
Strathprints Institutional Repository

Aßmuth, Andreas and Cockshott, Paul and Kipke, Jana and Renaud,

Karen and Mackenzie, Lewis and Vanderbauwhede, Wim and Söllner,

Matthias and Fischer, Tilo and Weir, George (2016) Improving resilience

by deploying permuted code onto physically unclonable unique

processors. In: 2016 Cybersecurity and Cyberforensics Conference

(CCC). IEEE, Piscataway, pp. 144-150. ISBN 9781509026579 ,

http://dx.doi.org/10.1109/CCC.2016.30

This version is available at http://strathprints.strath.ac.uk/59291/

Strathprints is designed to allow users to access the research output of the University of

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights

for the papers on this site are retained by the individual authors and/or other copyright owners.

Please check the manuscript for details of any other licences that may have been applied. You

may not engage in further distribution of the material for any profitmaking activities or any

commercial gain. You may freely distribute both the url (http://strathprints.strath.ac.uk/) and the

content of this paper for research or private study, educational, or not-for-profit purposes without

prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:

strathprints@strath.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/77036199?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk

Improving Resilience by Deploying Permuted Code

onto Physically Unclonable Unique Processors

Andreas Aßmuth†, Paul Cockshott∗, Jana Kipke†, Karen Renaud∗, Lewis Mackenzie∗, Wim Vanderbauwhede∗

Matthias Söllner†, Tilo Fischer†, George Weir‡

†University of Applied Sciences OTH Amberg-Weiden. Corresponding Author: a.assmuth@oth-aw.de
∗University of Glasgow

‡University of Strathclyde

Abstract—Industrial control systems (ICSs) are, at present,
extremely vulnerable to cyber attack because they are ho-
mogenous and interconnected. Mitigating solutions are urgently
required because systems breaches can feasibly lead to fatalities.
In this paper we propose the deployment of permuted code
onto Physically Unclonable Unique Processors in order to resist
common cyber attacks. We present our proposal and explain how
it would resist attacks from hostile agents.

I. INTRODUCTION

Cyber attacks on traditional information technology (IT)

systems steal or destroy information, which is damaging

enough, and has financial implications. Nowadays, Industrial

Control Systems (ICSs) are threatened by attacks similar to

those against traditional IT used in companies to support office

work. Attacks on ICSs can lead to tangible, physical side

effects, which could potentially be cataclysmic.

The reason for this is that ICSs measure and control phys-

ical processes. Examples are the automation of processes in

factories, the control of large systems in industrial production,

or coordination of critical infrastructures. The use of Stuxnet

to sabotage the Iranian Nuclear programme [1] revealed the

latent vulnerabilities of ICSs. An unknown agent introduced

malware into the system by plugging in a thumb drive which

then installed the malware. It propagated itself across the plant

and sabotaged the plant’s functioning so that severe damage

resulted.

Since ICSs run many kinds of critical systems it is vital

to find a way to make these systems more resilient to cyber

attack. The Stuxnet attack did not result in any fatalities, but

one can easily imagine attacks on other systems leading to

multiple fatalities were hostile agents to be able to take control

over them.

In this paper we propose combining two techniques to

address the threat: (1) the use of physically unencodable

unique processors, and (2) permuted operator tables. The

former ensures that software will not run on any but the

specific processor it was produced for. The latter ensures that

even if one particular system is compromised, it would not be

possible for the code to propagate itself with ease, which has

been the case for malware thus far.

II. RELATED WORK

A. Attacks on Industrial Control Systems (ICSs)

Cyber attackers targeting ICSs normally face two different

scenarios [2]:

(a) The ICS is directly connected to the Internet. In this case,

the device is usually attacked directly. This means attackers

try to exploit vulnerabilities and weaknesses in the Operating

System (OS) or maybe the configuration interface which is

accessible via a web server running on the device itself. Other

threats are similar to those on any other device that has direct

internet access, like, for example, denial of service attacks

(DoS).

(b) If the ICS cannot be reached over the Internet, attackers

try to infiltrate the traditional office IT of the target company

in order to build sort of a beach head. This is achieved by

common attack techniques, e.g. by spear-phishing or even

social engineering. From here, the attacker gathers more

information about the network and the attached devices, tries

to find vulnerabilities and exploits these to attack ICSs. The

already mentioned Stuxnet worm is a primary example of this

scenario [3].

It is not trivial to resist attacks against ICSs since the

techniques used to defend against traditional attacks on of-

fice IT systems are not fit for purpose due to the special

requirements of ICSs. ICSs are generally time-critical and

must meet hard or soft real-time requirements [4]. The outage

of ICSs is unacceptable because this would halt production.

Forced errors in an ICS can result in malfunctions of robots,

conveyor belts etc. which could lead to severe injury or even

the loss of life. Therefore, ICSs must have some kind of

fault tolerance. ICSs can also be used in environments with

restricted accessibility, e.g. in vacuo or when using toxic

gases, and this complicates physical access to devices. ICS-

based plants are usually designed to work for years without

interruption, which means that the systems used to control the

production process are expected to function properly for at

least 15 to 20 years.

B. Physical Unclonable Functions

Software developed for a particular OS will run on any other

system with that OS, regardless of the underlying hardware.

Software can be updated by a manufacturer, and such updates

propagated to all systems without individual installation. At-

tackers exploit this very characteristic to install their malware

on entire plants. Any authentication of the entity installing

updates is achieved by software, usually using passwords.

Given the ease with which attackers gain access to passwords

they do not constitute a significant barrier. Some systems

make use of hardware authentication, but these are easily

compromised if an attacker gains access to a device.

Having an individual inimitable feature to unmistakeably

identify individual devices would address this vulnerability.

Such devices would also be able to distinguish between

rightful access by parties with a profound knowledge of

these features and unauthorised connection attempts by hostile

agents. One possibility is to equip devices with physical

unclonable functions (PUFs). PUFs are hardware entities that

use device-specific features (based on natural variations in the

production process) to generate unpredictable device-specific

responses to incoming challenges. These challenge-response

pairs are unique for each PUF, since the production parameters

are fragile and impractical to replicate. It is also possible to

design PUFs in such a way that simulation of the behaviour

of a given PUF on a general purpose computer is impossible.

Similar to biometrics, this inherent structure, as the foun-

dation of any PUF-scheme, can act as a hardware fingerprint

of single electronic devices or even distinct chips. PUFs are

functions in that they accept inputs and use their unique

fingerprints to derive unpredictable device-specific responses

to incoming challenges. Since this response derivation should

not be invertible. Pappu et al. [5] suggested the name Physical

One-Way Functions (POWF) for these, and Gassend [6] called

them Physically Random Functions (PRF) since it should be

impossible to predict responses to given challenges without

using the PUF itself.

The challenge-response behaviour of any PUF could be

described by a function F (C) = R that maps a suitable

challenge C onto a unique and unpredictable response R.

For security applications this function must be mathematically

unclonable. This means no attacker should be able to derive

a function F 0 that describes the mapping for the used set of

challenge-response pairs (C,R). Depending on the scenario

and the exact category of PUF used, an attacker is considered

to be able to gain some knowledge about the PUF. For

example, knowledge of the construction outlay or a limited

subset of corresponding challenge-response pairs of this, or

a similar PUF, without being able to derive an appropriate

function reliably to map any other challenge-response pairs.

Furthermore, PUFs can be constructed in such a way

that reverse engineering, or any attempt to circumvent the

usual challenge-response procedure, will destroy the hardware

fingerprint of the device. If an attacker gets hold of such a

device their only way to approach the PUF would be to feed

it challenges through the designated channels of the device.

C. Strong PUF, Physically Obfuscated Keys and Controlled

PUFs

The number of challenges can vary from very large (so

called “strong PUF”) to rather small or even only one

challenge-response pair (“POKs — Physically Obfuscated

Keys”). Both categories share the concept of a secret derived

from a physically uncloneable structure, however their possible

usage and attack points differ drastically.

For strong PUFs, security emerges from a large set of

challenge-response pairs, which cannot all be readout during

a single access of limited duration nor be guessed at from

any given subset. Using this feature, a database of challenge-

response pairs to one PUF can, for example, authenticate a

holder of this PUF-device as the only one who can successfully

give the right response to a random challenge. One of the first

secure authentication protocols based on this feature was given

by optical PUFs [5]. Attacks on the PUF by creating lists of

challenge-response pairs, however, become infeasible if the

number of pairs becomes too high to create an exhaustive

database in a realistic timespan. For use of strong PUFs

in security applications it is especially necessary that these

entities provide mappings that are not only physically but

also mathematically unclonable for the used set of challenge-

response pairs, since most successful attacks on strong PUFs

are based on modelling attacks and more recently “combine

modelling attacks with extra information obtained from direct

physical PUF measurements or from side channels” [7].

A Physically Obfuscated Key [8], on the other hand, can

substitute for a secret key stored in hardware. It is assumed

that no attacker is able to circumvent the access protocol and

directly read the response. If this can be granted, the secret key

can be used as shared secret key to encrypt communication

to another holder of this key, such as the manufacturer.

In this scenario PUFs constitute a feasible alternative to

ordinary secret keys stored on hardware, since the secret is

not permanently present but is only generated on demand.

Another advantage is the fact that many PUF concepts have a

tamper-evident feature, causing the PUF to show or even be

destroyed at any attempt to manipulate it or record responses

circumventing the access protocol.

In combination with POKs, when the device-specific fea-

tures are used to derive a secret key, so called controlled PUFs

(CPUFs) become important, to prevent an attacker from di-

rectly reading out the POKs response. A CPUF, as introduced

by Gassend et al. [6] and summarised by Maes et al. [8],

is “in fact a mode of operation for a PUF in combination

with other (cryptographic) primitives”. The PUF is, prefer-

ably irremovably, connected to the primitive in a way that

prohibits access to the PUF apart from well defined channels

involving the cryptographic primitive. This can, for example,

mean that all challenges are processed by a hash function

prior to being fed into the PUF, thus preventing the attacker

from exploiting readouts of specific challenges (the equivalent

of chosen plaintext attacks). Another similar approach is to

feed the response from the PUF, after error correction, into

an cryptographic algorithm. Thereby the connection between

challenge and response can be obfuscated and the potential of

being unclonable both in hardware and in modelling can be

enhanced by using CPUFs. A CPUF-scheme can be used as

well to give “multiple personalities” (Maes et al. [8]) to a PUF

by allowing the cryptographic algorithms to accept parameter

as well. For example in combination with a state-of-the-art

block cipher a PUF may process two inputs: an encryption key

and a message. In this way a PUF may serve either as a storage

that provides a unique and unpredictable device-specific secret

key or as generator of messages, which are encoded using a

different key. For this proposed application, POKs in a CPUF

context provide a technique for embedding within a processor

an oracle which manufactures unique cryptographic keys.

PUF Block Cipher

Challenge (Input)

Response (Encrypted Input)

Secret Key

Fig. 1. Controlled POK

The construction of a CPUF from a POK, in combination

with a block cipher, shows similarities with a strong PUF,

in that the CPUF accepts inputs as challenges and gives

responses, which can only be verified by a party in possession

of the secret key. However, in comparison to a strong PUF, this

construction solves the problems of storing a limited number

of challenge-response pairs. Since only the secret key has to

be stored securely a database of all such CPUF devices would

need far less resources.

D. The problem of error correction

Because of the small variations in the structure, the sta-

bility of the responses, especially with respect to varying

environmental factors during readout, has to be carefully taken

into account. Maes et al. [8] and Katzenbeisser et al. [9]

consider options and bounds for environmental factors in

which variation between responses R1 ← F (C), R2 ← F (C)
of a particular challenge on one single PUF (“intra-distance”)

are stable, while on the other hand the difference between

responses R1 ← F1(C), R2 ← F2(C) to the same challenge

on two different PUF instantiations (“inter-distance”) becomes

distinguishably large. In this context it is of major importance

that efficient error correction is accounted for to compensate

the intra-distance noise. Dodis et al. [10] describe error

correction schemes especially for biometric input data. Their

technique even allows error correction of a secret value w by

a public information about w that, while not revealing w, still

allows to restore w from an appropriately close value w0. By

this, it is not necessary to store the data for error correction

inside the PUF, which would oppose many advantages of

the PUF concept. In addition, special protocols like the one

described by Pappu et al. [5] are in themselves error tolerant.

However, if such protocols can be used depends on the

PUF application. Rührmair et al. [11] especially stressed, that

perfect error correction in the secret key is needed in any

application of POKs.

E. Permuted Code

Cyber attacks deploy attacks that are similar, in many ways,

to attacks on human systems. Viruses and bacteria regularly

seek to attack us, and our immune systems have been designed

to resist such attacks. In nature, viruses tend to be species

specific. A virus will infect cells by binding to particular

proteins presented on the cell wall. This binding tends to be

highly specific so that the binding area on the virus surface

is only able to link to a specific sequence of amino acids.

Because different host species present different amino acid

sequences the ability of the virus to spread to new hosts is

impaired.

In agriculture is it well known that cultivation of mono-

cultures of single strains of a cultivar renders crops more

vulnerable to attack by viruses and other pathogens. Similar

phenomena occur in the computing world. The instruction

set/operating system combinations that are most widely used

are the most vulnerable to viruses.

Infection of a machine by a virus requires :

1) The writing of a tailored virus program exploiting a

known vulnerability on a known category of physical or

virtual machine.

2) Either the deliberate targeted introduction of the virus

onto a specific machine or the spread of the virus through

the general population of machines until it reaches the

target machine.

At first virus spread was limited to machines like PCs with

instruction sets/operating system combinations in widespread

general use (e.g the Intel x86/MSDOS pairing). Critical in-

frastructure computing used a more diverse population of

machines and OS types and was, in consequence, relatively

immune to virus infection. This is changing with the greater

use of standard Instruction Set Processors (ISPs) whether

physical designs or virtual platforms.

The combination of a known OS and a small number of

widely used ISP types means that safety- or mission-critical

systems are much more vulnerable targets for infection. The

infection can be deliberate and targeted as in the case of

Stuxnet or the inadvertent result of the spread of viruses from

the general computer population.

A computer virus is always a program written in some

instruction set. As such, a virus that is targeted at Intel x86

ISP cannot infect machines based on ARM processors. If a

sufficient number of different types of ISPs are in use, the

spread of viruses is inhibited. But the design of a new ISP

with a different instruction set is very costly so that there

are relatively few in existence and each may have a large

population of potentially infectable instantiations.
Our proposal is to introduce into the instruction cache fetch

logic of an ISP, a permutation table. Suppose that the ISP uses

byte codes. The normal cache load sequence goes something
like:

fetch instruction at address X

SEQ

check cache tags for X

if X present return cache[tail(X)]

else

SEQ

temp = mem[X]

PAR

cache[tail(x)] = temp

return temp

We propose introducing an additional stage so that it be-
comes

fetch instruction at address X

SEQ

check cache tags for X

if X present return cache[tail(X)]

else

SEQ

temp1 = mem[X]

temp2= permtab[temp1]

PAR

cache[tail(x)] = temp2

return temp2

The permutation phase performs a mapping from the in-

struction read in to the native code of the processor. The

operation can be relatively easily carried by a 256-entry fast

access table which maps the ordering of the source opcode set

to the ordering of the native instruction set.

This mechanism allows a given hardware architecture to

execute any one out of 256! different possible ISPs.

Machines would have unique instruction sets shared by no

other system. This would effectively make them immune to

viruses spreading in the general population. In principle, an

opponent who knew the permutation table used in a particular

instance could produce a highly targeted virus, but this would

be prevented by the use of PUFs.

The processors in this family could be assembly language,

but not binary language compatible with an existing family

of machines. Provided a modified version of the assembler

was available that took as an additional input an op-code

permutation table, it would be possible to cross compile

applications to the specialised machines a small extra cost.

It would be important that the machines should not have

a local compiler or interpreter that would enable them to

generate code for their own permuted instruction set. This

would prevent the spread of source code viruses.

The permutation mechanism would ensure that any

attempts to use a buffer overflow attack would result in

what was essentially a random sequence of numbers being

interpreted as opcodes. The resulting code would either loop,

or terminate on an illegal instruction almost immediately.

The relative probability of these two occurences is obviously

related to Chaitin’s Ω constant [12], the probability that a

random computer programme will halt. This is in principle

uncomputable, but estimates for the leading digits of it as

a binary fraction can be computed for specific machines.

CPU

Flash Memory DRAM

PUF Permute Machine
Inverse Permutation

Unit

Instruction Cache

Data Cache

Control and Instruction

Decode

Arithmetic and Registers

Fig. 2. Overal structure of the permuted code processor

Calude et al. [13] report estimates for a simple register

machine where they are able to prove that for a simple

register machine of their specification the first 64 bits of Ω
are

0000001000000100 0001100010000110

1000111111001011 1011101000010000

This being for a machine with 10 possible opcodes, one

of which is a halt instruction. This implies that the great

majority of random programmes go into infinite loops. The

halting probability will probably depend on the proportion

of opcodes that are actually halt or illegal opcodes. It does

not, from the standpoint of preventing deliberate malware or

viruses, matter if the programme loops or crashes. But from

the standpoint of reliability, this would still allow a buffer

overflow vulnerability to cause a crash even though it would

prevent an exploit. For industrial control purposes this would

obviously protect against Stuxnet-type attacks; the attack is

immediately visible, but it would not prevent attacks whose

aim is to crash a machine.

Our proposed architecture is shown in Fig. 2. We assume

that the data and code held in flash memory is in a strongly

encrypted Linux filing system, encrypted using a key generated

by the PUF on the chip. For environments where temperature

made PUFs perhaps unreliable, this could be replaced by a

key on an on-board ROM, but such a solution is second best

for a number of reasons discussed earlier. The data held in

the DRAM is unencrypted but the code is held in permuted

form and as such would not be directly executable. The CPU

is assumed to be a modified Harvard architecture at the low

level with distinct data and instruction caches. The data cache

has direct read/write access to the DRAM, but the instruction

cache accesses the DRAM via an inverse permutation unit.

Given a permuted opcode from the DRAM it translates it to

a plain text opcode before passing it to the cache.

The actual inverse permutation is easily performed by a

lookup table. Let us assume that the opcode field is b bits

wide. A 2b × b bit RAM can perform this task. The contents

of the inverse permutation table are initialised by a permutation

machine fed by a pseudorandom bit stream from a PUF.
The precise algorithmic structure of the permutation ma-

chine is an implementation question, but it should follow a
waterfall principle whereby if a single bit in the output of the
PUF is on statistical grounds likely to change the majority of
the permutation table positions. Here is an example of such
an algorithm in C assuming b = 8.

char t1[256],t2[256];

pm(char *pufstream){

register int i,j,k,t;

for(i=0;i<256;i++) t1[i]=i;

for(i=0,k=0;i<128;i++) {

t=pufstream[k++];

for(j=0;j<256;j++)t2[jˆt]=t1[j];

t=pufstream[k++];

for(j=0;j<256;j++)t1[(j+t)%256]=t2[j];

}

for(j=0;j<256;j++)t2[t1[j]]=j;

}

The buffer t1 is internal to the permutation machine the

buffer t2 is the inverse table in the permutation unit. A stream

of 256 bytes is read from the PUF. At then end an inverse

permutation table is in t2.

F. Related Permutation Work

Many researchers have studied the concept of instruction-set

randomization. Here we consider practical work most similar

to our proposal, and highlight how we intend to improve upon

this existing work.

Barrantes et al. [14] describe a software-only technique

for dynamic code randomization, to provide instruction set

diversity in an attempt to thwart code injection attacks. They

present a proof-of-concept implementation, called Random-

ized Instruction Set Emulation (RISE). This system is based on

Valgrind, the Linux, open-source, dynamic binary translation

framework. Executable code does not require recompilation

or pre-execution modification. Instead RISE scrambles binary

code as it is loaded by the OS, by XORing code bytes

with a cached random number. The code is unscrambled on

a per-instruction basis, during the instruction fetch into the

Valgrind dynamic code cache. Then the unscrambled code

may be executed directly by the underlying processor. RISE

is demonstrated to work on a commodity x86 processor using

the Linux OS. Note that the dynamic binary translation service

provided by Valgrind (which implements the code randomiza-

tion) is a layer on top of the OS, only for application code

execution. The paper reports on tests using standard internet

daemons (Apache web server, etc), and describes how RISE

enables protection against buffer overflow attacks etc. This is

a promising approach, but there are several disadvantages. The

executed application code is slow because of the overhead of

dynamic binary translation, which is implemented entirely in

software. The OS and Valgrind DBT code run unscrambled on

the stock hardware. Thus it might be possible to circumvent

the scrambling process by injecting code into the DBT directly.

Further, there are difficulties when applications store code in

data sections (which are not scrambled). Explicit hard-coded

workarounds are required to handle this problem.

Portokalidis et al. [15] use a similar approach to RISE,

based on the Intel PIN dynamic binary rewriting tool. They

use a database of keys, to randomize every loaded code image

in a different way. Their work has lower runtime overhead

than RISE, demonstrated by running the Apache web server

and a database server.

Fechner et al. [16] report on preliminary work which is most

related to our proposal. They sketch a technique to permute

instruction opcodes at runtime, in the processor pipeline.

Trusted code will be compiled by a customized toolchain

which transforms the executable instructions according to

the specified permutation. A virus which does not know the

permutation therefore has instructions that are semantically

nonsensical, and likely to cause a runtime failure such as a seg-

mentation fault. The opcode permutation is implemented using

a hardware lookup table. They give simple, preliminary results

to explore how such a lookup table might be integrated into an

instruction decode pipeline stage, using Field-Programmable

Gate Array (FPGA) prototyping. To the best of our knowledge,

they have not followed up on this initial work, to deploy the

scheme in a realistic system.

Ichikawa et al. [17] describe an alternative instruction set

randomization approach, specifically for embedded processors

implemented in FPGA technology. They adopt a pragmatic

approach, to minimize instruction decode complexity. They

identify instructions that have the same bit-level format (e.g.

ADD r1,r2,r3 and SUB r1,r2,r3) and arrange a sub-

stitution cipher encoding between some subset of instructions

sharing the same format. They evaluate this for several stan-

dard instruction sets, including MIPS and JVM bytecode.

While this approach works well for RISC-like instruction

sets with fixed length encodings and a few standard bit-level

layouts, it would not be applicable to variable length x86

instructions.

Sun Microsystems patented a technique[18] which is similar

in some respects. They propose a modifiable microcode dis-

patch table for a machine, such that a permutation of this table

would result in a permuted semantics. The effect of executing

the ADD instruction, could be for instance to dispatch the

microcode of an XOR instruction. If the architecture already

had a modifiable microcode table, then this would introduce

no delay in the pipeline. If, however, the table was additional

to the original design there would clearly be an extra pipeline

stage.

We avoid this extra pipe-line stage, since most instruction

fetches will go to the cache without creating a cache miss.

Only on the relatively small percentage that result in a cache

fail, will there be an extra clock cycle introduced into the

cache load time.

III. PROPOSED SOLUTION

In order to achieve the proposed properties, we present some

ideas, how the goals could be reached. The proposals have to

be further refined.

A. Manufacturing

The primary focus of this work is on processors for embed-

ded systems, typically a System-on-Chip containing a CPU

with additional custom hardware and off-chip RAM and NVM.

The SoC can be implemented either as an ASIC (Application-

specific integrated circuit) or as an FPGA. Typically, the

embedded system will be created by a system integrator and

the design of the SoC will be subcontracted to a design

company. For the ASIC case, the design will typically be

produced by a semiconductor manufacturing company; the

FPGAs can simply be purchased from an FPGA manufacturer.

The system integrator builds and delivers the hardware

system and equips it with an initial software version. Updates

of the software will only be allowed by the manufacturer. The

protocol of the software updating process will be explained

later. The system is open to third party software, which has

to be distributed by the manufacturer, in order to review it,

check for and prevent against malicious code.

The firmware code has to be permuted at the manufacturer

by using the secret key, generated by the PUF of the target

device. This secret key has to be read out by the manufacturer

in the manufacturing process before sealing the hardware and

delivering it. This operation would typically be carried out as

part of the automated testing stage.

B. Software Update Mechanism

The software update process has to be secured in several

ways. Mutual authentication of the communication partners

has to be realised. If authentication was successful the per-

muted software can be sent to the client, secured by a

standardised secure transmission protocol such as TLS with

preshared keys for example. The client stores the encrypted

firmware in his flash memory. Before loading the firmware in

the DRAM for execution decryption has to be done, in order

to fill the DRAM with the permuted firmware code.

C. Command Interface Mechanism

We also propose a protocol for executing different com-

mands on the target platform, for example health check,

status retrieval or a target reboot. Similar to the software

update process mutual authentication is necessary. Afterwards

commands can be executed secured by a standard protocol like

TLS. Figure 3 shows the idea.

IV. ATTACK SCENARIOS

Consider a group of ICS installations produced and man-

aged by a single manufacturer who, by assumption, is using

a hardware-software distribution mechanism modelled on the

one described above. As in any such scenario, an intruder

could attack the installations in many different ways and here

we attempt to examine some of these without pretending to

be exhaustive. We begin by observing that potential attacks

can be usefully categorised in terms of their ambition. With

this in mind, in order of decreasing seriousness, we will use

the following terminology in the subsequent discussion. Each

of these will be related to the applicable information security

CIA principle.

A Category A attack is one which targets the entire group

or a significant subgroup by attempting to infect many or all

Manufacturer Device

Hello: Are you ok?

Ok, Authenticate

Challenge

Response

Challenge

Response

Encrypted command: Status?

Encrypted answer: Status

Fig. 3. Command Interface Protocol

of the systems with the same malware. Often such an attack

will employ a deferred payload, meaning that any damage

intended is not inflicted immediately, thus giving the infection

a chance to spread before it is detected. Viruses, worms and

botnet type attacks all fall into this category. This is an attack

on the integrity of the industrial control process.

A Category B attack is less ambitious and tries only to

infect a single machine with malware. Such malware may be

active or passive. Active malware aims to inflict damage but

may also defer its payload to allow the attacker to choose the

best moment to inflict maximum harm. Passive malware aims

to provide the intruder with information or a control capability

which may be used in the future. In all attacks in this category

however, by assumption, there is no intention to spread the

infection beyond the compromised device. This is an attack

on the integrity of the industrial control process.

A Category C attack is less ambitious still and tries only

opportunistically to crash a targeted device. Such an approach

aims at corrupting existing code causing execution failure

rather than attempting the more difficult task of introducing

runnable malware. This is an attack on the availability of the

industrial control process.

A Category D attack does not attempt to affect the opera-

tion of the devices at all, but only to eavesdrop on the system

in such a way as to acquire information. This is an attack on

the confidentiality of the industrial control process.

Attacks in any of these categories may try to exploit vulner-

abilities using one of three broad mechanisms: by attacking the

communications channel, the device site or the manufacturer

site.

We note first that the permuted opcode system makes

Category A attacks all but impossible because code can only

run on a target ICS if its permutation is known and for

this to be possible requires acquiring its secret key. Code

for a given device will not run on any other and so it is

not possible to engineer a virus or worm that can be spread

between devices. There are two obvious ways an attacker

might try to circumvent this inherent immunity. The first is to

steal the manufacturer’s secret key database and subsequently

masquerade as the manufacturer so as to transmit individually

permuted malware to all members of the group. This would

also typically need the manufacturer’s private authentication

credentials as used to establish the secure link. The second is

to inject malware into third party code before it is supplied

to the manufacturer and therefore before it is permuted. If

successful, such pre-infected code might be distributed to the

whole group.

A Category B attack can also only succeed if a device’s

secret key is obtained, again along with the manufacturer’s

private security credentials. Since the key is never transmitted,

a communications channel intrusion is not possible here. It

is also not possible to extract the key from the ICS system

itself without physically accessing and unsealing it: recall that

the PUF mechanism presents the key externally only once, at

manufacture time and is subsequently sealed. Thus a device

site attack will not work either. The only feasible way to obtain

the key required to attack an individual ICS is to gain access

to the manufacturer’s secret key database.

A Category C attack is easier for an attacker to carry out

and can be conducted without gaining access to the secret key.

All that is required is to corrupt code being distributed by the

manufacturer to device sites, and to persuade the device to

install this code, thereby putting it out of action. The only

realistic approach is for the attacker to gain physical access

to the manufacturer or device sites and then to damage code

there or to deliberately corrupt third party code before it

is sent to the manufacturer (although in the latter case this

would presumably crash all devices to which the code was

distributed).

Finally, a Category D attack requires only eavesdropping

on the channel. Since all communications are encrypted, and

both parties must mutually authenticate, we can assume that

direct attacks that require decrypting traffic or masquerading as

manufacturer or device will be infeasible unless an attack from

one of the first two categories has already been successful. The

challenge-response approach to authentication also protects

against replay attacks and conventional encryption methods

against message analysis of, for example, the transmitted code.

Summarising, it can be seen that the primary vulnerabilities

are the manufacturer key database and the possibility of prior

access to third-party code. Thus rigorous protection of the

manufacturer database is crucial, along with the immediate

post-production mechanism whereby the PUF-generated key

is read out from a new device (prior to it being sealed) and

entered into this database. Rigorous examination of third-party

code prior to its distribution, will also obviously be essential

possibly involving careful auditing and pre-testing on examplar

systems at the manufacturer’s site.

V. CONCLUSION

This paper proposed a hardware and software based mit-

igation mechanism for resisting malware. Our deployment

platform of interest is ICSs that are particularly vulnerable

to cyber attacks with maximum impact. We have not yet

implemented this system, but propose it here in order to open

a discourse on the feasibility of this solution as a mitigation

strategy.

REFERENCES

[1] R. Langner, “Stuxnet: Dissecting a cyberwarfare weapon,” Security &

Privacy, IEEE, vol. 9, no. 3, pp. 49–51, 2011.
[2] German Federal Office for Information Security. (2013,

November) ICS Security Kompendium. [Online]. Avail-
able: https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/ICS/
ICS-Security kompendium pdf.html

[3] D. Kushner. (2013, February) The real story of stuxnet. [Online]. Avail-
able: http://spectrum.ieee.org/telecom/security/the-real-story-of-stuxnet

[4] K. Stouffer, J. Falco, and K. Scarfone, “Guide to Industrial
Control Systems (ICS) Security,” National Institute of Standards and
Technology (NIST), Tech. Rep. 800-82, June 2011. [Online]. Available:
http://csrc.nist.gov/publications/nistpubs/800-82/SP800-82-final.pdf

[5] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way
functions,” Science, vol. 297, no. 5589, pp. 2026–2030, 2002.

[6] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas, “Controlled phys-
ical random functions,” in Computer Security Applications Conference,

2002. Proceedings. 18th Annual. IEEE, 2002, pp. 149–160.
[7] U. Rührmair and J. Sölter, “Puf modeling attacks: An introduction

and overview,” in 2014 Design, Automation Test in Europe Conference

Exhibition (DATE). IEEE, 2014, pp. 1–6.
[8] R. Maes and I. Verbauwhede, “Physically unclonable functions: A study

on the state of the art and future research directions,” in Towards

Hardware-Intrinsic Security. Springer, 2010, pp. 3–37.
[9] S. Katzenbeisser, Ü. Kocabaş, V. Rožić, A.-R. Sadeghi, I. Verbauwhede,

and C. Wachsmann, “Pufs: Myth, fact or busted? a security evaluation
of physically unclonable functions (pufs) cast in silicon,” in Interna-

tional Workshop on Cryptographic Hardware and Embedded Systems.
Springer, 2012, pp. 283–301.

[10] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy extractors:
How to generate strong keys from biometrics and other noisy data,”
SIAM journal on computing, vol. 38, no. 1, pp. 97–139, 2008.

[11] U. Rührmair and D. E. Holcomb, “Pufs at a glance,” in 2014 Design,

Automation Test in Europe Conference Exhibition (DATE). IEEE, 2014,
pp. 1–6.

[12] G. J. Chaitin, Meta maths: The quest for Omega. Atlantic London,
2006.

[13] C. S. Calude, M. J. Dinneen, C.-K. Shu et al., “Computing a glimpse of
randomness,” Experimental Mathematics, vol. 11, no. 3, pp. 361–370,
2002.

[14] E. G. Barrantes, D. H. Ackley, T. S. Palmer, D. Stefanovic, and D. D.
Zovi, “Randomized instruction set emulation to disrupt binary code
injection attacks,” in Proceedings of the 10th ACM conference on

Computer and communications security. ACM, 2003, pp. 281–289.
[15] G. Portokalidis and A. D. Keromytis, “Fast and practical instruction-

set randomization for commodity systems,” in Proceedings of the 26th

Annual Computer Security Applications Conference. ACM, 2010, pp.
41–48.

[16] B. Fechner, J. Keller, and A. Wohlfeld, “Web server protection by
customized instruction set encoding,” in Proceedings 20th IEEE Inter-

national Parallel & Distributed Processing Symposium. IEEE, 2006,
pp. 5–pp.

[17] S. Ichikawa, T. Sawada, and H. Hisashi, “Diversification of processors
based on redundancy in instruction set,” IEICE transactions on funda-

mentals of electronics, communications and computer sciences, vol. 91,
no. 1, pp. 211–220, 2008.

[18] E. K. De Jong, “Permutation of opcode values for application program
obfuscation,” Aug. 19 2008, US Patent 7,415,618.

