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Abstract 

This Thesis investigates the design of Ge-on-Si single-photon avalanche diode (SPAD) 

detectors combining the many advantages of low-noise Si single-photon avalanche 

multiplication with the infrared sensing capability of germanium. The devices were 

simulated by using electric field modelling software to predict key aspects of the device 

behaviour in terms of the current-voltage characteristic and electric field. 

The devices were then characterised in terms of their single-photon performance. A 25 

m diameter device showed a single-photon detection efficiency of ~ 4 % at a 

wavelength of 1310 nm and a temperature of 100 K when biased at 10 % above the 

breakdown voltage. In the same condition, a dark count rate of ~ 6 Mcs
-1

 was measured. 

This resulted in the lowest noise equivalent power of ~ 1 × 10
-14

 WHz
-1/2

 of Ge-on-Si 

SPADs reported in the scientific literature. At the longer wavelength of 1550 nm, the 

single-photon detection efficiency was reduced to ~ 0.1 % at 125 K and 6 % of relative 

excess bias. Although further investigation needs to be carried out, a potential major 

advantage of these devices compared to the InGaAs/InP SPADs could be that of 

reduced afterpulsing since a small increase (a factor of 2) in the normalised dark count 

rate was measured when the repetition rate was increased from 1 kHz to 1 MHz.   

Finally, the fill-factor enhancement of 32 × 32 Si CMOS SPAD arrays resulting from 

the integration of high efficiency diffractive optical microlens arrays was investigated. 

A full characterisation of SPAD arrays integrating microlens arrays in terms of 

improvement factor and spatial uniformity of detection is  presented for the first time in 

the scientific literature in a large spectral range (500-900 nm) and different f-numbers 

(from f/2 to f/22) by using a double telecentric imaging system. The highest 

improvement factor of ~16 was measured for a SPAD array integrating microlens 

arrays, combined with a very high spatial efficiency uniformity of between 2–6%.   
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Chapter 1 – Introduction 

Exactly 50 years ago, Gordon Moore predicted that the number of transistors in an 

integrated circuit (IC) doubles roughly every eighteen months [1]. This prediction is 

better known as Moore’s law. The main reason behind the success of the Moore’s law is 

the technology scaling which has been favourably exploited from many silicon IC 

technologies, such as silicon complementary metal oxide semiconductor (Si-CMOS) 

technology. Therefore, technology scaling permits a high density of integration, tens of 

millions of CMOS transistor on chip, and today it is possible to speak of Deep Sub 

Micron (DSM) and Ultra-DSM technologies. However, as the feature size decreases 

below 100 nm, the gain in the performance obtained from shrinking the size of the 

devices is reduced. This is mainly due to two reasons: the RC delay and heat 

dissipation.  

As predicted from the ITRS (International Technology Roadmap for Semiconductor), 

the metallic interconnection represents the main problem since the RC delay becomes 

very important, as shown in Figure 1 [2]. The RC time constant of a wire defines the 

maximum frequency (which is proportional to 1/RC) of the transmitted signal through a 

wire of a defined length. This depends on the resistance and capacitance per unit length. 

Both parameters, and hence the RC delay, increase with the shrinkage of the feature 

size. The RC delay does not only limit the overall frequency of the chip, but it also 

induces the de-synchronisation of the signals in the clock distribution, and increases the 

bit error rate [3].  

The power dissipation in an information-processing system is a major limitation at 

many levels, including those related to CMOS chips. The ITRS stated that the amount 

of heat that can be removed from a chip in a cost-effective manner is about to saturate at 

approximately 200 W. Power dissipation is a problem that directly limits the 

performance of chips, and its increase is thus a significant factor in system economics 

and the environmental impact of information technology [4].   
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Figure 1. The gate delay and interconnect delay as a function of feature size for 

Al/SiO2 and Cu/low k dielectric CMOS technology. 

In this context, different solutions have been proposed to overcome these limitations. 

Silicon as emerged as an efficient material system for building photonics devices as 

well as electronic devices. The early applications of silicon photonics are in digital data 

communications. By substituting the metallic wires with optical waveguides, not only 

can the bandwidth of data transmission be increased, but the heat dissipation can be also 

greatly reduced, since, in principle, photons do not generate any heat when they 

propagate in a waveguide. The main advantage of silicon photonics that has emerged 

over the past 50 years is the possibility to develop processes that permit the re-use of 

CMOS fabrication infrastructure in order to build complex photonic circuits in which 

information is transferred seamlessly from the electronic to the optical domains and 

back again [5], [6]. The main constraints associated with CMOS refer to the materials 

that are not compatible with the CMOS process, and both process and circuits must be 

designed in such a way that processing them will not harm or contaminate the tools. 

Although different photonics devices have been fabricated and demonstrated separately, 

these devices can be interfaced to one another with standard optical fibres and 

connectors. However, high cost and loss emerge from the photonic packaging process 

which requires a severe alignment procedure with submicron accuracy. In order to 

achieve high performance and low-cost optical links, it is desirable to integrate optical 

components such as photodetectors, light sources and modulators on the same silicon 

chip, and silicon is a very attractive platform for photonic integrated circuits. 
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In addition, beyond data communications, there are a huge number of new applications 

that rely on silicon photonics being explored in both commercial and academic worlds 

such as quantum information and imaging technologies, condensed matter physics, 

biosensing, etc. Therefore, silicon photonics might offer a robust platform for the 

monolithic integration of optics and microelectronics on the same silicon chip by using 

the same fabrication facilities used for CMOS processes. 

In particular, quantum technology exploits the quantum-mechanical phenomena to 

provide new techniques for sensing, measurements, information processing, data 

transmission and storage. This technology is driven by advances in technology and 

experimental capability obtained in the last decade or so. This is also confirmed by the 

considerable investment for the development of such technology. For example, it is 

worthwhile to mention the National Quantum Technology Programme from the UK 

Government with the aim of stimulating the development of commercial applications 

and markets for quantum technologies. 

A direct consequence of this, is the demand of extremely sensitive devices capable of 

registering the elemental quantum of light, referred to as photons [7]. Such class of 

detectors, referred as single-photon detectors, are used in a wide range of time-

correlated single-photon counting (TCSPC) applications such as quantum key 

distribution (QKD), time-of-flight, light detection and ranging (LiDAR), etc.. Different 

technologies have been used to detect single-photons such as photomultiplier tubes, 

microchannel plates, superconducting nanowires, and single-photon avalanche detectors 

(SPADs). 

Among the various choices, SPADs tend to be preferred because of their intrinsic 

advantages that are typical of solid state devices, such as low power consumption, 

miniature size, low bias voltages, reduced magnetic field susceptibility, reliability, and 

low cost [8], [9]. Although Si represents the best material choice for all the 

aforementioned advantages, it is also the best material for avalanche multiplication due 

to its large ratio of electron to hole impact ionisation rates. Si SPADs now represent a 

commercially available technology, and can be classified into two distinct groups: those 

that are fabricated using customized processing techniques and those fabricated using 

CMOS compatible approaches. 

Standard CMOS fabrication processes from the microelectronic industry offer 

significant advantages in terms of the routine on-chip integration with the electronics 
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required for photon-counting and photon-timing techniques. This efficient integration 

allows the possibility of fabrication of two-dimensional SPAD-based focal plane arrays. 

However, the detection of light in silicon is intrinsically limited to wavelengths below 1 

m. Therefore, for operation in the low loss fibre optical windows at around 1.3 m and 

1.55 m other semiconductors must be used.  

Near infrared single-photon detection is of interest in many applications. Although 

QKD can be accomplished at shorter wavelengths compatible with Si SPADs [10], it is 

preferable to work in the low attenuation windows of standard optical fibres [11]. 

Applications such  laser ranging also benefit from the decreased attenuation through air 

as well as the low solar background radiation at these wavelengths [12]. Near-infrared is 

also used in the monitoring of microscopic biological system such as singlet oxygen 

generation (
1
O2) which fluoresces at a wavelength of 1270 nm beyond the detection 

range of Si SPADs [13]. Therefore, the development of low-noise SPADs in this 

spectral region is required. The best currently available practical detectors, operating at 

near-room temperature and a wavelengths in the range of 1 – 1.7 m, are InGaAs/InP 

SPADs. These devices have demonstrated good single-photon performance, and they 

are commercially available from different sources such as Princeton Lightwave, 

MicroPhoton Device (MPD), etc. However, this class of detectors is not compatible 

with CMOS technology, they are expensive and one of their major drawbacks is 

represented by the deleterious effect of afterpulsing which significantly reduces the 

frequency of operation of the devices to be below 100 kHz. 

Germanium has been shown to be a promising material for near-infrared detection on 

Si. The direct band gap of Ge is 0.8 eV, corresponding to 1550 nm. SiGe technology 

has already been applied for bipolar transistors, and therefore the material has proved to 

be fully compatible with Si electronic technology. A big challenge for the integration of 

Ge on Si is represented by the 4% lattice mismatch between the two materials. 

However, the development of SiGe buffer layers and two-temperature steps of pure Ge 

on Si has been used to overcome this problem. In terms of single-photon detectors, the 

first Ge-containing Si SPAD was demonstrated by Loudon et al. [14], who showed an 

improvement of detection efficiency at 1200 nm (above the Si wavelength cut-off). Pure 

Ge-on-Si SPADs have been reported on only a few occasions. In this context, the 

research presented in this thesis is aimed at filling this gap by investigating the design of 

a Ge-on-Si SPADs in order to combine the several advantages of low-noise Si single-

photon avalanche multiplication with the infrared sensing capability of germanium. 
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In addition, Ge does not suffer from the same contamination processes as InGaAs, and 

its compatibility with the CMOS technology (mainly to make high-speed transistors) 

has been already demonstrated. Furthermore, Ge-on-Si CMOS imagers (768×600 

pixels) for near-infrared detection has been fabricated and commercialised by 

NoblePeak Vision which is a company based in USA [17]. A monolithic CMOS imager 

with Ge detectors (incorporate in the CMOS process using selective epitaxial growth) 

fabricated within a conventional 180 nm CMOS foundry process was demonstrated 

[17]. Although each pixel consisted of a lateral p-i-n whole Ge detector, the main 

advantage arising from the integration of Ge with standard CMOS technologies was 

successfully proved. 

Chapter 2 describes the physics of different photodetector structures and outlines the 

main parameters that must be considered during their design. The main focus is given to 

the avalanche photodiodes and single-photon detectors. Although, there are many 

common points between these two structures, they have been designed to satisfy 

different performance requirements. In particular, the key figures of merit of a SPAD 

such as dark count rate, single-photon detection efficiency, noise equivalent power, 

afterpulsing and jitter are then introduced.  

Chapter 3 firstly provides an explanation of the choice of materials for near-infrared 

detection and then focuses on the integration between these materials and Si. In 

particular, it discusses the several problems which arise from the lattice mismatch, and 

then reviews the different solutions used to overcome this problem. Hence, the main 

attention is given to the Ge-on-Si hetero-epitaxial system. Finally, a literature review on 

the integration of near-infrared photodetectors on silicon is presented with the main 

emphasis given to the single-photon detector technologies which are used in the near-

infrared wavelength range. 

Chapter 4 describes the criteria that were used for the design of the Ge-on-Si SACM 

structure presented in this work. The devices were modelled using a commercially 

available software package (Silvaco ATLAS), and hence the results of simulations are 

presented. Since different Ge-on-Si SPAD generations were grown and analysed, 

experimental data are given for those obtained from the capacitance-voltage 

measurements and SIMS measurements used in the modelling software in order to 

evaluate their impact on the designed structure. 
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Chapter 5 firstly introduces the growth and fabrication process involved for the device 

development, and then describes the preliminary devices characterisation in terms of I-

V characteristics in order to evaluate the main mechanisms which contributed to the 

leakage current. The Time Correlated Single-Photon Counting (TCSPC) setup used for 

the single-photon characterisation of these devices in terms of single-photon detection 

efficiency, dark count rate, noise equivalent power, time jitter and afterpulsing is then 

described. 

Chapter 6 describes the main advantages introduced by the fabrication of Si SPAD by 

using the standard CMOS fabrication processes. From the early 2000s, several research 

groups have explored the design of a monolithically integrated single-photon imaging 

system in high-voltage (HV) and standard deep-sub-micron (DSM) CMOS technologies 

[15], [16]. Two-dimensional CMOS SPAD-based focal plane arrays generally suffer 

from low fill-factor of the detector photo-sensitive area compared to the overall detector 

pixel area. Diffractive microlens arrays have been used in this work with the aim of 

recovering this loss of sensitivity, and the microlens design and integration process is so 

described in the chapter. Additionally, the experimental setup used for the 

characterisation of the SPAD arrays integrating the microlens array is given, and the 

main finding in terms of improvement factor and spatial uniformity of detection are 

finally presented. 

Chapter 7 summarises the conclusions pointed out for each chapter and describes future 

work in these areas.  
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Chapter 2 – Physics of photodiodes 

2.1 Introduction 

Photodiodes belong to the category of light sensors or detectors, whose task is to 

convert an optical signal into an electrical signal. As already discussed in Chapter 1, 

there are a huge number of applications that require that this conversion procedure is 

performed with certain requirements in terms of sensitivity, bandwidth, power, signal-to 

noise, etc. To meet these constraints in terms of performance, different photodiode 

structures have been proposed and demonstrated in the past century. Therefore, 

understanding the physics of these devices represents a key point for designing new 

structures that always satisfy more and more stringent requirements. Starting from the 

physics of the p-n junction, which represents the most basic semiconductor photodiode 

structure, this chapter will analyse the advantages or disadvantages of more complex 

structures, such as the p-i-n and the avalanche photodiodes. This analysis requires the 

introduction of their most important performance characteristics such as the leakage 

current, responsivity, bandwidth, signal-to-noise, etc. Finally, the single-photon detector 

will be introduced, which represents an avalanche photodiode operating in Geiger 

mode, that must satisfy new requirements in terms of dark count rate, single-photon 

detection efficiency, noise equivalent power, timing jitter and afterpulsing.    

2.2 Physics of p-n and p-i-n photodiodes 

Photodiodes convert a light signal to an electrical signal such as a voltage or current 

pulse. This conversion is achieved by the creation of free electron hole pairs (EHPs) by 

the absorption of photons, that is, the creation of electrons in the conduction band and 

holes in the valence band. A basic photodiode is represented by the p-n junction, which 

is created by putting two pieces of semiconductor in contact, a p type (with an acceptor 

concentration Na) and an n type (with a donor concentration Nd). 

In the equilibrium condition, the strong difference of doping concentration at the 

interface between the two materials leads to a diffusion of the charge carriers. Holes 

diffuse from the p-side to the n-side, while electrons diffuse in the opposite direction. In 

proximity to the interface, holes and electrons on the p and n-side, respectively, leave 

negative ion acceptors (𝑁𝑎
−) and positive ion donors (𝑁𝑑

+). Due to this phenomenon, a 

space charge region (or depletion region) is created at the junction, negative from the p-

side, with an extension equal to Wp and, positive from the n-side (Wn). Therefore, an 
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electric field (E) is generated in the vicinity of the interface between the two regions, as 

shown in Figure 2.1. 

 

Figure 2.1. Schematic of a p-n junction at equilibrium.  

Because of the effect of the electric field, two drift currents are created: holes drift from 

the right side to the left side (opposite to the hole diffusion component) and electrons 

drift in the opposite direction (opposite to the electron diffusion component). In 

equilibrium, the net flux of current through the junction is zero (there is a balance 

between the current drift component due to the electric field and, the current diffusion 

component due to different doping concentrations). The Fermi level is constant through 

the two semiconductor regions (Figure 2.1) and, this determines a built-in potential at 

the junction, which can be expressed by 

𝑉𝑏𝑖 =
𝑘𝐵𝑇

𝑞
ln (

𝑁𝑎𝑁𝑑

𝑛𝑖
2 )                                                                                                              (2.1) 

where kB is the Boltzmann’s constant, T the temperature and, 𝑛𝑖 is the intrinsic carrier 

concentration. In one dimension, the profile of the electric field can be calculated by 

using Poisson’s equation 

𝑑𝐸

𝑑𝑥
=

𝜌(𝑥)

𝜀
                                                                                                                                 (2.2) 



 

10 

 

where is the density of space charge equal to 𝑞𝑁𝑑 and −𝑞𝑁𝑎 for the n and p side, 

respectively and,  is the dielectric permittivity of the semiconductor. The electric field 

is then obtained integrating equation 2.2 over the space charge region with boundary 

conditions of 𝐸 = 0 in the neutral regions (outside the space charge region in the p and 

n side). Considering the condition for which 𝑁𝑎 ≫ 𝑁𝑑 (asymmetric junction), the 

depletion region will be extended more on the n side than the p side leading to an 

electric field more confined in the n side.  

If an external reverse bias Vr (negative on the p side and positive on the n side) is 

applied, the negative terminal will cause holes in the p-side to move away from the 

depletion region, which results in more exposed negative acceptor ions and thus wider 

depletion region. Similarly, the positive terminal will attract electrons away from the 

depletion region, which exposes more positive charged ions. The depletion width on the 

n-side therefore also widens. The electric field dropping across the junction is, 

therefore, the sum of the electric field associated to the depletion region (E0) plus the 

electric field due to the external reverse bias (E), as shown in Figure 2.2. The voltage 

drops mainly across the resistive depletion region which becomes wider on both sides.  

 

Figure 2.2. Schematic of a p-n junction with the associated electric field when a 

reverse bias Vr is applied. 

There is a small reverse current due to two causes: 

1. there is a small hole diffusion current from the bulk n-side, where the holes are 

at equilibrium with a concentration equal to pn0, to the depletion region. The 
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reduction of the hole concentration near to the depletion region is related to their 

diffusion length Lh. Because of this small concentration gradient, a small hole 

diffusion current exists. Within the depletion region, these carriers are swept by 

the field across the depletion region over to the p-side. Similarly, for electrons 

on the p-side. This phenomenon leads to a reverse saturation current density, 

which can be expressed by 

𝐽𝑠 = 𝑞 (
𝐷𝑒

𝐿𝑒
𝑛𝑝0 +

𝐷ℎ

𝐿ℎ
𝑝𝑛0) = 𝑞(

𝐷𝑒

𝐿𝑒𝑁𝑑
+

𝐷ℎ

𝐿ℎ𝑁𝑎
)𝑛𝑖

2                                                (2.3) 

Where De and Dh are the diffusion coefficients of electrons and holes, 

respectively. The value of this current depends only on the material properties 

via ni, e, h, doping concentration.  

2. The thermal generation of electron hole pairs (EHPs) in the depletion region 

contributes to this reverse current since the internal field in this layer will 

separate the electrons and holes and cause them to drift towards neutral regions. 

The value of this generation current (Jgen) within the depletion region can be 

calculated by using the Shockley-Read-Hall model and by defining the mean 

thermal generation time, g, as 

𝐽𝑔𝑒𝑛 =
𝑞𝑊𝑛𝑖

𝜏𝑔
                                                                                                                (2.4) 

It is dependent on the applied reverse bias through the depletion width W, which 

widens as the reverse bias is increased. 

Therefore, the sum of these two contributions represents the total reverse current 

density, also called the leakage current. Considering a cross-sectional area equal to A, 

the total reverse current can be written as 

𝐼𝑟𝑒𝑣 = 𝑞 (
𝐷𝑒

𝐿𝑒𝑁𝑑
+

𝐷ℎ

𝐿ℎ𝑁𝑎
) 𝑛𝑖

2𝐴 +
𝑞𝑊

𝜏𝑔
𝑛𝑖𝐴                                                                            (2.5) 

It is important to note that both contributions depend on the area of the device, the 

intrinsic carrier concentration (ni), which is an intrinsic property of any semiconductor 

material and, on the temperature T since ni ~ exp(-Eg/2kBT) [1]. This dependence on the 

temperature is very important and will be analysed in more detail in the following 

chapters. In real structures, however, there are other sources which increase this current 
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such as the surface leakage and tunnelling components that will be considered in the 

following chapters.  

Leakage current is also called dark current because it represents the current that flows 

through a photodiode even without the injection of photons. Leakage current is, 

therefore, a source of noise in an optical receiver [2], which can degrade the signal to 

noise (S/N) ratio. Leakage current is also a source of power dissipation. As pointed out 

previously, in Chapter 1, power dissipation is becoming a stringent factor for CMOS 

design due to the high level of integration. Controlling power dissipation is a good 

reason for reducing leakage current. Moreover, the level of dark current is also an 

indication of good material quality and device fabrication. 

Considering the structure shown in Figure 2.2 under a reverse bias, when a photon with 

energy greater than the bandgap energy is incident, it is absorbed and a photogenerated 

EHP is created, which is an electron in the conduction band and a hole in the valence 

band. The field in the depletion region then separates the EHP and, causes the carriers to 

drift in opposite directions until they reach the neutral regions. This generates a current, 

called the photocurrent Iphoto. The generation of EHPs is directly related to the 

absorption of light and it can be defined as the optical generation rate, G, given by 

𝐺 = −
1

𝐴

𝑑𝑃𝑖𝑛𝑐

𝑑𝑥

1

ℎ𝜈
=

𝛼𝑃𝑖𝑛𝑐

𝐴ℎ𝜈
                                                                                                     (2.6) 

Where Pinc is the incident optical power,  is the absorption coefficient (see Chapter 3), 

and h is the photon energy. If the light is absorbed in the depletion region, assuming no 

recombination of the photo-generated EHPs in this layer, the photocurrent is simply 

given by the integral of the generation rate over the depletion region: 

𝐼𝑝ℎ𝑜𝑡𝑜 = −𝑞𝐴 ∫ 𝐺𝑑𝑥
𝑊𝑛

−𝑊𝑝

= 𝑞
(1 − 𝑅)𝑃𝑖𝑛𝑐

ℎ𝜈
(1 − 𝑒−𝛼𝑊)                                                     (2.7) 

also allowing for the reflectivity R at the semiconductor surface. It should be noted that 

if the light is incident on the neutral region to calculate the photocurrent, the continuity 

equations should also be solved for holes and electrons in the n-side and p-side, 

respectively. Light absorbed in the neutral region leads, however, to a very low level of 

photocurrent due to free carrier absorption and high recombination rates in these 

regions. 
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The basic p-n junction photodiode has, however, two main drawbacks (described 

below) that are substantially reduced by using the p-i-n photodiode configuration. A 

schematic of a typical p-i-n structure and the electric field profile in the device is shown 

in Figure 2.3.  

 

Figure 2.3. Schematic of a reverse biased p-i-n photodiode. 

 

The particular geometry of a p-i-n device includes an intrinsic “i” region between the p 

and n region. When it is illuminated with energy greater than or equal to the bandgap of 

the semiconductor, electron-hole pairs (EHP) are generated. Due to the built-in 

potential, or by applying an external reverse bias, the intrinsic region is depleted (due to 

fairly low background doping level) and it has a high resistivity [3]. Because of this, the 

entire voltage drop takes place mainly in the “i” region, giving rise to a high electric 

field for the collection of the photo-generated EHP. 

The main difference between these p-n and p-i-n structures is in terms of the depletion 

region, which is generally much narrower in the p-n structure than in the p-i-n structure. 

In the p-n structure there is more likely to be a large diffusion component that is due to 

the photons absorbed outside the depletion region. Minority carriers generated, 

electrons in the p-side and holes in the n-side, have to diffuse into the depletion region 

before they can drift to the n-side or p-side, respectively. Because diffusion is 

intrinsically a slow process, carriers take a long time to diffuse (about a nanosecond 

over 1 m). In the p-i-n configuration, the depletion region can be designed to extend 
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across almost the whole length of the device, so that the drift component dominates over 

the diffusion component. In the depleted absorbing layer, the photo-generated carriers 

travel at their saturation velocity vsat. The bandwidth of a p-i-n photodiode is determined 

by the carrier transit time, or by the RC time constant. Since transit time, junction 

capacitance, and quantum efficiency are interdependent, the design of a wide bandwidth 

p-i-n photodiode involves a performance tradeoff, and the depletion width W must be 

chosen depending on the requirements in terms on speed and sensitivity. 

The performance of a photodiode is often characterised by the responsivity (R) that is 

defined as: 

𝑅 =
𝐼𝑝ℎ𝑜𝑡𝑜

𝑃𝑜𝑝𝑡𝑖𝑐𝑎𝑙
=

𝜂𝑞

ℎ𝜈
                                                                                                                    (2.8)                                                                                              

Where Iphoto is the photogenerated current and Poptical is the input optical power. The 

responsivity takes into account the energy of the incident photon. So, it takes into 

account the variation in energy implied by different wavelengths [4]. It is also related to 

the quantum efficiency  by the relation shown in Eq. 2.8. The quantum efficiency is 

the number of electron – hole carrier pairs generated compared to the number of 

incident photons of energy hHere, q is electron charge, h the Planck’s constant and  

the frequency of the incident radiation.  

In a p-n junction diode, the responsivity is limited by the diffusion lengths of the 

carriers. Minority carriers generated beyond a diffusion length from the depletion region 

recombine before they can reach the high field region. 

In a p-i-n junction diode the responsivity is increased by adding an “i” region that will 

be always fully depleted so that any carriers generate in this region will be collected 

(assuming negligible recombination in the intrinsic region itself). 

 For a p-i-n photodiode with a totally depleted intrinsic layer, the external quantum 

efficiency, ext, can be written as 

𝜂𝑒𝑥𝑡 = (1 − 𝑅)(1 − 𝑒−𝛼𝑑)                                                                                                     (2.9)                                                                                        

where d is the width of the absorption region,  is the absorption coefficient, R is the 

reflectivity at the surface. The transit time limited -3 dB component of the bandwidth 

for a p-i-n having total depletion thickness W, is given by [5] 

𝑓𝑡𝑟 =̃
3.5𝑣̅

2𝜋𝑊
  ,        

1

𝑣̅4
=

1

2
(

1

𝑣𝑒
4

+
1

𝑣ℎ
4)                                                                                 (2.10) 
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where 𝑣̅ is the average of saturation electron and hole velocity, and ve and vh are the 

electron and hole saturation velocities, respectively. The RC contribution to the 

bandwidth is given by 

𝐶 =
𝜀𝐴

𝑊
                                                                                                                                      (2.11) 

                                                                                                                          

𝑅 = 𝑅𝑆 + 𝑅𝐿                                                                                                                            (2.12) 

                                                                                                                

𝑓𝑅𝐶 =
1

2𝜋𝜏𝑅𝐶
=

𝑊

2𝜋𝑅𝜀𝐴
∝

𝑊

(𝑅𝑆 + 𝑅𝐿)𝐴
  ,        𝜏𝑅𝐶 = 𝑅𝐶                                                (2.13) 

                                                        

where  is the dielectric constant of the intrinsic region and C is the intrinsic capacitance 

of the p-i-n structure. RS is the series resistance including the semiconductor and the 

metal resistivity. RL is the load resistance matching with the external circuit, which 

generally equates to 50  It is primarily determined by the photodiode junction 

capacitance thus can be controlled through adjusting the device area to a value that is 

consistent with a designed bandwidth. The total bandwidth of a p-i-n photodiode is 

expressed by the following equation 

𝐵 =
1

√(
1

𝑓𝑅𝐶
)

2

+ (
1

𝑓𝑡𝑟
)

2

     (𝐻𝑧)                                                                                           (2.14) 

                                                                                

According to equation (2.9), both a low reflectivity R at the incident light surface and a 

large absorption region thickness are desirable to achieve a high quantum efficiency 

value and a low junction capacitance. However, a thicker absorber will decrease the 

photodiode bandwidth due to a longer carrier transit time. Therefore, as already 

mentioned, there exists a tradeoff between speed and quantum efficiency. This tradeoff 

can be addressed by decoupling light absorption from the carrier transport by using 

waveguide device structures or by increasing the responsivity by using a resonant cavity 

structure. 
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2.3 Avalanche photodiodes 

Avalanche photodiodes (APDs) are another type of photodetector widely used in 

telecommunications systems. By utilising the impact ionisation process to provide an 

internal gain, APDs have the advantage of higher sensitivity over conventional p-i-n 

photodiodes, since the photocurrent is multiplied, when the overall noise in the receiver 

module is dominated by electronic noise. 

In order for carrier multiplication to take place, the photogenerated carriers must 

traverse a region where a very high electric field is present. In this high-field region a 

photogenerated electron or hole can gain enough energy so that it ionises bound 

electrons in the valence band by colliding with them, resulting in an electron in the 

conduction band, leaving a hole in the valence band, and the original electron. This 

carrier multiplication mechanism is known as impact ionisation. The newly created 

carriers are also accelerated by the high electric field, potentially gaining enough energy 

to cause further impact ionisation events. This phenomenon is the avalanche effect and 

it is schematically illustrated in Figure 2.4. 

 

Figure 2.4. Schematic of multiplication process: a single carrier (electron) is 

injected at the edge of avalanche region under high electric field and a chain of 

impact ionisation events is triggered.  

During the carrier acceleration process under the electric field, in addition to the impact 

ionisation process, the free carrier also encounters non-ionisation collisions with 

phonons, generally lowering the carrier’s kinetic energy. Phonon scattering may involve 
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carriers gaining energy (phonon absorption), losing energy (phonon emission) and 

exchanging momentum (elastic).  

The impact ionisation characteristics of electrons and holes in a semiconductor are 

generally characterised by the impact ionisation coefficients,  and  respectively. 

These electric field dependent coefficients describe the average number of electron-hole 

pairs created per unit distance travelled by an electron or hole in a uniform electric field 

and thus can be defined as the inverse of the mean distance between successive 

ionisation events. In general,  and  increase with the applied electric field because the 

carrier achieves the required energy for an impact ionisation event over a smaller 

distance.   

In its simplest form, an APD has a similar device structure to a p-i-n photodiode. 

However, unlike the p-i-n, the APD is always biased at a voltage that is close to its 

breakdown. Through the carrier impact ionisation process, an APD provides more 

electron-hole pairs from the same amount of photogenerated carriers, compared to a p-i-

n photodiode. Therefore, if we assume the same optical absorption volume dimension 

for both a p-i-n and an APD, the external quantum efficiency of the APD can be written 

as 

𝜂𝑒𝑥𝑡 = 𝑀 ∙ (1 − 𝑅)(1 − 𝑒−𝛼𝑑)                                                                                            (2.15)  

where M is the avalanche gain obtained through carrier impact ionisation. The gain M is 

given by the expression 

𝑀 =
𝑖𝑝ℎ𝑜𝑡𝑜 − 𝑖𝑑𝑎𝑟𝑘

𝑖𝑝𝑟𝑖𝑚𝑎𝑟𝑦,𝑝ℎ𝑜𝑡𝑜 − 𝑖𝑝𝑟𝑖𝑚𝑎𝑟𝑦,𝑑𝑎𝑟𝑘
                                                                                   (2.16) 

where iphoto and idark are the multiplied photocurrent and dark current, while iprimary,photo 

and iprimary,dark are the primary photocurrent and dark current measured prior the onset of 

carrier multiplication (M=1).  

The stochastic nature of the impact ionisation process leads to a notable spread of the 

total number of carriers generated by an injected electron-hole pair under a specific 

electric field, giving rise to excess noise which is characterised by the excess noise 

factor, F. The statistical nature of this impact ionisation process results in fluctuations in 

the number of secondary carriers (electron – hole pairs) generated from each parent 

carrier, which in turn leads to fluctuations in the APD gain [6]. Thus, while M can be 
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very large, the actual usable value of M for fibre optic receivers is normally limited to 

between 10 and 20 depending on the materials and device structures used. This gain 

fluctuation will cause variation in the APD output current and increase the APD’s total 

shot noise power above that of the multiplied shot noise power. The excess noise factor, 

F(M), is a measure of the standard deviation of the multiplication gain over its mean 

square value 

𝐹(𝑀) =
< 𝑀2 >

< 𝑀 >2
                                                                                                                   (2.17) 

According to the local impact ionisation model developed by McIntyre [6] in which 

carrier impact ionisation coefficients were assumed to be only a function of electric 

field strength, F(M) can be written as 

𝐹(𝑀) = 𝑘𝑀 + (1 − 𝑘) (2 −
1

𝑀
)                                                                                       (2.18) 

Where 𝑘 = 𝛽 𝛼⁄  (𝛽 < 𝛼) or 𝑘 = 𝛼 𝛽⁄  (𝛼 < 𝛽). Based on the local field theory, 

larger difference between carrier impact ionisation coefficients leads to lower 

excess noise in an APD, as shown in Figure 2.5. 

 

Figure 2.5. Excess noise factor predicted by McIntyre’s local field theory as a 

function of gain (M) and various k ratios [3]. 

Another phenomenon associated with carrier multiplication is the effect of the gain 

process on bandwidth. Detailed research on this problem was performed by 
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Emmons [7], who showed that the frequency-dependent gain can be approximated 

by the expression 

𝑀(𝜔) =
𝑀0

√1 + (𝜔𝑀0𝑘𝜏)2
                                                                                                    (2.19) 

where M0 is the dc gain, and  is approximately (within a factor of ~2) the carrier 

transit time across the multiplication region. Figure 2.6 shows the 3-dB bandwidth of 

the photodiode plotted as a function of the multiplication gain M0 and the 

parameter k. Superimposed on these curves is the curve 𝑀0 = 𝛼 𝛽⁄ .  

Above this curve, where 𝑀0 < 𝛼 𝛽⁄ , multiplication has little effect on bandwidth 

and current multiplication is obtained without any substantial reduction in 

bandwidth. It is important to note that this condition, which maximises the 

bandwidth in the avalanche region, also minimises the noise produced by the 

avalanche multiplication mechanism.  

On the other hand, for 𝑀0 > 𝛼 𝛽⁄ , the curves are straight lines, indicating a 

constant gain-bandwidth product (GBP), and a dependence of multiplication on 

bandwidth. Therefore, Emmons’s finding imposed an upper limit on the APD 

bandwidth, in terms of the gain-bandwidth product.  

 

Figure 2.6. APD bandwidth as a function of multiplication gain and the 

parameter k, as predicted by local field theory [7]. 



 

20 

 

According to the local field model, the performance of an APD is determined by its 

k value, which is an intrinsic property of each specific material. As the APD 

multiplication layer is thinned, a higher electric field is required to achieve a 

specific gain value than in a thicker device. The impact ionisation rate curves for 

electrons and holes merge at high electric field, causing k to approach unity. 

Therefore, it is expected that the excess noise would increase as the multiplication 

thickness decreases. The opposite, however, has been observed experimentally [8]. 

This discrepancy found a solution in the non-local model, which takes into account 

the history of the carrier prior to the impact ionisation event. The reduction of 

F(M) in thin multiplication layer APDs has been attributed to the pronounced 

dead-space effect [9]. When a carrier, either a hole or an electron, initially enters 

the high field region it must travel for a certain distance, the so-called dead-space, 

before it gains enough energy from the electric field to undergo a subsequent 

impact ionisation event. In thick devices this distance is negligible compared to the 

total device thickness; therefore the dead-space plays a minor role in the noise 

characteristic of thick APDs. The effect of dead-space starts to influence the 

performance in thin multiplication regions for which the dimension of the dead-

space becomes comparable. As a result, the impact ionisation events are more 

localised in a specific spatial range in the gain region and the impact ionisation 

events are more deterministic [10]. This reduces the variation in numbers of 

impact ionisation events every carrier will cause, which lowers the excess noise 

related to the ionisation process. 

Therefore, to achieve low noise and high-speed APDs materials must be used that 

have lower ionisation coefficient ratio (k) value and thin multiplication regions 

(dead-space effect). 

Another important point is that the gain mechanism of an avalanche photodiode is 

very temperature-sensitive because of the temperature dependence of the electron 

and hole ionisation rates. This temperature dependence is particularly critical at 

high bias voltage, where a small change in temperature can cause large variation in 

gain [2]. As the temperature in the semiconductor device is reduced, the lattice 

vibrational energy is also reduced, and so is the scattering of electrons and holes. 

This increases the energy of the carriers and hence their ionisation rates. As a 

consequence of the change in ionisation coefficients for a given temperature 
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decrease, the electric field will have to decrease to maintain breakdown. The value 

of the breakdown voltage drops with decreasing temperature, T, following the 

formula [11] 

∆𝑉𝐵𝐷

𝑉𝐵𝐷,𝑅𝑇
= 𝛾𝑇                                                                                                                             (2.20) 

where VBD,RT is the breakdown voltage at room temperature and  is an index 

typical of the device under observation. 

2.3.1 Advantage of an APD over a p-i-n photodiode 

In fibre optic communication systems the photodiode is generally required to detect 

very weak optical signals. This requires the optimisation of the photodetector and its 

amplification circuit so that a given signal-to-noise ratio (S/N) is maintained. This ratio 

at the output of an optical receiver is defined by 

𝑆

𝑁
=

𝑠𝑖𝑔𝑛𝑎𝑙 𝑝𝑜𝑤𝑒𝑟 𝑓𝑟𝑜𝑚 𝑝ℎ𝑜𝑡𝑜𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

𝑝ℎ𝑜𝑡𝑜𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 𝑛𝑜𝑖𝑠𝑒 𝑝𝑜𝑤𝑒𝑟 + 𝑎𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑟 𝑛𝑜𝑖𝑠𝑒 𝑝𝑜𝑤𝑒𝑟
                                (2.21) 

It is clear that to obtain a high S/N ratio, the photodetector must have a high 

quantum efficiency to generate a large signal power and the photodetector and 

amplifier noise should be kept as low as possible.  

For a p-i-n photodiode the mean square signal current 〈𝑖𝑠
2〉 is  

〈𝑖𝑠
2〉 = 〈𝑖𝑝ℎ

2 (𝑡)〉                                                                                                                         (2.22) 

Where iph(t) is the signal component related to the incident optical power by 

𝑖𝑝ℎ(𝑡) =
𝑞𝜂𝑒𝑥𝑡

ℎ𝜈
𝑃𝑖𝑛𝑐(𝑡)                                                                                                           (2.23) 

For an APD   

〈𝑖𝑠
2〉 = 〈𝑖𝑝ℎ

2 (𝑡)〉𝑀2                                                                                                                   (2.24) 

the signal power term is boosted by a factor of M2, representing the average of the 

avalanche gain, which greatly enhances the receiver sensitivity. 
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The noise current determines the minimum optical power level that can be 

detected, because the optical receiver must have the ability to discriminate 

between the minimum detectable input optical power and the noise generated by 

the integrated receiver itself within a working bandwidth. The noise is described in 

terms of noise power spectrum density 〈𝑖2〉, which is the quadratic mean of the 

noisy current within a unity frequency bandwidth. Different noise sources affect 

the signal-to-noise ratio. For photodiodes operating at high frequencies, thermal 

noise and shot noise are two main types of noise sources. 

Thermal or Johnson noise originates from the Brownian motion of carriers that 

exists in any type of resistive components. It is expressed by 

〈𝑖𝑇
2〉 =

4𝑘𝐵𝑇

𝑅𝐿
𝐵                                                                                                                         (2.25) 

Where B is the operation bandwidth, T is the absolute temperature, kB is 

Boltzmann’s constant, and RL is the load resistance. 

The shot noise arises from the statistical nature of the production and collection of 

photoelectrons when an optical signal is incident on a photodetector, and it follows 

a Poisson distribution. It can be expressed by 

〈𝑖𝑄
2 〉 = 2𝑞𝐼𝑝ℎ𝐵𝑀2𝐹(𝑀)                                                                                                        (2.26) 

Where q is the electron charge, Iph is the average photocurrent due to the signal 

power, F(M) is the excess noise factor associated with the random nature of the 

avalanche process, and M is the avalanche gain. For p-i-n photodiodes M and F(M) 

are unity. 

As already mentioned, the dark current in a photodiode is a source of noise. This 

current is a combination of bulk and surface currents. The bulk component (iDB) 

arises from electrons and holes which are thermally generated in the junction of a 

photodiode. In an avalanche photodiode these carriers also get accelerated by the 

high electric field, and are therefore multiplied. The mean square value of this 

current is given by 

〈𝑖𝐷𝐵
2 〉 = 2𝑞𝐼𝐷𝑀2𝐹(𝑀)𝐵                                                                                                        (2.27) 
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where ID is the primary (unmultiplied) detector bulk current. Regarding the noise 

associated to the surface leakage current (iDS), that depends on surface defects, 

bias voltage, and surface area, it can be expressed by 

 〈𝑖𝐷𝑆
2 〉 = 2𝑞𝐼𝐿𝐵                                                                                                                        (2.28) 

where IL is the surface leakage current. This component is not affected by the 

avalanche gain, since the avalanche multiplication is a bulk effect.  

Figure 2.7 shows a schematic of a detection system with the associated noise 

sources. 

 

Figure 2.7. Schematic of a detection system with the related noise sources for 

each component. 

Based on the above discussion, for the basic detection system shown in Figure 2.7, 

it is possible to write the S/N ratio as 

𝑆

𝑁
=

(
𝑞𝜂𝑒𝑥𝑡

ℎ𝜈
𝑃𝑖𝑛𝑐)

2

[2𝑞(𝐼𝑝ℎ + 𝐼𝐷)𝐹(𝑀) + 2𝑞
𝐼𝐿

𝑀2 +
4𝑘𝐵𝑇
𝑅𝐿𝑀2] 𝐵

                                                              (2.29) 

In the case of a p-i-n photodiode, where F(M) and M are unity, the dominating 

source of noise current is that of the detector load resistor (iT). Therefore, it is 

desirable to have a high load resistance to reduce the thermal noise, but this 

increases the RC constant, which reduces the bandwidth of the detector and thus 

degrades the S/N ratio. For APDs, the thermal noise is reduced by a factor of M2 

which also enhances the S/N ratio. The total shot noise term is, however, 

multiplied by a factor F(M). A noise penalty therefore will occur as F(M) increases 

with M. Thus for a given set of operating conditions, there exists an optimum value 

of M for which the S/N ratio is a maximum. This is mainly true for low level light, 
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where the APDs show a high S/N ratio compared to p-i-n photodiodes. 

Furthermore, higher dark and surface leakage current levels set a limit of 

achievable sensitivity of the APD receiver even if F(M) is low. Consequently, these 

terms must be minimised to achieve high APD receiver sensitivity.      

2.4 Single-photon detectors  

A single-photon detector is an extremely sensitive device capable of registering the 

individual photons. Photons have so many properties that its detection can be employed 

in a wide range of applications such as quantum information, time-correlated single-

photon counting (TCSPC) applications, etc. These applications demand stringent 

requirements in terms of signal-to-noise ratio, detection efficiency, spectral range, etc. It 

is because of all of these requirements that different technologies (photomultiplier 

tubes, semiconductor avalanche photodiodes, superconducting nanowires, etc.) have 

been employed to detect single-photons. In this section a review of these technologies is 

presented with a description of their main advantages and disadvantages, and is mainly 

focused on semiconductor single-photon avalanche photodiodes (SPADs), and on those 

technologies that enable the single-photon detection in in the infrared spectral range. 

2.4.1 Photomultiplier tube (PMT) and Microchannel plates 

A basic PMT consists of a vacuum tube with a photocathode for light absorption, from 

which electrons are liberated through the photoelectric effect (the energy of the incident 

photon must exceed the work function of the photocathode material) [12], [13]. 

Depending on the material composition of the photocathode, PMTs can be effective for 

detection of light at varying wavelengths. A schematic representation of a typical PMT 

structure is shown in Figure 2.8. 
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Figure 2.8. Schematic representation of a photomultiplier tube (PMT) [12]. 

Photomultipliers acquire light through a glass or quartz window that covers a 

photosensitive surface, called a photocathode, which then releases electrons that are 

multiplied by electrodes known as metal channel dynodes. At the end of the dynode 

chain is an anode or collection electrode. Over a very large range, the current flowing 

from the anode to ground is directly proportional to the photoelectron flux generated by 

the photocathode. Each of dynodes is biased at a greater positive voltage than the one 

before, producing a macroscopic current pulse of > 10
6
 electrons. 

There are, however, several disadvantages with such devices, including relatively large 

devices with poor mechanical stability and low SPDE (usually a few % in the infrared). 

PMTs also require high bias voltages in the order of 1 kV and their timing jitter 

(fluctuation of transit time) is typically in the region of 1 ns. Therefore, in many modern 

photon counting applications, PMTs are far from ideal where higher efficiencies and 

lower jitter are required. However, PMTs generally do not have a spectrally dependent 

instrumental response (unlike some semiconductor-based detectors), and much 

improvement has been seen in miniaturisation of the PMT packages [14]. 

An alternative configuration is the microchannel plate photomultiplier tube, see Figure 

2.9, where glass capillaries are fused in parallel and coated with a secondary electron 

emitting material to achieve a single continuous dynode under a bias voltage [15]. 

Microchannel plate PMTs offer improved timing jitter over basic PMTs, down to ~20 ps 

at FWHM [15]. 
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Figure 2.9. Schematic representation of a Microchannel plate [15]. 

2.4.2 The single-photon avalanche diode (SPAD) 

Semiconductor avalanche photodiodes (APDs) have the typical advantages 

characterising the solid-state devices (small size, low bias voltage, low power 

consumption, and reliability). When the APD is operating in a linear mode (which 

means that the output current is proportional to the input optical power) it has an 

internal gain. However, this internal gain is not sufficient to detect single-photons. To 

overcome this problem the APD can be used above the avalanche breakdown, in the so-

called Geiger mode of operation (since their operation principal is similar to that of the 

Geiger-Muller detectors, in which particle emission from radioactive materials gives 

rise to an avalanche of carriers from ionised gas atoms) [16]. When the APD is 

operating in Geiger mode it is called a Single Photon Avalanche Diode (SPAD) or 

triggered avalanche detector.  

Investigation of the physics of avalanche breakdown in SPADs started back in the 1960s 

at the Shockley laboratory [17], [18], where it was observed that a p-n junction reverse 

biased above the breakdown level produced a macroscopic voltage pulse triggered by 

the absorption of single optical photons. Fundamental contributions to the understanding 

of the avalanche phenomenon and of its statistical properties were given by McIntyre 

and Webb in 1970s [19]–[21]. However, the first custom-designed SPAD was proposed 

and demonstrated by Cova et al. in 1981 [22], and it was a thin-junction Si SPAD.   As 

pointed out in Figure 2.10, SPAD operation is radically different from that of ordinary 

APDs, which are biased near to the breakdown voltage VBD, but below it. In APDs, 

avalanche multiplication is exploited to produce linear amplification of the primary 

photogenerated electrical signal. 
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Figure 2.10. Schematic of current-voltage characteristic for a APD and SPAD 

operation in the reverse I-V characteristic of a p-n junction [22]. 

The behaviour of a SPAD is similar not to an amplifier, but to a bistable circuit as 

shown in Fig. 2.10. When the SPAD device is biased at voltage Va above the VBD 

(Geiger-mode) no current flows (OFF-STATE). In the junction depletion layer the 

electric field is very high, but no free carriers are present. When even a single carrier is 

injected into the high-field region, it is strongly accelerated and gains sufficient kinetic 

energy that, on collision with an atom in the lattice, it frees an electron from its bound 

state and promotes it into the conduction band, leaving a hole in the valence band. This 

phenomenon is known as impact ionisation, as described previously. These generated 

carriers may undergo further impact ionisation events, initiating an avalanche of 

carriers. A self-sustaining current (in the mA range) is then triggered (ON-STATE). The 

current is limited to a constant level by the space charge effect, which is proportional to 

the excess bias voltage 𝑉𝐸𝑋 = 𝑉𝑎 − 𝑉𝐵𝐷. The device remains in this ON-STATE until 

the avalanche is quenched by an external circuit, which drives the applied voltage down 

to below VBD. The detector is insensitive to any subsequent photons arriving in the time 

interval from the avalanche onset to the voltage reset, which is the detector dead time. It 

is evident that describing the magnitude of the gain in the case of SPADs does not make 

sense, just as in the case of a bistable circuit.  

It has already been shown in this chapter, that the performance of a photodiode is 

related to the intrinsic physical properties of the semiconductor material used (band gap, 

intrinsic carrier concentration, absorption coefficient, etc.). For a SPAD, these 

properties are also important in conjunction with other physical effects. It is possible to 

define key parameters for a SPAD as the single-photon detection efficiency (SPDE), 

dark count rate (DCR), noise equivalent power (NEP), afterpulsing and the timing jitter.  
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2.4.2.1 Figures of merit of a SPAD  

In terms of SPDE, the detection of a single photon is not only related to its absorption in 

the detector active area and generation of a primary EHP. It is also mandatory that the 

primary carrier succeeds in triggering a self-sustaining avalanche. As studied mainly by 

McIntyre and Oldham [19], [20], [23], the avalanche triggering probability (defined as 

the probability that carriers, either holes or electrons, will initiate a self-sustaining 

avalanche) will first increase linearly with low excess bias voltages VEX and then tends 

to saturate to 1 at high VEX. This probability also depends on the electron and hole 

ionization coefficient e and h, respectively, and from their ratio  𝑘 =
𝛼ℎ

𝛼𝑒
⁄ . These 

coefficients are not only a function of the electric field, but their values vary with the 

crystalline perfection of the sample, so that a reliable value of the ratio k can only be 

determined if e and h are measured in the same sample. In particular, as pointed out 

by McIntyre, in designing a single-photon detector, a material having a high ratio of the 

electron and hole ionisation coefficients (as for Si) should be used, provided that it is 

possible to ensure that most of the photogenerated carriers entering the multiplying 

region are  those with the highest ionisation coefficient. 

For a SPAD the SPDE will also depend on another two factors: the coupling efficiency 

at the air-semiconductor boundary, and the absorption of a photon in the absorption 

layer. The first factor is determined by the probability of the photon being coupled to 

the active area of the device and the probability that it passes the air-semiconductor 

boundary. Usually, an anti-reflection coating (ARC) layer is used to prevent reflection 

losses and enhance the coupling efficiency. The second term depends on the width of 

the absorption layer and the absorption coefficient of the semiconductor material of 

which it is composed and it follows equation 2.7, as shown previously. 

A limiting factor for a SPAD is represented by the dark count rate (DCR).  It is 

expressed in Hz or, more correctly, in counts/sec, and represents the number of times 

the detector is triggered during 1 second, in dark conditions, by noise events (originating 

from different sources). Similar to the dark current in an ordinary photodiode, the DCR 

represents the internal noise of a SPAD. Different mechanisms contribute to the DCR in 

a single-photon detector [24], [25]: 

a) Carriers thermally generated in the active volume of the device; 

b) Carriers generated by tunnelling processes; 
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c) Carriers emitted from trapping levels that were populated in previous 

avalanche pulses. 

The first two processes produce avalanche events in the absence of photons and cause 

dark counts. In the third case process, it is necessary to previously have triggered an 

avalanche (by a photon detection or a dark count) in the detector, and this leads to 

afterpulsing, which will be discussed later. 

The spontaneous thermal generation of dark counts is dominated by the Shockley-Read-

Hall (SRH) effect, which is mainly due to local defects and thermal excitation of 

electrons into the conduction band from the valence band. This contribution can be 

significantly reduced by cooling the detector. 

The DCR of a SPAD also increases with the excess bias voltage VEX. The rise is due not 

only to the avalanche triggering probability, which increases also the SPDE, but also to 

effects due to the electric field that enhance the rate of generation of carriers. In silicon, 

as well as in others semiconductors, a transitions of carriers from one band to another 

occur through the generation-recombination (GR) centres. At high electric fields, the 

emission from these centres to the band at higher energy can be enhanced by the Poole-

Frenkel effect, giving rise to a field-assisted generation process [16]. At very high 

electric fields a tunnel-assisted direct band-to-band transition may also take place, 

generating free carriers in the junction, without the assistance of GR centres. This effect 

is not reduced by lowering the detector temperature (setting a limit to the DCR 

reduction by cooling), but the electric field should not be higher than the level necessary 

to obtain avalanche multiplication.   

The noise in a SPAD is further increased by afterpulsing. Impurities and crystal defects 

cause not only GR centres at mid-gap, but also local levels at intermediate energy 

between mid-gap and band-edge, called deep levels. Some of these deep levels act as 

minority carrier traps. During a self-sustaining avalanche, the large charge flow through 

the device causes these trap centres to fill. After the avalanche is quenched, the trap 

centres start to release but these carriers can re-trigger the avalanche if the device is 

armed before all traps are depopulated, thereby generating an afterpulse correlated with 

previous avalanche pulse. This afterpulse contributes to the dark count rate of the 

detector.  

The frequency at which the SPAD is gated must be sufficiently low to allow all the 

traps to empty (when the SPAD is quenched so that they cannot trigger a self-sustaining 



 

30 

 

avalanche). This effect is highly dependent on the excess bias. The higher the excess 

bias voltage, the more charge flows through the device, the greater the number of 

carriers that are trapped. Moreover, this effect does not improve at lower temperatures, 

because the emission lifetime of carriers from trapping levels exponentially increases 

with decreasing temperature. To reduce the effects of afterpulsing, the charge flowing 

through the device during an avalanche must be minimised, and this is commonly done  

using appropriate quenching circuits [26]. Hence, to reduce the afterpulsing probability 

in a SPAD device operating at cryogenic temperature a very long dead time is necessary 

(tens of microseconds or more). This leads to a strong reduction in the data collection 

rate, which represents the main limitation of SPADs operating at infrared wavelengths. 

The most useful figure of merit of a SPAD is represented by the noise equivalent power 

(NEP) that takes into account both the SPDE and DCR. The NEP is defined as the 

signal power required to attain a unity signal to noise ratio within a 1-s integration time. 

To calculate the NEP the following equation is used: 

𝑁𝐸𝑃 =
ℎ ∙ 𝜈

𝑆𝑃𝐷𝐸
√2𝐷𝐶𝑅                                                                                                           (2.30) 

Where h is Planck’s constant and  is the optical frequency. The lower the NEP the 

more sensitive the device. 

The timing resolution, also referred to as jitter, is typically described by the full-width 

half maximum (FWHM) of the SPAD timing response. It is measured in a time-

correlated single photon counting (TCSPC) setup (see Chapter 5) when the detector is 

illuminated with a highly attenuated pulsed laser (~0.1 photons per pulse) with short 

pulse duration [27]. It represents the precision with which the arrival of a photon can be 

measured. The delay between the detection of an avalanche and a single photon in a 

SPAD detector can originate from various sources [25]: 

a) the timing difference arising from photon absorption at different depths and the 

subsequent variance in diffusion time; 

b) the stochastic nature of the multiplication process itself; 

c) the lateral movement of the multiplication across the detector active area [28], 

which is strongly influenced by the location of the seed point of the avalanche. 

Consequently, jitter depends on the device diameter and smaller devices exhibit 

improved timing precision as the variation in the seed point is decreased. 

In some cases an increase in the excess bias reduces the jitter. As the electric field 

increases, the carriers reach the high-field region quicker, hence reducing the jitter. 
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2.4.2.2 Quenching techniques for SPADs 

As previously mentioned, when the SPAD operates in Geiger-mode, it is in OFF-

STATE until a self-sustaining avalanche is triggered (ON-STATE) by a carrier. During 

the avalanche process, the detector cannot register incident photons, and the avalanche 

must be quenched and the SPAD reset to its initial, photo-sensitive state. The quenching 

operation is performed by an external circuit and it is possible to distinguish different 

quenching techniques: passive quenching, active quenching and gated-mode which has 

been used in this work to characterise the Ge-on-Si SPADs. 

The passive quenching technique has been used in the early studies on avalanche 

breakdown in junctions [29]. A schematic of a passive quenching circuit is illustrated in 

Figure 2.11. 

 

Figure 2.11. Schematic circuit diagram of a SPAD with a passive quenching 

circuit from [16] where RL (~500 k) is the quenching resistor and Va is a voltage 

above the breakdown. 

The SPAD is reverse biased above breakdown through a quenching resistor, RL, of 

usually 500 k or more [16] and the output is measured on the RS (~50 ) resistance. 

When the SPAD is in stand-by mode, there is no current flowing in the circuit and 

therefore the bias across the SPAD is equal to Va. At the onset of the avalanche a current 

will start flowing in the resistor RL, thus generating a reduction in the bias across the 

diode taking it below the breakdown voltage, quenching the avalanche. The quenching 

time is limited by the product of the SPAD’s capacitance and the value of RL [26], 

which can generate a very long recovery time after an avalanche, typically of the order 
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of a few microseconds. In these cases, this technique is only suitable when the count 

rate is lower than a few tens of kcounts
-1

. 

A solution which avoids the drawbacks of passive quenching circuits, slow voltage 

recovery and not well defined dead time, is to use the Active Quenching Circuit (AQC). 

A schematic of an AQC is shown in Figure 2.12. 

 

Figure 2.12. Schematic of an AQC from [26]. 

The fast comparator senses the rise of the avalanche pulse, then the comparator’s output 

then switches the bias voltage source to less than VBD to quench the avalanche. The 

voltage supply to the SPAD is kept below VBD for a controlled period of time (hold-off) 

to allow the release of any trapped carriers to avoid the effects of afterpulsing. The 

output from the comparator is also used as the photon-counting signal for recording the 

arrival time of a photon since it is coincident with avalanche build-up. AQCs have 

several advantages, in particular, the recovery time is short (~3 ns or greater) allowing 

operation at high count rates. Moreover, this time could be set to longer values in order 

to reduce the effect of afterpulsing. 

The last quenching technique is ‘gated-mode’. This technique has been used throughout 

much of this work to characterise the designed Ge-on-Si SPADs. By using both 

passively and actively quenched circuits the SPAD can operate in free-running mode (it 

can detect photons at any time, except for the time necessary to reset the avalanche). In 

gated-mode operation, the SPAD is sensitive only during the gate-on window, with the 

SPAD disabled during the gate-off time interval. Figure 2.13 shows a schematic of this 

mode of operation.  
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Figure 2.13. Gated mode circuit scheme [11]. Vg is the gate voltage, VDC is the 

constant bias, VBD the breakdown voltage and Rout is the resistance of the output 

circuit, typically equivalent to 50 Ω.  

The device is DC biased slightly below the breakdown voltage. When a gate voltage 

(variable in duration, usually 10’s of ns) is superimposed, it raises the SPAD voltage 

(VDC + Vg) above the breakdown (Geiger-mode), in order that the SPAD can detect a 

single-photon. The end of the gate defines the time of quenching. Additionally, it is 

possible to introduce a hold-off time (or dead time) to ensure that the system returns to 

its initial condition and it can detect photons with a low afterpulsing probability. Gated 

mode quenching is most suited to characterisation since it allows the detector to be 

activated coincident with a highly attenuated laser pulse such that the SPAD is gated at 

the same repetition rate as the laser. 

2.5 Conclusion 

In this chapter, the physics of different photodiode structures have been introduced.  

The basic working principles of the p-n junction under equilibrium (fixed temperature, 

no external bias) and when reverse biased has been considered. In particular, the origin 

of the leakage or dark current has been explained for a reverse biased photodiode where 

the diffusion and thermal generation within the depletion region are the main 

mechanism at low voltages. The surface leakage and tunnelling component, however, 

have been intentionally omitted because their contribution to the total dark current 

depends on others factors (device geometry, material processing, bias condition, etc.) 

and will be discussed in the following chapter. 
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The p-i-n and avalanche photodiodes have been explained by using their most important 

figures of merit. In particular, it is clear from the signal-to-noise analysis that APDs are 

the natural choice for detecting low level light thanks to their internal gain mechanism. 

However, the gain must be chosen according to the requirements in terms of gain-

bandwidth product due to the excess noise related to its gain mechanism. According to 

the local field theory this excess noise factor depends from the ionisation coefficients of 

electrons and holes, which are an intrinsic property of the material itself and are related 

to the strength of the electric field. However, the width of the multiplication region must 

be considered during the design of an APD. In particular, for thin multiplication region, 

the dead space effect, which is taken into account by the non-local field theory, plays an 

important role on the APD noise. This noise is reduced because in thin multiplication 

regions, the impact ionisation events are more deterministic. Therefore, to achieve low 

noise and high-speed APDs must be used materials that have lower ionisation 

coefficient ratio (k) value, and thin multiplication regions (dead-space effect).  

Finally, SPADs were introduced and key operating conditions discussed. Whilst APDs 

are biased below the avalanche breakdown voltage, a SPAD is biased above the 

breakdown voltage in the so-called Geiger mode of operation. In this state, no current 

flows through the device, but a single carrier (dark or photo-generated) can generate, 

through the avalanche process, a self-sustaining current in the mA range. This state is 

referred as ON-STATE. The device remains in this state until the avalanche is 

quenched. A brief explanation of the various quenching circuits has been treated 

through the chapter. New key parameters (DCR, SPDE, NEP, afterpulsing, timing jitter) 

that are important for designing a SPAD have been defined. 
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Chapter 3 - Ge-on-Si Technology and Applications: Material selection, 

Epitaxial Growth and Review of Detectors 

3.1 Introduction 

The integration of optoelectronic devices on Si substrates has been an active research 

field from many years, as silicon offers a mature technology platform for the integration 

of low-loss optical waveguides with readout circuitry. Although Si acts as an excellent 

material for photodiode operation, efficient detection is generally confined to 

wavelengths below 1000 nm. As shown in Figure 3.1, for operation in the low loss fibre 

optical windows at around 1300 nm (second window) and 1550nm (third window, the 

“C” and “L” band), other semiconductors must be utilised.  

 

Figure 3.1. The spectral attenuation of telecommunications fibre [1]. 

Germanium (Ge) has excellent potential as a material for optical detection due to its 

possible integration with silicon (Si) technology and good optical absorption properties 

at the near-infrared wavelengths. In this chapter, a literature review of Ge-on-Si 

technology will be presented starting from the material selection to the epitaxial growth 

techniques.  This will be followed by a justification of the selection of pure Ge as the 

material for near-infrared devices on Si. Finally, a review of different Ge-on-Si 

detectors technology will be presented with a main focus on avalanche photodiodes and 

their use as single-photon detectors. 
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3.2 Choice of material for near-infrared photodetectors on Si 

As already discussed in Chapter 2, another parameter that influences the performance of 

a photodiode in terms of responsivity is the absorption coefficient (). The optical 

radiation absorbed in a semiconductor material can be written as follows: 

𝑃(𝑥) = 𝑃0(1 − 𝑒−𝛼(𝜆)𝑥)                                                                                                         (3.1)                                                                                             

Here, () is the absorption coefficient at a wavelength , P0 is the incident optical 

power and, P(x) is the optical power absorbed at a distance x into the material. The 

expression for the photocurrent Iphoto, resulting from optical absorption within the 

depletion region, is given by the expression 2.7. By using this expression, the 

responsivity can be rewritten as follows: 

𝑅 =
𝐼𝑝ℎ𝑜𝑡𝑜

𝑃𝑜𝑝𝑡𝑖𝑐𝑎𝑙
=

𝑞

ℎ𝜈
(1 − 𝑒−𝛼(𝜆)𝑥)                                                                                          (3.2) 

Here, q is the electronic charge, h is Planck’s constant and  is the frequency of incident 

radiation. In the above equation, the relationship between the responsivity and 

absorption coefficient clearly shows that the responsivity is a function of the 

wavelength and of the photodiode material (since different materials have different 

band-gap energies and then different absorption coefficients).  

The dependence of the optical absorption coefficient on wavelength for different 

semiconductor materials is shown in Figure 3.2. 
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Figure 3.2. Wavelength dependence of the absorption coefficient for several             

semiconductor materials [1]. 

As shown in Figure 3.2, semiconductor materials have a cut-off wavelength that 

depends on their energy gap. For wavelengths longer than the cut-off wavelength, the 

photon energy is insufficient to excite an electron from the valence band to the 

conduction band. Conversely, at the lower-wavelength end, the photo-current can be 

reduced since the high absorption means that photons are absorbed very close to the 

photodetector surface where the recombination time of the EHPs can be very short. 

Figure 3.2 also makes clear that depending on the wavelength at which the 

photodetector has to operate it is necessary to choose the correct semiconductor 

material.  

For operation in the second window (at wavelengths around 1310 nm) and third 

window, “C” band (1530 - 1565 nm) and  “L” band (1565 - 1625 nm), the choice of the 

absorbing material is between In0.53Ga0.47As and Ge because of their high absorption 

coefficients (~10
4
 cm

-1
) at these wavelengths. Although In0.53Ga0.47As and Ge are 
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obvious candidates as absorbers in high efficiency near-infrared photodetectors, their 

integration with Si technology needs to be carefully evaluated.  

The lattice constant ‘a’ of Ge (a=0.565 nm) and In0.53Ga0.47As (a=0.587 nm) [2] are 

both very different from that of Si (a=0.543 nm). This is also shown in Figure 3.3. 

 

Figure 3.3. Bandgap versus lattice constant for different semiconductor materials. 

Although In0.53Ga0.47As and Ge photodiodes are typically made on lattice matched 

substrates such as InP and Ge, respectively, as explained in Chapter 1 there are a 

number of advantages if near-infrared photodiodes can be integrated on Si.   

The lattice mismatches between Si and In0.53Ga0.47As, and Ge, are of the order of ~8% 

and ~4.2%, respectively, and create two main problems [3], [4], [5]: 

1. High surface roughness due to island growth; 

2. The introduction of high densities of misfit-dislocations (MD) and 

threading dislocations (TD) in the epilayers. 

Regarding the first point, it is well-known that Ge on Si epitaxy shows a Stranski-

Krastanov growth mode, or layer-plus-island growth as shown in Figure 3.4. Initially, 

Ge grows in a layer-by-layer style, but beyond a few monolayers, Ge continues to grow 

through the nucleation of germanium “islands” because of the large lattice mismatch. 

Such growth results in high surface roughness of the Ge epitaxial film, which is not 

desirable. High surface roughness degrades heterojunctions and causes difficulties in 

process integration. 
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Figure 3.4. Schematic of the Stranski-Krastanov Ge-on-Si heteroepitaxy growth 

mode; Ge film shows 2-D growth for the first few monolayers, then starts 

forming islands making a 3-D surface.  

High densities of threading dislocation can degrade device performance and 

compromise device reliability [6]. Misfit-dislocations are caused by the relaxation of the 

epilayer due to the lattice mismatch with the Si substrate and there are several sources 

of misfit dislocation formation. Dislocations from missing, or dangling, bonds in the 

lattice between the two layers (substrate and epilayer), or substrate inhomogeneities 

such as impurities, dust particles, residual oxide, or mechanical damage are examples. 

In 1970, Matthews first explained how a TD can extend into a MD [7]. If the elastic 

energy released by TD glide is larger than the energy to create MD at the interface, TD 

segment will glide laterally, creating MD at the interface. This is schematically shown 

in Figure 3.5. 

 

Figure 3.5. Schematic diagram showing generation of a misfit dislocation from a 

threading dislocation [7].  

Once long lengths of MD are formed, they interact with each other, adding more MDs 

as a result. They are typically confined between the epilayers and the Si substrate. For 

every misfit dislocation there will always be two threading dislocations at the ends of 

the misfit. Dislocations have to either form a loop or terminate at a free surface. The 

epilayer surface is always the nearest free surface, and these threading dislocations 

typically thread to this surface. Since devices are usually built near the surface, these 
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threading dislocations cannot be avoided and may affect the performance of devices 

reducing carrier lifetime, carrier mobility [8] and compromising device reliability. 

3.3 Lattice mismatched near-infrared photodetectors on Si 

Silicon is the most mature microelectronic technology for integrated circuits due to a 

number of properties of the material and, more importantly, thanks to the advantage of 

having two compatible good insulators, silicon dioxide (SiO2) and silicon nitride 

(Si3N4). To detect light in the near-infrared regime, near-infrared absorbing materials, 

for example Ge and In0.53Ga0.47As, need to be used, as shown in Figure 3.2. From the 

previous section, it is clear that the lattice mismatch between Si and In0.53Ga0.47As, or 

Ge, causes different problems that compromise the device performance and reliability. 

To overcome these problems, and integrate high-performance In0.53Ga0.47As or Ge near-

infrared photodetectors on Si, different solutions have been proposed during the last 30 

years in order to solve the problems related to threading-dislocations and surface 

roughness. In this section a literature review of the work carried out in this field is 

presented, followed by a justification for the selection of pure Ge as the material for 

near-infrared photodetectors on Si. 

3.3.1 Si1-xGex strained layer 

SiGe was initially proposed for applications in microelectronics to overcome the 

problems of low mobility and low velocity saturation in Si homojunctions that allowed 

other III-V semiconductors (e.g. GaAs, InP) to dominate a number of areas in analogue 

electronics [9].  

The first mention of SiGe devices was in 1957 [10], where the idea of a SiGe based 

heterojunction bipolar transistor (HBT) was discussed. Although the theory was 

described, the first epitaxial growth of SiGe heterostructures was not demonstrated until 

1975 by Erich Kasper and colleagues at the AEG Research Centre in Germany using 

molecular beam epitaxy (MBE) [11]. With the advent of the SiGe HBT and first sale in 

1998, the market of SiGe devices for radio-frequency (RF) application started to 

increase at a rate of 30% per annum [12]. The real strength of SiGe technology lies in its 

ability to integrate analogue, RF and digital electronics on a single chip using existing 

CMOS fabrication facilities. This is not possible with any other technologies (e.g. 

GaAs). 
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Although SiGe technology has found its success in the microelectronic area, its use in 

photonics applications can be dated to 1984. The first Ge photodetector for near-infrared 

application grown directly on Si, by molecular beam epitaxy (MBE),  was reported by 

Luryi et al. [13]. To minimize the effect of dislocations, the active detector structure 

was moved away from the Ge-Si interface by inserting a highly doped germanium 

buffer layer of the same conductivity type as that in the underlying silicon substrate.  

However, a high density of threading dislocation (~10
9
 cm

-2
) was measured by 

transmission electron microscopy (TEM) at ~1 m into the germanium layer. These p-i-

n detectors demonstrated an external quantum efficiency of 40 % at a wavelength of 

1450 nm in photovoltaic mode (no external bias applied). The dark current density was 

50 mA/cm
2
. The authors also stated that the high leakage current in reverse bias in their 

device was related to the quality of germanium. 

The high density of threading dislocation measured by Luryi et al., was probably due to 

the thickness of the SiGe epilayer. As the thickness of the epitaxial layer is increased, 

there exists a maximum thickness, called the critical thickness hc, above which defects 

appear, in this case misfit dislocations, which act to relieve the strain in the epitaxial 

film. Different theories have been developed to predict the critical thickness of the 

strained epitaxial layer based on energy considerations [14], [15]. This thickness will 

first of all depend on the lattice misfit, fm, equal to ((as-af)/af), with as and af the stress-

free substrate and epilayer lattice constant respectively, where the substrate thickness is 

assumed to be much larger than the film thickness [5]. In particular, positive values 

correspond with tensile stress in the film (af < as), for example, Si1-xGex on a Ge 

substrate, while negative values lead to compressive stress (af > as) in the case of Si1-

xGex on a Si(001) substrate. In addition, the maximum thickness hc of the SiGe alloy 

layer depends on the Ge fraction x, decreasing with increasing Ge content, as shown in 

Figure 3.6a [16]. It is clear that the thickness required for 100 % absorption at even the 

shorter telecommunications wavelength of 1300 nm with pure Ge ( = 10
4
 cm

-1
) would 

be well beyond the corresponding critical value. At the same time, the density of 

threading dislocations (TDD) increases with the Ge content in the top layer, as is 

illustrated in Figure 3.6b [17].  
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(a) 

 

(b) 

Figure 3.6. (a) Critical thickness of a SiGe strained layer grown on silicon as a 

function of the Ge mole fraction in the alloy (left axes). Corresponding absorption 

coefficient  at 1320 nm (right axis) [16]. (b) Plot of the average threading 

dislocation density observed in the top uniform cap layer grown on relaxed SiGe 

layers graded to different final Ge concentration [5]. 

After demonstrating the integration of a Ge photodetector directly on Si in 1984, Luryi 

et al. proposed the use of strained-layer Si1-xGex/Si superlattice (SLS) waveguide 

structure for an infrared photodetector in 1986 [18]. Their proposal was based on the 

theoretical bandgap calculation by People [19], whereby the bandgap narrowing in a 

strained GexSi1-x alloy grown on a Si (100) substrate is substantially reduced in 

comparison with the unstrained alloy. This reduction in the bandgap was also 

demonstrated by Lang et al. [20]. However, the GexSi1-x alloy remains an indirect-gap 



 

45 

 

semiconductor at all values of x and the absorption coefficient is low,  < 10
2
 cm

-1
, at 

the near-infrared wavelengths. Because of this, they proposed the use of a waveguide 

geometry to increase the interaction length and overcome the low absorption coefficient 

at wavelengths of interest for fibre-optic communications. 

Although, Luryi et al. demonstrated the first infrared photodetector made by using a 

SiGe graded buffer layer, pioneering MBE work by Baribeau et al. [21]–[23] 

demonstrated that the defect density could be significantly reduced by using a graded 

SiGe buffer layer. They verified that the density of misfit dislocations increases with 

epilayer thickness and Ge concentration. The TDD was measured using plan-view TEM 

and it was estimated to be ~5 × 10
8
 cm

-2
. SLS structures were also grown, but they 

resulted in lower quality films without any defect improvement in the Ge epilayer. They 

also investigated the direct deposition of pure Ge on Si (001) for different growth 

temperatures, 285 °C, 610 °C and 700 °C, respectively. The best results were obtained 

for the intermediate temperature, and a TDD of ~2 × 10
7
 cm

-2
 was measured by using 

scanning electron microscopy (SEM) and etch-pit density (EPD). They also studied 

post-growth annealing treatments verifying a significant improvement in the crystalline 

quality of all Ge epilayers. Annealing was performed for 30 minutes at 700 °C and a 

reduction of the TDD by almost one order of magnitude was observed. They explained 

this reduction on the basis of the thermal mismatch between the two materials, which is 

a function of temperature.  Moreover, a two temperature growth process was proposed, 

where the Ge is initially grown at low temperature, to permit a smooth surface 

morphology and then the temperature was raised to favour a reduction in dislocation 

density in the epilayer.  

Due to these advantages, strained layer Si1-xGex MQW SLS detectors [24]–[27], [28], 

waveguide p-i-n [29], [29]–[32], waveguide avalanche photodetectors [33]–[35], and 

single-photon avalanche detectors [36] were demonstrated. 

A new method for reducing the threading dislocation in Ge on Si structures using a 

SiGe buffer layer was proposed by Currie et al. in 1998 [37]. In this method, a 

chemical-mechanical polishing (CMP) step was introduced during the growth of the 

SiGe graded layer at a fraction of 50 %. Then a regrowth step was performed with an 

increasing fraction of Ge. The addition of this step stopped the increase in threading 

dislocations and allows dislocations to relieve the strain introduced in the subsequent 

growth. A reduction in TDD of one order of magnitude from 10
7
 to 10

6
 cm

-2
 was 
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demonstrated. This method was first used by Samavedam et al. to make p-n mesa Ge on 

Si diodes using graded SiGe layers [38]. Devices were fabricated using an ultrahigh 

vacuum chemical vapour deposition (UHVCVD) reactor. A responsivity of 0.133 A/W 

was measured at 0 V, with an external quantum efficiency of 12.6 % at a wavelength of 

1300 nm. A low dark current density of 0.15 mA/cm
2
 at an applied reverse bias of -1 V 

was calculated. Moreover, the author stated that the leakage current was mainly due to a 

bulk effect within the device rather that from surface or edge effects, mainly because of 

the small band gap of Ge. Later in 2001, Giovane et al. also applied this method to 

fabricate n-i-p Si0.75Ge0.25 photodiodes in a UHVCVD reactor [27]. Mesa devices with 

an area ranging from 0.1 mm
2
 to 10 mm

2
 were characterized. Moreover, samples with 

various threading dislocation densities (2 × 10
5
, 2 × 10

6
, and 9 × 10

6
 cm

-2
) were 

prepared by growing step graded SiGe buffer layers with three different grading rates (6 

%/m, 10 %/m, and 17 %/m). They demonstrated that the defect states related to 

threading dislocation act as generation and recombination centres in these devices, and 

the bulk leakage current correlates directly with the TDD. In fact, they measured an 

increase in bulk leakage current densities of 0.02, 0.32, and 0.78 mA/cm
2
 as the TDD 

increases. Similar results were also previously demonstrated by Ross et al. for higher 

TDDs [39]. 

Although the reduction in threading dislocations by using a SiGe graded layer was 

verified by many authors and different devices were demonstrated, to increase the 

absorption at the infrared wavelength the concentration of Ge needs to be increased. 

However, the maximum thickness of the GexSi1-x layers decreases with an increasing Ge 

fraction x. As pointed out by Temkin et al. for a Ge concentration of x=0.6 the 

absorption coefficient is equal to 21 cm
-1

 at a wavelength of 1300 nm, and decreases to 

2.5 cm
-1

 at a wavelength of 1550 nm [34]. Detectors made from strained layer Ge1-

xSix/Si superlattices require very long absorption lengths to provide reasonable detector 

responsivities.  

In terms of single-photon avalanche detectors (SPADs), pioneering work on this device 

was done by Loudon et al. in 2002. A separate absorption and multiplication (SAM) 

region device structure was employed in the design of this Si/Si1-xGex MQW SPAD. 25 

period superlattice layers with a Ge concentration equal to 0.3 were grown for the 

absorption region. The multiplication region consists of 700 nm thick intrinsic Si grown 

on top of a highly doped Si substrate. Because of the low Ge concentration, the 

maximum absorption wavelength was limited to ~1200 nm, and single-photon counting 
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was performed at wavelengths of 826 and 1210 nm. The performance of this device was 

compared with an all-Si control sample, the structure of which was identical except that 

for the absorbing region which consisted only of Si without the MQW. Low detection 

efficiency equal to 0.013 % was measured at a wavelength of 1210 nm (at 3.6 % of 

excess bias and 300 K). At the same wavelength the all-Si control sample showed a 

detection efficiency 30 times lower. A noise equivalent power (NEP) of 5 × 10
-12

 WHz
-

1/2
 at 1210 nm was obtained for the MQW structure, while it was ~1 × 10

-11
 WHz

-1/2
 for 

the all-Si control sample. Despite the low Ge concentration, the authors demonstrated, 

for the first time, an enhancement of infrared photon counting performance in SPADs 

incorporating Si multiplication layers. 

Table I summarises the performance of various infrared detectors based on strained 

layer SiGe MQW SLS structures. 
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Structure 
Efficiency 

ext 

Responsivity 

[A/W] 

Dark Current 

Density 

[mA/cm
2
] 

Wavelength 

[nm] 
Reference 

p-i-n pure Ge 40 % NA 50 
 

1450 
 

[13] 

SiGe MQW 

detectors 
59 % 

0.003 @  0 V 

 

0.62 @    - 7 V 

NA 1300 
 

[24] 

SiGe p-i-n 

MQW 
1 % 0.01 3

 
1300 

 

[25] 

SiGe n-i-p 

MQW 
NA 0.5 NA 1100 – 1600 

 

[26] 

SiGe p-n 

diodes 
12.6 % 0.133 0.15

 
1300 

 

[38] 

SiGe n-i-p NA NA 0.02
 

NA 
 

[27] 

SiGe p-n 

diodes 
NA 

0.37 @  0 V 

 

0.57 @    -2 V 

13
 

1300 
 

[28] 

SiGe MQW  

waveguide 
10 % 1.1 NA 1300 

 

[33] 

SiGe p-i-n 

MQW 

waveguide 

12 % 0.43 0.1
 

1100 
 

[30] 

SiGe p-i-n 

MQW 

waveguide 

7 % NA 2.7
 

1320 
 

[29] 

SiGe n-i-p 

MQW 

waveguide 

12 % NA 100
 

1282 
 

[31] 

SiGe n-i-p 

MQW 

waveguide 

18.2 % 0.08 NA 1550 
 

[32] 

Table I. Summary of SiGe/Si photodetectors in the near-infrared. 

Although strained-layer Si1-xGex SLS have been employed by many authors to 

overcome the problem related to the lattice mismatch between Si and Ge, their main 

disadvantage is the low absorption coefficients. To solve this problem, the Ge 

concentration must be increased, but there are two main limitations: 

1. the critical thickness decreases as the Ge content is increased (see Figure 3.6a) 

and it is too small for efficient optical detection; 

2. TDD increases as the Ge content is increased (see Figure 3.6c) due to the 

increased lattice mismatch.  



 

49 

 

By using waveguide structures, it is possible to improve the overall absorptance at 

wavelengths around 1300 nm, but the photoresponse at wavelengths near 1500nm still 

remains very low. 

3.3.2 SiGeC structures 

To overcome the aforementioned limitation of the strained-layer SiGe SLS structures 

different authors have tried to use the SiGeC ternary system, and its optical and 

electronic properties have been studied [40]. The basic idea is to introduce a small 

lattice constant element (such as C) into the SiGe alloy to compensate for the large 

lattice constant of Ge as compared with Si. The growth of this ternary system was 

demonstrated using MBE [41], [42] or CVD [43], [44] growth. However, there are 

different problems related to the growth of this ternary system: 

a) the high mismatch between the C and Si lattice;  

b) low solubility of C in Si; 

c) and silicon carbide (SiC) precipitation, which was found to negatively affect the 

electrical properties of the structure.  

The third problem can be avoided using low growth temperature and a lower C 

concentration which, however, increases the lattice mismatch between Ge and Si. 

Therefore, a tradeoff between these parameters should be found. Amour et al. 

demonstrated that adding C to the SiGe alloy increased the critical thickness, and also 

reduced the strain between the SiGe and Si layers. However, they observed a slight 

increase in the band gap as C was added, but they stated that this bandgap increase was 

much less than it would be if the strain was reduced simply by reducing the Ge 

concentration in SiGe without adding C [45]. This bandgap widening was 

experimentally verified by Soref et al. [46] who grew different waveguide structures 

using the ternary system Si1-x-yGexCy as a waveguide layer on top of a Si substrate. 

These structures were identical except for the C concentration. Their findings are 

summarised in Table II. 
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C concentration Bandgap Eg Si1-x-yGexCy 

0 % 1.13 eV 

2 % 0.96 eV 

4 % 0.87 eV 

9 % 1.02 eV 

11 % 1.15 eV 

Table II. Bandgap, Eg, of the ternary system Si1-x-yGexCy as a function of the C 

concentration [46]. 

As shown from the bandgap value reported in Table II, as the C concentration is 

increased from 0 % to 4 % the bandgap reduces, but as the C concentration is increased 

above 9 % the bandgap starts to increase. This implies that some matched SiGeC 

compositions are transparent at both 1300 and 1550 nm, while other matched 

compositions are transparent at 1550 nm only. 

Only rarely have SiGeC photodiodes been reported in the scientific literature. Normal 

incidence n-i-p photodiodes have been demonstrated by Huang et al. [47]. 80 nm thick 

Si0.25Ge0.6C0.15 was used as absorption layer. The dark current density measured at a 

reverse bias of 0.5 V was 7 mA/cm
2
, while the external quantum efficiency was limited 

to 1 % at a 1300 nm wavelength. The authors stated that the low photoresponse is 

mainly due to the indirect bandgap of the SiGeC alloy and its small thickness. They 

proposed a waveguide geometry that was later demonstrated [48]. The photodetector 

was integrated on a waveguide400 m long. The dark current density at a reverse bias 

of 0.3 V was 4 mA/cm
2
, while the external quantum efficiency was 8 % and 0.2 % at 

1300 nm and 1550 nm wavelengths, respectively. They effectively showed an 

improvement of the external quantum efficient compared to the normal incidence 

structure, but the absorption at 1550 nm was very low (the absorption coefficient was 10 

cm
-1

 at 1550 nm).   

Table III summarised these results.  
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Structure 
Efficiency 

ext 
Responsivity 

Dark Current 

Density [mA/cm
2
] 

Wavelength 

[nm] 
Reference 

SiGeC normal 

incidence nip 
1 % NA 7  1300 [47] 

SiGeC nip 

waveguide 

8 % @     

1300 nm 

0.2 % @ 

1550nm 

NA 4  1300 – 1500 [48] 

Table III. Summary of SiGeC/Si photodetectors in the near-infrared. 

The ternary system SiGeC was introduced to alleviate the lattice mismatch between Ge 

and Si, and it has been proved to show a reduction in threading dislocation density 

compared to the SiGe system [49]. However, this reduction in TDD did not help to 

reduce the dark current density and SiGeC based photodiodes provide very little 

improvement than the SiGe approach. Several disadvantages are present due to the low 

C concentration: its indirect bandgap, its contamination problem, and its low absorption 

coefficient have limited its use to make near-infrared photodetectors. 

3.3.3 InGaAs structures 

Another approach to combine near-infrared photodetectors with Si is the integration of 

InGaAs on Si. The main challenge is represented by the 8 % lattice mismatch between 

these two materials. However, the absorption coefficient of In0.53Ga0.47As at the infrared 

wavelengths (1300 and 1550 nm) is ideal to make near-infrared detectors, as shown in 

Figure 3.2. Despite this large lattice mismatch, different techniques, like epitaxial 

growth and wafer bonding, have been successfully demonstrated during the last 30 years 

to make high efficiency InGaAs detectors integrated on Si. 

In terms of epitaxial growth, different devices were demonstrated [50], [51]. For 

example, Gao et al. demonstrated a normal-incidence p-i-n InGaAs photodetector 

integrated on Si [51]. Devices showed a dark current density of 64 mA/cm
2
 at a reverse 

bias of 1 V, with a responsivity of 0.57 A/W at 1550 nm wavelength. 

Although the direct epitaxial growth is a more straightforward solution for the 

monolithic integration of III-V devices with silicon microelectronics for medium/large 

scale integration, significant improvements in the integration of InGaAs on Si have been 
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obtained using the wafer bonding or fusion techniques. This technique was first 

demonstrated in 1990 by Liau and Mull and consisted of fusing together centimetre-size 

InP and GaAs wafers [53]. A reactor, which can press the wafers together at elevated 

temperatures (~800 °C), was designed and diodes were also fabricated and 

characterized. Following this, InGaAs/Si p-i-n [54]–[59], InGaAs/SOI waveguide p-i-n 

[60], [61], InGaAs/Si APD and SPAD [54], [62], [63] have been fabricated showing 

good performance in terms of low leakage current density and high responsivity at the 

infrared wavelengths. 

Most of these InGaAs/Si structures are firstly grown by epitaxial growth on top of a InP 

substrate to which InGaAs is lattice matched. This initial epitaxial step is performed 

using different reactors, like metal-organic CVD (MOCVD) or MBE, then the bonding 

is obtained by placing the Si wafer and InGaAs/InP structure in direct contact under 

pressure at a temperature, between 600 and 700 °C in a H2 atmosphere. After the fusion, 

the InP substrate is selectively removed from the InGaAs epitaxial layer and devices are 

made using standard photolithography techniques. 

In [54] a wafer bonded InGaAs/Si p-i-n mesa-geometry detector was developed. The 

wafer bonding process was employed to join the InP wafer (on which the InGaAs p-i-n 

epilayers were grown) and the Si wafer. Because of the 7.7 % lattice mismatch between 

the InP and the Si wafers, misfit dislocations were confined at the bonding interface to 

relax the strain between the two wafers. A low dark current density of 0.0057 mA/cm
2
 

at a reverse bias of 5 V was measured, with a responsivity of 1 A/W (corresponding to 

an external quantum efficiency of ~80 %) at a wavelength of 1550nm. Performance of 

these devices was slightly improved by Levine et al. who demonstrated, in two different 

papers [55], [56], InGaAs p-i-n mesa devices with dark current densities of 0.0025  and 

0.00014 mA/cm
2
 respectively, at a reverse bias of 4 V,. However, no data on 

responsivity at the infrared wavelengths were reported. It is worthwhile mentioning the 

InGaAs/Si p-i-n planar-geometry devices reported by Pauchard et al. that demonstrated 

a dark current density of 0.012 mA/cm
2
 with a responsivity of 0.85 and 0.8 A/W at 1310 

and 1550 nm wavelengths, respectively [59]. These devices also demonstrated a 

fabrication yield in excess of 90 %. 

An important step forward on the integration of III-V semiconductors with SOI wafers 

was obtained at the Interuniversity Microelectronics Centre (IMEC) in Belgium. They 

developed a new bonding technique, to fuse together small pieces of unprocessed 



 

53 

 

InGaAs/InP optoelectronics dies with the processed SOI waveguide circuitry. The 

proposed process is illustrated in Figure 3.7. 

  

  Figure 3.7. Proposed process flow for the  integration of III-V semiconductors 

and SOI waveguide circuitry [60]. 

Integration of InGaAsP photodetectors on SOI was demonstrated [60]. The measured 

dark current density was 0.3 mA/cm
2
 at a reverse bias of 1 V, with a responsivity of 

0.02 A/W at 1550 nm wavelength. This performance was later improved in [61], and a 

very low dark current of 10 pA (corresponding to 0.00833 mA/cm
2
) at a reverse bias of 

0.5 V, with a responsivity of 1.1 A/W (corresponding to an external quantum efficiency 

of 88 %) were measured. 

By using the wafer bonding technique different InGaAs/Si avalanche photodiodes 

(APD) were also demonstrated [62]–[64]. All of these structures were based on the 

Separate Absorption and Multiplication (SAM) configuration, where an InGaAs layer 

was used as the absorption layer (because of its absorbance at the infrared wavelengths) 

and the Si layer was used for the multiplication layer (due to the excellent avalanche 

properties of Si). Some of these APDs have been also characterized as SPADs, but their 

performance will be evaluated in the later sections of this chapter after introducing the 

concept of single-photon detectors. 

Table IV summarises the photodetector performance obtained by integrating InGaAs on 

Si. 
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Structure 

Efficiency 

ext 

Responsivity 

[A/W] 

Dark 

Current 

Density 

[mA/cm
2
] 

Wavelength 

[nm] Reference 

InGaAs/Si normal-

incidence mesa p-i-

n (epitaxially 

growth) 

NA 0.57  64  1550 
 

[51] 

InGaAs/Si mesa p-

i-n (wafer bonded) 
80 % 1 0.0057 1550 

 

[54] 

InGaAs/Si mesa p-

i-n (wafer bonded) 
NA NA 0.0025 NA 

 

[55] 

InGaAs/Si mesa p-

i-n (wafer bonded) 
NA NA 0.00014 NA 

 

[56] 

InGaAs/Si mesa p-

i-n (wafer bonded) 
NA 0.3 4.8 1320 

 

[57] 

InGaAs/Si planar 

p-i-n (wafer 

bonded) 

NA 0.54 0.5 1310 
 

[58] 

InGaAs/Si planar 

p-i-n (wafer 

bonded) 

NA 

0.85@ 1310 

nm 

 

0.8 @ 1550 

nm 

0.012 1310 - 1550 
 

[59] 

InGaAs/SOI 

waveguide p-i-n 

(die to wafer 

bonded) 

NA 0.02 0.3
 

1550 
 

[60] 

InGaAs/SOI 

waveguide p-i-n 

(die to wafer 

bonded) 

NA 1.1 NA 1550 
 

[61] 

InGaAs/Si SAM 

APD (wafer 

bonded) 

NA 0.64 0.04 1310 
 

[62] 

Table IV. Summary of InGaAs/Si photodetectors in the near-infrared. 

The integration of InGaAs on Si has demonstrated photodetectors with better 

performance, in terms of leakage current density and responsivity, than the SiGe/Si and 

SiGeC/Si counterparts for detection at near-infrared wavelengths. Hovewer, despite the 

intrinsic advantages of epitaxial growth, in terms of monolithic integration of III-V 

devices with silicon microelectronics for medium/large scale integration, the large 

lattice mismatch and the cross contamination problems (since all the elements in 

InGaAs are electrically-active dopants in Si) still constrain the performance of these 

devices. Moreover, the low leakage current density and good responsivity obtained by 

using the wafer bonding techniques has not been demonstrated with devices grown 

epitaxially. The wafer bonding approach, however, often suffers from relatively poor 

mechanical strength and thermal stability due to the weak bonding mechanism. It still 
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requires the handling of InP substrate that are fragile and expensive compared to Si 

wafers. This technique does not provide the possibility of selective introduction of 

InGaAs material on Si in small areas, therefore its applicability in a CMOS foundry is 

difficult for medium/large scale integration.   

3.3.4 Pure Ge  

Although SiGe and SiGeC layers have been used to make near-infrared photodetectors, 

their limited performance at these wavelengths (and especially at 1550 nm) and the high 

leakage current density have constrained its use in silicon photonics platforms. On the 

other hand, InGaAs structures have shown good infrared performance and low leakage 

current, but their integration and contamination problems with Si technology are still an 

open question. As shown in Figure 3.2, pure Ge, however, has an absorption coefficient 

that is almost comparable to that of InGaAs at infrared wavelengths. 

The Ge band structure is shown in Figure 3.8. Its optical and electronic properties have 

been studied extensively by different authors [65]–[67].  

 

Figure 3.8. Band structure of Ge calculated by Chelikowsky and Cohen [65]. 

Ge is considered a pseudo-indirect band gap material. Its indirect bandgap Eg is equal to 

0.66 eV, but it also has a direct bandgap that is slightly larger and equal to 0.80 eV 

located at the -valley.  Due to this, electrons in the valence band can be easily 

promoted into the conduction band by absorbing optical power, whose energy is equal 

or greater than the bandgap energy. This direct transition is a two-particle process, 

photon and electron-hole, and it is the mechanism that gives direct band-gap 
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semiconductors materials (e.g. InGaAs) a high absorption coefficient. On the other 

hand, Si is an indirect bandgap material, and this process is a three-particle process that 

requires a photon, an electron and a phonon (lattice vibration) for momentum 

conservation and it is less efficient compared to the direct transition. Due to its direct 

bandgap, Ge can absorb light efficiently at the infrared wavelengths, as shown in Figure 

3.2.   

Some of the most important optical, electronic and thermal properties at room 

temperature (300 K) of Ge are shown in Table V and a comparison with Si and InGaAs 

is also reported. 

 Ge Si In0.53Ga0.47As 

QUANTITY VALUE VALUE VALUE 

Dielectric constant 16.2 11.7 13.9 

Lattice constant 5.658 Å 5.431 Å 5.8687 Å 

Energy gap (indirect) 0.661 eV 1.12 eV 
 

Energy gap (direct) 0.8 eV  0.74 eV 

Intrinsic carrier 

concentration 
2.4 × 10

13
 cm

-3
 1.0 × 10

10
 cm

-3
 6.3 × 10

11
 cm

-3
 

Electron Mobility 3900 cm
2
V

-1
s

-1 
1400 cm

2
V

-1
s

-1
 12000 cm

2
V

-1
s

-1
 

Hole Mobility 1900 cm
2
V

-1
s

-1
 450 cm

2
V

-1
s

-1
 300 cm

2
V

-1
s

-1
 

Breakdown Field ~ 1 × 10
5
 Vcm

-1
 ~ 3 × 10

5
 Vcm

-1
 ~ 2 × 10

5
 Vcm

-1
 

Refractive index 4 3.42 3.43 

Linear Thermal 

expansion 
5.9 × 10

-6
 K

 
2.6 × 10

-6
 K 5.66 × 10

-6
 K 

Melting point 937 °C 1415 °C 
 

Table V. Summary of the optical, electronic and thermal properties at 300 K of 

Ge, Si and InGaAs. 

Table V summarises the intrinsic properties of these semiconductors. It is important to 

note the difference, which has been already mentioned in this chapter, of lattice constant 

between the Ge and Si. A point that it is important to underline is the higher intrinsic 

carrier concentration (ni) of Ge than InGaAs, which is an intrinsic property of the 

material itself.  
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Considering a p-n junction diode, the leakage current can be divided in two components, 

diffusion and generation [68], as already discussed in Chapter 2. Both leakage 

components are directly proportional to the intrinsic carrier concentration, as shown by 

the following equations: 

𝐽𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 = 𝑞𝐷𝑛

𝑛𝑖
2

𝑁𝐴𝐿𝑛
[𝑒𝑥𝑝 (

𝑞𝑉

𝑘𝑇
) − 1] 

                                                                                                                                      (3.3) 

𝐽𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑞
𝑛𝑖

𝜏𝑔
𝑊 [𝑒𝑥𝑝 (

𝑞𝑉

2𝑘𝑇
) − 1] 

where q is the electron charge, Dn is the diffusion constant of electrons, NA is the 

acceptor density, Ln is the diffusion length of electrons, g is the generation lifetime and 

W is the depletion width. The diffusion component is due to generation in the neutral 

region and diffusion to the depletion region, while the second component is due to the 

generation in the depletion region. 

At room temperature the intrinsic carrier concentration of Ge is higher than InGaAs (the 

ratio is ~40). Considering two identical photodiode geometries fabricated from Ge and 

InGaAs, for low defect density material the leakage current will be mainly dominated 

by the diffusion component resulting in a leakage current of a Ge photodiode ~1600 

times higher than that of an InGaAs photodiode. In the case of a high defect 

concentration, the generation component will dominate, and assuming an equal 

depletion width W, the leakage current of a Ge photodiode will be ~40 times higher than 

an InGaAs photodiode.     

However, pure Ge remains the best choice for near-infrared photodetectors on Si for a 

number of reasons: 

a) Ge photodetectors can be integrated with Si, SiO2 or Si3N4 waveguides. 

b) Ge does not suffer from the same contamination processes as InGaAs, and its 

compatibility with the CMOS technology (mainly to make high-speed 

transistors) has been already demonstrated. 

c) Selective area epitaxial growth of pure Ge on Si through patterned SiO2 has been 

already demonstrated giving the capability for large scale integration with 

microelectronics technology, while the selective epitaxial growth of InGaAs is 
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made difficult due to the large lattice mismatch, whilst wafer bonding techniques 

are not suitable.  

Moreover, it has been shown previously that many authors reported a reduction in 

leakage current as the density of threading dislocations is decreased. Although this has 

been demonstrated, the surface passivation and the geometry of a device (mesa or 

planar) should be taken into account. In small size devices (mesa or planar), the surface 

leakage component dominates rather than the bulk leakage component [69]. This aspect 

will be discussed in the next sections and Chapter 5. Therefore, materials with the 

lowest threading-dislocation densities do not always make the best photodetectors, but 

surface passivation needs also to be carefully evaluated, and this is especially true for 

Ge where passivation approaches are still being researched.  

The key challenge for the integration of pure Ge on Si is the epitaxial growth of Ge-

epilayers on Si with low surface roughness and low threading dislocation densities. 

These aspects will be evaluated in the next section and a literature review of different 

Ge-on-Si infrared detectors will be also presented.  

3.4 Growth techniques for pure Ge-on-Si 

As with InGaAs, pure Ge can be incorporated on Si with growth by epitaxial growth or 

bonding techniques. Different epitaxial techniques have been used to grow smooth 

surfaces with low threading dislocation densities of pure Ge on Si. Among these, the 

most commonly used ones are: Molecular Beam Epitaxy (MBE) and Chemical Vapour 

Deposition (CVD).  

MBE is a versatile ultra-high vacuum technique (UHV - ~10
-10

 mbar) for the epitaxial 

growth of semiconductor, metal and insulator thin films. In MBE, the film crystallises 

via reactions between thermal-energy molecular beams of the constituent elements and 

a substrate surface which is maintained at an elevated temperature under UHV 

conditions. The composition of the grown epilayer and its doping level depend on the 

relative arrival rates of the constituent elements and dopants, which in turn depend on 

the evaporation rates of the appropriate sources [70]. MBE, however, suffers from 

contamination issues (material is deposited on the walls of the growth chamber) 

compared to CVD which has a low background contamination and is more uniform, 

mainly due to the higher development budgets and its use to develop production tools.  
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CVD involves flowing a precursor gas or gases into a chamber containing one or more 

heated objects to be coated. Chemical reactions occur on and near the hot surfaces, 

resulting in the deposition of a thin film on the surface. This is accompanied by the 

production of chemical by-products that are extracted out of the chamber along with 

unreacted precursor gases [71]. There are many variants of CVD due to the large variety 

of materials deposited and the wide range of application. In particular, the designed Ge-

on-Si structures of this thesis work have been grown by Low-Pressure CVD (LP-CVD). 

Depending on the pressure (P), CVD can be classified as 

 Reduced-Pressure CVD (RP-CVD) for 133 𝑚𝑏𝑎𝑟 > 𝑃 > 1.3 𝑚𝑏𝑎𝑟 

 LP-CVD for 13 𝑚𝑏𝑎𝑟 > 𝑃 > 13 × 10−3 𝑚𝑏𝑎𝑟; 

 UHV-CVD for 𝑃~ 1.3 × 10−7 𝑚𝑏𝑎𝑟. 

There are also a variety of enhanced CVD processes, which involve the use of plasma, 

ions, photons, lasers to increase deposition rates and/or lower deposition temperatures. 

CVD has a number of advantages for depositing thin films. The CVD films are 

generally quite uniform (the film thickness on the sidewalls of features is comparable to 

the thickness on the top). Another advantage of CVD is that, in addition to the wide 

variety of materials that can be deposited, they can be deposited with very high purity. 

Other advantages include relatively high deposition rates, the fact that CVD often does 

not require high vacuum, and the reproducibility that it is required for high yield 

production. There are, however, a number of disadvantages. One of the primary 

disadvantages is that the precursors can be very toxic, explosive, or corrosive and 

sometimes quite costly. The other major disadvantage is the fact that the films are 

usually deposited at elevated temperatures leading to restrictions on the kind of 

substrates that can be coated. More importantly, it leads to stresses in films deposited on 

materials with different thermal expansion coefficients, which can cause mechanical 

instabilities in the deposited films.     

3.4.1 Ge-on-Si heteroepitaxy 

The early stages of Ge on Si epitaxy, MBE was used by many authors to fabricate 

various infrared detectors [13], [22], [24]–[26], [30]–[34]. The performance of these 

devices has been shown in the previous section. MBE has been mainly used to grow Ge 

on Si heterostructures using SiGe buffer layers, in order to reduce the threading 

dislocation density at the SiGe/Si interface. This reduction in TDD was demonstrated, 

but the price paid in term of low absorption coefficient (because of the indirect bandgap 

of the SiGe alloy) was too high to make an efficient infrared photodetector. Different 
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authors, however, have demonstrated the epitaxial growth of pure Ge on Si without 

using SiGe buffer layers [23], [72], [73], [74], [75]. Baribeau et al. investigated the 

direct deposition of pure Ge on Si (001) by MBE for different growth temperatures, 285 

°C, 610 °C and 700 °C, respectively. The best results were obtained for the intermediate 

temperature, and a TDD of ~2 × 10
7
 cm

-2
 was measured. They also studied post-growth 

annealing treatments confirming a significant improvement in the crystalline quality of 

all Ge epilayers. Annealing was performed for 30 min at 700 °C and a reduction of the 

TDD by almost one order of magnitude was observed. This TDD reduction was also 

verified by Fukuda et al. using an annealing temperature of 680 °C. Malta et al. 

demonstrated the epitaxial growth of a 2.5 m-thick Ge layer on Si using MBE [72], 

[76]. Ge growth was initiated at a temperature of 500 °C and then raised to 900 °C. 

They obtained very low TDDs in the range of 1-3 × 10
5
 cm

-2
 that were confined at the 

Ge/Si interface without propagating to the free surface of the Ge epitaxial film. 

Although SiGe buffer layers were not used, due to the high growth temperature (near to 

the Ge melting point, see Table V), they observed a melting effect of Ge at the interface 

and subsequent alloying with the Si substrate.   

On the other hand, Liu et al. demonstrated an epitaxial growth of a Ge thin film (~200 

nm) on Si by MBE at low temperature (370 °C) [73]. This low growth temperature was 

used to reduce the tensile strain, which is introduced by thermal mismatch between Ge 

and Si. They measured, however, a high TDD of ~4 × 10
10

 cm
-2

. 

The aforementioned CVD techniques have also been used to grow Ge on Si using SiGe 

buffer layers, and different infrared detectors were fabricated [27], [28], [38]. Extensive 

research has been shown to reduce the TDD by Currie et al. [37], as shown previously 

(see paragraph 3.3.1). However, the graded SiGe buffer layer method usually requires a 

thick buffer for pure Ge epitaxy on Si, while in silicon photonics technology it is 

preferable to fabricate the Ge detectors close to Si, mainly in a waveguide design to 

facilitate the light coupling.  

To prevent and reduce the TDDs during the growth of pure Ge on Si, other techniques 

have been developed during the last 20 years: the two temperature method, cyclic 

thermal annealing and selective epitaxial growth (SEG). These techniques will be 

described in the following sections. 
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3.4.1.1 Two-temperature LT/HT Ge growth and cyclic thermal annealing 

The two-step low temperature/high temperature (LT/HT) method was introduced by 

Fan et al. in 1986, for the reduction of threading-dislocations in the heteroepitaxial 

growth of GaAs on Si [77]. The lattice mismatch in the GaAs/Si system is about 4 %, 

and it is very similar to that between Ge and Si. This TDD reduction was obtained by 

cyclic interruption of the vapour phase growth process, where the samples were cooled 

to room temperature and heated back to the growth temperature. Following this, 

different authors reported the epitaxial growth of GaAs on Si by a two-step process 

[78]–[80].  

This TDD reduction was also demonstrated by Lee et al. [78]. A buffer layer 0.3 m-

thick GaAs was grown on Si at low substrate temperatures between 475 and 550 °C. The 

substrate temperature was raised to 580 °C to grow a 3 m-thick GaAs epilayer. Then 

annealing at 850 °C was carried out for 15 minutes. Samples with and without annealing 

were analysed by TEM microscopy. Samples that were not annealed showed many 

defects propagating from the GaAs/Si heterointerface into the thick epilayer region. The 

measured TDD near the epilayer surface was ~10
9
 cm

-2
. On the other hand, annealed 

samples showed a reduction of two orders of magnitude in TDD (~10
7
 cm

-2
). 

An improvement of one order of magnitude in TDD was obtained by Yamaguchi et al. 

[79]. Firstly, a 10 nm thin GaAs buffer layer was grown at 400 °C, then a second layer 

of about 2 m was grown at 700 °C. The growth was interrupted and the substrate 

temperature was lowered to near room temperature. The sample was heated to 700 – 

900 °C and annealed for 1-15 min. The substrate temperature was lowered to 700 °C 

and growth was resumed to obtain a total GaAs film thickness of 3.5 – 4 m. The 

annealing treatment reduced the TDD, which was measured to be about 2-3 × 10
6
 cm

-2
.  

Based on the above discussion, the research carried out for the GaAs/Si system 

demonstrated that the two-step method combined with the thermal annealing was able 

to produce GaAs on Si with low TDDs as low as 10
6
 cm

-2
.  

Although Baribeau et al. proposed to use two temperature steps to grow pure Ge on Si 

in 1986, the first use was in 1998 [81], [82]. Colace et al. proposed and fabricated a 

metal-semiconductor-metal (MSM) near-infrared photodetector, growing pure Ge on Si 

by using the two-step temperature method in a UHV-CVD reactor. In the two-step Ge 

growth procedure, firstly, after thorough cleaning, the substrate was maintained at low 
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temperature (~300 – 400 °C), and a thin layer of Ge buffer layer (~50 – 100 nm) was 

grown to prevent strain release through undesirable island growth. Secondly, the 

substrate temperature was elevated to ~500 – 700 °C and a thick Ge layer with reduced 

threading dislocation density was grown on top of the low-temperature thin Ge buffer 

layer.  

Although Colace et al. demonstrated an efficient pure Ge on Si near-infrared detector, 

they reported a high density of recombination centres (~10
14

 cm
-3

) that suggested a high 

TDD. An improvement to the two-step method was carried out by Luan et al. [4], [83]. 

This improvement consisted of adding a cyclic thermal annealing step after the growth 

to reduce the high TDDs. A 30 nm-thick Ge buffer layer was grown on a Si substrate at 

350 °C. The temperature was raised to 600 °C to deposit a 1 m-thick Ge layer. After 

the two-step growth, wafers were cyclically annealed between a high annealing 

temperature (TH) and a low annealing temperature (TL). Their major findings are 

summarised in Table VI. 

 

Table VI. Summary of annealing parameter and TDDs obtained in [4]. 

As shown in Table VI, increasing the number of annealing cycles proved more effective 

in reducing TDDs. Sample E, which was cyclically annealed between TH = 900 °C and 

TL = 780 °C had the lowest TDD of 2.3 × 10
7
 cm

-2
.  

Shah et al. studied the reduction in TDDs as a function of the Ge buffer layer and Ge 

epilayer thicknesses [84]. Ge on Si heteroepitaxy was performed using a RP-CVD 

reactor. The LT Ge buffer layer was grown at 400 °C and its thickness varied in the 

range of 30 to ~150 nm, while the HT Ge layer was grown at 670 °C and its thickness 

was limited to a maximum of  ~ 1.2 m. Post growth in situ anneals of 830 °C for 10 

min were performed. Figure 3.9 summarises their results. 
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Figure 3.9. The variation of TDD as a function of the LT Ge buffer layer 

thickness, HT Ge thickness and annealing parameters [84]. 

A high TDD was generated in the LT Ge buffer layer, and this TDD was slightly 

reduced when its thickness was increased. The purpose of the LT buffer layer is to keep 

the system planar and generate dislocations. When the HT Ge layer was grown, the 

threading dislocation extended also in to this layer, as shown in previous sections. 

However, as the HT Ge thickness was increased there was a reduction in TDD. This 

reduction was more consistent when annealing was performed. 

As demonstrated by Yamaguchi et al. for the GaAs/Si system, the two-step method 

combined with cyclic annealing also showed a reduction of TDDs on the Ge/Si 

heteroepitaxy. After the works of Colace and Luan many research groups applied the 

two-temperature method combined with the cyclic thermal annealing to fabricate 

various Ge-on-Si near-infrared detectors (the performance of these will be evaluated 

later in this chapter) and different reactors have been used (MBE, RP-CVD, UHV-

CVD, LEPECVD).  Table VII summarises, in terms of growth parameter and TDDs, 

some of the work published on the heteroepitaxy of pure Ge on Si using the two 

temperature method. 
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Thickness of 

Ge seed 

layer (m) / 

Temperature 

of growth 

(°C) 

Thickness of 

Ge layer 

(m) / 

Temperature 

of growth 

(°C) 

Temperature 

of annealing 

(°C) 

Annealing 

cycles 
TDD (cm

-2
) Reference 

RPCVD 

0.1 / 400 1 / 670 830 - NA ~ 2 × 10
7
 [84] 

0.025 / 400 1.6 / 750 750 - 875 - NA < 2 × 10
8
 [85] 

0.04 / 400 0.3 / 730 NA 1 - NA [86] 

0.1 / 400 1.2 / 670 ~900 1  ~ 10
7 

[87] 

0.1 / 400 1.2-1.7 / 650 - NA - NA - NA [88] 

UHVCVD 

0.03 / 350 1/600 780 - 900 10 2.3 × 10
7
 [4] 

0.05 / 350 0.4 / 600 780 - 900 1 1 × 10
8
 [89] 

0.06 / 360 1.1 / 730 650 - 850 - NA - NA [90] 

LEPECVD 0.03 / 350  1 / 600 850 - 900 3 2.5 × 10
7
 [91] 

Table VII. Summary of Ge on Si heteroepitaxy by two-step LT/HT Ge growth and 

cyclic thermal annealing.  

The two-step method has also been used to grow Ge epilayer on Si using a SiGe buffer 

layer deposited at low temperature. The role of the SiGe buffer layer was to confine and 

lower the dislocation density by reducing the lattice mismatch between the Ge and Si. 

No significant improvements, however, have been reported in terms of TDDs and near-

infrared photodetector performance [92], [93]. 

3.4.1.2 Selective epitaxial growth of Ge-on-Si 

Another approach to reduce the TDDs is selective epitaxial growth (SEG). This 

technology allows the growth of Ge directly on Si wafers with a patterned SiO2 (or 

Si3N4) mask. Combined with the two-temperature LT/HT method and cyclic thermal 

annealing, reductions in the TDD in the film have been demonstrated. When the SEG 

was applied to a small area, threading arms of misfit dislocations glide and terminate at 

the edge of the growth area reducing the overall TDD. This reduction happens because 

during the Ge-on-Si heteroepitaxy the misfit dislocations lie at the Si-Ge interface, and 

the threading arms climb, propagating at a 45 degree angle from the Si substrate, and 

terminate at the oxide sidewalls [94]. This process, called epitaxial necking, is shown in 

Figure 3.10. 
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Figure 3.10. Cross-section diagram demonstrating the principles of epitaxial 

necking showing zero threading dislocations at the Ge film surface [94]. 

There is also an added benefit called aspect ratio trapping (ART), which occurs when 

the Ge film width is comparable to the layer thickness. This advantage has been 

demonstrated by different authors [95], [96]. Park et al. demonstrated defect-free 

germanium growth in different aspect ratio (AR = trench height/width) SiO2 trenches on 

silicon [95]. The maximum Ge thickness was kept to 450 nm. They demonstrated that 

for trenches having an AR > 1 all the dislocations originating at the Si/Ge interface were 

trapped at the oxide sidewall and were confined near the interface without propagating 

in the Ge epilayer. On the other hand, trenches with an AR < 1 showed some dislocation 

terminations at the Ge surface. In both cases, however, no defect generation along the 

SiO2 sidewall was observed. Similar results were also obtained by Wang et al. [96]. 

However, they also observed that growing selective Ge in SiO2 trenches by using the 

two temperature method and cyclic thermal annealing was more effective for reducing 

the TDDs. Threading dislocations were confined at the Si/Ge interface, leaving a defect-

free Ge surface, and a TDD of ~1 × 10
7
 cm

-2
 was measured at the interface. 

However, ART techniques are dependent on critical nano-scale patterning and selective 

growth over window sizes in the 100 nm range.  

The first SEG on patterned SiO2/Si wafers of a 10 m-side square mesa Ge-on-Si was 

demonstrated by Luan et al. [4]. The thickness of the oxide was 1 m. The two-step 
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process, followed by 10 minute annealing at 900 °C, Figure 3.11a, and cyclic annealing 

between 900 °C and 100 °C, Figure 3.11b, was used. 

            
(a)                                                                        (b) 

Figure 3.11. 10 m square mesa Ge selectively grown on patterned SiO2/Si wafers 

followed by (a) 10 minute annealing at 900 °C, and (b) 10 annealing cycles 

between TH = 900 °C and TL = 100 °C. 

The measured TDD was 4.3 × 10
7
 cm

-2
, Figure 3.11a, and 2.3 × 10

6
 cm

-2
, Figure 3.11b. 

They also observed many threading dislocation-free Ge mesas in their samples. 

Similar results were later obtained by Sammak et al. on 10 m square mesas and 1 m-

thick SEG Ge on Si [97]. 

Various near-infrared photodetector have been demonstrated using this technology, and 

their performance will be evaluated later in this chapter. Moreover, it should be noted 

that the advantage of SEG is not only the reduction of TDDs, but more important is the 

possibility to selectively introduce Ge into CMOS technology for large scale integration 

with other Si photonics component (e.g. waveguides, modulators) that make this 

technology very practical and powerful. 

3.4.2 Effect of TDD on device performance 

As discussed in several occasions throughout this chapter, the lattice mismatch in the 

Ge/Si system (or GaAs/Si or InGaAs/Si) causes a high density of defects at the 

heterointerface. The density of these defects is quantified through the TDD. The TDD 

reduction has been studied by many authors and different solutions have been proposed. 

The importance of reducing the TDD is because defects at the heterointerface and in the 

epilayer degrade the performance of the device and compromise their reliability. 

Dislocations are known to increase the dark current of a device. As shown in section 

3.3, many authors have demonstrated that a reduction of TDD helped to reduce the dark 

current of a device. A more detailed investigation on the correlation between threading 

dislocation density and leakage current of SiGe p-i-n diodes was carried out by Giovane 
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et al. [27]. They demonstrated that defect states related to threading dislocations act as 

generation and recombination centre in these devices, and the bulk leakage current 

correlates directly with the TDD. In fact, they measured an increase in bulk leakage 

current densities of 0.02, 0.32, and 0.78 mA/cm
2
 as the TDD increased (2 × 10

5
, 2 × 

10
6
, and 9 × 10

6
 cm

-2
, respectively). 

The effect of TDD on the performance of a photodetector was also demonstrated by 

Colace et al. [98]. Here, the devices consisted of pure Ge on Si grown by a two-step 

UHV/CVD process that were treated in different ways, as reported in Table VIII. Mesa 

heterojunction diodes with areas ranging from 4 × 10
-4

 to 0.1 cm
2
 were fabricated.  

 
Table VIII. Summary of process parameters as reported in reference [98]. 

The responsivity was measured in short circuit mode at different reverse biases, as 

shown in Figure 3.12a-b. 
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(a) 

 
(b) 

Figure 3.12. (a) Short-circuit spectral responsivity of mesa heterojunction 

photodetectors made from Ge grown on Si treated with different post-growth 

annealing treatments. (b) Responsivity at 1300 nm at different reverse biases as 

reported in [98]. 

A large improvement in responsivity was measured, in both operation modes, in the 

annealed samples (samples B and C) when compared to that measured from the as-

grown samples. The measured mobility for sample C was 3500 cm
2
/Vs, and the 

calculated carrier lifetime was 0.8 ns. This is three or four orders of magnitude shorter 

than that of bulk Ge. They attributed the short carrier lifetime to recombination at 
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threading-dislocation in the Ge epilayer and misfit dislocations at the Ge/Si interface. 

They confirmed the beneficial effect of post-growth annealing treatments on reducing 

TDD and, hence, improving the electrical and optical properties of their devices. 

Further research on the effect of TDDs on the dark current were performed by DiLello 

et al. in 2012 [69]. Planar n-i-p photodiode were fabricated in a RP-CVD reactor. 1 m-

thick undoped Ge was grown on top of a p+ Si substrate. The Ge was grown by the 

two-step method. Samples underwent annealing between 450 and 800°C to reduce the 

threading dislocations. The annealing step was performed for 4 cycles, 2 cycles or none 

at all to study the effect of threading dislocation on device dark current density. The Ge 

was then implanted with phosphorous to create a shallow n+ region for the top contact 

and the devices were passivated with SiO2.  Different devices, with areas ranging 

between 5 × 5 to 300 × 300 m
2
, were fabricated. The measured TDD, for devices that 

were not annealed, was ~3 × 10
8
 cm

-2
, while after 4 annealing cycles it was ~5 × 10

7
 

cm
-2

. The effect of annealing on the dark current of a 300 × 300 m
2
 device is shown in 

Figure 3.13. 

 

Figure 3.13. Measured dark current for a 300 × 300 m
2
 device. The solid line 

(red) represents the dark current that did not receive any annealing treatment 

after the growth. The dot line (blue) is the dark current for the same size device 

after 4 cycles annealing between 450 and 800 °C. 

At -1 V, a reduction of dark current by a factor of 45 was demonstrated, most likely due 

to the reduction in threading defects. This reduction was not consistent over all sizes. 
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Small devices showed a reduction of only a factor of 15, because the effects of the 

surface dominate the effects of the defects in the bulk material of the device. 

The effect of threading dislocations on the performance of a photodetector has been 

evaluated in terms of its effect on the device photoresponse and dark current. As 

pointed out previously in this chapter, leakage current is a source of noise and power 

dissipation in an optical receiver. Hence, its reduction is important. Although threading 

dislocations play an important role in this reduction, others factors (e.g. semiconductor 

material, device geometry and surface passivation) also have an impact on the leakage 

current. Intrinsically, Ge is a narrow bandgap material and effect on the device dark 

current has more impact than on InGaAs, as shown previously. Device geometry needs 

to be also taken in account, and the surface passivation has also a major contribution. 

As shown by DiLello [69], on smaller size devices, this contribution dominates the 

device dark current, so that the passivation of Ge become very important at these small 

dimensions. Although different materials (e.g. SiO2, Si3N4, GeO2, -Si) can be used to 

passivate the Ge surface, this research field is still open, and the best material for its 

passivation has not been found. 

Moreover, the aforementioned analyses have been done at low reverse biases. For 

devices like APDs and single-photon detectors, which operate at much higher voltages, 

the impact of threading dislocations needs to be evaluated. At higher voltages and, 

hence, high electric fields (near or above the material breakdown field), others 

mechanism, like band-to-band tunnelling or trap assisted tunnelling contribute to the 

device dark current. To date, the correlation between these mechanisms and the 

threading-dislocation, at higher voltages, has not been evaluated. For a single-photon 

detector, there is also a correlation between the device dark current and the device dark 

count rate (DCR), so it is better to keep the dark current at the lowest possible level to 

have a low DCR. 

3.4.3 Effect of the Ge strain on the absorption at the NIR wavelengths 

The 4 % (𝑓 =
𝑎𝑆𝑖−𝑎𝐺𝑒

𝑎𝐺𝑒
) lattice mismatch between Ge and Si causes a high density of 

misfit dislocations and threading-dislocation in the epilayer. Another process that 

generates strain in the Ge film is due to the temperature at which the growth is 

performed. For a thickness > 1 m, the Ge film is nearly completely relaxed at the 

growth temperature (600 – 700 °C). Upon cooling to room temperature, tensile strain 
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can be accumulated in the Ge film due to the larger thermal expansion coefficient of the 

Ge film compared with Si substrate. The thermal expansion coefficients of Ge and Si at 

temperature T (°C), are given by [99], [100] respectively: 

𝛼𝐺𝑒(𝑇) = 6.050 × 10−6 + 3.60 × 10−9𝑇 − 0.35 × 10−12𝑇2    (℃−1)                        (9) 

𝛼𝑆𝑖(𝑇) = {3.725 × [1 − exp(−5.88 × 10−3(𝑇 + 149.15))] + 5.548 × 10−4𝑇} ×

10−6    (℃−1)  

 Many authors demonstrated that this thermal strain causes a tensile strain between 0.20 

– 0.32 % in the Ge film [101], [102]. The first positive effect of this ~0.2 % tensile 

strain in the Ge film, is a reduction of the Ge bandgap of ~0.03 eV (from 0.8 eV for 

bulk Ge to ~0.77 eV for Ge epitaxially grown on Si). This was first demonstrated by 

Ishikawa et al., who verified this bandgap reduction by measuring the absorption 

coefficient of 1 m-thick Ge epitaxially grown on Si by two-step method in a 

UHV/CVD reactor, as shown in Figure 3.14. 

 

Figure 3.14. Comparison of the absorption coefficient for Ge-on-Si (solid line) 

and bulk Ge (dashed line) [101]. 

The advantage of bandgap reduction is to enhance the absorption coefficient of bulk Ge 

from 840 cm
-1

 to 3300 cm
-1

 at 1550 nm wavelength [103]. It is also clear that the 

detection range is extended toward smaller energies (longer wavelengths). 

Additionally, when Ge is cooled, its absorption coefficient drops very quickly at the 

infrared wavelengths (mainly at 1550 nm) [104], as shown in Figure 3.15.  
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Figure 3.15. Absorption spectra of single crystal Ge at 77 K and 300 K [104]. 

Therefore, for this reason also the effect of strain on Ge becomes important. If the strain 

can be further enhanced it will also enhance the absorption coefficient at infrared 

wavelengths, further shrinking the Ge bandgap. This enhancement could have a 

significant impact on devices like Ge-based lasers and photodetectors that could be 

integrated on a Si photonics platform. 

3.5 Ge-on-Si by wafer bonding 

As with the InGaAs/Si system, wafer bonding techniques can be also applied for the 

integration of germanium on silicon. The limitations of these techniques are this 

intrinsic complexity on integration in a CMOS foundry, poor mechanical strength, 

thermal stability, the handling of Ge substrates that are more expensive than Si 

substrates and, they do not give the possibility to selectively introduce Ge on Si in small 

areas. Although these techniques have not been used in this thesis, a brief literature 

review is presented. 
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Bonding techniques have been used in the Ge/Si system to overcome the limitation on 

the devices performance due to 4 % lattice mismatch between these two semiconductor 

materials. There are not many papers in the literature about devices fabricated using 

these techniques. While in the InGaAs/Si system there is a clear advantage of using 

wafer bonding, because the TDDs are much higher in this system when epitaxially 

grown (due to the 8 % lattice mismatch between InGaAs and Si), its complexity and the 

technological progress on the Ge-on-Si heteroepitaxy have limited its use on the 

integration of Ge on Si.   

In 2013, Gity et al. reported the fabrication of a p-n Ge/Si heterojunction photodiode by 

wafer bonding [106]. An n+ Si substrate and a p- Ge substrate were bonded together. 

The bonding was followed by two 24-hour anneal step at 200 °C and 300 °C to enhance 

the bond strength. Then the Ge wafer was thinned leaving a 5.4 m thick Ge layer. 

Mesa p-n diodes ranging from 20 to 500 m were fabricated. A challenge in this kind of 

structure is the thickness of the bonded interface which should be minimized because it 

affects the carrier transport across the interface. In this case, a 2 nm-thick amorphous 

interfacial region was observed, plus additional regions at the interface on the Ge side. 

A high dark current of 25 mA/cm
2
 was measured for a 500 m diameter mesa with 

responsivity at 1550 nm wavelength of 1.6 A/W. However, the performance of these 

devices was mainly limited by the interfacial traps.  

As it will be shown in the next section the performance of Ge-on-Si wafer bonding 

photodetectors is worse than Ge-on-Si detectors made by heteroepitaxy. 

3.6 Ge-on-Si NIR photodetectors 

After the introduction of the two-temperature method and annealing in Ge-on-Si 

heteroepitaxy demonstrated by Colace et al. in 2000 [98], different Ge-on-Si infrared 

photodetectors have been demonstrated in the last 15 years. Research has been focused 

on the fabrication of efficient detectors at infrared wavelengths with low levels of 

leakage current. P-i-n, waveguide Ge detectors, and APDs have been successfully 

demonstrated. A literature review of these detectors is presented with the main focus on 

their performance. 
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3.6.1 Ge-on-Si p-i-n photodetectors 

One of the most used configurations in the literature for photodetectors is the p-i-n or n-

i-p structure. This configuration is mainly used in optical receivers to convert the optical 

signal in an electrical system. Their main requirements are: low leakage current, which 

influences the S/N ratio and the power consumption; high efficiency at infrared 

wavelengths; and high speed to satisfy the requirements in terms of high bandwidth. 

Although the market at infrared wavelengths is mainly dominated by III-V 

photodetectors, thanks to the advantages obtained in the heteroepitaxial systems  a lot of 

effort has been put in to demonstrate low leakage current and high responsivity Ge-on-

Si detectors that can be integrated within a CMOS process and with other silicon 

photonics components such as modulators and waveguides. 

The first Ge-on-Si p-i-n photodetector was demonstrated by Colace et al. [98] in 2000. 

Heteroepitaxy was performed in a UHV CVD reactor using the two-step method and 

mesa p-i-n diodes with areas ranging between 4 × 10
-4

 and 0.1 cm
2
 were fabricated. No 

passivation layer was used. The devices exhibited a dark current density (DCD) of 30 

mA/cm
2
 with a responsivity of 0.55 A/W at 1310 nm (corresponding to an external 

quantum efficiency of 52 %) measured in short circuit mode. One year later, they also 

demonstrated p-i-n and n-i-p detectors fabricated using n Si or n+ Si and p Si or p+ Si 

substrates, respectively [107]. The same heteroepitaxy steps were also used for these 

devices. For the p-i-n structure the Ge was implanted with boron, while for the n-i-p 

structure the Ge was implanted with phosphorous to make the top contact in both 

configurations. The implant was activated at 600 °C. Mesas ranging between 4 × 10
-4

 

and 0.1 cm
2
 were fabricated. The lowest DCD of 20 mA/cm

2
 was measured on the n-i-p 

structure grown on the heavy doped p+ substrate. These photodiodes exhibit a lower 

responsivity of 0.3 and 0.2 A/W at 1300 and 1550 nm wavelengths, respectively.    

In 2002, Fama’ et al. demonstrated n-i-p photodetectors [108]. 4 m-thick Ge was 

grown on top of a highly doped p-type Si substrate on a UHV/CVD reactor using the 

two-step method. 10 annealing cycles were performed at a temperature ranging between 

780 and 900 °C to reduce the TDDs. The Ge layer was then implanted with 

phosphorous to create the n region and to make a low resistivity top contact. Mesa 

diameters ranging between 135 and 585 m were fabricated by photolithography. The 

measured DCD was 15 mA/cm
2
 and 8.3 mA/cm

2
 for a 585 and 135 m mesa diameter, 

respectively. They also observed a linear scaling of dark current with area, which 
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confirmed that the main mechanism contributing to the leakage current was carrier 

recombination-generation (R-G) in the bulk Ge. The measured responsivity was 0.89 

and 0.75 A/W at 1310 and 1550 nm wavelengths, respectively. 

Bandaru et al. fabricated p-Ge/n-Si photodetectors using MBE [109] in 2004. A 200 

nm-thick p-Ge layer (10
17 

cm
-3

) was grown on top of a n-Si substrate (10
15

 cm
-3

) using a 

low temperature (< 450 °C) process. 10 nm p+ Ge was also grown on top of Ge for the 

contact. Square mesas from 400 m to 5 mm were defined. Because of the high doping 

in the Ge, the depletion region extended mainly in the Si layer giving a low DCD of 0.3 

mA/cm
2
 at a reverse bias of 1V. Devices were not characterised in terms of their 

responsivity at infrared wavelengths and, due to the low temperature growth the Ge 

quality observed was poor. 

In 2005, Dosunmu et al. designed and fabricated a resonant cavity Ge-on-SOI 

photodetector, whose structure is shown in Figure 3.16 [110]. For the SOI wafer, a 340 

nm thick Si device layer, which is the top layer of a SOI substrate, and 200 nm-thick 

SiO2 were chosen giving a reflectivity of 55 % at 1550 nm wavelength. Prior to the 

1450 nm-thick Ge growth using a low temperature buffer layer, the Si device layer was 

implanted with boron to form the p-contact.  Circular mesas ranging between 10 and 78 

m in diameter were fabricated and a SiO2 anti reflection coating was also used and 

devices were back-illuminated. The measured responsivity was 0.73 A/W at 1538 nm 

wavelength and at a reverse bias of 0.5 V. The DCD was not stated in the paper. 

 

Figure 3.16. Cross-sectional view of the Ge-on-SOI resonant cavity 

photodetectors proposed by Dosnumu [110]. 

The same year, a vertical-incidence Ge-on-Si photodiode grown by MBE, which 

structure is shown in Figure 3.17, was proposed by Jutzi et al. [111].  
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Figure 3.17. Cross-sectional view of the vertical-incidence Ge-on-Si photodiode 

proposed by Jutzi [111]. 

300 nm-thick p+ Ge was grown on top of a Si buffer layer, and then 300 nm i-Ge was 

grown at low temperature (300 °C) followed from 200 nm-thick n+ Ge. SiO2 was 

deposited by plasma enhanced CVD (PECVD) for passivation. Mesa diameters ranging 

between 10 and 80 m were defined by photolithography. A very high DCD of 100 

mA/cm
2
 at a reverse bias of 1 V was measured with an external quantum efficiency of 

16 % and 2.8 % at 1298 nm and 1550 nm wavelengths, respectively. 

Liu et al. demonstrated a 0.25 % tensile strained Ge-on-Si p-i-n photodetector [103]. As 

described previously, the 0.25 % strain was obtained by thermal mismatch and by 

adding a TiSi2 backside silicidation. The i-Ge layer was 2.35 m-thick and the 

measured DCD was 10 mA/cm
2
. The main effect of the strain is on the Ge absorption 

coefficient which was demonstrated by measuring responsivities of 0.422 and 0.52 A/W 

at 1550 nm for devices without (0.2 % strain) and with (0.25 % strain) backside 

silicidation, respectively. Because the strain also shifts the Ge wavelength cut off to 

longer wavelengths, responsivities of 0.048 and 0.1 A/W were measured for structures 

with 0.2 % and 0.25 % strain, respectively. 

Due to the high annealing temperatures typically used in Ge heteroepitaxy, which is 

incompatible with the standard CMOS process, Colace et al. fabricated Ge-on-Si p-i-n 

photodetectors using a low temperature buffer layer (without annealing) to keep the 

maximum temperature below 600 °C in 2006 [112]. Devices were grown in a UHV 

CVD reactor and square mesas ranging from 20 to 80 m were defined by 

photolithography. Devices showed a much higher DCD (200 mA/cm
2
) than previously 
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reported annealed devices. The measured responsivities at 1300 and 1550 nm were 0.4 

and 0.2 A/W, respectively.   

In 2006, Morse et al. proposed Ge-on-Si p-i-n detectors passivated using amorphous Si 

(a:Si) [87]. 1.2 m-thick Ge was grown by two step process followed by a 900 °C 

annealing. Circular mesas of diameters ranging from 15 to 250 m were fabricated. The 

top surface of Ge was implanted with boron to define the p+ Ge region (dopants were 

activated at 650 °C). A DCD of 6.4 mA/cm
2
 at a reverse bias of 1 V was measured and a 

linear scaling of dark current with area of the device was also observed (bulk effect in 

the Ge). The calculated responsivity was 0.45 A/W at 1310 nm wavelength. 

Colace et al. demonstrated Ge-on-Si p-i-n detectors with low dark current in 2007 [6]. 

Compared to the other structures presented by the same author, a highly doped p+ Ge 

buffer layer was grown, at low temperature, on top of a p+ Si substrate. This layer was 

introduced to compensate the acceptor-like defects that arise from the lattice mismatch 

between Ge and Si which, in turn, introduce deep electronic states within the bandgap. 

The 1 m-thick i-Ge was grown at higher temperature followed by a low temperature 

deposition (400 °C) of a 200 nm-thick n+ Ge. Mesas ranging from 20 to 80 m were 

fabricated. A low DCD of 1 mA/cm
2
 at a reverse bias of 1 V was measured with 

responsivities of 0.3 and 0.2 A/W at 1310 and 1550 nm wavelengths. 

A further improvement on the DCD of these devices was also demonstrated by Isella et 

al. in 2007 [113]. Devices were grown by low-energy plasma-enhanced CVD 

(LEPECVD). LEPECVD has the advantage that a thick Ge layer can be deposited in a 

few minutes at 600 °C which is fully compatible with CMOS processing without using a 

buffer layer. Different photodiodes were grown on top of a n-Si substrate and the i-Ge 

thickness was varied from 1 to 3 m. Devices were annealed between the growth 

temperature and 780 °C, which is incompatible with the CMOS process, to reduce the 

TDDs. After annealing, 200 nm-thick p+ Ge was deposited. The same structure with 1 

m-thick i-Ge was also fabricated without any annealing step to evaluate the effect of 

TDD on the device performances. Circular mesas of diameter ranging from 0.5 to 10 

mm were fabricated, and a SiO2 layer was deposited to passivate the devices. The DCD 

measured, in the annealed samples, was 0.4 mA/cm
2
 at a reverse bias of 1.5 V, while it 

was two orders of magnitude higher in the un-annealed devices. The increased in DCD 

for the devices with a thicker i-Ge layer was due to the increasing number of R-G 

centres. The lowest DCD of 0.08 mA/cm
2 

(at -1.5 V) was measured in the 1 m-thick i-
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Ge. An increase in responsivity with increasing i-Ge thickness was also measured. The 

responsivities at 0 V for the 1 m-thick i-Ge were 0.17 and 0.14 A/W at 1310 nm and 

1550 nm respectively. At 0 V the responsivity of the 3 m-thick i-Ge was lower due to 

the strength of the built-in electric field being too low to effectively collect the 

photogenerated carriers in the thick absorption layer. On the other hand, as the reverse 

voltage was increased the 3 m-thick sample showed the higher responsivities of 0.39 

and 0.47 A/W (at -3 V) at 1310 nm and 1550 nm wavelengths, respectively. 

One year later, the same group proposed a comparison based on the same structure, as 

above, but with two different Si substrates, n+ Si and n Si, respectively [114]. The same 

growth steps were performed, varying only the diameters of the mesa from 25 m to 3 

mm. Devices fabricated on the n Si substrate showed lower DCD than the devices 

fabricated on the n+ Si substrate. The DCD were 0.5 and 0.3 mA/cm
2 

(at -1 V) for the 

25 and 500 m devices, respectively, showing that the perimeter component of the dark 

current cannot be neglected with respect to the bulk component. On the other hand, 

samples on the n+ Si substrate showed the highest responsivity, 0.32 A/W at 0 V and 

1550 nm wavelength, because the higher doping created a larger electric field and hence 

good carrier collection.  

The lowest reported DCD for any Ge-on-Si photodetector was demonstrated by the 

same authors in 2009 [115]. Two different structures were proposed, p-i-n and n-i-p, 

with and without annealing. The annealed p-i-n structure demonstrated a DCD of 0.041 

mA/cm
2
 (at -1 V), while the unannealed showed a value of 4.6 mA/cm

2
 (at -1 V). The 

measured DCD on the annealed n-i-p samples was 0.001 mA/cm
2
 (at -1 V), 

demonstrating the lowest DCD, while it increased to 2 mA/cm
2
 (at -1 V) on the 

unannealed samples, probably because of the higher TDD. 

In 2010, Sorianello et al. demonstrated Ge-on-Si p-n diodes where a layer of Ge 200 

nm-thick was grown on top of a Si or SOI substrate using thermal evaporation [116]. 

They used this technique because of the low temperature of deposition (from 225 to 400 

°C) required. They verified that to obtain acceptable monocrystalline Ge a temperature 

around 400 °C should be used. For temperatures below 225 °C the Ge was amorphous, 

while above 450 °C the Ge was polycrystalline. Normal incidence detectors were 

fabricated showing a relatively high DCD of 2 mA/cm
2
 at -1 V. Because of the low Ge 

thickness the measured responsivity was only 0.002 A/W at 1550 nm. Later in 2012, 

they tried to improve the process by adding a thermal diffusion step of phosphorous 
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spin-on-dopant to compensate the acceptor states introduced by dislocations [117]. This 

step was added to avoid annealing and keep the thermal budget of the process to a low 

level (less than 600 °C). A layer 1.3 m-thick of Ge was deposited at 300 °C by thermal 

evaporation and then P doping was added by spin-on-dopant at 580 °C.  The measured 

DCD was as high as 200 mA/cm
2
. However, the responsivity was slightly improved to 

0.11 A/W at 1550 nm, due to the wider depletion region obtained by compensating the 

acceptor states with P spin-on-dopant. 

In 2012, DiLello et al. investigated the mechanisms of dark current in planar Ge-on-Si 

photodiodes [69]. Devices with a Ge thickness varying between 1 and 2 m were 

fabricated on top of a p+ Si substrate by using the two step growth in a RPCVD reactor. 

Devices were annealed between 450 and 850 °C. Ge was then implanted with P, which 

was activated at 550 °C. The Ge surface was passivated using 100 nm-thick SiO2, and 

Ti/Al was used to form both contacts. They also introduced a further step after 

metallisation called post-metallisation annealing (PMA), which was performed at 

different temperatures ranging from 300 to 425 °C. Devices ranging from 5 to 300 m 

were defined.  

They observed that in small devices (5 – 20 m) the dark current scaled with the 

perimeter of the device, while in big devices (100 – 300 m) the dark current scaled 

with the area of the device. Moreover, they demonstrated that the PMA step, at 425 °C, 

reduced the dark current of the small devices (10 × 10 m
2
) by a factor of ~1000, while 

for larger devices (100 × 100 m
2
) this reduction was a factor of ~140. The small device 

showed a DCD of 10 mA/cm
2
 with PMA, while it increased to 100 mA/cm

2
 without 

PMA.  

This PMA step was introduced because dangling bonds at germanium/insulator 

interfaces are always negatively charged [118]. Without PMS, there was a large 

depletion region at the Ge surface that created a region with a high electric field and 

hence increased the leakage current. After PMA, holes were drawn to the surface of Ge, 

reducing the depletion layer and hence reducing the electric field. To demonstrate this, 

they grew an identical structure where the top Ge layer was slightly doped p-type (~5 × 

10
17 

cm
-3

) and then implanted with P. The dark current was reduced by adding the p-

type layer by nearly the same amount as the PMA. In terms of responsivity, the PMA 

did not have any effect, and a value of 0.4 A/W at 1550 nm was obtained.  

Table IX summarises the performance of Ge-on-Si p-i-n and n-i-p discussed in this 

section. 
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Structure 

Epitaxial 

growth 

technique 

Responsivity 

[A/W] 

Dark 

Current 

Density 

[mA/cm
2
] 

Wavelength 

[nm] 
Reference 

Ge-on-Si mesa 

p-i-n detector 

UHV/CVD 

two-

temperature 

process 

0.55 30  1300 [98] 

Ge-on-Si mesa 

n-i-p detector 

UHV/CVD 

two-

temperature 

process 

0.3@1310 nm 

 

0.2 @1550 nm 

20 1300 – 1500 [107] 

Ge-on-Si mesa 

n-i-p detector 

UHV/CVD 

two-

temperature 

process 

0.89 @1310 

nm 

 

0.75 @1550 

nm 

8.3 NA [108] 

Ge-on-Si mesa 

p-n detector 
MBE NA 0.3 1300 – 1500 [109] 

Ge-on-SOI 

mesa p-i-n 

detector 

NA 0.73 NA 1538 [110] 

Ge-on-Si mesa 

p-i-n detector 
MBE 

ext = 16 % 

@1298 nm 

 

ext = 2.8 % 

@1552 nm 

100 1298 – 1552 [111] 

Ge-on-Si mesa 

p-i-n detector 

UHV/CVD 

two-

temperature 

process 

0.4@1310 nm 

 

0.2 @1550 nm 

200 1310 – 1550 [112] 

Ge-on-Si mesa 

p-i-n detector 

UHV/CVD 

two-

temperature 

process 

0.45 @1310 

nm 

 

6.4 1310 [87] 

Ge-on-Si mesa 

p-i-n detector 

RPCVD 

two-

temperature 

process 

0.3 @1310 nm 

 

0.2 @1550 nm 

1
 

1310 – 1550 [6] 

Ge-on-Si mesa 

p-i-n detector 

LEPECVD 

no buffer 

0.17 @1310 

nm 

 

0.14 @1550 

nm 

0.4 1310 – 1550 [113] 

Ge-on-Si mesa 

p-i-n detector 

LEPECVD 

no buffer 

0.32 @1550 

nm 
0.5 1550 [114] 

Ge-on-Si mesa 

p-i-n detector 

RPCVD 

two-

temperature 

process 

0.95 @1310 

nm 

 

0.74 @1550 

nm 

18.5 1310 – 1550 [119] 
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Structure 
Epitaxial 

growth 

technique 

Responsivity 

[A/W] 

Dark 

Current 

Density 

[mA/cm
2
] 

Wavelength 

[nm] 
Reference 

Ge-on-Si mesa 

p-i-n detector 

LEPECVD 

no buffer 
0.4 @1550 nm 0.041  1550 [91] 

Ge-on-Si mesa 

p-i-n detector 

UHV/CVD 

two-

temperature 

process 

0.23 @1550 

nm 
10 1550 [120] 

Ge-on-SOI 

mesa p-n 

detector 

Thermal 

evaporation 

0.002 @1550 

nm 
2 1550 [116] 

Ge-on-Si 

planar n-i-p 

detector 

RPCVD 

two-

temperature 

process 

0.4 @1550 nm 10 1550 [69] 

Ge-on-Si mesa 

p-n detector 

Thermal 

evaporation 

0.11 @1550 

nm 
200 1550 [117] 

Ge-on-Si mesa 

p-i-n tensile 

strained 

detector 

UHV/CVD 

two-

temperature 

process 

0.6 @1310 nm 

 

0.52 @1550 

nm 

 

0.1 @1620 nm 

10 1310 – 1620 [103] 

Table IX. Summary of Ge-on-Si photodetectors in the near-infrared grown by 

hetero-epitaxy. 

Thanks to the technological progress in Ge-on-Si heteroepitaxy, many different Ge-on-

Si p-i-n or n-i-p photodetectors have been successfully demonstrated in the last 20 

years, as shown in Table IX. The performance of these devices is comparable in terms 

of DCD and responsivity to the InGaAs/Si detectors fabricated by wafer bonding. 

Although the InGaAs/Si detectors demonstrated a slightly lower leakage current than 

the Ge-on-Si detectors (probably due to the intrinsic property of the materials 

themselves), the possibility of introducing Ge in a CMOS process due to its 

compatibility and to fabricate detectors by heteroepitaxy using the standard reactor used 

in CMOS represent a big advantage for this class of near-infrared detector.    

3.6.2 Waveguide integrated Ge-on-Si photodetectors 

The demonstration of the integration of Ge-on-Si photodetectors with waveguides is 

very important for many reasons. First of all, this configuration gives the possibility to 

overcome the bandwidth-efficiency trade-off in normal incidence detectors. The light 

signal is delivered to the device by an in-plane optical waveguide rather than top-down, 

permitting the bandwidth and efficiency to be determined almost independently. The 

efficiency is independent of the thickness of the absorbing layer, but is instead 



 

82 

 

dependent on waveguide length. Secondly, this configuration represents a further step 

on the monolithic integration of Si photonics components with electronics device for 

large scale integration.  

In 2007, Ahn et al. demonstrated a Ge p-i-n photodetector that was monolithically 

integrated with silicon oxynitride (SiON) and silicon nitride (SiNx) waveguides [90]. 

Devices (structure in Figure 3.18) were grown in a UHV CVD reactor using the two-

temperature process. Devices were defined by an etching process and then SiO2 was 

deposited followed by a CMP step to planarise the top surface. SiON or SiN waveguides 

were fabricated on top of the devices. 

 

Figure 3.18. Schematic structure of the waveguide integrated Ge p-i-n 

photodetector [90]. 

The measured DCD at -0.5 V was 410 mA/cm
2
. The very high DCD obtained was 

mainly due to surface leakage component from the sidewalls of the device. A higher 

responsivity at 1550 nm of 1.08 A/W for the SiN coupled detector was measured, 

wavelength, compared to the SiON waveguide that demonstrated a value of 0.96 A/W. 

The measured responsivity, in both cases, was higher than the responsivity for the 

normal-incidence p-i-n Ge photodetector which was estimated to be 0.45 A/W. 

A thin-film-Ge lateral p-i-n photodetector integrated on a Si waveguide was 

demonstrated by Wang et al. in 2008 [121]. The device structure is illustrated in Figure 

3.19. 
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Figure 3.19. Schematic structure of the lateral Ge p-i-n photodetector integrated 

on a Si waveguide [121]. 

After defining the Si waveguide on top of a SOI substrate, the Ge was grown in a UHV 

CVD reactor using the two-step process and a SiGe buffer layer. The detector width was 

kept constant at 2.4 m, while its length ranged between 5 and 20 m. The top Ge 

surface was implanted with B and P to define the p and n-type contacts, respectively. 

Different length devices showed a high DCD of ~125 mA/cm
2
. The main contribution to 

the dark current was verified experimentally by low temperature measurements and was 

mainly due to thermal generation and recombination of carriers in the intrinsic Ge layer. 

A low responsivity of 0.13 A/W at -1 V and 1550 nm wavelength was measured due to 

the SiGe buffer layer and intermixing of Si and Ge which resulted in a lower Ge 

absorption coefficient. 

Masini et al. in collaboration with Luxtera demonstrated the monolithic integration of a 

waveguide Ge p-i-n photodetector with CMOS electronics for high-speed optical 

transceivers [122]. The Ge-on-Si heteroepitaxy was performed using a RPCVD reactor. 

A high dark current of 3 A at -1 V was measured due to the defects at the Si/Ge 

interface. The responsivity at 1550 nm wavelength was 0.85 A/W. The integration with 

a CMOS receiver also demonstrated a speed up to 20 GHz. 

Later in 2009, Vivien et al. also demonstrated a p-i-n Ge photodetector integrated in a 

submicron SOI rib waveguide, which is illustrated in Figure 3.20 [86]. 
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Figure 3.20. Schematic view of p-i-n Ge photodetector integrated in a SOI rib 

waveguide [86]. 

A 450 nm-thick Ge layer was grown in a RPCVD reactor using the two temperature 

process. A 3 m wide and 15 m-long mesa detector was defined and passivated with 

SiO2. The measured DCD at -1 V was 60 mA/cm
2
, while the responsivity at -0.5 V and 

1550 nm wavelength was 1 A/W.  

In 2009, Feng et al. demonstrated a vertical p-i-n Ge photodetector integrated on a Si 

waveguide [123]. A schematic of the structure is shown in Figure 3.21. 

 

Figure 3.21. Schematic view of a vertical p-i-n Ge waveguide photodetector 

integrated on top of a large core SOI waveguide [123]. 

An SOI substrate was used and the single mode waveguide was formed by etching 1.2 

m thick Si with a width of 3 m. Then the wafer was implanted with boron to define 

the p-type contact and annealed at 1050 °C to activate the dopant. The 1.2 m-thick Ge 

was selectively grown on the Si waveguide using the two-step method. Then it was 

reduced to 0.92 m through a chemical mechanical polishing (CMP) step. The top Ge 
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was implanted with P to form the n-type contact. The measured DCD at -0.5 V for a 

device 200 m-long and 3.5 m wide was 28 mA/cm
2
. The responsivity was measured 

for both TE and TM polarisation, and for the TE coupling a responsivity of 0.5 A/W and 

0.72 A/W was measured at 1580 and 1600 nm wavelengths, respectively. It was 0.8 

A/W at 1580 nm for TM polarisation. 

A lateral Ge p-i-n photodetector fabricated at the end of a Si waveguide was recently 

reported by Vivien et al. [124]. To reduce the TDD due to the lattice mismatch, the Ge 

was selectively grown in a RPCVD reactor using the two-temperature process. Devices 

showed a high DCD of 80 A/cm
2
 due to dopant diffusion. The measured responsivity 

was 0.8 A/W at 1550 nm wavelength. 

Table X summarises the performance of Ge-on-Si photodetectors integrated on different 

waveguide geometries. 

Structure 

Epitaxial 

growth 

technique 

Responsivity 

[A/W] 

Dark 

Current 

Density 

[mA/cm
2
] 

Wavelength 

[nm] 
Reference 

Waveguide 

Ge-on-Si  

vertical p-i-n 

UHV/CVD 

two-

temperature 

process 

1.08 @SiN 

WG 

 

0.96 @SiON 

WG 

410  1550 [90] 

Waveguide 

Ge-on-Si  

lateral p-i-n 

UHV/CVD 

two-

temperature 

process with 

SiGe buffer 

0.13 @Si WG 125 1550 [121] 

Waveguide 

Ge-on-Si  

vertical p-i-n 

RPCVD 0.85 @Si WG NA 1550 [122] 

Waveguide 

Ge-on-Si  

vertical p-i-n 

RPCVD two-

temperature 

process 

1 @Si WG 60 1550 [86] 

Waveguide 

Ge-on-Si  

vertical p-i-n 

NA 

0.5 @Si WG, 

TE polarization 

 

0.8 @Si WG, 

TM 

polarization 

28 1580 [123] 

Waveguide 

Ge-on-Si  

lateral p-i-n 

RPCVD two-

temperature 

process 

0.8 @Si WG 80 × 10
3
 1550 [124] 

Table X. Summary of various Ge photodetectors integrated on different 

waveguide geometry. 
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3.6.3 Ge-on-Si avalanche photodetectors 

Avalanche photodiodes (APDs) are high-speed, high sensitivity photodiodes utilising an 

internal gain mechanism by applying a reverse voltage. Compared to p-i-n photodiodes, 

APDs can measure even lower light levels and are used in a wide variety of applications 

requiring high sensitivity such as long-distance optical communications. The operating 

principles of APDs are described in chapter 2. Although APDs based on the III-V 

semiconductors for near infrared wavelength have been already commercialised, during 

the last 5-10 years a lot of effort has been put into researching high-speed and high 

efficiency APDs based on the Ge-on-Si heteroepitaxial system.  

The first Ge-on-Si APD was demonstrated by Kang et al. in 2008 [125]. The proposed 

structure was based on the SACM APD, as shown in Figure 3.22. 

 

Figure 3.22. Schematic cross-section of the Ge-on-Si SACM APD proposed by 

Kang et al. [125]. 

The structure was grown in a CVD reactor by using the two-step process for Ge 

heteroepitaxy on Si. Circular mesas of diameter ranging between 10 and 200 m were 

defined through wet and dry etching for Ge and Si, respectively. Amorphous silicon 

(a:Si) and silicon nitride were used for passivation. The punch-through voltage VPT, 

which is the voltage at which the depletion region extends into the Ge absorption layer, 

occurred between -12 and -20 V. The breakdown voltage VBD (defined at a dark current 

of 100 A) was -25.8 V. A high DCD of 237 mA/cm
2
 at 90% of VBD was measured. 

The primary responsivity (at gain = 1) was 0.54 A/W at 1310 nm wavelength. The 
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measured breakdown voltage thermal coefficient (= (VBD/VBD)/T) was 0.05 %/°C. 

A gain-bandwidth product of 153 GHz was also obtained. These results were later 

improved by the same authors using a similar structure but with different processing 

[126]. A double mesa SACM APD was fabricated, which is shown in Figure 3.23. 

 

Figure 3.23. (a) Schematic and (b) SEM cross-section of a double mesa Ge-on-Si 

SACM APD [126]. 

A floating guard ring (GR), with various distances (1 – 3 m) between the guard ring 

and the mesa edge, was also introduced to prevent premature breakdown along the 

device perimeter. The measured VPT and VBD voltages were -22 and -25 V, respectively. 

The DCD at 90% of VBD was 175 mA/cm
2
. The primary responsivity was 5.88 A/W at 

1310 nm wavelength and the highest gain-bandwidth product of 340 GHz was obtained. 

A Ge-on-Si SACM APD was demonstrated by Carroll et al. [127], as illustrated in 

Figure 3.24.  
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Figure 3.24. Schematic of the Ge-on-Si SACM APD [127]. 

The structure was grown in a high-density plasma CVD (HDP-CVD) reactor. The Ge 

epitaxy was performed at low temperature after the Si implant. Because of the high 

TDD (~5 × 10
10

 cm
-2

) the Ge was heavily p-type doped to minimise the effect of 

threading dislocations, which are supposed to be acceptor type [128], and the depletion 

region width inside it. A VPT of -3V with a VBD equal to -28 V were measured from the 

I-V characteristic. The calculated DCD at 90% of VBD was 100 mA/cm
2
 and the primary 

responsivities were 3.2 × 10
-4

 and 4.5 × 10
-5

 A/W at 1310 and 1550 nm wavelengths, 

respectively. The low DCD was obtained because the depletion region was mainly 

confined in the Si layer causing also low absorption at the near-infrared wavelengths.  

A Ge-on-Si SACM APD similar to the structure reported in [125] was demonstrated by 

Xue et al. [129]. Compared to the structure in Figure 3.24, the Si thickness was 

increased to 700 nm and the charge sheet was obtained by implanting the intrinsic Si 

with boron. The Ge epitaxy was performed in a UHV CVD reactor using the two 

temperature process. After the growth, the Ge was implanted to define the p-type 

contact. SiO2 and Si3N4 were used for the passivation and anti-reflection coating, and 

circular mesas of diameter ranging between 25 and 70 m were defined. Devices 

exhibited a VPT of -29 V and VBD of -39.5 V. The measured DCD at 90% of VBD was 

133 mA/cm
2
, and the primary responsivity at 1310 nm wavelength was 0.5 A/W. 

In 2009, Zhu et al. proposed a novel design for a Ge-on-Si SACM APD integrated in a 

waveguide structure [130], which is shown in Figure 3.25. 
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Figure 3.25. Schematic cross-sectional view of the waveguide Ge-on-si SACM 

APD [130]. 

Starting from an SOI substrate (200 nm-thick Si device, and 2 m-thick SOI), the p-Si 

charge and i-Si multiplication region were located laterally in the Si waveguide whereas 

the absorbing Ge layer was selectively grown (SEG) on the p-Si charge region using a 

SiGe buffer layer. The Ge layer was then implanted to define the p-contact region and 

SiO2 was used for passivation. Although a new geometry was demonstrated, devices 

exhibited a high dark current and it was difficult to distinguish the Ge depletion from 

the Si multiplication process. However, the same research group also reported a normal 

incidence Ge-on-Si SACM APD [131]. In this structure a thicker Ge layer of 1 m was 

grown by SEG. Amorphous Si was used for passivation and Si3N4 as anti-reflection 

coating. For a 60 m-diameter device, the VPT and VBD voltages measured from the I-V 

characteristic were -17 and -27 V, respectively. The calculated DCD at 90% of VBD was 

22 mA/cm
2
 with a primary responsivity of 0.42 A/W at 1310 wavelength. 80 GHz gain-

bandwidth product was also calculated. 

After Kang et al. had reported two different normal incidence SACM APDs in 2008, 

they also proposed and demonstrated a waveguide integrated Ge-on-Si APD in 2009 

[132], as shown in Figure 3.26. 
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Figure 3.26. Device schematic layout of a WG Ge-on-Si APD [132]. 

An SOI substrate was used, and the same structure as the vertical APD was grown but 

with a thinner Ge layer of 600 nm. These WG APDs were 40 to 100 m long with a 

junction area to 7 m wide. These devices were integrated on a multimode Si rib 

waveguide 6 m wide and 2 mm long. Devices exhibited a VBD of -24.5 V with primary 

responsivities of 0.9 and 0.6 A/W at 1310 nm and 1550 nm wavelengths, respectively. 

The measured DCD at 90% of VBD was around 1 mA/cm
2
. They also found that the dark 

current was not dominated by the bulk component (as in the mesa devices) but that the 

perimeter played an important role on these small devices. 

In 2010, Ang et al. reported a waveguide integrated Ge-on-Si SACM APD [133], as 

illustrated in Figure 3.27. 

 

Figure 3.27. Schematic illustration of the WG integrated Ge-on-Si SACM APD 

proposed in [133]. 
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An SOI substrate (220-nm thick Si device, 2 m-thick SiO2) was used and ion 

implanted to define the n-contact region. A 500 nm-thick intrinsic Si was selectively 

grown and then implanted with boron to define the p-Si charge layer. 500 nm-thick Ge 

was selectively grown in a UHV/CVD reactor. For the p contact region 100 nm-thick 

amorphous Si was grown and implanted with boron. The VPT and VBD voltages 

extrapolated from the I-V characteristic were -7.5 and -22.5 V, respectively and the 

DCD at 90% of VBD was 400 mA/cm
2
. Finally, a primary responsivity of 0.8 A/W was 

calculated at 1550 nm wavelength with a gain-bandwidth product of ~105 GHz. 

Duan et al. demonstrated a vertical incidence Ge-on-Si SACM APD grown on an SOI 

substrate (220-nm thick Si device, 2 m-thick SiO2) in 2012 [134]. A 1 m-thick Ge 

absorber layer was selectively grown in a UHV/CVD reactor using the two-temperature 

process and a SiGe buffer layer and amorphous silicon was deposited for passivation. 

The VPT and VBD were -10 V and -29.4 V, respectively. The calculated DCD at 90 % of 

VBD was 282 mA/cm
2
 and the measured primary responsivity at 1550 nm wavelength 

was ~0.3 A/W. A high gain-bandwidth product of 310 GHz was also reported. The same 

authors have recently reported, in 2013, the same Ge-on-Si SACM APD integrated on a 

waveguide [135], which is illustrated in Figure 3.28. 

 

Figure 3.28. Schematic structure of the WG integrated Ge-on-Si SACM APD as 

reported in [135]. 

Devices exhibited a VPT and VBD of -27 and -30 V, respectively. A high DCD of 1250 

mA/cm
2
 was measured at 90% of VBD. 

Table XI summarises the performance of vertical-incidence and waveguide-integrated 

Ge-on-Si avalanche photodetectors. 
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Structure 

Epitaxial 

growth 

technique 

VPT 

(V) 

VBD 

(V) 

Primary 

Responsivity 

[A/W] (at 

gain = 1) 

DCD 

[mA/cm
2
] 

(at 90% 

VBD) 

Gain –

Bandwidth 

product 

(GHz) 

Reference 

Ge-on-Si 

SACM 

APD 

UHV/CVD 

two-

temperature 

process 

-12 -25.8 
0.54 @1310 

nm 
237  153 

 

[125] 

Double 

mesa Ge-

on-Si 

SACM 

APD 

UHV/CVD 

two-

temperature 

process 

-22 -25 
5.88 @1310 

nm 
175  340 [126] 

Ge-on-Si 

SAM 

APD 

HDP-CVD -3 -28 

0.00032 

@1310 nm 

 

0.000045 

@1550 nm 

100   [127] 

Ge-on-Si 

SACM 

APD 

UHV/CVD 

two-

temperature 

process 

-29 -39.5 
0.5 @1310 

nm 
133   [129] 

Ge-on-Si 

SACM 

APD 

SEG with 

SiGe buffer 
-17 -27 

0.42 @1310 

nm 
22  80 [131] 

WG Ge-

on-Si 

APD 

UHV/CVD  -24.5 

0.9 @1310 

nm 

 

0.6 @1550 

nm 

1   [132] 

WG Ge-

on-Si 

SACM 

APD 

UHV/CVD 

SEG 
-7.5 -22.5 

0.8 @1550 

nm 
400  105 [133] 

Ge-on-Si 

SACM 

APD 

UHV/CVD 

two-

temperature 

process 

with SiGe 

buffer 

-10 -29.4 
0.3 @1310 

nm 
282  310 [134] 

WG Ge-

on-Si 

SACM 

APD 

UHV/CVD 

two-

temperature 

process 

with SiGe 

buffer 

-27 -30  1250 
 

 [135] 

Table XI. Summary of vertical-incidence and waveguide-integrated Ge-on-Si 

avalanche photodetectors.  

3.6.4 SPADs operating at infrared wavelengths 

The first SPAD proposed in 1980 was Si-based. As shown by Buller and Collins in 

[136] and by Cova et al. in [137], Si SPADs are widely used in a number of photon 
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counting application areas. These devices, fabricated in a planar geometry, and 

compatible with standard CMOS technology, have shown good single-photon 

performance at room temperature, demonstrating SPDEs of 52% and 12% at 550 nm 

and 850 nm wavelengths, respectively. Low DCR was demonstrated around 300 cs
-1

  

and lower, with NEPs reported ranging between 10
-17

 and 10
-18

 WHz
-1/2

 at room 

temperature and slightly below (~230 K). Although nowadays Si SPADs are 

commercialised by different companies, such as PerkinElmer or Micro Photon Devices 

(MPD), their photon-counting application areas are limited in the spectral region 

between 400 – 1000 nm. This limitation has already been clarified in Figure 3.2, where 

the absorption coefficient of Si drops substantially at the infrared wavelengths due to its 

energy gap of 1.1 eV, which makes it unusable for detecting single-photons at these 

wavelengths.  

On the other hand, there are a number of applications that benefit from photon counting 

techniques in the NIR wavelength bands, like quantum key distribution (QKD) [138], 

time-of-flight ranging [139], singlet oxygen detection for photodynamic therapy (PDT) 

dosimetry [140] and  many others. Due to their low energy gap, as shown in Figure 3.2, 

semiconductors usable at the NIR wavelengths are Ge and InGaAs. An intrinsic 

drawback is the high DCR caused by the higher thermal generation of carriers (which is 

higher in Ge than InGaAs) than in silicon. For this reason, devices must be cooled well 

below room temperature to reduce the DCR to a useable level. Germanium APDs have 

to operate at cryogenic temperatures so that the effect of thermal generation on DCR is 

negligible, and the sensitivity is impaired by trapping centers and tunnelling. This last 

effect is negligible in Si SPADs due to the larger energy gap than germanium where it 

dominates at low temperatures as demonstrated in [141] and [142]. In particular, in the 

case of Ge, commercially available APDs have been used in Geiger-mode operation to 

detect single-photons in the infrared regime.  

The first demonstration in 1976 by Fichtner and Hacker reported Ge APDs operating in 

the nanosecond range [143]. First in 1992 and then in 1994, Lacaita et al. studied the 

single-photon performance at 1310 nm wavelength of several commercially available 

germanium APDs from different suppliers such as Fujitsu (30-m diameter), Judson 

(100-m diameter) and Siemens (50-m diameter) reporting timing performance below 

1 ns [142]. All the tested devices were p
+
 - n planar photodiodes, with a typical cross-

section as shown in Figure 3.29, and a breakdown voltage varying between -33.5 and -

31.5 V at room temperature. Due to the high DCD, devices were cooled and tested at 77 
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K, verifying a decrease of the breakdown voltage from between -33.5 and -31.5 V to -

23.5 and -22.3 V as the temperature decreased from 300 to 77 K. This shift of the 

breakdown voltage with decreasing temperature of operation is common to every APD 

due to the reduction of lattice vibrations and therefore enhanced ionisation coefficients. 

For all tested devices, the authors verified that afterpulsing, caused by carrier trapping 

in the high field region of the junction, increased the DCR and impaired the achievable 

sensitivity. The best performance was obtained by the 30-m diameter device produced 

by Fujitsu, which demonstrated a SPDE of 3.5 % with a NEP of 7.5 × 10
-16

 WHz
-1/2

 at 

0.2 V of excess bias and 1310 nm wavelength. In terms of timing performance, these 

devices demonstrated a timing jitter of 100 ps FWHM when operated at 3 V excess 

bias. 

 

Figure 3.29. Typical p
+
n planar Ge APD cross-section [144]. 

Similar research was also carried out by Fancey in his PhD thesis in 1996 [145]. The Ge 

APDs characterised in this work were also commercially available planar p
+ 

- n 

junctions supplied from different companies such as Fujitsu (30-m diameter), NEC 

(30-m diameter) and GPD Optoelectronics (30-m diameter).  For the same reasons as 

explained above, characterisation was performed at 77 K. An improvement of the 

measured SPDE at 1310 nm between 5 and 15 % was obtained, also showing a linear 

behaviour with excess bias, for small values of over-bias.  

The noise performance of the APDs was also evaluated to find out the major noise 

contribution at the operating temperature. At 77 K the contributions from thermal 

generation and tunnelling were small, as also demonstrated by Haitz [146], leaving the 

re-emission from traps of minority carriers as the main noise mechanism. At this 

temperature the trap state lifetime will increase with decreasing temperature [147]. 

APDs were tested using an active quenched circuit (AQC) and biased 0.6 V above VBD. 

The gate repetition rate was varied between 500 Hz and 100 kHz. The lowest noise 

performance was obtained from the GPD APD at 1 kHz, with mean trap lifetimes 

calculated between 200 and 500 s. This device also showed the lowest NEP of ~2 × 



 

95 

 

10
-16

 WHz
-1/2

 at the same repetition rate and 1310 nm wavelength. In terms of timing 

performance, the FWHM were measured at 1310 and 1550 nm wavelengths, and were 

found to be 310 and 680 ps, respectively. The increase in response time with 

wavelength was due to the decrease in absorption coefficient, increasing the absorption 

length of Ge. This led to those carriers photogenerated beyond the depletion layer taking 

more time to reach the depletion region and consequently increasing the FWHM jitter of 

the detectors.  

A more complete characterisation in terms of single-photon performance on p
+
n planar 

commercially available Ge APDs was carried out by Tosi et al. in 2007 [144] on two 

different Ge APDs from GPD Optoelectronics (40-m diameter, VBD = 19 V at 77 K) 

and from Texas Instruments (TI) (350-m diameter, VBD = 29 V at 77 K). 

Measurements were performed in gated mode at a gate frequency of 1 kHz with fixed 

gate-on duration (TON) of 20 ns and very long gate-off period (TOFF) of 1 ms to avoid 

afterpulsing effects. The TI APD showed the lower DCR of 700 kcs
-1

 at 0.5 V of excess 

bias and 77 K and it was further reduced to 250 kcs
-1

  at 50 K. Although the TI APD 

had a bigger area than the GPD device, its lower DCR showed a better fabrication 

process that introduced fewer lattice defects than the GPD device. In terms of SPDE 

these devices were characterised at 1310 and 1550 nm, showing SPDEs of 30 % and 1 

% at these wavelengths, respectively. Furthermore, the devices were characterised in 

terms of afterpulsing by varying the repetition rate between 1 kHz and 250 kHz (with 

TOFF ranging from 1 ms to 4 s). This is illustrated in Figure 3.30 for the GPD device. 
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Figure 3.30. DCR of Ge GPD measured at various excess biases and 77 K in 

gated operation (TON = 20 ns) as a function of the TOFF time [144]. 

The primary DCR is measured at sufficiently long TOFF (low repetition rate), when 

afterpulsing plays a negligible role and the DCR is constant. A similar behaviour was 

recorded for the TI device. As shown in Figure 3.30, within the measured TOFF range 

there was no significant increase of the DCR for different excess biases, meaning that 

the trap time constant was shorter than 4 s for these devices. As it has already been 

mentioned and as will be further explained below, this behaviour represents a big 

advantage when compared to the InGaAs/InP SPAD. The calculated NEPs at 77 K for 

the GPD APD were ~4.1 × 10
-15

 WHz
-1/2

 and ~3.2 × 10
-15

 WHz
-1/2

 at 0.5 V and 1.5 V of 

excess bias, respectively. In terms of timing jitter these devices had a similar behaviour 

as devices tested by Lacaita and Fancey [142], [145]. 

In the last 20 years, only commercially available Ge APD have been used to detect 

single-photon in the infrared region, without any proposal for a custom designed Ge 

SPAD. Perhaps, this was mainly due to their poor performance when compared to their 

III-V counterparts. An InGaAs/InP SPAD, typically comprising of separate absorption, 

grading, charge, and multiplication (SAGCM) heterostructure is shown in Figure 3.31. 

These devices are used for time correlated single-photon counting (TCSPC) typically at 

1550 nm, and they can efficiently detect photons up to 1700 nm in wavelength.  
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Figure 3.31. Typical planar SAGCM InGaAs/InP SPAD cross-section, with 

double dopant diffusion and floating guard ring. The electric field along the 

centre of the active area is also shown [148]. 

In the last 30 years, their single-photon performance has been extensively studied by 

many research groups including our group at Heriot-Watt University [149], [150] which 

worked on the design, modelling and characterisation of these detectors.  

Referring to Figure 3.31, the photogenerated electron-hole pair in the narrow band gap 

In0.53Ga0.47As (Eg ~0.75 eV at 300 K) layer is separated by the electric field, the hole 

drifts to the InP multiplication region (Eg ~1.35 eV at 300 K), where it can trigger a 

self-sustaining avalanche. The charge layer between the absorption and multiplication 

regions, is designed to maintain a low electric field in the narrow bandgap absorber (to 

avoid tunnelling), while attaining high electric field in the multiplication region (to have 

impact ionisation). The addition of grading layers between InGaAs and InP is important 

to reduce carrier (hole) pile-up effects, which result from the valence band offset (~0.4 

eV) that arises in an abrupt InGaAs/InP heterojunction [151], [152]. Double p-type (Zn) 

diffusion confines the high field region and reduces edge effects. The double p-type 

(Zn) diffusion was first introduced by Liu et al. in 1992 [153], and became a standard 

design for the fabrication of planar InGaAs/InP detector. This novel structure introduced 

two mechanisms to eliminate the edge breakdown: 

1) FGRs that reduced both edge and surface electric fields; 

2) A stepped junction edge formed by the double Zn diffusion that enhanced the 

electric field in the central active region. 
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Typical current-voltage characteristic for these devices is shown in Figure 3.32. 

 

Figure 3.32. Typical dark current (solid lines) and photocurrent (dashed lines) at 

different temperatures for an InGaAs/InP SPAD [154]. 

As the temperature decreases the VBD value decreases with a temperature coefficient  

that depends on the semiconductor used to define the multiplication region (0.17 

V/K for InP). The VPT value is unchanged (~50 V) because it depends only on the 

doping profile of the junction.  

In 1994, Zappa et al. reported the single-photon performance of an InGaAs/InP APD 

(50-m diameter, VBD = ~90-110 V at 290K) produced by EG&G. Devices were 

operated in Geiger mode with a gate-on duration of ~250 ns [152]. An exponential 

dependence of the DCR with the temperature was measured. The measured SPDE at 

1310 nm had a maximum of 1 % at 6 V of excess bias and 150 K. Consequently, at the 

same temperature the minimum NEP was 1 × 10
-14

 WHz
-1/2

 with a jitter FWHM of ~1 

ns. A lower NEP of 2.7 × 10
-16

 WHz
-1/2

 and improved timing performance (~200 ps) at 

2 V of excess bias were later obtained, in 1996, by the same research group by testing a 

commercially available Fujitsu InGaAs/InP (30-m diameter) APD at 77 K [155].  

Similar results were also demonstrated by Hiskett et al. characterising two 

commercially available Fujitsu InGaAs/InP APDs (80-m diameter and 30-m 

diameter). The NEP was calculated over the range of temperatures from 77 K to 225 K 

for both devices. The lowest NEP of 4.4 × 10
-16

 WHz
-1/2

 at 5 V of excess bias was 

measured on the 80-m device at 77 K.  
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Although different authors demonstrated photon-counting with commercially available 

APDs, there are a number of differences in terms of performance requirements between 

an APD and a SPAD that must be underlined. Firstly, not all APDs are suitable for 

photon counting application, but only devices for which the difference 𝑉𝐵𝐷 − 𝑉𝑃𝑇 ≥

30 𝑉 at room temperature (which decreases with the temperature, as also shown in 

Figure 3.32) [149]. If VBD is too close to VPT most of the holes photogenerated in the 

InGaAs layer fail to cross the heterobarrier and are collected by the guard ring. 

Secondly, linear mode InGaAs/InP APD should achieve an optimal electric field profile 

below VBD at modest gain (10-20) since it is within this range of gain that the 

combination APD and amplifier has the maximum S/N ratio. In contrast, SPADs work 

above VBD and the electric field profile should be optimised for target overbias. Finally, 

thinner multiplication regions are desirable in linear mode APDs because they result in 

more deterministic linear mode avalanche processes and also the APD gain-bandwidth 

product is inversely proportional to the multiplication region width, as shown in chapter 

2. In contrast, SPAD performance can benefit from a much thicker multiplication region 

(~1 m) since  that breakdown probability increases significantly [156].  

In 2006, Pellegrini et al. reported the design, fabrication, and performance of planar 

InGaAs/InP (10 m diameter) devices specifically developed for single-photon 

detection at 1550 nm [154]. Device structures were similar to the one shown in Figure 

3.31, but two different designs were proposed and grown to smooth the large valence 

band offset between InGaAs and InP: 

1) with a graded region consisting of one quaternary with a bandgap exactly 

intermediate between InGaAs and InP (SPAD-1Q); 

2) with a graded region composed of three sublayers of stepped bandgap (SPAD-

3Q). 

Devices showed I-V characteristics as reported in Figure 3.32 and were characterised in 

gated mode with a gate-on duration of 100 ns. The SPAD-3Q showed the best 

performance demonstrating a SPDE of 10% and a NEP of 6 × 10
-16

 WHz
-1/2

 at 1550 nm 

and 200 K. The performance of these devices was comparable with that of 

commercially available APD from Epitaxx and Fujitsu, showing a lower DCR but also a 

lower SPDE. Devices were also characterised for afterpulsing as shown in Figure 3.33, 

highlighting the main disadvantage of this class of detectors represented by the carriers 

(holes) trapped in the multiplication region, as already explained. 
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Figure 3.33. DCR as a function of the repetition rate for a 20m diameter SPAD-

3Q at different temperatures. The DCR increased rapidly with repetition rates 

higher than 50 kHz [154]. 

A customised design of InGaAs/InP SPAD was also proposed and demonstrated by 

Tosi et al. with similar result as above [157]. 

A net improvement in the InGaAs/InP SPAD performance was obtained by Liu et al. in 

2007 [158]. The tested devices (40 m diameter) in gated mode (TON = 4 ns, fgate = 10 

kHz) achieved SPDE of 45 % at 1310 nm and DCR of 12 kcs
-1

 at 200 K corresponding 

to a NEP of 4.5 × 10
-17

 WHz
-1/2

. 

Although InGaAs/InP demonstrated good single-photon performance in terms of high 

SPDE, low jitter, and operation at temperatures consistent with thermoelectric Peltier 

cooling, the major drawback of afterpulsing guided researchers toward several different 

electrical biasing schemes to reduce its detrimental effects. In this direction, the first 

report of an InGaAs/InP SPAD operating free-running at room temperature was 

demonstrated by Warburton et al. in 2009 [159]. In free-running operation a suitable 

external circuit senses the onset of the avalanche current, generates a standard output 

pulse, and quenches the avalanche, by lowering the bias below VBD. However, this 

mode of operation is possible only with devices that have low DCR. In Ref. [159] a 

Princeton Lightwave InGaAs/InP SPAD (25 m device, VBD = 42 V at 270 K) was used 

in a passive quenching scheme. The value of the series resistor (RS = 100 k) through 

which the SPAD is reverse biased was chosen to provide a good compromise in the 
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trade-off between maximum counting rate and maximum SPDE. Room temperature 

operation was demonstrated with a DCR of ~1 Mc/s and a NEP of ~8 × 10
-15

 WHz
-1/2

 at 

1550 nm wavelength. With the same device operated in gated mode, room temperature 

measurements were not possible due to the increased DCR. Results were later improved 

by using new generation devices from the same company as above that showed DCR of 

~40 kc/s and NEP of ~1 × 10
-15 

WHz
-1/2 

at the same operating conditions [160]. 

Moreover, a NEP of ~5 × 10
-17 

WHz
-1/2

 at 1550 nm and 210 K comparable with the one 

demonstrated from gated mode devices was demonstrated in free-running mode.  

InGaAs/InP SPADs represent the state-of-art for detecting single-photons in the infrared 

region and nowadays are commercialised by different companies such as Princeton 

Lightwave or MPD. Although the structure of these devices is still similar as the one 

shown in Figure 3.31, as explained by Acerbi et al., design criteria and growth 

processes become very important to efficiently detect single-photons in the infrared 

with low counting rates [148], [161]. Regarding the problem of afterpulsing, it is 

possible to limit its detrimental effects by various biasing and quenching techniques 

such as: sine-wave gating [162], self-differencing [163], sinusoidal gating [164], fast 

AQC [165], etc. However, single-photon detection with InGaAs/InP SPADs is still 

limited by afterpulsing.  On the other hand, Si SPADs demonstrates a negligible 

afterpulsing, and Si is well known for its good multiplication properties and to be a 

mature technology, although it cannot efficiently detect photons at wavelengths greater 

than 1000 nm. 

However, Ge APDs used in the Geiger-mode regime can detect single-photons in the 

infrared and the afterpulsing does not increase as in the InGaAs-based SPADs (although 

it could be masked from the high level of DCR). As already explained in this chapter, 

improved approaches in the heteroepitaxy of pure Ge on Si opened an opportunity to 

design, grow and fabricate a SPAD that can exploit the advantage of both Si and Ge. 

Although this research is at its early stage, the single-photon performance of these 

devices will be analysed in chapter 5 and the work done in this thesis represents the first 

demonstration of a Ge-on-Si SPAD operating at the infrared wavelengths of 1300nm 

and 1550nm. 

For further information, Table XII summarises the single-photon performance of the 

infrared SPADs analysed in this section, plus the addition of a mesa InGaAs-on-Si APD 
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fabricated by wafer bonding and characterized in Geiger-mode at 1550 nm by Kang et 

al. in 2004 [63]. 

Structure 
Diameter 

(m) 

NEP 

(WHz
-1/2

) 

SPDE 

(%) 

FWHW 

(ps) 

Operating 

temperature 
 (nm) Reference 

Fujitsu p
+
n 

Ge APD 
30 7.5×10

-16 
3.5 100 77 K 1310 [142] 

GPD p
+
n 

Ge APD 
30 2×10

-16
 5 - 15 310 77 K 1310 [145] 

GPD p
+
n 

Ge APD 
40 4×10

-15
 5 - 30 300 77 K 1310 [144] 

EG&G 

InGaAs/InP 

APD 

50 9×10
-15

 1 1000 150 K 1310 [152] 

Fujitsu 

InGaAs/InP 

APD 

30 2.7×10
-16

 5 200 77 K 1310 [155] 

Fujitsu 

InGaAs/InP 

APD 

80 4.4×10
-16

 15 250 77 K 1550 [166] 

InGaAs/InP 

SPAD 
10 1×10

-16
 10 425 150 K 1550 [154] 

InGaAs/InP 

SPAD 
40 4.5×10

-17
 45 140 200 K 1310 [158] 

PLI 

InGaAs/InP 

SPAD 

25 1×10
-14

 2 500 290 K 1550 [159] 

PLI 

InGaAs/InP 

SPAD 

25 4.5×10
-17

 5 450 210 K 1550 [160] 

InGaAs on 

Si APD 
150 8×10

-16
 2.5 - 33  223 K 1550 [63] 

Table XII. Summary of performance at the infrared wavelengths of selected Ge, 

InGaAs/InP, and InGaAs-on-Si single-photon detectors. 

3.6.5 Superconducting Nanowire Single-Photon Detector (SNSPD) 

As already mentioned in Chapter 2, other technologies exist to detect single-photons 

such as the superconducting nanowire and the transition edge sensor. 

The Niobium Nitride (NbN) SNSPD was introduced by Gol’tsman et al. in 1991 [167], 

and it is single-photon sensitive at visible and infrared wavelengths. Its principle of 

operation is illustrated in Figure 3.34, where the superconductor is kept at a temperature 

T below its critical temperature TC (11.5 K) and direct current biased just below its 

critical current IC. The absorption of a photon with energy ℏ𝜔 ≫ 2Δ, where 2Δ is the 

superconducting energy gap, creates a local nonequilibrium perturbation with a large 
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number of excited hot electrons (~300 for NbN excited with 790 nm wavelength), and 

an increase of the average electron temperature above TC. This results in the formation 

of a hotspot – a local non-superconducting region of a thermalisation length 2𝜆𝑇 (Figure 

3.34a). After the initial thermalisation, the resistive hotspot grows (Figure 3.34b) as hot 

electrons diffuse out of its centre. At the same time, the supercurrent is expelled from 

the hotspot volume and is concentrated in the “sidewalks” between the hotspot and the 

edge of the film (Figure 3.34c). If the bias current Ibias is sufficient to exceed the critical 

current in the sidewalks a non-superconducting barrier is formed, causing a resistive 

strip across the entire width w of the device (Figure 3.34d), which gives rise to a 

measurable voltage pulse at the detector output. As the wire returns to its operating 

temperature, the hot spot shrinks, removing the resistive barrier and the wire re-enters 

its superconducting state. 

 

Figure 3.34. Schematics of operation for the NbN SNSPD, which is kept at 

temperature far below TC. The arrows indicate direction of the supercurrent flow 

[168]. 

SNSPDs have shown very good performance in terms of timing jitter making these 

detectors very attractive for TCSPC applications. Verevkin et al. reported 68 ps FWHM 

on a 10 × 10 m
2
 meander SNSPD while Pearlman et al. reported extremely low time 

jitter below 18 ps on a similar structure [169]. In order to improve the detection 

efficiency of these devices, different structures have been proposed, as shown in Figure 

3.35. The meander geometry SNSPDs have been developed to improve the coupling 

efficiency and hence the practical detection efficiency (Figure 3.35a). These NbN 

meander devices showed system detection efficiency of ~2 – 3 % at 1550 nm, 1 kcs
-1

 

DCR at ~3 K [170].  
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(a)                                                                                   (b) 

 

(c) 

Figure 3.35. Schematic of different SNSPD structures. (a) A scanning electron 

microscopy (SEM) image of a NbN meander SNSPD covering 10 × 10 m
2
 area 

[171]. (b) A 3 × 3 m
2 

NbN meander SNSPD integrated with an optical cavity and 

ARC to reduce loss of photons from reflection and transmission [172]. (c) 

Schematic view of the waveguide integrated SNSPD to improve the optical 

coupling efficiency [173].   

Cavity and waveguide integrated designs (Figure 3.35b-c) have been employed to boost 

the absorption efficiency. These devices demonstrated intrinsic detection efficiency of 

57 % at 1550 nm and 1.8 K [172]. Miki et al. also reported high system detection 

efficiency of ~24 – 28 % at 1550 nm, and ~23 – 40 % at 1310 nm by using these device 

configurations [174].   

Sprengers et al. demonstrated the integration of a NbN SNSPD with a GaAs ridge 

waveguide (Figure 3.35c). These devices were characterised at 1300 nm showing a 
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system detection efficiency of ~3.4 % for a 50-m long device. A DCR of ~100 kcs
-1

 

was reported with a 60 ps FWHM jitter. 

To improve the detection efficiency, authors have used different superconducting 

materials. In 2013, Marsili et al. reported system detection efficiency over 90 % at 1550 

nm by fabricating a SNSPD based on amorphous tungsten silicide (W0.75Si0.25, or WSi) 

superconductor [175]. The WSi SNSPD was embedded in an optical stack designed to 

enhance absorption at 1550 nm and coupled to single-mode optical fibre. Moreover, it 

was characterised at 1 K due to its lower critical temperature (3.7 K) than the NbN 

superconductor. The measured DCR was ~1 kcs
-1

 with a higher timing jitter of ~150 – 

200 ps than the NbN counterpart.  

In terms of noise performance, SNSPDs showed low DCR, and empirically the DCR 

rises exponentially as Ibias approach IC, but the origin of this exponential behaviour is 

poorly understood.  

Although at infrared wavelengths SNSPDs have slightly better performance (low DCR 

and better jitter) than InGaAs/InP, their main drawbacks that limited their use to a 

laboratory setup are represented from the low temperature of operation and light 

coupling on a small area (10 m × 10 m) device.     

3.6.6 Transition Edge Sensor 

A superconducting transition-edge sensor (TES), also called a superconducting phase-

transition thermometer (SPT), consists of a superconducting film operated in the narrow 

temperature region between the normal and superconducting state, where the electrical 

resistance varies between zero and its normal value [176]. A TES thermometer can be 

used in bolometry (to measure power) or in calorimetry (to measure a pulse of energy). 

Superconducting TESs, with tungsten (W) as the active device material, are 

microcalorimeters that have photon-number resolution with negligible dark count. A 

general microcalorimeter device consists of an absorber for the incident energy, a 

thermometer to measure the temperature increase resulting from the absorption of 

energy, and a weak thermal link that enables the cooling of the absorber to its base 

temperature once the measurement of device temperature is complete [177]. Tungsten is 

used in the visible and near-infrared wavelengths because of the tunability of its 

superconducting transition temperature TC  in the ~ 100 mK range and the relatively 

weak coupling between its electron and phonon systems at these temperature. 
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The device is cooled below the superconducting transition temperature, and a bias 

voltage is applied to increase the temperature of the absorber above that of the substrate 

to a point where a small increase in temperature will result in a large transition in the 

resistance. A photon is absorbed in the absorber producing a photoelectron which heats 

the absorber. An increase in the temperature of the absorber results in an increase in the 

resistance of the device and an increase in resistance leads to increase in temperature. 

The steep change in resistance versus temperature enables precise measurements of the 

energy of single photons.  

At the early stage of the research, TES detectors were seldom used in practical 

application because of the difficulty of matching their noise to FET amplifiers (TES 

normal resistance is typically few ohms or less). In the last ten years, this problem has 

been largely eliminated by the use of superconducting quantum interference device 

(SQUID) current amplifiers [178], which are easily impedance-matched to low-

resistance TES detectors. TESs are usually fabricated on a Si substrate and 

demonstrated the highest reported SPDEs of any single-photon detector, up to 95 % at 

1550 nm [177], [179] when embedded in an optical cavity design.  Moreover, the low 

DCR of these devices give rise to NEP of the order of ~ 10
-19 

WHz
-1/2

. As the 

temperature of operation (100s of mK), requires a complex cooling system, TESs are 

limited by their relative low speed, both in terms of recovery time (in the order of ns) 

and jitter times (~ 100s of ns). These problems severely constrain the experiments that 

could benefit from the high efficiencies and photon number resolving capabilities. 

However, a W-based TES with jitter values of ~ 4 ns obtained by reading out the signal 

with a low input inductance SQUID has recently been demonstrated [180].   

3.7 Conclusion 

In this chapter a review of the integration of near-infrared photodetectors on silicon has 

been presented including a review on different single-photon technologies to detect 

single-photons at the telecom wavelengths, a vital aspect in a number of emerging 

application areas. 

It is clear how the performance of a photodiode is related to different aspects such as the 

design, geometry, material, technology and fabrication. This introduction links the 

choice to the right semiconductor material depending on the wavelength at which the 

photodetector has to operate. In particular, for operation in the second and third optical 

telecommunications windows, the choice of the material is mainly between 
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In0.53Ga0.47As and Ge. Although these two semiconductors have different intrinsic 

properties, they are both lattice mismatched (8 % and 4.2 %, respectively) with Si 

substrates. Throughout the chapter the importance of fabricating a near-infrared 

photodetector on Si has been explained many times. Consequently, it is also important 

that the lattice mismatch issue is considered. In the last 40 years or more, a lot of effort 

has been put into overcoming this technological issue, because there could be so many 

advantages of combining different materials (heterostructure) such as InGaAs and Ge 

with Si for many applications (mainly, but not only in silicon photonics) which benefit 

from working in the infrared regime.  

The major problems arising from lattice mismatch of materials, such as high surface 

roughness and high density of threading dislocations, have been addressed and different 

solutions have been proposed for both material systems, Ge-on-Si and InGaAs-on-Si. 

 For the Ge-on-Si system different solutions have been proposed starting with the use of 

SiGe strained layers and SiGe SLS structures. However, research had to face the main 

disadvantage of the low absorption coefficient (for a Ge content x=0.6,  was ~ 21 cm
-1

 

and 2.5 cm
-1

 at 1310 and 1550 nm, respectively) at infrared wavelengths for this class of 

detectors. The only way to solve this problem was to increase the Ge concentration, but 

this was in turn limited by the critical thickness and the increase of TDDs (which both 

increase as the Ge content is increased). Waveguide structures were also proposed but 

the photoresponse at 1550 nm was still very low. The ternary SiGeC system was also 

proposed to alleviate the lattice mismatch between Ge and Si, but very little 

improvement was obtained and further problems arose from the introduction of C in the 

SiGe system.  

It has been shown for the InGaAs-on-Si system, that epitaxial growth is less 

inconvenient than for Ge-on-Si, due to the increased lattice mismatch (~ 8 %), and due 

to the contamination problems of InGaAs in Si. Moreover, a comparison between 

epitaxially grown and wafer bonding InGaAs-on-Si photodetectors has been made 

showing that the former were still far from good performance, in terms of dark current 

and responsivity, obtained with the latter technology. However, wafer bonding still 

suffers from its own intrinsic technological problems. 

So, clearly pure Ge represents the best choice to make near-infrared photodetectors on 

Si. This is also possible thanks to technological progress made in Ge-on-Si 

heteroepitaxy with the introduction of the two temperature process and post-growth 
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annealing steps, which permit the reduction of TDD to the order of ~10
7
 cm

-2
. Further 

improvements to the TDD were obtained with SEG, which demonstrated photodetectors 

with very low TDD. The effect of TDD on the device performance has been reviewed 

and this has shown that reducing TDDs helps to reduce the leakage current, but other 

aspects such as device geometry and surface passivation play an important role, also.  

The heteroepitaxy of Ge-on-Si adds an intrinsic strain to the system, due to the different 

thermal expansion coefficients between the two materials. However, it has been shown 

that this strain (~ 0.2 %) slightly enhances the absorption in the infrared region (from 

840 cm
-1 

for bulk Ge to 3300 cm
-1

 for Ge-on-Si). 

A review of Ge-on-Si photodetectors was also detailed. This covered many different 

device types (p-i-n, waveguide and APD) and explained the advantages and 

disadvantages of each type given. In particular, p-i-n devices have shown comparable 

performance with their InGaAs counterparts, with slightly higher DCDs, and different 

waveguide geometries have been proposed and demonstrated to further enhance the 

absorption at 1550 nm. APDs rely on the separate, absorption, charge, and 

multiplication structure that exploits both advantages of good absorption properties of 

Ge in the infrared and good multiplication properties of Si. In this case different 

geometries (vertical-incidence and waveguide structure) have been proposed and 

demonstrated.  

A review of different single-photon detectors was also given. In particular, this work 

has been focused on semiconductor SPADs, whose theory and principle of operation 

(Geiger-mode) was explained in chapter 2. A review of different devices and 

technologies to detect single-photon in the infrared regime was presented. For SPADs, 

the performance of commercially available Ge APD and InGaAs/InP was reviewed. The 

former showed SPDEs of ~ 5 – 30 % at 1310 nm with high DCR (~ Mcs
-1

), and FWHM 

of the order of 100s of ps. The lowest reported NEP was ~ 2 × 10
-16

 WHz
-1/2

.  Moreover, 

these devices were characterised at cryogenic temperature (77 K), due to the high 

thermal carrier generation, resulting in a very poor SPDEs at 1550 nm. On the other 

hand, InGaAs/InP SPADs, which are the state-of-art for detecting single-photons in the 

infrared, showed good SPDE at both 1310 and 1550 nm wavelengths with low DCRs, 

showing NEP of ~ 10
-17

 WHz
-1/2

 at temperature compatible with Peltier cooling (200 

K).  However, the main limitation of these devices is the afterpulsing which severely 

limits their frequency of operation.  
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Finally, SNSPDs and TESs were reviewed. TESs have an extremely high SPDE up to 

95 % and very low DCR, demonstrating NEP in the order of ~ 10
-19

 WHz
-1/2

. However, 

they are limited by long reset times and slow timing jitter. NbN SNSPDs are fast 

devices, both in terms of reset time and timing jitter. Moreover, these devices have 

shown system detection efficiency of ~ 24 – 28 % at 1550 nm, although a very recent 

research on SNSPD based on WSi have shown system detection efficiencies over 90 % 

at 1550 nm. However, the main limitation of both these technologies is the low 

temperature of operation (100s of mK for TES, and ~ 4 K for SNSPD) which restrict 

their use to a laboratory environment.  
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Chapter 4 - Ge-on-Si SACM structure: Design, modelling and SIMS 

measurements 

4.1 Introduction 

In the previous chapters, the operating principles and underlying physical processes of 

different photodiode structures have been described to underline the main constraints 

that each device needs to satisfy depending on the application for which it will be used. 

Typically, it is not possible to build a “perfect” device that meets all the requirements, 

nevertheless it is possible to design a device that satisfies a trade-off between different 

requirements. This is true for all devices previously described as p-i-n or n-i-p 

photodiodes, APDs and SPADs. In particular, SPADs are very similar to APDs, but 

they are designed to meet different performance criteria in terms of efficiency and noise. 

Si SPADs are mainly divided in two main categories (thick and thin-SPADs) and the 

same material (Si) is used for both absorption and multiplication. On the other hand, the 

design of a SPAD capable of detecting single-photons at wavelengths greater than the 

cut-off threshold of silicon (1100 nm), requires completely different design criteria than 

a Si SPAD. Typically, two different materials are required for both absorption and 

multiplication (heterostructure). In terms of all-semiconductor devices, InGaAs/InP 

SPADs represents the state-of-art for detecting single-photons in the telecom bands and 

they are mainly based on the Separate Absorption, Charge and Multiplication (SACM) 

structure, fabricated in a planar technology.  

The Ge-on-Si SPADs presented in this work are designed based on a similar structure 

fabricated in a mesa configuration. This chapter starts by describing the design criteria 

used for this device, and 2D and 1D simulations of dark current and electric field 

performed using the modelling software SILVACO ATLAS are then given. 

Furthermore, data on dopant diffusion obtained by using SIMS measurements on the 

fabricated devices are integrated in the modelling software, and its effect on the device 

behaviour is analysed. 

4.2 Design of a Separate Absorption, Charge and Multiplication Ge-on-Si 

structure 

The main advantage of a SACM structure is that the photon absorption and carrier 

multiplication layers are spatially separated and can be individually optimised [1], [2]. 



 

122 

 

A schematic SACM structure with the qualitative cross-section electric field profile is 

shown in Figure 4.1. 

 

Figure 4.1. Two-dimensional sketch of a typical SACM SPAD showing the three 

regions in which the device can be subdivided: the absorption region (red) in 

which light is detected and generation of electron-hole pairs takes place; the 

charge region (green) that tailors the electric field between the absorption and 

multiplication region and photo-generated carriers are accelerated and swept 

into the multiplication region (orange) where the impact ionisation takes place, 

and the qualitative electric field profile along the device.     

The structure is designed in such a way that the infrared light is absorbed in the narrow 

bandgap material (e.g. InGaAs or Ge), while the multiplication process take places in 

the wide bandgap material (e.g. InP or Si). The electric field profile along the structure 

is critical and must be properly designed.  

In the absorber layer, the electric field must be kept below the material breakdown field 

in order to avoid impact ionisation and tunnelling phenomena in this layer, which will 

be detrimental to device performance, resulting in increased dark currents. This criterion 

sets a upper limit to the electric field strength in the absorption region because the 

electric field threshold, at which tunnelling takes place in germanium, is not as well-

known as for its InGaAs counterpart [1]. However, for the SACM structure with a 

depleted absorber, the electric field strength in the absorption region cannot be too low; 

otherwise carriers in the absorption region cannot reach their saturation velocity, which 

will adversely affect the performance of the device. Figure 4.2 shows typical carrier 

characteristics of both electrons and holes in Ge, where the saturation velocity is 
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reached at ~30 kV/cm [2]. This value represents the lower limit for the electric field 

strength in the germanium absorber layer, where the doping profile must be as low as 

possible to ensure a constant and uniform electric field.  

 

Figure 4.2. Measured carrier velocity vs. electric field for high purity Ge, Si and 

GaAs. In the high-field region the velocity is independent from the doping 

concentration [2]. 

On the other hand, the electric field in the multiplication layer must be kept above the 

threshold for impact ionisation in order to initiate an avalanche multiplication process. 

As for the absorber layer, its doping profile must be kept low. 

To correctly tune the electric field between these two regions, according to the criteria 

described above, a moderately doped charge sheet layer is sandwiched between them. 

Therefore, it is very important to properly design the thickness and doping 

concentration of the charge sheet. In order to approximate the thickness and the 

concentration of the charge sheet, a simple linear analysis could be used, considering 

the breakdown fields of Si and Ge which are 300 kV/cm and 100 kV/cm, respectively.  

The avalanche breakdown field represents the electric field at which the onset of a self-

sustaining avalanche current is observed.  
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By also making the assumption that the fields in the Ge absorber layer and Si 

multiplication layer are constant and equal to ~30 kV/cm and 300 kV/cm, respectively, 

the field variation in the charge sheet layer is ~270 kV/cm. The doping concentration 

(N) for the charge sheet layer, considering a thickness of 100 nm, can be calculated by 

solving Poisson’s equation: 

𝑑𝐸

𝑑𝑥
=

𝜌(𝑥)

𝜀
=

𝑞 ∙ 𝑁

𝜀𝑆𝑖 ∙ 𝜀0
                                                                                                               (4.1) 

This calculation gives a value of ~1.7 × 10
17

 cm
-3

. For a given thickness of the Si 

multiplication region, this doping concentration also defines the punch-through voltage, 

the depletion region edge reaches the absorption layer. The definition of this voltage 

should be considered as a further design criterion for the SPAD design due to 

temperature considerations. The punch-through voltage remains almost unchanged 

when the temperature is reduced, since it will be only affected by the density of ionised 

donors and acceptors in the device structure. The avalanche breakdown voltage, 

however, will reduce significantly with decreasing temperature, as explained in Chapter 

2 (section 2.3). Since the Ge-on-Si SACM SPAD has an intrinsically high dark current, 

low operation temperatures (at least down to 200 K) are expected to be necessary, 

meaning that this voltage difference between punch-through and breakdown voltage 

should be carefully considered to avoid a device breaking down in fields low enough 

that the absorber layer is not depleted.  

These device design criteria mainly take into account the electric field profile and the 

doping concentration. However, other parameters can directly affect the performance of 

a SPAD such as the thickness of both absorption and multiplication regions. It is 

possible to establish how the thicknesses of both absorption and multiplication layers 

influence their performance [1], [3] in a relatively mature technology like the 

InGaAs/InP SPAD. The optimization of these parameters depends on the specific 

application considered and represents a trade-off between different performance criteria.  

In this thesis, the Ge-on-Si SPAD designed is based on a SACM structure similar to that 

of a InGaAs/InP SPAD [6], [7], but the material system is fundamentally different (as 

already discussed in Chapter 3). Therefore, the optimisation of these thicknesses must 

meet different requirements in terms of performance and technology. In addition, 

InGaAs/InP SPADs are mainly fabricated using a planar geometry and use either dopant 

diffusion or implantation processes, which require consideration at the design stage [1].  



 

125 

 

The Ge-on-Si SPAD was designed to be fabricated in a mesa geometry and the doping 

of different layers was performed in situ during the epitaxial growth as described in this 

chapter. Furthermore, a critical discussion is also given in the next chapter where the 

experimental results and performance of the first Ge-on-Si SPAD demonstrated in the 

scientific literature are shown. 

4.3 Ge-on-Si SPAD structure 

In this section, the early design of Ge-on-Si SPAD structure is illustrated.  Based on the 

above discussion, this design was made mainly according to the following 

considerations: 

a) Electric field profile; 

b) Charge sheet layer doping concentration; 

c) Operating temperatures. 

The cross-section of the designed and simulated Ge-on_Si SPAD structure is shown in 

Figure 4.3 with the associated doping concentrations and thicknesses for each layer. 

 

Figure 4.3.Cross-section of the designed mesa geometry Ge-on-Si SPAD 

structure. For each layer, the thickness is specified with the associated doping 

concentration (Na or Nd). In particular, four different doping concentrations were 

considered for the charge sheet layer (1, 1.5, 2, and 5 × 10
17

 cm
-3

). 

The structure was designed in such a way that the photon absorption takes place in the 

Ge absorber layer, while the multiplication occurs only in the Si multiplication layer. 

This is similar to the APD structure which was designed to operate below the 
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breakdown voltage by Kang et al. [4], [5]. As already explained in Chapter 3, the design 

of APDs and SPADs needs to satisfy different requirements. Therefore, different doping 

concentrations in the charge sheet and a thicker multiplication region were considered 

for the structure proposed in this work, as shown in Figure 4.3, in comparison to the 

structure shown by Kang et al. [4], [5]. The thicker multiplication region was selected in 

order to increase the probability of a primary carrier triggering a self-sustaining 

avalanche current, while the charge sheet doping spread was used to tailor the electric 

field between the Ge absorber and Si multiplication layers and to allow for growth 

variations.  

The commercially available device modelling software Silvaco ATLAS was used as a 

basis for the simulations [6]. In particular, the software simulates optoelectronic devices 

such as avalanche photodiodes in linear multiplication mode, giving important 

information on the detector structure. The software was mainly used to provide 

information on one- and two-dimensional electric field profile, carrier concentration, 

punch-through voltage and dark-current voltage characteristics, which were the most 

fundamental issues to be addressed at this stage. Different geometries were simulated 

and device parameters were also integrated with the experimental data extrapolated 

from real devices.   

As shown in Figure 4.3, a highly doped p++ Ge contact layer was considered for the 

structure in order to make an ohmic contact (anode) followed by unintentionally doped 

Ge absorption layer in which the doping must be kept fairly low (10
15

 cm
-3

) to guarantee 

a constant and uniform electric field. The absorption region was separated from the n-

doped (10
15

 cm
-3

) Si multiplication layer by a p-doped Si charge layer. In particular, 

four doping concentrations (1, 1.5, 2 and 5 × 10
17

 cm
-3

) of the charge sheet layer were 

considered in order to perform simulations around the design parameter (as shown in 

the previous paragraph) and tune the electric field profile between the absorption and 

multiplication layer. In addition, an n++ Si substrate was used for the bottom contact 

(cathode). The modelling did not take into account the band-to-band and trap-assisted 

tunnelling, as well as traps and defects at the Ge-Si heterointerface which are not well 

reported in the scientific literature.  

When simulating the SPAD device in terms of I-V characteristic, the Drift-Diffusion 

physical model was implemented, which solves the three equations (Poisson’s equation 

plus the continuity equation for electrons and holes) for charge transport in 
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semiconductor devices. The Shockley-Read-Hall model was used to take into account 

recombination and generation in the semiconductors. The values of electron and hole 

lifetimes used for germanium were the ones calculated by Colace et al. [7], [8]. To 

describe the impact ionisation process, Selberherr’s model was used, which includes the 

strong dependence on the impact ionisation coefficients of the electric field and 

temperature [9]. In the following section, the modelling of the Ge-on-Si SPAD structure 

is given. 

4.4 Modelling of the Ge-on-Si hetero-structure 

The definition of the SPAD structure and the generation of the appropriate mesh 

constitute the first steps in the simulation process. The specification of the mesh 

involves a trade-off between the requirements of accuracy and numerical efficiency 

[10]. Accuracy requires a fine mesh that can resolve all significant features of the 

solution. Numerical efficiency requires a coarse mesh that minimises the total number 

of grid points. Figure 4.4 shows the mesh used for the device simulation considering the 

design parameters which have been previously described in section 4.3. 

 

Figure 4.4. Ge-on-Si SPAD structure with the mesh used for the device simulation 

in Silvaco ATLAS. 

A fine mesh was defined at the interface between different materials as well as in 

regions where a high electric field was expected (Figure 4.4). This mesh definition was 

a good compromise between accuracy and numerical efficiency for the simulated 
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structure. The simulated device was cylindrical with a diameter of 50 m, as shown in 

Figure 4.4. 

The simulated I-V characteristic for the structure (Figure 4.3) and four different doping 

concentrations of the charge sheet layer are shown in Figure 4.5.  

 

Figure 4.5. Simulated I-V characteristics for the designed structure (reported in 

Figure 4.3) as a function of the doping concentration of the charge sheet layer. 

Depending on the doping concentration of the charge sheet layer, the designed structure 

had different values of the punch-through (VPT) and breakdown (VBD) voltages. These 

values are summarised in Table II. 
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Charge sheet doping 

concentration (cm
-3

)  
VPT (V) VBD (V) 

          1 × 10
17 

 - 18 - 53 

          1.5 × 10
17

  - 27        - 46.5 

                 2 × 10
17

 - 35 - 42 

                 5 × 10
17

 Undepleted        - 36.5 

Table II. Summary of the punch-through and breakdown voltages for the 

simulated structure (Figure 4.3, for four different doping concentrations of the 

charge sheet layer. 

In particular, the I-V characteristic for the highest doping concentration of the charge 

sheet layer (5 × 10
17

 cm
-3

), shown as the magenta line in Figure 4.5, showed the lowest 

dark current without any punch-through, meaning that the Ge absorber layer was not 

depleted and the electric field was completely confined in the Si multiplication layer. In 

fact, this result was further supported by the lowest breakdown voltage obtained, which 

occurred at ~ -36.5 V.  

On the other hand, the structures with a doping concentration of 1, 1.5 and 2 × 10
17

 cm
-3

 

(black, red and blue line as shown in Figure 4.5) respectively, had different VPT and VBD 

voltages as summarised in Table II. When the depletion region starts to extend into the 

Ge absorber layer (punch-through), the leakage current increases because of carriers 

generated through generation-recombination centres. These were taken into account in 

the simulations through the long (ns) electron and hole lifetimes in the Ge absorber 

layer and the high intrinsic carrier concentration, as clearly shown in Figure 4.5. 

Thermal generation is an intrinsic property related to the quality of the material itself 

and it is unavoidable. Nevertheless, it could be mitigated by using lower operational 

temperatures. 

To further understand the effect of the charge sheet doping concentration on the 

simulated structures, Figure 4.6a-d and 4.7 show the simulated 2D and 1D electric field 

profile obtained at 95 % of VBD respectively. 
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(a) 

 

 

(b) 
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(c) 

   

(d) 

Figure 4.6. Simulated 2D electric field profile at 95% of VBD for the structure 

shown in Figure 4.3 and different doping concentration of the charge sheet layer: 

(a) 1 × 10
17

 cm
-3

, (b) 1.5 × 10
17

 cm
-3

, (c) 2 × 10
17

 cm
-3

, and (d) 5 × 10
17

 cm
-3

.  
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Figure 4.7. Simulated electric field profile at 95% of VBD along section x=0 m 

of the device as a function of the doping concentration of the charge sheet layer. 

In Figure 4.6a-d, the simulated 2D electric field profile for the four doping 

concentrations of the charge sheet layer is given. Although this layer plays a different 

role in tuning the electric field between the Ge absorber and Si multiplication layers, the 

simulation shows that the electric field is well confined through the active area of the 

device, without any premature edge breakdown at the sides of the mesa could adversely 

affect the performance of the device. Furthermore, Figure 4.6a-b shows that both the 1 

m-thick Ge absorber and Si multiplication layers are fully depleted before the 

breakdown voltage. On the other hand, the simulated 1D electric field profile (Figure 

4.7) obtained in the centre of the active area at x=0 m, showed that both structures 

(black and red lines in Figure 4.7) meet the electric field requirements in the Si 

multiplication layer. However, in the Ge absorber layer the simulated device with a 

charge sheet doping concentration of 1 × 10
17

 cm
-3

 (black line) had an electric field 

which was higher than the Ge breakdown field, while for a doping concentration of 1.5 

and 2 × 10
17 

cm
-3 

(red and blue line), the electric field in the absorption layer was high 

enough to reach the carriers saturation velocity and well below the Ge breakdown field.  

Although the plotted electric field profiles have been simulated below the breakdown 

voltage, it is well known that most of the SPAD parameters are strongly affected by the 

overvoltage (i.e. the excess bias above the avalanche breakdown) applied to the 

detector. Since improvements for some of these parameters can be observed as the 
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excess bias is increased, while other parameters get worse, the choice of the optimum 

overvoltage that should be applied depends on the specific applications.  Silvaco 

ATLAS does not support simulations of the electric field profile above the avalanche 

breakdown, but the excess voltage above the avalanche breakdown can be observed as 

the area in between the two curves (shaded in Figure 4.8), and is given by the variation 

of the electric field E times the thickness of the space charge region.          

Among the different simulated structures, a doping concentration of 1.5 and 2 × 10
17 

cm
-3 

satisfy all the design criteria in terms of electric field, as described in paragraph 

4.2. The charge sheet layer plays an important role in the design, meaning that a small 

variation of its charge, which is related to thickness and doping concentration, leads to 

completely different device performance. This is mainly true in real devices for which it 

is very difficult to accurately control their doping concentration during the epitaxial 

growth (this is clearly shown later in section 4.9).  

 

Figure 4.8. Sketch of the electric field for a SACM Ge-on-Si SPAD at the breakdown 

(solid line) and with an overvoltage applied (dashed line) to the device. 

4.5 Effect of temperature on the breakdown voltage 

The last criterion considered for the design of the Ge-on-Si structure was the 

temperature. Simulations at different temperatures were performed to evaluate the 

variation of the breakdown voltage (shown in Figure 4.9) for the structure with a doping 

concentration of the charge sheet layer equal to 1.5 × 10
17

 cm
-3

. Simulations were 
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performed above 175 K because of convergence problems related to the algorithm at 

lower temperature. 

 

Figure 4.9. Simulated variation of the breakdown voltage with the temperature for 

the structure with a doping concentration of 1.5 × 10
17

 cm
-3

 in the charge sheet 

layer. 

As the temperature decreases, the lattice vibrational energy is also reduced, which 

reduces the scattering of electrons and holes. This increases the energy of the carriers 

and hence their ionisation rates. The temperature dependence of the ionisation rates was 

taken into account using Selberherr’s impact ionisation model for the simulations [9]. 

As a consequence of the change of the ionisation coefficients, as the temperature 

decreases, the electric field should be decreased to maintain the breakdown. The 

breakdown voltage drops with temperature as shown by the following formula: 

∆𝑉𝐵𝐷

𝑉𝐵𝐷,𝑅𝑇
= 𝛾∆𝑇                                                                                                                             (4.2) 

where VBD,RT is the breakdown voltage at room temperature, and 𝛾 is the temperature 

coefficient. For the simulated structure, 𝛾 is found to be equal to ~ 0.05 %/K, which is 

in line with the experimental values quoted in the scientific literature for silicon [4], 

[11]. This means that for the designed structure, with a temperature decrease of 100 K 
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there is a ~ 2.3 V reduction of the breakdown voltage. Since the device has been 

designed for temperatures below 150 K due to the high dark current, a good design rule 

would be to maintain a difference between punch-through and avalanche breakdown 

voltage at room temperature of at least 5 V, in order to avoid avalanche breakdown of 

the device before punch-through at lower temperatures. For this reason, it is possible to 

establish if a Ge-on-Si structure with a doping concentration of the charge sheet layer 

between 1.5 and 2 × 10
17

cm
-3

 satisfies all the design criteria in terms of electric field 

and temperature, according to values shown in Table II.   

4.6 Capacitance-Voltage Measurements on the 1
st
 generation of Ge-on-Si SPAD 

structures 

The simulated structures proposed (Figure 4.3) were grown and fabricated by our 

collaborators at University of Warwick (growth) and Glasgow (fabrication). Although 

more details about these two aspects will be given in the next chapter, a summary of the 

wafer IDs for the 1
st
 generation of Ge-on-Si SPAD structure growth is given in Table 

III. 

Charge sheet doping concentration (cm
-3

) Wafer ID 

1 × 10
17 

11-167 

2 × 10
17

 11-141 

5 × 10
17

 11-142 

Table III. Wafer ID related to each doping concentration of the charge sheet 

layer, as grown. 

The SPAD structures have been grown starting from a highly phosphorous doped (~ 5 × 

10
19

 cm
-3

) Si substrate, while boron was used for the doping of the charge sheet layer as 

well as the highly doped Ge contact layer (~ 2 × 10
19

 cm
-3

).  To check the doping 

concentration of the Ge absorber layer, C-V measurements were performed from our 

collaborator in Sheffield on two different samples: 

 Wafer 11-167; 

 Wafer 11-318 shown in Figure 4.10, where 1 m-thick intrinsic Ge was directly 

grown on top of a highly doped Si substrate. 
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Figure 4.10. Structure of sample 11-318, which was grown to check the doping 

concentration of the intrinsic germanium by lateral C-V measurements. 

Lateral C-V measurements were performed to find the doping level of intrinsic Ge in 

sample 11-318, as shown in Figure 4.10. There are several advantages to this method: 

a) The junction formed between Ge and Si is excluded; 

b) There is no need to etch the sample into diodes with different sizes; 

c) A lateral CV profile is used instead of the standard longitudinal one (as for 

sample 11-167) in order to avoid the unknown effect of the high density of 

defects in the seed layer (e.g. to establish if the measured junction is a Si/Ge 

seed layer or a Ge/contact junction). 

However, sample 11-318 required two Schottky contacts, which were grown by vacuum 

evaporation with composition of 20 nm Titanium/200 nm Gold. The distance between 

metals was set to 5-10 m based on the mask alignment, and the contact diameter varied 

between 50 and 200 m.  

Results of C-V characteristics measured for both samples are presented in Figure 4.10a-

b for devices with different diameters. 
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(a) 

 

(b) 

Figure 4.11. C-V measurements performed on sample 11-167 (a) and 11-318 (b) 

to ascertain the doping concentration of the intrinsic Ge absorber layer. 

The C-V measurements performed on sample 11-167 (Figure 4.11a) gives also an 

indication of the punch-through voltage, which corresponds to the drop in the 

capacitance value at ~ -25 V. At this voltage, the charge space region extends to the Ge 

absorber layer and consequently the capacitance of the device decreases. As expected 

for both samples, the smaller devices exhibited a lower capacitance value.  
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Once the capacitance against the reverse bias has been measured, it is possible to 

approximate the doping concentration as a function of the depletion width by using the 

following formula: 

𝑁𝐷(𝑊) =
2

𝑞𝜖𝑆𝐴2𝑑(1/𝐶2)/𝑑𝑉
                                                                                               (4.3) 

 Results for both samples are illustrated in Figure 4.11a-b.   
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(a) 

 

(b) 

Figure 4.12. Doping concentration as a function of the depletion distance for (a) 

a Ge-on-Si device of sample 11-167 and three different size devices: 100 m 

(black), 200 m (red and blue). Grey line indicates the designed doping profile. 

(b) Doping concentration vs. depletion distance for sample 11-318 (Figure 

4.10). The x scale refers to the depletion distance in the Ge absorber layer. . 
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Two different doping concentrations of the Ge absorber layer were calculated, 5 × 10
15

 

cm
-3

 and 2 × 10
16

 cm
-3

 for samples 11-167 and 11-138, respectively. It was assumed that 

for the sample 11-138, the higher doping concentration of the Ge absorber layer is due 

to the different doping levels of Si on which the germanium was grown. Dopants from 

the highly doped phosphorous Si substrate in sample 11-318 could have segregated or 

diffused during the cyclic annealing steps which were performed during the 

heteroepitaxial growth to reduce the threading dislocation density. This effect could lead 

to a higher doping level in the absorber layer. This hypothesis was further supported by 

the fact that n-type dopants diffuse quite rapidly in germanium because defects in 

germanium are mainly vacancies and behave electrically as p-type dopant by enhancing 

donor diffusion [12], [13]. Although a low doping concentration of the Ge absorber 

layer is always desirable, both doping levels, 5 × 10
15

 and 2 × 10
16

 cm
-3

, can be 

regarded as acceptable values for the designed SPAD structure, as shown in the next 

section.  

As shown in Figure 4.12a, the higher peak at the interface Si charge sheet / Ge seed 

layer might be an effect due to the threading dislocations in the Ge seed layer (which 

might cause a capacitive effect due to trapping/de-trapping). Furthermore, we believe 

that the deeper peak was due to the charge sheet layer. However, the doping 

concentration of the charge sheet layer (obtained from the performed C-V 

measurements on sample 11-167) was not very accurate and SIMS measurements were 

used to ascertain both the doping concentration of the charge sheet and multiplication 

layer, as shown in the next sections. 

4.7 Impact of the Ge absorber layer doping on the SPAD structure 

The effect of a higher doping concentration in the Ge has been simulated, as shown in 

the plotted 1D electric field profile at 95 % of VBD for two different doping 

concentrations of the charge sheet layer, 1 and 2 × 10
17

 cm
-3

 (Figure 4.13). 
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Figure 4.13. Simulated electric field profile at 95% of VBD along section x=0 m, 

for the structure in  Figure 4.4 taking into account a higher doping concentration 

in the Ge absorber layer equal to 2 × 10
16

 cm
-3

 and, two different doping 

concentrations of the charge sheet layer. 

As illustrated in Figure 4.13, when a higher doping concentration of the absorber layer 

(2 × 10
16

 cm
-3

) was simulated, the electric field was entirely confined in the Si 

multiplication layer without depleting the Ge absorber layer for a doping concentration 

of the charge sheet equal to 2 × 10
17

 cm
-3 

(red line), resulting in a device not usable to 

detect infrared light. Therefore, a lower doping concentration of the charge sheet, 1 × 

10
17

 cm
-3

 (black line), was used in the modelling. Results from simulations showed that 

the Ge absorber layer is partially undepleted, and hence a lower detection efficiency can 

be expected.  

Simulations showed that an order of magnitude higher doping concentration of the 

absorber layer than the designed value, can have a negative impact on the structure, 

resulting in a device almost unusable or with deterioration of its performance. 

4.8 SIMS measurements on the 2
nd

 generation of SPAD structure 

It was not possible to check the doping concentrations of the Si charge sheet and 

multiplication layer by performing secondary ion mass spectrometry (SIMS) 
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measurements on the 1
st
 generation SPAD (wafers 11-167, 11-141 and 11-142) 

structures due to the lack of material which had been mainly used for ohmic contact test, 

sidewall etch study and device fabrication. However, two structures, one identical to 

wafer 11-141 (2 × 10
17

 cm
-3 

charge sheet doping concentration) and an all-Si APD 

(Figure 4.14), were grown under exactly the same conditions as for the 1
st
 generation 

SPAD. The wafer IDs for these two structures were 12-027 for the Ge-on-Si SPAD and 

12-028 for the all-Si APD. In addition, the n-type doping was made by phosphorous, 

while the p-type doping was made by using boron, as used for the 1
st
 generation 

structures. 

 

Figure 4.14. Cross-section of the all-Si APD (wafer ID 12-028) which was 

grown to study the avalanche multiplication properties of Si.  

In particular, wafer 12-028 consisted of 3 m thick intrinsic (1 × 10
15

 cm
-3

) Si grown on 

top of a highly phosphorous doped (5 × 10
19

 cm
-3

) Si substrate. A 100 nm-thick boron 

doped (1 × 10
17

 cm
-3

) Si charge layer was then grown, followed by 100 nm-thick highly 

boron doped (5 × 10
19

 cm
-3

) Si contact layer. 

Figure 4.15 and 4.16 show the SIMS measurements performed on wafers, 12-027 and 

12-028, respectively, by the EAG (Evans Analytic Group) company in USA.  
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(a) 

 

(b) 

Figure 4.15. SIMS measurements performed on the wafer labelled 12-027 (Ge-

on-Si SPAD) which shows (a) the Boron (blue) and (b) Phosphorous (red) 

doping profile as a function of the depth across the structure. Grey lines in (a) 

and (b) show the designed B and P doping concentrations for the structure, 

respectively. 
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(a) 

 

(b) 

Figure 4.16. SIMS measurements performed on wafer labelled 12-028 (all-Si 

APD) which shows (a) the Boron (blue) and (b) Phosphorous (red) doping 

profile as a function of the depth across the structure. Grey line in (a) and (b) 

shows the designed B and P doping concentration for the structure, respectively. 
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It is clear from Figure 4.15a that the boron concentration (blue) in the intrinsic Ge 

absorber layer was quite low (~ 10
15

 cm
-3

), reaching the SIMS detection limit for boron 

(~ 10
15

 cm
-3

). The measured boron doping concentration was similar to the doping 

concentration of the Ge absorber layer of wafer 11-167 extracted from the C-V profile 

performed by our collaborator in Sheffield. 

On the other hand, various problems related to these wafer can be seen in Figure 4.15a-

b and 4.16a-b and are summarised as follows: 

1. The doping concentration (boron) of the Si charge sheet layer for both structures 

(blue line) was much higher (~ 10
20

 cm
-3

) than the designed values (grey line), 2 

× 10
17

 cm
-3

 and 1 × 10
17

 cm
-3

 for wafer 12-027 and 12-028, respectively. 

According to the epitaxial growers, this may have been caused by a problem 

related to a valve of the growth apparatus which controls the boron flux in the 

chamber, leading to an unexpected high doping concentration of the charge 

sheet. 

2. The phosphorous concentration (red line) in the intrinsic Si multiplication layer 

was higher than the designed concentration showing a dopant diffusion tail 

which slowly decreases away from the Si substrate. Furthermore, sample 12-

028, with a 3m-thick Si intrinsic region, showed the same dopant diffusion tail 

which reaches the SIMS detection limit (~ 10
15

 cm
-3

), and hence the design 

doping concentration after growth of approximately 1.2 m away from the 

highly doped Si substrate. 

3. Wafers 12-027 and 12-028, which were designed with different thicknesses of 

the Si intrinsic region, showed similar P doping profiles, as shown in Figure 

4.17. It should be underlined that wafer 12-028 did not include any Ge layer. 

Furthermore, it is important to notice that wafer 12-028 did not go through all 

the annealing steps which must be performed to reduce the threading 

dislocations in the Ge-on-Si SPAD structure (wafer 12-027). Although these 

steps have not been performed, the P doping profile of wafer 12-028 (red line) 

was identical to the P profile of wafer 12-027 (black line). This behaviour 

suggested that the main contribution to the doping tail observed in both samples 

is probably due to the dopant segregation or diffusion from the highly doped Si 

substrate into the Si intrinsic multiplication region. 
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Figure 4.17. A comparison of the SIMS measurements of the Phosphorous doping 

profile obtained through the Si substrate and multiplication layer for both structures. 

The black line shows the P profile in the wafer labelled 12-027 (Ge-on-Si SPAD), while 

the red line is the P doping profile in the wafer labelled 12028 (Si APD). 

4.9 Impact of the Si charge sheet and multiplication layer doping profile on the 

SPAD structure 

The effects of both a high doping concentration in the charge sheet layer and a diffusion 

tail in the Si multiplication layer were evaluated by using the doping profile found in the 

above SIMS results to model the electric field profile. The simulated I-V characteristic 

was compared with the experimental I-V measured from devices fabricated for both 

wafers 12-027 and 12-028 is illustrated in Figure 4.18a-b. 
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(a) 

 

(b) 

Figure 4.18. Comparison between experimental (black) and simulated (red) I-V 

characteristics for (a) sample 12-027 (Ge-on-Si SPAD) and (b) 12-028 (whole Si 

APD). Dopant concentration determined with the SIMS measurements, shown in 

Fig. 4.14 and 4.15, were integrated in the model. 

Due to the high concentration in the charge sheet layer, the structure 12-027 did not 

show any punch-through, since the electric field was confined in the Si multiplication 

layer. To further confirm this hypothesis, devices were in turn illuminated by 850 nm 

and 1310 nm wavelength sources. These devices did not show any photoresponse at 

1310 nm because the Ge absorber layer was not depleted. However, photocurrent was 

measured at 850 nm because of the light absorbed in the Si multiplication layer, as 
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shown in Figure 4.19a. This was also confirmed by the modelled 2D electric field 

profile at 95% of VBD, for which all the electric field is confined in the Si multiplication 

layer (Figure 4.19b). The simulated structure did match well with the measured I-V 

characteristic, showing a difference of ~2 V in the breakdown voltage. Similar results 

were obtained for the structure 12-028. 

 

(a) 

 

(b) 

Figure 4.19. (a) Measured photocurrent from sample 12-027 using 1310 nm 

(red) and 850 nm (blue) wavelength illumination. (b) Modelled 2D electric field 

profile at 95% of VBD for structure 12-027. 
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Although these two structures (12-027 and 12-028) did not work as originally designed 

because of the high doping concentration in the Si charge layer, good feedback in terms 

of the doping concentration of the Si multiplication layer was provided. Since wafers 

11-167 and 11-141 worked as single-photon detectors (as shown in the next Chapter) 

we believe that the doping concentration of the Si charge layer was close to the 

designed values. However, we expected that the phosphorous diffusion tail in the Si 

multiplication layer was similar to that of wafer 12-027 and hence modelling was 

performed to evaluate its effect on the 1
st
 generation of designed structures. The 

integration of the P doping profile for the Si multiplication layer, without changing any 

parameters, for the structure shown in Figure 4.3, was modelled with Silvaco. As 

expected, different values for both VPT and VBD voltages were obtained (Table IV). 

Charge sheet doping 

concentration (cm
-3

) 

VPT (V) - after 

SIMS 

VPT (V) – as 

designed 

VBD (V) - 

after SIMS 

VBD (V) – as 

designed 

1 × 10
17 - 10 - 18 - 42.5 - 53 

1.5 × 10
17

 - 12.5 - 27 - 37 - 46.5 

2 × 10
17

 - 18 - 35 - -31 - 42 

Table IV. Summary of the simulated VPT and VBD voltages obtained by using the 

measured P SIMS profile and the designed P doping concentration for the Si 

multiplication region in the structure shown in Fig. 4.3. 

The phosphorous tail in the multiplication layer had the effect of reducing the thickness 

of the multiplication layer and hence, depending on the doping concentration of the 

charge sheet layer the breakdown voltage was shifted to lower voltages (Table IV) than 

breakdown voltages obtained for an uniform doping concentration of the Si 

multiplication layer. As a consequence, the punch-through voltage was also shifted to 

lower voltages.   

In addition, the electric field through the centre of the structure was evaluated by 

integrating the phosphorous doping tail in the model, and then compared with the 

electric field obtained for the structure with an uniform doping concentration in the Si 

multiplication layer. This is illustrated in Figure 4.20. For both simulations, the doping 
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concentration of the charge sheet layer was kept at the same value and equal to 1.5 × 

10
17

 cm
-3

. 

 

Figure 4.20. Comparison of the simulated electric field profile through section 

x=0 m for structure shown in Fig. 4.3. The black line shows the electric field 

when a uniform doping concentration in the 1 m thick Si multiplication layer, 

equal to 1 × 10
15

 cm
-3 

is used. The red line shows the electric field obtained 

when the phosphorous doping profile is added to the model. The charge sheet 

doping concentration was 1.5 × 10
17 

cm
-3

. 

The simulated electric field for the structure integrating the phosphorous doping profile 

(red line) highlighted two main problems: 

1. For the same doping concentration of the charge sheet layer, the electric field in 

the Ge absorber layer was higher than the Ge breakdown field, and hence the 

dark current was expected to be higher than the value obtained for the same 

structure with an uniform doping; 

2. There was a high electric field at the interface between the charge layer and the 

multiplication layer which was partially undepleted. As a consequence, the 

electric field across the multiplication layer was not uniform. This result 

suggested that the avalanche triggering probability might be smaller than the one 

for the same structure with a uniform doping concentration. 
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4.10 3
rd

 Generation of Ge-on-Si SPAD structure: SIMS measurements and 

modelling 

To further improve the doping concentration in the Si multiplication layer, a third 

generation of Ge-on-Si SPAD structures were grown. These structures were identical to 

the 1
st
 generation of SPAD structures, as shown in Fig. 4.3, with the exception that the 

thickness of the Si multiplication layer was increased from 1 m to 1.5 m. This 

thickness was chosen in order to counteract the effect of the expected doping diffusion 

tail in the design and have a bigger portion of the Si multiplication layer with low 

background doping and uniform electric field. In addition, the highly doped substrate 

was also changed and arsenic was used instead of phosphorous. The reason for this 

change was because arsenic has a lower diffusivity than phosphorous in silicon from 

available scientific literature [14] and hence might allow a more uniform electric field 

profile in the multiplication region. Five Ge-on-Si SPAD structures were grown with a 

variation of the charge sheet layer from 5 × 10
16

 cm
-3

 to 5 × 10
17

 cm
-3

. This distribution 

of values of nominal charge sheet layer doping density was chosen to take into account 

possible calibration errors of the doping concentration of this layer during the 

heteroepitaxial growth. 

Simulations were performed by using the new design parameters and including the 

measured phosphorous diffusion tail from the previous SIMS measurements. While an 

arsenic doped substrate was used during the heteroepitaxial growth, these simulations 

were performed to qualitatively ascertain the value of punch-through and breakdown 

voltages. Figure 4.21a-b illustrates the simulated I-V characteristics, while Table V 

summarises the value of VPT and VBD voltages. 
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Figure 4.21. Simulated I-V characteristics for the 3
rd

 Generation of Ge-on-Si 

SPAD structures. These structures were similar to the structures shown in Figure 

4.3, but the thickness of the Si multiplication layer was increased from 1 m to 

1.5m. The structures were simulated for different doping concentrations of the 

charge sheet layer: 5 × 10
16

 cm
-3

 (black), 8 × 10
16

 cm
-3

 (red), 1 × 10
17

 cm
-3

 

(blue), 2 × 10
17

 cm
-3

 (magenta), and 5 × 10
17

 cm
-3

 (green). 

Charge sheet doping 

concentration (cm
-3

) 
VPT (V) VBD (V) 

5 × 10
16 

- 9.5 - 54 

8 × 10
16

 - 15.4 - 50.9 

1 × 10
17

 - 19.3 - 48.37 

2 × 10
17

 
Partially 

depleted 
- 36.5 

5 × 10
17

 Undepleted - 35.2 

Table V. Summary of the VPT and VBD voltages for the simulated 3
rd

 Generation 

of Ge-on-Si structures which I-V characteristics are reported in Figure 4.21. 

Results showed that the Ge absorber layer was fully depleted when a doping 

concentration of the charge sheet layer in the range from 5 × 10
16

 cm
-3

 to 1 × 10
17

 cm
-3 
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was used (black, red and blue lines of Figure 4.21) (Table V). The last two doping 

concentrations showed either incomplete or no depletion of the absorber layer with most 

of the electric field confined within the Si multiplication layer, and hence lower 

breakdown voltages (magenta and green line) than the previous structures were 

observed. 

Five wafers were grown by our collaborator in Warwick, and the wafer IDs are reported 

in Table VI. 

Charge sheet doping concentration (cm
-3

) Wafer ID 

5 × 10
17 

13-312 

2 × 10
17

 13-313 

1 × 10
17

 13-314 

8 × 10
16 

13-315 

5 × 10
16 

13-316 

Table VI. Wafer ID related to each doping concentration of the charge sheet layer, 

as grown by our collaborator at University of Warwick. 

From these wafers, mesa geometry devices were fabricated by our collaborators at the 

University of Glasgow. Figure 4.22 illustrates the experimental I-V characteristics 

measured for devices of each wafer.  
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Figure 4.22. Experimental I-V characteristics for devices fabricated from the 

wafer reported in table V. Different colours refer to different doping 

concentrations of the Si charge layer: 5 × 10
17

 cm
-3

 (black), 2 × 10
17

 cm
-3 

(red), 

1 × 10
17

 cm
-3 

(blue), 8 × 10
16

 cm
-3 

(magenta), and 8 × 10
16

 cm
-3 

(green). 

Devices from wafer 13-312 and 13-313 showed a punch-through voltage at 

approximately -10 and -15V with a breakdown voltage of ~ -42V, respectively, as 

shown in Fig. 4.21. The remaining wafers show a low level of dark current without any 

punch-through voltage suggesting that the Ge absorber layer was not depleted and, 

consequently, the doping value either of the Si charge region or the Ge absorber was 

much higher than the designed value. Therefore, SIMS measurements were performed 

on wafers 13-312 and 13-316, and are illustrated in Figure 4.23 and 4.24, to measure the 

doping concentration of each structure layer. 
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(a) 

 

(b) 

Figure 4.23. SIMS measurements performed on wafer labelled 13-312 (Ge-on-Si SPAD) 

which shows (a) the Boron (blue) and (b) Arsenic (red) doping profile as a function of 

the depth across the structure. Grey lines in (a) and (b) show the designed B and As 

doping concentrations for the structure, respectively. 
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(a) 

 

(b) 

Figure 4.24. SIMS measurements performed on wafer labelled 13-316 (Ge-on-Si 

SPAD) which shows (a) the Boron (blue) and (b) Arsenic (red) doping profile as 

a function of the depth across the structure. Grey lines in (a) and (b) show the 

designed B and As doping concentrations for the structure, respectively. 
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As obtained for the samples analysed previously, the doping level of the Ge absorber 

layer was quite low and uniform through the whole layer. However, for both wafers, the 

boron doping concentration (blue) in the Si charge sheet layer did not correspond to the 

designed value (grey lines in Figure 4.23 and 4.24). In particular, for wafer 13-312, the 

measured B doping level in the charge sheet was estimated as ~1.5 × 10
17

 cm
-3

, lower 

than the design value of 5 × 10
17

 cm
-3

. Although the estimated value was not as 

designed, its value was in the range of the designed doping concentrations for the Si 

charge sheet, and led to a working device, with a depleted absorber layer, as shown in 

Figure 4.20 (black line). 

For wafer 13-316, the measured B concentration was much higher and estimated as 

being approximately ~1 × 10
18

 cm
-3

 , very different to the design value of 5 × 10
16

 cm
-3

. 

Because of this high doping level, the electric field drops across the Si multiplication 

layer without depleting the Ge absorber layer, as shown in Figure 4.20 (green line), 

resulting in a low level of dark current and a low breakdown voltage. Both SIMS 

measurements confirmed the difficulty to accurately control the doping level in the Si 

charge sheet layer during the hetero-epitaxial growth.  

In addition, for both analysed wafers, SIMS revealed that the arsenic level present due 

to diffusion (red) in the Si multiplication region was ~2 orders of magnitude higher than 

the designed value (1 × 10
15

 cm
-3

). This doping level was also higher than the 

phosphorous level measured in wafers 12-027 and 12-028. This is illustrated in Figure 

4.25 which shows a comparison between the As and P concentrations in the Si 

multiplication layer. 
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Figure 4.25. Comparison of the doping profile between the P profile of the 1
st
 

Generation (red) and the As profile of the 3
rd

 Generation (black) of Ge-on-Si 

structures which were obtained by using SIMS measurements. 

The impact of the arsenic diffusion tail was analysed by integrating the SIMS 

measurements into the modelled structure. A boron doping concentration of 1.5 × 10
17

 

cm
-3

 for the charge sheet layer was considered to match the boron level measured in the 

charge sheet layer with SIMS for wafer 13-312. Figure 4.26 shows the simulated I-V 

characteristic. 
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Figure 4.26. Simulated I-V characteristic for the 3
rd

 Generation of Ge-on-Si 

structure obtained by integrating the SIMS measured As doping profile (Figure 

4.23 and 4.24) in the Si multiplication layer and for a doping concentration of the 

charge sheet layer equal to 1.5 × 10
17

 cm
-3

. 

The simulated VPT and VBD were found to be equal to ~ -15 V and ~ -42 V, respectively 

and are comparable with the experimental value shown in Figure 4.22 for wafers 13-312 

and 13-313. To further understand the effect of the As diffusion tail in the multiplication 

region, the 1D electric field profile at 95% of VBD was extracted from the simulation 

and compared with the simulated 1D electric field profile at 95% of VBD obtained from 

an identical structure integrating the P diffusion tail in the multiplication layer.  This 

result is shown in Figure 4.27.  
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Figure 4.27. Comparison of the simulated electric field profile through section 

x=0 m of structure in Fig. 4.3, for the 3
rd

 Generation of Ge-on-Si structures. 

The red line shows the electric field obtained when the As doping profile 

measured by SIMS (Figure 4.23 and 4.24) in the Si multiplication layer was 

used. Blue line shows the electric field obtained when the P doping profile 

(Figure 4.17) was added to the model. Both structures were simulated for the 

same doping concentration of the charge sheet layer equal to 1.5 × 10
17 

cm
-3

. 

The simulated electric field obtained by modelling the measured SIMS results for the 

arsenic diffusion tail (red line) in the Si multiplication led to a different set of problems: 

1. A triangular shape of the electric field near the charge sheet layer. This uneven 

electric field distribution means that avalanche breakdown is more confined to a 

small part of the multiplication layer leading to a small portion of the Si 

multiplication layer where carriers have a high probability of creating an 

avalanche of carriers. As a consequence, a lower photon detection efficiency 

was expected. In addition, the observed spike of the electric field at the interface 

between the Si charge layer and multiplication could enhance some 

microplasma effect in a small portion of the Si multiplication layer. This 

problem negatively affected the reliability and yield of the fabricated devices 

from these wafers which showed a short circuit behaviour in the current voltage 

characteristic after repeating the I-V characteristic more than one time. 
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2. The Si multiplication layer was partially undepleted. This problem might lead to 

a much slower device, since the carriers may reach the back contact by 

diffusion and not drift, affecting the SPAD performance (e.g. leading to a much 

longer timing jitter). 

The simulated electric field obtained by using the phosphorous doping concentration 

(blue line) in the modelling software, for a thickness of the Si multiplication layer equal 

to 1.5 m,  showed a better uniformity of the electric field in the Si multiplication layer 

with a smaller portion of this layer undepleted. Furthermore, both structures were 

simulated for the same doping concentration of the charge sheet layer equal to 1.5 × 

10
17

 cm
-3

, but the electric field in the Ge absorber layer was higher for the structure 

integrating the As doping (red line), due to the resulting smaller multiplication layer 

thickness than the structure integrating the P doping profile. 

4.11 Future development 

Both the doping concentrations of the charge sheet and multiplication layer have been 

found to be critical aspects of the structure design. Regarding the charge sheet region, it 

was very difficult to accurately control its doping concentration due to different 

problems in the heteroepitaxial growth apparatus. SIMS measurements showed a much 

higher doping concentration than the designed value, and this in turn led to a device 

which cannot be used to detect infrared light, as demonstrated by experimental 

measurements and simulations. Different solutions have been proposed to overcome this 

problem: 

1. To balance the high doping concentration of this layer, its thickness should be 

reduced to have the same integrated charge as an identical layer with lower 

doping and greater thickness. However, only small adjustments can be made by 

reducing the thickness of the charge layer. It is not possible to use a doping 

concentration of the order of 10
18 

cm
-3

 because the thickness of the charge sheet 

layer will be reduced to less than 10 nm. This might cause further problems 

such as tunnelling through this thin layer which could also be changed to a 

conductive layer due to the high doping concentration. This might result in a 

structure unable to detect infrared light. 

2. It could be possible to introduce an intrinsic spacer layer between the Si charge 

sheet and the Ge absorber layer to perform a step graded dopant diffusion to 

obtain the designed doping concentration of ~1.5 × 10
17

 cm
-3

. However, this 
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should be carefully calibrated during the growth and might add further 

complexity to the structure.   

3. To better control the doping concentration of the charge sheet layer, ion 

implantation could be used. However, this process could possibly introduce 

further defects at the hetero-interface with the Ge absorber layer and hence this 

might enhance the threading dislocation density. 

Regarding the multiplication layer, several efforts have been performed by the grower 

to reduce the doping diffusion tail. In particular, using an intrinsic silicon substrate 

instead of a highly doped substrate for future generations of Ge-on-Si SPAD device was 

suggested. Then, a highly doped Si layer, with a well-established thickness, was 

epitaxially grown on top of the intrinsic substrate followed by a 1.5 m-thick intrinsic 

multiplication layer. The wafer ID, for this test sample was 14-253. This approach 

demonstrated a reduction of the Si diffusion tail into the intrinsic Si layer 

(multiplication region), as shown by a SIMS measurement performed on a test sample 

(Figure 4.28). 

Another solutions to this problem was proposed by IQE (a company based in UK 

performing epitaxial growth) who suggested to use a highly antimony (Sb) doped (~10
18

 

cm
-3

) Si substrate. A test sample was also made by growing a 1 m-thick intrinsic 

multiplication layer on top of the substrate. The wafer ID, for this test sample, was 22-

003. SIMS measurements for both wafers are also shown in Figure 4.28. 

 

 Figure 4.28. Comparison of the SIMS measured doping profile for structure 14-

253 (black), 12-028 (red), and 22-003 (magenta).  
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Results from wafers 14-253 (black) and 22-003 (magenta), shown in Figure 4.28, were 

also compared with the P doping profile from wafer 12-028 (red), as illustrated in the 

previous sections. The doping profile from wafer 14-253 showed a slight improvement 

compared to the previous result obtained from wafer 12-028. The Sb doping profile 

showed a very small diffusion tail, and the designed level for the intrinsic region (~10
15

 

cm
-3

) was obtained after ~300 nm from the substrate (Figure 4.28). 

Electric field profile simulations, at 95% of VBD, were carried out with the modelling 

software to better evaluate the impact of these three different doping concentrations on 

the designed Ge-on-Si structure. The charge sheet doping concentration was kept fixed 

at 1.5 × 10
17

 cm
-3

 for all simulations. This is illustrated in Figure 4.29 where the colour 

code used is the same as in Figure 4.28 (black: P profile 14-253; red: P profile 12-028; 

magenta: Sb profile 22-003). 

 

Figure 4.29. Simulated electric field profile for a 3
rd

 Generation Ge-on-Si 

structure. In particular, the SIMS measured doping profile reported in Figure 4.28 

were used for Si multiplication layer: P profile 14-253 (black), P profile 12-028 

(red), and Sb profile 22-003 (magenta). The doping concentration of the charge 

sheet layer was kept fixed at 1.5 × 10
17

 cm
-3

 for all the simulated structures.  

It is clear from Figure 4.29 that the Sb doping profile (magenta line) produced the most 

uniform electric field profile across the multiplication layer. This improvement was 

more evident when this profile is compared with the simulated electric field profile 
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obtained by using the P doping profile of wafer 12-028 (red). Regarding to the electric 

field profile obtained by using the P doping profile of wafer 14-253 (black), this could 

be considered as acceptable for the designed structure. 

Finally, the choice of the right doping profile for the Si multiplication layer must 

consider the reproducibility of the doping profile obtainable during the epitaxial growth. 

4.12 Conclusion 

In this chapter, the main advantages of a SACM structure have been described. The Ge-

on-Si SPAD structure proposed in this work is similar to the structure of an InGaAs/InP 

SPAD, but the material system is completely different, thereby different design rules 

have been introduced. 

The early design of the Ge-on-Si SPAD was based on three main aspects: electric field, 

doping concentration and temperature. Simulations have been performed to introduce 

the concepts of punch-through and breakdown voltage. In addition, the effects of the 

charge sheet doping concentration on the simulated structure were considered to 

evaluate the simulated electric field profile at 95% of the breakdown voltage. It has 

been underlined how is important to tailor the electric field between the Ge absorber 

layer and the Si multiplication layer to guarantee the detection of the infrared light with 

a high probability of triggering an avalanche of carriers. 

Different SPAD generations have been analysed. Experimental data obtained from 

capacitance-voltage and SIMS measurements have been used in the modelling software 

to evaluate their impact on the designed structure. Therefore, comparisons between 

experimental and simulated data were evaluated. Although different problems with the 

epitaxial growth apparatus were experienced, their impact on the designed structure was 

helpful to better understand the behaviour on the structure itself. In particular, the high 

boron doping concentration of the charge sheet layer resulted in a device which could 

not be used to detect infrared light. However, the designed structure has been adjusted 

to take into account the doping diffusion tail from the Si substrate in the intrinsic Si 

multiplication layer. Furthermore, different dopants (P, As, and Sb) were studied and 

then introduced in the model to evaluate their impact on the electric field profile. 

Results of the measured Sb doping profile were found to show the most uniform electric 

field profile across the multiplication region, and this result suggested that this design 
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solution might be used in future research the growth of the next Ge-on-Si SPAD 

generations. 
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Chapter 5 - Ge-on-Si Single-Photon Avalanche Diodes: Device 

fabrication, Characterisation and Performance 

5.1 Introduction 

In the previous chapter a description of the Ge-on-Si SACM SPAD was presented 

together with the simulations of different structures. Additionally, results from 

simulations were integrated with experimental doping concentration data obtained by 

SIMS, and devices fabricated from different generations of Ge-on-Si wafers were 

simulated. In this chapter, a brief introduction to the Ge-on-Si heteroepitaxial growth 

performed by our collaborators at the University of Warwick is described. In particular, 

the main focus will be given to the 1
st
 generation of SPAD devices (wafer 11-167 and 

11-141), since the other generations suffered from different growth and fabrication 

issues (as described in the previous chapter), and it was not possible to perform any 

single-photon characterisation. The fabrication of the 1
st
 generation of Ge-on-Si devices 

was performed independently by collaborators at the McMaster University and the 

University of Glasgow.  

Therefore, two different processing procedures were performed at McMaster 

University: in the first one, large active area mesa devices (500 and 250 m diameter) 

were fabricated without using any passivation layer, while the second processing 

procedure included small active area mesa devices (from 20 to 100 m diameter)  and 

SiO2 was used to passivate the mesa sidewalls. Large active area devices were not 

characterised as single-photon detectors due to their high leakage current, whilst small 

active area devices were irreversibly damaged when the temperature was reduced below 

200 K. However, data collected from these devices were used to perform a different 

analysis in terms of dark current, as shown in this chapter.  

Mesa devices (ranging from 25 to 500 m diameter), using a Si3N4 passivation layer 

fabricated at the University of Glasgow, showed a good yield and reproducibility of the 

current-voltage characteristics, even at lower temperatures. For this reason, their 

fabrication process is described in the work presented here. Dark current analysis of 

these devices is described to understand the main leakage mechanisms. Small active 

area devices (25 and 50 m diameter) were characterised in terms of their single-photon 

performance, and a comparison with homojunction Ge APDs, InGaAs/InP SPADs as 
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well as other Ge-on-Si SPADs reported in the scientific literature, is discussed in this 

Chapter.         

5.2 Ge-on-Si SPAD growth 

A full description of the Ge-on-Si SACM structures is given in Chapter 4, and different 

structures were proposed, designed and fabricated. In particular, 1
st
 Generation of Ge-

on-Si SPAD structures were characterised as single-photon avalanche detectors. The 

typical structure of the device is shown in Figure 5.1.  

 

Figure 5.1.Cross-section of the designed mesa geometry Ge-on-Si SPAD 

structure. For each layer is specified the thickness with the associated doping 

concentration (Na or Nd).  

Three structures were grown by collaborators at Warwick University, each containing a 

different dopant concentration of the charge sheet layer as explained in Chapter 4. A 

summary of the wafer IDs related to each doping concentration of the charge sheet layer 

for the 1
st
 generation of Ge-on-Si SPAD structure growth is given in Table I.    

Charge sheet doping concentration (cm
-3

) Wafer ID 

1 × 10
17 

11-167 

2 × 10
17

 11-141 

5 × 10
17

 11-142 

Table I. Wafer ID related to each doping concentration of the charge sheet layer, 

as grown. 
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The structures were grown by RP-CVD starting from a highly P-doped (~5 × 10
19

 cm
-3

) 

Si substrate. 1 m thickness of intrinsic Si (typically ~10
15

 cm
-3

 or lower) was 

epitaxially grown in order to form the multiplication region, followed by 100 nm of B-

doped (see Table I) Si for the charge sheet region. After this layer, a low temperature 

(~350-450 °C) Ge seed layer of ~50 nm was grown followed by a high temperature 

(~650 °C) growth of ~1m-thick intrinsic Ge layer (designed to be ~10
15

 cm
-3

) for the 

absorber region. The structure was then annealed (800-900 °C, several cycles) to reduce 

the TDD typically ~10
6
 – 10

7
 cm

-2 
[1]. Finally, 50 nm of a highly B-doped (~2 × 10

19
 

cm
-3

) Ge layer was epitaxially grown.   

5.3 Ge-on-Si SPAD fabrication 

The Ge-on-Si SPAD structures were fabricated by collaborators at Glasgow University. 

The devices were fabricated in a mesa geometry which was required to confine the 

electric field within the active region of the device. Before the fabrication process, the 

Ge-on-Si wafers were cleaved by a diamond saw into 1 cm
2
 chips. In order to protect 

the surface of the wafer from contaminants created during cleaving, a protective 

polymer was applied that could later be dissolved in acetone. The minimum device size 

was limited by the laser spot that could be focussed in the single-photon characterisation 

setup, meaning that fabricated devices were greater than 20 m in diameter. 

Photolithography was performed to transfer the desired pattern onto the substrate by 

using a Karl Suss Microtec MA6 with 0.5 m accuracy.  Figure 5.2 illustrates the 

photo-mask used for the photolithography where each colour represents a different 

lithography stage. Metal or dry etched markers were incorporated in the photo-mask to 

achieve alignment (1 m) between the photolithography stages. 
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Figure 5.2. Photolithography mask set used for the fabrication of the Ge-on-Si 

SPADs by photolithography. Each colour represents a different lithography stage. 

Therefore, cylindrical mesas, ranging from 25 to 500 m in diameter, were defined and 

etched anisotropically (dry etch) down to the highly doped Si substrate, by an 

inductively coupled plasma reactive ion etching (ICP-RIE) tool using fluorine-based 

chemistry (SF6/C4F8), resulting in near-vertical sidewalls [2]. 

Ni was chosen for the contacts (anode and cathode), as it is known to form the lowest 

electrical resistivity phases for silicides and germanides [3], [4]. A 20 nm layer of Ni 

was deposited to form the top contact and then annealed at 325 °C. Structures were then 

planarised and passivated by using a plasma enhanced chemical vapour deposition 

(PECVD) of Si3N4. Via holes were dry etched to allow interconnects to the contacts and 

then bond pads of 1.2 m of Al were sputtered. Figure 5.3 illustrated a scanning 

electron microscope (SEM) image of an Al top bond pad sputtered on a Ge-on-Si 

SPAD.  
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Figure 5.3. A scanning electron microscope image of a sputtered Al top bond pad 

on the Ge-on-Si SPAD.  

Finally, the sample was cleaved into 3 × 3 mm pieces which were firstly mounted on a 

header package by using conductive silver paint, and then wire bonded with Al. Figure 

5.4a-b shows a microscope image of the whole Ge-on-Si chip. 

    

(a)                                                                                 (b) 

Figure 5.4. Microscope images of the fabricated (a) Ge-on-Si SPAD chip, and (b) 

a 25 m diameter device. 
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5.4 The Current-Voltage Characteristic 

The first step in the characterisation of a device is to measure its current-voltage (I-V) 

characteristic, which provides information about the breakdown voltage (VBD), the 

punch-through voltage (VPT) and the dark current (Id) at 95% of VBD. Measurements 

were undertaken with a semiconductor parameter analyser (HP 4145B), capable of an 

accuracy of several picoamperes. 

There are four principal mechanisms that can contribute to the reverse bias leakage 

current of a SACM structure. The first two mechanisms have been described in Chapter 

2. Diffusion current from minority carriers in the quasi-neutral region of the device 

shows a dependence on the temperature proportional to 𝑒−𝐸𝑔/𝑘𝑇, where Eg is the 

bandgap of the material. This temperature dependence is due to the 𝑛𝑖
2 term (see 

equation 2.3, Chapter 2) where ni is the intrinsic carrier concentration. 

The second form of leakage current is due to the generation of carriers in the depletion 

region defined by the junction. The extent to which the current increases can be defined 

by considering how the depletion region grows, which in turn is dependent on the 

doping profile. The temperature dependence of this term is proportional to 𝑒−𝐸𝑔/2𝑘𝑇 and 

also related to the 𝑛𝑖 term (see equation 2.4, Chapter 2). 

The third form of leakage current is the generation of carriers at the surface of the 

semiconductor due to electrically active states at the semiconductor/insulator surface. 

The value of this current (Jsurface) can expressed by: 

𝐽𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = 𝑞𝑆0𝑛𝑖 [exp (
𝑞𝑉

2𝑘𝑇
) − 1]                                                                                       (5.1) 

where S0 is the surface recombination velocity and is proportional to the interface trap 

concentration. In reverse bias, this current has no dependence on voltage. As a function 

of temperature, however, devices dominated by this mechanism will show a dominant 

exponential dependence on ~Eg/2. 

The last current mechanism is the tunnelling (Jtunnel) and field assisted emission which 

can be expressed as: 

𝐽𝑡𝑢𝑛𝑛𝑒𝑙  ∝ exp(𝐸𝑥)                                                                                                                    (5.2) 
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where E is the electric field and x is a fitting parameter. This kind of mechanism is very 

difficult to study, and can affect both the bulk and the surface of a device.   

5.4.1 I-V characteristic of sample 11-167 

Figure 5.5 shows the I-V characteristic measured for a 50 m diameter device of wafer 

11-167 (1 × 10
17

 cm
-3

 designed charge sheet doping concentration). This 

characterisation was performed in dark conditions (solid line) and by illuminating the 

device at a wavelength of 1310 nm (dashed line). These measurements were also 

performed over a range of different operating temperatures: 293 K (black), 200 K (red), 

150 K (blue), 125 K (magenta), and 100 K (green). 

 

Figure 5.5. I-V characteristic measured for a 50 m diameter device of sample 

11-167 (1 × 10
17

 cm
-3

 designed charge sheet doping concentration). In particular, 

dark- (solid line) and photo-currents at = 1310 nm (dashed line) were measured 

over a range of different operating temperatures: 293 K (black), 200 K (red), 150 

K (blue), 125 K (magenta), and 100 K (green).  

When a reverse bias is applied to the device, its depletion region starts to extend into the 

Si multiplication region, and then expand in to the Ge absorption region, when the bias 

reaches the punch-through level. Once the device is fully depleted, the increase in bias 

generates an increase of the electric field, until the field is so high in the multiplication 

region, impact ionisation is possible and the avalanche breakdown occurs at a voltage 
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level equal to VBD. The photocurrent (dashed line) clearly shows the punch-through 

voltage (~ -12 V): when the depletion region extends to the Ge absorber layers, the 

current increases due to the photo-generated carriers. For the device in Figure 5.5, the 

breakdown at room temperature (293 K) occurs at -34 V and the dark current at 95 % of 

VBD is 15 A. The dark current measured at 95 % of VBD represents a reasonable 

indicator of the magnitude of the dark count rate to be expected when the device is 

operated in Geiger mode, although the precise physical relationship between these 

quantities is not well established [5], [6]. Because of the high level of dark current at 

room temperature, Ge-on-Si SPADs operate at lower temperatures. For that reason, I-V 

measurements were acquired at lower temperatures (Figure 5.5). 

When the temperature decreases, the VBD decreased due to the increased electron mean 

free path in the multiplication region, as already described in Chapter 2. Figure 5.6 

illustrates the variation of the breakdown voltage in relation to the temperature. A 

temperature coefficient 𝛾 ≈ 0.043 %/𝐾 was calculated which is similar to the 𝛾 value 

of ~0.05 %/K obtained from simulations (section 4.5 of Chapter 4), confirming that the 

avalanche breakdown was consistent with Si breakdown. In contrast, the punch-through 

voltage VPT remained relatively unchanged, considering its dependence on the doping 

profiles of the junction and the layers thickness. In addition, as the temperature 

decreases, the dark current also decreases, since the thermal generation-recombination 

effect is reduced.  

 

Figure 5.6. Breakdown voltage as function of the temperature for a 50 m 

diameter device of sample 11-167 (1 × 10
17

 cm
-3

 charge sheet doping 

concentration). A temperature coefficient  equal to 0.043 %/K was calculated. 
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To investigate the main mechanism contributing to the leakage current, Figure 5.7a-b 

shows the Arrhenius plot at two different voltages, -15 V and -28 V (i.e. reverse current 

(logarithm scale) versus the reciprocal of temperature to determine the activation energy 

(Ea)). The activation energy is close to the energy gap (𝐸𝑎 ≈ 𝐸𝑔) when reverse current is 

dominated by a diffusion current, close to half of the energy gap (𝐸𝑎 ≈ 𝐸𝑔/2) when 

dominated by a generation-recombination current, and less of half of the energy gap 

(𝐸𝑎 ≪ 𝐸𝑔/2) when dominated by tunnelling or field-assisted emission. 

 

(a) 

 

(b) 

Figure 5.7.  Arrhenius plot of the leakage current for the 50 m diameter device 

of wafer 11-167 at two different voltages: (a) -15 V, and (b) -28 V. For each 

voltage the extracted activation energy (Ea) is given. 
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The extracted activation energies at a reverse bias of -15 V and -28 V are ~0.3 eV and 

~0.18 eV, respectively are shown in Figure 5.7a-b where, in both graphs, the activation 

energy was calculated by considering the leakage current between 293 K and 150 K. 

This was chosen because it is evident that, a different effect is contributing to the 

leakage current at lower temperatures than 150 K. At a reverse bias of -15 V, the 

activation energy (~0.3 eV) was half of the bandgap of Ge (Figure 5.7a), and this value 

might suggest that the generation-recombination in the absorber region is the main 

contribution to the leakage current at this reverse bias. Further contributions can also be 

that, at this reverse bias the Ge absorber layer is fully depleted (above punch-through 

voltage), as shown from the photocurrent in Figure 5.5. At a reverse bias of -30 V, 

activation energy of ~0.18 eV might suggest that the main mechanism contributing to 

the leakage current could be related to tunnelling or field-assisted emission. This 

hypothesis is supported by the following considerations: 

a) At -30 V a high electric field can exist through the device, since this voltage is 

very close to the avalanche breakdown voltage; 

b) Dark current measurements at different temperatures (Figure 5.5) showed that 

the dark current increases with an exponential behaviour before breaking down 

at high voltages near the avalanche breakdown. However, a constant behaviour 

of the dark current can be observed for InGaAs/InP or Si SPADs when the 

voltage is increased, and the device therefore breaks down with a steep profile 

without showing any exponential behaviour of the leakage current; 

c) Wafer 11-167 has a charge sheet doping concentration equal or close to 1 × 10
17

 

cm
-3

. According to the electric field simulations shown in Chapter 4 (Figures 4.7 

and 4.19), this charge sheet doping concentration gives rise to a high electric 

field in the absorber layer (above the Ge breakdown field) which might be 

responsible for the low activation energy extracted at this high reverse bias; 

d) It was not possible to perform any single-photon characterisation even at the 

lowest temperature of operation and lowest excess bias, because the dark count 

rate was too high in order to make credible measurements; 

e) Devices from this wafer (11-167) showed a low yield and reproducibility when 

an AC gate at a frequency of 10 kHz was applied. This caused the device to be 

irreversibly damaged. Probably due to the high electric field which can 

contribute to microplasma effects at the Ge/Si interface where a high 

concentration of defects was located.   

 



 

177 

 

5.4.2 I-V characteristic of sample 11-141 

Figure 5.8 shows a comparison of the dark I-V characteristic measured for 50 m (solid 

line) and 25 m (dash line) diameter devices from wafer 11-141 (2 × 10
17

 cm
-3

 designed 

charge sheet doping concentration). These measurements were also performed over a 

range of different operating temperatures: 293 K (black), 200 K (red), 150 K (blue), 125 

K (magenta), and 100 K (green).  

 

Figure 5.8. Comparison of the dark I-V characteristic measured for 50 m (solid 

line) and 25 m (dashed line) diameter devices of sample 11-141 (2 × 10
17

 cm
-3

 

designed charge sheet doping concentration). In particular, dark-current was 

measured over a range of different operating temperatures: 293 K (black), 200 K 

(red), 150 K (blue), 125 K (magenta), and 100 K (green). 

The dark current measured for the 25 m diameter device was slightly lower than that 

from the device with 50 m diameter (Figure 5.8). The breakdown at room temperature 

(293 K) occurred at ~ -36 V and the dark current at 95 % of VBD was ~ 40 A. A 

temperature coefficient 𝛾 ≈ 0.059 %/𝐾 was calculated (Figure 5.9). 
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Figure 5.9. Avalanche breakdown voltage as function of the temperature for a 25 

m diameter device from sample 11-141 (2 × 10
17

 cm
-3

 designed charge sheet 

doping concentration). A temperature coefficient  equal to 0.043 %/K was 

calculated. 

Figure 5.10a-c illustrates the dark- (black) and photo-current measured at a wavelength 

of 1310 nm (red) and 1550 nm (blue) at temperatures of 200 K, 150 K, and 100 K. 

 

(a) 
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(b) 

 

(c) 

Figure 5.10. I-V characteristic measured for a 25 m diameter device from wafer 

11-141 (2 × 10
17

 cm
-3

 designed charge sheet doping concentration) in dark 

condition (black) and by illuminating the device at =1310 nm (red) and =1550 

nm (blue) at different temperatures: (a) 200 K, (b) 150 K, and (c) 100 K. 

The punch-through voltage was measured to be ~ -15 V. Considering the photocurrent 

measured at 1310 nm and 1550 nm, it was evident that a decrease of the photocurrent at 

the longer wavelength was due to the absorption coefficient of Ge (which decreases at 

longer wavelengths, please see Figure 3.16 of Chapter 3 for details) which was ~10
4 

cm
-

1
 at =1310 nm and one order of magnitude lower at =1550 nm at room temperature. 
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In addition, when the temperature decreased to 100 K, the Ge absorption coefficient 

remained almost unchanged at =1310 nm, while dramatically decreasing to less than 

10 cm
-1

 at =1550 nm. 

As shown in Figure 5.11a-b, the activation energies extracted from the Arrhenius plot 

were ~0.35 eV and ~0.24 eV, at -17 V and -30 V, respectively. As observed for wafer 

11-167, the activation energy at -17 V (after punch-through) suggested that the main 

mechanism contributing to the leakage current is the generation-recombination in the 

bulk Ge. At -30 V (before the avalanche breakdown), the activation energy was less 

than half of the bandgap, suggesting also in this case that tunnelling or field-assisted 

emission are contributing to the leakage current. However, this value (~ 0.24 eV), in 

comparison to the activation energy calculated for sample 11-167 was slightly higher, 

indicating that this effect might be less pronounced in sample 11-141. To further 

support this assumption, the dark current of sample 11-141 showed a steep behaviour at 

the breakdown (as clearly shown in Figure 5.10a-c). Devices from wafer 11-141 were 

characterised in terms of their single-photon performance, as is illustrated in the next 

sections.   
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(a) 

 

(b) 

Figure 5.11. Arrhenius plots of the leakage current for the 25 m diameter device 

of wafer 11-141 at two different voltages: (a) -17 V, and (b) -30 V. For each 

voltage  the extracted activation energy (Ea) is given.  

5.4.3 Comparison between devices from samples 11-167 and 11-141 

Figure 5.12 compares the dark I-V characteristics for 50 m diameter devices of 

samples 11-167 (solid lines) and 11-141 (dash lines) at different operating temperatures: 

293 K (black), 200 K (red), 150K (blue), and 100 K (magenta). 
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Figure 5.12. Comparison of the dark I-V characteristic measured for a 50 m 

diameter device of wafer 11-167 (solid line) and wafer 11-141 (dash line) at 

different operating temperatures: 293 K (black), 200 K (red), 150 K (blue), 100 K 

(magenta). 

As shown in Figure 5.12, a voltage difference of ~2 V was observed for the breakdown 

voltages (~ -36 V and ~ -34 V for device of wafer 11-141 and 11-167, respectively) at 

room temperature of the two wafers. A similar voltage difference was also measured for 

the punch-through voltage, corresponding to ~ -15 V and ~ -12 V for the two wafers 

(details are described in the previous sections). The two devices showed similar dark 

currents at room temperature and 200 K, while it was slightly lower (between -15 V and 

-28 V) for the device from wafer 11-167 at lower temperatures (150 K and 100 K). 

There was a clear difference avalanche breakdown for the two devices. Devices from 

wafer 11-141 showed a steep curve before breaking down, while devices from wafer 11-

167 showed an exponential behaviour before breaking down. Although the two wafers 

had the same structures (Figure 5.1), these were designed to have different doping 

concentrations of the charge sheet, 1 and 2 × 10
17

 cm
-3

 for wafers 11-167 and 11-141, 

respectively. Simulations performed in Chapter 4 (Table IV) showed that these two 

different doping concentrations of the charge sheet led to a difference in the breakdown 
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voltage of ~ 10 V and in the punch-through voltage of ~ 8 V. This voltage spread was 

larger than the ones measured experimentally in Figure 5.12. 

In addition, simulations also showed that devices with doping concentrations of the 

charge sheet of 1 × 10
17

 cm
-3

 had a higher electric field (at 95% of VBD) in the Ge 

absorber layer, well above the Ge breakdown field, unlike devices from wafer 11-141 (2 

× 10
17

 cm
-3

 charge sheet doping concentration). As already described, devices from 

wafer 11-167 showed a behaviour of the dark current before the breakdown voltage 

compatible with a current mechanism (tunnelling or field-assisted emission), and this 

was caused by the high electric field. Furthermore, the small difference between 

breakdown and punch-through voltages suggests that the two wafers had a similar 

doping concentration of the charge sheet layer. Simulations also showed that a device 

with a charge sheet doping concentration of 1.5 × 10
17

 cm
-3

 had a breakdown voltage of 

~ -37 V and a punch-through voltage of ~ -12 V. These values are similar to the values 

measured for samples 11-167 and 11-141. 

Additionally, the two pieces of wafer (one for wafer 11-167 and one of wafer 11-141) 

processed at the University of Glasgow were the last two pieces left from the edge of 

the wafer, and this also suggests that the thicknesses of the different layers could be 

thinner than the designed values due to non-uniformity of the temperature at the edge of 

the wafers during the heteroepitaxial growth. Therefore, the two wafers, 11-167 and 11-

141, might have similar doping concentrations in the charge sheet layer but different 

thicknesses of the Si multiplication layer (smaller for wafer 11-167) leading to the 

observed differences in the breakdown and punch-through voltages and different 

behaviour of the dark current at the breakdown voltage. As shown in Chapter 4, the 

breakdown and punch-through voltages depend on different parameters such as the 

doping concentration and thicknesses of different layers. It was not possible to measure 

the doping concentrations and thicknesses of different layers to confirm these 

hypotheses because most of the material was used for testing different metals for ohmic 

contacts and fabrication of devices performed at the University of Southampton.  

5.5 Single-Photon Characterisation 

In order to characterise the devices as single-photon detectors, the gated quenching 

mode was used (as described in Chapter 2). The gated mode allows a precise 

characterisation of the device. 
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5.5.1 TCSPC technique 

The characterisation of the Ge-on-Si SPAD devices in terms of their single-photon 

performance was carried out using a time-correlated single-photon counting (TCSPC) 

technique which is described in detail in reference [7]. Individual photon detection can 

be treated as independent events that follow a random temporal distribution. As a result, 

photon counting is a classical Poisson process, and the number of photons N measured 

by a given detector over a time interval t is described by the discrete probability 

distribution: 

𝑃(𝑁 = 𝑘) =
𝑒−𝜆𝑡(𝜆𝑡)𝑘

𝑘!
                                                                                                           (5.3) 

where  is the expected number of photons per unit time interval, which is proportional 

to the incident light irradiance, and the rate parameter t corresponds to the expected 

incident photon count. Figure 5.13 shows the probability distribution of a Poisson 

process for different t. The uncertainty described by this distribution is known as 

photon noise. Since the incident photon count follows a Poisson distribution, it has the 

property that its variance is equal to its expectation t. Therefore, the photon noise is 

signal dependent, and its standard deviation grows with the square root of the signal. 

Since photon noise is derived from the nature of the signal itself, it provides a lower 

bound on the uncertainty of measuring light. In general, the only way to reduce the 

effect of photon noise is to capture more signal, and hence photons, by using longer 

exposure times. The ratio of signal to photon noise grows with the square root of the 

number of photons captured √𝜆𝑡. As already shown in Chapter 2, dark current noise 

also follows a Poisson distribution due to the thermally generated carriers which cause 

the detector to release electrons at random. 
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Figure 5.13. The Poisson probability distribution for various values of the 

expected incident photon count (t).   

The TCSPC technique relies on measuring a sequence of electrical pulses generated by 

the detection of a stream of single-photons. Each photon in the stream is recorded with 

respect to its arrival time relative to a fixed reference signal, usually provided by an 

external clock, as shown in Fig. 5.14. 

 

Figure 5.14. Timing diagram for a TCSPC operation showing the start signal, 

usually provided by an external clock, the stop pulse from the SPAD detector after 

the detection either of a single-photon or dark count. t represents the time 

difference between the start and stop pulse.   

SPADs used in TCSPC mode produce an electrical output pulse for each detected 

single-photon. The amplitude of the output signal is not dependent on the intensity of 

the incoming photon flux. These events are often recorded by a photon-counting card 

which produces a histogram as shown in Figure 5.15. 
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Figure 5.15. Histogram of photon counts recorded according to arrival time 

obtained with TCSPC. Each time a photon event is measured a count is added to 

the appropriate time bin [5]. 

The histogram bin width can be chosen by the user before recording the histogram 

depending on the required accuracy.  

The accuracy of the time measurements itself is not limited by the width of the detector 

pulse. TCSPC is a thresholding technique where only the first part of the voltage pulse 

from the detector is used to indicate the stop of the timing process by using a constant 

fraction discriminator (CFD). A constant voltage threshold does not fully exploit the 

high timing resolution that is achievable using TCSPC as shown in Figure 5.16 [8]. The 

voltage discriminator level is set to a value which enables all output pulses of the device 

to be counted, if the voltage pulse does not exceed this level, the pulse will not be 

counted. Since the voltage pulses from the detector may differ slightly in magnitude, a 

threshold voltage might be achieved at a slightly different time which increases the 

inaccuracy of the timing. 
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Figure 5.16. Single-photon detector temporal output as seen on a GHz 

oscilloscope. The voltage discriminator level (dashed line) is set to a value which 

enables all output pulses of the device to be counted. However, the voltage pulses 

pass through the discriminator level at different times (red circle) relative to the 

start of the individual measurement. This variance in the rise-time results in the 

jitter seen in the histogram of the time difference between the start and stop pulses 

[8]. 

The CFD method, as suggested by the name, uses a constant fraction point on the 

leading edge of the pulse to trigger the timing stop pulse, resulting in a constant timing 

point for pulses with similar shapes yet varying amplitudes. A second CFD is also used 

on the reference signal (start) to prevent possible amplitude fluctuations which may 

contribute to the overall time jitter. The output pulses of the CFDs are used as start and 

stop pulses of a time-to-amplitude converter (TAC). The TAC within a photon counting 

card generates an output signal proportional to the time between the start and stop 

pulses, and it can only register one stop for each start event. The TAC then has a certain 

reset, or “dead-time”, during which time no stop pulses can be counted. Therefore, the 

count rate of a TCSPC system must not exceed ~ 10 % of the overall system repetition 

rate (the “start” rate) (i.e. the probability of detecting a photon per clock period is much 

less than unity). This avoids a problem known as “pulse pile-up” whereby there are 

many photons, but only one start-stop pair per clock-cycle, so only early events are 

recorded in the TAC window. This leads to a skewing of the recorded histogram 

towards the start of the timing window and results in an unreliable measurement, since 

the likelihood of observing any photon counts in the latter part of the window is greatly 

reduced. For the measurements described throughout this Chapter, the count rate was 

always kept to less than 10 % to avoid pulse pile-up.     
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5.5.2 Experimental Setup and Methodology 

In order to characterize the devices in terms of single photon detection efficiency 

(SPDE), dark count rate (DCR), noise equivalent power (NEP), and jitter at full-width 

half-maximum (FWHM) the setup in Figure 5.17 was used.   

 

Figure 5.17. Single-photon characterisation setup. The gated quenching mode 

was used to characterise the devices in terms of SPDE, DCR, NEP, and jitter at 

FWHM. The connections denoted by black lines are electrical connections. Those 

with dotted lines are fibre-optic connections, and those with coloured lines are 

free-space optical connections.  

Devices were mounted in a liquid nitrogen cryostat with free-space optical access 

(Oxford Optostat DN2), enabling accurate and stable temperature tuning between 77 K 

and 300 K.  Two pulsed semiconductor laser modules manufactured by PicoQuant were 

used to test the detection efficiency at wavelengths of 1310 nm and 1550 nm 

respectively.  The output from these lasers was coupled into single-mode fibre (SMF-

28) and into a 50/50 splitter.  One arm of the splitter was used to constantly monitor the 

optical power level, whilst the other passed through a calibrated optical attenuator (HP 

8156A) with up to 60 dB of attenuation available. Prior to characterisation, the optical 

power level arriving at the device under test was measured and compared with the 

reading on a calibrated fibre-coupled power meter. This enabled direct monitoring of 
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the power level arriving at the device, once the optical pulse had passed through the 

optical attenuator, and thereby ensuring that a photon flux of <0.1 photons per pulse (on 

average) was incident on the device to properly demonstrate the single photon counting 

abilities of the detectors.   

The average number of photons n in a single pulse is calculated according to: 

𝑛 =
𝑃

ℎ𝜈𝑓
                                                                                                                                      (5.4) 

Where P is the optical power and f is the laser repetition rate. The distribution of 

photons in a laser pulse follows Poisson statistics (see section 5.5.1). With an average 

number of photons per pulse of 0.1, there is a ~10% of probability that a given pulse 

contains a photon, while the probability to have 2-photons per pulse is less than 0.5%. 

Therefore, if the repetition rate of the ac pulse is 10 kHz, a one second integration time 

allows for a maximum of 10
4
 photon counts. However, the value of 0.1 represents the 

average number of photons, and hence there is a certain probability that a pulse will 

contain a certain number of photons for a given average photon number. As the average 

photon number per pulse is increased, then the probability to have more than one photon 

per pulse also increased. In rigorous single-photon characterisation the average photon 

number must be kept less than 1 photon per pulse. 

The fibre output of the optical attenuator was collimated with a microscope objective, 

and directed at the sample.  A white-light channel was also present in the system and 

coupled through the use of a partially reflecting pellicle.  The image was relayed to an 

InGaAs camera (Hamamatsu C10633) through the use of another pellicle to enable 

imaging of the device, and the laser spot on the sample, to ensure accurate alignment 

and focusing. The devices were electronically addressed with GHz bandwidth sub-

miniature coax cables to minimise any deterioration of the electric pulses to, and from, 

the devices.  For characterisation purposes, the devices were operated in gated-mode 

[9]. A dc bias of few Volts below the breakdown voltage VBD was applied, and an 

electrical pulse was superimposed through the use of a bias-tee in order to bias the 

device above VBD into the so-called Geiger mode of operation.  When an avalanche was 

initiated (by either a dark count or photo-generated event) the avalanche current 

persisted until the end of the gate when the voltage was brought back below VBD. The 

output pulse from the device was split to enable oscilloscope traces to be recorded while 

simultaneously providing the stop signal for the photon counting card (Edinburgh 
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Instruments TCC900).  The start signal was provided by a master clock that has three 

outputs: one for the TCC900, another for the laser driver, and the third output for the 

gate generator.  Various delays were inserted into the start and stop paths and between 

the triggering signals and the laser driver/ gate generator to synchronize all signals and 

enable a histogram of photon/dark count arrival time relative to the start signal to be 

recorded by the TCC900. For each operating condition, two photon-counting 

histograms were recorded: one in completely dark conditions, and one with an 

attenuated laser pulse coincident with the gate on the detector. 

The gated mode operation was used for all the experimental results reported in the 

following sections. This consisted of applying a constant DC bias to the detector at ~1 V 

below VBD, then an AC gate (~50ns duration gate) was superimposed at amplitude 

corresponding to a relative excess bias (Vex) of 10% of VBD which was calculated as 

follows: 

𝑉𝑒𝑥(%) =
(𝑉𝐷𝐶 + 𝑉𝑔𝑎𝑡𝑒) − 𝑉𝐵𝐷

𝑉𝐵𝐷
× 100                                                                                (5.5) 

5.5.3 Dark Count Rate 

The mechanisms that contribute to the dark count rate of a SPAD have been described 

in Chapter 2. The dark count probability PD can be calculated as 

𝑃𝐷 =
𝑁𝐷

𝑓 ∙ 𝑡𝑎𝑐𝑞
                                                                                                                              (5.6) 

Where ND is the total number of dark counts per measurements, f is the repetition rate of 

the gate pulse, and tacq is the total acquisition time for the measurement. The dark count 

rate (DCR) can be calculated by dividing the dark count probability by the gate duration 

(tg), yielding the number of dark counts per one second. The DCR of the characterised 

Ge-on-Si devices was so high that the detectors could not be used and characterised at 

room temperature. However, by cooling down the device, the dark count rate was 

reduced almost exponentially and DCR measurements were performed between 

temperatures from 100 K to 150 K. 

Figure 5.18 illustrates the DCR as a function of the relative excess bias for two 25 m 

diameter devices of wafer 11-141.  
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Figure 5.18. Dark count rate as a function of the relative excess bias for two 

25m diameter devices of wafer 11-141. In particular, the DCR for the device A 

were measured at two different temperatures, 150 K (blue) and 125 K (red), while 

the DCR of device B was only measured at 100 K (black).  

As shown in Figure 5.18, the DCR of device A was measured at two different 

temperatures, 150 K (blue) and 125 K (red), while device B was only measured at 100 

K (black). It was not possible to characterise the DCR of a single device at different 

temperatures, since devices of wafer 11-141 could only be thermally cycled a few times 

prior to irreversible damage. It was not clear if this damage was related to the Geiger 

mode characterisation, the device fabrication or the material itself.  

However, both devices exhibited a high DCR which in turn limited the operating 

temperatures and restricted the maximum excess bias applied. It is evident that the DCR 

decreased as the temperature was decreased.  The lowest DCR ranging from 1 to 8 × 

10
6
cs

-1
 was measured at 100 K on device B at different relative excess biases. Although 

the DCR on the device B was measured at a lower temperature, the DCR of device A 

increased quite rapidly at higher temperatures, even if it was measured at lower relative 

excess bias than the one used on device B (Figure 5.18).  

The DCR of two different size devices, 50 m (black) and 25 m (red) is compared in 

Figure 5.19. It was not possible to measure the DCR of the 50 m diameter devices at 

temperatures higher than 100 K, since these devices demonstrated a higher dark current 



 

192 

 

near the breakdown than smaller size devices. At a temperature of 100 K, the dark 

currents at 95% of VBD were 0.7 nA and 0.22 nA for the 50 and 25 m diameter 

devices.  

 

Figure 5.19. Dark count rate as a function of the relative excess bias for two 

different size devices: 50m (black) and 25 m (black) diameter devices of wafer 

11-141. 

At 100 K, the DCR of the 50 m diameter device was higher than the DCR of the 

25m diameter device, and between 3 - 12 Mcs
-1

, even if it was measured at lower 

relative excess bias. 

All the DCR measurements, performed at different temperatures and with different size 

devices, demonstrated an exponential dependence of DCR on excess bias. There were 

not enough data for a single device at different temperatures to give an indication of the 

dependence of the DCR on the temperature. Results from the dark current suggested 

that the main current mechanism near the breakdown voltage was probably due to 

tunnelling or field-assisted emission (section 5.4.2). Considering that both these effects 

could be more pronounced in Geiger mode of operation, this suggests that these effects 

might be the main contribution to the DCR for the analysed structures. Furthermore, in 

future work, a more detailed analysis of DCR behaviour (i.e. an Arrhenius plot of DCR 

for different excess bias) would be needed to ascertain the main carrier mechanisms that 

are contributing to the DCR. 
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The DCR measured for the Ge-on-Si SPAD is similar to those obtained by using 

commercial Ge APD. In reference [10], two commercial Ge homojunction APDs 

fabricated in planar technology from GPD Optoelectronics (40 m diameter) and Texas 

Instruments (350 m diameter) were characterised in terms of their single-photon 

performance. At 100 K, the GPD device demonstrated a DCR of ~2 Mcs
-1

 at the lowest 

relative excess bias of 2.6%, while it increased to ~40 Mcs
-1

 at 13% of excess bias. 

Although, the Texas Instruments device had a large active area (350 m diameter), this 

demonstrated a better fabrication process with less lattice defects considering that the 

measured DCR was between 2 Mcs
-1

 and 10 Mcs
-1

, at the same temperatures. In fact, 

the authors stated that if a 40 m diameter device had been fabricated with the same 

technology, this would have resulted in a Ge SPAD with a low DCR at 77 K, 

comparable to the commercially available InGaAs/InP SPAD at 200 K.  

Compared to the planar InGaAs/InP SPAD, the DCR is several orders of magnitude 

higher as DCRs of 10
2
 – 10

3
 cs

-1
 are achievable at these temperatures [6], [9]. 

However, the characterised Ge-on-Si SPAD device was fabricated in a mesa geometry, 

whereas Ge APDs and InGaAs/InP SPAD were fabricated as planar devices. It is well 

known that mesa geometry devices suffer from deleterious effects on dark count rate 

and dark current caused by the high density of surface states at the sidewalls of the 

mesa. This is mainly true for germanium, since surface passivation is still an open 

question in the scientific literature. In particular, DiLello et al. [11] demonstrated that 

the dark current of Ge-on-Si pin photodiodes is dominated by the generation of carriers 

at the germanium surface mainly in small device between 5 – 25 m, while larger active 

area devices, 100 – 500 m, are dominated by bulk carrier generations. A similar 

analysis was also performed in this work suggesting that the surface effect dominates 

the dark current, and hence the DCR in this sample set.      

5.5.4 Single-Photon Detection efficiency 

As explained in Chapter 2, the single-photon detection efficiency (SPDE) depends 

mainly on three different factors: the absorption efficiency, the transport efficiency and 

the triggering probability. In particular, the triggering probability depends on photo-

generated carriers triggering an avalanche. This is strongly dependent on the excess 

bias, the depth at which the incident photon is absorbed, and the impact ionisation 

coefficients of both electrons and holes. 
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Experimentally, the SPDE was calculated using the formula (5.7) when the detector was 

operated in gated mode: 

𝑆𝑃𝐷𝐸 =
𝑇𝑜𝑡𝑎𝑙 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑐𝑜𝑢𝑛𝑡𝑠 − 𝑑𝑎𝑟𝑘 𝑐𝑜𝑢𝑛𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑝ℎ𝑜𝑡𝑜𝑛𝑠
∙

1

𝑡𝑎𝑐𝑞 ∙ 𝑓
                                       (5.7) 

Where tacq is the total acquisition time for the measurements and f is the repetition rate. 

For devices of sample 11-141, the highest SPDE was measured for a 25 m diameter 

device at a wavelength of 1310 nm and a temperature of 100 K, as shown in Figure 

5.20. The average number of photons incident on the device was kept less than 0.1 

photons per pulse. A SPDE ranging from 2.2 % to 4 % was measured between 6.5 – 10 

% of excess bias. Results showed that the SPDE increases linearly with the excess bias 

due to the increase of the field within the device.  

 

Figure 5.20. Single-photon detection efficiency as a function of the relative excess 

bias measured in Geiger mode at =1310 nm and T=100 K for a 25 m diameter 

device from wafer 11-141. The average number of photons incident on the device 

was kept <0.1 photons per pulse. 

Figure 5.21 shows a comparison between the SPDE measured at a wavelength of 1310 

nm and a temperature of 100 K for both 25 m and 50 m diameter devices. 
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Figure 5.21. Comparison of the single-photon detection efficiency as a function of 

the relative excess bias measured in Geiger mode at =1310 nm and T=100 K for 

both 25 m and 50 m diameter device of wafer 11-141. The average number of 

photons incident on the devices was kept <0.1 photons per pulse. 

The SPDE measured on the 50 m diameter device (black line) was between 1% and 

3% at a relative excess bias ranging from 4.5% to 6.5%. This relative excess bias was 

lower than the one used on the 25 m diameter device (red line), and it was not possible 

to increase the excess bias on the 50 m diameter devices due to the high DCR.  

The SPDE at the longer wavelength of 1550 nm was measured on a 25 m diameter 

device at 125 K, as shown in Figure 5.22. SPDE of ~0.09 % at 6 % excess bias was 

measured. As expected, the SPDE was quite low at this wavelength since the Ge 

bandgap increased as the Ge was cooled, and hence the absorption coefficient at longer 

wavelengths decreases rapidly (the direct bandgap at 125 K is 0.84 eV, and hence the 

1550 nm (0.8 eV) photons lay outside the main absorption edge) [12].  
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Figure 5.22. Single-photon detection efficiency as a function of the relative excess 

bias measured in Geiger mode at =1550 nm and T=125 K for a 25 m diameter 

device of wafer 11-141. The average number of photons incident on the device 

was kept <0.1 photons per pulse. 

The commercial Ge homojunction APD demonstrated a SPDE ranging from 4 % to 30 

% at a wavelength of 1310 nm and a temperature of 77 K, while it decreased to 0.1 – 1 

% at the longer wavelength of 1550 nm and same temperature [10]. These results were 

in good agreement with the SPDE measured on the Ge-on-Si SPAD devices from wafer 

11-141.  

In section 4.8 of Chapter 4, SIMS results performed on the 2
nd

 generation of Ge-on-Si 

SPAD devices were shown. Although the Si multiplication layer was designed to have a 

very low background doping, these measurements revealed that there was a 

phosphorous diffusion tail which slowly decreased as a function of distance from the 

doped Si substrate. Simulations demonstrated that this dopant diffusion tail led to a non-

uniform electric field in the Si multiplication layer, which led to a reduced effective 

thickness of the multiplication layer. This, in turn, led to an increased electric field in 

the Ge absorber layer (Figure 4.19 of Chapter 4). In particular, the first two problems 

suggested a low avalanche triggering probability which would lead to a lower SPDE. 

Since 1
st
 generation of Ge-on-Si SPAD were grown under the same conditions as 2

nd
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generation devices, this problem might have affected the SPDE of the measured 

devices.    

Another mechanism that might have affected the SPDE of the characterised SPADs is 

the threading dislocations. As already shown in Chapter 3 (section 3.4.2), Colace et al. 

demonstrated that the threading dislocations can increase the leakage current and also 

reduce the responsivity of Ge-on-Si pin diodes, since they act as generation-

recombination centres [13]. Therefore, a more detailed analysis of the impact of the 

threading dislocation on the SPDE is needed to help the understanding of its 

contribution to the SPAD performance. 

5.5.5 Noise Equivalent Power 

The noise equivalent power (NEP) is an useful figure of merit for a SPAD, since it takes 

into account both the SPDE and DCR, as shown in Chapter 2 (section 2.4.2.1). The 

more sensitive the detector is to a given incident wavelength, then the lower the NEP. 

The lowest NEP of ~ 1 × 10
-14

 WHz
-1/2

 at a wavelength of 1310 nm was measured on a 

25 m diameter device at a temperature of 100 K. The NEP was similar across the range 

of the relative excess voltages measured (Figure 5.23).  

 

Figure 5.23. Noise equivalent power at a wavelength of 1310 nm measured on a 

25 m diameter device of wafer 11-141 at a temperature of 100 K.   
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Furthermore, at the same temperature and wavelength, the NEP measured for the 50 m 

diameter device was in the range of ~ 2 - 4 × 10
-14

 WHz
-1/2

, as shown in Figure 5.24.   

 

Figure 5.24. Noise equivalent power at a wavelength of 1310 nm measured on a 

50 m diameter device of wafer 11-141 a temperature of 100 K.  

The NEP at the longer wavelength of 1550 nm was measured on a 25 m diameter 

device at 125 K, as shown in Figure 5.25. An NEP of ~ 1 × 10
-12

 WHz
-1/2

 over a range 

of excess biases was measured. 
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Figure 5.25. Noise equivalent power at a wavelength of 1550 nm measured on a 

25 m diameter devices of wafer 11-141 a temperature of 125 K.  

These values of NEP (Figure 5.23) compared well with those obtained from previous 

works, where NEPs of ~ 1.6 × 10
-14 

WHz
-1/2

  and ~ 4 × 10
-15

 WHz
-1/2

  were reported 

using commercially available planar all-Ge APDs operated in Geiger mode at a 

temperature of 77 K [10], [14]. In addition, the measured NEP of ~ 1 × 10
-14

 WHz
-1/2

 

represents the lowest NEP demonstrated for any Ge-on-Si SPAD reported in the 

scientific literature, as shown in the next sections. 

However, there still remains a significant performance gap between these results 

obtained for Ge-on-Si SPADs and those for InGaAs/InP SPADs which have previously 

demonstrated NEPs of less than 1 × 10
-17

 WHz
-1/2

 at a wavelength of 1550 nm and a 

temperature of 193 K.  

5.5.6 Timing jitter 

Timing jitter at full-width at half maximum (FWHM) was investigated at various excess 

bias levels. The measured jitter was a convolution of the laser pulse width (~50 ps), the 

detector response, and the contribution from the rest of the acquisition system.  

The time response for a 25 m diameter device at a relative excess bias of 10 % and a 

temperature of 100 K is shown in Figure 5.26. The time response is given by the value 
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of the FMHM of the histogram measured when the detector is illuminated with a highly 

attenuated pulsed laser (<0.1 photons per pulse). 

 

Figure 5.26. Time response histograms, dark (black) and light (red), at 10 % 

relative excess bias measured in a time-correlated single photon counting setup 

(~50 ns gate width, repetition rate of 10 kHz) on a 25 m diameter device from 

wafer 11-141 at a wavelength of 1310 nm (<0.1 ppp), and a temperature of 100 

K.  

The use of histograms for the characterisation provided some useful information on 

afterpulsing, as well as jitter. If the background levels are the same for both dark and 

light measurements (as in Figure 5.26), this indicates that the detector is operating in a 

regime with negligible after-pulsing.  

Figure 5.27 illustrated the measured jitter at FMHM on a 25 m diameter device at 

different relative excess biases and a temperature of 100 K. 
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Figure 5.27. Time jitter at FMHW measured at different relative excess biases on 

a 25 m diameter device from wafer 11-141 at a wavelength of 1310 nm, and a 

temperature of 100 K.  

The timing jitter of the detector decreased as the excess bias increased, as expected. The 

drawback is that the DCR also increases. The lowest value of ~300 ps was measured at 

10 % relative excess bias. With the same experimental setup, timing jitters of less than 

80 ps were measured with alternative low-jitter all-Si SPAD detectors, and hence it is 

reasonable to assume that the overall measured jitter is dominated by the detector 

contribution. 

At the same temperature (100 K) and wavelength (1310 nm) the 50 m diameter device 

demonstrated a response with a FMHM in the range of 450 – 815 ps. This is shown in 

Figure 5.28a, where the time response histograms obtained by subtracting the dark from 

the light counts (total numbers of counts) are reported for the minimum and maximum 

relative excess bias (4.8 % (blue) and 6.4 % (red), respectively). Conversely, Figure 

5.28b illustrates the FMHM as a function of the relative excess bias. 
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(a) 

 

(b) 

Figure 5.28. (a) Time response histograms of a 50 μm diameter device from wafer 

11-141 obtained by subtracting the dark from light counts (total counts) for two 

different relative excess bias, 4.8 % (blue) and 6.4 % (red), respectively. (b) 

FMHM as a function of the relative excess bias. Timing jitter measurements were 

performed at T=100 K and =1310 nm (~50 ns gate width, repetition rate of 10 

kHz). 
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The measured timing jitter values showed good agreement with the timing jitter 

measured previously (~100 – 350 ps,  = 1310 nm, laser pulse width = 40 ps) for 

homojunction Ge APDs operated in Geiger mode [10].  

At the longer wavelength of 1550 nm, the minimum time response of ~420 ps was 

measured at 6 % of relative excess bias on a 25 m diameter device at a temperature of 

125 K, as shown in Figure 5.29.  

 

Figure 5.29. Time response histograms, dark (black) and light (red), at 6 % of 

relative excess bias measured in a time-correlated single photon counting setup 

(~50 ns gate width, repetition rate of 10 kHz) on a 25 m diameter device from 

wafer 11-141 at a wavelength of 1550 nm (<0.1 photon per pulse), and a 

temperature of 125 K. 

5.5.7 DCR versus frequency (afterpulsing) 

Although the main contribution to the DCR is given by thermally generated carriers, 

this is not the only mechanism responsible for DCR. There is another effect known as 

afterpulsing which is essentially a memory effect due to the large amount of carriers 

flowing through the device during the avalanche process associated with any individual 

photon event or a dark count. These carriers can be trapped and then released in the 

following gate periods, hence contributing to the overall DCR. This contribution is only 

negligible at very low frequencies of detector operation, when there is enough time 

between two gate pulses to release all the trapped carriers.  Since these SPADs are 
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operated in gated mode, the probability of observing a dark count within a certain 

window increases as the repetition rate is increased (the frequency at which the AC gate 

is superimposed on the SPAD to take the device beyond breakdown and into Geiger 

mode).  

Figure 5.30 illustrates the impact of the repetition rate on the DCR on a 25 m diameter 

Ge-on-Si SPAD at two different temperatures, 150 K (black) and 100 K (red), 

respectively.  

 

Figure 5.30. DCR versus gating frequency for a 25 m diameter Ge-on-Si SPAD 

at two temperatures, 150 K (black) and 100 K (red), respectively. 

A slight increase (by nearly a factor of 2) in the DCR was observed when increasing the 

gating frequency from 1 kHz to 1 MHz. Similar behaviour was also observed using two 

different Ge homojunction APDs operated in Geiger mode [10]. 

Although InGaAs/InP SPADs demonstrated a lower DCR at this temperature, such 

devices demonstrated a rapid increase in the DCR due to afterpulsing, as already 

discussed in Chapter 3. This was the main problem affecting InGaAs/InP SPADs, 

considering that it significantly reduced the frequency of operation of the devices below 

100 kHz. In these devices, the traps contributing to afterpulsing are located within the 

high-field InP multiplication region [15]. Buller et al. demonstrated experimentally that 
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only traps within the high field region are of concern, since traps within the low field 

InGaAs layer do not initiate an after-pulse [16]. 

For the Ge-on-Si SPADs the avalanche is initiated from electrons, and if a photon is 

absorbed in the Ge, the photogenerated hole will then drift to the top contact adjacent to 

the Ge layers. When the photogenerated electrons pass into the multiplication region, 

both electrons and holes will undergo impact ionisation. The holes will drift out of the 

Si layers towards the Ge absorber and to the top contact, while the electrons will drift to 

the Si substrate contact. If holes are trapped within the Ge layer and are later released, 

they cannot contribute to after-pulsing since they drift directly to the top contact and do 

not enter into the multiplication region. Hence, electrons and/or holes trapped in the Si 

multiplication region are the only carriers that can probably initiate an after-pulse.  

Generally, the after-pulsing within all-Si SPADs is very low at higher temperatures [17] 

and much lower than exhibited in all-Ge SPADs [18]. Therefore, by using Si for the 

multiplication region, the Ge-on-Si SPAD might prove to be a superior device in terms 

of afterpulsing than alternative SPADs operating at this wavelength band. In future, a 

more comprehensive analysis of afterpulsing should be performed by using time-

correlated carrier counting methods in order to better understand its impact on these 

structures. 

5.5.8 Ge-on-Si SPADs in the scientific literature 

In Chapter 3 different Ge-on-Si APD structures (section 3.6.4) have been described but 

none of them were characterised in Geiger mode. Very few reports on Geiger mode 

characterisation of Ge-on-Si SPAD devices have been reported in the scientific 

literature. In the work of Lu et al., a 30 m diameter Ge-on-Si SPAD was characterised 

in Geiger mode. The wafer layer microstructure was similar to that used in this work 

with the exception of the thickness of the Si multiplication layer which was 0.5 m 

thick. An SPDE of up to 14 % was reported at a wavelength of 1310 nm. However, the 

SPDE was measured with an incident photon flux of 1 photon per pulse, thus giving a 

high probability of multi-photon pulses incident on the device (as shown in section 

5.5.1), potentially leading to an overestimation of SPDE. 

In addition, these devices demonstrated high DCR (from 100 MHz to 500 MHz at 

different excess bias), meaning it is likely that the device had insufficient time to 

recharge before another dark count was triggered, resulting in an underestimate of the 



 

206 

 

DCR for a given excess bias. Further evidence of this recharge issue was observed as 

the gating frequency was increased from 1 kHz to 1 MHz where there was a notable 

decrease in the DCR- exactly opposite to that expected with afterpulsing (as shown in 

the previous section), but entirely consistent with lack of voltage recovery. 

Another report of a Ge-on-Si device claiming single-photon sensitivity was published 

by Aminian et al. [19], although the detection efficiency in the Geiger mode was 

measured only through the analysis of the photocurrent (at a wavelength of only 

1100nm) above breakdown, and this cannot be regarded as a robust single-photon 

counting characterization method. 

5.6 Dark current analysis  

Ge-on-Si wafers from the 1
st
 generation (wafer 11-167 and 11-141) were also fabricated 

by our collaborators at the McMaster University. In particular, two different fabrications 

were performed: the first consisted of large active area devices of 500 m and 250 m 

diameter, which were simply etched, and Al top and bottom contacts were then 

deposited without passivating the mesa sidewalls; in the second, different size devices 

ranging from 20 m to 100 m diameter were fabricated and SiO2 was used for the 

mesa sidewall passivation. 

Investigating how the dark current scales with different mesa diameters was a first step 

used to understand the main mechanisms contributing to the dark current. Figure 5.31a-

b shows the dark current of large active area devices (with no passivation) of wafer 11-

141 scaled by both perimeter and area of the devices. The same analysis was performed 

on both small active area devices with SiO2 passivation from the McMaster University 

devices (Figure 5.32a-b) and also devices with Si3N4 passivation fabricated at the 

University of Glasgow (Figure 5.33a-b). All measurements were performed at room 

temperature. 
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(a) 

 

(b) 

Figure 5.31. I-V characteristic of large active area devices (with no passivation), 

500m (black) and 250 m (red) diameter, fabricated at McMaster University 

scaled by (a) area and (b) perimeter.   
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(a) 

  

(b) 

Figure 5.32. I-V characteristic of small active area devices (with SiO2 

passivation), 100m (black), 50 m (red), and 20 m (blue) diameter, fabricated 

at McMaster University scaled by (a) area and (b) perimeter.   
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(a) 

 

(b) 

Figure 5.33. I-V characteristic of small active area devices (with Si3N4 

passivation), 50m (black), and 25 m (red) diameter, fabricated at University of 

Glasgow scaled by (a) area and (b) perimeter.   

Large active area devices (with no passivation) scaled by area (Figure 5.31a), and hence 

this result suggested that a bulk effect is dominating the dark current, while small active 

area devices, with either SiO2 or Si3N4 passivation, scaled by perimeter (Figures 5.32b 

and 5.33b) suggesting that a surface effect related to the perimeter might be the main 

mechanism.  
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To further understand the perimeter and area dependencies of the dark current, we can 

express the dark current as: 

𝐼𝐷 = 𝐽𝑃 × 𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 + 𝐽𝐴 × 𝐴𝑟𝑒𝑎                                                                                      (5.8) 

Where JP is the current density due to the perimeter of the device and JA is the current 

density due to the area of the device. Dividing equation 5.8 by the area of the device: 

𝐽𝐷 = 𝐽𝑃 ×
𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟

𝐴𝑟𝑒𝑎
+ 𝐽𝐴                                                                                                      (5.9) 

Therefore, the slope of the line corresponds to the perimeter component of the leakage 

current and the y-intercept corresponds to the area component when the dark current is 

plotted against the perimeter/area ratio for a range of different size devices. By 

performing this analysis at different reverse voltages, the perimeter component of the 

dark current for the three different processes was extracted as shown in Figure 5.34. 

Regarding to the area component of the dark current, it was found that JA was negative 

for the small active area devices (fabricated from both McMaster and Glasgow 

Universities) indicating perhaps that the dark current did not fit this model very well 

and another mechanism dominated the dark current. 
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Figure 5.34. Perimeter component of the dark current versus the reverse voltage 

calculated for different sizes devices: large active area device without passivation 

fabricated at McMaster University (red circle), small active area device with SiO2 

passivation fabricated at McMaster University, and small active area device with 

Si3N4 passivation fabricated at University of Glasgow. 

The perimeter component has an exponential dependence on the applied reverse 

voltage. Large active area devices (red circle) showed the lowest perimeter component 

since these devices have small perimeter/area ratios and are dominated by effects related 

to the area. Small active area devices (which have a large perimeter/area ratios) 

fabricated by both McMaster (black square) and Glasgow (magenta triangle) 

Universities showed a similar perimeter component, even if two different materials were 

used for the sidewalls passivation, SiO2 and Si3N4 respectively. Although this analysis 

give an indication of the main mechanisms contributing to the leakage current of 

different sizes device, further research would be needed to understand how different 

passivation materials can help to reduce the perimeter component, and hence the dark 

current, of small sized devices which are the preferable candidates for single-photon 

detectors. This analysis was performed only on devices fabricated from wafer 11-141, 

since there were not enough data to perform the same analysis on wafer 11-167. In 

future, it will be interesting to evaluate how the perimeter component of small sized 

devices is related to different electric field profiles through the Ge-on-Si structures.   
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5.7 Future work  

Although the characterised Ge-on-Si SPADs reported in this work demonstrated the 

lowest NEP of Ge-on-Si SPADs as reported in the scientific literature, different 

problems were found, such as: 

a) Lack of reproducibility and reliability of I-V characteristic; 

b) The requirement for low operational temperatures; 

c) Poor single photon performance (high DCR and low SPDE). 

For these reasons, future development of these devices should consider these aspects. In 

terms of I-V characteristics, devices showed a low reproducibility, since the electrical 

behaviour of the devices changed when the I-V characteristic was swept more than one 

time. Although, this problem could be related either to the quality of the material itself 

or to the fabrication process, different device fabrication processes demonstrated 

different levels of reproducibility. The same material (1
st
 generation of Ge-on-Si SPAD) 

processed by various collaborators such as the McMaster University and the University 

of Glasgow, showed different behaviour. Large active area devices (with no 

passivation) processed at the McMaster University showed a good reproducibility in 

terms of I-V characteristics with almost 100 % yield. An attempt has been made to 

characterise these devices in terms of single-photon performance, but the dark count 

rate was too high (due to the large active area) in order to undertake reliable 

measurements.  

A second batch from the same material was then processed, and small active area 

devices ranging from 20 to 100 m diameter (with SiO2 passivation) were fabricated. 

Although, these devices showed 100 % yield at room temperature, they were 

irreversible damaged when the temperature was decreased to 200 K. Furthermore, 

devices processed at the University of Glasgow demonstrated good reproducibility in 

terms of I-V characteristics, and they were characterised in terms of their single-photon 

performance, as shown in previous sections. However, large active area devices (100 

m and 200 m diameter) showed very high dark current at low reverse bias voltages (- 

5 V) which made them unusable, while small active area devices (25 m and 50 m 

diameter) demonstrated a consistent behaviour even at the lowest temperatures (as 

shown in the previous sections). Therefore, different device processing had different 

impact on the electrical behaviour of these detectors, and hence a robust fabrication 

process is required for future generations of devices.  
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In terms of low temperature operation, devices needed to be cooled down to reduce the 

leakage current, as expected. The small active area devices (25 m diameter) 

demonstrated the lowest dark current, and analysis suggested that the main 

contributions to the leakage current are related to the surface, tunnelling and field-

assisted emission. In terms of surface leakage component, our future work aims at 

investigating different passivation techniques for mesa sidewall surface states. For 

example, recent research work investigated the impact of a GeO2 surface passivation 

layer on the dark current of all-Ge p-n diodes, and pointed out a reduction in terms of 

surface leakage current [20]. However, a better understanding would be needed to 

evaluate if the main surface contribution to the dark current is related to the Ge absorber 

layer or the Si multiplication layer corresponding also to the high field region. Future 

developments should consider different etch steps of the mesa in order to evaluate 

different contributions to the leakage current. In order to examine the tunnelling 

component of the dark current, it will be important to evaluate different electric field 

profile through the structures. The doping concentration of the charge sheet layer plays 

an important role, and hence it will be necessary to obtain a good dopant growth 

reproducibility, as this represents one of the limiting factors during heteroepitaxial 

growth (as shown in Chapter 4).  

In terms of single-photon performance, the 1
st
 generation of Ge-on-Si SPADs 

demonstrated a high DCR and low SPDE at low temperatures of operation. In terms of 

DCR, it will be important to analyse different size devices to understand the main 

contributions to the DCR. Leakage current reduction could be used to improve the DCR 

of these devices as well as the investigation of a planar geometry. 

To further understand the contribution of threading dislocations on the DCR, it will be 

crucial to fabricate these devices using selective area growth (section 3.4.1.2 of Chapter 

3). This technique has already been demonstrated by different research groups involved 

in the fabrication of p-n or p-i-n Ge-on-Si detectors showing that a lower density of 

defects helps to improve the performance of these devices [21], [22], but its impact on 

the performance of a Ge-on-Si SPAD has not been reported in the scientific literature. 

Regarding the low SPDE measured at a wavelength of 1310 nm, we believe that the Si 

multiplication layer played an important role. In Chapter 4, SIMS measurements on the 

2
nd

 generation of Ge-on-Si devices (section 4.8 of Chapter 4) showed a pronounced 

phosphorous diffusion tail from the Si substrate in the Si multiplication layer. This 

effect led to a thinner multiplication layer and a non-uniform electric field across this 
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layer. These problems might have had the effect of reducing the avalanche triggering 

probability, and hence reducing the SPDE. As shown in Chapter 4, the optimisation of 

the doping in the Si multiplication layer has already been achieved by using Sb doped 

silicon substrate, and this should therefore useful to increase the SPDE. Additionally, 

higher temperatures of operation combined with a reduced dark current, could help 

improve the SPDE at the longer wavelength of 1550 nm. Finally, a waveguide 

integrated Ge-on-Si SPAD design is under investigation, since it could give the 

opportunity to improve the device efficiency and integrate these devices with other Si 

photonics components.      

5.8 Conclusion 

In this Chapter, the growth, fabrication and characterisation of Ge-on-Si SPADs have 

been described. Current-voltage characteristics of Ge-on-Si devices fabricated from 

wafer 11-167 and 11-141 have been reported and analysed at different temperatures. 

Devices from wafer 11-141 were characterised in terms of their single-photon 

performance. The characterisation was performed at temperatures ranging from 100 K 

to 150 K, since the dark current of these devices was too high to make credible 

measurements at higher temperatures. The best single-photon performances were 

achieved on a 25 m diameter device at a temperature of 100 K. At this temperature, a 

DCR of 1 – 6 Mcs
-1

 and a SPDE of 2.2 – 4 % was measured at different excess biases. 

Although these values were in line with the values of DCR and SPDE measured for 

commercially available all-Ge APDs, there still exists an important performance gap 

with InGaAs/InP SPADs. Nonetheless, the lowest NEP of Ge-on-Si SPADs reported in 

the scientific literature was illustrated. 

A potential major advantage of these devices compared to the InGaAs/InP SPADs could 

be that of reduced afterpulsing. Only a slight increase (by nearly a factor of 2) in the 

DCR was observed when increasing the gating frequency from 1 kHz to 1 MHz. Further 

detailed analysis will be carried out for the next generations of devices by using a time-

correlated carrier counting method in order to better understand its impact on these 

structures. Finally, I-V analysis of devices fabricated using different processing 

techniques suggested that the main current component of the dark current of small 

active area devices is related to a surface effect. Therefore, the next immediate step in 

the fabrication of these devices will be the study and evaluation of different passivation 

techniques to reduce the leakage current and DCR. New detectors will be also fabricated 
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with an optimised doping concentration of the Si multiplication layer and better 

reproducibility of the charge sheet doping concentration. While the first element should 

help improve the SPDE, the second will help in view of studying the single-photon 

properties of these devices at different electric field profile across the structures and 

hence understanding the impact of high field effects (i.e. tunnelling) on device 

performance. SEG could also give a further opportunity to evaluate the impact of 

threading dislocations on the single-photon performance, since no research has been 

reported in the scientific literature to date.           
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Chapter 6 - Fill-factor recovery of Si CMOS SPAD array by using 

microlens integration: improvement factor and spatial uniformity 

characterisation 

6.1 Introduction 

The detection of single photons in the visible and near-infrared (NIR) spectral range 

below wavelengths of 1 m is mostly covered by low-noise Si SPADs which now 

represent a commercially available technology. Si SPAD detectors can be divided in 

two groups: custom-processed and CMOS compatible. The former devices are based on 

tailored processing with the aim of obtaining the best performance from the photodiode 

when operated in Geiger-mode. The latter devices rely on standard CMOS fabrication 

processes from the microelectronic industry which introduces some advantages, such as 

the routine on-chip integration with the electronics required for photon counting and 

photon timing techniques. This efficient integration allows the possibility of fabrication 

of two-dimensional SPAD-based focal plane arrays. However, CMOS Si SPADs 

typically have a detection performance which is not as good as optimised, custom 

processed Si SPADs. In addition, generally the in-pixel circuitry takes up a great deal of 

space in a CMOS SPAD array, meaning the detector fill-factor is necessarily low in 

CMOS SPAD arrays [1], [2], thus reducing the effective detection efficiency.  

Different solutions have been proposed and attempted in order to recover the loss of fill-

factor, these include the use of microlens arrays and 3D integration of the circuitry and 

detector plane. The former solution was used in this work and different microlens arrays 

were integrated on top of a 32 × 32 Si CMOS SPAD array [3]. Microlens integration 

has been demonstrated by other research groups [4]–[6], but a full characterization of Si 

CMOS SPAD array integrating microlenses in the spectral range of interest (500-900 

nm) and at various f-numbers has not been reported. The research covered in this 

chapter aims to fill this gap in the scientific literature and suggest ways forward to 

improve detector fill-factor. Two main parameters, the improvement factor given by 

microlens array integration and the array uniformity, are presented, analyzed and 

discussed in the following sections. 
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6.2 Si SPAD: custom processing and CMOS fabrication 

When Si SPADs are fabricated by using custom processing, it is possible to define two 

main groups according to the thickness of the depletion layer of the p-n junction [7]: 

1. Thin junction SPADs, with depletion layers typically 1-5 m thick (Figure 

6.1a). These devices demonstrate fairly good single-photon detection efficiency 

in the visible range, (about 45% at 500 nm wavelength). This efficiency 

reduces to 32% at 630 nm wavelength and 15% at 730 nm, whilst in the NIR it 

is about 10% at 830 nm and a few 0.1% at 1064 nm. Thin Si SPADs require 

low breakdown voltages of 20 – 50V, and small active area devices, with 

diameters ranging from 20 m to 200 m, can be fabricated [8]–[10]; 

2. Thick junction SPADs have depletion layer thicknesses varying between 20 

m to 150 m (Figure 6.1b). These devices operate at high breakdown 

voltages, between 200 – 500 V, and have fairly wide active areas, with 

diameters ranging from 100 m to 500 m. The single-photon detection 

efficiency is very high in the visible range due to the thicker depletion region, 

and is higher than 50% over all the range of 540 – 850 nm, and reduces in the 

NIR, to around 3% single-photon detection efficiency at a wavelength of 1064 

nm [11], [12]. 
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(a) 

 

(b) 

Figure 6.1.(a) Cross section of a thin junction Si SPAD [13], (b) and a thick 

junction Si SPAD [14]. 

Thick Si SPADs show high dissipation power (up to 10W) because of the high reverse 

bias required for their operation and the large avalanche current (tens of mA). 

Generally, the devices have relatively poor timing resolution with a jitter FWHM of 

several hundreds of picoseconds. Furthermore, these devices are fabricated with custom 

fabrication technologies which are not compatible with arrayed device technology.  

On the other hand, thin junction Si SPADs have correspondingly lower breakdown 

voltages and exhibit very low power consumption, and a very good timing resolution of 

less than 50 ps FWHM. They can be fabricated by using planar silicon technology 

which makes these devices particularly suitable for monolithic integration of arrays. 

Furthermore, the same design could be adapted to be fabricated using CMOS 
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technology, leading to several advantages such as increased levels of miniaturization, 

and lower cost, power and size per pixel compared to a custom technology. 

From the early 2000s, several research groups have explored the design of a 

monolithically integrated single-photon imaging system in high-voltage (HV) and 

standard deep-sub-micron (DSM) CMOS technologies [15]–[19]. However, CMOS 

SPADs generally show drawbacks in terms of detector performance compared to 

devices made from custom fabrication technology. This is due to the device designers 

being unable to modify the CMOS fabrication processes which have to face all the 

problems related to the CMOS SPAD fabrication such as premature edge breakdown, 

tunnelling effect, electric field non uniformity and junction depth. 

As reported in references [13], and [14], CMOS SPAD performance has improved as 

the technology scales, whilst introduces the benefit of lower excess bias voltages 

(without impairing the SPDE) and the miniaturisation of the SPAD and electronics. 

These two last conditions help in reducing the DCR, afterpulsing probability of the 

fabricated device, and improving the timing performances, since the avalanche build-up 

times have a narrower statistical spread on smaller devices. In particular, Si SPADs 

fabricated in 0.35 m HV-CMOS technology, as reported in [21], demonstrated 

performance in terms of DCR (which was only 120 counts/s for a 30 m diameter 

SPAD at room temperature) and afterpulsing comparable to those of the best in class 

custom Si SPADs (for details refer to Table 2 in reference [21]). 

Although technology scaling guarantees some advantages in terms of DCR, afterpulsing 

and timing resolution, another crucial parameter that must be considered is the detection 

efficiency of a Si CMOS SPAD array, as explained in the following section.  

6.3 Single-photon Detection Efficiency and Fill-Factor recovery 

The SPDE of a SPAD is given by the product of the absorption efficiency and the 

trigger probability, as pointed out in Chapter 3. The SPDE of a SPAD fabricated in 

standard CMOS process can also affected by technological parameters which play a 

significant role. For example, the incident photons must pass through a thick layer of 

passivation placed on top of the chip during the final step of the fabrication to protect 

the device from external contamination. The light must also pass through several 

dielectric layers with different refractive indices. While these processes can be 

optimised in a custom CMOS imaging technology, standard CMOS technologies do not 

readily offer such options [20]. 
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In addition, when in-pixel circuitry is included as in a CMOS Si SPAD array, we can 

refer to a pixel as a smart pixel [22]. Therefore, another parameter must be considered 

to evaluate the SPDE of a smart pixel: this is the geometric fill-factor which is the ratio 

of photo-sensitive area to total pixel area, usually expressed as a percentage. When a 

CMOS SPAD array is illuminated at a specific wavelength, not all the optical power 

that is incident on the sensor strikes the photosensitive area of the detector due the large 

proportion of the surrounding area being dedicated to the electronics surrounding the Si 

SPAD. Therefore a reduction in fill-factor causes a deterioration of the SPDE, since a 

larger fraction of incident photons are not detected. 

Although small active area SPADs demonstrate lower noise performance, better yield 

(since there is less probability of having a defect in the active area), and lower power 

consumption, these devices also give a lower fill-factor compared to the values obtained 

for a large active area SPAD. For example, in reference [1] a SPAD array fabricated in 

0.35 m CMOS technology achieved a very high resolution of 10ps but a very low fill-

factor of 0.5%. In reference [23], a Si SPAD array fabricated in 130nm CMOS 

technology with 119ps time resolution and 2.3% fill-factor was reported. The same 

CMOS technology was also used in [2] to fabricate a Si SPAD array with a time 

resolution of 55ps  and fill-factor of 1%. In reference [17], a 128 x 128 SPAD array was 

fabricated in 0.35 m CMOS technology demonstrating a fill-factor of around 6% by 

using a 7 m diameter Si SPAD and a multiplexed architecture. The fill-factor was 

further increased in reference [15] to 20% and 35% by using a larger active area SPAD 

of 50 m and 100m respectively.  

Different solutions have been proposed and attempted to recover the loss of sensitivity 

due to the low fill-factor of CMOS SPAD array, such as the use of a 3-D integration 

technology or an array of micro-optical concentrators. In the first approach, the in-pixel 

electronics no longer surround the detector, but are placed on a separate silicon wafer 

which is either wafer-to-wafer bonded to another wafer containing an array of SPADs 

or is connected to the SPAD chip using through-silicon-vias (TSVs) [24], [25]. In Ref. 

[26], the Si SPAD array was fabricated in the silicon-on-insulator (SOI) wafer which 

was flip-chip bonded to the electronics wafer and then etched so that only the high-

quality SOI film on which the SPAD pixels are fabricated, could be back-side 

illuminated through the buried oxide layer. These techniques have also been mainly 

demonstrated for InGaAsP SPAD arrays (not compatible with the CMOS technology) 
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which are flip-chip bonded to the CMOS readout integrated circuit, as shown in Ref. 

[27].   

In the second approach, each pixel has its own micro-optical concentrator which 

collects light from the objective plane in the focal plane and directs it to the sensitive 

area of each pixel in the detector plane, and hence enhancing the fill factor of a SPAD 

array. The downside of this approach is the increase of the fabrication complexity and 

cost. The performance of a SPAD array integrating microlens is evaluated by 

considering two main parameters: the improvement factor resulting from microlens 

integration and the spatial uniformity of detection. 

A number of approaches have been attempted, including the use of non-imaging 

concentrators such reflective-based structures [28], however these are difficult to 

fabricate on the scale required. Other approaches utilising molded refractive 

microlenses have been used [4], [5] and large improvements in fill factor were reported 

under limited conditions for a single detector at low numerical apertures (ie <0.05, 

corresponding to an f-number of greater than f/10). More recently, Pavia et al. also 

reported the fabrication and integration of 128 x 128 refractive microlenses on a SPAD 

array fabricated in 0.35 m HV-CMOS technology with 6 m diameter SPADs, and 25 

m pitch [6]. This resulted in a fill-factor of 5%. Different microlenses with different 

heights (defined as the distance from the base of the microlenses to the photosensitive 

area of the chip), of 30 m and 70 m, were fabricated in order to evaluate their 

performance. For both microlenses, a maximum IF of ~9 (30 m height) and ~7 (70 m 

height) was measured at f/22. 

The uniformity of the improvement factor was also measured and the mean value and 

standard deviation were reported at different f-numbers. From these values, it is 

possible to calculate the coefficient of variation (CV) which is the ratio between the 

standard deviation and the mean. A CV of 5.6% at f/2.8 was obtained, while it increased 

to 18.2% at f/22. The authors stated that the IF was less uniform at higher f-number due 

to either a telecentric error or a misalignment between pixels and microlenses, since 

both problems had the same effect of decentring the focal spot from the pixel active 

area. However, the uniformity of the IF represents a relative measurement, since it is 

calculated as the ratio between the intensity light profile of two different SPAD arrays, 

the one integrating the microlenses, and the bare chip with no microlenses. Therefore, it 

should be more consistent to report the uniformity value of the two SPAD arrays 
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separately in order to ascertain if the microlenses introduce any degradation to the 

uniformity of the array which was not stated in ref. [6].  

The same approach of microlens integration was used in this research work to recover 

the fill-factor of a 32x32 Si CMOS SPAD array. In comparison to previous work 

described above, two different sets of diffractive microlens were fabricated, integrated 

and characterised. In particular, a completely new approach based on a double 

telecentric imaging system was used for the microlens characterisation in terms of IF 

and uniformity. Furthermore, a full characterisation of a SPAD array in the spectral 

range between 500 nm and 900 nm is reported for the first time in the scientific 

literature, as shown in the following sections. 

6.4 HV-CMOS Si SPAD                                                                                                    

The 32 x 32 Si CMOS SPAD detectors arrays used in this research work were 

developed under the European Commission funded project called MiSPIA 

(Microelectronic Single-Photon 3D Imaging Array for low-light high-speed Safety and 

Security Applications). These arrays were designed by our collaborator at Politecnico di 

Milano and fabricated using a 0.35 µm HV-CMOS technology process at the 

Fraunhofer foundry IMS [19]. This array was designed to be used in applications such 

as time-of-flight 3D ranging and microscopy.  The 32 x 32 array had 150 x 150 µm 

pixels and comprised a 30 µm active area diameter SPAD and its associated circuitry 

for counting, timing and quenching. These smart pixel dimensions resulted in a fill-

factor of 3.14% for the chip without microlenses. A block diagram of the pixel is shown 

in Figure 6.2.  
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Figure 6.2. Smart pixel block diagram with 30 µm active area SPAD and its 

associated circuitry for counting, timing and quenching [19]. 

Each smart pixel of the array is able to detect a single-photon (in the 300-900 nm 

wavelength range), time-stamp its arrival time (with 312 ps resolution) for acquiring 

waveforms and time-resolved maps, and count photons for providing photon-number 

(e.g. intensity) resolved 2-D videos [21]. The designed and fabricated SPAD has a 

structure similar to the one reported in Figure 6.2. The 30 µm diameter SPADs were 

characterised by our collaborators at the Politecnico di Milano in terms of SPDE, DCR, 

time jitter, afterpulsing. Their performance is reported in Ref. [21]. These devices 

demonstrated a peak of the SPDE of 55% at a wavelength of 450 nm, while it was 45% 

at 400 and 500 nm, and still 20% at 300 nm in the NUV and at 650 nm, and 5% at 850 

nm in the NIR ends of the silicon sensitivity (Figure 6.3). The measured DCR at room 

temperature for a 30 µm diameter SPAD was 120 counts/s at 6V excess bias (Figure 

6.4), while the time jitter measured at FWHM was 85 ps at the peak wavelength (450 

nm).  
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Figure 6.3. Single Photon detection efficiency vs. wavelength at different excess 

bias voltages: 2V (blue), 4V (red), and 6V (green). The peak SPDE is about 55% 

at = 450 nm, and still 5 % at = 850 nm [21].  

 

Figure 6.4. Dependence of DCR versus SPDE at different excess bias and four 

different wavelengths: 450 nm (red), 350 nm (black), 550 nm (blue), and 650 nm 

(cyan) [19]. 

The in-pixel electronics (Figure 6.2) included a quenching circuit with active reset for 

fast avalanche sensing and quenching, pulse shaping electronics for proper 

synchronisation, a 10 bit time to digital converter (TDC), an 8 bit counter, and an 8 bit 

memory register. A 10 bit memory latch stores the results of the conversion, and the 

B0:B9 output buffers drive the readout data buses. By using a 1024 in-pixel memory, a 

new frame can be acquired while performing the readout of the previous one in a global 

shutter technique (all pixels start and stop counting at the same time instant): which 
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avoids problems connected with image smearing of full-frame CCDs. The array is 

designed to work in two modes of operation: photon-timing and photon-counting. The 

photon counting mode was used for all the measurements reported in this chapter, and it 

is explained in the following section.       

6.4.1 Photon-counting mode of operation 

In this mode of operation, the beginning of a frame is marked by a Start signal which 

resets the in-pixel counter (Figure 6.5a).  

When a photon is absorbed by the SPAD active area, this can initiate the avalanche 

process and produces a macroscopic current signal which is sensed by the electronics 

(Figure 6.5b). The avalanche process is quenched and the electronics provide a pulse to 

the counter which increments the number of events detected (Figure 6.5c). The 

electronics hold the SPAD off (quenched) for a pre-defined hold-off time during which 

photons cannot be detected (Figure 6.5d). Finally, the SPAD is reset back to Geiger 

mode (above breakdown), so that the pixel is ready to detect other photons (Figure 

6.5e.). This procedure (from Figure 6.5b to Figure 6.5e) is performed when a photon is 

incident and triggers the detector during the whole time duration of a frame.  

At the end of every frame, an external synchronisation pulse forces the on-chip global 

electronics to generate a Stop pulse which latches the number of photons collected by 

the counter into a temporary storage register (Figure 6.5f). 

After few nanoseconds, a new frame acquisition will start (Figure 6.5a). 

At the end of a frame the acquired values are copied and stored in a local memory, so 

that a new acquisition can start immediately without waiting for the readout which is 

performed simultaneously during the next acquisition frame. The readout is achieved by 

following a row-by-column scheme, and the readout of each pixel is performed in 10 ns, 

meaning that the readout of the whole array is carried out in 10 µs, corresponding to a 

maximum frame rate of 100 kframe/s [19]. 
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(a)                                                                                     (b) 

                             

(c)                                                                                    (d)  

                             

(e)                                                                                   (f) 

Figure 6.5. Photon-counting mode of operation of the CMOS Si SPAD array used 

for all the measurements reported in this chapter. (a) The beginning of a frame is 

marked by a Start signal, which resets the in-pixel counter. (b) When a photon is 

incident on the SPAD, this initiates an avalanche which is sensed by the 

electronics. (c) The SPAD is quenched and a pulse signal is provided to the 
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counter which increments the number of events detected. (d) The SPAD is held-off 

for a well-established time during which photons cannot be detected. (e) The 

SPAD is reset back to Geiger mode in order that other photons can be detected 

before the end of a frame. (f) At the end of the frame, an external synchronisation 

pulse forces the on-chip electronics to generate a Stop signal which latches the 

number of photons collected by the counter into a temporary storage register.                              

6.5 Diffractive Microlens Array Design  

The phase function of a lens can be implemented as a refractive or a diffractive element. 

While the former element generates the phase distribution by varying the optical path 

length through a phase plate, in the latter element the phase function is mainly generated 

by the position and the grating period of a local grating. A diffraction lens is based on 

near field diffraction at a Fresnel zone plate (an amplitude pattern which is formed by a 

series of concentric rings), so the shape of the grating determines the diffraction 

efficiency of the element, which is the amount of light that goes into a particular 

diffraction order. When a Fresnel zone plate (FZP) is illuminated by a plane 

monochromatic wave of wavelength , a multitude of diverging and converging 

spherical waves can be observed behind the FZP. Each wave represents one diffraction 

order whose amplitude and focal length are determined by the FZP pattern. The 

undiffracted light which passes through the FZP forms the zeroth order [29].  

In order to realise a diffractive element starting from a refractive lens profile, the phase 

function is wrapped to an interval between 0 and an integer multiple of 2. Therefore, a 

refractive phase profile can be approximated in a diffractive lens by slicing the phase 

profile into 2 width layers, or phase shift (modulo 2 lens) for the considered 

wavelength for a maximum diffraction efficiency, as shown in Figure 6.6. 

 

Figure 6.6. From the initial refractive general phase profile to the diffractive 

optical element fringes [30]. 

The position and widths of the successive zones of a spherical Fresnel lens are then 

computed by using CAD tools or analytic expressions. Figure 6.7 shows how the fringe 



 

229 

 

positions are computed (integer numbers of waves departing from the desired focal 

point). 

 

Figure 6.7. Fresnel zone microlens [30]. 

As shown in Figure 6.7, the zone radii are defined so that the distance from the edge of 

each zone (m) to the focal point is a multiple of the designed wavelength. 

Diffractive microlenses belong to the category of digital diffractive optics since the 

performance of the diffractive optical elements can only be estimated numerically and 

fabricated through well-established lithographic techniques (using binary masks, as 

done for digital electronics), as shown in Figure 6.8. 

 

Figure 6.8. Process steps required for the fabrication of a diffractive microlens. 

The microlens profile used in this work had a staircase-like phase profile, as shown in 

Figure 6.9, and was approximated by power-of-two (N) discrete phase levels which can 

be fabricated through applications of log2(N) binary amplitude masks in sequence [31]. 

The diffractive microlens arrays used in this Chapter consisted of 16 phase levels, and 

hence required four successive binary masks (16 = 2
4
) to be generated. These four 

masks were then used in multilevel photolithography to generate the 16 phase levels. 

 

Figure 6.9. Schematic of a diffractive microlens with a multilevel phase profile 

[32]. 
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The diffraction efficiency ( of staircase gratings depends on the number of phase 

levels, and is given by [32]: 

𝜂𝑚
𝑁 = |

sin (
𝑚𝜋
𝑁 )

𝑚𝜋
𝑁

|

2

                                                                                                                   (6.1) 

where m is the diffraction order and N is the maximum number of phase level. N can be 

related to the first-order diffraction angle from the following equation: 

𝑁 =
𝜆

𝑠𝑖𝑛𝜃 ∙ 𝑚𝑓
                                                                                                                           (6.2) 

where mf is the minimum feature size that can be fabricated with the available 

technology and  is the wavelength. Therefore, by considering equation 6.2 the 

diffraction efficiency is given by: 

𝜂(𝜃) = (
𝑠𝑖𝑛[(𝜋𝑚𝑓𝑠𝑖𝑛𝜃)/𝜆]

(𝜋𝑚𝑓𝑠𝑖𝑛𝜃)/𝜆
)                                                                                              (6.3) 

For a diffractive microlens, the angle  varies from the centre (= 0) up to the rim (= 

max). The maximum angle is determined by the numerical aperture of the lens (NA = 

sinmax). The efficiency versus the diffraction angle is shown in Figure 6.10. Although 

equation 6.3 gives the maximum efficiency (solid line) for a constant sample space (= 

mf), in practise the efficiency is lower because the phase values are quantised. This is 

also shown in Figure 6.10 where the efficiency profiles are plotted as dashed lines when 

8, 4, 2 phase level are used. 
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Figure 6.10. Optimum diffraction efficiency profile (solid line) and efficiency 

profiles when 8, 4, and 2 phase levels are used (dashed line). The fabrication limit 

is assumed to be 1 m (mf) and the operating wavelength is 632.8 nm [32]. 

For the diffractive microlens used in this work, consisting of 16 phase levels, the 

theoretical maximum diffraction efficiency is 98.7%. It is interesting to note that when 

the number of phase levels grows to 16 or more, the diffractive element can be easily 

considered as a quasi-analog surface-relief element. In fact, it does not make sense to 

fabricate a diffractive element with more than 16 levels using conventional multilevel 

masking techniques, since the successive systematic lateral misalignment errors and 

cascade etching depth errors would reduce the diffraction efficiency dramatically [29]. 

In particular, the fabrication is limited by the lateral size of the smallest structure that 

can be etched into the final substrate [30]. As the fringe width of a diffractive lens 

decreases radially, the maximum number of phase levels approximating the analog 

fringe relief surface also decreases (Figure 6.11). 

 

Figure 6.11. Diffractive optical element encoded over 16 phase levels [30]. 

The designed microlens surface was approximated by a modulo 2 zone plate 

representation, resulting in a fill-factor of the available area of ~100% (no dead zone 
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between microlenses) for a square pixel with total focusing efficiency in the 75-85% 

range and diffraction limited performance [29]. 

However, diffractive microlenses are very sensitive to changes in operational 

wavelength and show a strong spectral dispersion, since the focal lens (fd) of a 

diffractive lens is inversely proportional to the wavelength  given by [32]: 

𝑓𝑑(𝜆) = 𝑓0

𝜆0

𝜆
                                                                                                                             (6.4) 

Where 0 is the design wavelength and f0 is the design focal length. However, 

diffractive microlenses can be optimised to work over a wider range of wavelengths. 

The diffractive microlenses used in this study were designed to work at a wavelength of 

808 nm, but simulations of the overall coupling efficiency (defined as the percentage of 

the incident light landing within a 30 m diameter circle on the focal plane of the lens) 

as a function of the wavelength for three different lens design showed that these 

microlenses can produce a focal spot within the SPAD active area over a significant 

range of wavelengths, as illustrated in Figure 6.12. Experimental results of the IF, also 

confirmed that a high IF was also obtained at different wavelengths rather than at the 

designed one (as shown in detail in following sections).   

 

Figure 6.12. Overall coupling efficiency versus wavelengths for three different 

diffractive microlens designs. 

Due to the fabrication limitations on the minimum attainable feature size (~1.8m), the 

f-number of the microlenses was constrained to be greater than f/2.9 in order to ensure 
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100% fill-factor. To improve the mechanical handling capabilities of the microlens 

arrays, it was decided to use substrate thicknesses of 1.0mm for the microlens arrays. 

These substrate thicknesses gave lenses with f-numbers equal to f/4.6. 

In particular, two different sets of 32 x 32 plano-convex infinite and finite conjugate 

diffractive microlenses arrays were designed and fabricated on a fused silica substrate. 

While the infinite conjugate microlenses were designed to image the light from a source 

placed at infinity, the finite conjugate microlenses were designed to image an object 

placed a finite distance from the microlens. A schematic representation of both 

microlenses is shown in Figure 6.13a-b. In addition, both microlenses focused the light 

on the back surface so that they could be mechanically bonded on the SPAD array (see 

section 6.5.2).  

 

(a) 

 

(b) 

Figure 6.13. Schematic representation of the designed microlenses: (a) infinite 

conjugate microlenses were designed to image the light from an object placed at 

infinity; and (b) finite conjugate microlenses were designed for practical 

applications since an object at a finite distance from the microlens is imaged onto 

the detector. 

Figure 6.14 shows simulations, performed by Dr. Andrew Waddie at Heriot-Watt 

University, of the theoretical IF as a function of the wavelength for the designed two 
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different sets of diffractive microlenses, infinite (red) and finite (blue) conjugate, 

respectively. 

 

Figure 6.14. Simulations of the theoretical IF as a function of the wavelength for 

the designed two different sets of diffractive microlens, infinite (red) and finite 

(blue) conjugate respectively.  

6.5.1 Microlens performance 

Figure 6.15 shows an image of a part of the 32 x 32 diffractive microlens array designed 

to operate at a wavelength of 808 nm. 

 

Figure 6.15. An image showing part of 32 x 32 microlens array designed for 

808nm illumination. 
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The focal lengths of the fabricated lens were tested by Dr Andrew Waddie at Heriot-

Watt. Due to the lack of an 808 nm wavelength source at that time, the testing was 

performed using a 780 nm wavelength source. However, this change in operational 

wavelength could be accounted for. For the f/4.6 diffractive microlens, the measured 

focal length at a wavelength of 780 nm was equal to 0.703 mm ± 0.5 mm. This value 

was in line with the focal length of 0.715 mm predicted by theory. The diffraction 

limited spot size predicted by theory was 9 m, while the estimated focal spot size 

(Figure 6.16) was 7.6 m ± 2 m.  

 

Figure 6.16. Diffracted limited focal spot size estimated for the designed 

diffractive microlens obtained by imaging the microlens on a CCD camera using 

a ×10 microscope objective. 

6.5.2 Microlens integration 

The microlenses were assembled to build the final 32 × 32 arrays (~5.6 × 5.6 mm total 

dimensions) which were mounted on top of the final SPAD imager chips (~9 × 9 mm). 

To perform the bonding operation, three metal (chrome) alignment marks or fiducials 

(Figure 6.17) were deposited on the same side as the microlenses. The same fiducials 

were also placed on the SPAD array imager during its fabrication.  
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Figure 6.17. Technical drawing of fiducials mark which was deposited on the 

microlens substrate and at the corners of the SPAD array chips in order to 

perform the alignment and bonding operation between the microlens array and 

the SPAD sensor. All the dimension are reported in m. 

The two arrays, microlens and SPAD imager, were mounted (held in place with vacuum 

chucks) in a flip-chip bonder (Karl Suss FC6) which guaranteed a precise alignment 

with an accuracy of less than 5 m. The fiducials on both arrays were first aligned, the 

appropriate bonding parameters were then configured, and the bonding sequence was 

initiated. After a post bond inspection of the fiducial alignment by using a microscope, 

the wire bonding was carried out. Figure 6.18 shows a photograph of a fully assembled 

32 × 32 Si CMOS SPAD sensors integrating microlens.  

 

Figure 6.18. Photograph of a fully assembled 32 × 32 Si CMOS SPAD sensors 

integrating microlens. 
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6.6 Characterisation setup 

The optical setup used for the characterisation of the SPAD arrays integrating the two 

different sets of diffractive microlenses arrays (described in section 6.5) is illustrated in 

Figure 6.19.  

 

Figure 6.19. Experimental setup used to evaluate the improvement factor 

resulting from microlens integration at varying f-numbers (from f/2 to f/22 with 

one-stop increment) and different wavelengths between 500 nm and 900 nm. This 

setup was also used to evaluate the uniformity of SPAD arrays. 

A tunable NKT Supercontinuum laser source (SuperK Extreme EX-W6) was used to 

make measurements of the IF and uniformity in the spectral range between 500 – 900 

nm. Light coupled in a single-mode fibre (5 m diameter core) then diverges upon 

exiting the fibre and propagates along the optical bench over a length of ~1.5 metre 

where it was incident on a diffuser. This diffuser ensured that the near-collimated light 

is diffused uniformly throughout a large cone angle (~ 50º), as illustrated in Figure 6.20.  
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Figure 6.20. Output light intensity from the diffuser which was used in the 

characterisation setup (Figure 6.19) expressed as a function of the scattered 

angle. 

After the diffuser, a ground glass plate (220 grit) was inserted as the surface to be 

imaged onto the SPAD arrays by means of a double telecentric image system. The 

telecentric system offers advantages such as a constant magnification over a defined 

depth of field (the setup in Figure 6.19 had a fixed magnification of 1:1), no perspective 

error, very low geometrical distortion, and uniform illumination. This system was 

composed of two identical achromatic doublet plano-convex lenses (focal length, f = 75 

mm), with an aperture stop placed at the common focal point. In particular, the aperture 

stop was placed at a distance f from the first lens of the double telecentric system by 

using the optical setup illustrated in Figure 6.21. A diverging beam at a wavelength of 

808 nm (which was the designed wavelength for both sets of microlens arrays) was 

incident on the aperture stop which was imaged through lens 1 and the concave mirror 

(with a focal length equal to fm = 560 mm) on a CCD camera. The camera was precisely 

placed at a distance fm from the mirror. By adjusting the distance between the aperture 

stop and lens 1, the image of the aperture stop on the CCD camera reached its maximum 

sharpness when the lens 1 was placed f away from the aperture stop. The same 

technique was also used to precisely place in position the other components of the 

double telecentric imaging system showed in Figure 6.19.  
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Figure 6.21.Optical setup used to precisely place in position the variable aperture 

stop at a distance f (f=75mm) from the first lens of the double telecentric imaging 

system. A diverging beam at a wavelength of 808 nm was incident on the aperture 

stop which was imaged through the lens 1 and the concave mirror (with a focal 

length equal to fm) on a CCD camera. The camera was precisely placed at a 

distance fm from the mirror. The image of the aperture stop on the CCD camera 

reached its maximum sharpness when lens 1 was placed f away from the aperture 

stop.   

The SPAD array chips (namely the bare chip, infinite conjugate microlens and finite 

conjugate microlens SPAD arrays) were mounted, in turn, on a micrometer six-axis 

translation stage which was placed at a distance f from the rear lens of the telecentric 

system. The SPAD array chip, with or without microlenses, was mounted to be 

orthogonal to the incident beam coming out from the double telecentric imaging system. 

For this purpose, a reference beam was used to ensure that the incident light was 

normally incident on the SPAD array chip. A photograph of the custom made double-

telecentric imaging system and the SPAD array is shown in Figure 6.22.   

The optical setup illustrated in Figure 6.19 was used to characterize the SPAD arrays 

integrating the two different diffractive microlens arrays in terms of two main 

parameters: the IF and spatial uniformity. Measurements of both parameters were 

performed at different f-numbers (from f/2 to f/22 with one-stop increments), and 

different wavelengths between 500 and 900 nm. In addition, all the reported 

measurements were performed at room temperature and in completely dark conditions. 
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The excess bias voltage on SPAD arrays under test, with and without microlens arrays, 

was kept fixed at a value of 3 V. 

 

Figure 6.22. Photograph of the custom made double-telecentric imaging system 

and the SPAD array used in the setup showed in Figure 6.19.  

The above optical system (Figure 6.19) worked in a similar manner to a camera system, 

such that when the f-number is incremented by one-stop, the light intensity at the 

camera sensors is halved, and hence a linear relationship exists between the f-number 

and the light intensity. Therefore, the robustness of the characterisation setup was 

demonstrated by measuring this linear relationship between the total numbers of counts 

(light intensity), for the SPAD sensor without microlenses, as a function of the aperture 

area (f-number) between f/2 and f/22. The total numbers of counts for the SPAD sensor 

were obtained by acquiring an image of the SPAD array in completely dark conditions 

(background). The SPAD sensor was then illuminated with light at a specific 

wavelength and another image was acquired (signal). Finally, the two images, light and 

dark, were subtracted to obtain the light intensity on the bare chip. The optical system 

guaranteed a linear relationship between aperture area and count rate across the 

measured range (from f/2 to f/22) and at different wavelengths (600, 700, and 808 nm), 

as shown in Figure 6.23. 
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Figure 6.23. Linearity test of the total number of counts collected, in 10 frames, 

from the SPAD array without microlenses as a function of the aperture area (f-

number). This test was performed at a constant laser power and three different 

wavelengths, 600 nm (black), 700 nm (red), and 808 nm (blue). Linear fitting is 

also shown. The inset in the figure also shows the linearity at the highest f-

numbers, f/8, f/16, and f/22 respectively. 

From Figure 6.23, it can also be observed that the magnitude of the total number of 

counts varied depending on the wavelength. Although these measurements were taken 

at a constant power level, this variation was due to the different detection efficiency of 

the SPAD array at different wavelengths (which is lower at longer wavelengths due to 

the lower Si absorption coefficient, see Figure 6.3 and ref. [21]) and the different power 

levels at different wavelength of the tuneable laser source used in our experiment. 

However, it is clear that as the f-number was decreased by one-stop, the light intensity 

(or total counts) was halved from the previous stop at any given wavelength. This linear 

relationship was demonstrated at three different wavelengths, 600 nm (black), 700 nm 

(red), and 808 nm (blue), respectively. In addition, these measurements (Figure 6.23) 

also demonstrated the robustness of our optical system even at the highest f-numbers, 

where the linear relationship between total counts (signal minus background) vs. 

aperture area was still satisfied (as shown from the inset in Figure 6.23).    
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6.7 Improvement Factor (IF) measurements 

6.7.1 Methodology 

To evaluate the infinite and finite conjugate diffractive microlenses performance 

resulting from the integration on the 32 × 32 SPAD array, the concept of improvement 

(or concentration) factor proposed in ref. [28] was used: 

𝐼𝐹 =
𝐸0

𝐸𝑖
                                                                                                                                       (6.5)                                                                  

where Ei is the input irradiance (optical power per unit area) at the microlens surface, 

and E0 is the output irradiance or the irradiance at the photosensitive area of the pixel.  

Empirically, the improvement factor was obtained by operating the SPAD array in 

photon counting mode (section 6.4.1) and dividing the detected photon event profile 

(which is the difference of the light and background signal) on the SPAD array with 

integrated microlens arrays by the detected photon profile measured by the SPAD array 

with no integrated microlens under the same illumination conditions.  As mentioned 

above, the IF was measured in the spectral range between 500 and 900 nm. Hence, the 

improvement factor at a given f-number was the results of two measurements which 

were performed for each sensor, with and without microlenses, one illuminated (at a 

specific wavelength) and the other in complete darkness. Each measurement consisted 

of 10 frames which were acquired, and the counts for each pixel of the SPAD array in 

each frame were summed. Before calculating the IF, the hot pixels were removed from 

both the detected photon profile measured for both SPAD arrays, with and without 

microlenses, as shown in the next section. 

6.7.2 Hot pixel removal 

Hot pixels are defined as those SPADs within the array with a DCR much higher than 

the average value of those SPADs with a lower DCR [21]. Hot pixels within an array 

are mainly due to non-uniformities during the fabrication process, therefore their 

evaluation is a signature of the reliability and reproducibility of the fabrication. 

Although there is no technical definition in the scientific literature for a hot pixel, a 

pixel with a DCR higher than 2.5 times the average DCR was considered as a hot pixel 

for all measurements reported in this chapter. In addition, it is important to distinguish 

between hot pixels and pixels which could be affected by some kind of noise (optical or 

electronics). While the former pixels have the same behaviour (high DCR) during all 



 

243 

 

frames acquisitions, the latter pixels might show a high DCR only during some frames 

due to some noise. Since the hot pixel definition is based on the DCR, Figure 6.24 

illustrated a background image (consisting of 10 frames) acquired in completely dark 

condition for the SPAD array without microlenses at f/5.6 to illustrate this concept 

further. 

 

Figure 6.24. Background image (consisting of 10 frames) acquired in completely 

dark condition for the SPAD array without microlenses at f/5.6. The colour code 

scale indicates the dark count intensity for each pixel. 

The colour code scale in Figure 6.24 indicates the dark count intensity for each pixel 

within the array. The majority of pixels had very similar value in the range of 950 – 

1000 (similar colour range, between light blue and light green), while there were a 

certain number of pixels which reached and exceed the maximum value of the scale of 

1200 (dark red). This dark count difference can be clearly observed in Figure 6.25 

which shows the mean value of counts for each pixel in 10 frames for the same image 

reported in Figure 6.24.  
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Figure 6.25. Mean number of counts in 10 frames for each pixel within the SPAD 

array without microlenses for the background image illustrated in Figure 6.24. 

All the pixels that had a dark count intensity higher than 2.5 times the average value of 

the dark count of the majority of the pixels can be considered as hot pixels. Figure 6.26 

clearly shows the number of hot pixels for the SPAD array under test for the image in 

Figure 6.24, where all the pixels with similar average dark count intensity were 

coloured in blue, while the hot pixels were coloured in dark red (Figure 6.26).  

 

Figure 6.26. Number of hot pixels for the SPAD array without microlenses and 

the background image reported in Figure 6.24. All the pixels with a similar 

average value of the dark count intensity are displayed in blue, while the hot 

pixels are displayed in dark red.   
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Therefore the number of hot pixels for the SPAD array without microlenses was less 

than 5 % of the total pixels.  

The same analysis was also performed for the SPAD array integrating the infinite or 

finite conjugate diffractive microlenses, and similar numbers of hot pixels (< 5% of 

total pixels) was measured for both chips. 

Hot pixels were removed by using a median filter of rank of 3 × 3. This process of 

removing the hot pixels is illustrated in Figure 6.27. By considering a box of 9 pixels (3 

× 3) with the hot pixel (HP) in the middle of the box, the value of the HP was then 

substituted by the median value (M) calculated for the neighbouring 8 pixels.     

 

Figure 6.27. Hot pixel removal process by using a median filter of rank 3 × 3. The 

value of a hot pixel (HP) is substituted by the calculated median value for 

neighbouring 8 pixels.      

6.7.3 Results of the Improvement Factor 

After removing the hot pixels from the photon intensity profile for both chips, the 

SPAD array integrating the infinite or finite conjugate diffractive microlenses and the 

bare chip, the average IF was calculated as the ratio between the intensity profiles of the 

SPAD sensor with microlens and the bare chip. Figure 6.28 shows the IF measured for 

the SPAD array integrating the infinite conjugate diffractive microlenses as a function 

of the f-number (between f/2 and f/22 with one-stop increment) and different 

wavelengths (between 500 and 900 nm). Results of the IF are also summarised in Table 

I. 
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Figure 6.28. Measured improvement factor as a function of the f-number (from f/2 

to f/22 with one-stop increment), and different wavelengths (500 – 900 nm) for the 

SPAD array integrating the infinite conjugate diffractive microlenses.  

IMPROVEMENT FACTOR   

 Wavelength 

f/# 500 nm 600 nm 700 nm 720 nm 750 nm 780 nm 808 nm 900 nm 

2 1.16 1.16 1.05 1.09 1.22 1.33 1.21 1.02 

2.8 1.07 1.02 0.83 0.86 0.96 0.99 0.89 0.78 

4 1.09 1.09 0.95 0.99 1.12 1.18 1 0.85 

5.6 1.5 1.53 1.47 1.55 1.76 1.85 1.6 1.4 

8 2.03 2.17 2.26 2.39 2.78 2.98 2.58 2.3 

11 2.98 3.49 3.9 4.14 4.76 5.08 4.44 3.85 

16 3.84 5.7 7.88 8.27 9.31 10.3 8.56 6.87 

22 3.29 6.22 9.82 10.46 12.65 13.57 10.25 7.45 

Table I. Summary of the improvement factor results which were measured for the 

SPAD array integrating the infinite conjugate diffractive microlenses. 

Although the infinite conjugate microlenses were designed for a wavelength of 808 nm, 

as already discussed in section 6.5, these showed an IF across the whole wavelength 

range under investigation (500 – 900 nm), as shown in Figure 6.28. In particular, the 
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highest IF of ~14 was measured at  = 780 nm and f/22. At the designed wavelength 

(808 nm) the IF was lower (but still high) and reached a maximum value of ~10 at f/22. 

The observed wavelength shift, from 808 nm to 780 nm, could be due to some tolerance 

error during the microlens array fabrication. This problem could also represent the 

reason of the wavelength shift for the measured IF for the SPAD array integrating the 

finite conjugate diffractive microlenses, as shown in Figure 6.29 and Table II. The 

highest IF of ~15.5 was measured at the peak wavelength of 750 nm and f/16, while it 

was lower and equal to ~7 at the designed wavelength of 808 nm and f/16.  

The measured values of the IF for the SPAD arrays integrating the two sets of 

diffractive microlenses, infinite (Figure 6.28) and finite (Figure 6.29), represented the 

highest values of the IF measured and reported in the scientific literature across the 

whole spectral range between 500 and 900 nm. Therefore, these results demonstrated 

that diffractive microlenses can compensate substantially for very low fill-factor devices 

such as the SPAD sensors used in this work.  

 

Figure 6.29. Measured improvement factor as a function of the f-number (from f/2 

to f/22 with one-stop increment), and different wavelengths (500 – 900 nm) for the 

SPAD array integrating the finite conjugate diffractive microlenses. 
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IMPROVEMENT FACTOR   

 Wavelength 

f/# 500 nm 600 nm 700 nm 720 nm 750 nm 780 nm 808 nm 900 nm 

2 0.96 1.08 0.94 0.97 1.07 1.08 0.9 0.84 

2.8 1.06 1.26 1.2 1.32 1.48 1.45 1.17 1.13 

4 1.19 1.7 1.82 2 2.33 2.22 1.78 1.75 

5.6 1.66 2.67 3.05 3.34 4.45 3.55 2.98 2.84 

8 2.46 4.26 5.12 5.65 7.76 5.6 4.46 3.89 

11 2.82 6.14 7.9 9.87 11.94 7.94 6.16 4.76 

16 2.96 6.78 9.17 13.07 14.75 10.73 6.85 5.11 

22 2.64 6.74 9.83 13.33 14.97 10.9 6.33 4.73 

Table II. Summary of the improvement factor results which were measured for the 

SPAD array integrating the finite conjugate diffractive microlenses. 

In addition, it can be noted that the IF increased as the f-number was increased for both 

sets of microlens arrays (Figure 6.28 and Figure 6.29), reaching the highest values at the 

highest f-numbers. This trend of the IF at higher f-numbers is schematically explained 

in Figure 6.30 (using a single object point for clarity) where the dimension of the 

microlens array has been exaggerated in comparison to the double telecentric system. At 

low f-numbers between f/2 and f/5.6 (solid line), the aperture stop diameter is relatively 

large and the light coming from the double telecentric imaging system has a large cone 

angle (e.g. at f/4 is ~15°), while at higher f-numbers (dash line) the aperture diameter is 

smaller and, therefore, the light cone angle is reduced (e.g. at f/16 is ~3.57°). Hence, at 

low f-number this cone angle does not match the numerical aperture of the microlens 

configuration, while it does at the higher f-numbers. As a consequence, at low f-number 

the microlenses do not focus the light on to the SPAD active area as efficiently as they 

do at the higher f-numbers.   
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Figure 6.30. Behavioural model of the characterisation setup at different f-

numbers. At low f-numbers (solid line) the aperture stop diameter is relatively 

large and the light coming from the double telecentric imaging system has a large 

cone angle, but at high f-numbers (dash line) the aperture diameter is smaller and 

the cone angle is reduced. The dimension of the microlens array has been 

exaggerated in comparison to the double telecentric imaging system.  

6.7.4 Improvement Factor comparison 

To further understand the behaviour of the IF at different f-numbers, for both 

microlenses, it is important to analyse a comparison of the IF between the two SPAD 

arrays integrating the diffractive microlenses. Figure 6.31a-c shows a comparison of the 

measured IF for both SPAD array integrating microlenses at their respective peak 

wavelengths (780 and 750 nm for the infinite and finite conjugate microlenses, 

respectively) and at the designed wavelength (808 nm). 
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(a) 

 

(b) 
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(c) 

Figure 6.31. Comparison of the experimentally measured IF at different 

wavelengths: (a)  = 750 nm, (b)  = 780 nm, and (c)  = 808 nm  for the SPAD 

arrays integrating the two different sets of diffractive microlenses, infinite (black) 

and finite (red) conjugate, respectively. 

Figure 6.31a-c shows that the behaviour of both diffractive microlenses can be divided 

in two main regions depending on the f-number: 

1. Low f-number operation (between f/2 and f/8). In this f-number range, it is 

evident that the finite conjugate microlenses (red line) demonstrated a higher 

IF than the infinite conjugate microlenses (black line) for all the IF 

comparisons (Figure 6.31a-c). The latter microlenses showed either no or only 

a slight improvement in this f-number range. In addition, this behaviour was 

also confirmed at a wavelength of 780 nm (Figure 6.31b) which correspond to 

the peak wavelength for the SPAD array integrating the infinite conjugate 

microlenses.  At this wavelength the finite conjugate microlenses also 

demonstrated a higher value of the IF. This could be explained by the fact that 

the optical setup was mainly designed for the characterisation of a finite 

conjugate system since the light from the double telecentric imaging system 

was focused on the SPAD array. This is schematically shown in Figure 6.32. 
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Figure 6.32. Schematic drawing of the optical setup used for the characterisation 

of the SPAD arrays integrating the diffractive microlenses in low f-number 

operation between f/2 and f/8. 

2. High f-number operation (f/16 and f/22). In this f-number range, it is clear 

from Figure 6.31a-c that the IF of the SPAD array integrating the finite 

conjugate microlenses (red line) reached its maximum value at f/16 and, then 

it remained fairly constant at f/22. On the other hand, the SPAD array 

integrating the infinite conjugate microlenses showed an increase of the IF at 

f/16 and it reached its maximum value at the highest f-number (f/22). This 

behaviour could be explained by the fact that the aperture is very small in this 

f-number range, and therefore the light is coming from the double telecentric 

imaging system with a very small cone angle. This can be approximated to a 

flat wavefront which represents the optimum condition for the characterisation 

of the infinite conjugate microlenses (see Figure 6.13). This effect is 

schematically shown in Figure 6.33. These results also suggested that the IF of 

the infinite conjugate microlenses might further increase at a higher f-number 

than f/22. However, this could not be demonstrated, due to the lack of light at 

these extreme conditions.   
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 Figure 6.33. Schematic drawing of the optical setup used for the characterisation 

of the SPAD arrays integrating the diffractive microlenses at high f-number 

operation (f/16 and f/22). 

It is also important to show a comparison of the IF as a function of the wavelength for 

both SPAD arrays integrating the two different diffractive microlenses array and at 

fixed f-number (f/16), as shown in Figure 6.34. 

 

Figure 6.34. Comparison of the measured IF at a fixed f-number (f/16) for both 

SPAD array integrating the two different sets of diffractive microlenses, infinite 

(black) and finite (red) conjugate. 

The peak wavelength at which the IF reached its maximum value for the two sets of 

microlenses, infinite (black line) and finite (red line) can be easily located in Figure 

6.34. However, pronounced fringe behaviour (at different wavelengths) of the IF was 

observed for both microlens arrays. This observed IF trend could be explained by 

considering the microscopic structure of the composite microlens/SPAD assembly 
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which included the Si wafer (where SPAD devices are fabricated), a passivation (SiO2) 

and an anti-reflection coating (Si3N4) layer, plus the optical cement layer (used for the 

bonding of the microlenses on to the SPAD array chip) and the microlens substrate 

(fused silica). By considering this structure which is schematically represented in Figure 

6.35, simulations of the IF as a function of wavelength were performed by Dr. Andrew 

Waddie at Heriot-Watt University. Results of these simulations for both microlens 

arrays, infinite (red) and finite (blue) conjugate, were compared with experimental 

results (red and blue points for the infinite and finite conjugate) of the IF (Figure 6.36). 

In addition, simulations were carried out by taking into account the dispersion (change 

of refractive index with wavelength) model for all layers, with the exception of the 

optical cement for which the dispersion model was not known. 

 

Figure 6.35. Schematic representation of the microscopic structure of the 

composite microlens/SPAD array. Starting from the bottom, the structure includes 

a Si layer where the 32 × 32 smart pixel are fabricated, then two layers of SiO2 

passivation and Si3N4 anti reflection coating (ARC) were grown during the CMOS 

process. On top of the SPAD array an optical cement for the bonding is placed 

and then the microlens array. For each layer, the thickness and refractive index 

used for the simulation are given.  
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Figure 6.36. Comparison between the theoretical IF as a function of the 

wavelength for both microlens arrays, infinite (red) and finite (black), and the 

experimental values of the IF for the infinite (red dots) and finite (blue dots) 

conjugate. The simulations were integrated by considering the microscopic 

structure of the composite microlens/SPAD array shown in Figure 6.35.  

It can be observed that the simulations match qualitatively, if not quantitatively, the 

fringe structure observed in the experimental results illustrated in Figure 6.36. Although 

this fringe behaviour of the IF could be due to the optical interference inside this 

multilayer structure, further analysis would be needed to understand its impact on the 

measured IF.   

6.8 Spatial Uniformity of the SPAD arrays   

Another important parameter to be evaluated during the characterisation of the SPAD 

arrays is the spatial uniformity of detection, in order to ascertain any degradation due to 

integration of the microlenses arrays. This parameter was evaluated by considering the 

Coefficient of Variation (CV) defined as the ratio of the standard deviation () and the 

mean () expressed as a percentage. For the measurements under investigation, the 

calculation of the CV aimed to describe the variability, and hence the uniformity, of the 

measured light intensity and the IF across the whole sensor.  
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Figures 6.37a-b - 6.39a-b show, as an example, images obtained for all three SPAD 

arrays (bare chip, infinite and finite conjugate microlenses) at the designed wavelength 

(808 nm) and f/16. All the images were taken under the same lighting conditions. SPAD 

arrays were operated in photon counting mode (see section 6.4.1) and two acquisition 

were performed for each sensor, one with the sensor in complete darkness and another 

illuminating the sensor at a specific wavelength. The two images were then subtracted 

to obtain the light intensity profile for each sensor and hot pixels were removed. 

 

Figure 6.37. (a) Light intensity image for the SPAD array without microlenses 

acquired at the designed wavelength (808 nm) and f/16. The hot pixels were 

removed from the image by using a median filter. (b) Counts (or light intensity) 

distribution across the image shown in a) with the Gaussian fit (black line). The 

value of mean and standard deviation are also reported, demonstrating a 

variation across the chip of 2.8%.  
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Figure 6.38. (a) Light intensity image for the SPAD array integrating the infinite 

conjugate diffractive microlenses acquired at the designed wavelength (808 nm) 

and f/16. The hot pixels were removed from the image by using a median filter. (b) 

Counts (or light intensity) distribution across the image shown in a) with the 

Gaussian fit (black line). The value of mean and standard deviation are also 

reported, demonstrating a variation across the chip of 2.7%. 
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Figure 6.39. (a) Light intensity image for the SPAD array integrating the finite 

conjugate diffractive microlenses acquired at the designed wavelength (808 nm) 

and f/16. The hot pixels were removed from the image by using a median filter. (b) 

Counts (or light intensity) distribution across the image shown in a) with the 

Gaussian fit (black line). The value of mean and standard deviation are also 

reported, demonstrating a variation across the chip of 4.2%. 

For each image shown in Figure 6.37a – 6.39a, the scale intensity for each array was 

adapted to enhance the visibility of the images because of the different improvement 

factors of each array, and hence higher number of counts. In fact, the increase in light 

intensity due to the microlens integration is clearly visible. The counts distribution 

(Figure 6.37b – 6.39b) as well as the value of mean and standard deviation are also 

reported, demonstrating a CV of 2.8%, 2.7% and 4.2% for the SPAD array without 

microlenses (bare chip), with infinite conjugate microlenses and with finite conjugate 

microlenses array, respectively at the designed wavelength and f/16.  
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As in the case of the IF, the uniformity of all three SPAD arrays was measured at 

different f-numbers and three different wavelengths, 600 nm, 700 nm, and 808 nm. 

These results are illustrated in Figure 6.40a-c.  

 

(a) 

 

(b) 
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(c) 

Figure 6.40. Spatial uniformity of detection measured as the Coefficient of 

Variation (CV) as a function of the f-number (from f/2 to f/22 with one-stop 

increment) for three different wavelengths, (a) 600 nm, (b) 700 nm, and (c) 808 

nm for the bare chip (black), the infinite (red) and finite (light blue) conjugate 

diffractive microlenses array. 

In general, all three SPAD arrays demonstrated a good uniformity, since the variation of 

the light intensity across the chip was less than 6% at all f-numbers for the three 

different wavelengths (600 nm, 700 nm, and 808 nm), as shown in Figure 6.40a-c. 

These results also demonstrated that microlens integration does not introduce any 

measurable degradation of the uniformity of the SPAD array. In addition, the robustness 

of the optical setup used for the array characterization was further confirmed since the 

CV only varied slightly in the f-number range between f/2 and f/22.  

6.9 Future Outlook 

Micro-optical elements can be refractive, diffractive or hybrid (refractive/diffractive). 

The right choice of the optical element for a specific optical problem depends on many 

parameters such as the spectrum of the light source, the optical task (beam shaping, 

imaging), the efficiency required, the application, etc. As already explained in this 

chapter, diffractive microlenses guarantee a 100% fill-factor for a square pixel, and can 

be fabricated by using well-established lithography techniques. In theory, it is possible 

to have diffractive lenses 100% efficient, but in practise the efficiency results around 
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90%. However, diffractive microlenses show a strong dispersion effects (section 6.5), 

and have a low tolerance angle for the incident beam.   

A refractive microlens is schematically shown in Figure 6.43.  

 

Figure 6.43. Schematic drawing of a refractive microlens with its most important 

parameters. 

In general this lens shows achromatic behaviour, since the variation of its focal length 

(fr) with respect to the wavelength is small and depends only on the material dispersion 

according to the following equation [32]: 

𝑓𝑟(𝜆) =
𝑅𝐶

𝑛(𝜆) − 1
                                                                                                                     (6.6) 

where n() and RC are the refractive index and radius of curvature, respectively. As a 

result, the IF should be less dependent on wavelength when compared to its diffractive 

counterpart. In addition, these microlenses show a higher efficiency (almost 100%) 

since there is no reduction in efficiency when changing wavelength and they do not 

produce unwanted orders. In addition, they are less dependent on the angle of the 

incident beam when compared to their diffractive counterpart. However, refractive 

microlenses cannot guarantee a 100% fill-factor (due to geometrical reasons), and are 

more difficult to fabricate with a precise focal length or aspheric shapes.  

In terms of applications, a high IF is desirable mainly at low f-numbers of operation. As 

shown in section 6.7, the IF reached its maximum value at the highest f-numbers (f/16 

and f/22) for both infinite and finite conjugate diffractive microlens. As already 

explained, diffractive microlenses are limited to f-number greater than f/3, since the 

maximum attainable f-number depends on the minimum attainable feature size in the 

lithography process. On the other hand, refractive microlenses can demonstrate f-
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numbers above f/1 through careful design and fabrication of the lens sag. This faster 

behaviour can help to improve the IF at low f-number (see section 6.7.3, Figure 6.30) 

for which diffractive microlenses demonstrate some limitations.   

6.10 Conclusions 

In this chapter, the two main classes of Si SPAD (thin and thick junction) have been 

described underlining the main performance advantages and disadvantages. In 

particular, thin junction Si SPADs can be fabricated using a planar technology which is 

compatible with standard CMOS fabrication used in the IC industry. CMOS technology 

allows the integration of Si SPADs with the electronics required for photon-timing and 

photon-counting and hence SPAD array fabrication. However, CMOS SPAD arrays are 

limited in terms of fill-factor, since a fraction of the optical power, which is incident on 

the array, will be incident on the surrounding electronics. 

In this work, an array of 32 × 32 SPADs with a 3.14 % fill-factor was used. Diffractive 

microlenses were used to concentrate the incoming light onto the active area of each 

pixel and hence to improve on the low fill-factor. In particular, two different sets of 

diffractive microlens arrays, infinite and finite conjugate, were designed for 808 nm, 

fabricated in a fused silica substrate, and integrated on the top surface of the 32 × 32 

SPAD array. The characterisation of both microlenses arrays, in terms of improvement 

factor and spatial uniformity, was performed in a large spectral range (500 – 900 nm) at 

different f-numbers (from f/2 to f/22) by using a completely new approach based on a 

double telecentric imaging system. 

The highest value of the IF of ~16 was demonstrated for a SPAD array with an 

integrated microlens. However, a shift was observed between the peak wavelength (780 

nm and 750 nm for the infinite and finite conjugate microlenses, respectively) and the 

designed wavelength of 808 nm, and this might be due to tolerance errors during the 

microlens fabrication. A comparison of both microlens arrays was evaluated and the 

behaviour in the low and high f-number regime was explained. 

Finally, the SPAD arrays, with and without microlenses, were evaluated in terms of the 

spatial uniformity of detection, and a variation between 2% and 6% was measured at 

different f-numbers. These results demonstrated that the microlenses did not add any 

degradation to the SPAD array and hence the good quality of both the fabrication and 

integration process was confirmed. Furthermore, a good uniformity was also an 
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indication of the robustness of the characterisation setup. These results provide a 

relevant and useful contribution to future research for all photon-counting applications 

which require very high detection efficiency combined with a very high frame-rate and 

picosecond timing resolution such as time-of-flight ranging, biomedical science 

(fluorescence lifetime imaging, positron emission tomography), and LIDAR.     
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Chapter 7 - Conclusions and Future work 

Single-photon counting is used in a range of emerging applications, with the range of 

these applications expanding as detector and data acquisition hardware improves. Si 

SPADs are increasingly becoming the standard single-photon detectors at wavelengths 

below 1 m.  At longer wavelengths, the most mature technology in terms of 

semiconductor devices is currently InGaAs/InP SPADs. Although both material systems 

are available commercially from a number of sources, Si SPADs can also be fabricated 

by using the standard CMOS fabrication processes used in the microelectronic industry. 

The same is not true for the InGaAs/InP SPAD which requires a dedicated fabrication 

technology which is not compatible with Si fabrication processes. 

Near-infrared detection is of interest in many applications. For example, in data 

communication because of the low attenuation windows of standard optical fibres, or in 

laser ranging where these spectral regions provide lower solar background noise, lower 

atmospheric attenuation, as well as relaxed eye-safety thresholds. As a consequence, 

there is an increasing demand for detectors working in this spectral range. If this 

demand can be used in conjunction with those from the silicon photonics community, 

then the combination of silicon and germanium might be adopted effectively for near-

infrared detection. 

In terms of photon-counting, InGaAs/InP SPADs have the major drawback of 

afterpulsing that affects the maximum count rate possible and the overall noise level. 

On the other hand, Si is often the best material choice for photodiodes using avalanche 

multiplication, and afterpulsing is not a major problem in high purity silicon structures.  

The investigation of new materials for near-infrared photon counting that can take 

advantage of silicon for its good avalanche multiplication properties, low afterpulsing, 

CMOS compatibility, leads directly to the choice of germanium as an absorbing layer to 

extend the operational wavelength of silicon-based devices. 

The goal of this thesis was to design and demonstrate a SPAD working in the near-

infrared wavelength region by using the Ge-on-Si heteroepitaxial system. The device 

design was based on a separate absorption, charge and multiplication (SACM) structure, 

since the photon absorption and carrier multiplication were spatially separated and 

could be individually optimised. Device simulations suggested that charge doping 

concentrations of 1.5 and 2 × 10
17

 cm
-3

 satisfy the design criteria in terms of electric 
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field and temperature. Different Ge-on-Si device generations were grown by RP-CVD 

at the University of Warwick, and mesa geometry devices were fabricated at the 

University of Glasgow. The single-photon performance of 25 m and 50 m diameter 

Ge-on-Si SPAD devices were evaluated at temperatures ranging from 100 K to 150 K. 

The lowest DCR ranging between 1 - 6 Mcs
-1

 was measured on a 25 m diameter 

device at 100 K and different relative excess biases. Under the same conditions, the 

highest SPDE ranging between 2 % to 4 % was also measured at a wavelength of 1310 

nm. These values led to the lowest NEP of ~1 × 10
-14

 WHz
-1/2

 of Ge-on-Si SPADs 

reported in the scientific literature. Furthermore, a potential major advantage of these 

devices compared to the InGaAs/InP SPADs could be the reduced afterpulsing. To 

investigate afterpulsing, the gating frequency was increased from 1 kHz to 1 MHz and 

only a slight increase (by nearly a factor of 2) in the DCR was observed.  Further 

detailed analysis will be carried out for the next generation of devices by using a time-

correlated carrier counting method in order to better understand the effect of 

afterpulsing on these structures. 

Although a prototype Ge-on-Si SPAD device has been demonstrated, future 

developments should consider the ultimate goal of obtaining an integrated Ge-on-Si 

SPAD with low dark count rate, higher operating temperatures, improved single-photon 

detection efficiency, high reliability and compatibility with industrial Si microelectronic 

processes. To achieve these requirements, efforts are required in several key aspects of 

these detectors:  

a) A uniform electric field profile in the Si multiplication layer is highly desirable 

with the aim of improving the single-photon performance of these devices. In 

view of this, a promising approach is the use of an antimony (Sb) doped Si 

substrate where initial trials have demonstrated a very low background doping in 

the multiplication layer (in line with the designed doping concentration of 1 × 

10
15

 cm
-3

).  Fabrication of devices grown using this approach is now ongoing.  

b) Several different research groups have shown that the main contribution to the 

leakage current of small active area Ge-on-Si devices can be attributed to the 

current perimeter component. It was possible to draw a similar conclusion for 

the dark current of the mesa geometry Ge-on-Si SPAD devices designed and 

characterised in this work. Different passivation techniques such as SiO2, GeO2, 

and atomic layer deposition (ALD) are currently under investigation with the 
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aim of mitigating the current contribution from the sidewalls of the devices. 

However, it is challenging to optimally passivate each of the two different 

materials, Ge and Si, and hence evaluate which passivation can give the best 

trade-off in terms of performance. Additionally, there is a different electric field 

profile through the Ge-on-Si structure, and the high electric field region is in the 

Si multiplication layer. In view of reducing the contribution from the high-field 

Si layer, a partially etched device (Figure 7.1) has been proposed. By analysing 

the dark current and performance of this new structure geometry, it will be 

possible to further understand the impact of the Si multiplication layer on the 

overall device characteristics. The fabrication of devices based on the proposed 

geometry is ongoing at the University of Glasgow. 

 

Figure 7.1. Partially etched Ge-on-Si SPAD structure which will be fabricated 

at the University of Glasgow. This structure will be used to evaluate the 

contribution of the high electric field Si multiplication region on the device 

performance. 

c) A reduction of threading dislocation density at the Si-Ge interface can be 

achieved by combining selective epitaxial growth (SEG) and cyclic thermal 

annealing. When SEG is applied to a small area, threading arms of misfit 

dislocations propagate at 45° angle from the Si substrate, and terminate at the 

edge of the growth area (oxide sidewalls) [1]. This process, combined with 

cyclic thermal annealing, reduces the overall threading dislocation density and 

leaves a defect-free Ge surface, as pointed out by Wang et al. and Langdo et al. 

[2], [3] (refer to section 3.4.1.2 for details). This decrease should help to reduce 



 

269 

 

the leakage current of the device, and may also reduce the DCR of the device 

and increase the SPDE. Furthermore, SEG also gives the possibility of 

selectively introducing Ge on CMOS technology for large scale integration with 

other Si photonics components. 

d) InGaAs/InP SPADs as well as Si SPADs are typically fabricated in a planar 

geometry, with the p-n junction formed by post-growth dopant diffusion or ion 

implantation. Conversely, the Ge-on-Si SPAD devices illustrated in this thesis 

are based on mesa geometry. There are several advantages of using a planar 

technology, with the main and most immediate issue being that the sidewall 

contribution to the dark current and the problems related to the effective sidewall 

passivation of Si and Ge are considerably reduced.   

e) In view of a CMOS compatible Ge-on-Si SPAD, the thermal budget required for 

the growth of these devices including the high temperatures needed during the 

two-step Ge growth and subsequent cyclic annealing, are far beyond the thermal 

budget of CMOS. As a consequence, further improvements in the hetero-

epitaxial growth and a reduction of the annealing temperatures are therefore 

required for the development of low temperature Ge growth technique with low 

dislocation density Ge films. 

f) In order to increase the detection efficiency of the Ge-on-Si SPAD in the near-

infrared wavelength range, the use of waveguide geometry Ge-on-Si SPADs is 

under investigation. Such a geometry will provide direct integration with Si-

based waveguide circuitry, for example as used in linear optical computing [4]. 

Two different designs have been proposed for future fabrication and epitaxial 

growth. In the first approach, a waveguide on top of the Ge-on-Si SPAD is 

considered. Both Si3N4 or SiOxNy waveguides can be used in this geometry. 

Although the structure requires a further planarization step, it can be used to 

give a direct comparison with a normal-incidence Ge-on-Si SPAD in terms of 

detection efficiency. Additionally, further heteroepitaxial growth is not required 

since the existing wafers could be used for device fabrication. The second 

geometry relies on a Si-on-insulator (SOI) wafer using a Si waveguide which is 

fabricated on the device layer of the SOI wafer. Modelling of the waveguide 

integrated Ge-on-Si SPAD is being performed to evaluate the overall coupling 

efficiency between the Si waveguide and Ge absorber layer. 
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Si SPADs are a mature technology for detecting single-photons in the visible and near-

infrared spectral range. The main advantages introduced by the fabrication of these 

devices using the standard CMOS technology were underlined. CMOS technology 

allowed the integration of Si SPADs with the electronics required for photon-timing and 

photon-counting and hence SPAD array fabrication. The CMOS-based Si SPAD arrays 

used in this work suffered from a low fill-factor of 3.14% of the detector photo-sensitive 

areas compared to the overall detector pixel area. To recover this loss of sensitivity, two 

different diffractive optical microlens arrays, infinite and finite conjugate, were 

integrated onto 32 × 32 SPAD arrays, fabricated using a 0.35 m CMOS technology 

process. To the best of the author’s knowledge, a full characterisation of SPAD arrays 

integrating microlenses over a large spectral range between 500 nm and 900 nm and 

using different f-numbers from f/2 to f/22, in terms of improvement factor and spatial 

uniformity of detection was demonstrated for the first time. Both microlens arrays 

showed high IFs across the whole wavelengths range, with its maximum value of ~16 at 

a wavelength of 750 nm and ~14 at a wavelength of 780 nm for the finite and infinite 

conjugate microlenses array, respectively. These values of the IF represented the highest 

values ever measured for a CMOS-based Si SPAD array integrating diffractive 

microlens arrays. In terms of spatial uniformity of detection, a variation between 2 % 

and 6 % was measured for all three SPAD arrays tested (bare chip, SPAD arrays 

integrating the infinite and finite conjugate microlens arrays) at different wavelengths 

and across the whole f-numbers range. Future work on CMOS SPAD arrays integrating 

microlens is currently ongoing, and will consider the use of refractive microlens arrays 

to recover the low fill-factor. In theory, it is possible to fabricate refractive microlens 

with very low f-numbers through a careful design and fabrication. This faster behaviour 

may contribute to further enhance the IF in the low f-number region (between f/2 and 

f/8) which is desirable in many practical applications. 
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