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Abstract

Biomedical imaging has become ubiquitous in both basic research and the clinical

sciences. As technology advances the resulting multitude of imaging modalities has

led to a sharp rise in the quantity and quality of such images. Whether for epi-

demiological studies, educational uses, clinical monitoring, or translational science

purposes, the ability to integrate and compare such image-based data has become in-

creasingly critical in the life sciences and eHealth domain. Ontology-based solutions

often lack spatial precision. Image processing-based solutions may have difficulties

when the underlying morphologies are too different. This thesis proposes a compro-

mise solution which captures location in biomedical images via spatial descriptions.

Three approaches of spatial descriptions have been explored. These include: (1)

spatial descriptions based on spatial relationships between segmented regions; (2)

spatial descriptions based on fiducial points and a set of spatial relations; and (3)

spatial descriptions based on fiducial points and a set of spatial relations, integrated

with spatial relations between segmented regions. Evaluation, particularly in the

context of mouse gene expression data, a good representative of spatio-temporal bi-

ological data, suggests that the spatial description-based solution can provide good

spatial precision. This dissertation discusses the need for biomedical image data in-

tegration, the shortcomings of existing solutions and proposes new algorithms based

on spatial descriptions of anatomical details in the image. Evaluation studies, par-

ticularly in the context of gene expression data analysis, were carried out to study

the performance of the new algorithms.
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Chapter 1

Introduction

Biomedical imaging informatics has become a crucial part of modern healthcare,

clinical research, and basic biomedical sciences. Rapid improvement of imaging

technology and advances in imaging modalities in recent years have resulted in a

significant increase in the quantity and quality of such images. Whether for epidemi-

ological studies, educational uses, for monitoring the clinical progress of a patient or

for translational science purposes, being able to integrate and compare such image-

based data has developed into an increasingly critical component in the eHealth

domain and in life sciences. The work presented in this thesis is rooted in the latter

and uses examples from biomedical atlases.

A biomedical atlas consists of a graphical model, the ontology associated with

the graphical model, and a mapping between those two. The ontology contains a

collection of anatomical domains and relations among those domains. The graph-

ical model is the canonical image for a mammal with those anatomical domains.

Three of the main atlases in the current domain of interest are the e-Mouse Atlas

of Gene Expression (EMAGE) [1], the Allen Developing Mouse Brain Atlas [2], and

the GENSAT Brain Atlas [3]. These atlases are the data resources for gene ex-

pression information. Gene expression information describes whether or not a gene

is expressed in a location of a particular anatomical structure related to a model

organism [4]. The research in this thesis focuses on the mouse embryo as model

organism.

The Allen Developing Mouse Brain Atlas is a data source storing gene expression

data across seven developmental stages of the mouse brain [5]. EMAGE [6] is another

example of a mouse atlas covering gene expression data for anatomical structures

corresponding to the EMAP Anatomy Ontology [7]. Gene expression data for the

mouse brain is also available from EMAGE. The GENSAT brain atlas is yet another

type of mouse atlas providing gene expression data for the mouse brain. GENSAT
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is a gene expression atlas of both the developing and adult mouse, and stores gene

expression data for anatomical structures corresponding brain and spinal cord [3].

Although the EMAGE, the GENSAT brain atlas and the Allen Developing Mouse

Brain Atlas are fundamental resources, they cannot be considered complete. There

are a number of explanations for this, including differences in experimental design

and various interpretations of results [8]. In addition, different update routines may

cause data from these atlases to remain incomplete. As a consequence, these atlases

may provide different results even for the same gene expression query. To illustrate

this, consider the gene Efna2 and the structure of midbrain at Theiler Stage 19.

At the time this thesis was written, the EMAGE contained two experiments for

this combination, suggesting that Efna2 is expressed. The Allen Developing Mouse

Brain Atlas also shows this structure at the same developmental stage and indicates

that Efna2 is also expressed. The GENSAT brain atlas also has this structure, how-

ever, indicating that there are currently no experimental results in their database

for the gene Efna2. With available evidence from EMAGE and the Allen Developing

Mouse Brain Atlas, the most likely conclusion is that the gene Efna2 is expressed

in midbrain at Theiler Stage 19; however, if the user depends on a single resource,

in this case the GENSAT brain atlas, incorrect conclusions may be reached. Con-

sequently, consideration of data from all resources is required to build as complete

a picture of the domain [9].

In addition to incompleteness, these atlases often suffer from inconsistency [8].

Inconsistency is implied when one biomedical atlas publishes an annotation suggest-

ing the gene is expressed in a particular structure, and a second annotation suggests

that it is not [10]. Such variability is often associated with the complexity of the un-

derlying experiments, including unrecognised differences in experiments, and human

error on the part of the resource’s curators [10]. All resources must be exploited to

generate full and complete query results. Therefore, the integration of anatomical

space in the context of same-species atlases can facilitate the sharing of biomedical

data from many resources.

The mapping of anatomical space across different model organisms [11], such as

the linking of human and mouse embryo model organisms, can be useful in facilitat-

ing comparison of biomedical atlas data across species. Integrating data from cross-

species atlases is useful for the expression of homologous genes in the experimental

field [12]. Corresponding organs and genes in different species can be homologous.

Homologous genes are the same form of genes expressed in a particular body part of

two different species. These sets of genes can be compared meaningfully to facilitate

analysis, modelling and prediction in biomedicine [13; 14; 15]. For example, inte-
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grating data between the mouse atlas and the chick atlas to facilitate the comparison

of homologous genes between the two organisms assists biologists in understanding

which genes are important in foetal development [16]. Consequently, integration of

biomedical atlases is vital both within and across species boundaries.

Although there are many different methods to integrate data from these re-

sources, it is the use of image-based data integration that is considered in this thesis.

Image-based data integration typically involves anatomical space mapping. Given

two images C1 and C2, mapping one image onto another implies, for each anatomical

region in image C1, trying to find a corresponding region with the same hypothesised

meaning, in image C2. These anatomical regions occupy unique anatomical spaces

in the corresponding images. Of the existing solutions to this problem, ontology-

based solutions tend to lack spatial precision. Image processing-based solutions have

difficulties when the underlying morphologies are too different from one another.

This thesis presents the spatial description-based solution; a new technique to

facilitate image-based data integration and overcome many limitations of established

techniques using spatial descriptions of anatomical details within images.

1.1 Motivation

We propose to achieve integration of biomedical atlases by mapping the images of dif-

ferent biomedical atlases. However, the implementation of this approach involves a

number of problems. First, different biomedical atlases may have a different number

of segmented regions in their images, causing one structure to correspond to parts

of several structures, and vice versa. The mapping of images to achieve biomedical

atlas integration may require the alignment of representations of anatomy differ-

ing in structure and domain coverage. Second, these images may have the exact

same anatomical structures, but the morphology may vary with scale, orientation,

and position. Besides morphological differences, it is normal for many anatomical

structures to change in shape and spatial arrangement. For example, bent fingers

and or a beating heart may cause a wide variety of segmented images in the ani-

mal. Moreover, there are a wide variety of postures in which animals are imaged

[17]. Third, different biomedical atlases may have the same segmented images using

different anatomical names, causing interoperability issues in finding corresponding

anatomical regions between these images.

Finding anatomical region correspondences between images can be carried out

via image processing. Since the image processing technique takes into account a

given image’s voxels/pixels, the most significant advantage of this technique is that
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it provides high spatial precision. However, this technique may have difficulties when

the underlying morphologies between the two compared images are too different.

Morphologies concern the different formation of an anatomical structure in terms of

shape, size, colour and so on. Since images with different morphologies are subject

to different voxel/pixel distributions, a large variation in voxel/pixel distributions

can cause the images to become very different. As a result, this technique may

not work when mappings involve two images which are too different. Therefore,

the primary motivation of the research described in this thesis is to investigate the

feasibility of developing a new mapping technique which provides an alternative to

the image processing-based solution that may fail when the images have different

underlying morphologies.

An ontology-based solution may work when an image processing-based solution

does not. An ontology-based solution makes use of a rule-based system. A rule-

based system allows semantic content or knowledge about an image to be explicitly

captured in rules. Therefore, this technique can facilitate mapping between images

with differing formation of shape, size, and structures. However, an ontology-based

solution often lacks spatial precision. Any ontology is commonly subject to lim-

itation of its descriptive power, i.e. an ontology cannot be thoroughly described

within itself. All categories in an ontology can be equated with sets. All categories

of an ontology are proper subsets of T , except T itself. Therefore, ontology-based

integration can provide mappings with better spatial precision only if the ontology

has the means to describe everything that exists in an image. Nevertheless, when

an ontology describes itself, T should be a proper subset of T , which is impossible.

The conclusion is that the ontology-based solution is relatively low in spatial pre-

cision. Therefore, the second motivation of the research described in this thesis is

to investigate the feasibility of developing an alternative mapping technique, which

overcomes the issue of low spatial precision of ontology-based solution. In addition,

ontology-based solutions require the two ontologies to be relatively similar in terms

of vocabulary and domain coverage. This is often not the case. Similar ontologies

with different vocabularies can be aligned [18]; however, none of the existing tools

are perfect, and multiple alignment tools produce varying similarity measures for

a certain alignment [19]. Therefore, the final motivation behind this research is to

investigate the feasibility of developing an alternative technique which solves the in-

teroperability problem caused by different anatomical names and vocabularies used

between ontologies.
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1.2 Objectives

The overall objective of this thesis is to create a set of spatial rules in order to deter-

mine corresponding regions across images of biomedical atlases, providing an efficient

representation structure to conceptualise anatomical space to guide the process of

mapping an image, which will further demonstrate that the spatial description-based

solution can enable the integration of biomedical atlases. We avoid the extra com-

plexity of image segmentation by considering easily-segmented anatomical regions.

Besides, the scope of this thesis lies within 2D image space. This simplification

allows us to concentrate on the primary problem: anatomical space mapping. This

thesis describes anatomical conceptualisation of anatomical space from ontology to

image processing via spatial description, within the context of mouse atlas appli-

cations. More specifically, this work has been conducted within the context of the

Edinburgh Mouse Atlas Project [6; 7; 20] and the e-Mouse Atlas of Gene Expres-

sion [1; 20], digital atlases of mouse embryo development, projects of MRC HGU in

Edinburgh.

1.3 Contribution to Knowledge

This thesis provides five main contributions to knowledge:

1. The key contribution of this research over previous work is the ability to per-

form biologically meaningful image region mappings.

2. The spatial description-based solution: this is a new technique for integrating

image-based data towards the integration of biomedical atlases. This technique

provides an alternative to the image processing-based solution that may fail

when the images have different underlying morphologies. This technique solves

the mapping of identical images acquired in different modalities (i.e. the visual

content may be similar only at the higher scene level, but entirely different at

the pixel-level), as that image processing is not capable with these. This

technique also overcomes the limitations of an ontology-based solution that

may not be available for images without painted domains, or when there are

no matching ontologies.

3. Exploitation of the combination of fiducial points and directional relations in

order to perform mapping and getting rid of region segmentation. The latter

is often the most difficult problem to solve in image analysis, but is required

for the ontologies to work.
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4. There are no other existing approaches that have combined directional rea-

soning with anatomical space, or that have even incorporated fiducial points

with directional relations to describe anatomical space. However, directional

reasoning using landmark points or point features has been conducted in non-

biomedical fields such as the geospatial domain.

5. Results in gene expression evaluation, relating to how spatial description can

be used in the context of biomedical atlas application.

1.4 Organisation of the Thesis

The remainder of this thesis is organised as follows:

Chapter 2 begins with an introduction to biomedical atlases. There is a particular

focus on the example of biomedical atlases within the context of mouse atlas ap-

plications. Three biomedical atlases are briefly described. These are the e-Mouse

Atlas of Gene Expression (EMAGE), the Allen Developing Mouse Brain Atlas and

the GENSAT Brain Atlas. The chapter then provides an overview of two mapping

primitives: spatial relations and fiducial points. These two types of mapping prim-

itives are able to determine corresponding anatomical regions across images. Then,

existing techniques in image mapping are presented: the ontology-based and image

processing-based techniques. A brief explanation on similarity measuring is then

given. The chapter then provides a basic introduction to the formal logic for rep-

resentation of spatial rules used within the thesis, followed by a basic introduction

on the woolz image processing system. Finally, the chapter provides an overview of

image mapping problems and discusses the categorisation of the issues associated

with image mapping.

Chapter 3 describes the methodology and development of the proposed spatial

description-based solution. Research was conducted in five phases. The first phase

involves the investigation and scoping of a new mapping technique, designed by

identifying the categories of spatial relations necessary to describe the locations of

anatomical regions in an image. The second phase involves the investigation and

scoping of a new mapping technique using fiducial points to describe the locations

of anatomical regions in an image prior to establish mappings. The third phase in-

volves identifying the advantages of a combined mapping technique, inspired by the

approaches designed under phases two and three. The fourth phase identifies the
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final approach proposed, which is to be compared against the existing approaches

discussed in the literature review. The fifth phase involves an experienced biologist

producing mapping samples. The purpose of acquiring this result is to establish a

’gold standard’ to be used as the basis for evaluating existing mapping techniques,

as well as the newly developed technique.

Chapter 4 presents the calibration of the proposed spatial description-based solution

based on four parameters. These parameters are the number of fiducial points used,

number of fiducial lines used, area size of the query region and selection of fiducial

point location. An evaluation of mapping using 14 well-defined fiducial points re-

viewed in the literature is also provided.

Chapter 5 describes the experiment which was carried out to evaluate the issues

associated with image region mapping when the following three types of images

were used: (1) similar images which are not identical in their morphologies, (2) non-

identical images which are not identical in their morphologies, and (3) non-identical

images with the same morphology. The chapter then presents an evaluation of im-

age region mappings in identical images, as well as in non-identical images. The

application of techniques for gene expression queries is then discussed.

Finally, Chapter 6 concludes the thesis and proposes examples for future research.

1.5 Publications
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Chapter 2

Literature Review

2.1 Introduction

This thesis proposes image-based data integration to facilitate the sharing of data

across biomedical atlases. The field of image-based data integration is primarily

concerned with the study and design of techniques related to image representation

and mapping.

This chapter is organised as follows: Section 2.2 provides an overview of three ex-

amples of biomedical atlases. Section 2.3 discusses two types of mapping primitives,

namely spatial relations and fiducial points. Section 2.4 describes existing image

mapping techniques, specifically ontology-based and image processing-based tech-

niques. A brief review of similarity measure functions is provided in Section 2.5.

These functions are useful for measuring the extent to which one region of one im-

age matches a region in another image. Section 2.6 presents the formal logic for

representation of spatial rules used within the thesis. Section 2.7 provides descrip-

tions on the woolz image processing system for processing 2D image space used

within experiments. Categorisation of the issues associated with image mapping is

discussed in Section 2.8. Section 2.9 summarises the chapter.

2.2 Biomedical Atlases

This section presents an overview of biomedical atlases. In particular, the focus is on

the examples of biomedical atlases within the context of mouse atlas applications.

The section describes the following biomedical atlases: (1) The e-Mouse Atlas of

Gene Expression (EMAGE); (2) The Allen Developing Mouse Brain Atlas; and (3)
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The GENSAT Brain Atlas. EMAGE uses the EMAP (the Edinburgh Mouse Atlas)

to index gene expression data. Therefore, this section begins with an overview of

the Edinburgh Mouse Atlas.

2.2.1 The Edinburgh Mouse Atlas

The Edinburgh Mouse Atlas Project, also known as EMAP, is a digital atlas of mouse

development, a project of the MRC Human Genetics Unit (HGU), Edinburgh. The

development of the atlas was based on an object-oriented architecture and includes

three-dimensional models corresponding to a series of developmental stages of the

mouse embryo [21; 22; 23; 24]. These developmental stages are based on Theiler’s

staging [25] of embryo mouse development. The atlas uses the three-dimensional

embryo model as a framework to map experimental results. In addition, the atlas

allows users to navigate the three-dimensional embryo space which correspond to

viewing parameters and define arbitrary two-dimensional sections at any orienta-

tion. Figure 2.1 depicts the user interface of the application. The embryo image

seen in the atlas corresponds to the two-dimensional section selected from the three-

dimensional embryo model. The tree-structured listing represents the anatomical

structure nomenclature corresponding to the selected area of the embryo image. The

EMAP is linked to the EMAGE, an online database of gene expression data for the

developing mouse embryo.
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Figure 2.1: Excerpt from the 3D Digital Atlas of the EMAP. The application allows
users to navigate in the three-dimensional embryo space corresponding to viewing
parameters, and to define arbitrary two-dimensional sections.
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2.2.2 The e-Mouse Atlas of Gene Expression

The e-Mouse Atlas of Gene Expression (EMAGE) is an online database of mouse de-

velopment, based at the MRC Human Genetics Unit (HGU), Edinburgh [1; 20; 26].

The purpose of the system is to store gene expression data on the developing mouse

embryo and to allow for gene expression queries. EMAGE consists of a set of three-

dimensional models, corresponding to a series of developmental stages of the mouse

embryo. The user interface allows users to search interactively and analyse the data.

EMAGE stores the gene expression data according to anatomical structures corre-

sponding to the EMAP Anatomy Ontology [7]. Gene expression data in EMAGE

are queried by painting appropriate regions in the EMAP embryo images, or by text-

based descriptions using the gene name or terms in the anatomy ontology. Data in

EMAGE include mRNA in situ hybridisation, protein immunohistochemistry and

transgenic reporters. Figure 2.2 depicts the user interface of EMAGE for querying

gene expression data by painting appropriate regions in the embryo image. The

listings show search results of possibly detected genes corresponding to the painted

location in the embryo image.

Figure 2.2: Excerpt from the EMAGE mouse atlas. The listings are the results of
possibly detected genes corresponding to the painted location in the mouse embryo
image.
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2.2.3 Allen Developing Mouse Brain Atlas

The Allen Developing Mouse Brain Atlas is an online database of gene expression

data for the mouse brain. The atlas is a project developed within the Allen In-

stitute for Brain Science. The Allen Developing Mouse Brain Atlas provides gene

expression data for the developing mouse brain from the embryo to the young adult.

The purpose of the atlas is to serve as a neuroanatomical foundation to support

informatics-based analysis tools and to allow for gene expression queries on the

developing mouse brain [2]. Querying gene expression data can be carried out us-

ing text-based descriptions using the gene name, symbol, category or terms in the

anatomy ontology. At present, the atlas contains seven developmental stages for the

mouse brain. Each developmental stage has its own representative section corre-

sponding to a mouse brain image. Figure 2.3 depicts the user interface of the Allen

Developing Mouse Brain Atlas for viewing gene expression annotations correspond-

ing to location in the mouse brain image. The tree-structured listing represents the

anatomical structure nomenclature corresponding to annotated locations of the im-

age. The gene expression annotations corresponding to annotated locations in the

embryo image can be viewed by clicking on the annotated location, or by selecting

a component of the anatomical structure nomenclature.

2.2.4 The GENSAT Brain Atlas

The GENSAT (Gene Expression Nervous System Atlas) Brain Atlas, a project at

Rockefeller University, funded by the National Institutes of Health (NIH), is a gene

expression atlas of both the developing and adult mouse. Data held in the atlas

correspond to gene expression data for anatomical structures corresponding to the

brain and spinal cord. The purpose of the atlas is to provide tools to catalogue,

map, and electrophysiologically record gene expression data. The atlas includes a

collection of images of gene expression maps of the mouse nervous system [3]. The

atlas allows users to navigate in the atlas image, and select any region of interest

to view gene expression annotations corresponding to the selected region. Figure

2.4 depicts the user interface of GENSAT for querying gene expression data by

selecting appropriate regions in the mouse brain image. The listings show results

of gene expression annotations corresponding to the selected location in the mouse

brain image.
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Figure 2.3: Excerpt from the Allen Developing Mouse Brain Atlas. The application
allows users to navigate in the anatomical structure nomenclature and annotated
space of the image to search for gene expression annotations.
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Figure 2.4: Excerpt from the GENSAT Brain Atlas. The listings are the results
of gene expression annotations corresponding to the selected location in the mouse
brain image.
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2.3 Mapping Primitives

This section discusses two types of mapping primitives. These are spatial relations

and fiducial points. These two types of mapping primitives are used to determine

corresponding anatomical regions across images.

2.3.1 Spatial Relations as Mapping Primitives

Spatial relations describe the spatial relationships between spatial entities. The term

’spatial’ refers to the location in anatomical space occupied by the anatomical entity.

The term ’entity’ refers to the individual anatomical structure, such as liver, heart

and kidney. Spatial entities can be either material or immaterial. Material anatom-

ical entities are here understood as anatomical structures with positive mass, such

as the liver and brain, whereas immaterial anatomical entities are those anatomical

structures with no mass, such as the stomach cavity [27]. This thesis focuses on

spatial entities of type material and the thesis work is in the context of the mouse

embryo anatomical domain. Thus, this thesis refers to spatial entities as anatomical

structures of type material within the mouse embryo.

Spatial entities share spatial relationships. Spatial relationships include topo-

logical, directional and metric relations [28; 29]. These relations can be defined by

specifying conditions between entities such as distance or relative position. Topolog-

ical relations describe topological properties such as connectivity, disjointness and

containment between spatial regions. Within the context of the study, spatial regions

are assumed to be parts of an independent background space in which all individ-

uals are located. The eight basic topological relations between two spatial regions

according to Egenhofer and Herring [30] are disjoint, externallyConnected, overlap,

contains, equal, coveredBy, inside, and covers. Figure 2.5 depicts the illustration of

these eight basic topological relations.

Metric relations describe the value of the quantitative distance between two

spatial entities. Distance can be measured, and it specifies how far the entity is from

the reference entity. Based on distance, a relation by means of preposition near, far

or adjacency can be defined. For example, near can be defined when the spatial

regions, suitably enlarged, exhibit a nonempty intersection. Each spatial region’s

width can be enlarged by a fraction of its own height, and vice versa. According

to Abella and Kender [31], based on human psychology studies, the value of this

fraction is approximately 0.6, particularly, in the case, for long narrow, parallel

entities. The relation far, on the other hand, is not the complement of the relation

near [31]. Far may be defined as when the distance between the two enlarged spatial
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Figure 2.5: Topological relations between two spatial regions according to Egenhofer
and Herring [31].

regions x and y, in either x or y extent, is greater than the maximum dimension of

the two spatial regions in that same x or y extent. The adjacency relation can be

defined between two material anatomical entities that are close, but not connected.

More precisely, the distance between them is a small but non-zero positive distance

apart [32].

Directional relations are usually described between two spatial entities that do

not overlap [33]. These relations can be approximated by comparing the entities’ rep-

resentative points (also called centroids) or their minimum bounding boxes. These

relations are often described in terms of the cardinal directions between two spatial

entities [34; 35]. Frank [36]; Freksa [37]; Ligozat [38] use the concept of centroids

of spatial entities to define directional relations between two entities. Figure 2.6

depicts the model of directional relation between a and b where ca is the centroid of

a and cb is the centroid of b.
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Figure 2.6: Directional relations between entities a and b where ca is the centroid of
a and cb is the centroid of b.

Papadias and Sellis [39] represent each spatial entity using two coordinate points

corresponding to the lower-left and upper-right corners of the entity’s minimum

bounding box. Figure 2.7 depicts the model of directional relations between a and

b, which has been defined using minimum bounding boxes.

Figure 2.7: Directional relations between entities a and b defined using minimum
bounding boxes.

Defining directional relations depends upon a frame of reference. A frame of refer-

ence can be established by assigning a 2D coordinate system to the centroid of the

spatial entity. The x-axis can then be defined as the west-east axis of the entity. The

negative region represents the west of the entity, while the positive region represents

its east. Assigning the y-axis to describe the north and south of the entity, it is then

possible to determine directional relations for every spatial entity corresponding to

the spatial entity that has the frame of reference. The frame of reference guarantees

that the directional relations between two spatial entities remain the same regardless

of their viewpoint.
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Topological relations are invariant under continuous transformations such as

translation, rotation, and scaling. Directional relations are also invariant under such

transformations where a frame of reference can be established [29]. Two spatial enti-

ties with a metric distance measure could also change upon scaling but be preserved

under translation and rotation. As spatial relations are invariant under continuous

transformation, their persistence is fundamental to recognition of anatomical regions

in images.

2.3.2 Fiducial Points as Mapping Primitives

A fiducial point is a point in space in either 2D or 3D, typically an anatomical

landmark, which is easily recognisable in an image, usually identified by human

experts and possibly assisted by auto/semi-automated image processing algorithms.

These fiducial points are typically located at the contours or points of high curvature

of objects, like the tip of the lung, corners of the eyes. Two images are then aligned

by determining pairs of corresponding fiducial points in each image.

Potesil et al. [40] and Seifert et al. [41] provide recent examples of research

involving segmentation of fiducial points and the corresponding anatomical regions.

Potesil et al. [40] proposed a method to detect 22 fiducial points based on dense

matching of parts-based graphical models. These fiducial points are C2 vertebra,

C7 vertebra, top of the sternum, top of the right lung, top of the left lung, aortic

arch, carina, lowest point of sternum (ribs), lowest point of sternum (tip), Th12

vertebra, top of right kidney, bottom of right kidney, top left of kidney, bottom left

of kidney, L5 vertebra, right spina iliaca anterior superior, left spina iliaca anterior

superior, right head of femur, left head of femur, symphysis, os coccygeum, and

center of bladder. Figure 2.8 depicts these fiducial points in a sagittal view. Seifert

et al. [41] proposed a method for the localisation of 19 fiducial points for whole-body

scan. These fiducial points are left and right lung tips, left and right humerus heads,

bronchial bifurcation, left and right shoulder blade tips, inner left and right clavicle

tips, sternum tip bottom, aortic arch, left and right endpoints of rib 11, bottom front

and back of the L5 vertebra, coccyx, pubic symphysis (top and the left and right

front corners of the hip bone). They also identified ten anatomical region centres.

These are four heart chambers, liver, kidneys, spleen, prostate and bladder. Figure

2.9 depicts the illustration for these fiducial points and the segmented regions. These

fiducial points are useful to estimate anatomical regions that are present as well as

their most probable locations and boundaries in an image [41]. Subsequently, these

fiducial points can be used to establish reliable correspondences between anatomical
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Figure 2.8: Example fiducial points probability maps of top femur head, carina,
aortic arch, Th12 vertebra and top of kidney in sagittal view [41].
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Figure 2.9: Example fiducial points and segmented anatomical regions: heart(red),
liver(brown), kidneys(orange), spleen(light blue), bladder(yellow) and prostate
(pink) [42].

regions across different images. Figure 2.10 depicts two images with 5 fiducial point

correspondences. Based on these fiducial points, the two images can be aligned to

one another; enabling anatomical space mapping between the two images.

2.4 Image Mapping Techniques

This section provides an overview of existing methods in image mapping using the

following techniques: (1) ontology, and (2) image processing. The discussion focuses

on ontology-based mappings using spatial relations and image processing-based map-

pings using fiducial points.

2.4.1 Ontology-based Mappings

An ontology consists of a list of domains and a set of spatial relationships between

domains. The first step in mapping-based ontology is to segment the image according

to its anatomical regions. Next, the regions are linked to the appropriate concepts

in the atlas’ anatomy ontology. Regions from two different images are then mapped

according to the similarity of their spatial relationships. For example, if region a1

with relationships a1 is adjacent to b1, and a1 is adjacent to c1 then its equivalent

region, a2, must be adjacent to b2 and c2. The integration of anatomical space can
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Figure 2.10: 2D illustration of image processing-based mapping with 5 fiducial point
correspondences between the two images for anatomical space mapping.

then be achieved by linking between their respective anatomy ontologies.

The concepts of spatial relations have been employed successfully in ontologies by

Bittner [32] and Rosse and Mejino [42] to describe anatomical space in the biomedical

domain. In general, spatial relations between anatomical entities are described using

relationships from the following categories:

Mereological relations describe the concept of parthood between the whole and

its parts, e.g. finger is part of hand, hand is part of the arm.

Topological relations describe the concept of connectedness among entities, e.g.

two entities are externally connected if the distance between them is zero and

do not overlap. For example, in humans major parts of the joint, e.g. the

synovial cavity, is externally connected to the synovial membrane [32].

Location relations describe the concept of relative location between entities that

may coincide wholly or partially without being part of one another, for exam-

ple, the brain is located in (but not part of ) the cranial cavity.

A heavily used spatial relation ontology is the OBO (Open Biomedical Ontologies)

Foundry, which includes various life science disciplines such as anatomy, health,

biochemistry or phenotype [43]. OBO enables the sharing of controlled vocabular-

ies across different biological and medical domains. OBO consists of the Relations

Ontology (RO), which models the types of relationships between entities. The Re-

lations Ontology (RO) is used to distinguish relationships between the types of

entities. Relations such as is a and part of are used to model foundational rela-

tions. Relations such as located in, contained in and adjacent to are used to model
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connecting entities in terms of relations between the spatial regions they occupy.

Temporal relations such as transformation of, derives from and preceded by are used

to model connecting entities, existing at different times. Participation relations such

as has participant and has agent may be used to model connecting processes to their

bearers.

This thesis focuses on the ability of topological relations to describe anatom-

ical space in the biomedical domain, particularly on adjacency, discreteness, and

connectedness relations. Two entities are described as being adjacent when they

are close but not connected. Discrete entities are not connected. If two entities

have a common anatomical space, such that they partially coincide or are externally

attached to one another, they are said to be connected. The relations located in,

contained in and adjacent to as defined in the Relations Ontology (RO) can be

adopted within this work to describe the location of an anatomical entity in space

with respect to other entities. Such relations allow conceptualisation of anatomical

space, thus facilitating the mapping of corresponding regions across images.

Nevertheless, images often contain ambiguous regions. These regions may be

isolated or disconnected from the rest of the image. The limitation of topological

relations (such as located in, contained in) as used in RO is that these relations

cannot be used to model relative positions of ambiguous anatomical regions. The

relation adjacent to can model adjacency between two anatomical regions that are

located very close to one another. However, as for anatomical regions that are

isolated or disconnected, such that the relative position involving these regions can-

not be described as adjacent because of distance constraints, more investigation is

required.

Mechouche et al. [44] proposed an ontology to describes the sulci and gyri of the

brain cortical structure using spatial relations of the following terms: anteriorTo,

posteriorTo, superiorTo, inferiorTo, lateralTo and medialTo. Hudelot et al. [45]

proposed an ontology to describe the brain cerebral by implementing spatial relations

of the following terms: right Of, left Of, close to, very close to, external boundary

and internal boundary. Du et al. [46] proposed a method involving topological

and directional relations to define some natural language spatial relations. They

proposed the following directional natural-language terms: EP to denote natural

language east part of a region, WP to denote natural language west part of a region,

SP to denote natural language south part of a region and NP to denote natural

language north part of a region. These sources demonstrate that the recognition of

spatial entities depends on the entities’ spatial relationships in an image.

Chang and Wu [47] proposed a technique known as a 9DLT matrix, which applies
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nine directional codes to represent spatial relationships. They define directional

code as follows: 0 to denote east, 1 to denote northeast, 2 to denote north, 3 to

denote northwest, 4 to denote west, 5 to denote southwest, 6 to denote south, 7 to

denote southeast, and 8 to denote equal. A single triple (x, y, r) denotes a spatial

relation between two spatial entities. The two spatial entities are represented by x

and y. The directional code is represented by r. For example, a single triple (A,

B, 0) represents that an entity A is to the east of an entity B. Subsequently, a

set of triples represents an image. Two images are then mapped according to the

similarity of their spatial relationships based on the corresponding set of triples.

However, the 9DLT matrix has a significant drawback under rotation of direction.

Assuming that a mapping is performed between two identical images, where the first

image is a 90-degree rotated version of the second image, although these two images

represent the same image, according to 9DLT matrix, the two images do not match,

their corresponding sets of triples being completely different due to the 90-degree

rotation of direction.

Guru and Punitha [48] proposed addressing the limitation of the 9DLT matrix

by modelling directional relations between two spatial entities using a directed line

segment. A directed line segment is a line joining two distinct entities. For example,

the line joining the entity x to entity y becomes the line of reference, and the

corresponding direction from entity x to entity y becomes the direction of reference

for the image. Their approach computes the direction of the line joining x to y using

Euclidean distance prior to obtaining the direction of reference. The relative pair-

wise spatial relationships between each pair of entities are perceived with respect

to the direction of the line of reference. In order to make the system invariant to

image transformations, the direction of reference is conceptually aligned with that

of the positive x-axis of the coordinate system. The proposed improvement method

by Guru and Punitha [48] successfully overcomes the deficiency in the 9DLT matrix;

however, the method only covers directional information, which means topological

information is lost.

Karouia and Zagrouba [49] proposed representing spatial relationships between

two spatial entities of an image using entity relative positioning vectors. The set

of these vectors provides information about the disposition of different entities of

the image. This approach defines this disposition based on five component vectors.

These vectors include positioning degree on the left, on the right, on top, below and

of inclusion. Each of these elements expresses a degree of positioning by a numeric

value between 0 and 1. This method is intended to represent images containing only

isolated entities. Hence, information on topology is not required, so the approach
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does not contain any concept of connectedness among spatial entities.

Zhou et al. [50] proposed a method called Augmented Orientation Spatial Rela-

tionship (AOSR) to describe a range of directions between two spatial entities of an

image. Assume that two images C1 and C2 both have the same entities x and y,

however, the relative distance between these entities in both images is different. If

one simply says for image C1, entity x is at the northeast of entity y (according to

the centroid of x and y), then there will be no difference between entities x and y in

image C2. Therefore, the focus of AOSR is capturing the relative distance between

spatial entities prior to describing the directional relations between them. Although

topological information is also not covered in AOSR, Zhou et al. [50] claimed that

the approach may simply be combined with Egenhofers topological representation,

to cover topological information.

Kulkarni and Joshi [51] and Majumdar et al. [52] proposed a method, which

combines both topological and directional relations. However, their method does

not capture the notion of distance between spatial entities, such that there is no

difference between two entities which may be quite near or far to one another.

Wang [53] proposed a method of using spatial operator Σ to capture the in-

terval between the minimum bounding boxes of two spatial entities. This method

apparently removes the precise spatial description, between entities. The operator

indicates there is a space between the two entities that could be either disjoint, near

or far. A description such as ΣfemurΣmetanephrosΣ, provides the spatial knowledge

that femur and metanephros are disjoint, but leaves uncertainty as to whether these

two spatial entities are near to or far from one another.

Yang and Zhong [54] proposed an image representation structure using a Mixed

Graph Structure (MGS). They demonstrated their method on medical images. The

method first extracts spatial entities as primitives. These spatial entities are then

organised into a mixed graph structure according to their spatial relations. The

approach uses only two types of spatial relations, which are inclusion and adjacency.

Overall, most image description and mapping approaches in [48; 50; 53] use

spatial relations of entities in an image. The method in [51; 52] accounts for both

topological and directional relations of spatial entities. The approaches in [49; 52; 54;

55] represent images as graphs. The graphs conceptualise spatial relations between

entities and then solve the mapping as a graph-matching problem.

The approach proposed in this thesis should improve previous work by addressing

many of the limitations. For example, some of the mapping approaches presented

in this section used only one category of spatial relations, either topological or di-

rectional relations. Using only topological relations, spatial information regarding
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direction will be lost. Likewise, using only directional relations, spatial information

on topology will be lost. Consequently, using only one category of spatial relations

may limit the descriptive power of a mapping algorithm. Combining the two cate-

gories of spatial relations (i.e. topological or directional relations) may be sufficient

to capture wider spatial information. Nevertheless, images often have ambiguous

regions that are isolated or disconnected from the rest of the image. Even by com-

bining the two categories of spatial relations, the problem still arises as to how to

capture spatial information for these isolated regions. For example, using topological

relations to describe isolated regions using disjoint relation does not capture relative

position between these regions. Although spatial information for these regions can

be captured using directional relations, these regions could be affected by rotation

direction. Rotation direction has a significant impact on object recognition because

directional relations for a region differ according to position. These limitations are

addressed by the proposed approach. Chapter 3 presents the proposed approach in

detail.

2.4.2 Image Processing-based Mappings

There are several image processing algorithms which perform mapping based on

fiducial points. Izard and Jedynak [56] described a registration algorithm, which

employs a Bayesian approach to detect these points. First, the algorithm measures

the intensity distribution of each pixel in the source image in order to detect the

fiducial points. To ensure an affine transformation mapping the source image onto

the target image, given a set of fiducial points, each target image is searched for the

fiducial points that are mapped onto the same location.

Khaissidi et al. [57] proposed a feature-based, fully non-supervised methodology

dedicated to fast medical image registration using the Hough Transform algorithm.

First, the fiducial points are extracted from both images. Then, the Hough Trans-

form algorithm provides a rigid transformation, which allows information transfer

between both images in order to align these images based on the point correspon-

dences. Guest et al. [58] proposed the use of a Gaussian-based algorithm to achieve

a similar outcome. The algorithm calculates the point correspondences between im-

ages by determining the sensitivity of a correspondence to movement of the point

being matched.

Wong and Orchard [59] proposed an image registration algorithm which extracts

points of interest from only one of the two images. For each point of interest, the

other image is exhaustively searched to find its best-matching location, in hopes of
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matching the two compared images.

Park et al. [60] described an affine estimator registration approach. First, the

algorithm extracts an arbitrary number of invariant points that latch onto significant

structural features in both images. Next, each estimated invariant point is refined

by taking the phase-gradient information into account. Finally, the source and the

target images are matched based on these points.

The image processing algorithm, called ASIFT as proposed by Yu and Morel

[61], performs mappings based on similar points of interest in the compared images.

Similar points of interest are first detected between images by measuring the tran-

sition tilts based on the amount of distortion, followed by selecting a region around

each point prior to establish mappings. Two images are then mapped onto one

another by aligning pairs of corresponding points in each image.

Zeng et al. [62] proposed a topology-cuts algorithm to detect point of interests

at the boundaries of image features. Since the anatomy of human tissues provides

important topological constraints that ensure the correctness in biomedical image

segmentation, the approach incorporates topology priors as global constraints. First,

the algorithm labels each point to explicitly handle the topology constraints. Next, a

distance map is created to record the points that are closest to the boundary. Finally,

a bucket priority queue data structure is used to record the points of equal distance

and also to efficiently extract the point with minimal distance value. Mapping

between objects in two images is then performed based on these points.

2.5 Similarity Measures

The definition for best match criteria is particularly crucial in any mapping algo-

rithm. Since anatomical structures exist at different ranges of scale, arrangement

and position, there is the possibility that an exact copy of the location corresponding

to the query region in one image is unavailable in another image. Therefore, there

is a possibility of error (mismatch) in the corresponding mapped location. Thus, a

search for the locations of best match is appropriate.

A similarity measure is a function to determine the degree of similarity between

pairs of images. Under image retrieval perception, ranking the most similar image

to the query image uses the similarity measure function. The higher the similarity

measure, the more similar the two images will be. When applied to image mapping,

given two anatomical regions, a similarity measure determines the extent to which

one anatomical region matches another. The following sections discuss two similarity

measures: Hausdorff distance and Overlay distance.
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2.5.1 Hausdorff Distance

Hausdorff distance is a way to measure the similarity between two images [63; 64].

The function computes the extent of the distance to which each point of a region

set lies near some points in an image and vice versa. The distance determines the

degree of equivalence between two spatial entities. Thus, an estimation of similarity

between two images may be determined based on distance computation. The smaller

the distance between the two compared images, the more similar the two images are.

Given two finite point sets A={a1, ...,ap} and B={b1, ...,bq}, the Hausdorff distance

is defined as follows:

H(A,B) = max(h(A,B), h(B,A)) (2.1)

where

h(A,B) = maxmin || a− b ||, a ∈ A, b ∈ B (2.2)

The Hausdorff distance H(A,B) is the maximum of h(A,B) and h(B,A). Thus,

it measures the degree of mismatch between two sets by measuring the distance of

the point of A that is farthest from any point of B and vice versa. Intuitively, if

the Hausdorff distance is d, then every point of A must be within a distance of d

from some point of B and vice versa. Thus the notion of resemblance encoded by

this distance is that each member of A be near some member of B and vice versa.

To compute the Hausdorff distance for anatomical regions in images, the first step

is to determine how to associate a point set with an anatomical region. One way

to carry this out is to define this point set as the points that lie on the boundary

of an anatomical region. However, computing the distance between point sets that

consist of an unlimited number of points is quite expensive [65]. Another option to

compute the similarity based on distance is the use of the Overlay distance.

2.5.2 Overlay Distance

The Overlay distance measures the similarity between two objects based on the

degree of overlap between the two objects [65]. The Overlay distance DOverlay(I1, I2)

between objects I1 and I2 is defined as:

DOverlay(I1, I2) = 1− Area(Intersection(I1, I2))

Area(Union(I1, I2))
(2.3)
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Measuring the similarity between two anatomical regions can then be carried out

by computing the degree of their overlap based on the Overlay distance function.

Area(Intersection(I1, I2)) denotes the area of the actual region in one canonical

image. Area(Union(I1, I2)) denotes the area in another image, which corresponds

to the mapped location for the query region.

2.6 Representation of Spatial Rules

This section presents the formal logic for representation of spatial rules created in

this thesis. The thesis proposes to use the first-order predicate logic in order to

define the set of spatial rules. The purpose of such spatial rules is to determine

corresponding regions across images.

2.6.1 Predicate Logic

Predicate logic has overcome the limited expressive power of propositional logic

to encode the declarative statement [66]. Propositional logic is a sentence with

components such as not, and, or and if-then and does not cover the logical aspects

of universal quantification, such as a statement is true for everything, or a statement

is true only for a certain thing, for example, the declarative statement [66]:

Not all birds can fly

Propositional logic is not able to represent the properties in this statement and their

logical relationships, dependencies and truth. In contrast, predicate logic is capable

of determining the relationship that exists between the objects and properties in

this statement. Predicate logic (also called first-order logic) can be used to repre-

sent correlation between these properties that can be true or false. Two identified

properties for the sentence are x is a bird and x can fly. The variable x is used to

replace the bird’s name, and quantifiers ∀ and ∃ to describe the notion of all and

there exist in the statement. The statement can be represented as follows:

¬(∀x(B(x)→ F (x))) (2.4)

Alternatively, the above statement may be rephrased as it is not the case that

all things, which are birds, can fly, which gives the same meaning. This can be

represented as follows:

∃x(B(x) ∧ ¬F (x)) (2.5)
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2.6.2 Spatial Rules

The formation of the proposed spatial rules consists of a set of terms and formulas of

first-order logic. These terms and formulas are a string of symbols, which comprise

of variables, logical connectors and quantifiers. This thesis uses lower-case letters

(e.g. x, y, z ) as variables to denote individual spatial regions and upper-case letters

(e.g. C, P, PP) as variables to denote functions or spatial relations. The logical

connectors (¬, ∧, ∨, →, ↔) have their own definitions (not, and, or, if-then, and

if and only if (iff), respectively). Given two statements S1 and S2, the statement

¬S1 is true if and only if S1 is false. The statement S1 ∧ S2 is true if both S1 and

S2 are true; if both are false, the statement is false. The statement S1 ∨ S2 is true

if S1 or S2 (or both) are true; if both are false, the statement is false. S1 → S2

means if S1 is true then S2 is also true; if S1 is false then nothing is said about

S2. S1 ↔ S2 means S1 is true if and only if S2 is true. The symbol ≡ denotes

a definition. The logical quantifiers (∀, ∃) have their own quantifiable purpose. ∀x
denotes universal quantification for all x. ∃x denotes existential quantification there

is at least one x. The formation of spatial rules can be found in Chapter 3 of this

thesis. A full exposition of spatial rules formation for biomedical domains can be

found in the literature [27; 32].

2.7 Woolz Image Processing

The MRC Clinical Population and Cytogenetics Unit, now known as the Human

Genetics Unit, developed the woolz image processing software [67]. The software

comprises a java library, implemented in C, and the object store, implemented in

C++ [68]. This java library (also called the woolz library) comprises interval coding

functions for image processing operations such as set operations (e.g. union, inter-

section, difference), morphological operations (e.g. dilation, erosion) and domain

operations (e.g. segmentation, labelling).

The scope of the thesis is within the 2D image space. Therefore, the thesis

proposes to use woolz image processing because of the efficiency of the woolz library

to perform various image processing operations on 2D image space. The 2D image

space corresponds to a woolz object.

2.7.1 Woolz Objects

The woolz image processing includes both 2D and 3D woolz image structure. Ac-

cording to Baldock [69] the ”3D image structure in woolz is a simple extension of

29



Chapter 2. Literature Review

the 2D structure. In 2D an image (one of a number of possible woolz objects) is

defined over an arbitrary region of a discrete 2D space with coordinates (k, l) where

k is the column coordinate and l is the line coordinate. For each line in the image

there is a list of intervals which give the start and end points of the image along

that line. There is a list (possibly empty) of intervals for each line. It is clear that

an arbitrarily complex region of the discrete space can be defined in this way. It is

assumed that the discretisation in the x and y directions is at fixed regular intervals,

constant in both directions but not necessarily equal. The 3D structure is simply a

stack of 2D images again with the constraint that the planes are evenly spaced and

that within the plane bounds there must be a 2D image for every plane, although

the image could be the empty set. The plane coordinates are defined to be p”.

Figure 2.11 depicts a 3D image structure in woolz. A section view through this 3D

image space corresponds to the 2D image space [70]. The 2D image space has values

Figure 2.11: A 3D image structure in woolz [71].

selected by traversing a plane that cuts through the 3D image space. Figure 2.12

depicts an image in 2D. One of a number of possible woolz objects can be defined

over an arbitrary region of a discrete 2D space with coordinates (k, l), where k is

the column coordinate and l is the line coordinate. This arbitrary region in 2D can

be saved into a woolz object by using the MAPaint software [69]. MAPaint is a 3D

painting program based on the woolz image processing library. The software allows

the definition and saving of arbitrarily complex 2D spatial domains by painting over

the appropriate region. The basic idea of painting is for image segmentation. The
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purpose of segmenting an arbitrary region is to partition a 2D image space into

multiple segments. The result of image segmentation is a set of regions that col-

lectively cover the entire image. Each region can be saved into a woolz object. A

Figure 2.12: An image in 2D. The image corresponds to a section view through a
3D image space. One of a number of possible woolz objects can be defined over
an arbitrary region of a discrete 2D space. The arbitrary region can be defined
and saved into a woolz object by using the MAPaint software. Each woolz object
corresponds to a discrete region of 2D space and has a coordinate (k, l), where k is
the column coordinate while l is the line coordinate [71].

woolz object consists of two structures: domain and values. The domain represents

the name of the space region corresponding to the values and an arbitrarily complex

region of 2D space. The values represent a set of coordinates corresponding to the

location at each point in the domain.

2.7.2 Woolz Library

The woolz image processing system provides interval coding functions for processing

woolz objects. In particular, focus is on image processing functions for computing

set operations. To name a few, there are WlzArea, WlzBoundingBox, WlzDilation,
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WlzDiffDomain, WlzHasIntersect, WlzIntersect. The WlzArea function calculates

the area of the input 2D woolz object. The WlzBoundingBox function calculates the

bounding box coordinate of the input woolz object. The WlzDilation function can

perform dilation to a domain woolz object. The WlzDiffDomain function calculates

the difference of the input woolz objects. The WlzHasIntersect function can test for

a non-zero intersection between the input woolz objects. The WlzIntersect function

calculates the intersection of the input woolz objects. A more detailed list for the

woolz library can be found in [71]. The capability of the library for processing woolz

objects to conduct sets operations, morphological operations and domain operations

between the woolz objects is the main reason for using the system. A full exposition

of woolz image processing system can be found in the literature [72; 73; 74; 75].

2.8 Image Mapping Problems Overview

This section provides an overview of image mapping problems and explains how

existing solutions may be used to deal with these issues. Here, we use the words

mapping and matching interchangeably.

2.8.1 Image Mapping Classification

There are two categories of image mappings, as depicted in Table 2.1. The first case

involves a single query image and a set of potential target images and the matching

process should return those images from the target set that match the query image

by some notion of equivalence. The second case is given a drawn query region in

one image, find the corresponding region in another image that matches the query

region. Either of these cases can be classified into two sub-cases. The first sub-case

is the images with painted domains. The second sub-case refers to images with no

painted domain.

Table 2.1: Image Mapping Cases
Mapping Cases Image Domains

1) Find a matching image
Painted
Not painted

2) Find a matching region
Painted
Not painted
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2.8.1.1 Image Matching vs Region Mapping

Figure 2.13 depicts the visual example of mapping one query image and a set of

potential target images. The query image is the midline image of an embryo. The

Figure 2.13: The mapping of (a) one query image (i.e. the midline image of an
embryo) onto three potential target images: (b) the image slice at 0.100mm distance
from midline, (c) the image slice at 0.200mm distance from midline, and (d) the
image slice at 0.300mm distance from midline.

target images are the image slices near to the midline. These images are similar,

just not identical in their morphologies. However, in principle they should match.

Figure 2.14 depicts the visual example of image region mappings. The liver in Figure

2.14(a) is drawn as the query region. This query region has the following possible

result regions as highlighted in Figure 2.14(b) to (d). These livers are different in

their morphologies, but are the biologically meaningful matching areas.

2.8.1.2 Image Segmentation

Image segmentation involves breaking an image down into its basic components or

regions. Before we can use the anatomy ontology to label the painted domains, we

must perform image segmentation. The common methods of image segmentation

are segmenting an image based on colour, boundary and shape. (Here we use the

words painted and segmented interchangeably). The term paint denotes a technique

of drawing on an image region. The purpose of painting is to tag a region according

to an anatomy ontology. MApaint software provides the painting mechanism. This

has been discussed in Section 2.7.1. Figure 2.15 depicts an embryo image which
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Figure 2.14: The mapping of region liver from (a) the midline image onto the fol-
lowing possible result regions: (b) the liver in an image with exactly the same mor-
phology (i.e. identical images), (c) the liver in an image with a different morphology
(i.e. the image slice near to the midline), and (d) the liver in another example of
an image with a different morphology (i.e. the image of a different embryo at the
same developmental stage).
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has been segmented (painted) into 49 regions. Each region is labelled using its

anatomical name.

Figure 2.15: The image consists of 49 segmented regions (painted domains) and is
labelled according to the anatomical names.

2.8.1.3 Variation of Morphology

In general, the two cases of image mappings can be carried out between images

that have exactly the same morphologies, as well as between images that have dif-

ferent underlying morphologies. Morphology concerns the different formation of a

particular anatomical structure in terms of scale, orientation and position.
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Figure 2.16 depicts two image slices of an embryo. These images are good rep-

resentatives for non-identical images with different morphologies. Both images have

the following structures: liver, heart, and lung. However, these structures are differ-

ent in terms of their scales and positions. For example, in terms of scale, the liver

in Figure 2.16(a) appears slightly smaller compared to the liver in Figure 2.16(b).

In terms of position, the heart in Figure 2.16(a) is located above the liver and the

lung. In contrast, the heart in Figure 2.16(b) is located between the liver and the

lung.

Figure 2.17 depicts two images of an embryo across different visual domains.

The image in Figure 2.17(a) is the clip art graphic version of the image in Figure

2.17(b). The visual content of both images is similar at the higher scene level,

but both images are entirely different at the pixel-level. These images are a good

representation of non-identical images with the same morphology. Although the two

images are dissimilar at the pixel-level, both images are morphologically the same

set of structures in terms of their scale, orientation and position.

Figure 2.16: Two non-identical mouse embryo images with the same structures:
liver, heart, and lung. However, these structures are different in their morphologies.

2.8.1.4 Criteria for Matching Images/Regions

In a case in which images are lacking painted domains, the criteria to consider

whether two images match or two regions match can be based on the equivalence of
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Figure 2.17: Two non-identical mouse embryo images with morphologically the same
set of structures in terms of scale, orientation and position. The visual content of
both images is only similar at the higher scene level: both images are entirely
different at the pixel-level.

their low-level image features. Commonly extracted features include colour, texture

and shape. These low-level image features can either represent a whole image or a

specific region. A notion of equivalence is quantified using either the combination

of several low-level features or making use only of a particular feature.

Colour information can be extracted from an image and represented as a colour

histogram [76; 77]. A global colour histogram can be used to define the number of

pixels that have colours in each of a fixed list of colour ranges for a whole image.

Two images match when their colour histograms match. Similarly, image region

matching can also be performed using colour histograms. A local colour histogram

can be used to define the colour information for a specific region of an image. An

image can be divided into several regions and a colour histogram can be created for

each region. Two regions match when their local colour histograms match.

Texture is defined as properties related to the appearance and feel of a surface.

It can be categorised into two types. The first is stochastic, meaning rough, grainy

and irregular; the second is structural, or having a regular and smooth surface. The

main characteristics of the texture are distinctive and repetitive over a region. Tex-

ture features are useful in the comparison of equivalence between two images. The

equivalence between two images can be compared on the basis of texture match-
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ing. Texture matching is performed by extracting the texture features from the

images and the images are segmented into regions; each containing a homogeneous

texture pattern [78; 79]. Two images match or two regions match when they are

homogeneous in terms of their texture patterns.

Shape matching is performed by comparing the region-based edge features. Edge

features extracted from images are considered as point sets. For a point on the first

image, it is expected to find the best matching point on the second image according

to the edge features. Two images match when their feature point correspondences

match. Similarly, image region matching can also be performed by comparing the

region-based edge features. Edge features extracted from one specific region are

considered point sets. A region matches another when a point on a region in one

image is found on the region in the other image, according to the edge features.

In the case of images with painted domains, the criteria to consider whether two

images match or two regions match can be based on the equivalence of their high-

level semantic classifications based on the painted regions; an image or a specific

region in one image can be classified into categories which are intended to distin-

guish semantically meaningful differences [80]. Spatial knowledge representations

are useful for describing the spatial relationships among the painted regions in an

image. Commonly use spatial knowledge representation is the topological proper-

ties. Topological properties include the number of sub-regions and the relationships

between the properties of the sub-regions and the regions [81]. These topological

properties are examples of meaningful semantics which may be derived from the

content of an image. For example, if a structure is seen, it can be connected to

some previously learned spatial concepts (e.g. lies to the right of the stomach and

overlies the gallbladder), which can be used to recognise that this structure is a

liver. Besides spatial concepts, the types of shared semantic attributes which might

describe common structure properties are such as parts of a structure (e.g. has

four chambers, two superior atria and two inferior ventricles which can be used to

recognise this structure is a heart), common materials (e.g. material with positive

mass which can be used to recognise anatomical structures with positive mass, such

as liver and brain), and common immaterial (e.g. material with no mass which can

be used to recognise anatomical structures with no mass such as the cavity of the

stomach).

In the context of finding a matching image, two images match when a region-

matching scheme that integrates the semantic properties of all the regions in one

image matches the semantic properties of all the regions in the other image. Sim-

ilarly, in the context of finding a matching region, two regions match when the
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semantic properties of a region match with the semantic properties of the other

region.

Since the gene expression data in biomedical atlases are queried by painting or

drawing arbitrary regions in the canonical images, this thesis focuses on image region

mappings. Therefore, the case of mapping to find a matching image is not further

explored in subsequent chapters because it was not a part of the dissertation. In

general, there is no literature that provides the definition of criteria to determine if

two regions match biologically. Within the context of this research, when the region

mappings are between identical images, we used the Overlay distance to determine

whether two regions match. The Overlay distance measures the similarity between

two objects based on the degree of overlap between the two objects. The discussion

on the Overlay distance is presented in Section 2.5.2. In the case of region mappings

between non-identical images, we used the mappings from a biologist as the golden

standard. The details are provided in Chapter 3.

2.8.2 Overview of Mapping Solutions

In general, image mappings can be carried out using image processing and ontology-

based methods.

2.8.2.1 Image Processing-based Method

There are several examples of image processing algorithms that perform mapping

based on fiducial points. These are proposed by Khaissidi et al. [57], Guest et

al. [58], Wong and Orchard [59], Park et al. [60], Yu and Morel [61], and Zeng et

al. [62]. Note that these algorithms have been described in Section 2.4.2. There

is also one exemplary work on image processing algorithm, which makes use of

semantic concepts. Liu et al. [85] presented an algorithm, which segments an image

into different regions. Each region is extracted together with its low-level features.

These features are linked to the semantic concepts obtained in a proposed decision

tree-based learning algorithm. The matching algorithm combines both query by

keyword and query by region of interest. However, this algorithm does not include

the notion of fiducial points, which makes the method irrelevant to the scope of this

thesis.

Note that only the image processing algorithms in [61; 62] are available with

source codes and executable by us. Mappings resulting from using the image pro-

cessing algorithm proposed by Yu and Morel [61] provides better accuracy compared

to the algorithm proposed by Zeng et al. [62]. For this reason, we used the image
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processing algorithm called ASIFT proposed by Yu and Morel [61] in order to per-

form the evaluation, results of which are summarised in Table 2.2.

Table 2.2 provides the two categories of image mappings, the different available

data conditions and the criteria for a mapping failure resulting from using image

processing-based solutions. The first case of mapping is to find a matching image.

An image processing algorithm may provide the mapping of one image against an-

other to determine whether the two images match, regardless of whether the image

domains are painted or not. Since the image processing technique depends on a

pixel-based system, therefore, this method does not require semantic knowledge of

an image.

An image processing algorithm may not be able to cope with the mapping be-

tween images that are similar but not identical in their underlying morphologies. An

exemplary case is when the mapping is between two midline images from two con-

secutive Theiler Stages of the same embryo. Different morphologies are represented

with different pixel intensity distributions. Consequently, an image processing algo-

rithm may have difficulty when the mapping is between images with large variations

in pixel intensity distributions [59; 86]. This also applies to non-identical images that

are not identical in their morphologies. An exemplary case is when the mapping is

between midline images of different embryos at the same developmental stage.

An image processing algorithm may have difficulty coping with mappings be-

tween non-identical images with the same morphology. This is the case when the

visual content of both images is only similar at the higher scene level, but entirely

different at the pixel-level. These are the types of images taken across different visual

domains, such as clip art graphics, photographs taken in different kinds of light, and

sketches. Since the image processing technique relies on being a pixel-based system,

this method may fail when two images have different pixel distributions.

The second case of mapping as depicted in Table 2.2 is to find a matching region.

An image processing algorithm may have difficulty coping with mapping regions

between images that are similar but not identical in their morphologies. Differences

in morphologies and regions between two images can cause different
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Table 2.2: The categories of image mappings, the different available data condi-
tions and the criteria for a mapping failure resulting from using image processing-
based solutions.

Mapping Cases
Image
Domains

Criteria for a mapping failure

1) Find a
matching
image

Painted/
Not painted

Similar images but are not identical in their
morphologies (e.g. the mapping between two
midline images from two consecutive Theiler
Stages of the same embryo).
Non-identical images that are not identical
in their morphologies (e.g. midline images
of different embryos at the same
developmental stage).
Non-identical images with same
morphology (e.g. images of an embryo
across different image modalities).

2) Find a
matching
region

Painted/
Not painted

Regions in similar images but are not
identical in their morphologies (e.g. the mapping
between two midline images from two consecutive
Theiler Stages of the same embryo).
Regions in non-identical images that are
not identical in their morphologies (e.g.
midline images of different embryos at the
same developmental stage).
Regions in non-identical images with
same morphology (e.g. images of an embryo
across different image modalities).
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pixel intensity distributions, with which the image processing technique is unable

to cope. An exemplary case is when the regions are mapped between two midline

images from two consecutive Theiler Stages of the same embryo. This also applies

to non-identical images which are not identical in their morphologies.

Similarly, an image processing algorithm may have difficulty coping with the

mapping of regions between non-identical images with the same morphology. The

morphology of an animal can be represented in different sets of pixel distributions.

This is the case when the visual content of both images is only similar at the higher

scene level, but entirely different at the pixel-level.

Nevertheless, in the case of mapping a region from one image onto another where

the two images have exactly the same morphologies, and these morphologies have

exactly the same pixel intensity distribution, an image processing algorithm may

provide image region mappings with good precision.

2.8.2.2 Ontology-based Method

Table 2.3 provides the two categories of image mappings, the different available

data conditions and the criteria for a mapping failure resulting from using ontology-

based solutions. It is the requirement of the ontology-based method that an image be

painted according to its anatomical regions, and these regions are linked to specific

terms in the ontology. Image mappings may use either the exact same ontology or

different but aligned (mapped) ontologies.

In the case of finding a matching image using either the same or different on-

tologies, this method may find a match between the source and the target image

if both images are painted according to their anatomical regions, both images have

exactly the same number of regions, and these regions are linked to specific terms

in the ontology. This applies to images with exactly the same morphology as well

as images that are morphologically different.

In general, an ontology-based method may be unable to find a match between

the source and the target image if both images have a different number of regions,

or if dissimilar regions are segmented in both images. This applies in both cases

either using the exact same ontology or using different, but aligned ontologies.
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In the case of mapping image regions using the same ontology, this method may

provide a mapping with good precision if the regions being mapped are painted

in both images and the ontology has a definition for this particular region. This

applies to images with exactly the same morphology as well as images that are

morphologically different.

In the case of mapping image regions using different ontologies, this method may

provide a mapping with good precision if the regions being mapped are painted in

both images, these regions have their definitions in the ontologies, and the term

associated with each region can be mapped from one ontology to another one. This

applies to images with exactly the same morphology as well as images that are

morphologically different. In general, an ontology-based method may provide an

image region mapping which is low in precision if the region to be mapped is visible

in one image but not in the other. This applies in both cases, either using the exact

same ontology or using different, but aligned ontologies.

As a conclusion, the approach proposed in this thesis should improve on existing

techniques by addressing many of their limitations. For example, the ontology-

based method requires the image to be painted according to anatomical regions.

The proposed approach should not require the image to be painted in order to

perform the mapping. Hence, mappings should work regardless of one region being

segmented in one image and not in the other, or when one term is defined in one

ontology but not in the other. In addition, the proposed approach should be able

to perform mapping between images that are morphologically different. Hence, the

mappings should work regardless of having varying orientation and position of the

structure nor having a different number of regions in the two images. These are

the issues with existing solutions. We demonstrated each of these issues using the

mouse embryo images in the evaluation.

2.9 Summary

This chapter provides a literature review regarding image representation and map-

ping. In particular, it focused on the following approaches: ontology-based and

image processing-based mappings. Ontology-based mappings may use spatial rela-

tions as the mapping primitive. Image processing-based mappings may use fiducial

points as the mapping primitive. These two types of mapping primitives are able to

guide the mapping of corresponding anatomical regions across images.

44



Chapter 2. Literature Review

A background on spatial relations which can be distinguished between topo-

logical, metric, and directional relations, has also been presented. These spatial

relations are useful to describe the location of anatomical space in an image. Re-

lated work on image representation and mapping, and the types of spatial relations

that they employ, have also been discussed. In addition, we have demonstrated their

deficiencies.

Furthermore, examples of well-defined fiducial points segmented by image pro-

cessing algorithms have been presented. These fiducial points are useful for deter-

mining corresponding anatomical regions across images.

An overview relating to image mapping problems was then presented and how ex-

isting solutions deal with these issues has been discussed. Finally, areas for research

and the problems to be addressed has been highlighted.
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Developing Spatial

Description-Based Integration

3.1 Introduction

Requirements analysis involves the investigation, scoping and definition of a new

mapping technique prior to the design and implementation of any new mapping

approaches. In the case of the research project described in this thesis, the review

of literature has shown that the existing image mapping techniques have several

drawbacks. In addressing these drawbacks, research was conducted in five phases.

The requirements analysis will thus be discussed in five phases.

The literature review has shown that the spatial relationships between entities are

significant aspects in describing the location of spatial entities in an image prior to

establishing an image mapping. Therefore, the first phase involves identifying the

categories of spatial relations necessary to describe the location of anatomical regions

in an image. The literature review has also provided evidence that fiducial points

can help to identify anatomical regions that are present in an image. Therefore, the

second phase involves identifying a new mechanism with fiducial points to describe

the location of spatial entities in an image prior to establishing mappings. The third

phase involves the study of a combined approach to identify the advantages of de-

scribing the location of anatomical regions using fiducial points and a set of spatial

relations as well as spatial relations between segmented regions. The fourth phase

discusses the final approach proposed, which is to be compared against the existing

approaches discussed previously in the literature review in the evaluation chapter.

Finally, the fifth phase describes manual mapping from a biologist to obtain a ’gold

46



Chapter 3. Developing Spatial Description-Based Integration

standard’. The result is then used as the basis for evaluating the existing mapping

techniques and the newly-developed technique.

3.2 Spatial Descriptions Based on Spatial Rela-

tionships between Segmented Regions

This section describes the proposed mapping approach in the context of finding a

matching region using spatial descriptions based on spatial relationships between

segmented regions. Many existing approaches of image mapping take into account

the similarity of spatial relationships among spatial entities of an image. Spatial

entities in an image are identified along with the spatial relationships among them

to represent the image. Most image representation and mapping as proposed by

[48; 50; 53; 87; 88] use spatial relations of objects in an image. Methods proposed

by [51; 52] consider both topological and directional relations of objects. Work

by [49; 52; 54; 55] represents images using graphs to conceptualise entities’ spatial

relationships and the mappings are resolved using graph matching. Spatial relations

between entities are widely used in the process of identification of spatial entities.

This has inspired the idea of image region mappings using anatomical regions’ spatial

relationships.

The first phase of the study involved the investigation and scoping of a new map-

ping technique, which is designed based on the following research question: What

is the best set of spatial relations necessary to describe the location of anatomical

regions in an image to guide the mapping of regions between images?

3.2.1 Design Rationale

This section presents the rationale of choosing the concepts of spatial relations ex-

plicitly for biomedical domains. More specifically, we explore closely the modelling

of the mouse embryo domain. The analysis provides background knowledge of the

proposed mapping approach, which relies on anatomical regions’ spatial relation-

ships.

3.2.1.1 Representation of Topology

To describe topological information for anatomical structures within the mouse em-

bryo, we restrict these anatomical structures to be embedded in 2D space. These
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include representations of anatomical structures of type material with appreciable

mass, such as liver, heart, and kidney. A spatial region for an anatomical structure is

enclosed in a Minimum Bounding Rectangle (MBR for short) in an image. An MBR

is the smallest enclosing box of a region which can be described by x-y coordinate of

the upper-left corner and by the x-y coordinate of the lower-right [89]. This infor-

mation can be used to determine topological relations between two spatial regions.

For that reason, eight topological relations between two spatial regions according

to Egenhofer and Herring [30] have been adopted to represent spatial information

concerning connectivity, disjointness and containment. These relations are referred

to as disjoint, partiallyOverlap, externallyConnected, inside, contains, coveredBy,

covers, and equal. Region Connection Calculus (RCC-8) uses a similar approach

based on this set of eight binary topological relations to describe the topological

relationships between two spatial regions [90]. Section 3.2.3 gives a definition for

each of these topological relations.

3.2.1.2 Representation of Arrangement

For anatomical structures that are disjoint from one another, topological information

does not capture the relative position between them. A spatial relation called an

’arrangement’ was proposed by Tagare et al. [91] to describe part embeddings,

which implement Voronoi modelling to capture spatial arrangement between disjoint

regions. The Voronoi modelling is the nearest-neighbour map for a set of parts.

It captures boundary information between disjoint parts based on triangulation

between three Voronoi polygons [92]. The critical issue in implementing Voronoi

is to capture the spatial arrangement between disjoint anatomical regions within

the mouse embryo and decide which boundaries are to be preserved to form the

boundary triangulation. This is dissimilar to Tagare et al. [91] who implemented

Voronoi modelling to describe arrangement. We proposed to include the relation

adjacent to describe spatial arrangement between disjoint anatomical regions into

the proposed approach. Following Bittner [32], adjacent holds exist among material

anatomical structures that are a small but non-zero positive distance apart. As long

as the distance between spatial objects can be measured, spatial arrangement by

means of adjacency can be defined. Section 3.2.3 provides the definition for this

relation.
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3.2.1.3 Representation of Direction

Per the example of the positioning between midbrain mantle layer and lung, in terms

of topological information, midbrain mantle layer and lung are disjoint. However,

in terms of spatial arrangement, the midbrain mantle layer and lung cannot be

described as adjacent because of the distance constraint. Therefore, we need a

solution to deal with spatial arrangement between disjoint anatomical regions that

are far apart and cannot be described using adjacency. We include directional

relations that express north, east, south, and west into the proposed approach.

These four directional terms can be used to describe anatomical regions, within

the mouse embryo, since a reference frame to describe directional relations can be

established for the image.

Although this approach can be used to deal with the problem of spatial arrange-

ment between disjoint anatomical regions that are far apart such that they cannot

be described as adjacent, this approach has a drawback. The drawback of this ap-

proach is that directional relations between two anatomical regions change at each

of their movements. The movement of anatomical structures for example, fingers

bending or the jaw opening and closing causes a wide range of positions for these

structures. Anatomical structure movements, which cause changes in directional

information, affect anatomical region recognition.

Directional relations corresponding to an anatomical region differs according to

the position. If the same anatomical region appears at two different positions be-

tween the two compared images, directional relations may fail to provide anatomical

space mappings. Regardless of such a drawback, the mapping of anatomical space

based on directional relations is sufficient as directional relations that express north,

east, south, and west are capable of describing images that are not too different.

Section 3.2.3 provides a definition for each of these directional relations.

3.2.2 Mapping Method

The approach to finding a matching region begins with segmenting the images ac-

cording to their anatomical regions. A query region is then described using its

spatial relationships with respect to other anatomical regions. The mapping of a

query region in the first image onto the query result region in the second image is

carried out based on the satisfaction of exact same spatial relationship constraints.

To illustrate this approach, given two images C1 and C2, if anatomical region A1 in

image C1 has the relationships A1 is adjacent to B1, and A1 is adjacent to C1, then

its equivalent anatomical region, A2, in image C2, must be adjacent to B2 and C2,
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where the latter two correspond to B1 and C1, respectively. The mapping of region

A1 in image C1 onto region A2 in image C2 may then be achieved by mapping their

respective spatial descriptions.

We propose SpaRTAD (Spatial Relations based on Topological, Arrangement

and Directional relations) as an efficient representation structure to describe a query

region in an image based on spatial relationships between anatomical regions. Spa-

tial relationships may be described using topological, arrangement, and directional

relations. A query region is then mapped onto the query result region, based on the

satisfaction of exact same spatial constraints.

3.2.3 Formalism

We have defined SpaRTAD in first-order logic formulation. We use lower-case letters

(e.g. x, y, z ) as variables to denote individual spatial regions and upper-case letters

(e.g. C, P, PP) as variables to denote spatial relations or function. The logical

connectors (¬, ∧, ∨, →, ↔) have their own definitions (not, and, or, if-then, and if

and only if (iff), respectively). The logical quantifiers (∀, ∃) have their own quantifi-

cation definitions (for all, there exist, respectively). The formalism is summarised

below:

DEFINITION 1. We define topological relations as

T = {disjoint, overlap, externallyConnected,

inside, contains, coveredBy, covers, equal} (3.1)

The definitions for these topological relations and the first-order logic formulations

are consistent with Region Connection Calculus (RCC-8) [90]. Relation disjoint

occurs between two regions x and y, if and only if they are not connected, in the

sense that x and y do not share any interior point and do not have any common

point in the boundaries. The rule for this relation is presented as:

DISJOINTxy ↔ ¬Cxy (3.2)

In the intended interpretation, the connection relation C holds between regions x

and y if and only if they share a common point.

Relation overlap occurs between two regions x and y if and only if there is a region

z such that z is part of x and z is part of y, in the sense that x and y share common
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interior points. The rule for this relation is presented as:

OV ERLAPxy ↔ (∃z)(Pzx ∧ Pzy) (3.3)

In the intended interpretation, the part of relation P holds between two regions x

and y, when for all z, if z is connected to x then z is connected to y, which means

x is part of y. The rule for this relation is presented as:

Pxy ↔ (∀z)(Czx→ Czy) (3.4)

In the intended interpretation, the proper part of relation PP holds between regions

x and y if and only if x is part of y and y is not part of x.

PPxy ↔ Pxy ∧ ¬Pyx (3.5)

Relation externallyConnected occurs between two regions x and y if and only if they

share a common point and do not overlap. The rule for this relation is presented as:

EXTERNALLY CONNECTEDxy ↔ (Cxy ∧ ¬OV ERLAPxy) (3.6)

Relation inside occurs between two regions x and y, for example, x is inside y if

and only if the spatial region x is a part of spatial region y, in the sense that x’s

location is included in y’s location and there is no common point z such that z is in

boundaries of x and y. The rule for this relation is presented as:

INSIDExy ≡ PPxy ∧ ¬(∃z)[EXTERNALLY CONNECTEDzx

∧ EXTERNALLY CONNECTEDzy] (3.7)

Relation contains occurs between two regions x and y, for example, y contains x is

defined by the inverse of inside. The rule for this relation is presented as:

CONTAINSyx ≡ INSIDExy (3.8)

Relation coveredBy occurs between two regions x and y, for example, x is coveredBy

y in the sense that x’s location is included in y’s location and there is a point z such
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that z is in boundaries of x and y. The rule for this relation is presented as:

COV ERED BY xy ≡ PPxy ∧ (∃z)(EXTERNALLY CONNECTEDzx

∧ EXTERNALLY CONNECTEDzy) (3.9)

Relation covers occurs between two regions x and y, for example, y covers x, is

defined by the inverse of coveredBy. The rule for this relation is presented as:

COV ERSyx ≡ COV ERED BY xy (3.10)

Relation equal occurs between two regions x and y if and only if x is part of y and

y is part of x. The rule for this relation is presented as:

EQUALxy ≡ (Pxy ∧ Pyx) (3.11)

DEFINITION 2. We define spatial arrangement as

A = {adjacent} (3.12)

The definition and the corresponding first-order logic formulation for relation adja-

cent is consistent with OBO relation ontology [27; 32]. Two regions x and y are

adjacent if and only if x and y are not connected and there is a region z such that

z is connected to both x and y, and z is negligible in size with respect to x and y.

The rule for this relation is presented as:

ADJACENTxy ≡ ¬Cxy ∧ (∃z)(Czx ∧ Czy ∧ z << x ∧ z << y) (3.13)

We compute adjacency between two regions by dilating one of the regions by two

units, and then computing the intersection between them. Adjacency holds between

the two regions if they have a non-empty intersection.

DEFINITION 3. We define directional relations as

D = {northOf, eastOf, southOf, westOf} (3.14)

We define directional relations between regions by comparing their Minimum Bound-

ing Rectangles (MBR for short) on a 2D coordinate system that has 0,0 at the

top-left corner. An MBR is the smallest enclosing box of a region, which can be

described by x-y coordinate of the upper-left corner and by the x-y coordinate of
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the lower-right.

Relation northOf, for example, a is north of b if the y-coordinate lower-right for

MBR of region a is smaller or equal to the y-coordinate upper-left for MBR of

region b. The rule for this relation is presented as:

NORTH OF (a, b) ≡ Y LOWER RIGHT (a) <= Y UPPER LEFT (b) (3.15)

Relation eastOf, for example, a is east of b if the x-coordinate upper-left for MBR

of region a is greater or equal to the x-coordinate lower-right for MBR of region b.

The rule for this relation is presented as:

EAST OF (a, b) ≡ X UPPER LEFT (a) >= X LOWER RIGHT (b) (3.16)

Relation southOf, for example, a is south of b is defined by the inverse of northOf.

The rule for this relation is presented as:

SOUTH OF (a, b) ≡ NORTH OF (b, a) (3.17)

Relation westOf, for example, a is west of b is defined by the inverse of eastOf. The

rule for this relation is presented as:

WEST OF (a, b) ≡ EAST OF (b, a) (3.18)

DEFINITION 4. We define anatomical regions in an image as

R = (P, S) (3.19)

where R contains a set of anatomical parts P = {p1, p2,..., pn} with spatial infor-

mation S={ r(pi,pj) | r∈(T ∪ A ∪ D) and pi, pj ∈P}

Figure 3.1 illustrates two images of an embryo. However, anatomical structure x

in image A is not segmented in image B. The simplified spatial description for

anatomical region x in Figure 3.1(a) is as below:

adjacent(x, liver), adjacent(x, pancreas), southOf(x, heart), westOf(x,lung)

The above descriptions map anatomical region x in Figure 3.1(a) to a location

somewhere inside the area labelled as result region y in Figure 3.1(b).
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Figure 3.1: The mapping method using spatial relationships between segmented re-
gions maps (a) query region x to (b) a location somewhere inside the area highlighted
in green (the result region y).

3.2.4 Algorithm

This section presents the mapping algorithm combining topological, arrangement,

and directional relations. The algorithm is first described in the context of finding

a matching image. Note that the case of finding a matching image is beyond the

scope of the thesis. Future research work might use this type of mapping case

for experimentation to extend the scope of the thesis. This section later discusses

modification of the algorithm in order to perform an image region mapping.

Assuming that the mapping is performed between two images C1 and C2, topo-

logical relations describe the position of connectedness, containment, overlap and

disjointness between two anatomical regions. Therefore, all anatomical regions in

image C1 and C2 must be topologically matched. Anatomical regions in image C1

and C2 are topologically matched if they have exactly the same topological infor-

mation involving connectedness, containment and overlap. Though image C1 and

C2 could have exactly the same disjoint anatomical regions, this does not guarantee

that anatomical regions in image C1 and C2 are topologically equivalent. In the

case of disjoint anatomical regions, topological information does not capture the

relative position between them. Directional relations are usually described between

two spatial regions that do not overlap [33]. Therefore, the algorithm uses direc-

tional relations only to capture relative position between disjoint anatomical regions.

In conclusion, not all anatomical regions in image C1 and C2 must be matched in
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terms of directional relations. Anatomical regions that are connected, contained, or

overlap must be topologically equivalent. On the other hand, all disjoint anatomical

regions must be matched in terms of directional relations.

Nevertheless, in the case of disjoint anatomical regions that do not match in

terms of directional relations, these anatomical regions may be affected by rotation

direction. Rotation direction has a significant impact on object recognition [100].

Therefore, our algorithm uses spatial arrangement based on adjacency to capture

relative position between disjoint anatomical regions that do not match in terms of

directional relations. In conclusion, not all anatomical regions in image C1 and C2

are required to be directionally matched. Anatomical regions that are connected,

contained or overlap must be topologically equivalent. On the other hand, for dis-

joint anatomical regions that do not match in terms of directional relations, these

regions must be matched in terms of their adjacency.

Figure 3.2 depicts the flow diagram of the proposed algorithm. The phase

called Topological Relations Classification classifies anatomical region representa-

tions R = (P, S) for image C1 and image C2 based on topological information

involving connectivity, containment and overlap. If C1 and C2 are not topologically

equivalent, then C1 and C2 do not match. Otherwise, the algorithm proceeds to

check for disjoint anatomical regions (anatomical regions that are not connected to

any other regions). If C1 and C2 do not have disjoint anatomical regions, then

C1 matches C2. If C1 and C2 contain disjoint anatomical regions, the algorithm

proceeds to the next phase.

The phase called Directional Relations Classification classifies disjoint anatomi-

cal region representation R = (P, S) for image C1 and image C2 based on directional

information. If C1 and C2 have exactly the same directional information between

disjoint anatomical regions, the algorithm simply says that C1 matches C2. Other-

wise, the algorithm proceeds to the next phase.

The phase called Arrangement in terms of Adjacency Classification classifies dis-

joint anatomical region representation R = (P, S) for image C1 and image C2 based

on adjacency information. If C1 and C2 have exactly the same arrangement in terms

of adjacency information, the algorithm simply says that C1 matches C2. Other-

wise; the algorithm simply says that C1 and C2 do not match. Given anatomical

regions as in Figure 3.3(a) to (f), applying SpaRTAD algorithm will give the follow-

ing result: anatomical regions in (a)∼(b) are not equivalent, anatomical regions in

(c)∼(d) are equivalent, and anatomical regions in (e)∼(f) are equivalent.

The above algorithm can be modified in order to accomplish an image region

mapping. To illustrate this approach, assume that mapping is performed between
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Figure 3.2: Flow diagram of the proposed SpaRTAD algorithm
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Figure 3.3: Anatomical regions in Image 1 and Image 2 with (a)∼(b) disjointness,
(c)∼(d) connectedness, (e)∼(f) disjointness and connectedness
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two images I1 and I2 : image I1 contains the part of heart and this corresponding

part contains subregions. On the other hand, image I2 contains a full image of an

embryo. Assume that a query region x is selected in image I1 : we describe query

region x using its spatial relationships with respect to other segmented regions in

image I1 as:

RQ(x) = {r(x, pi) | r ∈ (T ∪ A ∪D) and x, pi ∈ P} (3.20)

RQ(x) is the spatial description for query region x with respect to a set of anatomical

regions P = {p1, p2,..., pn}. T, A and D are defined using Equations 3.1, 3.12 and

3.14 respectively. Query region x in image I1 are then mapped to the corresponding

region in image I2 based on the satisfaction of the exact same spatial constraints.

3.3 Spatial Descriptions Based on Fiducial Points

and a Set of Spatial Relations

This section describes the proposed mapping approach in the context of finding a

matching region using Spatial Descriptions Based on Fiducial Points and a Set of

Spatial Relations. This approach uses fiducial points to describe locations in an

image. The study in the second phase involves the investigation and scoping of a

new mapping technique, which has been designed based on the following research

question: How to incorporate the fiducial points in a new mapping technique, which

would support image region mappings independently of anatomical structures’ spa-

tial relationships?

3.3.1 Design Rationale

The idea of using fiducial points is inspired by the image processing mapping ap-

proach. Since a fiducial point can become a point of reference for an anatomical

location, the location of a query region is described based on these points. The idea

of using spatial relations has been inspired by the ontology mapping approach, but

using less detailed ontologies by implementing the best set of spatial relations to

describe anatomical domains. Since a spatial relation may be used to describe the

location of a region in anatomical space, we propose to describe a query region using

fiducial points and a set of spatial relations. A query region is any region in one

image which is to be mapped onto another image.
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This approach involves the following concepts: (1) a query region, (2) fiducial points,

and (3) fiducial lines. Figure 3.4 depicts the illustration of a fiducial point, a fiducial

line and a region. A fiducial point is a point in space. A fiducial line is made

Figure 3.4: A fiducial point, a fiducial line and a query region.

by creating a straight line through a pair of fiducial points. A query region is

made of connected multiple single-elements within a closed boundary. We define

the goal of mapping as finding a corresponding region of one image and mapping it

onto another region in another image which has the same intended meaning. This

approach describes the relations between a query region and a fiducial point/line

using directional relations of the following four terms: northOf, eastOf, southOf and

westOf. By describing the query region with respect to the fiducial points/lines by

using the directional relations we can overcome the problem relating to different

anatomical names associated with regions in an image. Section 3.3.3 provides a

definition for each of said directional relations.

3.3.2 Mapping Method

Given two images I1 and I2, mapping one image onto another begins by selecting

the same fiducial points in both images. A query region is then described using

spatial relations between the query region with respect to the fiducial points and

the fiducial lines. Two regions from different images are then mapped based on the

satisfaction of exact same constraints. For example, if query region x in image I1 is

described as x is north of fiducial point P1 and x is west of fiducial point P2, then its

equivalent region in image I2 must be a region that is located north of fiducial point

P1 and west of fiducial point P2. This enables anatomical space mapping between

images to facilitate the integration of biomedical atlases.

Figure 3.5 depicts the framework of our approach. Because the proposed spatial

description approach employs both fiducial points and spatial relations, the approach

fits in between ontology-based and image processing-based mapping techniques. The

approach does not intend to include a large number of concepts in spatial relations
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as that replicates the ontology mapping approach. Subsequently, the entire spatial

area of an image should be conceptualised with a set of fiducial points, where this

set of fiducial points must not involve a large number of fiducial points, such that

the approach essentially ends up as an image warping algorithm as used in image

processing. High accuracy with a large number of fiducial points is not the end goal.

3.3.3 Formalism

We define the goal of mapping as being to find a corresponding region of one image

and match it with another region in another image which has the same intended

meaning, based on spatial description SQ. The formalism of the Spatial Descriptions

Based on Fiducial Points and a Set of Spatial Relations is summarised as:

DEFINITION 1. We define directional relations as

D = {northOf, eastOf, southOf, westOf} (3.21)

Relation northOf between a region r and a fiducial point p, for example, r northOf p

if the y-coordinate lower-right for MBR of region r is smaller or equal to y-coordinate

of p. The rule for this relation is presented as:

NORTH OF (r, p) ≡ Y LOWER RIGHT (r) <= Y COORDINATE(p) (3.22)

Relation northOf between a region r and a fiducial line l can be defined as follows:

Initially, a pair of fiducial points p1 and p2 define a fiducial line l. Subsequently,

there exists two new points p3 and p4 with coordinates x1-y1 and x2-y2, respec-

tively, on fiducial line l (these new points are not the initial fiducial points that

define the fiducial line). Relation northOf between a region r and a fiducial line

l, for example, r northOf l if the y-coordinate lower-right for MBR of region r is

smaller or equal to y1 and y2 of fiducial line l. Both y1 and y2 are values of x1-y1

and x2-y2, which are two new points on fiducial line l such that two vertical lines

can be created through: (1) x1-y1 and x-y coordinate upper-left for MBR of r (2)

x2-y2 and x-y coordinate lower-right for MBR of r. The rule for this relation is

presented as:

NORTH OF (r, l) ≡ Y LOWER RIGHT (r) <= Y 1 COORDINATE(l)

∧ Y LOWER RIGHT (r) <= Y 2 COORDINATE(l) (3.23)
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Relation eastOf between a region r and a fiducial point p, for example, r eastOf

p if the x-coordinate upper-left for MBR of region r is greater or equal to the

x-coordinate of p. The rule for this relation is presented as:

EAST OF (r, p) ≡ X UPPER LEFT (r) >= X COORDINATE(p) (3.24)

Relation eastOf between a region r and a fiducial line l can be defined as follows:

Initially, a pair of fiducial points p1 and p2 define a fiducial line l. Subsequently,

there exists two new points p3 and p4 with coordinates x1-y1 and x2-y2, respec-

tively, on fiducial line l (these new points are not the initial fiducial points that

define the fiducial line). Relation eastOf between a region r and a fiducial line l, for

example, r eastOf l if the x-coordinate upper-left for MBR of region r is greater or

equal to x1 and x2 of fiducial line l. Both x1 and x2 are values of x1-y1 and x2-y2,

which are two points on fiducial line l such that two horizontal lines can be created

through: (1) x1-y1 and x-y coordinate upper-left for MBR of r (2) x2-y2 and x-y

coordinate lower-right for MBR of r. The rule for this relation is presented as:

EAST OF (r, l) ≡ X UPPER LEFT (r) >= X1 COORDINATE(l)∧

X UPPER LEFT (r) >= X2 COORDINATE(l) (3.25)

Relation southOf between a region r and a fiducial point p, for example, r southOf p

if the y-coordinate upper-left for MBR of region r is greater or equal to y-coordinate

of p. The rule for this relation is presented as:

SOUTH OF (r, p) ≡ Y UPPER LEFT (r) >= Y COORDINATE(p) (3.26)

Relation southOf between a region r and a fiducial line l can be defined as follows:

Initially, a pair of fiducial points p1 and p2 define a fiducial line l. Subsequently,

there exists two new points p3 and p4 with coordinates x1-y1 and x2-y2, respec-

tively, on fiducial line l (these new points are not the initial fiducial points that

define the fiducial line). Relation southOf between a region r and a fiducial line l,

for example, r southOf l if the y-coordinate upper-left for MBR of region r is greater

or equal to y1 and y2 of fiducial line l. Both y1 and y2 are values of x1-y1 and x2-y2,

which are two points on fiducial line l such that two vertical lines can be created

through: (1) x1-y1 and x-y coordinate upper-left for MBR of r (2) x2-y2 and x-y
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coordinate lower-right for MBR of r. The rule for this relation is presented as:

SOUTH OF (r, l) ≡ Y UPPER LEFT (r) >= Y 1 COORDINATE(l)∧

Y UPPER LEFT (r) >= Y 2 COORDINATE(l) (3.27)

Relation westOf between a region r and a fiducial point p, for example, r westOf p if

the x-coordinate lower-right for MBR of region r is smaller or equal to x-coordinate

of p. The rule for this relation is presented as:

WEST OF (r, p) ≡ X LOWER RIGHT (r) <= X COORDINATE(p) (3.28)

Relation westOf between a region r and a fiducial line l can b defined as follows:

Initially, a pair of fiducial points p1 and p2 define a fiducial line l. Subsequently,

there exists two new points p3 and p4 with coordinates x1-y1 and x2-y2, respec-

tively, on fiducial line l (these new points are not the initial fiducial points that

define the fiducial line). Relation westOf between a region r and a fiducial line l, for

example, r westOf l if the x-coordinate lower-right for MBR of region r is smaller or

equal to x1 and x2 of fiducial line l. Both x1 and x2 are values of x1-y1 and x2-y2,

which are two points on fiducial line l such that two horizontal lines can be created

through: (1) x1-y1 and x-y coordinate upper-left for MBR of r (2) x2-y2 and x-y

coordinate lower-right for MBR of r. The rule for this relation is presented as:

WEST OF (r, l) ≡ X LOWER RIGHT (r) <= X1 COORDINATE(l)∧

X LOWER RIGHT (r) <= X2 COORDINATE(l) (3.29)

DEFINITION 2. We describe a query region x in an image as

SQ(x) = {r(x, fi) | r ∈ D and fi ∈ (Fpoint ∪ Fline)} (3.30)

where SQ(x) is the spatial description for query region x with respect to a fiducial

point Fpoint = {p1, p2,..., pn} or a fiducial line Fline = {l1, l2,..., ln}

3.3.4 Algorithm

This section presents the algorithm for mapping based on fiducial points and a set

of spatial relations. Assuming that a mapping is performed between two images C1

and C2: the algorithm begins by processing SQ, which is the spatial description for

query region x in image C1. The algorithm to find the result region y corresponding
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to SQ in image C2 consists of the following steps:

1: Start with all possible fiducial lines.

2: Exclude fiducial lines that cut through the query region x in image C1.

3: Fiducial lines left around query region x must be considered.

4: Find the smallest polygon that contains the whole of x.

5: Return the smallest polygon as the result region y in image C2.

3.3.5 Mapping Identical, Scale Changed, Rotated and Mor-

phologically Different Images

This section discusses the applicability of the proposed approach with respect to the

problem of mapping identical images, scale-changed and rotated images, and images

with the same anatomical structures but with differing arrangement and orientation

of spatial structures. Figure 3.6 illustrates two identical images of 2D mouse embryo

with six fiducial points and 15 fiducial lines.

Figure 3.6: The spatial description fiducial points-based method maps (a) the query
region x to (b) the result region y.
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The simplified description for query region x is described as:

SOUTH OF(x, P6P2), NORTH OF(x, P6P3), EAST OF(x, P1P5), WEST OF(x,

P1P4)

The above description maps the query region x to the result region y. We label a

fiducial line according to its pair of fiducial points.

In addition, anatomical structures in an image may appear in various orientations

and positions. Figure 3.7 depicts an example of two rotated structures. Structure x

in Figure 3.7(a) is equivalent to structure x in Figure 3.7(b) if region x is described

using betweenness relation. This relation can be defined as:

BETWEEN(x, L1, L2) ≡ SOUTH OF(x, L1) ∧ NORTH OF(x, L2) ∨
WEST Of(x, L1) ∧ EAST OF(x, L2) ∨
(NORTH OF(x, L1) ∧ SOUTH OF(x, L2) ∨
EAST OF(x, L1) ∧ WEST OF(x, L2) (3.31)

Figure 3.7: Example of rotated images. Region x is between fiducial lines L1 and
L2.

The notion of betweenness is the way to deal with rotated direction and orientation.

However, this approach is not pursued further in this thesis. We do not implement

this relation in the mapping algorithm because we have used spatial adjacency to

deal with rotated direction and orientation. However, future research work might

use the notion of betweenness to extend the scope of the thesis. Figure 3.8 illustrates

three exact same anatomical structures, however, the structure in the middle has

different positions. The method to attempt this problem requires some fiducial lines

to be relaxed. The method is described as follows:
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1. Select the centroid of the structure that has various positions as a fiducial

point.

2. Link that fiducial point to the centroid of any other structures that remain in

the same position.

Description for query region x of Figure 3.8(a) is described as:

NORTH OF(x, L1), SOUTH OF(x, L2)

The white coloured areas in all three images of Figure 3.8 denote the corresponding

match location based on this description.

Figure 3.8: In all three images, the centroid of the structure in the middle denotes
a fiducial point. This particular fiducial point is then linked to the centroids of two
other structures which remain in the same position. The white areas denote the
acceptable location for query region x.

The approach for solving this problem requires marking points or lines to specific

regions of the image. In practice, experts such as radiologists [93; 94] and surgeons

[95; 96] annotate images to associate a specific region with medical opinion. The

annotation includes placing a circle or a rectangle, identifying a set of salient points,

and drawing lines and arrows. For that reason, the requirement of marking a centroid

[97; 98; 99] prior to specific lines on an image region should not be an impediment

to implementation.

The definition for best match criteria is important in any mapping algorithm.

Since anatomical structures exist at different ranges of scale, arrangement and po-

sition, there is the possibility of an exact copy of the location corresponding to the
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query region in one image being unavailable in another image. The proposed spatial

description fiducial points-based method at the current state perform mappings by

returning a location that satisfies all spatial relation constraints corresponding to a

query region. However, this may not be necessary. Consider the difference between

the images in Figure 3.9(a) and Figure 3.9(b). The blue circle in Figure 3.9(a) is

entirely below the line drawn between two fiducial points. However, the blue circle

in Figure 3.9(b) lies a little above the line. By enforcing an exact mapping, part of

the blue circle will be missing in the image of Figure 3.9(b). Therefore, some form

of google-like matching can be considered. An easy google-like matching can be

performed by matching as many constraints as possible as a criterion for finding the

next best mapped location. Another option for google-like matching is specifying

a range; for example, allowing for a distance limit from a fiducial line, which will

return a location given by the range.

Figure 3.9: The blue circle in (a) is entirely below the line drawn between two
fiducial points. However, part of the blue circle in (b) lies a little above the line.

3.4 Spatial Descriptions Based on Fiducial Points

and a Set of Spatial Relations, Integrated with

Spatial Relations between Segmented Regions

This section describes the proposed mapping approach in the context of finding a

matching region using Spatial Descriptions Based on Fiducial Points and a Set of

Spatial Relations, Integrated with Spatial Relations between Segmented Regions.

This approach uses both the spatial relationships between entities, as well as spatial

relationships between the entity and the fiducial points to describe locations in an
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image. The study’s third phase involves identifying the advantages of a combined

mapping technique, inspired by the approaches designed under phases one and two.

3.4.1 Mapping Method

The approach of mapping using the fiducial points-based method can be integrated

with spatial relations between segmented regions. This combined approach describes

a query region using spatial relations between the query region with respect to other

anatomical regions as well as spatial relations between the query region with respect

to fiducial points and fiducial lines.

An image region mapping is performed based on the following steps: (1) firstly,

the query region is mapped onto the result region according to the Spatial Descrip-

tions Based on the Fiducial Points and a Set of Spatial Relations, (2) secondly, the

result region is narrowed down using the approach of Spatial Descriptions Based

on Spatial Relationships between Segmented Regions. To illustrate this combined

approach, Figure 3.10 depicts an embryo with anatomical regions a, b, c, d, e, f and

g, with four fiducial points P1, P2, P3 and P4. In this example, all fiducial lines

are coloured in red. The simplified description of query region X according to the

spatial description fiducial points-based method is as follows:

’X is southOf P1P2, X is eastOf P1P3, X is northOf P2P4’

On the other hand, the simplified description of query region X based on the spatial

relationships between segmented regions is as below:

’X is southOf b, X is westOf d, X is northOf f ’

The integration between the spatial description fiducial points-based method with

spatial relationships between segmented regions is achieved by combining descrip-

tions from these two approaches. Therefore, mapping of query region X in Figure

3.10(a) first uses the spatial relations based on the fiducial points, which mapped the

query region X to the result region Y (the grey coloured area as depicted in Figure

3.10(b)). The result region Y was then narrowed down using spatial relationships

between segmented regions, which mapped the query region X to the result region

Z (the yellow coloured area as depicted in Figure 3.10(c)).
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Figure 3.10: An embryo with anatomical regions a, b, c, d, e, f and g, with four
fiducial points P1, P2, P3 and P4. The spatial description fiducial points-based
method maps (a) the query region X to (b) the result region Y . Then, the spatial
description using spatial relationships between segmented regions make the result
region Y narrower as in (c) the result region Z.
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3.4.2 Formalism

Since this is a combined approach, we have integrated both RQ and SQ to describe

a query region in an image. The formalism of the approach is presented as CQ(x)

and is defined below:

CQ(x) = RQ(x) ∪ SQ(x) (3.32)

RQ(x) and SQ(x) are defined using Equations 3.20 and 3.30 respectively.

3.5 Selected Mapping Approach

The different methods which could be used in the case of image region mappings

are:

• Method One: Spatial Descriptions Based on Spatial Relationships between

Segmented Regions.

• Method Two: Spatial Descriptions Based on Fiducial Points and a Set of

Spatial Relations.

• Method Three: Spatial Descriptions Based on Fiducial Points and a Set of

Spatial Relations, Integrated with Spatial Relations between Segmented Re-

gions.

A significant advantage of method one is that it enables mapping between two im-

ages which contain a different number of anatomical regions, but associates the same

anatomical name for these regions. Given two images I1 and I2, where image I1

contains anatomical regions A, B, C, and D, and image I2 contains only anatomi-

cal regions A, B, and C. This approach may determine the location for anatomical

region D in image I2 by using spatial descriptions based on spatial relationships

between anatomical region D with respect to anatomical regions A, B, and C in im-

age I1. Overall, this approach is domain-dependent, such that mapping depends on

spatial relationships between regions segmented in an image. Both mapping method

one and three depend on the spatial relationships between segmented regions. One

major problem associated with these two methods is that it becomes difficult, or

perhaps impossible, to map regions between two images that use different names for

their structures, or to divide the anatomy in different ways. In addition, problems

could arise when different biomedical atlases have images with a different number
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of segmented regions, causing one structure to correspond to parts of several struc-

tures, and vice versa. The consequence is that mapping of image regions in order

to achieve biomedical atlas integration may require alignment representations of

anatomy differing in structure and domain coverage. Furthermore, this approach

requires spatial knowledge of every anatomical structure in an image in order to do

the mappings. Although these images may have the same structures, the morphol-

ogy may vary with orientation and the position of the structure causing different

spatial relationships between them. In conclusion, a mapping method which works

independently of anatomical structures’ spatial relationships seems to be a solution

to these problems.

Method two uses directional relations to describe the location of a query region

with respect to the fiducial points and the fiducial lines. This method enables map-

pings without the tedious task of aligning a different number of segmented regions

and domain coverage. More importantly, it overcomes the interoperability problem

caused by different anatomical names and vocabularies used between different at-

lases. For this reason, method two has been selected as the best solution to facilitate

image region mappings.

As discussed in the literature review, the selected approach within this thesis

should overcome the limitations of ontology and image processing-based techniques

by addressing many of the image region mapping issues. For example, there are im-

ages without painted domains. In this case, the spatial description fiducial points-

based method is more capable of supporting an image region mapping than the

ontology-based method. Moreover, in the case where the images are painted and

annotated with ontological concepts, the ontology-based method cannot be consid-

ered as the only best solution. There are cases where some regions are painted in one

image but not in the other and also cases where there exist terms associated with

regions which cannot be mapped from one ontology to another. In these cases, the

spatial description fiducial points-based method may be another option for mapping.

Furthermore, the selected approach should be able to perform image region map-

pings between similar but not identical images in their morphologies (e.g. image

slices of an embryo, midline images from two consecutive Theiler Stages of the same

embryo, and so on). The selected approach should also be capable of performing

image region mappings between non-identical images that are not identical in their

morphologies (e.g. midline images of different embryos at the same developmental

stage). In addition, the selected approach should be capable of performing image

region mappings between non-identical images with the same morphology (e.g. im-

ages of an embryo taken across different imaging modalities). Images with different
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morphologies are subject to different voxel/pixel distributions. This also applies

to images with the same morphology but taken from different imaging modalities.

Since the spatial description fiducial points-based method describes a query region

with respect to the fiducial points and the fiducial lines by using directional re-

lations, this method resolves the issue of voxel/pixel intensities variation between

images. Therefore, the spatial description fiducial points-based method may be able

to overcome the limitations of the image processing-based mapping.

3.6 Biologist Mapping Results

The fifth phase involved an experienced biologist with a background in anatomical

science, particularly in the annotation of mouse embryo images to produce mapping

samples. The purpose of acquiring this result was to establish a ’gold standard’

to be used as the basis for evaluating existing mapping techniques, as well as the

proposed technique developed in this research.

Two studies were carried out: (1) selection of fiducial points, and (2) image region

mappings. Table 3.1 describes the types of images, the type of region mappings and

the source of images used in these two studies.

Table 3.1: Description of Images

Type of Images
Type of Region
Mappings

Source of Images

1) Different morphologies of an embryo
model (i.e. images with different
morphologies because they are from
the same embryo model at different
developmental stages)

Identifiable
Region Same source (i.e.

Kaufman Atlas)
Random
Region

2) Different embryo morphologies
(i.e. images with different morphologies
because they are derived from different
atlases)

Identifiable
Region

Different sources
(i.e. e-Mouse Atlas
and Kaufman Atlas)Random

Region
3) Different image modalities
(i.e. images with the same morphology
because one image is the clip art
graphic version of the original image)

Identifiable
Region

Same source (i.e.
Kaufman Atlas)

Random
Region

The two studies used three types of image. For each image type, mappings were

carried out on two types of region: (1) identifiable region, and (2) random region. An

identifiable region is a region in an image which is easily recognisable and identified

by human experts, such as liver, lung, heart etc. A random region is an arbitrary
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region of interest in an image.

The first type is images with different morphologies caused by using images from

the same embryo model at different developmental stages. In this example, the

comparison between two midline images from two consecutive Theiler Stages of the

same embryo from the Kaufman Digital Atlas represents the problem of different

morphologies of an embryo model.

The second type is images with different morphologies caused by using images

from different atlases (i.e. midline images of different embryos at the same develop-

mental stage). In this example, the comparison between the e-Mouse Atlas and the

Kaufman Digital Atlas represents the problem of different embryo morphologies.

The third type is images with the same morphology because one image is the clip

art graphic version of the original image. In this example, the comparison between

an original image from the Kaufman Atlas with its clip art graphic version exposes

the problem of different image modalities.

The spatial description fiducial points-based method uses fiducial points as the

pre-requisite for any mapping of regions. Therefore, the first study was carried out

by selecting fiducial points in the images as described in Table 3.1.

3.6.1 Selection of Fiducial Points

The purpose of the study was to obtain three sets of fiducial points, where two sets

were selected by a biologist and one set was selected by a non-biologist. In the

evaluation, we demonstrate that the difference between selection by a biologist and

selection by a non-biologist has a significant impact on the results.

The first set of fiducial points selected by a biologist is based on the 14 fiducial

points identified in the literature review: Aortic Root, Tip of the Lung, Liver Dome,

Top of Kidney, Kidney Hilum, Left Head of Femur, Coccynx, L5 Vertebra, L12

Vertebra, C2 Vertebra, C7 Vertebra, Carina, Lowest Point of Sternum (Ribs), and

Lowest Point of Sternum (Tips). A biologist was asked to identify the locations of

these fiducial points in the images as described in Table 3.1. This study involved

three image pairs. Figure 3.11 depicts one example of these image pairs.

The second set of fiducial points is an extended version of the first set, where

it contains additional fiducial points of a biologist’s own choice. The third set of

fiducial points was selected by a non-biologist. Once the three sets of fiducial points

have been selected, the result regions according to the fiducial points selected by

both a biologist and a non-biologist can then be identified.
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3.6.2 Image Region Mappings

The second study was carried out to obtain image region mappings involving iden-

tifiable regions and random regions in the images as described in Table 3.1. The

study involved 12 image pairs. Figure 3.12 depicts one example of these image pairs

at the mapping of an identifiable region. A biologist was given the left image with

the blue area as the query region, then asked to find the matching region in the

right image that corresponds to the query region. Figure 3.13 depicts an example

of mapping a random region denoted as query region x.

For the evaluation, the exercise in this section was used to evaluate the accuracy

resulting from using existing mapping approaches and the newly proposed technique

in the mapping of image regions in three cases: (1) similar images but not identi-

cal in their morphologies (i.e. two midline images from two consecutive Theiler

Stages of the same embryo), (2) non-identical images that are not identical in their

morphologies (i.e. midline images of different embryos at the same developmental

stage), and (3) non-identical images with the same morphology (i.e. images of an

embryo from different imaging modalities).
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Figure 3.12: The mapping of an identifiable region, for example, the heart between
two midline images from two consecutive Theiler Stages of the same embryo. A
biologist was given the left image with the blue area as the query region. He was
then asked to draw the area in the right image that matches the query region. In
the above example, the blue area in the right image was drawn by a biologist as
the query result region corresponding to the query region in the left image. The
material for the exercise in this section is provided in Appendix C.

76



Chapter 3. Developing Spatial Description-Based Integration

Figure 3.13: The mapping of a random region denoted as query region x between
two midline images from two consecutive Theiler Stages of the same embryo. A
biologist was given the left image with the blue area as the query region. Then, he
was asked to draw the area in the right image that matches the query region. In
the above example, the blue area in the right image was drawn by a biologist as
the query result region corresponding to the query region x in the left image. The
material for the exercise in this section is provided in Appendix C.
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3.7 Summary

This chapter has presented three different approaches to spatial description to facil-

itate anatomical space integration. These approaches are: (1) Spatial Descriptions

Based on Spatial Relationships between Segmented Regions, (2) Spatial Descrip-

tions Based on Fiducial Points and a Set of Spatial Relations, and (3) Spatial De-

scriptions Based on Fiducial Points and a Set of Spatial Relations, Integrated with

Spatial Relations between Segmented Regions.

The research project began with an investigation of what information each cat-

egory of spatial relations provides. To address the problem of biomedical atlas in-

tegration, we have proposed SpaRTAD for conceptualising anatomical space based

on spatial relations between segmented regions using three categories of spatial re-

lations. These are topological, arrangement and directional relations. Anatomical

regions between two images are then mapped onto one another based on the satis-

faction of exact same spatial constraints. Nevertheless, different biomedical atlases

may have images with a different number of segmented regions causing one struc-

ture to correspond to parts of several structures, and vice versa. The mapping of

images in order to achieve biomedical atlas integration may require alignment rep-

resentations of anatomy differing in structure and domain coverage. Moreover, even

if the biomedical atlases have the same segmented regions in their images, they may

associate different anatomical names with the segmented regions causing an inter-

operability problem with finding corresponding anatomical regions between these

images.

We attempted to solve these problems by exploring the independent mapping

of spatial relationships between segmented regions. In addressing this problem, we

have proposed and implemented a spatial description approach that conceptualises

anatomical space based on fiducial points and a set of spatial relations. The approach

describes a query region using spatial relations with respect to fiducial points and

fiducial lines. Mapping is then performed based on the satisfaction of exact same

constraints in the target image. A novel property of the approach is that the method

is not voxel/pixel intensity dependent and mapping is performed independently of

spatial relationships between segmented regions of an image. However, there is no

restriction for this approach to be used on its own. Given available resource, the

approach of mapping using the Spatial Descriptions Based on Fiducial Points and

a Set of Spatial Relations can be integrated with the Spatial Descriptions Based on

Spatial Relationships between Segmented Regions.
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The approach of Spatial Descriptions Based on Fiducial Points and a Set of

Spatial Relations has been selected as the best solution to facilitate image region

mappings. Chapter 5 provides the evaluation of this approach in comparison with

existing image mapping techniques discussed in the literature review above. The

following chapter provides a calibration of the selected spatial description-based

solution in detail.
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The Calibration of Spatial

Description-Based Integration

4.1 Introduction

This chapter presents the calibration of the proposed spatial description-based so-

lution. Calibration results were evaluated based on the number of fiducial points,

number of fiducial lines, area of query region and selection of fiducial point location.

An evaluation of mapping using 14 well-defined fiducial points reviewed in the lit-

erature is also provided.

This chapter is organised as follows: Section 4.2 provides the experiments to analyse

the criteria for fiducial point parameters to improve the mapping process in terms

of accuracy. The problem of having a variety of experts’ definitions for a particular

fiducial point location is also discussed. An overview of well-defined fiducial points,

and an evaluation of mapping using these points, is presented in Section 4.3. Section

4.4 summarises the chapter.

4.2 Analysis of Spatial Descriptions Based on Fidu-

cial Points and a Set of Spatial Relations

The purpose of the experiments was to demonstrate how fiducial points and a set

of spatial relations may be used to describe locations. Figure 4.1 depicts the image

used for the experiments. The image is designed as the abstract representation of

a mouse embryo. The purpose of an abstract representation is to evaluate mapping
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performance of a conceptual model such that the parameters can be used to eval-

uate the actual model. This defines the initial model structural properties. First,

Figure 4.1: Abstract representation for evaluation of mapping using fiducial points.

the abstract representation is intended to provide more complex regions. Thus,

the abstract representation consists of multiple subregions with 102 spatial regions

annotated in the image. Second, the abstract representation is intended to have

structural nomenclature. Thus, the 102 spatial regions are structured into three

hierarchical levels. These hierarchical levels of structure represent the part-of rela-

tionship. Although this relation is not used further in this thesis, it is included in

the abstract representation so that the model is generic enough to represent mereo-

logical relations in the mouse embryo anatomical domain. The part-of relationship

is beyond the scope of the thesis. Future research work may use the part-of relation-

ship for experimentation to extend the scope of research. Figure 4.2 depicts the tree

structure corresponding to the nomenclature for the components of the abstract rep-

resentation. This nomenclature mimics the part-of hierarchy of the actual anatomy.

The evaluation in a later chapter uses real mouse embryo images, particularly for

the gene expression evaluation.

The abstract representation generated 97,104 query regions each of size 50x50

squared pixels, 68,154 query regions each of size 100x100 squared pixels, 44,204

query regions each of size 150x150 squared pixels, and 25,254 query regions each of
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Figure 4.2: Tree structure corresponding to the nomenclature for the components
in the abstract representation in Figure 4.1. This nomenclature mimics the part-of
hierarchy of the actual anatomy.
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size 200x200 squared pixels. For all query regions of size 50x50 squared pixels, the

first query region starts at the top-left corner of the image and is increased every

time by one pixel in order to generate the following query region and so on. Query

regions of other sizes are also generated by following this one-pixel step. The idea of

using query regions is to test the mappings of pixels in a query region of one image to

pixels in a region of another image based on fiducial points. Five experiments were

carried out in order to analyse the criteria of fiducial point parameters to increase

the accuracy of the mapping process.

4.2.1 Impact of Number of Fiducial Points on Result Accu-

racy

The experiment was conducted to evaluate the impact of the number of fiducial

points on average percentage of accuracy. First, the percentage of accuracy for a

query region is calculated as:

Accuracy (%) =
Area of the query region

Area of the query result region
× 100 (4.1)

Next, the average percentage of accuracy for a total number of query regions corre-

sponding to the query region area is calculated as:

Average Accuracy (%) =
Sum of query region accuracies

Number of query regions
(4.2)

The area of the query region and the area of the query result region are not critical,

but the overlap between the query region and the query result region are. The per-

formance has been compared starting from two fiducial points and up to 880 fiducial

points. Note that this method will in general involve selecting these fiducial points

by hand. Mappings using 880 fiducial points are not realistic, but experimentation

on such a large number of fiducial points has been carried out out of theoretical in-

terest. These fiducial points were tested on 97,104 query regions each of size 50x50

squared pixels, 68,154 query regions each of size 100x100 squared pixels, 44,204

query regions each of size 150x150 squared pixels, and 25,254 query regions each of

size 200x200 squared pixels.

Figure 4.3 depicts the average percentage of accuracy produced by a given num-

ber of fiducial points. The graph shows that the more fiducial points were used,

the higher the accuracy. For example, the average percentage of accuracy for query

regions of 50x50 squared pixels, 100x100 squared pixels, 150x150 squared pixels and
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Figure 4.3: Average percentage of accuracy produced by different numbers of fiducial
points. The more fiducial points are included the higher the average percentage of
accuracy. Moreover, the query region area versus the number of fiducial points
affects mapping accuracy.

200x200 squared pixels have significantly increased by 38%, 26%, 19% and 15%

respectively, when the number of fiducial points was increased from two to 880.

In addition, the graph shows that the query region area versus the number of fidu-

cial points affects mapping accuracy. For example, when a total of 80 fiducial points

was used, the average percentage of accuracy was increased by 16%, 6%, 4% when

the area of the query regions were increased from 50x50 to 100x100 squared pix-

els, from 100x100 to 150x150 squared pixels, and from 150x150 to 200x200 squared

pixels, respectively. In principle, it is not the query region area by itself, but the

relationship between the area of the query region and the area quotient that can be

captured via the fiducial points.

Consequently, it is the query region size versus the number of fiducial points

that matters. The more fiducial points are used, the more areas are captured, which

increases accuracy.

4.2.2 Impact of Number of Fiducial Lines on Result Accu-

racy

An experiment was carried out to evaluate the impact of the number of fiducial lines

on result accuracy. Figure 4.4 depicts the average percentage of accuracy involving

4 and 24 fiducial lines served by query region size. The graph shows that the average
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Figure 4.4: Average percentage of accuracy involving 4 and 24 fiducial lines served by
query region size. The average percentage of accuracy is higher when more fiducial
lines are used.

percentage of accuracy significantly increased when more fiducial lines were used.

For example, the average percentage of accuracy for a query region of size 200x200

squared pixels is 35% in the image with 4 fiducial lines and 91% in the image with

24 fiducial lines. In principle, it is relatively easy to get a large number of fiducial

lines. The number of fiducial lines increases quickly with the increase of the number

of fiducial points.

4.2.3 Impact of Fiducial Point Positioning on Result Accu-

racy

An experiment was carried out to evaluate the impact of fiducial points positioning

on result accuracy. The performance was compared in three different positioning

sets of 8 fiducial points, as shown in Figure 4.5. Figure 4.6 depicts the average

percentage of accuracy for the three positioning sets served by query region area.

The graph shows that different placements of the same number of fiducial points

produce different accuracies. For example, the average percentage of accuracy for

a query region of size 200x200 squared pixels are 91%, 68%, 31% in set A, B, C

respectively. As shown in Figure 4.5, different placement of the same number of

fiducial points can create a different number of defined areas. We define a ’defined

area’ as a segment bounded by fiducial lines (a fiducial line is made by creating

a straight line through a pair of fiducial points). Moreover, if the fiducial points
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Figure 4.5: Positioning for 8 fiducial points in (a) Set A (b) Set B (c) Set C
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Figure 4.6: Average percentage of accuracy in three different positioning sets of 8
fiducial points served by query region area. The same number of fiducial points
placed at different positions produces different average percentages of accuracy.
Mapping accuracy gets better when fiducial points are in even distribution.

are distributed evenly, more defined areas can be created. Consequently, the more

evenly distributed the fiducial points are, the more segments bounded by the fiducial

lines are created, and thus the more areas are captured, which increases the average

percentage of accuracy.

4.2.4 Impact on Result Accuracy of Fiducial Point Loca-

tions at the Boundary of the Embryo Part or a Loca-

tion Inside the Embryo Part

An experiment was conducted to evaluate the effectiveness of choosing the boundary

of the embryo part or a location inside the embryo part as the location for a fiducial

point. The performance is compared in three different positioning sets of 8 fiducial

points placed according to two types of locations as shown in Figure 4.7. The first

set has all fiducial points at both boundary of the embryo part and inside the embryo

part. The second set has all fiducial points located only inside the embryo part. The

third set has all fiducial points located only at the boundary of the embryo part.

Figure 4.8 depicts the average percentage of accuracy by selecting 8 fiducial

points at the boundary of the embryo part, inside the embryo part or combination

of both, served by query region area size. The graph shows that the selection of

fiducial points at the boundary of the embryo part or a location inside the embryo
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Figure 4.7: Selection of 8 fiducial points (a) at both boundary of the embryo part
and inside the embryo part (b) inside the embryo part (c) at the boundary of the
embryo part.
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Figure 4.8: Average percentage of accuracy by selecting 8 fiducial points at the
boundary of the embryo part, inside the embryo part or a combination of both,
produced by query region area. Mapping accuracy increases when more definable
areas are created through the fiducial points.
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part produces varying average percentages of accuracy. For example, the average

percentage of accuracy for a query region of size 200x200 squared pixels is 91% in a

positioning set where all fiducial points are located at the boundary of the embryo

part. This value is increased to 93% in a positioning set where all fiducial points

are located inside the embryo part. This value is further increased to 96% in a

positioning set where all fiducial points are located at both boundary and inside the

embryo part.

In principle, when different placements of the same number of fiducial points

create a different number of defined areas, the more defined areas created through

the fiducial points, the better the accuracy. To illustrate this, Figure 4.9 depicts

three images with three fiducial points: the first and the second image have all

three fiducial points located inside the image, creating seven segments of different

sizes. The third image has all three fiducial points at the boundary of the whole

Figure 4.9: Three images (assume that this image represents a whole mouse embryo
part) with the same number of fiducial points creating a different number of seg-
ments. The number of segments generated is influenced by fiducial point location.
Images 1 and 2 have the same number of segments, but different sizes. Fiducial
points located inside the embryo part created more segments than where fiducial
points were all placed at the boundary of the embryo part. Again, mapping is more
accurate when more segments are created through the fiducial points.

image creating only three segments. Assuming that this image represents a whole

mouse embryo part, this example shows that the number of defined areas generated

is influenced by the location of the fiducial points. Fiducial points located inside

the embryo part create more segments than fiducial points located at the boundary

of the embryo part. Consequently, when more segments are created, more areas

can be captured, increasing accuracy. This result suggests that the best accuracy

is achieved when the size of defined areas does not change too much. The following

experiment was carried out to verify this finding.
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Figure 4.10: The placement of 8 fiducial points creating 54 definable areas on an
(a) even distribution of different areas (b) strongly uneven distribution of different
areas.

4.2.5 Impact of Distribution of Area Sizes Made by Fiducial

Points on Result Accuracy

We believe that the previous four experiments affect the distribution of the size of

the areas made by the fiducial points. The following experiment was carried out to

evaluate the impact of the distribution of the size of the areas made by the fiducial

points on result accuracy. The performance is compared in two images with the

same number of defined areas, but varying in size as shown in Figure 4.10.

Figure 4.11 depicts the average percentage of accuracy based on these varying

distributions of areas produced by query region size. The graph shows that an even

distribution of the size of the defined areas made by the fiducial points produces

greater accuracy. For example, the average percentage of accuracy for the query

region of size 200x200 squared pixels for Figures 4.10(a) and 4.10(b) are 92% and

87%, respectively.

In principle, for two images with the same number of fiducial points (selected at

different positions) and with the same number of defined areas, but varying in sizes,

mapping is more accurate between images that have less variation in size.
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Figure 4.11: Average percentage of accuracy in two images with the same number
of defined areas but varying in size produced by query region size. Mapping is more
accurate where there is less variation in area size.

4.2.6 Results and Analysis

Fiducial points, fiducial lines, and their associated relations increase the average

percentage of accuracy based on the following four parameters: (1) number of fiducial

points, (2) number of fiducial lines, (3) area of the query region, and (4) selection

of fiducial point location.

The evaluation of the experimental results suggests that the number of fidu-

cial points has a significant influence on the average percentage of accuracy. The

more fiducial points are used, the higher the average percentage of accuracy. Con-

sequently, the more fiducial points are used, the more areas are captured, which

increases the average percentage of accuracy. Eventually, each individual pixel can

be captured by having a huge number of fiducial points; however, this is not a

realistic approach.

The evaluation of the experimental results also suggests that different numbers

of fiducial lines produce different average percentage of accuracy. These findings

suggest the best accuracy can be achieved when more fiducial lines are used. Even-

tually, the more fiducial lines are included, the more definable areas (segments) are

created to capture pixels, increasing the average percentage of accuracy.

Furthermore, the evaluation of the experimental results suggests that the same

number of fiducial points located at different positions produces different average

percentages of accuracy. A different positioning set for the same number of fiducial
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points can create a different number of segments. The more segments are created

through the fiducial points, the more pixels are captured, which increases the average

percentage of accuracy. Hence, choosing a location for a fiducial point is a critical

aspect of maximising accuracy.

More specifically, different placements of the same number of fiducial points can

create either a different number of segments, or an exact same number of segments.

When the same number of fiducial points located at different positions have created

a different number of segments, the more segments created the greater the accuracy.

Consequently, choosing a location for a fiducial point is a critical factor in improving

accuracy, as it affects the number of segments created.

Evaluation of the experimental results also suggests that when the same number

of fiducial points located at different positions creates an exact same number of

defined areas (segments), the more even the distribution of the size of the areas,

the more accurate the mappings. Figure 4.10 illustrates two images with a total of

8 fiducial points. The placement for this set of eight fiducial points is different in

both images, but both placements create a total of 54 segments. Although these two

images have an exact same number of segments, these segments vary in their sizes.

We suggest that the more even the distribution of the size of these areas (segments),

the more accurate the mappings. This may be tested through the standard deviation.

Standard deviation is useful for measuring the distribution of the size of these

areas. Standard deviation is applied to the size of the defined areas for each image.

The more even the distribution of the size of these areas, the smaller the standard

deviation. Distribution of areas with a smaller standard deviation usually shows

a comparatively fewer number of large areas/smaller areas. Therefore, the more

even the distribution of the size of the areas created through the fiducial points, the

smaller standard deviation, thus producing higher accuracy.

Table 4.1 depicts the standard deviation of the areas defined by the placement of 8

fiducial points in Figures 4.10(a) and 4.10(b). Although Figures 4.10(a) and 4.10(b)

both contain a total of 54 definable areas, the standard deviations for each image

are significantly different. The standard deviations of the size of the defined areas

for Figures 4.10(a) and 4.10(b) are 2381.0 and 3421.6 respectively. This result show

that the standard deviation for Figure 4.10(a) is smaller than the standard deviation

for Figure 4.10(b). Based on this analysis, Figure 4.10(a) contains definable areas

where the sizes of these areas are more evenly distributed compared to the areas for

Figure 4.10(b).

Therefore, in the measurement of even distribution of the size of the defined

areas, standard deviation is important. The lesser the standard deviation, the lesser
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Table 4.1: Standard deviations of 54 areas defined through 8 fiducial points as
arranged in Figures 4.10(a) and 4.10(b)
Image The Size of the Defined Areas Mean Standard

Deviation

Fig. 4.10(a) 7488.0, 2288.0, 1352.0, 1820.0, 2756.0, 2808.0,
2880.0, 1810.0, 2837.5, 2688.0, 2174.0, 2388.0,
635.0, 702.0, 1093.0,1050.0,1430.0, 1609.5, 1600.5,
850.0, 875.0, 532.5, 1050.0, 2022.0, 2283.0, 1461.5,
1195.0, 583.0, 508.0, 54.0, 50.5, 162.0, 216.0,
607.0, 702.0, 964.5, 2592.0, 816.0, 1296.0, 2160.0,
6816.0, 510.0, 1005.0, 566.0, 3673.5, 2798.5,
1925.5, 2705.0, 2485.0, 11128.0, 7135.5, 10272.0,
5564.0,5136.0

2298.3 2381.0

Fig. 4.10(b) 6520.5, 7486.5, 3059.0, 5071.5, 1690.5, 2012.5,
17227.0, 3413.5, 526.5, 407.0, 1103.5, 2070.5,
1257.5, 3447.0, 1680.5, 1904.5, 423.0, 510.0,
6120.0, 15408.0, 1868.5, 1854.0,6480.0, 2808.0,
4536.0, 1224.0, 1944.0, 7704.0, 602.5, 1291.5,
724.5, 475.0, 1000.5, 1407.0, 1256.0, 518.0, 400.0,
1468.5, 834.5, 1119.0, 1058.0, 40.0, 221.5, 91.0,
231.5, 264.0, 161.5, 50.0, 15.0, 321.5, 498.5,143.0,
78.0, 81.0

2298.3 3421.6

the number of large areas/smaller areas. Therefore, the more even the distribution

of the size of these areas, the more accurate the mappings. To conclude, given the

same number of defined areas, the best results occur when these areas are of about

the same size.

The area distribution, however, matters less when the query area is large. Con-

sider the average percentage of accuracy for the query region of size 200x200 squared

pixels in Figure 4.11, the average percentage of accuracy has a slight increase of only

5% when the size of the defined areas changed from strongly uneven to even distri-

bution of the size of the areas. Figure 4.12 depicts the model parameter image and

a query region of size 200x200 squared pixels in their actual sizes. The distribution

of the size of the areas matters less when the area of the query region is large. This

may be due to the mapping accuracy that depends on the relationship between the

query region size and the size of the areas that are defined by the fiducial points.

As shown in Figure 4.13, smaller query regions can easily be captured within the

defined areas created by the fiducial points compared to larger query regions.

Overall, these evaluations have shown that the spatial description fiducial points-

based method maximises accuracy depending on the variation of number and size of

the areas defined by the approach. With an appropriate number of fiducial points

used and better selection of fiducial point location, mappings can be improved in
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terms of accuracy. Specifically, the more evenly distributed the size of the definable

areas created through the fiducial points, the more accurate the mappings. For

these reasons, we have confirmed that the spatial description fiducial points-based

method is useful to describe locations in the anatomical domain.

4.2.7 Discussion

This section has addressed the problem of biomedical atlas integration by linking the

images of these atlases using the spatial description fiducial points-based method.

This approach conceptualises anatomical regions independently of spatial relation-

ships between segmented regions. Mapping is carried out based on spatial relations

between the query region and the fiducial points or lines.

The evaluation of the experimental results suggests that our approach improves

mapping accuracy with the appropriate number of fiducial points used and with

better selection of fiducial point location. Specifically, the more evenly distributed

the size of the definable areas created through the fiducial points, the more accurate

the mappings.

Nevertheless, locating fiducial points on images is a challenging task even for

experts. Depending on experience and the variance among experts’ definitions, lo-

cations may be slightly different [102; 103]. This has motivated the development

of several projects aiming for automatic landmarking. The purpose of automatic

landmarking is to put fiducial points on surfaces and match fiducial points on dif-

ferent surfaces to each other. Project focuses range from detection of landmark in

organs [41], cephalometry [104], skeletal [105; 106; 107] and brain [108; 109] images.

Our proposed approach here, however, is not meant to involve a large number of

fiducial points such that the estimation may require image processing. Getting high

accuracy by using a large number of fiducial points is not the goal. Instead, we

encourage selection of fiducial points that may be defined easily, without the need

for image processing. This work will be demonstrated in the following section.

4.3 Overview of Well-defined Fiducial Points

The following experiments were undertaken to test 14 well-defined fiducial points

surveyed in the literature (Chapter 2). These well-defined fiducial points can be

selected manually in a canonical image, based on their definitions. These fiducial

points are available for selection in the sagittal view of the Theiler Stage 23 mouse

embryo image as shown in Figure 4.14. They are Aortic Root, Tip of the Lung, Liver
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Dome, Top of Kidney, Kidney Hilum, Left Head of Femur, Coccynx, L5 Vertebra,

L12 Vertebra, C2 Vertebra, C7 Vertebra, Carina, Lowest Point of Sternum (Ribs),

and Lowest Point of Sternum (Tips). Figure 4.14 provides the illustration for these

fiducial points.

Figure 4.14: Sagittal view of TS23 mouse embryo image with 14 well-defined fiducial
points identified during literature review (Chapter 2)

Aortic root is described by Seifert et al. [41] as the ”junction between the left

ventricle and the aortic arch”. The tip of the lung is the end of the pointed lung

structure. The liver dome is described by Seifert et al. [41] as ”the maximal point

directing into the right lung”. The kidney hillum has been described by Seifert et
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al. [41] as the ”recessed central fissure” in a kidney. The top of the kidney is the

top-most part of the kidney.

The head of the femur is described by Hanumantharaju and Shivanand [110]

as the ”globular and forms rather more than a hemisphere, is directed upward,

medialward, and a little forward, the greater part of its convexity being above and

in front”.

The coccynx is described as ”the tailbone, which is the final segment of the ape

vertebral column” [111].

L5 is described by Bhandutia et al.[112] as the ”fifth lumbar vertebra of the

spine”. L12 is the 12th level of thoracic vertebra of the spine. The C2 vertebra is the

second cervical vertebra of the spine. C7 vertebra is the seventh cervical vertebra

of the spine. The carina of the trachea is described as ”the ridge separating the

openings of the right and left main bronchi at their junction with the trachea” [113].

The sternum is described by Rosdahl and Kowalski [114] as ”a flat, sword-shaped

bone in the middle of the chest”. The top-most part and bottom-most part of the

sternum are also denoted as fiducial points.

4.3.1 Analysis of Mapping Using Well-defined Fiducial Points

The purpose of the following experiments was to analyse the percentage of accuracy

produced by the spatial description fiducial points-based method using 14 well-

defined fiducial points identified during literature review. The experiments were

conducted on the embryo image depicted in Figure 4.14 on the following anatomical

regions: liver, midgut, lung, thalamus, pancreas, adrenal gland cortex, metanephros,

and femur. These eight regions were chosen as an anatomical location test set

to demonstrate examples of the resulting accuracy. The percentage of accuracy

for every anatomical location is calculated using Equation 4.1. We measured the

percentage of accuracy resulting from the combination of 7, 9 and 11 well-defined

fiducial points. Each combination of fiducial points comes with its test sets in order

to evaluate which combination of fiducial points can produce the highest accuracy

for the eight anatomical locations tested for experimentation.

This series of experiments involved mapping from one image to the exact same

image. The later chapter deals with mapping between images that are morpho-

logically different. The actual area for every anatomical region involved in these

experiments is computed using the woolz image processing system. The WlzArea

function of woolz library was used to calculate the area for every input anatomical

region in the 2D woolz object image format.
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The effectiveness of mapping using 7 well-defined fiducial points was evaluated using

the following 4 test sets:

a) Test Set 1: Combination of 7 fiducial points which include Liver Dome, C2 Ver-

tebra, L5 Vertebra, Tip of the Lung, Left Head of Femur, Lowest Point of Sternum

(Ribs), and Coccynx

b) Test Set 2: Combination of 7 fiducial points which include Lowest Point of Ster-

num (Ribs), Tip of the Lung, L5 Vertebra, L12 Vertebra, C7 Vertebra, Coccynx,

and Left Head of Femur

c) Test Set 3: Combination of 7 fiducial points which include Kidney Hilum, Carina,

Left Head of Femur, Liver Dome, L5 Vertebra, L12 Vertebra, and Lowest Point of

Sternum (Ribs)

d) Test Set 4: Combination of 7 fiducial points which include Tip of the Lung, Kid-

ney Hilum, Aortic Root, Left Head of Femur, C2 Vertebra, C7 Vertebra, and Lowest

Point of Sternum (Tips)

The effectiveness of mapping using 9 well-defined fiducial points was evaluated using

the following 4 test sets:

a) Test Set 1: Combination of 9 fiducial points which include Liver Dome, Lowest

Point of Sternum (Tips), Lowest Point of Sternum (Ribs), C2 Vertebra, Carina,

L12 Vertebra, L5 Vertebra, Top of Kidney, and Left Head of Femur

b) Test Set 2: Combination of 9 fiducial points which include Aortic Root, Lowest

Point of Sternum (Tips), Lowest Point of Sternum (Ribs), C7 Vertebra, Tip of the

Lung, Kidney Hilum, L5 Vertebra, Left Head of Femur, and Coccynx

c) Test Set 3: Combination of 9 fiducial points which include C2 Vertebra, Carina,

Tip of the Lung, Liver Dome, Kidney Hilum, Lowest Point of Sternum (Ribs), L5

Vertebra, Left Head of Femur, and Coccynx

d) Test Set 4: Combination of 9 fiducial points which include Aortic Root, Lowest

Point of Sternum (Tips), Carina, Liver Dome, Top of Kidney, L5 Vertebra, L12

Vertebra, Left Head of Femur, and Coccynx

100



Chapter 4. The Calibration of Spatial Description-Based Integration

The effectiveness of mapping using 11 well-defined fiducial points was evaluated us-

ing the following 4 test sets:

a) Test Set 1: Combination of 11 fiducial points which include Tip of the Lung, Liver

Dome, Top of Kidney, Left Head of Femur, Coccynx, L5 Vertebra, L12 Vertebra,

C2 Vertebra, C7 Vertebra, Carina, and Lowest Point of Sternum (Tips)

b) Test Set 2: Combination of 11 fiducial points which include Aortic Root, Tip of

the Lung, Liver Dome, Left Head of Femur, Coccynx, L5 Vertebra, L12 Vertebra,

C2 Vertebra, C7 Vertebra, Carina, and Lowest Point of Sternum (Ribs)

c) Test Set 3: Combination of 11 fiducial points which include Aortic Root, Liver

Dome, Kidney Hilum, Left Head of Femur, Coccynx, L5 Vertebra, L12 Vertebra, C2

Vertebra, C7 Vertebra, Carina, and Lowest Point of Sternum (Ribs)

d) Test Set 4: Combination of 11 fiducial points which include Aortic Root, Tip of

the Lung, Kidney Hilum, Top of Kidney, Left Head of Femur, Coccynx, L5 Vertebra,

C2 Vertebra, Carina, Lowest Point of Sternum (Tips), and Lowest Point of Sternum

(Ribs)

The accuracy resulting from using the spatial description fiducial points-based method

based on the combination of 7, 9 and 11 well-defined fiducial points is shown in Fig-

ures 4.15, 4.16 and 4.17 respectively.
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Figure 4.15: The percentage of accuracy served by the combination of 7 fiducial
points. None of these combinations yielded the highest accuracy for all anatomical
locations.
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Figure 4.16: The percentage of accuracy served by the combination of 9 fiducial
points. None of these combinations yielded the highest accuracy for all anatomical
locations.
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Figure 4.17: The percentage of accuracy served by the combination of 11 fiducial
points. None of these combinations yielded the highest accuracy for all anatomical
locations.

4.3.2 Discussion

The results of this study suggest that given the choice of a list of fiducial points,

selecting a certain number of fiducial points and having different combinations of

these, resulted in no one combination that gives the highest percentage of accuracy

for all anatomical locations. The only method to improve the mapping accuracy

is by increasing the number of fiducial points. Figure 4.18 shows the percentage

of accuracy served by the number of fiducial points for all eight anatomical loca-

tions tested during this evaluation. The percentage of accuracy for each anatomical

location plotted in this graph corresponds to the highest percentage of accuracy

produced by the combination of 7, 9, 11 and 14 number of fiducial points. The

graph shows that the percentage of accuracy increases with the increase number of

fiducial points.

4.4 Summary

This chapter has presented the calibration results of the spatial description fiducial

points-based method. This method conceptualises anatomical regions independently

of spatial relationships between segmented regions. Mapping is performed based

on the satisfaction of exactly the same constraints between the query region and

the fiducial points, and also between the query region and the fiducial lines. The
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Figure 4.18: The percentage of accuracy served by the number of fiducial points.
The more fiducial points are included the higher the percentage of accuracy.

evaluation of the experimental results suggests that the approach improves mapping

accuracy with the appropriate number of fiducial points used and better selection

of fiducial point location. Specifically, the more evenly distributed the size of the

definable areas, which are created through the fiducial points, the more accurate

the mappings are. The evaluation of the experimental results also suggests that

given a list of fiducial points, using a certain number of fiducial points and selecting

different combinations of these, there is no single combination that gives the highest

accuracy for all anatomical locations. The only method to improve the accuracy is

by increasing the number of fiducial points. We have demonstrated this using 14

well-defined fiducial points, as identified during the literature review.
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Chapter 5

The Evaluation of Spatial

Description-Based Integration

5.1 Introduction

This chapter presents a performance evaluation of the spatial description fiducial

points-based method. Three sets of experiments were conducted.

The first set of experiments was carried out to evaluate problems associated with

image region mappings. Since the gene expression data in biomedical atlases are

queried by painting or drawing arbitrary regions in the canonical images, this thesis

focuses on image region mappings. Therefore, the case of mapping to find a match-

ing image was not further explored as it was not a part of the dissertation.

The second set of experiments was carried out to measure accuracy when using

one ontology-based method and one method in image processing. The results were

compared to the spatial description fiducial points-based method. This set of ex-

periments was carried out to evaluate image region mappings in identical images.

The third set of experiments used mappings done by an expert biologist. The results

were compared to one ontology-based method, one method in image processing, and

the spatial description fiducial points-based method. This experiment was carried

out to evaluate image region mappings in non-identical images. Finally, an eval-

uation of gene expression data was carried out to measure the spatial similarity

between two mapped spatial regions.
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This chapter is organised as follows: Section 5.2 presents the set of experiments

to illustrate the categorisation of problems associated with image region mappings.

Section 5.3 presents the set of experiments to measure accuracy when using one

ontology-based method and one method in image processing and compares the re-

sults with the fiducial points-based method. Section 5.4 presents mappings done

by an expert biologist, the results being compared to the image processing algo-

rithm, the ontology-based method, and the spatial description fiducial points-based

method. Section 5.5 presents an evaluation that measures the spatial similarity

between two mapped spatial regions. Section 5.6 summarises the chapter.

5.2 Demonstration of Problems Associated with

Image Region Mappings

There are three types of image which are relevant within the context of this study:

(1) similar images which are not identical in their morphologies (e.g. image slices of

an embryo, midline images from two consecutive Theiler Stages of the same embryo

etc), (2) non-identical images which are not identical in their morphologies (e.g.

midline images of different embryos at the same developmental stage etc), and (3)

non-identical images with the same morphology (e.g. images of an embryo from

different imaging modalities etc). The images used for this evaluation were chosen

as good representatives to represent the natural variation of animals and for the

approximation of dealing with different morphologies. In addition, these images are

significant in the many different requirements of a mapping system, which would

support the integration of biomedical atlases.

For this evaluation, the image processing algorithm used was the ASIFT algo-

rithm. The reason for using this algorithm has been explained in the literature

review. In the case of mapping image regions, the experiments started by cropping

a query region from the original image. Next, the query region and the full image

were uploaded into the ASIFT system to generate the mapping result.

The experiment which used the ontology-based method was carried out using

the OBO and EMAP ontologies. These two ontologies have been chosen because

both are relevant in the context of the images used within this evaluation. The

experiment started by painting the image according to its anatomical regions. Each

painted region is linked to the corresponding concept in the ontology. The two

images I1 and I2 of Figures 5.1, 5.2 and 5.3 used the OBO and EMAP ontologies,

respectively. Both OBO and EMAP define the structure of the liver as:
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”liver is part of visceral organ, visceral organ is part of organ system, organ system

is part of embryo, embryo is part of mouse”

Figure 5.1 depicts the mapping of region liver resulting from using the ontology-

based method on two images similar but not identical in their morphologies.

Figure 5.1: Image regions mapped between similar images but not identical in their
morphologies. The ontology-based method has mapped the liver in (a) image I1 to
the (b) result region in image I2. In contrast, the image processing algorithm failed
in this mapping.
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Figure 5.2 depicts the mapping of the liver region using the ontology-based method

on non-identical images that are not identical in their morphologies.

Figure 5.2: Image regions mapped between non-identical images that are not iden-
tical in their morphologies. The ontology-based method has mapped the liver in
(a) image I1 to the (b) result region in image I2. In contrast, the image processing
algorithm has failed in this mapping.

Figure 5.3 depicts the mapping of the liver region using the ontology-based method

on non-identical images with same morphology. The image in Figure 5.3(a) is the

clip art graphic version of the image in Figure 5.3(b) in which the visual content of

both images is only similar at the higher scene level, but both images are entirely

different at the pixel-level.
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Figure 5.3: Mappings of image regions between non-identical images with the same
morphology. The ontology-based method has mapped the liver in (a) image I1 to
the (b) result region in image I2. In contrast, the image processing algorithm failed
in this mapping.

Although two different ontologies were used, the mapping of region liver in Figures

5.1, 5.2 and 5.3 were successful because the liver was segmented in both images, and

both ontologies have exactly the same definition for the liver. This also applies when

the mappings use two same ontologies. In contrast, the image processing algorithm

has failed in these three cases of mappings because the two regions are different in

their morphologies. In principle, the ontology-based method may provide a mapping

with good precision if mapping is between same regions. This region is segmented

in both images and is defined in the ontologies. Nevertheless, the ontology-based

method may not be able to provide a mapping with good precision if the mapping is

between a region that is segmented in one image but not in the other. For example,

assume that the pituitary is segmented in image I1, but not in image I2 : Image I1

used the OBO ontology and image I2 used the EMAP ontology. OBO describes the

pituitary as:

”pituitary is part of stomatodaeum, stomatodaeum is part of alimentary system, al-

imentary system is part of visceral organ, visceral organ is part of organ system,

organ system is part of embryo, embryo is part of mouse”

This term is linked to region pituitary, which is segmented in image I1. EMAP

describes the pituitary as:
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”pituitary is part of gland, gland is part of diencephalon, diencephalon is part of

forebrain, forebrain is part of brain, brain is part of central nervous system, central

nervous system is part of nervous system, nervous system is part of organ system,

organ system is part of embryo, embryo is part of mouse”

Image I2 does not have the segmentation of region pituitary ; therefore, this term

is not linked to any region in the image. Since the ontology-based method was

carried out by identifying structure correspondences between the two ontologies, the

consequence is that no result region was found because the term pituitary in EMAP

is not linked to any region in image I2. This also applies when the mappings use

two same ontologies. The ontology-based method was unable to provide a mapping

because one term is linked to a region in one image but not in the other.

Semantic interoperability problems arise when images have different image region

annotations. Ontology matching is a process to determine the correspondences

between heterogeneous annotated data. James et al. [115] describe a similarity

measure for two concepts A and B, where A is a term defined in ontology O1 and

B is a term defined in ontology O2. Both A and B can be equated with their

corresponding sets. The similarity between A and B can be determined based on

the intersection of these sets. Assuming that A represents the pituitary in OBO and

B represents the pituitary in EMAP, the sets for these two concepts are as follows:

pituitaryOBO = {part of(pituitary, stomatodaeum),

part of(stomatodaeum, alimentary system),

part of(alimentary system, visceral organ),

part of (visceral organ, organ system),

part of(organ system, embryo), part of(embryo, mouse)}

pituitaryEMAP = {part of(pituitary,gland), part of (gland, diencephalon),

part of(diencephalon, forebrain), part of (forebrain, brain),

part of(brain, central nervous system),

part of(central nervous system, nervous system),

part of(nervous system, organ system),

part of(organ system, embryo), part of(embryo, mouse)}

The intersection between these two sets is:

pituitaryOBO

⋂
pituitaryEMAP =

{part of(organ system, embryo), part of (embryo, mouse)}
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Figure 5.4: The mapping of image regions between two slices of an embryo. The
ontology-based method has mapped the pituitary in (a) image I1 to the (b) result
region in image I2. Region pituitary is annotated in image I1 but not in image
I2. The two ontologies provide different definitions for the pituitary. Defining the
similarities between these two definitions using an ontology matching approach based
on the set intersection have resulted in a low mapping precision.

Figure 5.4 depicts the mapping resulting from using the ontology-based method on

two image slices of an embryo, in which the first is the midline and the second is the

sliced image at 0.800mm distance from the midline. This kind of ontology matching

has mapped the pituitary in image I1 to the whole embryo region in image I2 to

consider both the organ system and the embryo as the result region. Mapping was

successful; however, the results of this approach are low in terms of spatial precision.

5.3 Analysis of Image Region Mappings in Iden-

tical Images

The purpose of the following experiments was to analyse the accuracy produced by

one ontology-based method and one method in image processing and to compare the

results with the spatial description fiducial points-based method. The experiment

was conducted on an embryo image as depicted in Figure 4.14 in Chapter 4, on the

following anatomical regions: liver, midgut, lung, thalamus, pancreas, adrenal gland

cortex, metanephros, and femur. These eight regions were chosen for this anatomical

location test set in order to demonstrate examples of the resulting accuracy when

mappings between these structures were performed using the three approaches. This
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experiment was carried out at the mapping of regions between two identical images

considering that this is the kind of case where all techniques are able to cope with the

mapping. The evaluation in a later section deals with the mapping of image regions

between non-identical images. The percentage of accuracy for every anatomical

location was calculated using Equation 4.1.

5.3.1 Ontology-Based Method

An ontology-based method consists of a collection of anatomical domains and rela-

tions between those domains. We used the 49 segmented spatial regions (as depicted

in Figure 2.15 in Chapter 2) as a collection of anatomical domains. The relations

between these anatomical domains were based on spatial relationships following

SpaRTAD. We used these two resources for the ontology-based method considering

that the 49 anatomical domains of the embryo image had been painted according

to the ontology. Moreover, relations between these anatomical domains have been

determined according to three categories of spatial relations; topological, arrange-

ment and directional relations. This simplification allowed us to concentrate in

this experiment on evaluating the accuracy resulting from using the fiducial points-

based method and comparing the results with one ontology-based method and one

method in image processing. Moreover, it is a time-consuming task to implement an

ontology-based method developed by other researchers considering that the anatom-

ical domain in the mouse embryo Theiler Stage 23 image had to be painted accord-

ing to the ontology and there were differences in terms of the anatomical names

and domain coverage causing difficulty in the implementation. Table 5.1 depicts

the results in accuracy and detection time when mapping used the ontology-based

method. Visual results of mapping using the ontology-based method are shown in

Table 5.1: The resulting accuracy and the detection time when mapping used the
ontology-based method.

Anatomical Location Actual Area
(Woolz)

Area (Ontology-based
Method)

Detection
Time

Accuracy
(%)

Liver 46920 76302 0.375s 61.49

Midgut 9216 12768 0.375s 72.18

Lung 9729 18576 0.375s 52.37

Thalamus 12206 25092 0.375s 48.64

Pancreas 1275 12325 0.375s 10.34

Adrenal Gland Cortex 1320 3132 0.375s 42.15

Metanephros 5381 6432 0.375s 83.66

Femur 1068 2268 0.375s 47.09
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Figures 5.5 to 5.12. Figure 5.5 is used to demonstrate how the result region was

generated. Figure 5.5 depicts five anatomical regions in their bounding boxes: liver,

pelvic girdle, vibrissa, pulmonary artery and lung. These bounding boxes were used

to determine spatial relations between these anatomical regions. For example, the

Figure 5.5: Anatomical location of liver (a) in its actual location, and (b) the cor-
responding match location resulting from the ontology-based method.

simplified description for liver in Figure 5.5(a) can be described as follows:

’liver is northOf pelvic girdle, liver is eastOf vibrissa, liver is southOf pulmonary

artery, liver is westOf lung ’

This description mapped liver in Figure 5.5(a) to the result region as shown in Figure

5.5(b).
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Figure 5.6: Anatomical location of midgut (a) in its actual location, and (b) the
corresponding match location resulting from the ontology-based method.

Figure 5.7: Anatomical location of lung (a) in its actual location, and (b) the cor-
responding match location resulting from the ontology-based method.
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Figure 5.8: Anatomical location of thalamus (a) in its actual location, and (b) the
corresponding match location resulting from the ontology-based method.

Figure 5.9: Anatomical location of pancreas (a) in its actual location, and (b) the
corresponding match location resulting from the ontology-based method.
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Figure 5.10: Anatomical location of adrenal gland cortex (a) in its actual location,
and (b) the corresponding match location resulting from the ontology-based method.

Figure 5.11: Anatomical location of metanephros (a) in its actual location, and (b)
the corresponding match location resulting from the ontology-based method.
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Figure 5.12: Anatomical location of femur (a) in its actual location, and (b) the
corresponding match location resulting from the ontology-based method.

5.3.2 Image Processing Algorithm

The image processing-based mapping used the ASIFT [61] image processing algo-

rithm. Conducting the experiment using the ASIFT is described above in Section

5.2. Table 5.2 depicts the accuracy and the detection time when mapping used the

image processing algorithm. Visual results of mapping produced by the image pro-

Table 5.2: The resulting accuracy and the detection time when mapping used the
image processing algorithm.

Anatomical Location Actual Area
(Woolz)

Area (Image Process-
ing Algorithm)

Detection
Time

Accuracy
(%)

Liver 46920 56967 36s 82.36

Midgut 9216 10876 52s 63.55

Lung 9729 16187 65s 60.10

Thalamus 12206 19240 42s 63.44

Pancreas 1275 3612 32s 35.30

Adrenal Gland Cortex 1320 4835 32s 27.30

Metanephros 5381 12345 30s 43.59

Femur 1068 1527 30s 69.94

cessing algorithm are shown in Figures 5.13 to 5.20. The mapping of an anatomical

region query image onto the full embryo image was based on a set of point corre-

spondences between the two compared images. The lines going from one image to

the other illustrate the mapping of points between these images.
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Figure 5.13: Mapping of anatomical location of liver resulting from the ASIFT image
processing algorithm.

Figure 5.14: Mapping of anatomical location of midgut resulting from the ASIFT
image processing algorithm.
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Figure 5.15: Mapping of anatomical location of lung resulting from the ASIFT image
processing algorithm.

Figure 5.16: Mapping of anatomical location of thalamus resulting from the ASIFT
image processing algorithm.
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Figure 5.17: Mapping of anatomical location of pancreas resulting from the ASIFT
image processing algorithm.

Figure 5.18: Mapping of anatomical location of adrenal gland cortex resulting from
the ASIFT image processing algorithm.
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Figure 5.19: Mapping of anatomical location of metanephros resulting from the
ASIFT image processing algorithm.

Figure 5.20: Mapping of anatomical location of femur resulting from the ASIFT
image processing algorithm.
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5.3.3 Spatial Description Fiducial Points-Based Method

The purpose of the experiment was to demonstrate that there is a small number

of fiducial points where the combination can provide mapping accuracy as effective

as both the ontology-based method and the image processing algorithm. More

importantly, it is possible to select a set of fiducial points with such performance

without depending on image processing. Table 5.3 depicts accuracy and detection

time results when mapping is carried out used the spatial description fiducial points-

based method, using all 14 well-defined fiducial points.

Table 5.3: Accuracy and detection time results when mapping using the spatial
description fiducial points-based method.

Anatomical Location Actual Area
(Woolz)

Area (SD Fiducial
Points-Based Method)

Detection
Time

Accuracy
(%)

Liver 46920 95575 0.375s 49.09

Midgut 9216 11874 0.375s 77.61

Lung 9729 14399 0.375s 67.57

Thalamus 12206 35889 0.375s 34.01

Pancreas 1275 2675 0.375s 47.66

Adrenal Gland Cortex 1320 1577 0.375s 83.70

Metanephros 5381 9989 0.375s 53.87

Femur 1068 4095 0.375s 26.08

These results were compared to the accuracy of the ontology and image processing-

based mappings as depicted in Tables 5.1 and 5.2 respectively. Figure 5.21 depicts

the accuracy resulting from using these three techniques. Based on the eight anatom-

ical locations that were tested, when comparing the accuracy produced by the image

processing algorithm and the fiducial points-based methods, five out of eight anatom-

ical locations with the highest percentage of accuracy resulted from using the spatial

description fiducial points-based method. The image processing algorithm managed

to produce only three anatomical locations with the highest accuracy. These results

suggest that the spatial description based-solution is sufficient to provide mapping

accuracy as good as the image processing algorithm. When comparing the accuracy

of the fiducial points-based method with the ontology-based method, four out of

eight anatomical locations with the highest percentage of accuracy resulted from

using the ontology-based method. Likewise, the fiducial points-based method also

managed to produce four anatomical locations with the highest accuracy. These

results suggest that the spatial description based-solution is sufficient to provide

mapping accuracy as effective as the ontology-based method.
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Figure 5.21: Percentage accuracy for the eight anatomical locations produced by
the image processing algorithm, the ontology-based method, and the fiducial points-
based method involving all 14 well-defined fiducial points. The results suggest that
the spatial description fiducial points-based method can provide mapping accuracy
as good as both the image processing algorithm and the ontology-based method.
IP denotes the image processing algorithm, Ontology denotes the ontology-based
method and SD denotes the spatial description fiducial points-based method.
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5.3.4 Results and Analysis

The evaluation of the experimental results suggests that there exists, at least in the

cases that have been tested, a small number of fiducial points where the combination

can provide performance as effective as both the ontology-based method and the

image processing algorithm. One example of fiducial points combination with such

performance are Aortic Root, Tip of the Lung, Liver Dome, Top of Kidney, Kidney

Hilum, Left Head of Femur, Coccynx, L5 Vertebra, L12 Vertebra, C2 Vertebra, C7

Vertebra, Carina, Lowest Point of Sternum (Ribs), and Lowest Point of Sternum

(Tips). This finding is, however, based on the set of eight anatomical locations and

the set of well-defined fiducial points tested within this series of experimentation.

In terms of detection speed, the spatial description-based solution is faster than

the image processing algorithm. Detection speed is related to the computational

complexity of the mapping algorithm. A spatial description mapping algorithm ex-

amines the isomorphism between the compared spatial description. An isomorphism

[116] is a one-to-one correspondence between the elements of the two compared spa-

tial descriptions. These elements correspond to textual description representing

the image via spatial relations. On the other hand, the image processing mapping

algorithm examines pixels in the corresponding images. Images are large in the

number of pixels. Computational complexity for an algorithm that examines image

pixels is time consuming, as more pixels are involved [60; 84]. Searching for the

correspondences anatomical regions, between canonical images, based on a textual

description, is faster than searching for the corresponding pixels between images.

This is because the number of textual description is shorter compared to the num-

ber of pixels in an image. Furthermore, spatial description is structured according to

object/relationship pairs. Hence, mappings based on spatial descriptions are faster

than those based on the image processing algorithm. On the other hand, the spatial

description is equally as fast as the ontology and both methods are not really prob-

lematic from the speed point of view. Detection speeds for these two methods are

equally fast because both approaches do not search for image pixels, but are instead

searched by a textual description.

5.4 Analysis of Image Region Mappings in Non-

Identical Images

This section presents mappings by an expert biologist, with the results comparing

the following: (1) the image processing algorithm, (2) the ontology-based method,
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and (3) the spatial description fiducial points-based method. The mapping results

produced by an expert biologist were used as the ’gold standard’. The purpose of the

experiment was to evaluate image region mappings in the following three cases: (1)

non-identical images that are not identical in their morphologies, (2) similar images

but not identical in their morphologies and (3) non-identical images with the same

morphology.

The experiment was conducted on the following anatomical regions: liver, heart,

lung, and three arbitrary query regions denote as query regions x, y and z. These

six regions were chosen as an anatomical location test set to assess the accuracy re-

sulting from using the three approaches against the ’gold standard’. The percentage

accuracy for every anatomical location was calculated using Equation 4.1.

The image processing-based mapping used the ASIFT [61] algorithm. Conduct-

ing the experiment using this algorithm has been described in Section 5.2. The

spatial description fiducial points-based method used three sets of fiducial points.

Set 1 contains a list of fiducial points, as presented in the literature review. A biolo-

gist was asked to identify these fiducial points in the images used in the experiment.

Set 2 is an extended version of fiducial points in Set 1 by adding a biologist’s own

choice of fiducial points. Set 3 is also an extended version of fiducial points in Set 1

by adding the non-biologist’s own choice of fiducial points.

5.4.1 Mapping between Non-Identical Images that are Not

Identical in Their Morphologies

The purpose of the experiments was to demonstrate the mapping of regions between

two different embryos. These embryos are at the same developmental stage. Two

midline images at Theiler Stage 23 were used. The first is derived from the Kaufman

Digital Atlas and the second is derived from the Edinburgh Mouse Atlas as shown

in Figure 5.22. The spatial description fiducial points-based method used three sets

of fiducial points. Figures 5.22, 5.23 and 5.24 depict the fiducial points in Set 1, Set

2 and Set 3, respectively.

Figure 5.25 depicts the accuracy resulting from using six approaches at the map-

ping of the six regions. The biologist defined gold standard mappings, demonstrating

that there exists a result region for every query region. Unfortunately, the image

processing algorithm used in this experiment has failed. On the other hand, an

ontology-based method is not available to provide mappings in these experiments

because the Kaufman Atlas’s image is not available with painted domains. This pro-

vides evidence that the ontologies may have difficulty with images without painted

125



Chapter 5. The Evaluation of Spatial Description-Based Integration

domains.

The graph shows that the spatial description fiducial points-based method is

sufficient to provide mappings. The accuracy resulting from using this method

depends on the choice of fiducial points and the number of fiducial points used. For

example, the accuracy resulting from using the fiducial points in Set 2 is higher than

with the fiducial points in Set 1, because Set 2 contains more fiducial points than

Set 1.
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Figure 5.25: The percentage of accuracy for regions mapped between two midline
images of different embryos at the same developmental stage served by six mapping
approaches.

5.4.2 Mapping between Similar Images Not Identical in Mor-

phology

The purpose of the experiment was to demonstrate the mapping of regions between

two midline images from two consecutive Theiler Stages of the same embryo. The

first image is taken at Theiler Stage 23. The second image is taken at Theiler Stage

24. Both are derived from the Kaufman Digital Atlas as shown in Figure 5.26. The

spatial description fiducial points-based method used two sets of fiducial points.

Figures 5.26 and 5.27 depict the fiducial points in Set 1 and Set 2, respectively.

Note that in this experiment, there is no extended version of fiducial points in Set

1 by adding the biologist’s own choice of fiducial points because the biologist was

unable to find additional points in the TS24 image that matched the images at TS23

of the Edinburgh Mouse Atlas and the Kaufman Digital Atlas.

Figure 5.28 depicts the accuracy resulting from using five approaches at the

mapping of the six regions. The biologist defined gold standard mappings proven

that there exist a result region for every query region. Unfortunately, the image

processing algorithm used in this experiment has failed. On the other hand, an

ontology-based method is not available to provide mappings in this experiment be-

cause the two images from the Kaufman Digital Atlas are not available with painted

domains. This provides evidence that the ontologies may have difficulty when images

are not painted.

The graph shows that the spatial description fiducial points-based method is
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Figure 5.28: The percentage of accuracy for regions mapped between two midline
images from two consecutive Theiler Stages of the same embryo served by five map-
ping approaches.

sufficient to provide mappings. The accuracy resulting from using this method

depends on the choice of fiducial points and the number of fiducial points used.

For example, the accuracy resulting from using the fiducial point in Set 2 is higher

than with the fiducial points in Set 1 because Set 2 contains more fiducial points

compared to Set 1.

5.4.3 Mapping between Non-Identical Images with Same

Morphology

The purpose of the experiment was to demonstrate the mapping of regions between

two midline images of an embryo from different imaging modalities. This evaluation

used two images as shown in Figure 5.29. The image in Figure 5.29(b) is the clip art

graphic version of the image in Figure 5.29(a). The visual content of both images is

only similar at the higher scene level, but both images are entirely different at the

pixel-level. The spatial description fiducial points-based method used three sets of

fiducial points. Figures 5.29, 5.30 and 5.31 depict the fiducial points in Set 1, Set 2

and Set 3, respectively.

Figure 5.32 depicts the accuracy resulting from using six approaches at the map-

ping of the six regions. The biologist defined gold standard mappings proven that

there exist a result region for every query region. Unfortunately, the image process-

ing algorithm used in this experiment has failed.

133



Chapter 5. The Evaluation of Spatial Description-Based Integration

On the other hand, an ontology-based method is not available to provide map-

pings in this experiment because the Kaufman Atlas’s image is not available with

painted domains. This provides evidence that the ontologies may have difficulty

with images without painted domains.

The graph shows that the spatial description fiducial points-based method is

sufficient to provide mappings. The accuracy resulting from using this method

depends on the choice of fiducial points and the number of fiducial points used.

For example, the accuracy resulting from using the fiducial point in Set 2 is higher

compared to the fiducial points in Set 1, because Set 2 contains more fiducial points

than with Set 1.

134



Chapter 5. The Evaluation of Spatial Description-Based Integration

F
ig

u
re

5.
29

:
M

ap
p
in

g
of

fi
d
u
ci

al
p

oi
n
ts

b
et

w
ee

n
tw

o
ex

ac
t

sa
m

e
im

ag
es

of
d
iff

er
en

t
im

ag
e

m
o
d
al

it
it

es
,

se
le

ct
ed

b
y

a
b
io

lo
gi

st
.

T
h
er

e
ar

e
10

re
le

va
n
t

fi
d
u
ci

al
p

oi
n
ts

b
et

w
ee

n
th

e
tw

o
im

ag
es

.

135



Chapter 5. The Evaluation of Spatial Description-Based Integration

F
ig

u
re

5.
30

:
E

x
te

n
d
ed

se
le

ct
io

n
of

fi
d
u
ci

al
p

oi
n
ts

b
et

w
ee

n
tw

o
ex

ac
t

sa
m

e
im

ag
es

of
d
iff

er
en

t
im

ag
e

m
o
d
al

it
it

es
,

se
le

ct
ed

b
y

a
b
io

lo
gi

st
.

T
h
er

e
ar

e
fo

u
r

ad
d
it

io
n
al

fi
d
u
ci

al
p

oi
n
ts

se
le

ct
ed

.
T

h
u
s,

th
e

im
ag

es
h
av

e
14

re
le

va
n
t

fi
d
u
ci

al
p

oi
n
ts

b
et

w
ee

n
th

em
.

136



Chapter 5. The Evaluation of Spatial Description-Based Integration

F
ig

u
re

5.
31

:
E

x
te

n
d
ed

se
le

ct
io

n
of

fi
d
u
ci

al
p

oi
n
ts

b
et

w
ee

n
tw

o
ex

ac
t

sa
m

e
im

ag
es

of
d
iff

er
en

t
im

ag
e

m
o
d
al

it
it

es
,

se
le

ct
ed

b
y

a
n
on

-b
io

lo
gi

st
.

T
h
er

e
ar

e
13

ad
d
it

io
n
al

fi
d
u
ci

al
p

oi
n
ts

se
le

ct
ed

(l
ab

el
le

d
as

p
1

to
p
13

).
T

h
u
s,

th
e

im
ag

es
h
av

e
23

re
le

va
n
t

fi
d
u
ci

al
p

oi
n
ts

b
et

w
ee

n
th

em
.

137



Chapter 5. The Evaluation of Spatial Description-Based Integration

Figure 5.32: The percentage of accuracy for regions mapped between two same
images of different image modalities served by six mapping approaches.

5.4.4 Results and Analysis

The evaluation of the experimental results suggests that the image processing al-

gorithm is unable to cope with the mapping of images, which are at the same

developmental stage, but from different embryo models. Different embryo models

have different morphologies. Consequently, the image processing-based solution fails

when the images have different underlying morphologies.

The evaluation of the experimental results suggests that the image processing

algorithm is unable to cope with the mapping of images, which are from the same

embryo model but are at different developmental stage. Images at different stages

are different in their morphologies, although they are from the same embryo model.

Consequently, the image processing-based solution fails when the images are mor-

phologically different.

The evaluation of the experimental results suggests that the image processing

algorithm is unable to cope with the mapping of the same images acquired in dif-

ferent modalities. The image processing-based mapping examines pixels. Thus, this

method fails when the visual content of both images is similar only at the higher

scene level, but both images are entirely different at the pixel-level.

Evaluation of these experimental results suggests that the ontologies may have

difficulties when the images are not painted. Although we can argue that a biologist

can paint an image according to its anatomical regions, this is a hard task for

biologists and is expensive to acquire.

The evaluation of the experimental results suggests that the spatial description
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fiducial points-based method has the capability to provide mappings in all three

cases: (1) the mapping of images at the same developmental stage but come from

different embryo models, (2) the mapping of images from the same embryo model

but are at different developmental stage, and (3) the mapping of the same images

acquired in different modalities. The accuracy resulting from using this method

varies as it depends on the choice of fiducial points and the number of fiducial

point used. A significant advantage of this method is that there were no cases in

which a query region was mapped onto the whole embryo region in the target image,

suggesting that the method has addressed one of the limitations of ontology-based

solutions. Moreover, the method overcomes the drawbacks of an ontology-based

solution that may not be available for images without painted domains, or when

there are no matching ontologies.

In the following section, we demonstrate that selections of fiducial points by a

biologist as opposed to a non-biologist may have a significant impact on the eval-

uation of gene expression results. In conclusion, the spatial description fiducial

points-based method is a middle approach that could be attempted when the im-

age processing-based solution is unavailable or when the ontology-based solution

encounters difficulties.

5.5 Application of Techniques for Gene Expres-

sion Queries

Here, we focus on two regions and the spatial similarity between them. The first

region is the biologist-defined gold standard region. The second region is generated

by applying the spatial description fiducial points-based method. Comparing the

two gene expression profiles enables the spatial similarity to be measured. The gene

expression queries were carried out on the following regions: lung, heart, liver, and

three arbitrary query regions denoted as query regions x, y and z. First, the genes

expression results corresponding to the gold standard areas and the areas resulting

from using the spatial description fiducial points-based method were retrieved. The

retrieved data were then analysed using precision and recall metrics in order to

measure the quality of query search results. Precision is the ratio of the number

of relevant genes retrieved to the total number of irrelevant and relevant genes

retrieved. It is typically expressed using a percentage. Precision can be defined

139



Chapter 5. The Evaluation of Spatial Description-Based Integration

mathematically using the following formula:

P =
A

A + C
× 100 (5.1)

In the above formula, P represents precision, A is the number of relevant genes

retrieved and C is the number of irrelevant genes retrieved. Recall is the ratio of

the number of relevant genes retrieved to the total number of relevant genes in the

database and is usually expressed as a percentage.

R =
A

A + B
× 100 (5.2)

In the above formula, R represents recall, A is the number of relevant genes re-

trieved and B is the number of relevant genes not retrieved. Figure 5.33 depicts

the gene expression data query for region lung retrieved from EMAGE. Note that

the Edinburgh Mouse Atlas is linked to the EMAGE, an online database of gene

expression data in the developing mouse embryo. In this example, the number of

genes detected in the gold standard region corresponds to the number of relevant

genes retrieved for region lung. Meanwhile, the number of genes detected in the

areas resulting from using the fiducial points-based method corresponds to the total

number of irrelevant and relevant genes retrieved for region lung.

Figure 5.34 depicts the recall of gene expression data resulting from using the

spatial description fiducial points-based method based on the fiducial points as se-

lected in Sets 1, 2 and 3. Since the area of the result regions resulting from using

the spatial description fiducial points-based method are larger than the area of the

gold standard result region, all three sets of fiducial points achieved 100% recall for

every query. Nevertheless, there will be cases in which 100% recall does not apply.

Consider a mapping between two images A and B where anatomical regions in these

two images are morphologically different. For instance, assume that an anatomical

region X in image A is entirely below the line drawn between two fiducial points

P1 and P2. On the other hand, an anatomical region X in image B lies a little

above the line drawn between two fiducial points P1 and P2. In consequence, part

of anatomical region X will be missing in image B, and thus 100% recall is not

applicable. This kind of scenario is likely to happen when the mapping is between

embryos that are very different. When some part of a structure is missing, one

might not retrieve a gene that is actually important. It is not critical if one gets ex-

tra genes, since those which are not of interest may be filtered out later. Some form

of google-like matching can be considered to avoid a result region to loose pixels.
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Figure 5.33: Mapping of region lung from the Kaufman Digital Atlas to the Edin-
burgh Mouse Atlas and the number of detected genes retrieved for region lung from
EMAGE.
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Figure 5.34: The recall of genes expression query results for six anatomical locations
resulting from using the spatial description fiducial points-based method based on
the fiducial points as selected in Sets 1, 2 and 3 (See Figures 5.22 to 5.24 for these
sets of fiducial points).

For example, specifying a range to allow a distance limit from a fiducial line, which

will return a location given by the range.

Nevertheless, this does raise questions as to which direction to extend or not to

extend in that particular direction. Extending a result region could increase the

recall but may damage the precision. A detailed study of this has not been further

explored because the case of extending a result region is beyond the scope of the

thesis.

Figure 5.35 depicts the precision of gene expression data resulting from using

the spatial description fiducial points-based method based on the fiducial points

as selected in Sets 1, 2 and 3. Set 1 and Set 2 were selected by a biologist and

the images consist of 8 and 12 relevant fiducial points respectively. The graph

shows that these two sets of fiducial points have achieved good precision for every

query. Set 3 was selected by a non-biologist and the images consist of 21 fiducial

point correspondences when this set was used. The number of fiducial points was

considerably larger when Set 3 was used. Thus, it is an expected result to see that

the precision achieved by this set was the highest. In the following, we demonstrate

how the choices of fiducial points made by a biologist and a non-biologist affect the

results. The number of fiducial points is used as the parameter in this evaluation.
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Figure 5.35: The precision of genes expression query results for six anatomical loca-
tions resulting from using the spatial description fiducial points-based method based
on the fiducial points as selected in Sets 1, 2 and 3 (See Figures 5.22 to 5.24 for
these sets of fiducial points).

Figure 5.36 depicts the precision of gene expression query results for six anatom-

ical locations based on the number of fiducial points, where the selection of these

points was made by a biologist and a non-biologist. It can be concluded that the

selection of fiducial points made by a biologist and a non-biologist did not have

a significant impact on the results. The graph shows that both a biologist and a

non-biologist can select a set of fiducial points, which provides a gene expression

query with good precision. However, the biologist is able to achieve this using a

smaller number of fiducial points. The non-biologist has to use quite a large number

of fiducial points to achieve similar results. For example, when a total of 12 fiducial

points was used, the selection made by the biologist has successfully achieved good

precision. In contrast, when the same number of fiducial points was used by the

non-biologist, the result of the gene expression queries is relatively low in precision.

Nevertheless, as more fiducial points were added by the non-biologist, the precision

increases and reaches the biologist’s precision results, suggesting that inaccuracies

in the location of fiducial points can at least partially compensated by using a larger

number of such points.

Although the method may yield extra nor loose pixels in a result region, the ex-

perimental results provide evidence that we have built a useful integration approach
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Figure 5.36: The precision of genes expression query results for six anatomical loca-
tions resulting from using the spatial description fiducial points-based method based
on the number of fiducial points selected by a biologist and a non-biologist.

given gene expression data which are good representatives of spatial data. In con-

clusion, when there are no matching ontologies or when the image processing-based

techniques are not available, the spatial description fiducial points-based method

can provide sufficient results.

In general, the spatial description fiducial points-based method can provide a

mechanism for image-based data integration, which may benefit medical applica-

tions. For example, a radiogenomics strategy integrates gene expression and pa-

tients’ medical images. The correlation between imaging features and gene expres-

sion from multiple patients with the same disease can yield useful information for

diagnosis and prediction; for example, to make automated stratification of patients

into different risk categories, or to compare the range of abnormalities in patients.

The ability to integrate and compare such image-based data has developed into an

increasingly critical component in the life sciences and eHealth domain.

5.6 Summary

This chapter has presented an analysis of the performance of the spatial description-

based method in comparison with one ontology-based method and one method in

image processing. Performance was measured in terms of accuracy. Within the
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context of this evaluation, the experimental results have suggested that there exists,

at least in the cases that had been tested, a small number of fiducial points where the

combination can give performance as effective as both the ontology-based method

and the image processing algorithm. Note that this was an analysis of image region

mappings between identical images.

The performance of the three mapping techniques (i.e. spatial description-based

solution, ontology-based method and image processing algorithm) was then anal-

ysed in mapping of image regions involving three types of images. These are: (1)

similar images but not identical in morphology, (2) non-identical images that are

not identical in morphology, and (3) non-identical images with same morphology.

The result was compared to the result obtained from a biologist. Evaluation from

experimental results suggested that the image processing-based solution may fail

when images are morphologically different. On the other hand, the ontology-based

solution does not work when images are not annotated with the ontological concepts.

The proposed spatial description-based solution provides an alternative to the image

processing-based technique that may fail when the images have different underly-

ing morphologies. In addition, the spatial description-based solution overcomes the

limitations of an ontology-based solution that may not be available when there are

no matching ontologies, or in the case when images lack painted domains. Painting

an image according to its anatomy is a hard task for biologists and is expensive to

acquire.

The results of the gene expression evaluation indicate that the extra pixels in

a result region resulting from using the spatial description fiducial points-based

method do not matter when it comes to gene expression data. In conclusion, the

precision results provide evidence that we have built a useful integration approach

given gene expression data which are good representatives of spatial data. The

following chapter provides a summary, with suggestions for future research.
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Chapter 6

Conclusions and Future Work

6.1 Introduction

The main outcome of the research undertaken for this thesis was the development

of a new technique using spatial description to integrate image-based data towards

the integration of biomedical atlases. The main benefit of spatial description is

that it allows the mapping of regions in the following three types of images: (1)

similar images but not identical in morphology, (2) non-identical images that are

not identical in morphology, and (3) non-identical images with same morphology.

In general, the spatial description technique addresses the many different re-

quirements of a mapping system which would support the integration of biomedical

atlases. Eight main areas in this context were investigated. The first area em-

phasises the conceptualisation of anatomical space using spatial relations between

anatomical spaces. Therefore, the first stage involved the implementation of an

approach called SpaRTAD, which maps anatomical regions between images using

spatial descriptions based on spatial relationships between segmented regions of an

image.

The second area emphasises the conceptualisation of anatomical space based on

fiducial points and a set of spatial relations, so as to overcome issues arising in

the first area. Therefore, the second stage involved the development of a mapping

technique using the spatial description fiducial points-based method.

The third area emphasises the conceptualisation of anatomical space using the

spatial description fiducial points-based method, integrated with spatial relations

between segmented regions. Therefore, the third stage emphasises determining the

advantages of mapping by combining the previous two approaches of spatial descrip-

tions.

The fourth area discusses the final approach proposed (i.e. the spatial description
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fiducial points-based method) which was compared against the existing approaches

as discussed in the literature review.

The fifth area is the biologist-defined gold standard mappings, the results of

which were used as the basis for evaluating the existing mapping techniques and the

newly developed technique.

The sixth area involved an optimisation strategy for the spatial description fidu-

cial points-based method based on the number of fiducial points, number of fiducial

lines, area size of the query region and selection of fiducial point location.

The seventh area was an evaluation of the accuracy resulting from using one

ontology-based method, one method in image processing and the proposed spatial

description-based method in the mapping of image regions in both identical and

non-identical images.

The eighth area involved the validation of the proposed spatial description-based

solution using precision and recall metrics. The purpose of validation was to quantify

spatial description as a valid approach for integrating gene expression data. This

chapter summarises the eight stages of work conducted throughout this research,

as well as their main results, whilst also providing a discussion regarding future

research.

6.2 Summary

This thesis has proposed the mapping of image-based data between biomedical at-

lases to enable the integration of these data sources. The integration of these re-

sources is needed because data from these atlases are often inconsistent and incom-

plete. Integrating heterogeneous and distributed biomedical atlases by linking their

image-based data involves a number of issues. These issues have been investigated

in the context of mouse atlas applications. To be precise, the work in this thesis was

undertaken in the context of the Edinburgh Mouse Atlas Project [6; 7; 20] and the

e-Mouse Atlas of Gene Expression [1; 20], digital atlases of mouse embryo develop-

ment. This section summarises each issue within each mapping technique developed

in this research.

This thesis has explored existing image mapping approaches. These approaches

can be categorized according to their mapping primitives. These mapping primitives

are spatial relations and fiducial points. Spatial relations are used in ontology-based

mapping. Fiducial points are used in image processing-based mapping. Further-

more, three different kinds of integration technology have been explored. These
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technologies include image processing-based integration, ontology-based integration

and spatial description-based integration. The image processing-based solutions

may not work in the mapping of images that are too different due to variance

of anatomical structures’ morphology or variation in pixel intensity distributions.

Ontology-based solutions often lack spatial precision. The spatial description-based

solution is a middle approach that could be attempted when an image processing-

based solution is unavailable, or when the ontology-based solution has difficulties.

This research has developed three approaches of spatial descriptions. Since spa-

tial relations can be used to describe the location of an anatomical region and the

fact that two anatomical regions can be mapped onto one another according to their

spatial similarity, thus, the focus of the research was on a mapping approach using

spatial descriptions based on spatial relations between anatomical regions. Three

categories of spatial relations were employed: topological, arrangement and direc-

tional relations. We proposed SpaRTAD as an efficient representation structure to

conceptualise anatomical space based on the combination of these three categories

of spatial relations. However, there are a number of problems with this approach,

such as the use of different segmented images between atlases, different domain

coverage between images of atlases, and the use of different anatomical names or

vocabulary causing interoperability issues in finding corresponding anatomical re-

gions between images. These issues encouraged this research project to develop a

new technique, which can provide the mapping of image regions independently of

anatomical structures’ spatial relationships.

The mapping approach using spatial descriptions based on fiducial points and a

set of spatial relations was developed to overcome the problems found in the first

approach. This approach describes a query region using spatial relations with respect

to fiducial points and fiducial lines. Mapping was performed based on the satisfaction

of exactly the same constraints in the target image. A novel property of the approach

is that the method is not voxel/pixel intensity dependent, and mapping is carried

out independently of spatial relationships between segmented regions of an image.

The evaluation of the experimental results suggests that this approach improves

mapping accuracy when the appropriate number of fiducial points is used, given

better selection of fiducial point location. Specifically, the more evenly distributed

the size of the definable areas which are created through the fiducial points, the

more accurate the mappings. Subsequently, the mapping approach using spatial

descriptions based on fiducial points and a set of spatial relations can be integrated

with spatial descriptions based on spatial relationships between segmented regions.

The evaluation of the experimental results suggests that the integration of these two
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approaches, although it may require an alignment of segmented regions and domain

coverage, can yield significantly higher accuracy compared to using either approach

alone.

The selected mapping approach within this thesis is the spatial description fidu-

cial points-based method. This method overcomes the limitations of ontology-based

and image processing-based techniques by addressing many of the image region

mapping issues. The performance of this method was analysed in terms of mapping

accuracy with one ontology-based method and one method in image processing. The

evaluation of the experimental results suggests that there exists, at least in the cases

that have been tested, a small number of fiducial points in which the combination

can perform as effectively as both ontology-based methods and image processing

algorithms. More importantly, it is possible to select sets of fiducial points pro-

ducing such performances without depending on image processing. This evaluation

also suggests that these three mapping techniques are not really problematic from

the speed point of view. Note that this was an analysis of image region mappings

between identical images.

The performance of the three mapping techniques (i.e. spatial description-based

solution, ontology-based method and image processing algorithm) was then analysed

in the mapping of regions between morphologically different images, the results being

compared with the mapping results produced by an expert biologist. The evaluation

from experimental results suggests that the image processing-based solution fails

when the images are morphologically different. However, ontology-based solutions

often lack spatial precision and do not work when the images are not annotated with

the ontological concepts. The proposed spatial description-based solution overcomes

the limitations of existing solutions by addressing the issue of images without painted

domains such that the ontology-based solution is unable to cope, and provides an

alternative to the image processing-based solution that may fail when the images

have different underlying morphologies.

In order to determine the spatial similarity between two mapped spatial areas,

validation was performed through the comparison of gene expression data observed

from EMAGE. The genes expression results corresponding to the gold standard

areas and the areas resulting from using the spatial description fiducial points-based

method were retrieved. The retrieved data were then analysed using precision and

recall metrics to measure the quality of query search results. It can be concluded

that the spatial description fiducial points-based method can provide a high level

of precision. For these reasons, we conclude that spatial description is a useful

integration approach given gene expression data, which are good representatives of
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spatial data.

This study was carried out on gene expression data because of the availability

of these data and considering that we were looking at image data with biological

meaning. Note that the gene expression data are representative of many other image

data. In conclusion, the spatial description-based solution is a middle approach that

may be attempted when an image processing-based solution is unavailable or when

the ontology-based solution encounters difficulties.

6.3 Future Work

The scope of this thesis lies within 2D image space. In principle, this research can

also be applied within 3D image space using the same approach as in 2D image

space. Extending the proposed approach from 2D to 3D image space requires all

three concepts of fiducial point, fiducial line and query region to be defined in the 3D

image space. A fiducial point associated with a coordinate (x, y, z) can be plotted

in a 3D image space. In a 3D image space, a fiducial line can be transformed into

a fiducial plane. Likewise, a 2D image region can be transformed into a 3D image

region. There will be spatial relations to describe anatomical space in 3D, which

have been determined by this research. This study has decided to use 2D image

space as the focal point.

Overall, the spatial description-based solution can provide successful mechanisms

to guide mapping between images across biomedical atlases in order to facilitate data

integration among these data sources. However, this work covers a specific domain,

namely mapping between images of biomedical atlases. Vigorous effort is needed to

facilitate data integration between biomedical atlases with other resources, such as

natural-language description of space (i.e. free text from biomedical literature) [117;

118; 119] and database warehouses (i.e. structured databases of biomedical facts)

[120; 121; 122; 123; 124]. Research is needed in order to compile spatial descriptions

of user-provided images and spatial descriptions of user-supplied documents, for

instance; and how a user can compile such descriptions.

In principle, this research provides a number of indications that the proposed

solution works. However, it would be helpful if research that extends the analysis

into a number of other image domains (not just gene expression examples) are

carried out. Additionally, one could investigate the use of other or additional spatial

relations and the impact that this may have on the results.

A general conclusion to be drawn from this thesis is that the spatial description-
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based solution not only complements the other methods (i.e. ontology-based meth-

ods and image processing algorithms), but it also adds a new mechanism for integrat-

ing data from various information structures. For example, the spatial description-

based solution may be adapted to support the mapping of satellite imagery generated

from Digital Elevation Models (DEM). Stereo radar images are used to match mul-

tiple coverage from sequential image acquisition cycles [125]. Radar images do not

promise clear edge information. Therefore, the edge or feature-based methods are

not suitable. One of the radar mapping techniques operates on a reference and a

search window. In this technique, for each position of the search window, a match

value is computed from grey level values in the reference window. A match is ac-

complished if the match value at a certain position of the search window has a local

maximum when compared to the match values at all other positions of the search

windows. This local maximum corresponds to a tie point. Thus, the use of the

spatial description fiducial points-based method in radar mapping studies is one of

the opportunities for future research that could be based on the study presented in

this thesis.

Further research could also involve further development of the spatial description-

based solution as a technique for content-based image retrieval systems to retrieve

visual similarity between images across different visual domains, such as clip art

graphics, photographs taken in different seasons, paintings, and sketches. The prob-

lem with matching cross-domain images is that the visual content is only similar

at the higher scene level, but quite dissimilar at the pixel-level [126]. The spatial

description-based solution has enormous potential to support searches in a large

dataset to find visually similar matches to a given query, be it an image patch, a

full image, or a spatio-temporal block, considering that this technique is capable of

providing mappings even if images are different at the pixel-level.

The Geographical Information System (GIS) is a useful tool for disaster pre-

vention. For example, using the spatial database of slope failure to map disaster

areas on GIS [127]. An image database on slope failure can be developed using GPS

digital cameras. GPS cameras can log the coordinates of their locations. The coor-

dinates, which correspond to the view point position of the camera can be stored in

the GIS data. The coordinates can be converted to the actual location information

of the slope failure area based on object points. These object points are calculated

from the view point of the GPS camera. The slope failure area in the photograph

is then converted as GIS data. To retrieve the actual location information of the

slope failure area, future research could further develop spatial description-based

solutions for generating GIS image data to map disaster areas.
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Number of Fiducial Points Average Percentage of Accuracy (%)
Size50x50 Size100x100 Size150x150 Size200x200

2 42 61 71 76
80 58 74 80 84
160 67 80 85 87
240 71 82 87 88
320 75 85 88 89
400 76 85 88 90
480 77 86 89 90
560 78 86 89 90
640 79 87 90 90
720 79 87 90 91
800 80 87 90 91
880 80 87 90 91

Table A.1: Results corresponding to fig. 4.3

Number of Fiducial Lines Used Average Percentage of Accuracy (%)
Size50x50 Size100x100 Size150x150 Size200x200

4 7 17 27 35
24 13 49 67 91

Table A.2: Results corresponding to fig. 4.4

Positioning Set Average Percentage of Accuracy (%)
Size50x50 Size100x100 Size150x150 Size200x200

Set A 5 8 17 31
Set B 8 26 35 68
Set C 13 49 67 91

Table A.3: Results corresponding to fig. 4.6
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Positioning Set Average Percentage of Accuracy (%)
Size50x50 Size100x100 Size150x150 Size200x200

All points at the boundary of the
whole image

13 49 67 91

All points inside the image 14 60 87 93
Points at both boundary & inside
image

16 62 90 96

Table A.4: Results corresponding to fig. 4.8

Types of Areas Distribution Average Percentage of Accuracy (%)
Size50x50 Size100x100 Size150x150 Size200x200

Strongly uneven areas distribution 7 21 49 87
Evenly areas distribution 15 52 68 92

Table A.5: Results corresponding to fig. 4.11

Method Accuracy (%)
Liver Midgut Lung Thalamus Pancreas Adrenal

Gland
Cortex

Metanephros Femur

SD Fidu-
cial Points-
Based
(Test Set
1)

41.65 56.46 49.76 15.94 15.80 34.41 12.35 3.72

SD Fidu-
cial Points-
Based
(Test Set
2)

38.45 32.80 49.92 16.32 35.05 18.82 13.24 19.13

SD Fidu-
cial Points-
Based
(Test Set
3)

44.94 71.33 26.26 27.64 35.68 48.10 13.69 26.00

SD Fidu-
cial Points-
Based
(Test Set
4)

36.35 42.45 38.62 26.49 9.98 20.50 13.96 16.78

Table A.6: Results corresponding to fig. 4.15

153



Chapter . Appendix A Table Results

Method Accuracy (%)
Liver Midgut Lung Thalamus Pancreas Adrenal

Gland
Cortex

Metanephros Femur

SD Fidu-
cial Points-
Based
(Test Set
1)

34.56 60.33 21.76 26.49 7.32 43.26 12.45 16.78

SD Fidu-
cial Points-
Based
(Test Set
2)

160.05 204.85 100.34 512.64 185.33 431.29 655.36 422.66

SD Fidu-
cial Points-
Based
(Test Set
3)

122.53 40.19 280.78 261.79 180.24 107.88 630.59 283.43

SD Fidu-
cial Points-
Based
(Test Set
4)

175.10 135.57 158.95 277.56 901.73 387.73 616.24 495.88

Table A.7: Results corresponding to fig. 4.16
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Method Accuracy (%)
Liver Midgut Lung Thalamus Pancreas Adrenal

Gland
Cortex

Metanephros Femur

SD Fidu-
cial Points-
Based
(Test Set
1)

39.57 68.99 64.46 25.86 44.32 83.70 14.24 4.44

SD Fidu-
cial Points-
Based
(Test Set
2)

40.19 66.83 54.71 19.33 32.92 34.95 13.54 3.91

SD Fidu-
cial Points-
Based
(Test Set
3)

41.84 72.8 65.25 23.69 15.53 38.64 13.45 26.08

SD Fidu-
cial Points-
Based
(Test Set
4)

37.55 16.41 45.03 34.01 32.78 48.60 12.92 5.09

Table A.8: Results corresponding to fig. 4.17

Anatomical Location Accuracy (%)
7 Fiducial Points 9 Fiducial Points 11 Fiducial Points 14 Fiducial Points

Metanephros 12.35 13.96 14.24 53.87
Femur 15.6 26 26.08 26.08
Thalamus 15.94 27.64 34.01 34.01
Pancreas 32.44 35.68 44.32 47.66
Adrenal Gland Cortex 38.90 48.10 83.70 83.70
Liver 41.65 41.84 44.94 49.09
Lung 49.76 49.92 65.25 67.57
Midgut 65.27 71.33 72.80 77.61

Table A.9: Results corresponding to fig. 4.18
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Method Accuracy (%)
Liver Midgut Lung Thalamus Pancreas Adrenal

Gland
Cortex

Metanephros Femur

Image Pro-
cessing Al-
gorithm

82.36 63.55 60.10 63.44 35.30 27.30 43.59 69.94

Ontology-
Based
Method

61.49 72.18 52.37 48.64 10.34 42.15 83.66 47.09

SD Fidu-
cial Points-
Based (14
FP)

49.09 77.61 67.57 34.01 47.66 83.70 53.87 26.08

Table A.10: Results corresponding to fig. 5.21

Method Accuracy (%)
liver heart lung x y z

Biologist 100 100 100 100 100 100
Image Processing 0 0 0 0 0 0
Ontology 0 0 0 0 0 0
Fiducial Points (Set 1) 14.81 54.70 3.86 2.59 5.41 2.87
Fiducial Points (Set 2) 23.12 60.77 10.54 50.90 12.52 27.76
Fiducial Points (Set 3) 49.22 75.71 26.32 86.41 35.13 97.53

Table A.11: Results corresponding to fig. 5.25

Method Accuracy (%)
liver heart lung x y z

Biologist 100 100 100 100 100 100
Image Processing 0 0 0 0 0 0
Ontology 0 0 0 0 0 0
Fiducial Points (Set 1) 23.44 1.29 2.61 0.99 0.39 1.15
Fiducial Points (Set 2) 84.82 70.30 73.37 80.09 26.00 52.81

Table A.12: Results corresponding to fig. 5.28
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Method Accuracy (%)
liver heart lung x y z

Biologist 100 100 100 100 100 100
Image Processing 0 0 0 0 0 0
Ontology 0 0 0 0 0 0
Fiducial Points (Set 1) 16.77 64.86 25.28 24.52 2.39 24.69
Fiducial Points (Set 2) 31.07 76.71 25.28 26.53 8.31 55.64
Fiducial Points (Set 3) 60.25 88.89 63.02 50.75 62.42 66.67

Table A.13: Results corresponding to fig. 5.32

Method Recall (%)
liver heart lung x y z

Fiducial Points (Set 1) 100 100 100 100 100 100
Fiducial Points (Set 2) 100 100 100 100 100 100
Fiducial Points (Set 3) 100 100 100 100 100 100

Table A.14: Results corresponding to fig. 5.34

Method Precision (%)
liver heart lung x y z

Fiducial Points (Set 1) 94.55 94.89 88.04 79.60 70.82 69.18
Fiducial Points (Set 2) 94.87 98.93 90.38 90.69 77.85 82.44
Fiducial Points (Set 3) 97.75 99.19 93.74 96.60 85.69 90.47

Table A.15: Results corresponding to fig. 5.35

Method Precision (%)
liver heart lung x y z

8 Fiducial Points (Biolo-
gist)

94.55 94.89 88.04 79.6 70.82 69.18

12 Fiducial Points (Biolo-
gist)

94.87 98.93 90.38 90.69 77.85 82.44

12 Fiducial Points (Non-
Biologist)

53.85 54.68 50.56 52.20 44.96 47.69

16 Fiducial Points (Non-
Biologist)

74.47 72.57 73.42 76.60 65.28 66.92

21 Fiducial Points (Non-
Biologist)

97.75 99.19 93.74 96.6 85.69 90.47

Table A.16: Results corresponding to fig. 5.36
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Figure B.1∼B.7 depict visual results of mapping by using image processing algo-

rithm developed by [62]. This algorithm is not used in the thesis for performance

comparison because the mapping results are poor compared to algorithm as pro-

posed by [61].

Figure B.1: Anatomical location of liver (a) in its actual location, and (b) the
corresponding matched location resulting from image processing algorithm by [63].
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Figure B.2: Anatomical location of midgut (a) in its actual location, and (b) the
corresponding matched location resulting from image processing algorithm by [63].

Figure B.3: Anatomical location of lung (a) in its actual location, and (b) the
corresponding matched location resulting from image processing algorithm by [63].
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Figure B.4: Anatomical location of thalamus (a) in its actual location, and (b) the
corresponding matched location resulting from image processing algorithm by [63].

Figure B.5: Anatomical location of pancreas (a) in its actual location, and (b) the
corresponding matched location resulting from image processing algorithm by [63].
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Figure B.6: Anatomical location of femur (a) in its actual location, and (b) the
corresponding matched location resulting from image processing algorithm by [63].

Figure B.7: Anatomical location of metanephros (a) in its actual location, and (b)
the corresponding matched location resulting from image processing algorithm by
[63].
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Not visible on this section
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N/A The coccyx or ‘tailbone’ is only found in tail-less primates

15) Optic access of diencephalon15) Optic access of diencephalon

16) Urogenital sinus (future bladder)16) Urogenital sinus (future bladder)

17) Choroid plexus17) Choroid plexus
18) Rathke’s pouch18) Rathke’s pouch

Figure 16: The mapping of four additional fiducial points on the embryo image at 

TS22-23, Kaufman Digital Atlas (Biologist’s own choice)
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Not visible on this section

This image does nor have sufficient resolution to count the lower vertebrae

This image does nor have sufficient resolution to count the lower vertebrae

15) Optic access of diencephalon15) Optic access of diencephalon

16) Urogenital sinus (future bladder)16) Urogenital sinus (future bladder)

17) Choroid plexus17) Choroid plexus
18) Rathke’s pouch18) Rathke’s pouch

Figure 17: The mapping of four additional fiducial points on the embryo image at 

TS23, EMA (Biologist’s own choice)
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