we managed to verify main the properties efficiently without

increasing the complexity level. The depth reached and the number of states relies on

Chapter 3. Modelling in Spin 79

the property under examination and it increases with the increase in the complexity

of the LTL formula. More web applications’ properties can be verified using the LTL

patterns. The next section presents the model with dynamic navigation properties.

3.2.2 Modelling Dynamic Navigation

In the this model of the web application we consider the dynamic behaviour of the

transitions. We do not assume the generation of new content but the modification of

the navigation path based on the client input and server status as discussed in the

background, Section 2.2. The main challenge in modelling with Spin is to understand

the execution behaviour of the Promela code.

In order to model a correct behaviour that represents the client and server exchanging

messages and changing transitions simultaneously we developed a new approach. The

new approach takes into account the execution behaviour of Spin and the dynamic

transitions during the session. For example, in the current Promela model if the

server process is at the certain location and the client requests to be redirected to a

previous page; Spin will reach a deadlock situation since the server process will be

expecting a different message than the client process sent.

The method to solve the problem is to add all the navigation possibilities of the model

under each page (i.e. location label in Promela). In detail, if the client is on the

account page, there will be two options in our model, to logout of the session or to

move to the next page which is the payment page in this model. The next example

will explain further. In the current model the run is infinite (in order to analyse

dynamic navigation properties where a single input could lead to different pages) in

contrast to the first model in 3.2.1 where both processes terminate at the end of the

session.

Chapter 3. Modelling in Spin 80

At the server side in listing 3.10, we have two options in the if-fi selection loop, if

the message contains the request payment then the client will be directed to the next

page (line 4). If the content of the request contains logout (line 9), the server will

redirect the client to the home page. The nature of the execution is non-determinism

in Spin.

1 AccountPage:

2 if

3 :: network? msg2 (partnerB , data)-> /*

Move to Payment Page*/

4 (data.session == sessionId) && (data.content1 ==

payment) ->

5 page = account

6 network ! ack (partnerB , messageSU)

7 goto PaymentPage

8 :: network ? msg5 (partnerB , data) -> /*

Client request logout */

9 (data.session == sessionId) && (data.content1 == logout) ->

10 page = home;network ! ack (partnerB , messageSU)

11 statusA = err

12 Status = logout

13 goto HomePage

14 fi

Listing 3.10: Server Dynamic Naviagtion

In the client side in listing 3.11, we use the repetition (do - od) loop on each page

to represent a continuous change of request. The client sends the session id and page

request, and Spin redirects the client process to a different page. We used a different

labelling system at the client side to represent the pages. For example in line 1 C

Chapter 3. Modelling in Spin 81

represents the payment page. This means at the current stage the client is on the

payment page. Inside the (do - od) loop there are three options. First the client

may request to confirm the payment or go back to the account page or logout of the

session. In any scenario, the server process will also have all the options under each

page, resulting in a deadlock free model.

1 C: /* Payment Page */

2 do

3 :: messageUS.session = sessionId; messageUS.content1 =

confirm;

4 network! msg3 (partnerA , messageUS);

5 network? ack (partnerA , data)->goto D; /* D =

Confirmation Page */

7 :: messageUS.session = sessionId; messageUS.content1 =

account;

8 network! msg2 (partnerA , messageUS);

9 network? ack (partnerA , data)->goto B; /* B =

Account Page */

11 :: messageUS.session = sessionId; messageUS.content1 =

logout;

12 network! msg5 (partnerA , messageUS);

13 network? ack (partnerA , data)->statusB = err;goto A;

/* A = Home Page */

14 od;

Listing 3.11: Client Dynamic Navigation

Chapter 3. Modelling in Spin 82

3.2.2.1 Simulation and Verification Results of the Dynamic Navigation

Model

In order to understand the behaviour of the model at the current stage we run the

following tests. First we check that the model is deadlock free and there are no

assertion violations. Spin shows in Figure 3.19 the result of the verification. Also,

it shows that both processes never reach an end state, meaning that the model had

infinite executions of a client logging in and logging out of any page. As a result, more

properties can be verified than in the first model in 3.2.1. The results show that the

model is still small with only 92 states and 110 transitions.

State-vector 40 byte, depth reached 52, errors: 0

92 states, stored

18 states, matched

110 transitions (= stored+matched)

128.730 total actual memory usage

unreached in proctype Server

DynamicModel.pml:124, state 66, "-end-"

(1 of 66 states)

unreached in proctype User

DynamicModel.pml:181, state 59, "-end-"

(1 of 59 states)

pan: elapsed time 0 seconds

Figure 3.19: Safety Verification Result of Dynamic Navigation Model

The sequence of transitions is different, and the client can logout of any page in the

current model stage of the web application. We use the following command line (spin

-r -s -u50 DynamicModel.pml) with the run options (-s) to show the send events

on the channel, (-r) to show the receive events on the channel and (-u50) to execute

Chapter 3. Modelling in Spin 83

the first 50 steps of the model. Figure 3.20 shows the simulation run and it shows

that the client starts with logging in msg1 and then logs out (line 16), then the second

time the user processes login and proceeds to other pages. Each line of the simulation

contains the step number, process number, file name, and channel action and content.

6: proc 1 (User:1) DynamicModel.pml:134 Sent msg1,server,0,user

6: proc 0 (Server:1) DynamicModel.pml:44 Recv msg1,server,0,user

8: proc 0 (Server:1) DynamicModel.pml:46 Sent ack,server,0,server

8: proc 1 (User:1) DynamicModel.pml:135 Recv ack,server,0,server

17: proc 1 (User:1) DynamicModel.pml:145 Sent msg5,server,0,logout

17: proc 0 (Server:1) DynamicModel.pml:61 Recv msg5,server,0,logout

20: proc 0 (Server:1) DynamicModel.pml:64 Sent ack,server,0,server

20: proc 1 (User:1) DynamicModel.pml:146 Recv ack,server,0,server

29: proc 1 (User:1) DynamicModel.pml:134 Sent msg1,server,0,user

29: proc 0 (Server:1) DynamicModel.pml:44 Recv msg1,server,0,user

31: proc 0 (Server:1) DynamicModel.pml:46 Sent ack,server,0,server

31: proc 1 (User:1) DynamicModel.pml:135 Recv ack,server,0,server

40: proc 1 (User:1) DynamicModel.pml:142 Sent msg2,server,0,account

40: proc 0 (Server:1) DynamicModel.pml:55 Recv msg2,server,0,account

Figure 3.20: Message Exchange Sample of Dynamic Navigation Model

The assumptions now include that the client can logout and login again. As a result,

we need to check that on any page after a successful authentication that session is

active. We can use the LTL formula 3.10 to verify that client cannot be on the

account page when the status of the session is logout. The q symbol is defined as

(Server@AccountPage), while m is defined as the condition (session == logout).

The result of the verification shows an error is found and that proves that when the

client is at the account page the session is set to login.

Chapter 3. Modelling in Spin 84

<> ((q)&&(m)) (3.10)

State-vector 48 byte, depth reached 26, errors: 1

19 states, stored (37 visited)

18 states, matched

55 transitions (= visited+matched)

128.730 total actual memory usage

pan: elapsed time 0 seconds

Figure 3.21: Verification Result of Property 3.10

Another method of verifying session management properties is by assertions, as at

each page in the server process Spin can check the assertions on global variables. For

example we use (assert (Status ==login)) before each page followed by the login

page to ensure that the client is always logged in at this stage before making any

further transitions. Figure 3.22 shows that there are no assertion violations.

State-vector 48 byte, depth reached 93, errors: 0

56 states, stored (59 visited)

8 states, matched

67 transitions (= visited+matched)

128.730 total actual memory usage

pan: elapsed time 0 second

Figure 3.22: Verification Result of Global Variable Assertions

In order to verify the navigation path in the current stage, we can use either the LTL

response or precedence patterns (2.5.3). For example, it is always the case that the ac-

count page comes before the payment page and for that we use the precedence formula

Chapter 3. Modelling in Spin 85

3.11. However, since we now have different possibilities of next pages from each page

we use the response LTL formula 3.12 and we include all the pages that come after

an initial state. For example, from the account page there are three options (payment

page, logout page, or home page). In 3.12 the symbol q represents the account page

and is defined as Server@AccountPage, r is defined as Server@PaymentPage, z is

defined as Server@LogoutPage and, p is defined as Server@HomePage. So from the

account page there will be three options, and we use the logical operator (or) repre-

sented by the symbol ‖ between pages. The result of this property shows no error, as

in Figure 3.23, and there is an increase in the number of states and transitions.

!rUq (3.11)

[](q− ><> r|| <> z|| <> p) (3.12)

State-vector 48 byte, depth reached 135, errors: 0

141 states, stored (169 visited)

69 states, matched

238 transitions (= visited+matched)

128.730 total actual memory usage

pan: elapsed time 0 seconds

Figure 3.23: Verification Result of Property 3.12

3.2.3 Modelling with Time Constraints

Modelling using discrete time allows us to represent more session and authentication

properties and to simulate time-out scenarios in a web application. In order to model

Chapter 3. Modelling in Spin 86

time in Spin, we add a discrete time process that controls the session.

The clock process contains a loop that controls the timer variable. The timer expires

when its value reaches some value controlled by the pre-defined variable MAX. The clock

process contains two statements; the first statement checks the condition of the timer

is less than the value MAX and then increments it. The statement starts with atomic

to preserve the exclusive privilege to execute before other processes in the model,

and this it ends this with skip so another process can execute its statements. This

method prevents the timer from controlling the session and from reaching a ”infinite

loop” status. The second statement contains a condition that checks if the timer is

equal to to the value MAX and then it assign it to zero and skip. The server controls

the timer and resets the value after each receiving of a message during a valid session.

We model the timer to verify the security properties, So if the value reaches MAX the

server will terminate the session and redirect the client to the home page.

1 MAX = n

2 proctype Clock ()

4 do

5 :: atomic {timer < MAX -> timer ++} skip;

6 ::else -> atomic {timer == MAX -> timer = 0} skip;

7 od;

Listing 3.12: Clock Process

At the server side, it is the same as in the previous models. We added a global

variable (Session) to use it with the timer in the verification phase. Also, as in

the Clock process, each atomic block ends with a skip, in order for other processes to

execute the next statement. The first assertion (assert (timer <= MAX && Session

== valid && Status == login)) checks that at this stage of the session the timer

Chapter 3. Modelling in Spin 87

is less than the timeout value, the session is valid and the status is login. When the

server receives the second message it will start another selection statement (if -

fi) that is similar to the first statement that checks the session id, and only the

content of the message. In this case the client requests to move to the Account page.

An assertion is made after receiving the second message that the page sequence is

correct and the client is logged in. If there is a time-out the server will send an error

message. Figure 3.24 shows that after (msg3) there was a time-out and the server

sends an error message.

2 HomePage:

3 page = home /* LOGIN */

4 messageSU.session = sessionId

5 messageSU.content1 = server

6 if

7 :: network ? msg1 (partnerB , data)-> atomic {

8 (data.session == sessionId) && (data.content1 == user)

->

9 network ! ack (partnerB , messageSU)

10 statusA = ok

11 Session = valid

12 Status = login }

13 skip;

14 fi

15 AccountPage: assert (timer <= MAX && Session == valid && Status

== login)

16 if

17 :: network? msg2 (partnerB , data)-> if

Chapter 3. Modelling in Spin 88

18 /* Move to Payment Page*/

19 :: atomic {(data.session == sessionId) &&

20 (data.content1 == account)&&(timer < MAX) ->

21 page = account ;timer = 0

22 network ! ack (partnerB , messageSU)

23 goto PaymentPage ;} skip;

25 ::else ->

26 atomic {Session = invalid;

27 network!error(partnerB , messageSU);

28 Status = logout;flag ++; MSG;goto HomePage ;}

29 skip; fi;

30 fi

Listing 3.13: Server Process with Timer

Figure 3.24: Simulation Chart of the Discrete Time Model.

We also add a global variable (flag) to each page and whenever the server reaches

a time-out and redirects the client to the home page (flag) is incremented. We also

Chapter 3. Modelling in Spin 89

add (flag2, flag3, and flag4) at each page construct to assit in understanding and

debugging our code. This method ensures that the timer is active in all the sessions

and in different executions. The global macro MSG is defined as printf("Status is

%e n", Status) to print the status of the user after each logout from the session.

The value of MAX has an effect on the behaviour and number of states in the model so

we set it to the value 2 to keep the number of states reachable. The run of the model

is infinite in order to achieve a realistic scenario of a client being logged off after a

period of inactivity. Figure 3.25 shows the result of the simulation after 1,000 steps.

Through the execution of the model there was a time-out on each page.

depth-limit (-u10000 steps) reached

#processes: 4

partnerA = server

partnerB = user

statusA = ok

statusB = ok

page = confirm

Status = login

Session = valid

timer = 0

MAX = 2

flag = 12

flag2 = 4

flag3 = 5

flag4 = 2

Figure 3.25: Simulation Results of the Discrete Time Model

Chapter 3. Modelling in Spin 90

3.2.3.1 Simulation and Verification Results of Timed Model

We now use the global variable MAX in the LTL formulas, for example we verify that

the client cannot be logged in and the timer is more than MAX. We use the ’Absence’

pattern of LTL formula 3.13 where q is the account page and m is defined as (timer >

MAX). The result shows no error as shown in Figure 3.26. It is clear that the number

of states has increased compared to in the previous models.

[](q− > [](!m)) (3.13)

State-vector 64 byte, depth reached 250, errors: 0

1182 states, stored

736 states, matched

1918 transitions (= stored+matched)

128.730 total actual memory usage

pan: elapsed time 0 seconds

Figure 3.26: Verification Result of Property 3.13

3.2.4 Adding an Intruder to the Model

At this stage we add an intruder process in our model. The model process is based on

the intruder model designed by Dolev and Yao [1983]. The intruder collects knowledge

about both parties during the session. The knowledge is used during a session to

create and send his own messages or to tamper with other agent communication.

The assumption is that the intruder has the session identity and the client identity.

The intruder first overhears and intercepts all the messages over the network, then

chooses a recipient and then generates new messages using information from overheard

Chapter 3. Modelling in Spin 91

messages and some prior information, and finally sends a new or captured message to

another entity in the system.

The purpose of introducing an intruder to the model is to examine the differences

between the sequence of actions and timing. Though we assume that an online bank-

ing system is using the HTTPS communication protocol, the intruder can still be in

the middle of the communication parties. The assumption for this model is that the

intruder has already started to collect information about the parties in the communi-

cation and then he becomes active in the middle. We do not include any discussions

about cryptography in the model as it is beyond the scope of this research. The main

aim is to analyse the order of events in the communication and timing.

We use the same timer process from the previous model 3.2.3 and add the intruder

process. The first part of the intruder process code is that the intruder receives a

message from the client and stores it in the in local variable intercepted. The whole

process after that contains one repetition construct that involves storing messages,

choosing a message, choosing a recipient, assembling the message content and finally

sending the message.

1 active proctype Intruder () {

2 mtype msg , recpt;

3 Crypt data , intercepted;

4 do

5 :: network ? (msg , _, data) ->

6 if /* store the message */

7 :: intercepted.session = data.session;

8 intercepted.content1 = data.content1;

9 :: skip;

10 fi;

Chapter 3. Modelling in Spin 92

11 }

Listing 3.14: Intruder Process

Secondly, the intruder chooses a message that is being exchanged between the client

and the server, and then at this stage the intruder chooses a recipient and assembles

the message.

2 if /* choose message type */

3 :: msg = msg1;

4 :: msg = msg2;

5 :: msg = msg3;

6 :: msg = msg4;

7 :: msg = msg5;

8 fi;

9 if /* choose a recipient */

10 :: recpt = user;

11 :: recpt = server;

12 fi;

14 if /* assemble the message */

15 :: data.session = intercepted.session;

16 data.content1 = intercepted.content1;

17

Listing 3.15: Selection Loop at Intruder Process

The final stage is to assemble the content of the message and then sends the message

Listing 3.16.

1 :: if /* assemble content1 */

Chapter 3. Modelling in Spin 93

2 :: data.content1 = server;

3 :: data.content1 = user;

4 :: data.content1= login;

5 :: data.content1 = home;

6 :: data.content1 = account;

7 :: data.content1 = payment;

8 :: data.content1 = confirm;

9 :: data.content1 = logout;

10 ::skip;

11 fi;

12 fi;

13 network ! msg (recpt , data);

14 od

Listing 3.16: Method to assemble messages in Intruder Process

3.2.4.1 Simulation and Verification Results of Model with Intruder

The first result to be noticed is that the number of states increased dramatically during

the execution of the compromised model, in contrast to the secure model. Table 3.3

shows the differences between the two models. The verification run time increases to

14 seconds in the compromised model and the depth reaches the maximum limit of

9999. By default the search depth is restricted to 10,000 steps. From the results it

is clear that adding an intruder to the model can increase the number of transitions

and states. The explanation for the increase is that at each step the intruder receives

and sends the messages between the client and the server. Also, each storing and

evaluating of the content of the messages increases the number of states.

Chapter 3. Modelling in Spin 94

Model Depth reached States Stored Transitions Total Memory (Mb) Time (sec)

Secure 90 2436 3838 128.827 0

Intruder 9999 14666773 33523244 1023.944 14

Table 3.3: Verification Results of the Secure and the Compromised Model.

The next stage is to analyse the order of events and timing. We add the macro

definition # define MSG printf("Time is %d n ", timer) to print the value of

the time during the run of the model. After each message is received from the server

side, Spin prints out the value of the time, and this simulates a time stamp for the

message exchange process.

Figure 3.27: Secure Model.

Figures 3.28 and 3.27 show the differences between the two models. In Figure 3.27 we

find that the client and server end the first exchange of messages at the time of value

2. While in the compromised model there was a delay of 1 time unit shown in Figure

3.28. The sequence of actions and timing were different in the compromised model.

Chapter 3. Modelling in Spin 95

Figure 3.28: Model with Intruder.

3.3 Summary

This chapter presented the first model checking tool used in our research Spin. We

then modelled a web application in four different scenarios based on the requirements

of verification. The models in this chapter were reviewed by Professor Gerard Holz-

mann who complemented the work on its soundness. Concluding remarks can be

summarised as follows:

• In the model without timer 3.2.1, we showed how to verify basic web application

properties using LTL. The model without timer was presented as a basic for the

following models. We developed the model to represent the basic specifications

of an online banking system. We used the simulation and verification to ensure

the correctness of the behaviour.

Chapter 3. Modelling in Spin 96

• The model with dynamic navigation 3.2.2 presented a novel approach for mod-

elling the dynamic exchange of messages based on different input from the user

of the server status.

• In the timed model 3.2.3, we developed a discrete timer that suits the require-

ments of verifying web applications’ properties without reaching the state ex-

plosion problem.

• The model with the intruder 3.2.4 proved that with the presence of an intruder

in the middle of the session there will be a difference in the sequence of timing

and actions.

In the next chapter we present the second model checking tool Uppaal, and will show

how to model web applications using a real time model checker.

Chapter 4

Modelling in UPPAAL

This chapter describes the second model checking tool Uppaal used in our research.

Firstly, background information about the Uppaal model checker is given. This will

assist later in describing how it can be used in the verification and analysis of web

applications. Then the model of a web application is designed using Uppaal. Finally,

the results of the verification will be presented.

4.1 The Uppaal Model Checker

Uppaal is a model checking tool suite for the verification of real-time systems. The

Uppaal modelling language extends the basic timed automata as defined in Chapter

2 with bounded integer variables and binary blocking synchronisation. Systems are

modelled as a set of communicating timed automata. Uppaal consists of a graph-

ical user interface that allows systems descriptions to be defined graphically and a

model-checker that combines on-the-fly verification with a symbolic technique reduc-

ing the verification problem to that of solving simple constraint systems. Furthermore,

97

Chapter 4. Modelling in Uppaal 98

Uppaal also supports bounded-range integer and boolean data variables, which can

be used in the guards, assignment and location invariants [Behrmann et al., 2004,

Bengtsson and Yi, 2004].

Uppaal is considered in the area of model checking tools as a fast and usable tool.

The usability is due to the possibility of specifying the automata graphically and

the existence of a graphical simulator on which some runs could be simulated. The

efficiency is due to the fact that it restricts the type of properties checked to a reach-

ability test. Hence, the verification engine can be better optimised for the task of

reachability.

4.1.1 The Modelling Language

In this section we present a brief description of the Uppaal modelling language from

the main tool reference in Behrmann et al. [2004]. The expressions in uppaal range

over clocks and integer variables and are used with the following labels:

• Select: To represent variables that are accessible on a specific edge and they

will take a non-deterministic value in the range of their respective types.

• Guard: A guard that evaluates a boolean on clocks, integer variables, and con-

stants.

• Synchronisation: A synchronisation label that represents the channels between

processes. It uses the expression (!) to represent the action of sending or the

expression (?) to represent the action of receiving.

• Update: An update label is used to update clocks integer variables, and con-

stants and, can only be used to assign integer values to clocks.

Chapter 4. Modelling in Uppaal 99

• Invariant: An expression on locations to satisfy conditions on clocks, integer

variables, and constants.

The main purpose of a model-checker is to verify the model specifications and to deter-

mine whether a process reaches a deadlock. uppaal’s response is either ”The property

is satisfied” or ”The property is not satisfied”. When the verifier cannot determine

the truth value of the property it responses with ”The property is maybe satisfied”.

uppaal uses a simplified version of CTL. Figure 4.1 the relationship between CTL

syntax and uppaal’s query language syntax.

CTL Formula uppaal Form
A � ϕ A [] ϕ
A ♦ ϕ A <> ϕ
E � ϕ E [] ϕ
E ♦ ϕ E <> ϕ
ϕ ψ ϕ --> ψ
¬ ϕ not ϕ
ϕ ∧ ψ ϕ and ψ
ϕ ∨ ψ ϕ or ψ
ϕ ⇒ ψ ϕ imply ψ

Table 4.1: CTL Syntax in uppaal

The query language in Uppaal consists of path formulas and state formulas. In

summary, the formula queries available in uppaal are:

• E<> p: meaning that there exists a path where p will eventually hold.

• A[] p: meaning that for all paths p will always hold.

• E[] p: means that there exists a path where p will always hold.

• A<> p: it means that for all paths p will eventually hold.

• p --> q: meaning that whenever p holds q will eventually hold.

Chapter 4. Modelling in Uppaal 100

Path formulas can be classified into reachability, safety and liveness. Figure 4.1 il-

lustrates the different path formulas supported by uppaal. Each type is described

below.

Figure 4.1: Path Formulas Supported in uppaal.

State Formula: Is defined as an expression that can be checked for a particular state

without looking at the behaviour of the model of [Behrmann et al., 2004]. For example,

i == 5, is true in a state whenever i equals 5. Moreover, we can verify that a process

is in a given location using an expression in the form M.l, where M is a process and l

is a location.

To check deadlocks in uppaal, we use the state formula (A[] not deadlock).

For verifying Reachability properties we check whether a given state formula, ϕ, can

possibly be satisfied by any reachable state. We use the path formula (E ♦ ϕ).

In uppaal we verify Safety properties formulated positively, e.g., something good is

invariantly true. Let ϕ be a state formula. We express that ϕ should be true in all

reachable states with the path formula (A � ϕ), whereas (E � ϕ) says that there

should exist a path such that ϕ is always true.

Chapter 4. Modelling in Uppaal 101

Finally, for verifying Liveness Properties we use the path formula (A ♦ ϕ), which

means that ϕ is eventually satisfied. The leads to formula can be used, and it is

expressed as (ϕ→ ψ) which is read whenever ϕ is satisfied, then eventually ψ will be

satisfied.

4.1.2 Modelling Time in UPPAAL

This section will explain in detail the concept of time in uppaal. In addition, the

main concepts of the modelling language will be presented. The time model in uppaal

is represented as continuous time. It is implemented as regions and the states are thus

symbolic, which means that a state does not have any concrete value for the time, but

rather has differences [Alur and Dill, 1994]. In order to illustrate how time is modelled

in uppaal, a simple model will be used. The model uses an observer to show the

differences. An observer is an add-on automaton that takes control of detecting events

without interfering with the observed system. Figure 4.2 shows the first model with

the observer. The reset of the clock (x := 0) is assigned to the observer in order to make

it work. Time is used through clocks, in this example, x is a clock declared as clock

x; in the global declarations section. A channel is declared (reset) for synchronization

with the observer.

Figure 4.2: The Automata P1 with Obs Observer.

The channel synchronization is a hand-shaking between reset! and reset? in the

example. The clock may be reset after 2 time units. The observer detects this and

Chapter 4. Modelling in Uppaal 102

performs the reset action. The state taken of the observer is of type committed, and

this will be explained later in this section.

Figure 4.3: Possible Behaviour of the First Example.

Figure 4.3 shows the expected behaviour of the first run. As in the previous chapter,

a verification is needed to understand the correctness of the model. At this stage, two

properties are checked as follows:

• A[] Obs.taken imply x>= 2 checks that for all states, being in the location

Obs.taken implies that x>=2.

• E<> Obs.idle and x> 3 this property checks is it possible to reach a state

where Obs is in the location idle and x>3.

When adding the properties to uppaal, the verifier checks whether it is correct or

not, as shown in Figure 4.4. When the first property was checked, uppaal returned a

result (Property is satisfied). When the value of the clock was changed to 3, uppaal

returned a negative result (Property is not satisfied). The figure also shows the second

property.

Another method of modelling and controlling time in uppaal, is by using an invariant

as a progress condition [Behrmann et al., 2004]. This means that the system is not

Chapter 4. Modelling in Uppaal 103

Figure 4.4: uppaal Verification Example.

allowed to stay in a specific state for more than a fixed number of time units. After

that time, an action needs to be taken. As an example, when the invariant is added

to the sample example as shown in Figure 4.5, the system is not allowed to stay in

the loop location for more than 3 time units, and then the clock is reset.

Figure 4.5: uppaal Behaviour with Invariant.

Chapter 4. Modelling in Uppaal 104

By adding an invariant to locations, more verification options are possible. For ex-

ample, in contrast to the first example, now it is possible to check the following

properties:

• A[] Obs.taken imply (x>=2 and x<=3): here the property checks that the

transition is taken when the value of the clock x is in the interval [2,3].

• E<> Obs.idle and x>2: meaning that it is possible to take an action when the

value of the clock x is in the interval [2,3].

• A[] Obs.idle imply x<=3: This property ensures that the upper bond is re-

spected.

Another method of controlling time in uppaal is through adding a guard to the

channel. Figure 4.6 is the same example as before but the invariant is removed and

the guard (o x >= 2 and x <= 3) is added. By removing the progress condition

and adding a guard, the behaviour of the system is different. At this stage, the system

may reach a deadlock if the transition is not taken after 3 time units. The property

A[] x>3 imply not Obs.taken shows the deadlock scenario.

Figure 4.6: uppaal Behaviour with Guard.

Chapter 4. Modelling in Uppaal 105

Locations in UPPAAL : There are three different locations in uppaal, normal

locations with or without invariants, urgent locations and committed locations. Each

has a different effect on time. Figure 4.7 illustrates the three types as parallel automata

with different clocks. P0 represents a normal location, P1 has the urgent location

marked by u, while P2 is committed location marked by c.

Figure 4.7: Location Types in uppaal.

In order to understand the different normal urgent locations, a property check will be

illustrated as follows:

• E<> P0.S1 and P0.x>0: In a normal location it is possible to wait in S1 of

P0.

• A[] P1.S1 imply P1.x==0: In an urgent location is is not possible to wait in

S1 of P1.

A committed location in is more restrict as the delay at a location is not allowed and

the committed location must be left in the successor state.

4.2 Modelling Web Applications in Uppaal

In this section we model a simple online banking application using Uppaal. As in

Chapter 3, we develop the model gradually in order to control the behaviour of the

Chapter 4. Modelling in Uppaal 106

model and to have clear results. The first model will be without clocks. The second

model will contain dynamic navigation transactions. In the third model we add clocks

to the model and verify time related properties. In the final model we add an intruder

to the model and compare between a secure and compromised model. Modelling in

Uppaal is different than in Spin. The graphical design method can be more complex

to understand than using the promela language in Spin. We will compare the

differences further in Chapter 5.

4.2.1 Model without Time Constraints

The first model in Uppaal will only contain the basic properties as we did in the

Spin model in Chapter 3. We examine how to model properties without adding

clocks at this stage. The main advantage of this method of modelling is to compare

the differences later with the timed model. We consider the logical order of pages and

actions without time constraints.

The global variables used in the first model are shown in listing 3.1. We have four

main variables; page, status, Id and session. Since Uppaal does not support the

symbolic name mtype definition as in Spin we develop another method. By declaring

each page as constant variable and giving it a number, the variable page can take any

value from the constant pages when it is as a state condition between locations later

in modelling. We also created boolean variables to represent each page, which will

assist later in the verification stage. The same method is also used also for the rest of

the main variables. Status can have two values either login or error which represents

the client logging out of his account. The session variable can be valid or invalid when

the session expires.

Chapter 4. Modelling in Uppaal 107

We declare one channel (network) between both parties. We use the update on chan-

nels to deliver each page request from the client side. For example, after the authenti-

cation, the client updates the global variable page with the constant variable account

(page = account). The advantage in this model is that the server first receives the

message on the network and uses the condition (page == account) before moving

to another page. Since we assume that the session will continue at this stage, the

condition will be true. In order to keep the order of pages correct, after each page

the client updates the global variable page to the current page request. The server

then makes the same condition for each page. We use the conditions later at the

verification stage.

The global variables session and status are used by the server to control the session.

After a successful login the server updates the status to login and the session to valid.

When the session expires then the variables are updated.

1 chan network;

2 //Pages

3 int Page;

4 const int home = 0;

5 const int account = 1;

6 const int payment = 2;

7 const int confirm = 3;

8 const int logout = 4;

9 bool A,B,C,D,E;

11 // Status

12 int Status;

13 const int login = 0;

14 const int error = 1;

Chapter 4. Modelling in Uppaal 108

16 //Id

17 int partnerA;

18 int partnerB;

19 const int client = 0;

20 const int server =1;

22 // Session

23 int Session;

24 const int valid = 0;

25 const int invalid = 1;

26 }

The second step is to model the client by creating a new template in Uppaal. The

client template has 5 locations that represent the pages in the web application model.

We added intermediate committed locations between the main locations. The com-

mitted locations enforce that the synchronisation is atomic. We used the invariants

in the intermediate committed locations as conditions. Figure 4.8 shows the locations

and the transactions between them. From the home location to the first page we add

an extra location for the following reasons:

• The client sets the Page variable to account, representing a message content.

and uses the command network! to represent the send action.

• The partnerA variable is set to client as an id for the authentication properties.

• The middle location has an invariant that only the partnerB can receive the

message. At this point the server will set the variable partnerB to server id.

Chapter 4. Modelling in Uppaal 109

• The next action is the receive action from the server side network?. The

client checks that he is in communication with the server with the condition

PartnerB==server and then proceeds to the account page.

The advantage of using an extra location between one location and another is that we

can update the global variables and add conditions during the exchange of messages

with the server side.

In the rest of the model, the client updates the Page variable with the page request

along with the send action network!.

Logout
Confirmation

Payment
AccountpartnerB==server

Home

network?

network!

Page = home

network? network! Page=logout

network?

network!
Page = confirm

network?network!

Page = payment
partnerB == server

network ?network!
Page = account,
partnerA = user

Figure 4.8: Client Automaton.

The server side has the same locations as the client template but with more conditions

on edges and locations. Figure 4.9 shows the server automaton. The server has

the opposite part of the communication. The communication starts with the sever

receiving a message from the client. In the first part the server sets his id partnerB

to server, and based on the page update from the client, the server updates the page

boolean variables. A here represents the home page and it is set to false by the

server. B represents the account page and it is set to true. The middle location has

an invariant partnerA==client that states that only the partner with the id client

can login. After that, the server replies and sets the Status variable to login and

Chapter 4. Modelling in Uppaal 110

the Session to valid. The rest of the server automaton has the same structure of

updating the pages’ boolean variables and in the logout location, the server changes

the variables to reset the session.

Logout Confirmation

PaymentAccount

partnerA==user

Home

Page==home

network!

network?

E=false,
A=true,
Session = invalid

network!

network?

D=false,
E=true

network!

network?

C = false,
D=true

network!network?
B=false,
C=truepartnerA == user

network !

Status = login,
Session = valid

network ?

partnerB = server,
B=true,
A=false

Figure 4.9: Server Automaton.

4.2.1.1 Simulation and Verification Results of Model without Time Con-

straints

In the next stage we run the simulation to gain insights into the behaviour of the

model. Figure 4.10 shows the simulator screen displyer by Uppaal. From the tran-

sitions chart we find that the middle location made it possible to represent the send

and receive action between both parties before moving to the next page. The vari-

ables section shows the value of the variable at each stage of the communication. The

verifier does not show the number of states or the verification time. It only shows

whether the property is satisfied or not. We use Uppaal’s command line (verifyta)

to show the number of states at each property.

Chapter 4. Modelling in Uppaal 111

Figure 4.10: Simulation Result of Model without Time Constraints.

For the first model we verify the following properties:

The page reachable from the top page always has a next page in the transition. This

can be checked by verifying that there is no deadlock in the model using the formula

in 4.1.

A[] not deadlock (4.1)

We then use the command line (verifyta -u -o1 -t0 -f tracefile First.xml

First.q) to run the verifier and show the number of states. Where -u shows a

summary after verification, -o1 sets the search to depth first, -t0 generates diagnostic

information and -f writes it to the trace file. The results in 4.11 show that property

is satisfied, and the number of states is 12.

Verifying property 1 at line 2

-- Property is satisfied.

-- States stored : 12 states

-- States explored : 12 states

Figure 4.11: Verification Result of CTL Formula 4.1

Chapter 4. Modelling in Uppaal 112

We then check that every page is reachable from the initial state. This can be done

by using the query in 4.2

E[] (Server.Home imply Server.Account) (4.2)

In query 4.3 we check that the home page is reachable from all pages.

E[] (Server.Account imply Server.Home). (4.3)

Query 4.4 verifies that the client cannot bypass the home page without the authenti-

cation process.

A[] (Server.Home imply not Client.Account) (4.4)

We use the global variables Status and Session to check that when the client is on

the account page the status is login and the session is valid.

E <> (Client.Account and Status == login and Session == valid) (4.5)

4.2.2 Modelling Dynamic Navigation

In this model of the web application we consider the dynamic behaviour of the tran-

sitions. We add edges at each page location to model different possibilities. This

step might be considered as a straightforward step in contrast to the Spin model in

Chapter 4. Modelling in Uppaal 113

section 3.2.2. However, in the first model in section 4.2.1 we only used one channel

for the whole session as each location only had only one option. In the case of multi

options from each location, we need to declare more channels as Uppaal has a non-

deterministic choice of edges that can affect the sequence of communication between

the server and the client model. If there is only one channel and multi options the

model behaviour will not be correct, for example we may find that the server is on

the account page while the client is on the payment page during the simulation run.

Even with the use of conditions on edges we could not control the correct sequence of

pages as uppaal do not run the communication simultaneously.

In the global variables we declare another three channels for the following connection:

• channel (accountToLgout) from the account page to logout page.

• channel (paymentToLogout) from the payment page to logout page.

• channel (paymentToAccount) from the payment page back to the account page.

Figure 4.12 shows the client automata with added locations.

Logout
Confirmation

Payment
AccountpartnerB==server

Home

paymentToLogout!
Page=logoutaccountToLgout!

Page=logout

network?

paymentToAccount?
paymentToAccount!
Page=account

network?

network!

Page = home

network? network! Page=logout

network?

network!
Page = confirm

network?network!
Page = paymentpartnerB == server

network ?network!
Page = account,
partnerA = user

Figure 4.12: Dynamic Client Automaton.

Chapter 4. Modelling in Uppaal 114

In Figure 4.13 the server controls the session and updates the global variables after

each change from the client side.

Logout Confirmation

PaymentAccount
partnerA==user

Home

network!

paymentToLogout?
C=false,
E=trueaccountToLgout?

B=false,
E=true

paymentToAccount! paymentToAccount?

C=false,
B=true

network!

network?
E=false,
A=true,
Status=error,
Session=invalid

network!

network?

D=false,
E=true

network!

network?

C = false,
D=true

network!
network?

B=false,
C=true

partnerA == user

network !

Status = login,
Session = valid

network ?

partnerB = server,
B=true,
A=false

Figure 4.13: Dynamic Server Automaton.

4.2.2.1 Simulation and Verification Results of Dynamic Navigation Model

We use the simulation to analyse the behaviour in the first stages of the modelling.

We first verify that there is no deadlock in the model using the query in 4.6. The

results in 4.14 show that there is no deadlock and the number of states has increased

compared to the first model in Section 4.2.1.

A[] not deadlock (4.6)

Verifying property 1 at line 11

-- Property is satisfied.

-- States stored: 14 states

-- States explored: 14 states

Figure 4.14: Verification Results of CTL Formula 4.6

Chapter 4. Modelling in Uppaal 115

After adding the new channels the sequence of actions were correct. To verify our

approach we use the following query in 4.7 to verify that the client cannot bypass the

home page without the authentication process.

A[] (Server.Home imply not Client.Account) (4.7)

4.2.3 Modelling with Time Constraints

Including time in the model assists in representing realistic properties such as the ses-

sion management time-out mechanism. Furthermore, by adding time we can analyse

the sequence of events as done in Chapter 3. In Uppaal it is possible to use real

time clocks. However, the time is symbolic and represented as clock constraints, and

we cannot capture the value of time at each step. We only can compare the value to

integer constraints.

To add time constraints to the model, we declare a global clock that is used by the

server side as shown in listing 3.2. A constant integer MAX is declared with the value

10. We use it at the edge conditions when there is a time-out.

27 clock time;

28 const int MAX = 10;

Figure 4.15 shows the client side. We added three edges from the main pages to

represent a time-out message by the server side. The server will use the network and

send an error message. To avoid complicating the model, we did not add the dynamic

navigation properties to the current model.

Chapter 4. Modelling in Uppaal 116

Logout
Confirmation

Payment
AccountpartnerB==server

Home

network?

network?

network?

network?

network!

Page = home

network? network! Page=logout

network?

network!
Page = confirm

network?network!

Page = payment
partnerB == server

network ?network!
Page = account,
partnerA = user

Figure 4.15: Timed Client Automaton.

In Figure 4.16 the server uses the clock to control the session. At the start the time

value is 0. When the client is on the account page there will be two conditions: time

< MAX, then the client could proceed to the next page or; time >= MAX here the server

will send a message that the session has expired. And then the client will be redirected

to the logout page.

Logout Confirmation

PaymentAccount

partnerA==user

Home

time>=MAX

network!
D=false,
Status=error

time>=MAX
network!

C=false,
Status=error

time >= MAX
network!

B=false,
Status=error

network!

time = 0

network?
E=false,
A=true,
time = 0,
Status=error

network!

time < MAX
network?

D=false,
E=true

network!

time < MAX

network?

C = false,
D=true

network!

time = 0
time < MAX

network?
B=false,
C=truepartnerA == user

network !

Status = login,
Session = SessionId

network ?

partnerB = server,
B=true,
A=false

Figure 4.16: Timed Server Automaton.

4.2.3.1 Simulation and Verification Results of Timed Model

After adding the time, we can now check the value of the clock on each page with the

following queries.

Chapter 4. Modelling in Uppaal 117

In query 4.8 we check that at a particular location a time-out can occur. We use the

same query for all the pages in our model.

E <> Client1.Account && Server1.Account&& time > MAX (4.8)

In query 4.9 we verify that a time-out will not occur when the client is active.

E[] not (Client.Account and time > MAX) (4.9)

We can also use the global variables to verify that while the login status holds, the

time will not be more than MAX as shown in 4.10.

E[] not (Status == login and time > MAX) (4.10)

4.2.4 Adding an Intruder to the Model

At this stage we add an intruder process to our model. The model process is based

on the intruder model designed by Dolev and Yao [1983]. The intruder collects in-

formation about both parties during the session. The knowledge is used during a

session to create and send messages or to tamper with other agent communication.

The intruder at first overhears and intercepts all the messages over the network. We

use the location invariant to represent that the attacker has the knowledge of the

identity of the session and participates in the communication. After receiving all the

information, the intruder becomes active and sends a new message. Figure 4.17 shows

the intruder automaton at the first location until the session id is validated. Then the

intruder uses the local variable data to store the value of the session.

Chapter 4. Modelling in Uppaal 118

The next step is to get the communication parties’ identities and to store them in the

local variables id1 and id2. If the id2 is identified as the client, the intruder then

starts by receiving a message from either of the parties and then replies.

partnerA==user

partnerB==serverSession == SessionId

Start

network!

network? network!

id2==user

network?

id2=user

id1=serverdata = SessionId

Figure 4.17: Intruder Automaton.

We used the same client and server automaton in the timed model in section 4.2.3.

The next stage is to verify the sequence of actions and timing.

4.2.4.1 Simulation and Verification Results of Model with Intruder

To understand the model behaviour we first perform a simulation check. In Uppaal

the moment any process becomes active it can affect the other processes. When

the intruder becomes active and sends or receives messages, the sequence of events

changes. In Table 4.2 we show the differences between the two models when we did

the safety check for deadlocks. The number of states increased dramatically from 15

states to 749 states. The reason for this increase is that the communication in the

secure model was running simultaneously but after we added the intruder process the

other processes were affected and the transitions increased.

Model States Stored

Secure 15

Intruder 749

Table 4.2: Verification Results of the Secure Model and Compromised Model in
Uppaal.

Chapter 4. Modelling in Uppaal 119

4.3 Summary

This chapter presented the second model checker used in our research Uppaal. We

first presented the tool modelling language. We then modelled a web application in

four different scenarios based on the requirements of verification. Concluding remarks

can be summarised as follows:

• In the model without timer 4.2.1, we presented how to model a web application

in Uppaal. We built a model that represents a client and server communicating

simultaneously by adding an intermediate committed location between the main

locations.

• In the model with dynamic navigation 4.2.2 we modelled the dynamic exchange

of messages based on different input from the client of the server status. How-

ever, we needed to create additional channels to represent the new actions. In

the case of the location having two edges, each process will choose a different

path.

• In the model with timed constraints 4.2.3, we declared a clock in the global

variables. We then verfived session managment properties that rely on time

constraints.

• In the model with the intruder 4.2.4 we added an intruder process. We found

that the number of states has increased. When we used the simulation we

noticed that the communication between the server and client became different

and with the presence of an intruder in the middle of the session there will be a

difference in the locations of both parties at the same time.

Chapter 4. Modelling in Uppaal 120

In the next chapter we present a comparison between modelling web applications in

Spin and Uppaal. We discuss the differences between the results obtained from both

model checking tools. We also present the challenges of modelling web applications.

Chapter 5

Comparison

In this chapter we compare between the results from Spin and Uppaal and highlight

final remarks from Chapter 4 and Chapter 5. Firstly, we introduce the Spin modelling

challenges and compare it with Uppaal. We then compare between the different

modelling properties in both tools. We then discuss the intruder model. Finally we

list a summary of the chapter.

5.1 Modelling Web Applications in Spin

The Spin model checker [Holzmann, 2004] was developed to verify communication

protocols. It has been used in successful examples [D’Argenio et al., 1997, Joesang,

1995]. Spin has two main sections, the simulator and the verifier. Firstly in the

simulator we can gain insights into the model under development, eliminating design

mistakes and analysing the system behaviour. On the other hand, the verifier has an

expressive number of verification options beside the LTL reasoning. We presented a

full description of the Spin model checker in Chapter 3

121

Chapter 5. Comparison 122

We modelled a simple web application in Chapter 3. We used most of Spin’s features

to simulate and verify web applications’ properties. The model was developed grad-

ually to ensure that the behaviour is easy to understand and also that the results are

correct. We list each model below and discuss the challenges.

The first model in section 3.2.1 had one session of the client logging into his/her online

banking account to make a simple transaction and the model then terminates at the

end of the run. We examined the basic properties of authentication, navigation and

session management at this stage of the model. Since we started with a basic model,

evolving and adding functions was considered easy after understanding the basics

of the modelling input language Promela. The first challenge in the first model

is understanding how not to reach a deadlock. When modelling with channels it is

possible that there will be a model timeout during the simulation if there is no further

action from the processes, and this is not considered a termination of the processes.

When using the verifier the result will show an error meaning there is a deadlock. The

way to solve this is by examining the channel’s send and receive operations. Each send

transition must have a receive in the other process in order for the model to be correct.

Understanding the repetition and selection loops could also be a challenge. The selec-

tion construct if-fi ends when there are no other options to select in the construct,

while the repetition loop do-od keeps going back to the start and choosing another

statement. Both constructs are equally important, for example we mostly used the

repetition loop do-od client process and we only needed the client to keep sending

messages to navigate in the session. The server side mostly used the selection loop

if-fi to examine and check the statements and conditions before replying.

In the first model simulation and verification section we verified the following proper-

ties as listed in the OWASP Application Security Verification Standard [Stock et al.,

Chapter 5. Comparison 123

2014] as Table 5.1 shows:

Property Description

1 The page is reachable from the top page and always has a next page in
the transition.

2 Every page is reachable from the top page.
3 The top page is reachable from all pages.
4 Eventually a chosen-page is visited.
5 The first page is the login-page and the next page is either the login-

error-page or the home-page.
6 Whenever the login-page is visited, the next page is either the login-error-

page or the login-success-page.
7 Verify that sessions are invalidated when the user logs out.
8 Verify that all pages and resources require authentication except those

specifically intended to be public
9 Verify that all authentication controls are enforced on the server side.
10 Verify that re-authentication is required before any application-specific

sensitive operations are permitted as per the risk profile of the applica-
tion.

Table 5.1: Web Applications’ Properties Stock et al. [2014].

In the second model in section 3.2.2 we modelled a dynamic page navigation where

different input leads to different pages. We kept the model simple and verified dynamic

navigation properties. The model illustrates two main principles of modelling; firstly,

understanding how the model checker executes the processes improves the accuracy

of the results. The statements’ execution behaviour in Promela is conditional on its

”enabledness” [Holzmann, 2004] and statements are either blocked or enabled based

on the condition. Since we use an unbuffered channel we had to ensure that the

communication is executed simultaneously, otherwise if any of the parties receives

an unexpected message the process will block. We designed a method in which it is

possible to include all the possibilities under each page block, and in Promela we

used the labels identifiers to represent pages.

The second modelling principle is deciding whether the model should terminate or

have an infinite number of sequences. During the modelling we need to ensure that

Chapter 5. Comparison 124

the model is correct for the intended verification formula. As stated by [Clarke, 2008]:

“ We used the term Model Checking because we wanted to determine if the temporal

formula f was true in the Kripke structure M , i.e., whether the structure M was

a model for the formula f. Some people believe erroneously that the use of the term

model refers to the dictionary meaning of this word (e.g., a miniature representation

of something or a pattern of something to be made) and indicates that we are dealing

with an abstraction of the actual system under study.”

By ensuring the model will be correct for the formula, we checked more properties

such as that the session expires after the client logs out by ensuring that the model

is infinite. Furthermore, we varied the sequence of pages on different properties by

using LTL.

In the third model we introduce a novel approach for modelling discrete time in Spin.

We add an extra process that controls the time, and we then verify properties that rely

on time constraints, such as session management properties. In the method presented

in section 3.2.3 we designed a discrete timer to suit the verification requirements of web

applications. The properties we verified related to security and session management as

listed in The OWASP Application Security Verification Standard Stock et al. [2014].

The assertions added to the model ensured that during an active session the timing

will not exceed a fixed period. Though the number of states and transitions has

increased, we did not reach a state explosion problem as the model was kept simple

to verify the properties efficiently.

The final model in section 3.2.4 includes an intruder that becomes active in the middle

of the communication. We examine the difference in the sequence of actions and the

timing between a secure model and a compromised model. We use the timer process

from model 3.2.3 and we add the intruder process.

Chapter 5. Comparison 125

The first result to be noticed is that the number of states increased dramatically during

the execution of the compromised model in contrast to the secure model. Furthermore,

the verification run time increased to 14 seconds in the compromised model and the

depth reach its limit of 9999.

The results verifies that the presence of an intruder in the communication increases the

number of transitions and states. We used the default safety verification for deadlocks

to obtain the results.

The next stage analyses the order of events and timing. We added the macro definition

define MSG printf("Time is %d n ", timer) to print the value of the time

during the run of the model. After each message received from the server side, Spin

prints out the value of the time, and this simulates a time stamp for the message

exchange process. The simulation charts identified that the sequence of transactions

were different between the models. The timing values after the first exchange of

messages were different.

5.2 Modelling Web Applications in Uppaal

We used Uppaal to model a simple web application in Chapter 5. The model was

developed gradually as we did in the Spin chapter to ensure that the behaviour is

easy to understand and also that the results are correct. We list each model bellow

and discuss the challenges.

At the first model in section 4.2.1 we focused on developing an accurate model with

the basic properties. We did not include the time constraints at this stage. The first

challenge we found is how to model a realistic channel that can pass values with each

message. In Uppaal the update on the edge from the sender is always evaluated

Chapter 5. Comparison 126

before the update of the edge with the receiver, and the receiver can access the data

written by the sender in the same transition. But in our model we needed a condition

to check the value of the message, and the guards of the edges are evaluated before the

updates are executed, i.e., before the receiver in the communication has access to the

value. We modified the conditional two-way synchronous value passing in the 4.2.1

method to suit our model. We added intermediate committed locations between the

main locations. The committed locations enforce that the synchronisation is atomic.

We used the invariants in the intermediate committed locations as conditions.

In the second model in section 4.2.2 we verified dynamic navigation properties. We

used the same value passing method as in the first model 4.2.1. The challenge was

that when a location has more than one option both processes will act differently if the

same channel is used for both actions. We then added channels for each extra action

so the server and client will execute simultaneously. We then verified our approach

by verifying that the client cannot bypass the authentication page.

In the third model in section 4.2.3 we added a global clock that we used to control the

session. With the time constraints we verified properties such as the session is active

and the session does not reach a timeout. We also used locations to verify session

management properties such as if the client is on the account page and we checked

the time constraints.

In the last model in section 4.2.4, we introduced an intruder process to check the

differences between a secure and a compromised model as done in the Spin model.

The number of states increased dramatically from 15 states to 749 states. The reason

for this increase is that the communication in the secure model was running simul-

taneously but after the intruder started receiving and sending messages each process

was affected and the transitions increased.

Chapter 5. Comparison 127

5.3 Comparison

In this section we make comparison between the Spin and Uppaal model checkers in

verifying web applications. In Table 5.2 we show the difference between the number of

states from both model checkers. The number of states increased with the increase in

the complexity of each model. Each of the model checkers has a different verification

background language. In Spin each change in the integer values, conditions, and

jump statements is stored as a state, whereas in Uppaal only the changes between

locations are stored. In Spin the number of states increased from 53 states in the

model without time to 92 states in the dynamic navigation model as we added more

transactions between the client and the server.

In the models without the intruder in Uppaal; the server and client exchanged the

messages simultaneously. When we added the intruder to the Uppaal model, there

was a change in the execution behaviour of the model as each of the communication

parties were in a different location at a specific time unit, hence the increase in the

number of states from 15 states to 749 states.

Model Model without Time Dynamic Navigation Model Timed Model Model with Intruder

Spin 53 92 1182 14666773

Uppaal 12 14 15 749

Table 5.2: Comparison of Number of States between Spin and Uppaal.

In the following part of this section we answer the questions we posed in Chapter 1.6.

Q1 How complex and expressive is the input language of the model checking tool to

cover the properties of the web applications?

Chapter 5. Comparison 128

In Spin’s input language Promela becoming familiar with the basis of the

language was not complex. The basic processes and channels made it suitable for

our research. We benefited from the symbolic names mtype that represented the

messages in the communication. From the first stages of modelling we managed

to have a sequence chart of the client and server communicating during the

simulation stage. This advantage assisted in understanding the behaviour of

the model and also the Promela language itself. The complexity was from the

verification using LTL, as it was difficult to understand how to formalize the

logic of the model in order to suit the formula during the verification. In some

of the LTL formulas we needed to make some changes to the model in order to

get the correct results. The process of changes improved the final model, and

also developed an understanding of how the verification runs. The Promela

language is expressive enough to cover most of the web application properties if

the modelling process is carried out correctly.

In Uppaal developing the model using the graphical editor was easy to un-

derstand. However, we faced the challenge of having a correct representation

of the web application. At the first stages we assumed that both processes in

the model would run simultaneously by exchanging messages and moving to the

next state. This is not true in Uppaal, as for modelling web application we

needed to add conditions on locations, and value passing through channels as

we did in Spin. The process of creating the channels, messages and conditions

in Uppaal is more complex than in Spin. The guards of the edges are eval-

uated before the updates are executed from both processes, So we found that

we need to add extra intermediate committed locations the between main loca-

tions. When we added the intruder process to the model, we faced the problem

of the processes not running simultaneously, hence the increase in the number

Chapter 5. Comparison 129

of states in the compromised model. A solution to the problem was to create

a broadcast channel, but we cannot add time conditions to edges as it is not

allowed in broadcast channels. Uppaal can assist in verifying basic properties

such as reachability and invariants, but the verification temporal logic used is a

simplified subset of CTL.

Q2 To what extent can property specification language be adaptable to specify web

application properties?

In Spin we found that using the LTL patterns assisted in specifying all the

proposed properties in the background chapter. However, in Uppaal we could

not verify properties such as precedence and response formulas to verify the

sequence of actions that we used in the Spin chapter. We only verified in

Uppaal the basic properties along with the clock constraints.

Q3 How capable is the model checker verifying the model without resulting in a state

explosion problem?

The approach we used in modelling assisted in avoiding over modelling the

design. We started by modelling the simplest possible description of the com-

munication between the client and the server. We then focused on capturing the

essential system characteristics to be analysed. We developed the model grad-

ually and used the tools simulation and verification after each addition to the

model. Since the model was small we did not face any issues in the verification

stage. The advantage of this approach is managing the complexity of modelling

and avoiding errors in the early stages.

Q4 How are the results different when integrating a simple timing constraint to Spin,

in contrast to Uppaal which is based on timed automata specifications?

Chapter 5. Comparison 130

Adding discrete time to Spin was a challenging task, The timer process should

run simultaneously with other processes in the model. If there was a deadlock in

any process, the timer process would reach an infinite loop resulting in a failure

execution of the model. Correspondingly, a timer could be integrated to suit

the verification requirements. The main advantage of modelling time in Spin

is that we were able to have the value of time in each step of the model. In

Uppaal the value of the clock is treated symbolically and the clock values are

not represented in real numbers, but rather as clock constraints.

5.4 Summary

This chapter presented the model results summary obtained from the Spin and Up-

paal modelling chapters. We then discussed the differences between both model

checkers to verify web applications. In the next chapter we summarise the research

results, highlight the research limitations and provide directions and areas for future

research.

Chapter 6

Conclusion

This chapter summarises the work done in this thesis. In section 6.1 we summarise the

main results of this research. Section 6.2 presents a review of the thesis contributions

and outstanding issues. In section 6.3 we discuss the directions of future research.

6.1 An Overview of the Research

We started the thesis in Chapter 1 with a brief description of web applications chal-

lenges, properties, formal methods and the advantages of using model checking for

the verification of web applications.

In Chapter 2 we summarised the background on web application fundamentals and

properties, and provided a comparison of the analysis and verification methods found

in the literature. The model checking theory used in this research was then described.

We then compared the temporal logics LTL and CTL. We then showed the temporal

logic patterns that were used in expressing the web application properties in Chapter

3.

131

Chapter 6. Conclusion and Future Work 132

In Chapter 3 we presented the Spin and its input language Promela. Firstly, we

presented an overview of the tool language and advantages and our justification for

using it for modelling web applications. Secondly, as Spin does not support the

modelling time concept, the integration of time into Promela is discussed, along

with examples from the existing literature. We then used a detailed approach for

modelling a web application example (on-line banking web application). We presented

discussion of the verification options in Spin. The result shows that it is possible to

model basic web applications properties using either assertions or LTL formulas. We

proposed a novel approach for modelling the dynamic behaviour of web applications.

We then designed a discrete-time process to verify realistic properties, The verification

results proved that it is possible to model time in Spin and to verify the properties

without causing a state explosion problem. Finally, we used the timing process to

study the sequence of actions and timestamps when an intruder is added to the model.

The results showed a difference in the sequence of actions and timing, along with an

increase in the number of states, memory and verification time.

Chapter 4 presented the second model checking tool Uppaal. We first gave an

overview of the tool modelling language and verification options. We then showed

a simple example to understand modelling with real time. We then used the same ap-

proach shown in 3 to gradually model a web application and to analyse the behaviour

of the model after each stage. We then verified the properties using the verifier in

Uppaal.

In Chapter 5 we presented the results from Spin and Uppaal. We then compared

between both tools in the context of verifying web applications.

Chapter 6. Conclusion and Future Work 133

6.2 Summary of Thesis Contributions to Research

Areas

In this section we review the main contributions achieved in this thesis. We list the

contributions in three categories as follows:

6.2.1 Contributions to Model Checking Web Applications

Firstly, the challenges in adopting model checking for the analysis and verification of

web applications were critically reviewed. The usage of model checking is examined

for the critical properties of web applications, such as security and navigation proper-

ties. After providing a sound background on the current challenges in verifying web

applications, methods are devised to develop more secure and easy-to-maintain web

applications.

Secondly, a novel approach for time constraints was integrated into the spin model

checker to enable the modelling of web application properties. We used spin’s existing

abilities to design realistic web application models. This enabled the expression of

issues, such as modelling session management properties and dynamic navigation

properties, where a time-out can lead to different pages. Chapter 3 describes the

steps in modelling time constraints in Spin.

In addition to modelling the static properties of web applications, a novel approach was

developed for modelling the dynamic properties of web applications [Alalfi et al., 2009],

in which a single input can lead to different pages based on time constraints and server

state. As highlighted in the literature review, there is a gap in modelling the dynamic

navigation properties of web applications. Our research shows how it is possible to

Chapter 6. Conclusion and Future Work 134

model web applications using the model checking tool’s existing capabilities, which is

detailed in Chapter 3 and Chapter 4.

6.2.2 Contributions to Model Checking Timed Models of Web

Applications

The model checker Uppaal is presented in the literature [Ben-Ari, 2008, Ruys and

Holzmann, 2004] as an alternative in Spin when modelling real-time systems. By

integrating discrete time to Spin we had the advantage of analysing and understanding

the behaviour of the model using the timestamps of actions and messages. Whereas

in Uppaal the value of time was treated symbolically and the clock values are not

represented by real numbers, but rather as clock constraints. The differences were

analysed in Chapter 5.

6.2.3 Contributions to Modelling Security Properties of Ap-

plications

By using our approach of analysing the time sequence and action sequence of different

web application models. The difference between a secure session and a compromised

session with the presence of an intruder can be identified by the differences between

time, number of states and behaviour complexity. Understanding the web applica-

tion behaviour in different scenarios leads to a better understanding of the behaviour,

improved security and more stable development. In addition, analysing different se-

quences of model runs can assist in developing security detection methods [Carl et al.,

2006, Kruegel et al., 2005] that rely on quantitative measurements such as difference

in time and memory as presented in Chapter 3.

Chapter 6. Conclusion and Future Work 135

6.3 Future Work

Web applications are evolving rapidly nowadays, and finding new methods to ensure

design correctness is important. Web applications are different to other applications

and systems due to their complex structure and technologies [Alalfi et al., 2009, Li and

Xue, 2014]. The web applications models we created in our approach can be adapted

to other communication protocols such as security protocols and ad-hoc routing pro-

tocols. In addition, the security and navigation properties we verified in this work can

be used in applications that share the same specifications. Below we discuss future

direction:

• To find a link between the research and industry in using model checking. We

believe that developing model templates and frameworks for the verification of

web applications could assist in simplifying the process. In addition, verification

options should be added to each template.

• The implementation used in our research is applicable to other types of appli-

cations, such as mobile applications, ad-hoc routing protocols and multi-agent

systems.

• Our approach of analysing the sequence of actions with an intruder is added to

the model, which could assist in understanding other different types of attack

in the area of the quantitative detection of web applications attacks.

Bibliography

Alalfi, M., Cordy, J., and Dean, T. (2009). Modelling methods for web application ver-

ification and testing: state of the art. Software Testing, Verification and Reliability,

19(4):265–296.

Alpuente, M., Ballis, D., Espert, J., and Romero, D. (2010). Model-checking web

applications with web-tlr. In Bouajjani, A. and Chin, W.-N., editors, Automated

Technology for Verification and Analysis, Lecture Notes in Computer Science, pages

341–346. Springer Berlin Heidelberg.

Alur, R. and Dill, D. L. (1994). A theory of timed automata. Theoretical computer

science, 126(2):183–235.

Amnell, T., Behrmann, G., Bengtsson, J., Dargenio, P. R., David, A., Fehnker, A.,

Hune, T., Jeannet, B., Larsen, K. G., Möller, M. O., et al. (2001). UPPAAL-now,

next, and future. In Modeling and Verification of Parallel Processes, volume 2067,

pages 99–124. Springer.

Armando, A., Carbone, R., Compagna, L., Li, K., and Pellegrino, G. (2010). Model-

checking driven security testing of web-based applications. In Third International

Conference on Software Testing, Verification, and Validation Workshops, pages

361–370. IEEE.

Baier, C., Katoen, J.-P., et al. (2008). Principles of model checking. MIT press

Cambridge.

Balduzzi, M., Gimenez, C. T., Balzarotti, D., and Kirda, E. (2011). Automated discov-

ery of parameter pollution vulnerabilities in web applications. In The 18th Annual

Network and Distributed System Security Symposium. Internet Society (ISOC).
136

Bibliography 137

Behrmann, G., David, A., and Larsen, K. (2004). A tutorial on UPPAAL. In Formal

methods for the design of real-time systems, pages 33–35. Springer.

Ben-Ari, M. (2008). Principles of the Spin model checker. Springer Science & Business

Media.

Bengtsson, J. and Yi, W. (2004). Timed automata: Semantics, algorithms and tools.

In Lectures on Concurrency and Petri Nets, pages 87–124. Springer.

Blanchet, B. (2001). An efficient cryptographic protocol verifier based on prolog rules.

In Computer Security Foundations Workshop. Proceedings. 14th IEEE, pages 82–96.

IEEE Computer Society.

Bosnacki, D. Dams, D. (1998). Integrating real time into spin: A prototype imple-

mentation. In FORTE XI / PSTV XVIII, pages 423–438. Kluwer, B.V.

Brinksma, E., Mader, A., and Fehnker, A. (2002). Verification and optimization of

a plc control schedule. International Journal on Software Tools for Technology

Transfer, 4(1):21–33.

Burstall, R. (1974). Program proving as hand simulation with a little induction.

Information processing, 74:308–312.

Carl, G., Kesidis, G., Brooks, R. R., and Rai, S. (2006). Denial-of-service attack-

detection techniques. Internet Computing, IEEE, 10(1):82–89.

Casteleyn, S., Daniel, F., Dolog, P., and Matera, M. (2009). Engineering Web Appli-

cations. Springer-Verlag New York Inc.

Castelluccia, D., Mongiello, M., Ruta, M., and Totaro, R. (2006). Waver: A model

checking-based tool to verify web application design. Electronic Notes in Theoretical

Computer Science, 157(1):61–76.

Cenzic (2014). Application vulnerability trends report. Technical report, Cenzic.

Cimatti, A., Clarke, E., Giunchiglia, F., and Roveri, M. (2000). Nusmv: a new

symbolic model checker. International Journal on Software Tools for Technology

Transfer, 2(4):410–425.

Bibliography 138

Clarke, E. M. (2008). The birth of model checking. In 25 Years of Model Checking,

volume 5000 of Lecture Notes in Computer Science, pages 1–26.

Clarke, E. M. and Emerson, E. A. (1982). Design and synthesis of synchronization

skeletons using branching time temporal logic. Springer.

Clarke, E. M., Grumberg, O., and Peled, D. (1999). Model checking. MIT press.

Clarke, E. M. and Wing, J. M. (1996). Formal methods: State of the art and future

directions. ACM Computing Surveys (CSUR), 28(4):626–643.

Conallen, J. (1999). Modeling web application architectures with UML. Communi-

cations of the ACM, 42(10):63–70.

Corbett, J. C., Dwyer, M. B., Hatcliff, J., et al. (2000). A language framework for

expressing checkable properties of dynamic software. In SPIN Model Checking and

Software Verification, pages 205–223. Springer.

Corin, R., Etalle, S., Hartel, P., and Mader, A. (2003). On modelling real-time

and security properties of distributed systems (extended abstract). University of

Twente, Centre for Telematics and Information Technology.

Cremers, C. J. (2008). The scyther tool: Verification, falsification, and analysis of

security protocols. In Computer Aided Verification, pages 414–418. Springer.

D’Argenio, P. R., Katoen, J.-P., Ruys, T. C., and Tretmans, J. (1997). The bounded

retransmission protocol must be on time! In Tools and Algorithms for the Con-

struction and Analysis of Systems, pages 416–431. Springer.

Davis, J. (2000). System verification technologies. Technical report, Institute for

Software Integrated Systems, Vanderbilt University.

Di Sciascio, E., Donini, F., Mongiello, M., and Piscitelli, G. (2003). Web applica-

tions design and maintenance using symbolic model checking. In Seventh European

Conference on Software Maintenance and Reengineering. Proceedings., pages 63–72.

IEEE.

Bibliography 139

Dolev, D. and Yao, A. C. (1983). On the security of public key protocols. IEEE

Transactions on Information Theory, 29(2):198–208.

Donini, F., Mongiello, M., Ruta, M., and Totaro, R. (2006). A model checking-

based method for verifying web application design. Electronic Notes in Theoretical

Computer Science, 151(2):19–32.

Dwyer, M. B., Avrunin, G. S., and Corbett, J. C. (1999). Patterns in property speci-

fications for finite-state verification. In Software Engineering, 1999. Proceedings of

the 1999 International Conference on, pages 411–420. IEEE.

Elks, J. (2011). Man in the middle attack: Focus on

SSLStrip. Online http://www.grin.com/en/e-book/170676/

man-in-the-middle-attack-focus-on-sslstrip. Accessed 2015-01-20.

Engels, G., Kuster, J., Heckel, R., and Lohmann, M. (2003). Model-based verification

and validation of properties. Electronic Notes in Theoretical Computer Science,

82(7):133–150.

Falk, L., Prakash, A., and Borders, K. (2008). Analyzing websites for user-visible

security design flaws. In Proceedings of the 4th symposium on Usable privacy and

security, pages 117–126, New York, USA. ACM.

Fenton, N. and Bieman, J. (2014). Software metrics: a rigorous and practical ap-

proach. CRC Press.

Fisher, M. (2011). An Introduction to Practical Formal Methods Using Temporal

Logic. John Wiley & Sons.

Fraternali, P. (1999). Tools and approaches for developing data-intensive web appli-

cations: a survey. ACM Computing Surveys (CSUR), 31(3):227–263.

Frier, A., Karlton, P., and Kocher, P. (1996). The ssl 3.0 protocol. Netscape Commu-

nications Corp, 18:2780.

Fundation, O. S. (2010). Data loss database - 2010 yearly report. Online http:

//datalossdb.org/reports. Accessed 2013-05-10.

http://www.grin.com/en/e-book/170676/man-in-the-middle-attack-focus-on-sslstrip
http://www.grin.com/en/e-book/170676/man-in-the-middle-attack-focus-on-sslstrip
http://datalossdb.org/reports
http://datalossdb.org/reports

Bibliography 140

Gangan, S. (2015). A review of man-in-the-middle attacks. Computing Research

Repository.

Ginige, A. (2002). Web engineering: managing the complexity of web systems devel-

opment. In Proceedings of the 14th international conference on Software engineering

and knowledge engineering, pages 721–729. ACM.

Ginige, A. and Murugesan, S. (2001). Web engineering: An introduction. MultiMedia,

IEEE, 8(1):14–18.

Google (2015). Google vulnerability reward program (VRP). Online http://www.

google.co.uk/about/appsecurity/reward-program/. Accessed 2015-01-15.

Han, M. and Hofmeister, C. (2006). Modeling and verification of adaptive navigation

in web applications. In Proceedings of the 6th international conference on Web

engineering, pages 329–336. ACM.

Haydar, M., Boroday, S., Petrenko, A., and Sahraoui, H. (2005). Properties and

scopes in web model checking. In Proceedings of the 20th IEEE/ACM international

Conference on Automated software engineering, pages 400–404. ACM.

Haydar, M., Petrenko, A., and Sahraoui, H. (2004). Formal verification of web appli-

cations modeled by communicating automata. In Formal Techniques for Networked

and Distributed Systems - FORTE, pages 115–132. Springer.

Hesseldahl, A. (2015). Cyber crime still on the rise, using nine

basic attack methods. Online http://recode.net/2015/04/13/

cyber-crime-still-on-the-rise-using-nine-basic-attack-methods/.

Accessed: 2015-04-21.

Hoff, J. (2013). A strategic approach to web application security. Technical report,

WhiteHat Security.

Holzmann, G. (2004). The SPIN model checker: Primer and reference manual.

Addison-Wesley Professional.

Holzmann, G. J. (1997). The model checker SPIN. IEEE Transactions on Software

Engineering, 23(5):279–295.

http://www.google.co.uk/about/appsecurity/reward-program/
http://www.google.co.uk/about/appsecurity/reward-program/
http://recode.net/2015/04/13/cyber-crime-still-on-the-rise-using-nine-basic-attack-methods/
http://recode.net/2015/04/13/cyber-crime-still-on-the-rise-using-nine-basic-attack-methods/

Bibliography 141

Homma, K., Izumi, S., Takahashi, K., and Togashi, A. (2011). Modeling, verifica-

tion and testing of web applications using model checker. IEICE Transactions on

Information and Systems, 94(5):989–999.

Huang, Y. and Lee, D. (2005). Web application security past, present, and future. In

Lee, D., Shieh, S., and Tygar, J., editors, Computer Security in the 21st Century,

pages 183–227. Springer.

Hughes, G. E. and Cresswell, M. J. (1996). A new introduction to modal logic. Psy-

chology Press.

Huth, M. and Ryan, M. (2006). Logic in Computer Science: Modelling and reasoning

about systems. Cambridge University Press.

Joesang, A. (1995). Security protocol verification using SPIN. In Gregoire, J.-C.,

editor, Proceedings of the First SPIN Workshop, pages 1–9, Montreal, Canada.

INRS-Telecommunications.

Jovanovic, N., Kruegel, C., and Kirda, E. (2006). Pixy: A static analysis tool for

detecting web application vulnerabilities. In IEEE Symposium on Security and

Privacy, pages 258–263. IEEE Computer Society.

Kappel, G., Proll, B., Reich, S., and Retschitzegger, W. (2006). Web engineering.

John Wiley & Sons.

Kourkouli, M. and Hassapis, G. (2005). Application of the timed automata abstraction

to the performance evaluation of the architecture of a bank on-line transaction

processing system. In Proceedings of the 2nd South-East European Workshop on

Formal Methods SEEFM, pages 142–153. South East European Research Centre

SEERC.

Kripke, S. (2007). Semantical considerations of the modal logic. Studia Philosophica,

Studia Universitatis Babe-Bolyai, 1.

Krishnamurthi, S. (2006). Web verification: Perspective and challenges. Electronic

Notes in Theoretical Computer Science, 157(2):41–46.

Bibliography 142

Kröger, F. (1977). Lar: A logic of algorithmic reasoning. Acta Informatica, 8(3):243–

266.

Kruegel, C., Vigna, G., and Robertson, W. (2005). A multi-model approach to the

detection of web-based attacks. Computer Networks, 48(5):717–738.

Lee, S. C. and Shirani, A. I. (2004). A component based methodology for web appli-

cation development. Journal of systems and software, 71(1):177–187.

Li, X. and Xue, Y. (2014). A survey on server-side approaches to securing web

applications. ACM Computing Surveys (CSUR), 46(4):54.

McClure, S., Shah, S., and Shah, S. (2003). Web hacking: attacks and defense.

Addison-Wesley Professional.

McMillan, K. (1992). Symbolic model checking: an approach to the state explosion

problem. Technical report, DTIC Document.

Meier, S., Schmidt, B., Cremers, C., and Basin, D. (2013). The tamarin prover for

the symbolic analysis of security protocols. In Computer Aided Verification, pages

696–701. Springer.

Mendes, E. and Mosley, N. (2006). Web engineering. Springer Science & Business

Media.

Miao, H. and Zeng, H. (2007). Model checking-based verification of web application. In

12th IEEE International Conference on Engineering Complex Computer Systems,

pages 47–55. IEEE Computer Society.

Microsoft (2011). Microsoft .net framework. Online http://www.microsoft.com/

net. Accessed 2014-05-13.

MSDN (2011). Improving web application security: Threats and countermeasures

roadmap. Online http://msdn.microsoft.com/en-us/library/ff649874.aspx.

Accessed 2015-05-12.

http://www.microsoft.com/net
http://www.microsoft.com/net
http://msdn.microsoft.com/en-us/library/ff649874.aspx

Bibliography 143

Murugesan, S. and Deshpande, Y. (2002). Meeting the challenges of web application

development: the web engineering approach. In Proceedings of the 24th Interna-

tional Conference on Software Engineering, pages 687–688. ACM.

Offutt, J. (2002). Quality attributes of web software applications. IEEE Software,

19(2):25–32.

OWASP (2013). OWASP top ten web applicatins attacks. Online https://www.

owasp.org/. Accessed 2013-05-16.

Pnueli, A. (1981). The temporal semantics of concurrent programs. Theoretical Com-

puter Science, 13(1):45–60.

Rescorla, E. (2001). SSL and TLS: designing and building secure systems, volume 1.

Addison-Wesley Reading.

Ricca, F. and Tonella, P. (2000). Web site analysis: Structure and evolution. In

Software Maintenance, 2000. Proceedings. International Conference on, pages 76–

86. IEEE.

Ricca, F. and Tonella, P. (2001). Analysis and testing of web applications. In ICSE,

pages 25–34. IEEE Computer Society.

Ruys, T. C. (2003). Optimal scheduling using branch and bound with SPIN 4.0. In

Model Checking Software, pages 1–17. Springer.

Ruys, T. C. and Holzmann, G. J. (2004). Advanced SPIN tutorial. In Model Checking

Software, pages 304–305. Springer.

Salamah, S., Gates, A., Roach, S., and Mondragon, O. (2005). Verifying pattern-

generated LTL formulas: a case study. In Model Checking Software, pages 200–220.

Springer.

Schätz, B. (2004). Model-based development: combining engineering approaches and

formal techniques. In Davies, J., Schulte, W., and Barnett, M., editors, Formal

Methods and Software Engineering, volume 3308 of Lecture Notes in Computer

Science, pages 1–2. Springer Berlin Heidelberg.

https://www.owasp.org/
https://www.owasp.org/

Bibliography 144

Solutions, V. E. (2015). 2015 data breach investigations report. Online

http://www.verizonenterprise.com/DBIR/2015/?utm_source=pr&utm_

medium=pr&utm_campaign=dbir2015. Accessed 2015-01-10.

Stock, A., Kazerooni, S., Cuthbert, D., and Raja, K. (2014). Application security

verification standard. Technical report, The OWASP Foundation.

Taylor, M. J., McWilliam, J., Forsyth, H., and Wade, S. (2002). Methodologies and

website development: a survey of practice. Information and Software Technology,

44(6):381–391.

Tracy, M., Jansen, W., and McLarnon, M. (2002). Guidelines on securing public web

servers. NIST Special Publication, 800:44.

Tripakis, S. and Courcoubetis, C. (1996). Extending PROMELA and SPIN for real

time. In Tools and Algorithms for the Construction and Analysis of Systems, pages

329–348. Springer.

Valmari, A. (1998). The state explosion problem. In Reisig, W. and Rozenberg, G.,

editors, Lectures on Petri Nets I: Basic Models, volume 1491 of Lecture Notes in

Computer Science, pages 429–528. Springer Berlin Heidelberg.

Vardi, M. Y. (2001). Branching vs. linear time: Final showdown. In Tools and

Algorithms for the Construction and Analysis of Systems, pages 1–22. Springer.

Venema, Y. (2001). Temporal logic. The Blackwell Guide to Philosophical Logic,

pages 203–223.

WASC (2011). Web application security consortium. Online http://www.webappsec.

org/. Accessed 2015-01-15.

Yuen, S., Kato, K., Kato, D., and Agusa, K. (2006). Web automata: A behavioral

model of web applications based on the mvc model. Information and Media Tech-

nologies, 1(1):66–79.

http://www.verizonenterprise.com/DBIR/2015/?utm_source=pr&utm_medium=pr&utm_campaign=dbir2015
http://www.verizonenterprise.com/DBIR/2015/?utm_source=pr&utm_medium=pr&utm_campaign=dbir2015
http://www.webappsec.org/
http://www.webappsec.org/

Appendix A

Promela code is listed here as mentioned in Chapter 3.

(A) Model without Time Constraints

1 #define p (Server@HomePage)

2 #define q (Server@AccountPage)

3 #define r (Server@PaymentPage)

4 #define s (Server@ConfirmtPage)

5 #define z (Server@Logoutpage)

6 #define m (Status == login)

7 mtype = {ok , err , ack , msg1 , msg2 , msg3 , msg4 , msg5 , msg6 ,

sessionID , user , server , password };

8 mtype = {home , account , payment , confirm , logout , error ,

login};

10 typedef Crypt { mtype session , content1}

12 chan network = [0] of {mtype , /* msg# */

13 mtype , /* receiver */

14 Crypt };

15 /* global variables for verification */

16 mtype partnerA , partnerB;

17 mtype statusA = err;

18 mtype statusB = err;

19 mtype page = err;

20 mtype Status = err;

21 active proctype Server () {

145

Appendix A. Spin Code 146

23 mtype sessionId; /* session id that we receive from the

User */

24 Crypt messageSU; /* encrypted message to the user

*/

25 Crypt data; /* received encrypted message

*/

26 partnerB = user;

27 messageSU.session = sessionId;

28 messageSU.content1 = server;

30 HomePage: page = home;

32 network? msg1 (partnerB , data);

34 if:: (data.session == sessionId) && (data.content1

== user) ->

36 network ! ack (partnerB , messageSU);

38 statusA = ok; Status = login; goto

AccountPage;

40 ::else -> goto HomePage;

41 fi;

42 AccountPage:

44 network? msg2 (partnerB , data);

45 if::(data.session == sessionId) && (data.content1

== account) -> page = account;network ! ack (partnerB ,

messageSU);goto PaymentPage;

46 ::else -> goto HomePage;

47 fi;

48 PaymentPage:

50 network? msg3 (partnerB , data);

Appendix A. Spin Code 147

52 if::(data.session == sessionId) && (data.content1

== payment) -> page = payment;network ! ack (partnerB ,

messageSU);goto ConfirmtPage;

53 ::else -> goto HomePage;

54 fi;

56 ConfirmtPage:

58 network? msg4 (partnerB , data);

59 if::(data.session == sessionId) && (data.content1

== confirm) -> page = confirm;network ! ack (partnerB ,

messageSU);

60 ::else -> goto HomePage;

61 fi;

62 Logoutpage: Status = logout

64 network? msg5 (partnerB , data);

65 if::(data.session == sessionId) && (data.content1

== logout) -> page = home; statusA = err; network ! ack

(partnerB , messageSU);

66 ::else -> goto HomePage;

67 fi;

68 }

69 active proctype User() {

70 mtype sessionId; /* nonce that we receive from the

Server */

71 Crypt messageUS; /* encrypted message to Server

*/

72 Crypt data; /* received encrypted message

*/

74 A:

75 partnerA = server;

78 /* login messgae */

Appendix A. Spin Code 148

80 messageUS.session = sessionId;

81 messageUS.content1 = user;

84 network! msg1 (partnerA , messageUS);

86 network? ack (partnerA , data);

88 (data.session == sessionId) && (data.content1 == server)

90 statusB = ok;

92 B:

93 /* Second messgae */

95 messageUS.session = sessionId;

96 messageUS.content1 = account;

98 network! msg2 (partnerA , messageUS);

99 network? ack (partnerA , data);

101 C:

102 /* Third messgae */

104 messageUS.session = sessionId;

105 messageUS.content1 = payment;

107 network! msg3 (partnerA , messageUS);

108 network? ack (partnerA , data);

110 D:

111 /* forth messgae */

112 messageUS.session = sessionId;

113 messageUS.content1 = confirm;

114 network! msg4 (partnerA , messageUS);

Appendix A. Spin Code 149

115 network? ack (partnerA , data);

117 E:

118 /* fifth messgae */

119 messageUS.session = sessionId;

120 messageUS.content1 = logout;

121 network! msg5 (partnerA , messageUS);

122 network? ack (partnerA , data);statusB = err;

124 }

125 /*ltl p0 { <> (partnerA == server && partnerB ==user) -> <>(

statusA == ok && statusB == ok) }*/

126 /*ltl p1 { <> (statusA == ok && statusB == ok) }*/

127 /* ltl p2 { []((page == account) -> <>(statusA == ok &&

statusB == ok)) }*/

128 /* ltl p3 { [] ((Server@PaymentPage) -> (Status == login))

} */

129 /*ltl p4 { [](P -> <>R) }*/

130 /*ltl p5 { [](!Q || <>(Q && <>P)) }*/

131 /*ltl m1 { !M W P}*/

132 /*ltl p7 { [](p && !z -> (!z U (m && !z))) } */

133 /* ltl p8 { [](z -> <>m) } */

134 /* ltl p9 { <> (q && m) } */

(B) Dynamic Navigation Model

1 #define p (Server@HomePage)

2 #define q (Server@AccountPage)

3 #define r (Server@PaymentPage)

4 #define s (Server@ConfirmtPage)

5 #define z (Server@Logoutpage)

6 #define m (Status == login)

8 mtype = { ok , err , ack ,

9 msg1 , msg2 , msg3 , msg4 , msg5 , msg6 ,

10 sessionID , user , server , password

11 }

Appendix A. Spin Code 150

13 mtype = {

14 home , account , payment , confirm , logout , error ,

login

15 }

16 typedef Crypt { mtype session , content1 }

18 chan network = [0] of { mtype , /* msg# */

19 mtype , /* receiver */

20 Crypt }

21 /* global variables for verification */

22 mtype partnerA = server

23 mtype partnerB = user

24 mtype statusA = err

25 mtype statusB = err

26 mtype page = err

27 mtype Status = err

28 active proctype Server ()

29 { mtype sessionId /* session that we receive from

the User */

30 Crypt messageSU /* encrypted message to the user

*/

31 Crypt data /* received encrypted message

*/

33 messageSU.session = sessionId

34 messageSU.content1 = server

36 HomePage:

37 page = home /* LOGIN ONLY */

39 if

40 :: network ? msg1 (partnerB , data)->

41 (data.session == sessionId) && (data.

content1 == user) ->

42 network ! ack (partnerB , messageSU)

Appendix A. Spin Code 151

43 statusA = ok

44 Status = login

46 fi

48 AccountPage: assert(Status == login)

49 if

50 :: network? msg2 (partnerB , data)->

/* Move to Payment Page*/

51 (data.session == sessionId) && (data.

content1 == account) ->

52 page = account

53 network ! ack (partnerB , messageSU)

54 goto PaymentPage

56 :: network ? msg5 (partnerB , data) ->

/* Client request logout */

58 (data.session == sessionId) && (data.

content1 == logout) ->

59 page = home;network ! ack (partnerB ,

messageSU)

60 statusA = err

61 Status = logout

62 goto HomePage

64 fi

66 PaymentPage: assert(Status == login)

67 if

68 :: network? msg3 (partnerB , data) ->

/* Move to Confirmation Page*/

69 (data.session == sessionId) && (data.

content1 == payment) ->

70 page = payment

71 network ! ack (partnerB , messageSU)

Appendix A. Spin Code 152

72 goto ConfirmtPage

74 :: network ? msg2 (partnerB , data) ->

/* Go back to Account Page*/

76 (data.session == sessionId) && (data.

content1 == account) ->

77 page = account

78 network ! ack (partnerB , messageSU)

79 goto AccountPage;

81 :: network ? msg5 (partnerB , data) ->

/* Client request logout */

83 (data.session == sessionId) && (data.

content1 == logout) ->

84 page = home;network ! ack (partnerB ,

messageSU)

85 statusA = err

86 Status = logout

87 goto HomePage

89 fi

90 ConfirmtPage: assert(Status == login)

92 if

93 :: network? msg4 (partnerB , data) ->

94 (data.session == sessionId) && (data.

content1 == confirm) ->

95 page = confirm

96 network ! ack (partnerB , messageSU)

98 :: network ? msg2 (partnerB , data) ->

/* Go back to Account Page*/

Appendix A. Spin Code 153

100 (data.session == sessionId) && (data.

content1 == account) ->

101 page = account

102 network ! ack (partnerB , messageSU)

103 goto AccountPage;

105 fi

106 Logoutpage: assert (Status == login); Status = logout

107 network? msg5 (partnerB , data)

108 if

109 :: (data.session == sessionId) && (data.content1

== logout) ->

110 page = home;network ! ack (partnerB ,

messageSU)

111 statusA = err

112 goto HomePage

113 :: else ->

114 goto HomePage

115 fi

116 }

117 active proctype User()

118 { mtype sessionId /* nonce that we receive from the

Server */

119 Crypt messageUS /* encrypted message to Server */

120 Crypt data /* received encrypted message */

122 A: /* Home Page */

123 messageUS.session = sessionId

124 messageUS.content1 = user

125 network! msg1 (partnerA , messageUS)

126 network? ack (partnerA , data)

127 (data.session == sessionId) && (data.content1 ==

server)

128 statusB = ok

130 B: /* Account Page */

Appendix A. Spin Code 154

131 do

132 :: messageUS.session = sessionId;messageUS.content1

= account

133 network! msg2 (partnerA , messageUS)

134 network? ack (partnerA , data)->goto C;

135 :: messageUS.session = sessionId; messageUS.

content1 = logout;

136 network! msg5 (partnerA , messageUS);

137 network? ack (partnerA , data)->statusB = err;

goto A;

138 od;

140 C: /* Payment Page */

141 do

142 :: messageUS.session = sessionId; messageUS.

content1 = payment;

143 network! msg3 (partnerA , messageUS);

144 network? ack (partnerA , data)->goto D;

145 :: messageUS.session = sessionId; messageUS.

content1 = account;

146 network! msg2 (partnerA , messageUS);

147 network? ack (partnerA , data)->goto B;

148 :: messageUS.session = sessionId; messageUS.

content1 = logout;

149 network! msg5 (partnerA , messageUS);

150 network? ack (partnerA , data)->statusB = err;

goto A;

151 od;

152 D: /* Confirmation Page */

153 do

154 :: messageUS.session = sessionId

155 messageUS.content1 = confirm

156 network! msg4 (partnerA , messageUS)

157 network? ack (partnerA , data)->goto E;

Appendix A. Spin Code 155

159 :: messageUS.session = sessionId; messageUS.

content1 = account;

160 network! msg2 (partnerA , messageUS);

161 network? ack (partnerA , data)->goto B;

163 od;

164 E: /* Logout Page */

165 messageUS.session = sessionId

166 messageUS.content1 = logout

167 network! msg5 (partnerA , messageUS)

168 network? ack (partnerA , data)

169 statusB = err

170 goto A

171 }

172 ltl p1 { !r U q }

173 /*ltl r1 { [](q -> <>r || <> z || <>p) }*/

(C) Model with Timed Constraints

1 #define p (Server@HomePage)

2 #define q (Server@AccountPage)

3 #define r (Server@PaymentPage)

4 #define s (Server@ConfirmtPage)

5 #define z (Server@Logoutpage)

6 #define m (timer < MAX)

7 #define MSG printf("Status is %e\n", Status)

9 mtype = { ok , err , ack ,

10 msg1 , msg2 , msg3 , msg4 , msg5 , msg6 ,

11 sessionID ,invalid ,valid , user , server , password

12 }

14 mtype = {

15 home , account , payment , confirm , logout , error ,

login

16 }

Appendix A. Spin Code 156

18 typedef Crypt { mtype session , content1 }

20 chan network = [0] of { mtype , /* msg# */

21 mtype , /* receiver */

22 Crypt }

23 /* global variables for verification */

24 mtype partnerA = server

25 mtype partnerB = user

26 mtype statusA = err

27 mtype statusB = err

28 mtype page = err

29 mtype Status = err

30 mtype Session = err

31 byte timer ;

32 byte MAX = 2;

34 byte flag;

35 byte flag2;

36 byte flag3;

37 byte flag4;

38 proctype Clock ()

40 { do

41 :: atomic {timer < MAX -> timer ++} skip;

42 ::else -> atomic {timer == MAX -> timer = 0} skip;

43 od;

44 }

46 proctype Server ()

47 { mtype sessionId /* session that we receive from

the User */

48 Crypt messageSU /* encrypted message to the user

*/

49 Crypt data /* received encrypted message

*/

Appendix A. Spin Code 157

53 HomePage:

54 page = home /* LOGIN ONLY */

55 messageSU.session = sessionId

56 messageSU.content1 = server

58 if

59 :: network ? msg1 (partnerB , data)-> atomic {

60 (data.session == sessionId) && (data.

content1 == user) ->

61 network ! ack (partnerB , messageSU)

62 statusA = ok

63 Session = valid

64 Status = login }

65 skip;

66 fi

68 AccountPage: /* assert (timer <= MAX && Session == valid &&

Status == login)*/

70 if

71 :: network? msg2 (partnerB , data)-> if

72 /*

Move to Payment Page*/

73 :: atomic {(data.session == sessionId) &&

(data.content1 == account)&&(timer < MAX) ->

74 page = account ;timer = 0

76 network ! ack (partnerB , messageSU)

77 goto PaymentPage ;} skip;

78 ::else -> atomic {Session = invalid;

79 network!error (partnerB , messageSU);Status =

logout;flag ++; MSG;goto HomePage ;} skip;

80 fi;

81 fi

Appendix A. Spin Code 158

83 PaymentPage: /* assert (timer <= MAX && Session ==

valid && Status == login)*/

85 if

86 :: network? msg3 (partnerB , data) -> if

87

/* Move to Confirmation Page*/

88 :: atomic {(data.session == sessionId) && (

data.content1 == payment) &&(timer < MAX)->

89 page = payment;timer = 0

90 network ! ack (partnerB , messageSU)

91 goto ConfirmedPage ;} skip;

93 :: else -> atomic {Session = invalid;

94 network!error (partnerB , messageSU);

Status = logout;flag2 ++; MSG;goto HomePage ;} skip;

95 fi

96 fi

98 ConfirmedPage: /* assert (timer <= MAX && Session == valid

&& Status == login)*/

100 if

101 :: network? msg4 (partnerB , data) -> if

102 :: atomic {(data.session == sessionId) && (

data.content1 == confirm) &&(timer < MAX)->

103 page = confirm;timer = 0

104 network ! ack (partnerB , messageSU);}skip;

106 :: else -> atomic {Session = invalid;

107 network!error (partnerB , messageSU);

Status = logout;flag3 ++; MSG;goto HomePage ;}skip;

108 fi

110 fi

Appendix A. Spin Code 159

112 Logoutpage: /* assert (timer <= MAX && Session == valid &&

Status == login)*/

113 network? msg5 (partnerB , data)

114 if

115 :: atomic {(data.session == sessionId) && (data.

content1 == logout) &&(timer < MAX)->

116 page = logout;network ! ack (partnerB ,

messageSU)

117 statusA = err

118 Status = logout

119 timer = 0

120 Session = invalid;

121 goto HomePage ;}skip;

123 :: else -> atomic {Session = invalid;

124 network!error (partnerB , messageSU);

Status = logout;flag4 ++; MSG;goto HomePage ;} skip;

125 fi;

126 }

128 proctype User()

129 { mtype sessionId /* nonce that we receive from the

Server */

130 Crypt messageUS /* encrypted message to Server */

131 Crypt data /* received encrypted message */

133 A: /* Home Page */

134 messageUS.session = sessionId

135 messageUS.content1 = user

137 network! msg1 (partnerA , messageUS)

138 network? ack (partnerA , data)

139 if ::

140 (data.session == sessionId) && (data.

content1 == server) ->

Appendix A. Spin Code 160

141 statusB = ok ;skip; fi;

143 B: /* Account Page */

144 do

145 :: messageUS.session = sessionId;messageUS.content1

= account

146 network! msg2 (partnerA , messageUS)

147 if

148 :: network? ack (partnerA , data)->goto C

;skip;

149 :: if :: network? error (partnerA , data)

-> statusB = err; goto A; skip; fi;

150 fi;

151 od;

153 C: /* Payment Page */

154 do

155 :: messageUS.session = sessionId; messageUS.

content1 = payment;

156 network! msg3 (partnerA , messageUS);

157 if

158 :: network? ack (partnerA , data)->goto D;

skip;

159 ::if:: network? error(partnerA , data)->

statusB = err;goto A; skip;fi;

160 fi;

162 od;

163 D: /* Confirmation Page */

164 do

165 :: messageUS.session = sessionId

166 messageUS.content1 = confirm

167 network! msg4 (partnerA , messageUS)

168 if

169 :: network? ack (partnerA , data)->goto E;

skip;

Appendix A. Spin Code 161

170 ::if:: network? error (partnerA , data)->

statusB = err;goto A; skip;fi;

171 fi;

172 od;

174 E: /* Logout Page */

175 do

176 :: messageUS.session = sessionId

177 messageUS.content1 = logout

178 network! msg5 (partnerA , messageUS)

179 if

181 :: network? ack (partnerA , data)-> statusB

= err; goto A;skip;

182 ::if:: network? error(partnerA , data) ->

statusB = err;goto A; fi; skip;

184 fi;

185 od;

186 }

187 /*ltl p1 { [](q -> [](!m)) }*/

188 /*ltl u5 { []((Session == valid) && !(Session == invalid)

-> ((Status == logout) W (Session == invalid))) }*/

189 /*ltl e3 { [](! Server@PaymentPage || <>(Server@PaymentPage

&& <> (!timer == MAX))) }*/

190 /*ltl a1 { <> (Session == valid) || (Session == invalid)

|| (Session == 0) }*/

191 /*ltl p1 { <> (statusA == err && statusB == err) }*/

192 /*ltl p2 { -> <>(statusA == ok &&

statusB == ok)) }*/

193 /*ltl p3 { [] ((Server@PaymentPage) -> [](! timer == MAX))

}*/

194 init{

195 run User(); run Clock(); run Server ()}

(D) Model with an Intruder A: Secure Model

Appendix A. Spin Code 162

1 #define MSG printf("Time is %d\n", timer)

3 mtype = { ok , err , ack ,

4 msg1 , msg2 , msg3 , msg4 , msg5 , msg6 ,

5 sessionId , user , server , intruder ,

6 }

8 mtype = {

9 home , account , payment , confirm , logout , error ,

login

10 }

12 typedef Crypt { mtype session , content1 }

14 chan network = [0] of { mtype , /* msg# */

15 mtype , /* receiver */

16 Crypt }

18 /* global variables for verification */

19 mtype partnerA;

20 mtype partnerB;

21 mtype statusA = err

22 mtype statusB = err

23 mtype page = err

24 mtype Status = err

25 byte timer;

26 byte MAX = 20;

29 proctype Clock ()

30 {

32 do

33 :: atomic {timer < MAX -> timer ++} skip;

34 ::else -> atomic {timer == MAX} skip;

35 break

Appendix A. Spin Code 163

36 od;

39 }

40 proctype Server ()

41 {

42 Crypt messageSU /* encrypted message to the user

*/

43 Crypt data /* received encrypted message

*/

44 messageSU.session = sessionId

45 messageSU.content1 = 0

46 HomePage:

47 page = home

48 atomic{network ? msg1 , partnerB (data);MSG

49 network ! ack (partnerB , messageSU);

50 statusA = ok

51 Status = login} skip;

53 AccountPage:

54 atomic{network? msg2 , partnerB (data);MSG

56 page = account

57 network ! ack (partnerB , messageSU);

58 goto PaymentPage} skip;

60 PaymentPage:

61 atomic{network? msg3 , partnerB (data);MSG

63 page = payment

64 network ! ack (partnerB , messageSU);

65 goto ConfirmedPage} skip;

68 ConfirmedPage:

69 atomic{network? msg4 , partnerB (data);MSG

Appendix A. Spin Code 164

71 page = confirm

72 network ! ack (partnerB , messageSU)} skip;

76 Logoutpage:

77 atomic{network? msg5 , partnerB (data);MSG

79 page = home;network ! ack (partnerB ,

messageSU);

80 statusA = err

81 Status = logout; goto HomePage} skip;

84 }

85 proctype User()

86 {

87 Crypt messageUS /* encrypted message to Server */

88 Crypt data /* received encrypted message */

90 if

91 :: partnerA = intruder;

92 :: partnerA = server;

93 fi;

95 A: /* login message */

96 atomic{messageUS.session = sessionId

97 messageUS.content1 = login

98 network! msg1 ,partnerA , messageUS;

99 network? ack (partnerA , data);

100 statusB = ok} skip;

102 B: /* second message */

103 atomic{messageUS.session = sessionId

104 messageUS.content1 = account

Appendix A. Spin Code 165

105 network! msg2 (partnerA , messageUS);

106 network? ack (partnerA , data);} skip;

108 C: /* third message */

109 atomic{messageUS.session = sessionId

110 messageUS.content1 = payment

111 network! msg3 (partnerA , messageUS);

112 network? ack (partnerA , data);} skip;

114 D: /* fourth message */

115 atomic{messageUS.session = sessionId

116 messageUS.content1 = confirm

117 network! msg4 (partnerA , messageUS);

118 network? ack (partnerA , data);} skip;

120 E: /* fifth message */

121 atomic{messageUS.session = sessionId

122 messageUS.content1 = logout

123 network! msg5 (partnerA , messageUS);

124 network? ack (partnerA , data);

125 statusB = err; goto A} skip;

128 }

130 init {

131 atomic{

132 if

133 ::run User(); run Clock(); run Server ();

134 fi;

135 }

136 }

B: Model with intruder

1 #define MSG printf("Time is %d\n", timer)

Appendix A. Spin Code 166

3 mtype = { ok , err , ack ,

4 msg1 , msg2 , msg3 , msg4 , msg5 , msg6 ,

5 sessionId , user , server , intruder ,

6 }

8 mtype = {

9 home , account , payment , confirm , logout , error ,

login

10 }

12 typedef Crypt { mtype session , content1 }

14 chan network = [0] of { mtype , /* msg# */

15 mtype , /* receiver */

16 Crypt }

18 /* global variables for verification */

19 mtype partnerA;

20 mtype partnerB;

21 mtype statusA = err

22 mtype statusB = err

23 mtype page = err

24 mtype Status = err

25 byte timer;

26 byte MAX = 10;

27 proctype Clock ()

29 {

31 do

32 :: atomic {timer < MAX -> timer ++} skip;

33 ::else -> atomic {timer == MAX} skip;

34 break

35 od;

Appendix A. Spin Code 167

38 }

39 proctype Server ()

40 {

41 Crypt messageSU /* encrypted message to the user

*/

42 Crypt data /* received encrypted message

*/

43 messageSU.session = sessionId

44 messageSU.content1 = 0

45 HomePage:

46 page = home

47 atomic{network ? msg1 , partnerB (data);MSG

48 network ! ack (partnerB , messageSU) ;

49 statusA = ok

50 Status = login} skip;

52 AccountPage:

53 atomic{network? msg2 , partnerB (data);MSG

55 page = account

56 network ! ack (partnerB , messageSU);

57 goto PaymentPage} skip;

59 PaymentPage:

60 atomic{network? msg3 , partnerB (data);MSG

62 page = payment

63 network ! ack (partnerB , messageSU);

64 goto ConfirmedPage} skip;

67 ConfirmedPage:

68 atomic{network? msg4 , partnerB (data);MSG

70 page = confirm

71 network ! ack (partnerB , messageSU)} skip;

Appendix A. Spin Code 168

75 Logoutpage:

76 atomic{network? msg5 , partnerB (data);MSG

78 page = home;network ! ack (partnerB ,

messageSU);MSG

79 statusA = err

80 Status = logout; goto HomePage ;} skip;

81 }

82 proctype User()

83 {

84 Crypt messageUS /* encrypted message to Server */

85 Crypt data /* received encrypted message */

87 if

88 :: partnerA = intruder;

89 :: partnerA = server;

90 fi;

92 A: /* login message */

93 atomic{messageUS.session = sessionId

94 messageUS.content1 = login

95 network! msg1 ,partnerA , messageUS;

96 network? ack (partnerA , data);

97 statusB = ok} skip;

99 B: /* second message */

100 atomic{messageUS.session = sessionId

101 messageUS.content1 = account

102 network! msg2 (partnerA , messageUS);

103 network? ack (partnerA , data);} skip;

105 C: /* third message */

106 atomic{messageUS.session = sessionId

Appendix A. Spin Code 169

107 messageUS.content1 = payment

108 network! msg3 (partnerA , messageUS);

109 network? ack (partnerA , data);} skip;

111 D: /* fourth message */

112 atomic{messageUS.session = sessionId

113 messageUS.content1 = confirm

114 network! msg4 (partnerA , messageUS);

115 network? ack (partnerA , data);} skip;

117 E: /* fifth message */

118 atomic{messageUS.session = sessionId

119 messageUS.content1 = logout

120 network! msg5 (partnerA , messageUS);

121 network? ack (partnerA , data);

122 statusB = err; goto A} skip;

124 }

126 proctype Intruder () {

127 mtype msg , recpt;

128 Crypt data , intercepted;

129 do

130 :: network ? msg , _, data ->

131 atomic{ if /* store the message */

132 :: intercepted.session = data.session;

133 intercepted.content1 = data.content1;

134 :: skip;

135 fi; }

138 if /* choose a recipient */

139 :: recpt = user;

140 :: recpt = server;

141 ::skip;

142 fi;

Appendix A. Spin Code 170

143 if /* replay intercepted message or assemble it */

144 :: data.session = intercepted.session;

145 data.content1 = intercepted.content1;

147 :: if /* assemble content1 */

148 :: data.content1 = server;

149 :: data.content1 = user;

150 :: data.content1= login;

151 :: data.content1 = home;

152 :: data.content1 = account;

153 :: data.content1 = payment;

154 :: data.content1 = confirm;

155 :: data.content1 = logout;

156 ::skip;

157 fi;

159 :: if /* assemble SessionId */

160 :: data.session = sessionId;

161 ::skip;

162 fi;

163 fi;

164 network ! msg (recpt , data);

165 od

166 }

168 init {

169 atomic{

170 if

171 ::run User(); run Clock(); run Intruder (); run

Server ();

172 fi;

173 }

174 }

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Web Applications
	1.2 Formal Methods
	1.3 State of the Problem
	1.4 Research Aims and Objectives
	1.5 Research Methodology
	1.6 Contributions
	1.7 Publications
	1.8 Structure of Thesis

	2 Background and Related Work
	2.1 Web Applications
	2.1.1 Security Threats for Web Applications

	2.2 Web Navigation Properties
	2.3 Web Security Properties
	2.3.1 Session Management
	2.3.2 Authentication
	2.3.3 Control-Flow

	2.4 Model Checking
	2.4.1 Model Checking Tools

	2.5 Temporal Logic
	2.5.1 Linear Temporal Logic (LTL)
	2.5.2 Computational Tree Logic (CTL)
	2.5.3 Temporal Logic Patterns

	2.6 Timed Automata Theory
	2.6.1 Formal Syntax

	2.7 Modelling an Intruder (Man in the Middle)
	2.8 Conclusions

	3 Modelling in SPIN
	3.1 The SPIN Model Checker
	3.1.1 Promela
	3.1.2 Verification in Spin
	3.1.3 Modelling Time in SPIN

	3.2 Modelling Web Applications in Spin
	3.2.1 Model without Timer
	3.2.1.1 Simulation and Verification Results of Model without Timer

	3.2.2 Modelling Dynamic Navigation
	3.2.2.1 Simulation and Verification Results of the Dynamic Navigation Model

	3.2.3 Modelling with Time Constraints
	3.2.3.1 Simulation and Verification Results of Timed Model

	3.2.4 Adding an Intruder to the Model
	3.2.4.1 Simulation and Verification Results of Model with Intruder

	3.3 Summary

	4 Modelling in UPPAAL
	4.1 The Uppaal Model Checker
	4.1.1 The Modelling Language
	4.1.2 Modelling Time in UPPAAL
	Locations in UPPAAL

	4.2 Modelling Web Applications in Uppaal
	4.2.1 Model without Time Constraints
	4.2.1.1 Simulation and Verification Results of Model without Time Constraints

	4.2.2 Modelling Dynamic Navigation
	4.2.2.1 Simulation and Verification Results of Dynamic Navigation Model

	4.2.3 Modelling with Time Constraints
	4.2.3.1 Simulation and Verification Results of Timed Model

	4.2.4 Adding an Intruder to the Model
	4.2.4.1 Simulation and Verification Results of Model with Intruder

	4.3 Summary

	5 Comparison
	5.1 Modelling Web Applications in Spin
	5.2 Modelling Web Applications in Uppaal
	5.3 Comparison
	5.4 Summary

	6 Conclusion
	6.1 An Overview of the Research
	6.2 Summary of Thesis Contributions to Research Areas
	6.2.1 Contributions to Model Checking Web Applications
	6.2.2 Contributions to Model Checking Timed Models of Web Applications
	6.2.3 Contributions to Modelling Security Properties of Applications

	6.3 Future Work

	Bibliography
	Appendix A

