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Single-Ended Differential Protection in MTDC
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J. Nelson, P. Niewczas, Member, IEEE, D. Vozikis, Student Member, IEEE, P. Orr, N. Gordon, and C. Booth

Abstract—This paper presents a method for rapid detection
of faults on VSC multi-terminal HVDC transmission networks
using multi-point optical current sensing. The proposed method
uses differential protection as a guiding principle, and is im-
plemented using current measurements obtained from optical
current sensors distributed along the transmission line. Perfor-
mance is assessed through detailed transient simulation using
Matlab/Simulink R© models, integrating inductive DC-line ter-
minations, detailed DC circuit breaker models and a network
of fiber-optic current sensors. Moreover, the feasibility and
required performance of optical-based measurements is validated
through laboratory testing. Simulation results demonstrate that
the proposed protection algorithm can effectively, and within very
short period of time, discriminate between faults on the protected
line (internal faults), and those occurring on adjacent lines or
busbars (external faults). Hardware tests prove that the scheme
can be achieved with the existing, available sensing technology.

Index Terms—HVDC Protection, Multi-Terminal Direct Cur-
rent, Modular Multi-level Converters, Optical Sensors.

I. INTRODUCTION

DC side faults in high voltage direct current (HVDC)

systems are characterized by large inrush currents with

extremely high rates of rise caused by the discharge of trapped

energy in the system capacitances. These include lumped DC

capacitors installed on the DC side of the voltage source

converters (VSCs), transmission line capacitances [1], and also

the sub-module capacitors contained within modular multi-

level converters (MMCs) [2], [3]. When faults occur in multi-

terminal HVDC grids the DC protection system is expected

to minimize the effects of the fault by disconnecting only the

faulted section while permitting the remaining healthy part of

the grid to continue normal operation [2]. Such requirements

introduce the need for transient DC fault characterization

[3], [4] and subsequent development of a discriminative, fast,

sensitive and reliable DC protection method [5].

This paper deals with the challenges involved in protecting

multi terminal direct current (MTDC) grids. The application

of a distributed optical sensing system is proposed to achieve

fast fault detection, enhanced reliability and discrimination.

The key novel contribution of the paper is a new method

termed single-end differential protection which is described in

detail and validated using both transient simulation as well as

laboratory testing. The paper is organized as follows: Section

II presents the key aspects of HVDC protection, analyzing the

challenges, existing detection methods and isolating devices.

Section III proposes a new scheme for fast DC fault detection

and faulted line discrimination. Section IV explains in detail

the modelling approach. Section V introduces the Fiber Bragg

Grating (FBG) based optical sensing technology for DC cur-

rent measurement with emphasis given to distributed current

sensing. In Section VI a number of performance assessment

case studies are presented. Finally, in Section VII conclusions

are drawn.

II. PROTECTION IN HVDC SYSTEMS

A. Detection Methods

For non-unit protection schemes there is a notable tendency

towards the use of inductive termination on DC transmission

lines. The deliberate inclusion of additional inductance not

only limits the rate of change of DC current but also the

resulting DC voltage signatures (and the fact that they may

be different depending on fault location and known values of

inserted inductance at line terminals) can help to achieve a

discriminative non-unit type protection [2], [6], [7]. In [7] the

derivative of DC voltage (measured on the line side of the

inductor) is utilized to quickly detect and locate DC faults.

However, the converter DC voltage immediately after the fault

is assumed to remain unaffected, and highly resistive faults

are not considered. In [6], a two-stage approach is proposed

using an under-voltage element for fault detection, and a rate

of change of voltage to enable selective tripping. Both methods

in [6], [7] (which are notably non-unit) do not consider the

influence of power reversal and the transmission medium (i.e.

differences between overhead lines and cables). Such studies

have been implemented in [2] where a different approach is

adopted through using the rate of change of voltage measured

at the DC reactor. A handshaking method is proposed in [8]

to detect the faulted DC line. However the method can be

considered slow and the fault isolation is achieved by AC

breakers (again which will take several cycles to operate)

which leads to de-energization of the converters. A detection

method based on capacitor discharge is introduced in [9] to

estimate the distance to fault. However, the performance of this

method is poor under highly resistive faults. In [10] DC voltage

signatures and over-currents are used to achieve an estimation

of the fault-distance relationship. All of the methods presented

in [8]–[10] only estimate the location of the faulted network

branch, but the process of fault detection is not considered. A

method based on travelling waves is proposed in [11]. This

method utilizes derivatives of both voltage and current signals

to determine whether the fault is internal or external. However,

such method could be very sensitive to noise and lead to false

indication of the fault. There are also a number of differential

type schemes proposed in technical literature. For example,

in [12], current measurements at both ends of each line are

taken and the Discrete Wavelet Transform (DWT) is used in

the protection algorithm. The discrimination between external

and internal faults is achieved by comparing the energy of
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the specific DWT components extracted from the current

signals from both ends. In [13], another differential protection

scheme is proposed using a comparison of the current of each

line terminal and mechanical DC breakers. However, such

methods assume the use of fault-tolerant converters in order

to permit low-speed fault isolation. Additionally, it seems that

the protection algorithm utilizes only one criterion which is

a fixed predefined threshold. No other stages or criteria (e.g

time delay or biasing) are included, which could make the

algorithm vulnerable to noise and measurement uncertainties

[14].

Some of the main challenges and drawbacks associated with

differential protection include the inherent communication

time delays, delays associated with encoding and decoding

messages and correcting for latency of communications paths,

and the reliability of the method if one of the measurements

fails or the communications link is compromised. These chal-

lenges are overcome by the protection method proposed in

this paper. This is explained and verified in Sections III and

VI respectively.

B. Current Interruption Devices

The feasibility of operating secure MTDC networks relies

largely on the ability to quickly interrupt DC-side fault cur-

rents, so that the operation of the healthy parts of the network

is not compromised when one element of the network is

faulted. The absence of a natural current zero crossing (as is

the case with AC systems) requires a dedicated mechanism to

drive the current to zero while dissipating the energy stored in

the short circuit before the switching element can successfully

interrupt the flow of current. There are many HVDC circuit

breaker (CB) concepts proposed in the literature, however

all have a similar structure, consisting of a commutation

branch to drive the current to zero, a switching component

for voltage withstand, and an absorption path for dissipating

energy. Several breaker designs are proposed: solid state [15],

hybrid [16], resonant [17] and superconducting [18].

III. PROPOSED PROTECTION METHOD

The distributed optical sensing technology described in

Section V formed the basis for the proposed single-ended

differential protection.

A. Protection Strategy

The proposed protection strategy is explained using Fig. 1

where internal and external faults are illustrated. An internal

fault is considered to be a fault within the protected element

(i.e. DC Line 1 in this case) and an external fault is any fault

outside the protected element. A series of current measuring

sensors S1, S2, ..., Sn are distributed along the line. These

measurements can be accessed directly at either end of the

line (the sensing locations are completely passive and require

no power supply), where the optical interrogation, protective

equipment and CBs are located. Due to close vicinity of

these elements, it is assumed that the time delay between the

decision making device (i.e. protection) and the CB can be

ignored for the purposes of this study [13].

Fig. 1. Part of an MTDC network illustrating differential protection principle
for external and internal faults.

A series of the differential currents are calculated using

the measurements of two consecutive sensors according to

equation (1).

∆i(k)(t) = is(k)(t)− is(k+1)(t) (1)

where ∆i(k)(t) is the k-th differential current derived using

the currents is(k) and is(k+1) measured at two adjacent sensors

k and k+1 respectively (k = 1, 2, ..., n− 1). During external

faults the differential current ∆i(k)(t) will be very close to

zero while for internal faults a high differential value is

expected. In order to ensure high sub-millisecond accuracy

of the instantaneous differential current, the propagation time

delay compensation is applied before the differential current

is calculated as shown in equation (2). The amount of the

compensation ∆t is constant and is directly proportional to

the distance between adjacent sensors Sk and Sk+1 and speed

of electromagnetic field propagation.

∆i(k)(t) = is(k)(t−∆t)− is(k+1)(t) (2)

The proposed algorithm is illustrated using a flowchart in

Fig. 2. The protection logic has three stages. The first stage

(depicted as Stage I) includes a differential current threshold

comparison with a predefined value ITH . To minimize the

chances of protection instability caused by measurement er-

rors, induced noise and/or transients during external faults,

the value of the threshold needs to be carefully consid-

ered. Therefore, systematic iterative simulations have been

performed with pole-to-pole (P-P) and pole-to-ground (P-G)

faults at multiple locations on the transmission network model

(including busbar faults), in order to establish the optimum

current thresholds to be applied in Stage I and Stage II.

Additionally, artificial noise was superimposed on the current

measurements to verify the threshold selection and reduce the

chance of spurious tripping.

The second stage (Stage II) is based on the rate of change

of current. When the threshold ITH is reached (Stage I) for

a differential current ∆i(k) the protection algorithm will look

at the historical data of dis(k)/dt and dis(k+1)/dt using a

short time window ∆tw. If any of the historical values of the

derivatives dis(k)/dt(t−∆tw) or dis(k+1)/dt(t−∆tw) exceed

a predefined threshold di/dtTH the criterion for Stage II is

fulfilled. Such stage ensures that the relay operating decision

is reached purely as a result of a fault and not due to any short
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signal disturbance (e.g. short spike should not be visible in the

historical data). It was assumed that the window ∆tw=0.2 ms

was adequate for this purpose. The third stage (Stage III) is

included in the protection algorithm to ensure that protection

operation does not result from any sensor failure. If no sensor

failure is detected, Stage III initiates a tripping signal to the

CB. This stage is explained better in Subsection VI-C.

Fig. 2. Single-ended differential protection process.

B. Key Advantages

The proposed differential protection offers a number of

significant advantages compared to conventional differential

protection schemes, which typically require the use of time-

consuming encoding and decoding at each line terminal in

conjunction with dedicated communications schemes. These

advantages are inherently achieved through the single-ended,

multi-point sensing design of the proposed scheme.

Enhanced reliability: Considering a case of a sensor failure,

the proposed method can still operate with a reduced number

of sensors. This is not the case with a conventional differential

protection which would be completely disabled should one of

the measuring sensors fail. In this case, a back-up protection

would take action which would reduce the speed of operation

and potentially subject the system to higher and more sustained

fault currents [13], [19].

Superior stability: During external faults the energy in cable

capacitance discharges producing a short burst of differential

current. With conventional DC differential protection (one

measurement point for each cable termination) such a dis-

charge can compromise protection stability especially with

long transmission lines [20]. The differential current threshold

would have to be increased, or additional delay introduced

(as a ”wait and see” strategy) which would reduce protection

sensitivity and/or speed. Alternatively, such current would

have to be compensated which requires extra computation,

voltage measurements while the compensation is not always

successful [20]. The proposed protection effectively eliminates

the impact of cable capacitance by limiting the length of

each protected element to the distance between two adjacent

sensors.

High speed of operation: When an internal fault occurs, in

conventional differential protection there is latency because of

the travelling wave but also due to the time required for com-

municating the measured current to the remote end of the line

[5], [13]. This time comprises encoding, time-tagging, latency

and decoding. This time can amount to several milliseconds

which in HVDC systems is long enough to allow currents

to increase enough to exceed the breaking capability of the

existing DC breakers [5]. Additionally, such overcurrents can

seriously harm the diodes within the IGBTs of the converter

during the freewheeling state [3], [10]. The worst case scenario

is a close-up fault (also illustrated in Fig. 14) where the rate

of change of current is the highest and the signal delay the

longest (as it includes additional travelling wave delay to the

remote end). Again, with the single-ended distributed sensing

system there is no additional communication time delay, and

the delays resulting from travelling waves are limited to the

distance between two adjacent sensors, thus enabling ultra-

high speed of protection operation.

The aforementioned key advantages of the proposed protec-

tion scheme are demonstrated with the aid of simulations in

Section VI.

IV. MODELLING

A. MTDC Network

A five-terminal HVDC grid has been utilized in all case

studies as illustrated in Fig. 3. The system has been adopted

from the Twenties Project case study on DC grids [21].

There are five MMCs operating at ±400 kV (symmetric

monopole), hybrid CBs and current limiting inductors at each

transmission line end. The parameters of the AC and DC

network components are described in detail in Table I.

Fig. 3. Case study 5 terminal DC network integrating distributed sensing
networks

On each transmission line, optical sensors are installed

to accurately measure DC current every 30 km including
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the terminals. Therefore, the numbers of DC current sensors

are: seven, five, eleven, six and four on lines one to five

respectively. The arrows indicate the direction of power flow

from sending to receiving end of each line. It is emphasized

that the proposed method is not direction-dependent. Send-

ing/receiving end are used as a reference to better demon-

strate the protection performance in the following sections.

TABLE I
DC AND AC NETWORK PARAMETERS

Parameter Value

AC voltage [VAC,L−L] 400 kV

AC frequency [fn] 50 Hz

X/R ratio of AC networks 10

AC short-circuit level [Ss.c] 40 GVA

AC transformer reactance [LTR] 0.2 p.u.

DC line external inductance [LDC ] 150 mH

B. Modular Multilevel Converters

The models of power converters utilized in this paper are

based on 401-level Type 3 half bridge (HB) MMCs which

have been developed according to guidelines and approaches

described in [22]. Such representation has been validated

against fully detailed models and has been demonstrated to

accurately represent the converter behavior during steady-state,

transient and fault conditions while remaining numerically

stable and computationally efficient. Fig. 4 illustrates the

Type 3 equivalent for one phase. The converter response

is achieved through controlled voltage and current sources.

A fault controller is also included which bypasses the sub-

modules when the maximum current of the IGBTs is exceeded.

In this case the converter behaves like an uncontrolled rectifier.

Due to imbalanced voltage conditions, circulating currents are

generated inside each MMC which increase current stress,

introduce current distortion (arm currents), and produce ad-

ditional conduction losses. To eliminate such currents a pro-

portional resonant, circulating current suppression controller

(PR-CCSC), as described in [23], has been integrated into the

control system.

Fig. 4. Equivalent of the MMC Type 3 Model

The signals controlling voltage sources of the upper and

lower arm (in each phase) can be expressed by equations (3)

and (4) respectively.

VU = SU vCtot−U (3)

VL = SL vCtot−L (4)

SU , SL are the switching functions, while vCtot−U and

vCtot−L are the total sums of capacitor voltages (for upper

and lower arm respectively). Each MMC is operating at 800

kV (±400 kV), with an arm inductance of 0.1 p.u. and an

equivalent arm capacitance of 20.84 µF.

C. Circuit Breaker

The HVDC CB model represents a hybrid design by ABB

[24] as shown in Fig. 5. According to the manufacturer a

breaking time of 2 ms is achievable while the maximum rating

of the breaking current is 9 kA. During healthy operation the

current flows through the fast mechanical disconnector and the

load commutation switch. When a tripping signal is initiated,

the load commutation switch opens driving the current through

the commutation branch. This allows the fast mechanical

disconnector to open, as no current is flowing through its

contacts. In the next stage the commutation branch turns off,

resulting in over-voltage which causes the surge arrester to

operate. From this point the current flows through the surge

arrester, where energy is dissipated and the current gradually

falls to zero. For the purposes of DC CB modelling all power

electronic devices have been modelled as ideal switches with

zero resistance during their on-state. Additionally, a time delay

of 2 ms has been added to represent the operation time of the

breaker.

Fig. 5. Equivalent of Hybrid HVDC Breaker

D. Current Limiting Inductors

DC transmission lines are terminated with external induc-

tances LDC which limit the rate of rise of DC fault current

diDC/dt, and thus, provide additional fault detection time

required by the protection system (before the CB maximum

breaking current is reached). The inductor size was established

assuming the maximum current of 9 kA, and the sum of all

time delays before the current breaking begins calculated using

equation (5).

top = tCB + tmeas + tprocess (5)

where tCB is the operating time of the hybrid CB (2 ms),

tmeas is the delay associated with the remote measurement

wave propagation, and tprocess is the time allocated to signal

processing and decision making by the protective device.



5

For the calculation of time delays related to the remote

measurements, equation (6) has been used. The worst case

(longest delay) is a solid close-up fault (practically at 0km)

which results in 60 km, a distance the remote measurement

has to cover before it arrives at the local end (i.e. 30 km for

the current wave to travel to the remote sensor, and 30 km for

the measurement to travel back along the fiber optic cable).

A refractive index of 1.4682 was assumed for SMF-28 fiber

according to [25].

tmeas =
2 d2s
c/n

=
60 [km]

299,792.5 [km/s]
1.4682

≃ 0.3 [ms] (6)

where d2s is the distance between two sensors, c is the

speed of light in vacuum and n is the refraction index of

optical fiber. Taking into account 1 ms for signal processing

and decision making, the total estimated time delay is 3.3 ms.

With 9 kA as the maximum breaking current and 3.3 ms as the

total operation time top, the current rise rate diDC/dt should

be less than 2.73 kA/ms. Based on the proposed ±400 kV

network and for a solid fault at any busbar, the theoretical

value of the inductor is calculated according to equation 7.

LDC ≥ ∆V
diDC/dt ≥

400 kV
2.73 kA/ms → LDC ≥ 146.5 mH (7)

where the LDC is the inductor value, ∆V is the inductor

voltage and diDC/dt the DC current rise rate. For clarity,

Fig. 6 illustrates simulation results for a P-P fault at busbar 1,

trigerred at t = 0 ms with 2 ms post fault data for different

inductance values.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
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  25 mH
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Fig. 6. Rate of rise of DC current with different inductance values, for P-P
fault at busbar 1.

Table II presents the time required to reach 9 kA for the

inductances illustrated in Fig. 6. As calculated by equation 7

it is therefore verified that the inductance value of 150 mH
is the most appropriate option.

TABLE II
TIME INDICES AT 9 KA

Inductance [mH] 0 10 25 50 100 150 200

Time [ms] 0.22 0.60 0.93 1.49 2.70 3.97 5.31

V. OPTICAL SENSING TECHNOLOGY

Hybrid optical voltage and current sensors have previously

been developed by the authors [26]–[28] to enable remote AC

and DC voltage and current measurements in various metering

and protection applications including distance and differential

protection [29]–[32]. It will be shown in the following sec-

tions that the optical sensors technology is suitable for rapid

detection of faults in HVDC circuits.

A. Fiber Bragg Gratings

Fiber Bragg Grating (FBG) sensors are formed by periodic

modulation of the refractive index along an optical fiber core

over a length of 5-20 mm. When such a structure is illuminated

by a broadband light, it reflects a relatively narrow part of the

incident light spectrum with a distinctive peak in the light

intensity around the so called Bragg wavelength, λB . The

spectral position of the peak is determined during the sensor

fabrication process and described by the following relation:

λB = 2 neff Λ (8)

where neff is the effective refractive index of the FBG

section and Λ is the grating period. Any relative change in the

grating period due to longitudinal elongation or contraction

of the fiber causes spectral shift of the FBG peak. Since the

refractive index of the fiber is a function of temperature, the

FBG peak spectral position is also temperature dependent.

A relative change in the FBG peak wavelength, ∆λB/λB ,

due to a change in strain, ∆ǫ, and temperature, ∆T , can be

expressed by

∆λB = Cǫ∆ǫ+ CT∆T (9)

where Cǫ and CT are the strain and temperature sensitivities

[33].

B. Hybrid FBG-based voltage and current sensors

In this study, four FBGs inscribed in polyimide coated

fibers, having a length of 7 mm, a bandwidth of 0.3 nm

and peak wavelengths at 1539.60, 1551.56, 1554.72 and

1557.38 nm (as shown in Fig. 7) were utilized to build four

hybrid low voltage sensors in order to prove the principle of

the new protection scheme.

Fig. 7. FBGs spectra.

To construct a hybrid low voltage sensor, a 9 mm low

voltage stack, P-883.11 PICMA from Physik Instrumente Ltd

[34] having a maximum AC operating voltage of 30 Vpk

(21.21 Vrms) was fixed between two alumina end blocks and

an FBG sensor was pre-tensioned and epoxied to the ceramic

blocks using EPO-TEK R© 353ND. The sensor construction is

shown in Fig. 8. Providing there is no mechanical stress in the
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piezoelectric material, the strain (i.e. relative elongation ∆l/l)
induced by an external electric field is given by

ǫ = d33E = d33
V

l
(10)

where d33 is the longitudinal piezoelectric charge constant,

E is the electric field, V is the voltage applied across the

piezoelectric material and l is the length of the material [26].

A voltage applied across the stack generates strain which is

exerted on the FBG producing a corresponding shift in its peak

wavelength. Thus, the peak wavelength shift can be calibrated

in terms of voltage [26].

Fig. 8. Hybrid FBG-based voltage sensor.

By monitoring voltage across a burden resistor connected

to the output of a conventional current transformer (CT), an

AC optical current sensor can be realized whereby the FBG

wavelength shift may be related to current [27]. Ultimately, by

replacing a piezoelectric component with a magnetostrictive

transducer, a DC current sensor can be realized [28], which

would be a device of choice for the final deployment of this

system. Light, composite insulators can be used to provide the

means of guiding optical fiber between the sensors (installed

directly on the conductor) and the pole which is at ground

potential. Optical fiber would be provided in a trench alongside

the HVDC transmission line, or in some cases may be inte-

grated within the conductors or wrapped around conductors

(very common in AC systems).

C. Experimental Setup

A diagram of the experimental set-up utilized for practical

validation of the proposed scheme is shown in Fig. 9. For

representative purposes and to manage expense associated with

the experimental setup, four sensors have been used with the

assumption that they are distributed evenly along the 300

km transmission line (DC Line 3 in the network shown in

Fig. 3). Pre-simulated fault currents at corresponding four

locations along the transmission line were used to produce

replica voltage waveforms (generated directly from a multi-

function data acquisition card). These voltage traces (which

represent the DC line currents) were physically input to the

optical sensors and the sampled data obtained from the optical

interrogation system was stored on a PC for processing by the

protection system algorithm developed in Simulink.

To simplify the experimental circuitry FBG optical voltage

sensors were used instead of current sensors. The FBGs were

optically connected to a commercial SmartScan interrogator

(Smart Fibres) offering a scanning speed of 2.5 kHz over

a spectral range of 1528-1568 nm. To increase the scanning

Fig. 9. Experimental setup diagram. Fault occurrence is shown between
sensors S1 and S2 at 50 km.

speed, the device’s maximum wavelength range was narrowed

to 1538-1558 nm and the optical signals reflected from the

sensors were acquired at a frequency of 5 kHz. A PXIe-8106

controller and a 16-bit PXIe-6259 data acquisition card (both

from National Instruments) were used for generating signals

utilized for driving the voltage sensors. The card offers 16

analogue inputs that can be scanned at a maximum sampling

rate of 1.25 MS/s and 4 analogue outputs with a maximum

update rate of 2.8 MS/s. The maximum DC voltage range for

the input and output channels is ±10V.

Fig. 10. Laboratory experimental setup.

To protect the piezoelectric component from depolarization

and degradation due to overvoltage conditions, a transient

voltage suppression (TVS) diode was connected between the

component terminals (not shown in Fig. 8) [33].

Prior to testing the low voltage sensors were characterized

and calibrated. A DC voltage was applied across the piezoelec-

tric transducers in 1V steps within a range of ±10V. The FBG

peak wavelengths were then recorded for all corresponding

voltages. The inverted function was then used to calibrate

wavelength shifts in terms of voltage. The actual experimental

setup is depicted in Fig. 10.

VI. SIMULATION AND EXPERIMENTAL RESULTS

In this section simulation results are presented which quan-

tify the performance of the proposed protection scheme. All

presented waveforms use the convention for current direction

as indicated in Fig. 3.
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A. Sensitivity to Internal Fault

In Fig. 11 the protection response to a fault occurring at 50

km from terminal T1 on DC line 1 (internal fault) is illustrated.

The fault is triggered at t = 100 ms. During this fault which

is physically located between sensors S2 and S3, it can be seen

that the differential current derived from the measurements of

these two sensors is increasing rapidly (Fig. 11(a)), exceeding

the protection threshold, and thus, fulfilling the first operation

criterion. Since the fault is internal, it can be seen that prior

to the fault detection the rate of change diDC/dt for both

currents (sensors S2 and S3) are non-zero (Fig. 11(b)) which

indicates the satisfaction of the second criterion. A tripping

signal is initiated by the third criterion (Stage III), however it

is not illustrated here due to space limitations. The fault current

interruption process is illustrated in Fig. 11(c) and Fig. 11(d)

for sending and receiving end of DC Line 1 respectively.

Before the breaker operates the current flows through the

commutation branch. After the fast mechanical disconnector

opens the current flows through the surge arrester where it

gradually reduces to zero and the interruption process is finally

complete. It can be seen that after the initiation of the tripping

signal, it takes 2 ms for the breaker to operate.
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Fig. 11. P-P fault at DC Line 1. (a) Differential currents as seen by sending
end of DC Line 1, (b) Rate of change of DC current for sensor S2 and S3

as seen by sending end of DC Line 1, (c) Fault current interruption in hybrid
CB1, (d) Fault current interruption in hybrid CB2.

B. External fault

In order to demonstrate the superior stability mentioned

in Subsection III-B an external busbar P-P fault (as seen by

the protection system of DC Line 1) has been applied at T3.

Fig. 12 illustrates the differential currents as calculated by the

proposed protection scheme (i.e. obtained from two adjacent

sensors S3 and S4) and a conventional differential protection

(i.e. two measuring points at opposite ends of the line).
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Fig. 12. Differential currents for external P-P busbar fault at T3 as seen by
the DC Line 1 protection.

During an external fault the cable capacitance between

two measurement points discharges to the fault, producing a

short temporary burst of differential current. The longer the

distance between the measurement points, the higher the cable

capacitance, hence the higher the magnitude of this temporary

differential current. For the proposed protection scheme, such

differential current is limited by the capacitance between two

sensing points (i.e. 30 km) as demonstrated in Fig. 12. The

differential current as calculated by a conventional differential

protection scheme is much higher due to the inclusion of the

entire line capacitance. In order for the protection system to

remain stable during such external faults a threshold (and

probably a time delay) is required to be included in the

algorithm, which in the case of a conventional scheme would

be much higher, leading to a sensitivity loss. DC busbar faults

are assumed to be cleared by dedicated DC busbar protection

and are not considered in this paper. Such faults are expected

to be detected almost instantaneously, and the clearance time

is only affected by the operation time of the DC breaker [13].

C. Sensor Failure

Fig. 13 depicts a case where the fourth sensor on DC Line

1 fails. This is emulated by artificially driving the current

measurement to zero (worst case scenario) at t = 100ms.

Such a change is expected to make an impact on all of the

differential currents calculated measurements from the fourth

sensor (i.e. Idiff(S3−S4), Idiff(S4−S5)).
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Fig. 13. Differential currents as seen by DC Line 1 protection considering a
failure of the fourth sensor.

The key to detection of a sensor failure is the comparison

of the differential current (e.g. Idiff(S3−S4)) at the time
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instant when Stage I operates with an adjacent differential

current (Idiff(S4−S5)). As Fig. 13 illustrates, such currents

are expected to have similar amplitudes but opposite polarity.

A comparison tolerance of ±10% is included to improve re-

liability of sensor failure detection. Consequently, no tripping

has been observed in this case. This criterion is used in Stage

III in the protection algorithm as illustrated in Fig. 2.

D. Speed of Operation

In order to demonstrate the advantage in operation speed

a fault has been applied to DC Line 1 at a distance of 10

km from the sending end. The proposed protection scheme

has been compared against a conventional differential scheme

(as described in [13]) in terms of fault detection time and

the maximum current flowing through the CB and the IGBTs

of MMC1. It is assumed that the conventional differential

scheme utilizes two current measurements (one from each end

of the line) and uses the same differential current threshold

and transmission medium (with the same propagation speed)

as is applied in the proposed scheme. Time delay associated

with the conventional scheme was assumed to be 1.5 ms as

illustrated in Fig. 14. Such delay corresponds to the time

(tprop.) required for the measured change in currents due

to the fault propagating to the remote end R2 and the time

(tcom.) to send the measurement back to the local end R1 via

fiber optic cable. Additional delays associated with local signal

processing have been ignored.

TABLE III
COMPARISON OF THE PROPOSED AND CONVENTIONAL DIFFERENTIAL

PROTECTION SCHEME FOR A P-P FAULT AT 10 KM ON DC LINE 1

Protection
scheme

CB trip
time [ms]

Maximum current [kA]
CB IGBT

Conventional 2.98 8.15 2.92

Proposed 1.32 7.08 2.13

The results in Table III clearly demonstrate the advantage

of the proposed scheme both in terms of speed of operation

and the current levels imposed upon the CB and IGBTs.

Even though CBs and IGBTs can have their own dedicated

protective system [10], [35] a reduced current and hence

thermal stress is always favorable.

Fig. 14. Illustration of time delays associated with conventional differential
scheme during close-up faults.

E. Fault Types

Tables IV and V illustrate simulation results for P-P and

P-G faults respectively, for different distances along all trans-

mission lines. It can be seen that in all cases only the required

breakers operate, proving high selectivity of the scheme. It is

also important to report that the CB current never exceeds 9

kA as required and discussed in section IV-C. This verifies the

importance of the inductive terminations of the transmission

lines. For P-G faults the protection system has been tested

with ground fault resistances of up to 300 Ω and the protection

scheme has been found to successfully and correctly operate

in all cases.

TABLE IV
PROTECTION SYSTEM PERFORMANCE RESULTS FOR P-P FAULTS

Line
Distance

[km]
Breakers
operated

Sending end Receiving end

CB trip
time [ms]

CB max.
current

[kA]

CB trip
time [ms]

CB max.
current

[kA]

1

1 CB1, CB2 1.329 7.45 2.075 4.07
90 CB1, CB2 1.525 5.12 1.675 5.28
120 CB1, CB2 1.677 5.41 1.525 5.82
179 CB1, CB2 2.074 4.44 1.331 7.07

2

1 CB3, CB4 1.327 7.49 1.775 5.17
25 CB3, CB4 1.280 6.47 1.730 5.00
60 CB3, CB4 1.373 5.97 1.524 5.81
119 CB3, CB4 1.774 5.56 1.326 7.06

3

1 CB5, CB6 1.328 7.44 2.076 4.10
150 CB5, CB6 1.523 5.11 1.676 5.30
250 CB5, CB6 1.674 5.38 1.526 5.83
299 CB5, CB6 2.073 4.43 1.327 7.04

4

1 CB7, CB8 1.332 8.03 1.925 3.80
75 CB7, CB8 1.521 6.46 1.520 4.75
100 CB7, CB8 1.670 5.84 1.375 5.06
149 CB7, CB8 1.928 5.46 1.323 6.44

5
1 CB9, CB10 1.325 7.33 1.630 5.20

45 CB9, CB10 1.376 6.18 1.374 5.73
89 CB9, CB10 1.631 5.64 1.330 6.98

TABLE V
PROTECTION SYSTEM PERFORMANCE RESULTS FOR P-G FAULTS

Line
Distance

[km]
Breakers
operated

Sending end Receiving end

CB trip
time [ms]

CB max.
current

[kA]

CB trip
time [ms]

CB max.
current

[kA]

1

1 CB1, CB2 1.382 1.65 2.125 1.05
90 CB1, CB2 1.565 1.40 1.715 1.12
120 CB1, CB2 1.714 1.42 1.567 1.19
179 CB1, CB2 2.128 1.38 1.380 1.43

2

1 CB3, CB4 1.377 2.12 1.820 0.98
25 CB3, CB4 1.330 2.03 1.780 1.03
60 CB3, CB4 1.420 1.84 1.566 1.04
119 CB3, CB4 1.830 1.75 1.381 1.22

3

1 CB5, CB6 1.376 2.27 2.715 0.96
150 CB5, CB6 1.865 1.67 2.015 1.09
250 CB5, CB6 2.460 1.60 1.418 1.37
299 CB5, CB6 2.725 1.50 1.388 1.47

4

1 CB7, CB8 1.385 2.35 1.975 0.82
75 CB7, CB8 1.568 1.91 1.565 0.84
100 CB7, CB8 1.717 2.02 1.416 0.94
149 CB7, CB8 1.970 2.01 1.375 1.07

5
1 CB9, CB10 1.400 0.81 1.700 1.08

45 CB9, CB10 1.415 0.74 1.414 1.13
89 CB9, CB10 1.680 0.86 1.383 1.25

F. Transmission Line Length

In order to assess the potential effect of the line length on

operation of the proposed scheme the length of DC Line 3

in the network shown in Fig. 3 has been modified to cover

600 km and 1200 km long power transmission. Table VI

presents the results for P-P fault at different locations along

the line. Similar results have been obtained for P-G faults,

and therefore, these are not included in the paper due to space

limitations.

In all cases only the CBs related to DC Line 3 operate (i.e

CB5 & CB6) proving that the scheme preserves high level

of selectivity and speed of operation, even with very long

transmission lines.
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TABLE VI
PROTECTION SYSTEM PERFORMANCE RESULTS FOR P-P FAULTS FOR

LONGER DC CABLES

Length
[km]

Distance
[km]

Breakers
operated

Sending end Receiving end

CB trip
time [ms]

CB max.
current

[kA]

CB trip
time [ms]

CB max.
current

[kA]

600

5 CB5, CB6 1.330 6.48 4.165 2.18
50 CB5, CB6 1.380 5.43 3.915 2.22

150 CB5, CB6 1.830 4.08 3.470 2.36
300 CB5, CB6 2.575 3.70 2.725 3.59
400 CB5, CB6 3.170 3.07 2.125 3.96
500 CB5, CB6 3.615 2.87 1.680 4.34
595 CB5, CB6 4.165 2.43 1.330 6.16

1200

10 CB5, CB6 1.322 6.27 7.139 2.19
50 CB5, CB6 1.380 5.39 6.900 2.24

500 CB5, CB6 3.615 2.87 4.660 2.36
600 CB5, CB6 4.065 2.53 4.215 2.41
800 CB5, CB6 5.110 2.54 3.170 2.95
1000 CB5, CB6 6.155 2.48 2.130 3.97
1190 CB5, CB6 7.135 2.35 1.320 6.05

G. Experimental Results

The measured response of the optical sensors and the

protection system to an internal fault at DC Line 3 occurring

at 50 km is shown in Fig. 15. The recorded DC voltages are

scaled down replicas of the DC Line currents which were pre-

simulated and physically generated in real-time using a data

acquisition card within its output range of ±10V (refer to

Fig. 15(a)). These voltages were then recorded by the FBG-

based voltage sensors as shown in Fig. 15(b). The differential

voltages shown in Fig. 15(c) (corresponding to the differential

currents in the primary power system) were calculated and

used for fault detection according to the proposed algorithm.
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Fig. 15. FBG and protection response for pre-simulated fault at line 3 at
50km. (a) DC voltages corresponding to scaled DC cable currents, (b) FBG
sensor voltages, (c) Differential voltages based on FBG sensors.

VII. CONCLUSIONS

In this paper a new single-end differential protection scheme

has been described which utilizes the principle of distributed

optical sensing. It has been found that the proposed scheme

can correctly operate for all types of faults, providing fast

and discriminative protection for HVDC transmission systems.

This has been demonstrated in detailed transient simulation,

and further validated using a scaled down laboratory prototype

of the proposed differential scheme. The key advantages of

single-ended instantaneous current measurement have been

outlined which result in enhanced reliability, superior stability,

and high speed of operation. The design, construction and

operating principles of the hybrid optical sensors have been

discussed in the paper with specific emphasis on the practical

aspects of implementing such sensors in distributed monitoring

of transmission lines. In order to demonstrate the practical

feasibility of the scheme, the pre-simulated fault current wave-

forms have been converted to analogue voltages on a multi-

function data acquisition card, and coupled directly to four

optical voltage sensors during the experiments, imitating a

scheme with four measuring points distributed along a 300

km DC transmission line. The response of the optical sensors

and the protection system to an internal fault at DC line 3

(occurring 50 km from the sending end of the line) have

proven that the proposed protection scheme is suitable for

rapid fault detection and can, therefore, be considered as a

viable option for protection of future HVDC circuits, including

multi-terminal systems.
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