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Abstract 

The high temporal resolution of Acoustic Emission offers great promise in the on-line 

monitoring of complex machines such as diesel engines. The fuel injection process is 

one of the most important processes in the diesel engine and its timing and fuel delivery 

control are critical in combustion efficiency. In this work, the phenomena leading to the 

generation of acoustic emission during injection are investigated by simulation of the 

injection process in a specially designed rig and through test in running engines on a 

test-bed. Signal processing approaches are devised to produce diagnostic indicators for 

the quality of the injection process. The novelty of the research lies in; 1) obtaining a 

coherent set of data which allows the separation of the part of the signal associated with 

injection in a given cylinder from other sources adjacent in time and space, and 2) in 

developing a signal processing approach which allows this separation to be achieved on 

line using an array of sensors. As such, the research is generic to multi-source multi-

sensor analysis in machines. 

A series of experiments were performed on an experimental injector rig, and two-stroke 

and four-stroke diesel engines under different operating conditions. The injector rig 

experiments provided useful information on the characteristic signatures of the injection 

events, finding which could be implemented to the more complex signal from the 

running engines. A number of sensor arrays (sets of two and three sensors) were used 

on two types of four-stroke engine at different running speeds to investigate the source 

identification of the injection events, the essential strategy being to add complexity to 

the information in the AE record by using engines of varying degrees of mechanical 

sophistication.   

It has been concluded that the AE signals are generated by the mechanical movements 

of the components in the pump and injector as well as aspects of the fuel flow through 

the injector and the piping. Also, it is found that the temporal structure of the AE is 

highly sensitive to sensor position, and that transmission path differences to a sensor 

array are generally large enough to allow source separation. Applying a purpose-

designed thresholding technique, followed by canonical correlation allows the separate 

identification of parts of the AE signal in the short crank angle widow where sources 

involved in injection, inlet valve opening and combustion are operating. 
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Chapter 1  

Introduction 

1.1 Research Overview 

Condition monitoring (CM) is a key element in maintenance management and process 

control, and can be regarded as a holistic multidisciplinary discipline [1]. Condition 

monitoring has been implemented in machines to detect faults and identify the 

corresponding causes. Technical advances in CM techniques have led to the 

development of condition based maintenance (CBM) in machinery for both diagnostic 

and prognostic aspects in order to provide an effective predictive maintenance strategy 

[2]. Improvements in operating efficiency, reliability and risk management with the 

resulting reduced maintenance costs are the main benefits of machine condition 

monitoring [3]. Vibration analysis is the most common non-intrusive technique used  

for condition monitoring of machinery applications [4, 5], but the vibration signatures 

of internal combustion engines are non-stationary and this, coupled with the potential 

for significant vibration noise make the use of vibration analysis challenging [6]. This 

thesis seeks to amplify some of the benefits of a CM technique, which superficially 

resembles vibration monitoring, but offers reduced noise and greater specificity in fault 

identification, namely acoustic emission (AE) monitoring. 

Fuel injection is central to the efficient operation of diesel engines, and developments in 

the control of air and fuel delivery are essential to meet increasingly stringent 

requirements on emissions, noise and fuel efficiency [7]. This, coupled with a 

seemingly relentless demand for higher performance has driven developments in fuel 

injection systems for diesel engines [8]. In addition, the potential for diesel engines to 

use alternative fuels to standard diesel requires more effective and flexible monitoring 

of fuel injection. The hydraulic behaviour of the injector pump, tubing and injectors is 

quite complex, involving pressure waves which travel at the speed of sound between the 

pump and the injector [9], and whose interaction with the injectors constitutes a 

dynamical system which influences the duration, timing and pressure of the injection 

process. The pressure waves may be reflected at the nozzle in a form which depends 

upon whether it is open or closed, further complicating the process [10]. Many modern 

engines have electronic management of the injectors to introduce active control and 
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dynamic models already exist for the analysis and vibration monitoring of the injection 

process [11, 12]. 

The fuel injection system must ensure that the correct fuel droplet size, fuel distribution 

and mixture is formed in the combustion chamber for the best combustion efficiency 

[7]. In diesel engines the air-fuel mixture is relatively heterogeneous, fuel being 

unevenly distributed through the cylinder and combustion chamber. Injected fuel spray 

needs to penetrate the compressed and heated air mass where and be broken into very 

small droplets [10].  

One of the main problems in monitoring engines is the multiplicity of sources, a 

problem partly alleviated in very large engines where the cylinders are physically 

separated from each other. Another significant problem is that the structure of a given 

source (as in combustion) may itself be quite complex, necessitating a sub-analysis of 

windowed-out parts of the time series. 

Acoustic emission has shown promise for the condition monitoring of engines due to its 

sensitivity to a wide range of mechanical and fluid-mechanical phenomena [13], [6]. It 

has been found that individual events and processes (such as engine speed [14], event 

timing [15, 16], injection [17-21] and combustion processes [22]) can be examined and 

detected successfully using AE techniques due to their high spatial and temporal 

resolution. Both the monitoring of diesel engine performance [81, 106] and diagnosis of 

faults (such as exhaust valve leakage [23], cylinder head gasket leakage [24] and liner 

scuffing [25, 26]) have been demonstrated. Spatial source location of the multiple 

sources using an array of sensors is possible [27], although the propagation of AE 

waves in such structures as an engine block, is complicated by refraction, reflection, 

mode conversion and attenuation [28, 29].  

This study is aimed at investigating the use of acoustic emission technology in 

monitoring the diesel engines, more specifically in separating sources which are 

adjacent both temporally and spatially. As a typical such challenge, the study is focused 

on the injection process and the associated pulsatile flow particularly the extent to 

which injection and combustion can be separated in the crankshaft angle window from 

10°BTDC to 30°ATDC approximately on the firing stroke. The research is therefore 
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largely an experimental study of the monitoring of the injection process in internal 

combustion engines. The phenomena leading to the generation of acoustic emission 

during injection are investigated by simulation of the injection process in a specially 

designed rig and in situ in engines on a test-bed. Different types of engines have been 

used in this study to provide a generic identification of the diesel engine events using a 

common approach in interpreting the AE signal.  Particular emphasis is placed on signal 

processing techniques which can separate signals in the time domain using information 

on the propagation of AE in the relevant structures obtained by careful calibration using 

simulated sources. 

1.2 Research aims and objectives 

This research aims to develop an automatable processing approach for machinery 

monitoring in which there are a number of sources which are separated in space and 

time, and where their sequences and locations are known from the mechanical features 

of the machine. To make the task manageable, the work is focussed onto the injection-

combustion processes in small diesel engines.  

To meet this aim, the following specific research objectives were devised: 

 Carry out a series of calibrations on all of the machinery to be monitored to 

establish propagation parameters (time delays and attenuation) for possible 

sources to arrays of sensors. 

 Carry out a series of tests on injectors removed from an engine to establish the 

characteristic AE signatures of the injection process and the associated fuel 

supply processes for a range of simulated crankshaft speeds. 

 Carry out a series of tests on small two- and four-stroke engines of increasing 

complexity to gather data on the injection-combustion window under a variety 

of running conditions. 

 Develop a means of isolating the injection-combustion window in a way that can 

be automated. 

 Identify a way of processing the injection-combustion AE data obtained at a 

number of sensors which isolates sources and measures their AE features on-

line. 

 Establish how the AE features of the injection-combustion sources vary with 

engine operating conditions. 
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1.3 Research methodology 

In order to achieve the research objectives, three main stages of work were required; 

experimental set up and calibration, systematic experiments on injector rig and test 

engines, and signal processing and analysis. In the first stage, a range of engines of 

increasing levels of complexity was chosen for inclusion in the experimental protocol 

and an experimental rig to simulate the injection system in one of these engines was 

designed and commissioned. A range of different sensor array settings were examined 

to determine the most suitable matrix for monitoring the engine events and a set of 

measurements carried out with simulated sources to characterise potential source-sensor 

propagation processes. In the second stage, experiments were carried over a range of 

engine and injector pump operating conditions, aimed at assessing how the injector AE 

characteristics change with these conditions in an isolated pump-injector configuration 

and in running engines. The third stage involved analysing the acquired signals using a 

wide range of signal processing approaches, each of which needed to be coded 

separately in order to extract the necessary features in a way that was non-subjective, 

i.e. did not require the intervention of an operator.    

1.4 Thesis layout 

This thesis is presented in six chapters which can be summarised as: 

Chapter1: Introduction 

This chapter gives a brief introduction to the context of the study and outlines the main 

objectives of the research. Also, it describes the research methods used and indicates the 

novelty of the work. 

 Chapter 2: Technology review 

This chapter describes the most important/relevant technological developments 

underlying the work, namely developments of diesel engines, injection systems and 

acoustic emission technology. 
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Chapter 3: Literature review 

This chapter critically reviews the previous work by other researchers in the field of 

condition monitoring of diesel engines and injection systems. Relevant signal 

processing methods are also reviewed. The chapter culminates in a statement of the 

detailed research topic to be purse in the current work.  

Chapter 4: Experimental set up and procedures 

This chapter describes the experimental apparatus, including measurement systems and 

test rigs. The calibration procedures for sensors and test rigs are also described and 

analysed, and the experimental protocol and procedures are described and justified. 

Finally, methods of signal processing are described in detail, concentrating on the 

application of canonical correlation analysis to pairs of time series. 

Chapter 5: Analytical discussion of the results of injector rig two stroke engine 

experiments 

This chapter considers the experiments on the injector rig and the two stroke engine, 

which are the two simplest of the test objects considered in the work. First, the results 

from injector rig experiments are discussed with a view to isolating the AE 

characteristics of diesel injection, isolated from the closely related valve and 

combustions events. Next, the two stroke engine is considered using both conventional 

time and frequency domain techniques and also to introduce the canonical correlation 

algorithm to study the injection/combustion events. 

Chapter 6: Analytical discussion of the results of four stroke engine experiments 

This chapter considers the four-stroke, four cylinder engines, which potentially have 

several sources even within one stroke of the engine cycle. It builds on the analysis 

carried out in Chapter 5 on the injector rig and on the simple two-stroke engine and 

develops the multi-source, multi-sensor approach using canonical correlation. 

Chapter 7: Conclusions and recommendations  

This chapter summarises the most significant findings of this research study. It 

identifies the extent to which the original aims have been met and indicates the areas 

that require further investigation and have the potential for extended research work. 
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1.5 Research novelty  

The online non-intrusive monitoring diesel engines is a very challenging task, 

particularly if the various sources are to be separated for detailed diagnosis. 

Traditionally, sound and vibration measurements have been used, but each of these 

requires intensive processing, especially if information is to be recovered from the not 

inconsiderable noise. Acoustic emission is well-known to be relatively free of ambient 

noise, although its sensitivity to a number of potential sources renders it susceptible to 

signal overlap and ambiguity of interpretation. 

This work has two dimensions of novelty: 

 The first of these is the acquisition and analysis of a set of AE data aimed at 

identifying the sources of AE in diesel engine injectors, as distinct from the 

resulting combustion events which accompany injection. This has involved the 

calibration of the test objects for AE propagation, coupled with the acquisition 

of test data to an array of sensors. This process itself is novel in that it provides a 

methodology for preparing any machine for quantitative AE monitoring, as well 

as setting the limits of temporal and spatial discrimination of sources. 

 The second is the development of a technique which can be used on-line to 

separate individual signatures for sources from a different time or place in an AE 

record. Besides the adaptation of a number of signal processing methods 

routinely applied to AE, the method of canonical correlation is applied to pairs 

of signals to allow a sliding time-window approach to separate sources 

automatically. As far as the author is aware, the use of canonical correlation for 

AE source location in diesel engines has not been attempted previously.     
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Chapter 2 

Technological review 

This chapter provides a comprehensive summary of recent developments in diesel 

engine and acoustic emission technology. Although it contains little research per se, 

mostly consisting of established knowledge, it provides the essential background 

theories of the machinery and monitoring techniques used in this study.  

First, the diesel engine fundamentals will be described, including the theory of their 

operation, focusing on a discussion of developments in the science and technology of 

diesel injection systems. The second part of this chapter will describe the acoustic 

emission (AE) technique, highlighting its use in monitoring the engine performance. In 

addition, the features of a typical AE signal and its interpretation will be presented.  

2.1 Diesel engine fundamentals  

The diesel engine is a compression ignition (CI) engine where the rise in temperature 

and pressure is sufficient to cause self ignition of the fuel. It operates with a 

heterogeneous charge of previously compressed air to which a spray of liquid fuel is 

added and self-ignites to cause the combustion of the mixture [8]. The great advantage 

that CI engines have is their excellent fuel efficiency which exceeds 40% to 50% [30]. 

In addition, CI engines are recognised for their low specific fuel consumption and 

carbon dioxide emissions over spark ignition (SI) engines. As has been highlighted 

recently, this last advantage can be compromised by increased soot and smoke emission 

in high performance engines, hence the need for continuous improvement in injection 

behaviour. 

2.1.1 Basic diesel engine types 

Diesel engines can be classified into high, medium and low speed and into size groups; 

small, medium and large. However, the main distinction is between four-stroke and 

two-stroke engines. 

In the case of a four-stroke engine, there are two strokes of the piston for each 

crankshaft revolution; i.e. there are two crank revolutions for every complete cycle. The 

four-stroke cycle can be described with reference to Figure  2.1:  
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i) The intake stroke, where the piston travels downward starting from top dead 

centre (TDC) while drawing in the charge of air as the intake valve is open. 

ii) The compression stroke which begins at bottom dead centre (BDC) and in 

which the piston compresses the air while it moves upward with both intake 

and exhaust valves closed. The fuel is injected near TDC and ignition occurs 

around the end of the compression stroke. 

iii) The power stroke, where both the temperature and pressure rise as the 

combustion propagates and the piston is forced to move down. Both valves 

remain closed to maintain the forces on the piston. 

iv) The exhaust stroke which commences near the end of the power stroke when 

the exhaust valve is opened. As the piston moves upward the exhaust gases 

are expelled in what is called blow-down [9].  

 

Figure  2.1: Four-stroke diesel engine. (from 2007 Encyclopaedia Britannica) 

This complete engine cycle (720
o
 crank angle and 360

o
 cam angle) can be represented in 

crank angle domain as an event map (Figure  2.2), in which the events associated with 

each stroke at their corresponding angles.  
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Figure  2.2: Example of an event map for a four stroke diesel engine. [31] 

 

In two-stroke engines, combustion occurs in the region of TDC for every crankshaft 

revolution; i.e. one complete cycle occurs for each revolution of the crankshaft. Since 

the two-stroke engine must go through the same four events as the four-stroke engine it 

is necessary for several events to occur in each stroke. The operation can be described 

with reference to Figure  2.3:  

i) The compression stroke where the piston moves upward to the TDC and 

covers the intake ports while compressing the trapped air. The fuel is 

injected close to the end of the compression stroke and combustion will start 

before top dead centre. 

ii) The power stroke commences at the end of the compression stroke when the 

products of combustion raise the temperature and pressure in the cylinder, 

and force the piston to move down. While the piston is moving towards BDC 

the exhaust port is uncovered and blow down occurs [9]. 
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Figure  2.3: Two-stroke diesel engine. [32] 

 

 

Figure  2.4: Example of event map for a two stroke diesel engine. [33] 

 

The air-fuel mixing process is crucial to the operation of diesel engines and, as such, has 

received more attention, reflected in the variety of available combustion systems. There 

are two classes of combustion chamber: those with direct injection (DI) into the main 

chamber, and those with indirect injection (ID) into some form of divided chamber [8]. 
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2.1.2 Types of injection  

There are two basic types of injection, direct and indirect, and these are described 

briefly in the following two sections. 

2.1.2.1 Direct injection (DI) 

In DI engines, the fuel is injected directly into a combustion chamber above the piston 

where the compression ratio is often between 12:1 and 16:1. The fuel injector is usually 

close to the centreline of the combustion chamber and can be either normal or angled to 

the cylinder head. Figure  2.5(a) shows a typical large cylinder in a medium speed 

engine where mixing can be done even in relatively quiescent air by using multi-hole 

injector with up to twelve jets. This type of chamber requires high injection pressure, 

1000-1500 bar or more, in order that the high velocity of the fuel droplets entrains air 

into the jet and the amount of swirl can be reduced. The number of holes is reduced, 

usually to four, in small sized engines with wide speed ranges and CRs of between 13:1 

and 15:1, as shown in Figure  2.5(b). In such engines, the injection pressure is reduced to 

the range of 700-1000 bar but the air is given a high degree of swirl [8].  

 

Figure  2.5: Different types of direct injection combustion chambers: (a) Direct injection quiescent 

chamber; (b) Direct injection bowl chamber with swirl. [8] 

2.1.2.2 Indirect injection (ID) 

Indirect injection systems have a divided combustion chamber, with some form of pre-

chamber, into which the fuel is injected, and a main chamber with piston and valves. 

The main function of a divided combustion chamber is to speed up the combustion 
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process, in order to increase the engine output by increasing the engine speed. There are 

two principal types of ID system; pre-chamber and swirl chamber. Figure  2.6 (a) shows 

a typical swirl chamber in which a strong air vortex is generated during the compression 

stoke, and the fuel is injected into this swirling air. When the combustion starts, the 

burning air-fuel mixture is forced into the cylinder through the throat area and mixed 

with the residual combustion air [7]. Pre-chambers rely on turbulence to increase the 

combustion speed, as shown in Figure  2.6 (b). During the compression stroke, air enters 

the chamber and the fuel is sprayed into the chamber to initiate the ignition. The 

burning air-fuel mixture enters the main combustion chambers through a number of 

passages to mix with the remaining air to complete the combustion. Injection 

requirements for indirect injection engines are less demanding and so single-hole 

injectors with pressures of about 300 bar can normally be used [9]. 

  

Figure  2.6: Different types of indirect injection combustion chamber: (a) Swirl combustion 

chamber; (b) Pre-combustion chamber. [8] 

2.2 Fuel injection in diesel engines 

The function of the fuel injection system is to supply the engine with the exact amount 

of fuel accurately timed to accomplish complete combustion. Each injector receives fuel 

at very high pressure in order to produce rapid injection coupled with a high velocity 

spray. The fuel spray entrains air and breaks up into droplets; this provides rapid mixing 

which is essential if the combustion is to occur sufficiently fast. In multi-cylinder 
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engines the delivery quantity, the timing and period of injection must be accurately 

matched to maintain the balance of power in the cylinders.  

2.2.1 Diesel Fuel injection systems 

Figure  2.7 outlines the four main types of injection system, (a) unit injector system, (b) 

distributor (c) fuel injection pump and (d) accumulator injection system. 

 

 

Figure  2.7: Diesel fuel injection systems. [7] 

A traditional pump-line-injector (PLI) system, also called in-line injection pump, is the 

most common arrangement for fuel injection in diesel engines. However, higher fuel 

injection pressures have led to an increase use of unit injectors and common rail fuel 

injection systems. Figure  2.8 shows a traditional PLI system in which the injection 

pump is directly coupled to the engine (at half the engine speed for a four-stroke 

engine). The function of the fuel pump is to control the quantity and timing of the fuel 

injection and the amount of injected fuel per cycle will vary according to the engine 

load. Under certain circumstances, the injection timing depends on the engine speed and 

load. The timing should be advanced as the engine speed increases to adjust the ignition 

delay. As the load increases, either the ignition timing is reduced for fixed injection 

timing or the fuel is injected earlier for the same ignition delay.  

(b

) 

(a

) 
(c

) 
(d

) 
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Figure  2.8: Pump-line-injector system. [9] 

Both the pumping element and injector are packed together to form a unit injector 

system (UIS) as shown in Figure  2.9. Each UIS is installed in the cylinder head of the 

engine, and driven directly by a tappet or indirectly from a camshaft in the cylinder 

head. This eliminates the high-pressure fuel line which enables the system to operate at 

higher injection pressure (up to 2050 bar) [7]. 

 

Figure  2.9: Unit injector system. [34] 

The distributer fuel injection system, normally called VE pump (Figure  2.10), combines 

a fuel supply pump, a high pressure pump, a governor, and a timing device into a single 

compact unit. It has only one fuel metering plunger which delivers the required amount 

of fuel at the desired pressure to each outlet port. This allows the VE pump to deliver 

accurate metering and timing in addition to the main function of pressurizing the fuel. 
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Also, it has a control function, through the governor (either mechanical or electronic), to 

control the engine speed. 

 

Figure  2.10: Distributor fuel injection system.[7] 

The common rail fuel injection system (CR) has a high-pressure fuel pump which 

produces a controlled and steady pressure (Figure  2.11). The injection pressure is 

generated independent of engine speed and the quantity of fuel injected and stored in the 

rail. Both the injection timing and fuel quantity are controlled by the electronic control 

unit (ECU) and implemented at each cylinder through a triggered solenoid valve. 

 

Figure  2.11: Common rail injection system. (DENSO 2002) 
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2.2.2 Fuel Injectors 

The most important part of the injector is the nozzle, hence there is a high degree of 

international standardization for these. Figure  2.12 shows the structure of single and 

dual stage injectors. Closed nozzles are used much more than open nozzles as the latter 

type tends to dribble which results in the formation of combustion deposits on the 

injector and may lead to hole blockage. In closed nozzles both the opening and closing 

pressure of the needle can be determined by the force of the spring and the projected 

area of the needle, as shown in Figure  2.13. The differential pressures are controlled by 

the diameters of needle and seat, where a high needle-closing pressure is recommended 

for better sealing in order to prevent blockage of the nozzle holes caused by 

decomposition of leaked fuel. There are two main categories of injector nozzle, those 

for direct injection engines and those for indirect injection. 

 

Figure  2.12: Nozzle holder assembly. 1 Injector body; 2 Edge filter; 3 High pressure inlet; 4 

Intermediate disk; 5 Nozzle retaining nut; 6 Nozzle body; 7 Nozzle needle; 8 Locating pin; 9 Push 

rod; 10 Compression spring; 11 Shim; 12 Fuel return; 13 Pressure pin; 14 Guide disk, 15 

Compression spring 1; 16 Stroke adjustment sleeve; 17 Spring shim; 18 Compression spring 2. [34] 
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Figure  2.13: Differential action of the injector needle. [9] 

The development of fuel injectors is crucial to enhance the combustion and the 

performance of diesel engines [35, 36]. 

2.2.3 Fuel spray formation 

The injection of liquid fuel into combustion chambers through nozzles facilitates the 

disintegration of the liquid into a spray of droplets lying within a specified size range 

[37]. Spray characteristics depend upon the pressure and viscosity of the fuel. 

Generally, spray penetration increases as the injection pressure increases but, above a 

certain pressure, the spray becomes finely atomised and does not have sufficient 

momentum to penetrate very far. The nozzle dimensions, such as the aspect ratio (ratio 

of length to diameter), also affect the spray characteristics. The mass flow rate of the 

fuel through the injector can be described by [9]: 

 𝑚̇𝑓 = 𝐶𝑑𝐴𝑛√2𝜌𝑓∆𝑝  2-1 

where fm  is the fuel mass flow rate (kg.s
-1

), 𝐶𝑑 is the discharge coefficient, 𝐴𝑛 is the 

nozzle flow area per hole (m
2
), ∆𝑝 is the pressure drop across the nozzle (N.m

-2
) and 𝜌𝑓 

is the fuel density (kg.m
-3

). 
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Thus, the fuel flow rate in a nozzle hole can be represented as: 

 𝑄 = 𝐶𝑑𝐴𝑛√
2∆𝑝

𝜌𝑓
  2-2 

where Q is the fuel flow rate (m
3 

.s
-1

). 

Nozzle hole diameters (dn) are typically in the range of 0.15-1 mm with aspect ratios 

from 2 to 8. A fuel jet with high penetration and less diversion can be obtained by 

increasing the aspect ratio of the nozzle. The differential pressure, which is typically 

greater than 300 bar, produces a high velocity jet (typically faster than 250 m.s
-1

) which 

becomes turbulent. The jet spreads out as a result of entraining air, and breaks up into 

droplets and, as the jet diverges, the spray velocity decreases [9]. Increasing the density 

of the fuel increases penetration while increasing the density of the air reduces jet 

penetration. Also, denser fuels are more viscous which leads to jet divergence and less 

atomization.   

The most effective way of utilizing energy imparted to the fuel is to arrange that the fuel 

mass has a large specific surface before it commences to break down into drops [37]. 

Thus, the primary function of the nozzle is to transpose bulk liquid fuel into thin liquid 

fuel sheets. Less than 0.5% of the applied energy is utilised in breaking up fuel into 

small drops and so practically the whole amount is imparted to the fuel as kinetic energy 

[37]. The rate of work required for supply through a pressurised nozzle is given by 

 𝐸̇ = 1.331 × 103𝑄𝑒∆𝑝  2-3 

where 𝐸̇ is the rate of work required (J
 
.s

-1
), 𝑄𝑒 is the volumetric flow rate (m

3 
.s

-1
) and 

∆𝑝 is the pressure drop across the nozzle (N.m
-2

). 

The basic principle of the disintegration of a liquid fuel jet relies on increasing its 

surface area until it becomes unstable and disintegrates. The basic mechanism of drop 

formation consists essentially of the breaking down of unstable threads of fuel into rows 

of drops conforming to the classical mechanism postulated by Lord Rayleigh.  The 

theory states that a free column of liquid is unstable if its length is greater than its 

circumference and that, for a non-viscous liquid, the wavelength of the disturbance 
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which will grow most rapidly in amplitude is 4.5 times the diameter.  Weber has shown 

that, for viscous liquids, the optimum wavelength for jet disruption is 

 𝜆𝑜𝑝𝑡 = √2𝜋 𝑑𝑗 [1 + 3𝜂(𝜌𝑓𝛾𝑑𝑗)
1/2

]
1/2

  2-4 

where opt  is optimum wave length for jet disruption (m), dj is jet diameter (m),   is 

viscosity of fuel (m/s) and γ is liquid fuel surface tension (N/m).  

A uniform thread will break down into a series of drops of uniform diameter, each 

separated by one or more satellite drops.  Because of the irregular character of the 

atomisation process, non-uniform threads are produced, which results in a wide range of 

drop size.  A homogeneous spray can be produced only when the formation and 

disintegration of threads are controlled.  

The complex process of drop formation from a sheet subject to aero dynamic waves has 

been modelled by Dombrowski, Figure  2.14 [38].  This shows that the waves on the 

sheet continue to grow until the crests are blown out.  The sheet is thus broken up into 

half wavelengths which rapidly contract into ligaments which in turn break up into 

drops.  The volume of liquid per unit width in a half wavelength of sheet is [38] 

 𝜆𝑜𝑝𝑡ℎ∗ =
𝜋𝑑𝑙

2

4
  2-5 

where dl is ligament diameter (m) and 
*h  is half sheet thickness at break up. 

 

Figure  2.14: Idealised process of drop formation from a liquid sheet. [37] 

The initial average drop diameter, d, is proportional to the wavelength of the most 

unstable surface waves [9]. 
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2.2.4 Fuel injection in diesel engines 

Figure  2.15 shows the sequence of the injection process in the diesel engine cycle. FB 

represents the start of fuel delivery in the injection pump after which the inlet port of the 

pump has been closed and the required pressure has been reached. The injection process 

itself will not start until the pressure builds up and reaches the nozzle-opening pressure, 

which occurs at point SB near a few degrees before TDC. The opening of the needle in 

the injector has been caused by a propagating pressure wave through the high pressure 

line. The speed of the pressure waves can be calculated as [8] 

 𝑪𝟐 = 𝑲 𝝆
𝒇

⁄   2-6 

where C is the velocity of the wave (ms
-1

), K is the bulk modulus of the fuel (Pa) and 𝜌𝑓 

is the fuel density (m
3
.kg

-1
) 

The time required for the pressure wave to travel through the pipe is determined by its 

speed (speed of sound in diesel fuel, approx. 1,500 m/s) and the length of the high 

pressure pipe, irrespective of the speed of the engine [39]. This period is commonly 

known as the injection lag (SV) and includes the period between the start of delivery 

(FB) and the start of injection (SB). While the piston travels upward toward TDC the 

compression of the fuel air mixture increases and the ignition starts at VB. The start of 

injection can be identified using a needle-lift sensor, but the identification of the start of 

ignition is far more complex.  Cylinder pressure measurement is often used to determine 

the heat release rate of which a change in slope can be used to identify the start of 

ignition [40]. It is usually in the range of 0.2-2ms ATDC and can be calculated for 

steady state conditions using Arrhenius type equations [30]: 

 𝜏𝑖𝑑 = 𝐶1 ∙ 𝑝𝑔
−𝐶2 ∙ 𝑒

(
𝐸𝑎

𝑅𝑚𝑜𝑙𝑇𝑔
)
  2-7 

where 𝜏𝑖𝑑 is the ignition delay time (ms), 𝐶1 and 𝐶2 are constants depending on the fuel 

and the injection characteristics, pg is the integrated mean gas pressure during the 

ignition delay, Ea is the apparent activation energy for the fuel auto-ignition process, 

Rmol is the universal gas constant and Tg is the integrated mean gas temperature during 

the ignition delay. 
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For transient conditions this can be written as [41] 

 𝜏𝑖𝑑 = 𝐶1 ∙ 𝑝𝑔
−𝐶2 ∙ 𝛷−𝐶3 ∙ 𝑒

(
𝐸𝑎

𝑅𝑚𝑜𝑙𝑇𝑔
)
  2-8 

where Φ is the fuel–air equivalence ratio, which accounts for discrepancies during 

transients compared with steady-state operation. 

The injection process reaches its end (SE) when the nozzle needle closes due to the fall 

in pressure from the injection pump and combustion will cease (VE). The duration of 

the injection process, usually around 20
o
 of crankshaft angle, is generally less than the 

period required for combustion which is about 40
o
-50

o
 of crankshaft angle [42]. When 

increasing the engine speed, both the injection lag (SV) and the ignition lag (ZV) will 

remain constant which requires a timing device to advance the start of fuel delivery in 

response to the engine’s crankshaft speed [7]. A generic representation of the 

characteristic curves of these three processes (fuel delivery, fuel injection, combustion) 

is shown in Figure  2.16.  

 

Figure  2.15: Typical injection/combustion in VE pump [7]. 



22 

 

 

Figure  2.16: Fuel delivery curve, injection and combustion characteristics.[34] 

Correct installation of the injection pump and its interconnection with the injectors is 

very important to ensure good engine performance. The combination of pump and 

injector must be designed to eliminate dribble at the nozzle and the formation of carbon 

during the combustion process.  

The pressure-flow characteristics in an injection system will vary with the diameter and 

length of the pipe and the number and diameter of the nozzle holes. From equation  2-2 

the flow through the nozzle hole can be written as [8] 

 𝑄𝑛 = 𝐶𝑛𝐴𝑛√
2(𝑃1 − 𝑃𝑒)

𝜌𝑓
  2-9 

where Qn is the fuel flow rate through the nozzle (m
3
.s

-1
), 𝐴𝑛 is the nozzle flow area per 

hole (m
2
), 𝜌𝑓 is the fuel density (m

3
.kg

-1
) and P1 and Pe are the nozzle sac and engine 

back pressures, respectively, (Pa). 

As the injection pump starts to deliver the fuel to each injector the pressure Pp  builds up 

as the sudden flow Qp starts at the pump end, and can be expressed as [8] 

 𝑃𝑝 =
𝑄𝑝

𝐴𝑝
√𝐾. 𝜌𝑓  2-10 

where Pp is the pipe pressure (Pa), Qp is the fuel flow rate at the outlet port of the pump 

(m
3
.s

-1
), 𝐴𝑝 is the pipe cross-section area (m

2
), K is the bulk modulus of the fuel (Pa) 

and 𝜌𝑓 is the fuel density (m
3
.kg

-1
). 
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Both equations ( 2-9 and  2-10) can be simplified by substituting 0.7 for the nozzle orifice 

coefficient, 1482MPa and 825 kg.m
-3

 for the bulk modulus and density of the fuel, 

respectively, where the flow through nozzle and the flow in the high pressure pipe can 

can be written as [8] (where Q in mm
3
.s

-1
, A in mm

2
 and P in bar)  

 𝑄𝑛 = 10.899 𝐴𝑛√(𝑃1 − 𝑃𝑒)  2-11 

 

 𝑄𝑝 = 90.4 𝐴𝑝𝑃𝑝  2-12 

 

The conditions for matching the pipe-nozzle area, assuming there is no reflection of the 

pressure wave at the nozzle, can be described by [8]: 

 𝑄𝑝 = 𝑄𝑛   &   𝑃𝑝 − 𝑃𝑟 = 𝑃1  2-13 

where Pr is the residual pressure in the pipes (bar). 

The pattern of the complete injection system is modified by compressibility effects in 

the fuel, and the size and length of the interconnection pipes. Pressure (compression or 

rarefaction) waves are set up between the pump and the injector, which travel at the 

speed of sound. The pressure variations caused by these waves can influence the 

injection pressure, period of injection and even cause secondary injection. Figure  2.17 

shows a fuel-line pressure diagram in which there is a pressure wave after the main 

injection period that is sufficient to open the injector [9]. Another phenomenon, called 

after-dribble, is the result of pressure waves impeding injector closing leading the 

injector not to close completely, and some fuel entering the nozzle at very low pressure 

to form a spray. 
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Figure  2.17: Pressure waves in the fuel line from the pump to the injector [9]. 

The operating conditions of diesel engines need to be described as transients in three 

different cases: 

I. Load change at constant governor setting 

II. Throttle position change  

III. Cold or hot start 

For example, Figure  2.18 shows the change in engine behaviour during the transient 

period resulting from a change in load [30]. 
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Figure  2.18: Behaviour of a four stroke, turbocharged engine during a load increase transient 

event.[30] 

Transient conditions cause a continuous change of the engine/pump speed due to the 

transient fluid mechanics of the injection pump and the dynamic response of mechanical 

components in the injection system. This will affect a number of injection parameters 

such as rate of injection, line pressure, timing and duration of injection [30]. The 

dynamic injection timing changes in a linear way with the amount of fuel injected 

during the fuelling transient period, as shown in Figure  2.19. Also, there is a significant 

change in the shape of the fuel injection rate during the transient period, in terms of 

throttling period and start of injection, as shown in Figure  2.20 [43].  

Figure  2.21 shows the effect of a throttle change for a VE pump at a speed of 1000 rpm 

(2000 rpm engine speed). The required fuel quantity is reached within four injection 

cycles for this pump speed although more cycles would be needed for higher speeds. 
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Figure  2.19: Change in the dynamic fuel injection timing due to the deformation of the injection 

pump driving system, resulting from changes in the amount of injected fuel. [43] 

 

Figure  2.20: Change in the fuel injection rate during an early cycle of a transient event due to 

throttling compared with the respective steady-state operation, a) naturally aspirated engine, b) 

turbocharged engine. [43] 

 

Figure  2.21: Response of speed control position, needle lift and line pressure for a transient fuelling 

test of a VE injection pump at 1000 rpm. [30] 
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2.2.5 Cavitation in injectors 

Cavitation occurs when the fuel vapour pressure is higher than the local static pressure, 

which results in the formation of a cloud of vapour bubbles. The temperature of the 

nozzle tip will be very high, and inside the nozzle holes there will be a region of 

recirculation in the vena contracta, as shown in Figure  2.22.  The highly compressed 

contents of the bubbles will generate instantaneous high pressure which will produce 

cavitation noise. The generated acoustic pressure can be represented as [44] 

 𝑝𝑎 =
𝜌𝐿

4𝜋𝑅

𝑑2𝑉

𝑑𝑡2
  2-14 

where pa is the radiated acoustic pressure, ρ is fuel density, L is the linear distance, R the 

distance from the cavity center to the point of measurement, V is the volume and t is the 

time. 

 

Figure  2.22: Cavitating flow in a nozzle. [45] 

The sound level can be represented as the root mean square pressure over the frequency 

range (f) using the spectral density function 𝒢(𝑓), which allows the acoustic pressure 

(ps) to be written as [44] 

 𝑝𝑠
2 = 𝑝𝑎

2̅̅ ̅ = ∫ 𝒢(𝑓)𝑑𝑓
∞

0

  2-15 
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Figure  2.23 shows the spectra of cavitation noise in an orifice for a range cavitation 

number, σ.   

 

Figure  2.23: Acoustic power spectra from a model spool valve operating under noncavitating (σ = 

0.523) and cavitating (σ = 0.452 and 0.342) conditions. [46] 

 

 

2.3 Pulsatile flow 

Flow with periodic variations is commonly known as pulsatile flow, the heart being the 

best known example of such type of flow. Due to the importance of this organ and its 

function, there has been much study of pulsatile flow including accurate ways of 

monitoring its behavior [47-50].  Injectors are nothing like as complex as the heart-

vascular system, but nevertheless there are challenges there as well. 

The analysis of fluid flow requires knowledge of the characteristics of the fluid (such as 

compressibility) and the behavior of its motion (such as steady or unsteady flow). For 

flow of a given fluid in a constrained volume (e.g. a pipe), conservation of mass is a 

common starting point, which means considering the continuity equation. Also, the 

momentum of the fluid element has to be considered by using the Navier-Stokes 

equations.[51] 
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For a fluid with no variation in the density from point to point (incompressible fluid 

flow), the continuity equation can be represented as [52] (according to the notation in 

Figure  2.24)  

 
𝜕𝑢

𝜕𝑥
 +  

𝜕𝑣

𝜕𝑟
 +

𝑣

𝑟
+ 

1

𝑟

𝜕𝑤

𝜕𝜃
= 0  2-16 

and the Navier-Stokes equations as [52] 

 

𝜌 (
𝜕𝑢

𝜕𝑡
+  𝑢 

𝜕𝑢

𝜕𝑥
+  𝑣 

𝜕𝑢

𝜕𝑟
+  

𝑤

𝑟

𝜕𝑢

𝜕𝜃
) +

𝜕𝑝

𝜕𝑥

=  𝜇 (
𝜕2𝑢

𝜕𝑥2
 +  

𝜕2𝑢

𝜕𝑟2
 +  

1

𝑟
 
𝜕𝑢

𝜕𝑟
+  

1

𝑟2

𝜕2𝑢

𝜕𝜃2
 ) 
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𝜌 (
𝜕𝑣

𝜕𝑡
+  𝑢 

𝜕𝑣

𝜕𝑥
+  𝑣 

𝜕𝑣

𝜕𝑟
+  

𝑤

𝑟

𝜕𝑣

𝜕𝜃
 −  

𝑤2

𝑟
) +

𝜕𝑝

𝜕𝑟

=  𝜇 (
𝜕2𝑣

𝜕𝑥2
 + 

𝜕2𝑣

𝜕𝑟2
 +  

1

𝑟
 
𝜕𝑣

𝜕𝑟
−  

𝑣

𝑟2
+  

1

𝑟2

𝜕2𝑣

𝜕𝜃2
 −  

2

𝑟2

𝜕𝑤

𝜕𝜃
 ) 
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𝜌 (
𝜕𝑤

𝜕𝑡
+  𝑢 

𝜕𝑤

𝜕𝑥
+  𝑣 

𝜕𝑤

𝜕𝑟
+ 

𝑤

𝑟

𝜕𝑤

𝜕𝜃
+ 

𝑣𝑤

𝑟
) +  

1

𝑟

𝜕𝑝

𝜕𝜃

=  𝜇 (
𝜕2𝑤

𝜕𝑥2
 +  

𝜕2𝑤

𝜕𝑟2
 +  

1

𝑟
 
𝜕𝑤

𝜕𝑟
− 

𝑤

𝑟2
+  

1

𝑟2

𝜕2𝑤

𝜕𝜃2
+  

2

𝑟2

𝜕𝑣

𝜕𝜃
 ) 
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Figure  2.24: Control volume of fluid flow in pipe. [52] 

For a straight pipe of circular cross section with no external forces, the continuity and 

Navier-Stokes equations can be simplified to take advantage of the symmetry about the 

longitudinal axis of the pipe. Restricting consideration to the fully developed region the 

governing equation of the fluid flow can be written as [52] 

 𝜌
𝜕𝑢

𝜕𝑡
 + 

1

𝜌

𝜕𝑝

𝜕𝑥
=  𝜇 (

𝜕2𝑢

𝜕𝑟2
+ 

1

𝑟
 
𝜕𝑢

𝜕𝑟
)  2-20 

During the pumping action, the pulsatile flow can be described in terms of two 

components, steady and oscillatory. Figure  2.25 illustrates the pressure gradient in 

pulsatile flow, in which k(t) represents the total pressure gradient and ks and kφ represent 

the steady and oscillatory parts, respectively. 

δx 

δr 

δθ 

ρ u 

ρ w 

ρ v 
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Figure  2.25: Pulsatile pressure gradient. [52] 

 The steady component can be described as 

 
𝑑𝑝𝑠

𝑑𝑥
= 𝜇 (

𝑑2𝑢𝑠

𝑑𝑟2
+  

1

𝑟
 
𝜕𝑢𝑠

𝜕𝑟
)  2-21 

while the oscillatory component can be represented as 

 𝜌
𝜕𝑢𝜙

𝜕𝑡
 +  

𝜕𝑝𝜙

𝜕𝑥
=  𝜇 (

𝜕2𝑢𝜙

𝜕𝑟2
+  

1

𝑟
 
𝜕𝑢𝜙

𝜕𝑟
)  2-22 

The fluid (water) hammer is one of the most common phenomena of sound wave 

propagation in pipelines which occurs due to the sudden closure of valves and also 

pulsating pumps [53]. There is the possibility that injector lines might display some 

elements of fluid hammer. 

2.4 Acoustic emission testing 

Acoustic emission testing (AET) is non destructive testing (NDT) method which is used 

widely in condition monitoring (CM) and condition based maintenance (CBM). In 

many applications, the main focus is in counting and locating isolated events, for 

example due to crack extensions in a structure, for which a “hit-based” system is 

normally used, with a trigger set to record for a fixed period of time (usually short) 

when a threshold is exceeded. In the current work, the AE record is continuous with a 
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number of events which occur in an expected sequence so the types of processing 

involved are different. 

2.4.1 Acoustic emission concepts and characteristics  

Acoustic Emission (AE) is the  generation and propagation of transient elastic waves 

due to the rapid release of energy from localised sources within or on the surface of a 

material [54]. The amount of energy released by an AE and the amplitude of the 

waveform are related to the magnitude and velocity of the source event. Acoustic 

emission (AE) testing is based on the detecting and converting these elastic waves into 

electric signals. AE is a passive condition monitoring technique, in which the energy 

that is detected is released within the material and can be inspected by using remote 

sensors.  

The frequency range most commonly used for acoustic emission testing is 100 kHz to 

300 kHz, since higher frequency waves attenuate faster and lower frequencies are 

subject to interference from background noise [55]. A short, transient AE signal is 

produced by a very fast release of elastic energy which propagates in all directions in an 

approximately spherical shape around the source and is detected by one or more sensors 

[56] (Figure  2.26).  AE sensors can convert the very small surface displacements into 

electrical signals that can be amplified and processed.   

 

Figure  2.26: The basic principles of AE. [57] 

2.4.2 Acoustic emission equipment 

The main common components of AE systems are sensors, preamplifiers, filters and 

amplifiers. Figure  2.27 shows a block diagram of a generic four channel acoustic 
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emission system. A typical AE system consists of a sensor, amplifier (along with 

preamplifier), filter, data measurement and storage and display equipment. The 

generated AE event is captured by the sensor which converts the mechanical activity 

into an electrical voltage signal. A preamplifier is normally placed close (or integrated) 

with the sensor in order to boost the voltage and overcome the resistance of the cable. 

Sensors and preamplifiers are designed to filter the signal from most of the background 

noise and electromagnetic interference. However, a band-pass filter is used to eliminate 

further unwanted signals at both low and high frequencies. The generated signals will 

be interrupted by a measurement circuit in the form of digital pules. Finally, the digital 

data will be collated using a data acquisition system which is stored and displayed for 

further analysis. 

 

Figure  2.27: Schematic diagram of a basic four channel acoustic emission testing system.[54]  

2.4.2.1 Acoustic emission sensors 

AE sensors are of critical importance in any experiment, and both wide band and 

resonant sensors are available. AE sensors generally use a small disc of piezoelectric 

material as a sensing element, lead zirconium titanate (PZT) being the most commonly 

used material (Figure  2.28). The main considerations for the selection of sensors are 

operating frequency, sensitivity, and environmental and physical characteristics. A good 

acoustic contact between the sensor and the surface is very important in terms of good 

representation of the AE signal, usually achieved using a coupling agent (such as high 

vacuum grease).  
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Figure  2.28: AE sensor. [56] 

2.4.2.2 Acoustic emission amplifiers 

Under most circumstances it is necessary to amplify the sensor signal as the signal from 

piezoelectric materials are very feeble at high frequency, thus the sensing element itself 

cannot drive the signals over a long distance of cable. A preamplifier must be placed 

close to the sensor; also it is very often that it is integrated into the sensor housing. The 

preamplifier provides required gain, cable drive capability and filtering by which the 

monitoring frequency for AE can be defined. 

2.4.3 Acoustic emission signals 

High frequency dynamic signals contain too much information to be interpreted by 

inspection in real time and some type of signal processing is needed to extract the 

required information from the gathered signals and minimise the influence of unwanted 

effects on the signal. The signal waveform is affected by many factors such as; 

characteristics of the source, the path taken from the source to the sensor, sensor 

characteristics, and the measuring system [54]. AE signals can be categorised into three 

main forms; burst activity, continuous activity, and mixed mode activity. Figure  2.29a 

shows the burst type where the signal has the form of discrete transients which can be 

presented as an exponentially decaying sinusoid. In continuous activity the signal has a 

random oscillatory shape normally resulting from the overlapping of multiple 

indistinguishable bursts, and is often regarded as background noise for hit-based 

systems (Figure  2.29b). Leaks, flow and many fabrication processes produce non-

discrete pulses of acoustic energy, giving a continuous signal that resembles noise [58]. 

The combination of these two signal types will form the mixed mode signal as shown in 
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Figure  2.29c. As the acoustic emission burst signal is usually associated with 

continuous background noise, a threshold detection level is set above the background 

level. The signals acquired from engines, however, do not necessarily have a fixed 

background level and have a continuous and a transient component. In this case, special 

processing techniques are required to ensure that data are not lost by thresholding. 

 

Figure  2.29: Different AE signal types. [57] 

For hit-based systems, the AE signal is traditionally characterised by the parameters 

shown in Figure  2.30; number of events, counts, event energy, signal amplitude, signal 

duration, and signal rise time. Cumulation of these parameters in such features as total 

events, amplitude distribution, and accumulated energy can be defined as a function of 

time or test parameter,  as a measure of performance or structural integrity [54].  

An idealised AE burst can be represented by: 

 𝑉 = 𝑉𝑜 𝑒(−𝐵𝑡)  sin(𝜔𝑡)  2-23 

where 𝑉 is the output voltage of the sensor, 𝑉𝑜 is the initial signal amplitude, B is the 

decay constant, 𝑡 is the time and 𝜔 is the angular frequency. 
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Figure  2.30: AE signal. 

For an impulsive event, the peak signal amplitude is related to the AE source intensity 

and will depend on the attenuation between source and sensor. The burst rise time refers 

to the time interval between the first threshold crossing and the maximum amplitude of 

the burst, the duration represents the time interval between the first and last time of the 

crossing, and these times can be useful in determining the AE energy associated with an 

event. AE event energy is directly proportional to the area under the acoustic emission 

waveform, and can be calculated as [54] 

 

𝐸 = ∫ 𝑉2

𝑡𝑙𝑖𝑚

0

(𝑡)𝑑𝑡  2-24 

where E is the acoustic emission energy in V
2
.s,  𝑉(𝑡) is the amplitude of the AE signal 

in volts as a function of time t and tlim is the length of the time period of interest in 

seconds. 

The term attenuation is used to describe the reduction in the amplitude of a wave due to 

natural processes. As an AE wave spreads from its point of origin the most significant 

initial reduction in amplitude is due to geometrical expansion of the wave front [57], 

although a number of other attenuation mechanisms are active in complex objects.   
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2.4.3.1 Wave propagation 

The generated AE waves can travel in a number of modes, where wave mode is the term 

used to describe the propagation of waves which depends on the oscillatory behaviour 

of the particles and the geometry of the structure.  

Sound waves, including AE waves, can propagate in fluids as a secession of 

compressions and rarefactions of the molecules, known as compressive or longitudinal 

waves. Longitudinal acoustic waves travel through a single phase fluid with a velocity 

that depends on the fluid density and compressibility [59]. Also, sound waves can 

propagate in solids as four main types; longitudinal, surface (Rayleigh), shear 

(transverse), and plate waves. 

Longitudinal waves travel as a succession of compressions and rarefactions in the 

direction of the wave propagation where their particle density fluctuates as they move, 

as shown in Figure  2.31. The velocity of longitudinal waves (Cl) does not depend on the 

frequency and can be calculated by 

 𝐶𝑙 = √
𝐸(1 − 𝜈)

𝜌(1 + 𝜈)(1 − 2𝜈)
  2-25 

where 𝜈 is the Poisson’s ratio for the material, 𝜌 is the density of the material (kg/m
3
) 

and 𝐸 is Young’s modulus of elasticity for the material (N/m
2
). 

 

Figure  2.31: Longitudinal wave. [57] 

Transverse waves travel as an oscillatory shearing motion between successive planes at 

a right angle or transverse to the direction of propagation (Figure  2.32).  The velocity of 

shear waves (CS) is also independent of frequency and given by 
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 𝐶𝑠 = √
𝐸

2𝜌(1 + 𝜈)
  2-26 

 

Figure  2.32: Transverse wave. [57] 

Elastic waves can also travel along the surface of solid materials as a successive 

displacement of surface above and below the equilibrium surface position, known as 

Rayleigh (surface) waves (Figure  2.33). This type of wave has an independent velocity 

(CR) which is approximately given by 

 𝐶𝑅 ≅ 0.9 𝐶𝑠  2-27 

 

Figure  2.33: Rayleigh wave. [57] 

Plate waves can propagate only in very thin materials, and propagation can occur in a 

series of anti-symmetric modes (where both surfaces simultaneously deflect in the same 

position), and symmetric modes (where both surfaces simultaneously pinch together). 

Lamb waves are the most common representation of plate waves that have been used in 

acoustic emission testing (Figure  2.34). The propagation of Lamb waves depends on the 

density and elastic material properties of the component and their velocities are very 

dependent upon both frequency and plate thickness.  
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Figure  2.34: Plate waves. [57] 

However, waveforms in practical structures are more complicated and any sensor record 

will probably be a combination of different wave modes, which can make interpretation 

in objects such as machines rather difficult. 

2.4.3.2 Source location techniques  

Most of the acoustic emission signals acquired in practice contain unwanted information 

which can not readily be separated from wanted information on a frequency basis. Thus, 

signal separation is often achieved on a spatial rather a frequency basis, the signal being 

identified by its place of origin by using the spatial filtering [60]. Source location 

techniques assume that AE waves travel at a constant velocity in a material [61]. 

However, various effects can alter the expected velocity of the AE waves (e.g. 

reflections and multiple wave modes) and can affect the accuracy of this technique. 

Therefore, the geometry of the structure being tested and the operating frequency of the 

AE system must be considered when determining whether a particular source location 

technique is feasible [61]. The most common source location techniques are linear 

location, point location, zone isolation, and the order of arrival technique.  

In the linear location technique, the distance of the source from the midpoint between 

two sensors can be calculated by multiplying both the velocity and the arrival time of 

the wave. This applies to any event where the source is between the sensors, whether 

the location lies to the right or left of the midpoint and is determined by whichever 

sensor first records the hit (Figure  2.35).  

 𝑥 =
1

2
[𝐿 − 𝑐 ∙ (𝑡2 − 𝑡1)] =

1

2
[𝐿 − 𝑐 ∙ ∆𝑡] 

 2-28 
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where x is the distance between first sensor and the AE source, c is the wave speed, L is 

the distance between the two sensors, t1 and t2 are the times of signal arrival at the first 

and second sensor, respectively, and Δt is the arrival time difference between the two 

sensors. 

 

Figure  2.35: Linear location technique. 

In the point location technique, the position of the source can be calculated by placing 

sensors on the structure and determining the sequence from the various sensors and 

signal time of arrival. The wave fronts from the source can be shown as concentric 

circles centred on the sensors with intersecting defining hyperbolae [60], as shown in 

Figure  2.36. The signals must be detected in a minimum number of sensors: two for 

linear, three for planar, four for volumetric.  

 

Figure  2.36: Point location technique. [61] 

The zone isolation technique is widely used when AE is likely to come from certain 

well defined regions and aims to trace the waves to a specific zone or region around a 

sensor (Figure  2.37). Zones are presented as lengths, areas or volumes depending on the 
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dimensions of the arrangement. This method is used in anisotropic materials or in other 

structures where sensors are spaced relatively far apart or when high material 

attenuation affects the quality of signals at multiple sensors [61].   

 

Figure  2.37: Planer zone isolation technique. [61] 

The order of arrival of signals is one of the most powerful source location techniques. 

Figure  2.38 shows the most commonly used array for this technique, a triangular array. 

The area within the array can be divided into six zones based on orders of arrival; if 

each zone can be used to encompass a hole then there is no need to make further 

calculations [60]. 

 

Figure  2.38: Order of arrival technique [62]. 

Delta T source location has been introduced to identify the AE sources in geometrically 

complex structures more accurately [63].  Information about source timing and sensor 
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location are not required in this method, but it relies on constructing an independent 

user-predefined grid (as shown in Figure  2.39). 

 

Figure  2.39: Example of the selected grid of an aircraft component [63]. 
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Chapter 3 

Literature Review  

As mentioned in Chapter 1, the main contributions in this work are in the AE 

monitoring of diesel engines, specifically in isolating the AE associated with the 

injection process using a new application of canonical correlation analysis. Accordingly, 

this review is divided into four parts. First, there is a brief discussion of the science of 

diesel fuel injection as essential background to the phenomena which may give rise to 

AE. Next, the various studies on AE monitoring of diesel engines are critically 

reviewed, followed by a summary of the techniques that have been used to monitor 

diesel injection, assessing the potential role of AE. Finally, a critical analysis of the 

various signal processing techniques is carried out to highlight the potential of canonical 

correlation to solve multi-source, multi-sensor monitoring problems. 

3.1 Investigation of diesel engine and injection behaviour 

Continuing regulatory pressure on exhaust and noise emission, and the demand for 

higher performance and lower fuel consumption rates has maintained scientific and 

technological interest in fuel injection systems and the combustion process in diesel 

engines [2]. The study of combustion in diesel engines continues to be a very active 

research topic in which computer simulation and modelling play a vital role, not least in 

diesel fuel injection using CFD and other modelling approaches [64] (Figure  3.1).  

 

Figure  3.1: Simulation process chain [34]. 

Many empirical correlations and modelling codes have been developed to simulate the 

combustion process in diesel engines in order to give better prediction of the engine 

performance over a wide range of operating conditions [65, 66]. Three main approaches 
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have been taken to the modelling of combustion in diesel engines.  The first method is 

zero-dimensional simulation (thermodynamic) in which empirical correlation of the 

combustion process is based on the heat release equations [67, 68]. The 

phenomenological multi-zone model is the second method, in which the cylinder is 

divided into two or more zones to study the spatial distribution of the temperature and 

chemical composition [69-74]. The third method includes the multidimensional 

computational fluid dynamics (CFD) models which use the conservation equations to 

simulate the chemical reaction mechanism and fluid flow behaviour for diesel engines 

[75-77]. As a detailed example, Weißenborn et al. [78] developed a simulation-based 

cylinder pressure approach to monitor diesel engine performance, which focuses on the 

extension of an empirical, zero-dimensional cylinder pressure model using the engine 

speed signal in order to detect cylinder-wise variations in combustion. They compared 

different methods for the model-based reconstruction of the combustion pressure, 

including nonlinear Kalman filtering and found that the incorporation of an engine 

speed signal enhanced the accuracy of the empirical cylinder pressure model. In order to 

minimize system costs and avoid the need for additional sensors, the standard sensor 

configuration of a series- production vehicle was utilised for engine speed measurement. 

Elsewhere [79], radial basis function (RBF) networks have been used to develop models 

of such nonlinear processes as combustion in diesel engines.  

Many combustion models include the injection process and spray break up as part of the 

combustion simulation. However, a large number of models have been formulated to 

describe the injection process itself, focusing on the identification of its parameters and 

the associated output performance. For example, Nissan Research Centre have 

developed a numerical code to simulate, with high accuracy, the fuel injection system in 

IDI diesel engines [80]. The characteristics of fuel injection rate (as shown in 

Figure  3.2) were predicted successfully using a lumped parameter model to describe the 

injection pipe system. Currently, the implementation of simulation models is limited by 

the computational time required for detailed inputs, such as precise component 

geometry and the injection system specifications. A number of approaches have 

therefore been taken to reduce the computational time and minimise amount of input 

data specifically  to reduce the development cost and time in the automotive industry 

[81]. Partridge and Greeves [82] have reported a computer model for diesel fuel spray 

formation in which both fuel evaporation and two phase flow were considered, the fuel 

spray being divided into liquid and gas regions. The liquid jet was assumed to have a 
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uniform flow with a reduced cross sectional area due to the fuel evaporation. Both the 

evaporating fuel and the relative shear between the liquid and gaseous phases caused a 

transfer of momentum from the liquid to the gas phase. The momentum exchange has a 

direct effect on the flow velocity for both liquid and gas phases, the gas phase 

accelerating while the liquid phase is decelerated. The model was validated using fuel 

spray measurements in an engine with optical access and was used to explain the effect 

of the engine operating conditions and fuel injection parameters on combustion.   

  

(a) (b) 

Figure  3.2: Experimental and simulated results of injection parameters from IDI diesel engine (a) 

idling and (b) at a speed of 600rpm. [80] 

 Timoney [83] estimated the fuel spray trajectory during the injection period  in an 

attempt to put the design process for DI engines on a more rational basis. The 

estimation of the fuel spray within the swirling air flow was carried out by using the 

laws of motion and semi-empirical correlations describing the drag forces on the spray. 

The relative velocity between the fuel spray and the swirling air was calculated in the 

tangential direction at the moment that the tip of the spray impinges on the piston bowl. 

It was shown that the magnitude of the tangential relative velocity can be correlated 

with the specific fuel consumption and smoke emissions.  

There has been extensive work done on the measurement of spray patterns in order to 

study their effect on engine combustion and performance [84-87]. One example is spray 

force analysis which provides accurate information on such spray characteristics as 

efficiency, symmetry, spray breakup and structure [34]. A multi-point pressure sensor is 
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typically used mounted at different distances from the nozzle where the corresponding 

detected signals reflect the spray structure (as shown in Figure  3.3). 

 

Figure  3.3: Spray force analysis. [34] 

3.2 Acoustic emission and diesel engines  

Acoustic emission has been widely advocated for the condition monitoring of engines 

due to its sensitivity to a wide range of mechanical and fluid-mechanical phenomena, 

often complementary to the sensitivity of vibration measurement [13]. It has been 

observed that many individual events and processes (such as valve movements, sliding 

contact and injection and combustion processes) can be detected using AE due to its 

high spatial and temporal resolution [88], and the additional capability of AE to provide 

source location information has distinct advantages in separating near-simultaneous 

events and in providing comparisons between individual cylinders [62]. It has been 

shown that individual events and processes (such as engine speed, event timing and 

injection and combustion processes) can be examined and detected successfully using 

AE. For example, the AE arising from cylinder-liner interactions and from bearings can 

be distinguished relatively easily from other engine sources by judicial positioning of 

sensors because, even in small engines, AE is quite poorly transmitted between the 

cylinder head and the block. The use of AE sensors is non-intrusive and therefore there 

is no interference with the engine performance or its operating parameters. The AE 

analysis is a dynamic technique where more sophisticated applications can be operated 
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on-line while the data analysis can be carried out live for more efficient representation 

and processing. The complex geometry of the diesel engine blocks and components 

make it very difficult to interpret the AE signals, however a number of models has been 

implemented in order to identify the corresponding AE signatures [26, 89, 90].  

To get the most out of AE monitoring of engines, it is important to estimate the 

attenuation and propagation paths from various potential sources to a sensor placed on 

the surface of the engine. Nivesrangsan et al. [91] have used a technique that they call 

“spatial reconstitution” to reconstruct the time series due to sources at a set of given 

locations from the synchronous record of AE at a sensor array.  Such an approach is 

useful in solving the multi-source, multi-sensor problem in a complex geometry such as 

a diesel engine block. They first calibrated the cylinder head of a small four-stroke fuel 

injection diesel engine using simulated sources at various points on the cylinder head 

recording the arrival time and relative energy of the same source at each point a nine-

sensor array. They then carried out engine running tests focusing the analysis on 

reconstitution of injector and exhaust valve opening events. They found the attenuation 

factors for injector events to be similar to those measured from the simulated sources, 

but those for exhaust valve-opening showed a relatively poor correlation. They 

attributed this difference to variation in the actual source position during valve opening 

and also variable transmission though the multiple, moving interfaces in the cam, push 

rods and rockers. 

Even for simple impulsive sources, the propagation of AE in complex structures is not 

possible to solve analytically. One approach is to simulate the propagation using 

numerical analysis, but this can become challenging for something like an engine with 

multiple interfaces and different possible paths. A technique pioneered by Lim et al. 

[92] uses a ray firing procedure to model the transmission of rays both across the 

surface and through the interior of a complex solid. The approach considers the 

attenuation to be related to the AE path length and uses a virtual sensor to collect all 

rays arriving within a given extinction time, cumulating the energy arriving from each 

ray, modified according to its path length and number of reflections. The results of the 

computational simulation gave good agreement with measurements made on a cylinder 

block and various other simple cast iron objects. 
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Robertson et al. have demonstrated ways of identifying sources of AE in the liners of 

large (10MW) diesel engine cylinder liners [93] . They carried out a set of experiments 

using simulated sources on a cylinder liner of around 600mm bore to characterise the 

signal propagation to chosen locations on the liner surface. Figure  3.4 shows the results 

of this study and confirms the expected result that sensitivity to circumferential position 

is greater when the source to sensor axial distance is shorter. It also illustrates that larger 

circumferential displacements result in smaller arrival time differences in an axial array. 

A technique for source identification on the cylinder liner based on wave arrival time 

was developed and applied to running engines also using knowledge about the timing 

and duration of the mechanical events which occur during normal running. To enable 

subsequent identification of events without knowledge of the Top Dead Centre (TDC) 

location, a consistent event within the cycle needs to be identified. For this application 

(large engines) such events are most likely to arise from direct mechanical cylinder-liner 

interactions such as the piston rings passing the scavenging ports, as other major events 

such as injection and the opening and closing of exhaust valves could be independently 

controlled on some engines and are not therefore reliable indicators of engine crank 

angle position. In this way, AE events associated with an oil groove and scavenging 

port (Figure  3.5) were identified automatically on an in-service power generation 

engine. 

 

Figure  3.4: Effect of circumferential and axial position on arrival time of a simulated source on a 

large bore cylinder liner (from Robertson et al. [93]) 
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Figure  3.5: Raw AE signals from the running engine at two sensor locations A and B showing the 

main events. (from Robertson et al. [93]) 

Gill et al. [22] have demonstrated that AE can be used to detect the diesel engine faults 

in two different four stroke, high speed diesel engines. Data were acquired with the 

engine running in a reference condition with a single sensor at various positions. It was 

demonstrated that misfire and irregularities in fuel supply could be detected using a 

single sensor provided that the attenuation was well known for the reference conditions.  

Pontoppidan and Douglas [15] have taken the identification of events in diesel engines a 

stage further using a signal processing technique called “warping”. In this approach, 

knowledge of engine events is used to reconfigure data acquired under one operational 

condition into a format resembling another known operating condition. They claimed 

that the approach enables condition monitoring across known condition changes and 

thus enables non-stationary condition monitoring. Using data from a large electronically 

controlled 2-stroke marine diesel engine running under simulated marine conditions 

(different load settings on the propeller curve) they were able to align acoustic emission 

signals observed under different load settings. Using the method on data from the fuel 

injection period (where the largest deviations in timing occurred) they were able to use 

an already-developed component analysis framework for non-stationary monitoring of 

condition changes [94]. They also pointed out that the warp framework could also be 

used for alignment across cylinders and engines. As well as event analysis, AE has 

proven useful for assessing faults in the flow across valves (valve leakage) in a number 

of industrial areas, including in diesel engines [95-97]. 
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El Amin et al. [98] have systematically investigated the suitability of AE for the 

condition monitoring of diesel engine valve faults. The clearance on one exhaust valve 

was varied between normal and excessive (fault) in a Ford FSD 425 four-cylinder, four-

stroke, in-line OHV, direct injection diesel engine was successfully detected and 

diagnosed from the recorded AE signals. In the course of this work El Amin et al. 

expressed the opinion that valve events (exhaust valve opening), mechanical impacts, 

and gas flow over the valve face are the main sources of AE in diesel engines. 

El-Ghamry et al. [24] have presented a generic technique for on-line automatic 

monitoring of reciprocating machines using AE. Cyclic data from three types of 

reciprocating machines, ranging from a small diesel engine to a large in-service hyper-

compressor, under normal operation and with various fault conditions were used for the 

study. An algorithm was developed to isolate automatically those parts of the signal 

related to specific mechanical events, identified where the RMS AE was locally 

elevated. The signals were then subdivided to quantify and identify the events, giving a 

particular feature vector, which could then be compared with a predefined class of 

normal and fault features.     

In an intensively practical study, Frances et al. [99] have studied the variability of the 

AE signals from a set of medium sized marine diesel engines in service in ferry boats. 

The AE signals were acquired from four separate engines, working in pairs on each 

boat, during a variety of operating conditions from different positions on the individual 

cylinder heads, cylinder blocks and sumps while a high resolution shaft encoder was 

used throughout testing. The sensor position on the cylinder head exhaust port during 

the combustion and exhaust windows was selected for particular quantitative study. 

With reference to the maintenance records for the engines, it was shown that AE signals 

can be correlated to distinguish between engine conditions in the face of different 

operating conditions and between different engines.  

Gu et al. have carried out a intensive study of the capacity of acoustic (i.e. sound) 

measurements in condition monitoring of diesel engines [11, 12]. First, they modelled 

the sound generation of a diesel engine based upon the combustion process, and used 

time-frequency analysis to reveal the expected underlying characteristics of the sound 

waves. For example, the frequency bandwidth of the sound was significantly widened 

around the TDC positions, with the energy concentrated predominantly at the firing 
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frequency and its harmonics and their model predicted an increase in sound level with 

increasing engine load and speed. To cope with the contamination of real acoustic data 

from a test bay, they used a smoothed pseudo-Wigner-Ville distribution and continuous 

wavelet transform (CWT). After a series of conditioning procedures on the noise 

contaminated signals, they demonstrated that a number of real faults, could be identified 

and distinguished from the shape of the contours in the CWT. 

3.3 Condition monitoring of diesel injection 

The monitoring of injectors poses particular problems because it is difficult to isolate 

experimentally the mechanisms which generate the AE. On the one hand, there are 

complex fluid-mechanical events occurring during the injection of fuel into the engine, 

including turbulent flow and cavitation [100], both of which phenomena are known to 

generate AE [101, 102]. On the other hand, the opening of the injectors involves an 

interaction between the injector pump (or rail) and the various mechanical parts of the 

needle lift mechanism, leading to some temporal structure on a millisecond timescale. 

Added to this, the injectors are, in many cases, driven by the engine and so there is a 

coupling between engine running and injection, not to mention the fact that timing and 

volume of injection also affect the combustion process. 

As an example of the coupling between injection and combustion, El Ghamry et al. [89] 

have developed a method of reconstructing cylinder pressure using AE measurements 

alone. Guided by synchronous measurements of AE, injector needle lift and in-cylinder 

pressure, they developed an algorithm based on separating the pressure rise and fall 

parts of the curve utilising the complex cepstrum of the AE. The refined method was 

found to transfer well to a large two-stroke marine diesel in the absence of needle lift 

measurements. It should be emphasised that, whilst effective, this method did not 

attempt to diagnose the source of the AE and was not, in this sense, a fault-monitoring 

technique. Gu et al. [103] have carried out a similar study, this time using instantaneous 

crankshaft angular velocity, recorded synchronously with pressure, to develop a radial 

basis function network to reconstruct the pressures in each of the cylinders of a small 

diesel truck engine. They claimed some success in detecting a slight fault in one of the 

cylinders using this technique. Barelli et al. [104] have also proposed a  methodology 

for obtaining internal indicated mean effective pressure in internal combustion engines 
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using external acoustic and vibration measurements, Vibration and acoustic indexes 

were introduced to estimate the combustion quality, against reference values. 

Both intrusive and non intrusive methods have been developed to monitor fuel injection 

parameters in diesel engines. Marcic [105, 106] has assessed fuel injection rate by 

measuring the electric charge generated in the injection nozzle due to fuel friction in the 

nozzle (Figure  3.6)  arising from fuel droplets passing the electrode at velocities of 100–

300 m/s. Marcic has also devised a method of measuring the injection rate from each 

hole in multi hole injectors [107] to address one the common problem of irregular 

thermal load distribution in combustion chamber due to variations in injection rate from 

each hole. The method relies on measuring the deformation of a membrane at which the 

fuel jet is directed and obviously can only be deployed as a quality control method with 

the injector dismounted from the engine.  

 

Figure  3.6: Sensor of charge measuring method. [105] 

Carlucci et al. have investigated the relationship between injection parameters (timing, 

fuel quantity and mean injection pressure) and cylinder block vibration [108]. They 

placed two accelerometers in two different zones of the engine block, defining a 

characteristic ‘‘signature’’ for each parameter. A complete three factor experimental 

plan, varying the injection parameters was carried out and signatures were derived using 

conventional Fourier analysis and time–frequency analysis, significant frequency bands 

of vibration and pressure being correlated with the parameters. They found that 

injection pressure and injected quantity affected the vibration signals in a specific way; 

injection timing affected the engine block vibration in a less evident way, but a 

characteristic signature was also defined for this factor. They also were able to 

recognise piston slap using time frequency analysis of the vibration.  
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Gu and Ball [109] developed a dynamic model for the needle motion of a common hole-

type, single stage diesel fuel injector. A two-mass dynamic model was used, including 

the contact stiffness and material and fluid damping. The model was verified by 

estimating the opening and closing needle impacts, which successfully correlated with 

the corresponding injection parameters, including injection pressure, fuelling rate and 

timing. They also predicted that that the opening needle impact would have higher 

frequency and lower amplitude than for the closing impact, while the amplitude for both 

opening and closing impacts would increase with an increase in the fuelling rate. In a 

later paper, the same authors compared the model predictions with vibration data 

recorded on an injector [110]. They found that the vibration signals corresponded to the 

flow of high pressure fuel inside the injector and the needle hitting its backstop and seat 

(Figure  3.7) and that there is a linear relationship between the fuel supply line pressure 

and the corresponding injector vibration amplitude.  On this basis, they suggested that 

the vibration based approach could provide a powerful alternative to the conventional 

technique based on measuring the fuel line pressure and the needle lift (as shown in 

Figure  3.8).  

Albarbar et al. [18] used airborne acoustic analysis to monitor the injection process, 

using a Wigner-Ville transform to generate features. Using Independent Component 

Analysis, they were able to recover the injector signal from the noise associated with 

combustion and mechanical excitation. 

Elamin et al. [111] have investigated the use of AE to identify a series of seeded 

injector faults in a 72kW four-stroke HSDI engine, concluding that both time- and 

frequency-domain features were required. They also suggested that, for their particular 

engine and sensor positions, the strongest AE signals were generated by the opening of 

the inlet valves and that injector faults were reflected in the inlet valve transient. 
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Figure  3.7: Injector vibration versus cylinder pressure, line pressure and needle lift. [110] 

 

Figure  3.8: Fuel injection timing as revealed by needle lift and fuel line pressure [110] 

Brown et al. [112] have studied the benefit of using AE piezopolymer sensor with a fast 

temporal response for a diesel fuel injector. It has been shown that the use of this sensor 

can reveal more detailed structures within the time signal and also can identify multiple 

acoustic emission events which correlate with mechanical movements and other 

sources. The spectra for two different fluid mechanical conditions were compared where 
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those from the piezopolymer sensor contained a wider range of features that could be 

used to identify the source of the AE.  

AE can potentially provide a better representation of the signal generated from the 

injection process than some of the other methods described above due to its higher 

frequency response than for vibration measurement making it less prone to unwanted 

signal from whole-body vibrations. More fundamentally, there is the potential that AE 

can detect the actual flow of fuel through the injector as opposed to the result (after 

combustion) as is more likely with sound or vibration monitoring. Also, the structural 

transmission paths for AE are more selective and, probably, more reliable in terms of 

propagation speed offering better noise rejection than airborne sound and the ability to 

use source location techniques with multiple sensors to further enhance sensitivity. 

Amongst the first attempts to use AE to monitor diesel injection was by Gill et al. [20]. 

They carried out a series of tests with varying injector settings on a high speed, four-

cylinder direct injection diesel engine (HSDI) recording AE and vibration during the 

injection and combustion processes. They found that the injector discharge pressure can 

be effectively described by using AE and, by correlating with a needle lift sensor, that 

both the point of increase in fuel pressure and the opening of injector nozzle could be 

detected. Generally, they also found that AE offered a better representation of the 

injection process than did vibration measurement, because the high frequency response 

of the AE sensor eliminates the problems associated with engine resonances and low 

frequency vibration caused by background noise.  

Douglas et al. [21] have investigated the AE signal generated during the injection 

process of two different types of diesel engine. They studied the AE signature from 

large marine diesel engine with a two-stage spring type injector and a small high speed 

direct injection diesel engine with a one-stage injector. They found the AE signal to be 

sensitive to the mechanical movements of the components of the injectors as well as the 

fuel flow, including pressure build-up before needle opening, the full opening of the 

needle, fuel delivery, needle closing impact, and fuel excitation after closing the needle. 

Figure  3.9 shows the RMS AE signal during the injection process from the two-stage 

injector in the large engine. The event labelled A corresponds to the pressure build-up in 

the injector, while events B and C are associated with needle opening and closing 

impacts, respectively. The event D was assumed to be the result of back pressure 

fluctuation in the fuel line after needle closing. A change in the engine load, as shown in 



56 

 

Figure  3.10, was found to affect the location of event C significantly. Figure  3.11 shows 

the raw AE signal as an angle-frequency plot during the injection period from the 

single-stage injector, again with a number of events labelled. As for the two-stage 

injector, the first event represents the build-up of pressure before needle opening, while 

both the second and third events are related to the opening and closing impacts, 

respectively. Again, it was thought that the fourth event could be the back pressure 

fluctuation in the fuel line after needle closing. There is a clear mix of low and high 

frequency (with distinct band switch) associated with the four events. Also, the contour 

plot in Figure  3.11 shows the distribution of the frequency spectral content, in which it 

can be seen that high frequency spectral content is associated with the lead-up to events 

1 to 4 tentatively identified as fluid flow and low frequency spectral content was 

associated with impact type events.  

 

Figure  3.9: Plot of RMS AE signal and fuel line pressure versus crank angle at 25% of full load 

from 6MW diesel engine. [21] 
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Figure  3.10: Plot of RMS AE signal for injector events at different engine loads.[21] 

 

 

Figure  3.11: Contour plot of crank angle against measured raw AE signal and frequency.[21] 

3.4 Signal processing algorithms in condition monitoring  

As mentioned in the foregoing sections, it is almost inevitable that some type of signal 

processing needs to be done when converting a sensor signal to a monitoring indicator. 

In the simplest case, the measurement is more-or-less direct, such as is the case for in-

cylinder pressure measurement, which has historically been used for off-line 
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combustion diagnosis, although online application for real-time combustion control has 

become of great interest. Diesel engine combustion can be examined by analysing the 

instantaneous variation of the chamber pressure, directly obtained using a conventional 

piezoelectric sensor [113]. Such methods are based on the detection of sudden changes 

in the chamber pressure (caused thermodynamic phenomena within the cylinder) which 

can be amplified by differentiating the pressure time series. Conventional signal 

analysis tools both in time and in time-frequency domains can be used for detecting the 

start of combustion, the end of combustion and the heat release peak. In less direct 

measurements (such as acceleration or AE monitoring) some kind of correlation is 

required between the measured and the monitoring target. 

Independent component analysis (ICA) and principal component analysis (PCA) are 

both widely used in machinery condition monitoring [114-116], ICA to separate 

individual sources in multi-sensor signals and PCA to stratify the main sources of 

variation in a given signal. Pontopiddan and Larssen have presented a new method for 

unsupervised change detection in large diesel engines, which combines independent 

component modelling and probabilistic outlier detection [117] The method was 

successfully applied to condition change detection in a large marine diesel engines 

using the AE signal and compared favourably to more conventional techniques based on 

PCA and Gaussian mixture models. Pontoppidan et al. [118] also used ICA with 

automated grouping to pick up the increased friction between piston and liner associated 

with different operating conditions in the same large diesel engine.  

A slightly different, and novel, application of ICA in monitoring combustion in a 

common rail diesel engine is offered by by Bizon et al. [119] applied to 2D images of 

combustion-related luminosity. The images were acquired from an optically accessible 

diesel engine and the raw data, from a sequence of crank-angle resolved images, were 

treated by ICA in order to identify leading independent structures. Two main 

independent components (IC) were extracted from sets of luminosity images, and their 

coefficients used to study the transient during a single cycle, and for the assessment of 

cycle variability. Data on dynamic in-cylinder pressure, rate of heat release and integral 

luminosity were used to aid the analysis. Within a cycle, the two independent 

components were found to be related to combustion events near the fuel jets and near 

the bowl walls, respectively. The analysis over a number of cycles allowed a separation 

of the mean combustion luminosity field from the random, erratic flame structures 
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which are responsible for cyclic variability. The statistics of the two independent 

components indicated lower variability of the jet flames and higher variability of 

combustion near the chamber walls, in agreement with the idea that impingement of fuel 

sprays onto the piston bowl walls in HSDI engines is responsible for an increase in 

unburned hydrocarbons and smoke emissions.  

Badawi et al. [120] have applied ICA to the record of a single accelerometer mounted 

on the surface of a single cylinder diesel engine. They recognised that forces 

contributing to engine vibration arise from: exhaust valve closure, inlet valve closure, 

fuel injection, combustion, piston slap, exhaust valve opening and inlet valve opening 

and simulated the expected vibration time series in a cycle. The simulated and measured 

vibration series were separated by ICA using time-frequency analysis and filtering of 

segmented parts of the original signal. The events mentioned above could all be 

identified from the measured signal as well as from the simulated one, indicating that 

the engine was behaving as expected by the model and by the specification. 

Zheng and Leung [121] developed an analysis procedure for processing the sound 

signals from internal combustion engines using the time frequency distribution. The 

sound source for a diesel fuel injector was identified and abnormal conditions were 

detected in the time-frequency distribution of the sound signal. The beginning and 

ending times of the injection were also successfully determined from the time-frequency 

distribution of the sound signal, which was found to be capable of identifying even very 

weak events by localising the signal analysis.  

Another way of focusing on relevant parts of a signal is by adaptive filtering, as 

advocated by Albarbar et al. [19]. These authors recorded the sound emitted from a 

diesel injector operating with a range of injector pressures using a condenser 

microphone. The bandpass filtered microphone signal was subjected to time-frequency 

analysis (using a Wigner-Ville transform) and the relevant frequency bands for needle 

opening and closing impacts identified. Filtering of the relevant windows of the time 

series was found to give a much clearer indication of injector pressure than could be 

determined from the unfiltered signals. A similar approach was advocated by Pruvost et 

al. [122] for separating the sound associated with combustion from more general 

mechanical noise in diesel engines, the motivation being to isolate the combustion 

noise. They found that, because the sources are correlated and overlap in both the time 
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and frequency domains, the best way to separate them was to use only the random part 

of the signal, on the basis that the mechanical noise is associated with engine and other 

cyclic sources whereas diesel combustion in particular can be quite irregular. They 

therefore developed a spectrofilter to remove the periodic parts of the signal allowing 

the analysis to be concentrated on the remaining (random) part. 

Wavelet analysis has been shown to be a powerful tool in signal decomposition and 

component analysis [123] and a number of authors have applied it to acoustic emission 

signals for medical and structural applications, either to segment components of the 

signal [124] or to separate propagations modes in large structures [125, 126].  Peng and 

Chu [127] have produced a comprehensive review on the use of the wavelet transform 

in machinery condition monitoring. Ranachowski and Bejger have used the wavelet 

transform to analyse acceleration signals recorded from a six-cylinder diesel engine 

with sensors placed on each of the injector and pump outlet ports [128]. They found, 

among other things, that wavelet decomposition provided very good separation of the 

combustion and injection events. Wu and Chen [129] carried out a more ambitious 

study in which they monitored sound and acceleration signals from an IC engine and its 

associated cooling fan. They used a continuous wavelet transform to overcome such 

diagnostic problems as “smearing” due to variable engine speed and fault signals buried 

in background noise. They demonstrated the approach on two sets of experimental fault 

data, one associated with the engine’s fan and the other covering such engine faults as 

misfiring and a leaky inlet manifold. Barelli et al. [130] claimed to have developed an 

innovative diagnostic system of the combustion process specifically for cogenerative 

reciprocating engines. The target was to evaluate the energy content of the vibration 

signal acquired on the cylinder head and they found that correlating maintenance and 

performance records with a decomposition using the Discrete Wavelet Transform 

allowed them to distinguish between good and bad conditions of the combustion 

chambers. Finally, Wang et al. [131] have introduced a novel de-noising technique 

using adaptive wavelet packets, which they have applied to vibration signals from diesel 

engines. They introduced further de-noising techniques, including a modified ensemble 

mode decomposition to avoid mode mixing. They demonstrated the effectiveness of the 

techniques in separating impact signals from generator vibration signals, even when the 

impact signatures were buried within unrelated vibration.  
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The complexity of the relationship between sensor signals and potential diagnostic 

outcomes has led many researchers to apply higher level signal processing techniques, 

such as neural networks and expert systems, often using modifications some of the 

above methods to generate features or indicators. In an early application [132], diesel 

engine faults have been detected by using a single sensor for each of the cylinder 

pressure and vibration, and two sets of artificial neural networks were shown to identify 

the faults with success level of 90%. For example Wu and Liu [133], when attempting 

on-line fault diagnosis for engines based on sound signals, used the discrete wavelet 

transform to generate features for neural network input, choosing the DWT over the 

CWT [129] because of its speed of computation in on-line monitoring. Later, the same 

authors [134] used a wavelet packet transform combined with a neural network to 

develop a kind of diagnostic expert system.  

Canonical correlation analysis (CCA) is a kind of blind source separation [135] and has 

recently attracted interest in the field of condition monitoring especially where there is 

significant high temporal and spatial variations as in monitoring the water quality [136]. 

In the only application to IC engines, so far, [137] canonical variety analysis (a form of 

multivariate statistics) has been used to identify misfire events in a 6-cylinder engine 

using the first six harmonics of the torsional vibration. No application of CCA to IC 

engines has yet been published and the idea is further developed in Chapter 4. 

3.5 Summary and identification of thesis topic 

Current developments in the area of condition monitoring in internal combustion 

engines moved along three main research themes; developing new measurement 

devices, developing new signal processing algorithms and developing simulation 

models. The current work aims to contribute in the first two of these, being about new 

processing algorithms for a relatively new sensor type for this application. The current 

state of the art, whilst using sophisticated signal processing algorithms, is not optimised 

or configured for the fact that multiple sources will produce records in a sensor array 

where the order of source signal arrival varies in a way that can be pre-calibrated on the 

object being monitored. 

The current work aims to improve the resolution of AE in small diesel engines, using 

careful calibration of sensors and attenuation paths, to exploit to the full the advantages 
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of AE measurements in time resolution and source location. To give a manageable, but 

challenging, case-study, the work is focused on the time- and crankshaft angle windows 

covering injection, inlet valve opening and combustion in an attempt to identify more 

clearly what contribution to the AE is made from the various mechanical and fluid 

mechanical sources. The method is, however, generic to machinery applications where 

multiple AE sources are operating in close temporal and/or spatial proximity. 
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Chapter 4 

Experimental set-up and procedures 

This chapter describes the apparatus, monitoring equipment and experimental 

procedures that have been used in this thesis. First, the diesel engines and experimental 

injector rig used in the research are presented followed by a description of the AE 

system which was used as the monitoring tool.  Next the various calibration tests for the 

sensors and propagation paths on the engines and injector rig are described and 

analysed. The procedures used for the main body of data collection on the engines and 

the injector rig are then described and justified, and, finally, the methods of processing 

and analysing the experimental data are detailed. 

4.1 Test engines  

Three different diesel engines were used in this study in order to investigate a broad 

range of operating parameters and to have a range of detailed mechanical configurations 

in the interest of generality of findings. The engines comprised of two four-stroke, four-

cylinder engines and one two-stroke, two-cylinder engine as shown in Table  4.1.     

Specifications Stuart Turner  

(Engine A) 

 Perkins A4.270 

(Engine B) 

 Perkins T1004 

(Engine C) 

Operating mode Running Running Running 

Control system Mechanical Mechanical Mechanical 

Fuel Light Diesel oil/ 

Biodiesel 

Diesel oil Diesel 

Power 6.6 kW (9hp at 

700 rpm) 

46 kW (62 hp at 

2000 rpm) 

99 kW (135 hp at 2500 

rpm) 

No of cylinders 2 4 4 

Cycle Two stroke Four stroke Four stroke 

Induction system Pump scavenged Normally aspirated Turbocharged 

Nominal bore 69.85mm (2.75in) 108mm (4.25in) 100mm (3.94in) 

Stroke 101.6mm (4in) 120.5mm (4.75in) 127mm (5in) 

Compression ratio 16.5:1 16:1 17.25:1 

Cubic Capacity 0.779 litre 4.42 litres 4 litres 

Firing order 1, 2 1, 3, 4, 2 1, 3, 4, 2 

Max. governed 

speed 

1500 rpm 2000 rpm 2500 rpm 

Cylinder liner Wet  Wet Dry, transition fit, 

flanged, with flame ring 

Type of injection Direct injection Direct injection Direct injection 

Table  4.1: Specifications of test engines. 
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In addition, a specially-designed injector rig was used to acquire data on the AE 

associated with the injectors only, without the noise of other mechanical aspects of the 

engine. The engines and the injector rig are described in the following sections. 

4.1.1 Engine A (Stuart Turner Engine) 

Engine A (shown in Figure  4.1) was a 6.6 kW, 0.779 litre, two-stroke, two-cylinder, 

pump-scavenged diesel engine made by Stuart Turner for propelling small boats. It was 

equipped with a flange-mounted type C.A.V. fuel injection pump, which is a cam-

operated spring return plunger pump of constant stroke. The engine used direct injection 

which starts 25
o
 BTDC with an injection pressure of 170 bar in open chamber. 

 

Figure  4.1: Stuart Turner diesel engine (Engine A). 

4.1.2 Engine B (Perkins A4.270) 

The second engine used in this study was a Perkins A4.270, 46 kW, 4.42 litre, four-

cylinder, naturally aspirated, wet-lined diesel engine which has been shown in 

Figure  4.2. A distributor, a flange mounted fuel injection pump and a mechanical 

governor were fitted on this engine and direct injection was delivered via four multi-

hole injectors with conical spray into  a toroidal chamber. The injection pressure was 

170 bar and the static injection starts at 16
o
 BTDC. Naturally aspirated diesel engines 

have better transient combustion response than their counterpart turbocharged diesel 

engines [30]. 
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Figure  4.2: Perkins A4.270 diesel engine (Engine B). 

4.1.3 Engine C (Perkins T1004) 

Engine C (shown in Figure  4.3) was a 76 kW, 4-litres, four-stroke, four-cylinder, 

turbocharged, high speed direct injection (HSDI) Perkins T1004 diesel engine. This 

engine used direct injection delivered by a Bosch VE diesel injection pump and four 

multi hole, long stem, single spring Lucas injectors, with an injection pressure of 240 

bar. The use of turbochargers in diesel engines improves specific brake power and fuel 

consumption and reduces carbon dioxide emissions. However, this type of diesel engine 

also suffers from what is called “turbocharger lag” which, under severe acceleration, 

results in poor transient combustion efficiency and heavy exhaust emissions [30]. 

 

Figure  4.3: Perkins T1004 diesel engine (Engine C). 
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4.1.4 Experimental injector rig 

An experimental rig (Figure  4.4) was designed to mimic the injection process, in order 

to isolate the AE associated with injection process from other sources of both signal and 

noise that can found in a running engine. Similar experimental rigs have been used to 

study the injection spray by others [138-142].  

 

Figure  4.4: Diesel injector rig set up. 

Figure  4.5 illustrates the diesel injector rig in schematic form. A Bosch VE (4/12 

1250RV 137931) diesel injection pump, which is similar to the VE pump in engine C, 

was used in the rig to deliver the diesel fuel to the injectors at a pressure of 240 bar 

(Figure  4.6).  The pump was driven by an electric motor with a variable speed controller 

to replace the normal driving motion from the crankshaft of the diesel engine 

(Figure  4.7).  A multi hole long stem LUCAS (LJCX 69113) injector (Figure  4.8) was 

mounted into an injection chamber. The other outlets from the injector pump were 

connected to three similar injectors which were vented to a return fuel tank (Figure  4.9). 

The injection chamber is a pressure vessel designed to withstand an internal pressure of 

up to 16 bar (Figure  4.10) but during all the experiments, the chamber was used under 

atmospheric pressure because this study focused on the identification of the injection 

event rather than being an in depth study of the spray formation and the behaviour of 
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the combustion which require accurate simulation of the injection/combustion 

conditions. 

 

Figure  4.5: Schematic diagram of the injector rig set up. 

 

Figure  4.6: Bosch VE injection pump. 
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(a) (b) 

Figure  4.7: Power transmission system including electric motor and pulleys (a) and variable speed 

controller (b). 

 

Figure  4.8: LUCAS LJCX 69113 injector. 
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Figure  4.9: Fuel tank arrangement. 

 

 

  

Figure  4.10: Injection (compression) chamber. 

4.2 Acoustic Emission condition monitoring equipment 

A custom-built AE system (shown in Figure  4.11) was used in this research, in which an 

AE sensor array (up to three sensors) was polled using high-speed data capture to enable 

raw acoustic emission to be acquired at full bandwidth for later processing. 

Return tank 

Supply tank 
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Figure  4.11: AE system. 

4.2.1 Acoustic emission sensors 

The AE sensors used in this study were broadband Physical Acoustics Corporation 

(PAC) Micro-80D transducers with operating frequency range of 0.175-1MHz and main 

resonances at 325 kHz and 650 kHz. These sensors are 10 mm in diameter and 12 mm 

in height and are enclosed in a cylindrical stainless steel case to provide electromagnetic 

interface shielding. The sensor element is made of lead zirconate titanate (PZT) 

piezoceramic, with an operating temperature range of -65
o
C to 177

o
C, suitable for use 

on the engine cylinder head outer surface, where the temperature will not exceed 100
o
C. 

A calibration was performed to check the sensitivity of each AE sensor against the 

calibration certificate (Appendix A) prior to every engine experiment.  

4.2.2 Acoustic emission preamplifiers 

The electrical signal produced by the AE sensor is normally weak and requires to be 

amplified to be transmitted any distance. Each sensor was connected to a PAC-1120A 

preamplifier (shown in Figure  4.12) with a band pass filter in the range 0.1-1 MHz. The 

preamplifier was 2/4/6 type which indicates the three selectable gain settings of 

20/40/60 dB. This preamplifier has a wide dynamic range and low noise level (less than 

2 μV) with a large output signal (20Vpp into 50 ohms). The power supply of 28V and 

the signal output were provided through a single BNC connector. 
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Figure  4.12: PAC preamplifier 

4.2.3 Signal conditioning unit 

A 4 channel AE signal conditioning unit (SCU) was custom-designed to provide the 

power supply to the preamplifier (28V) as well as further signal amplification or 

attenuation, as required. Four gain settings were provided for this purpose: +6, 0, -6, -12 

dB using a selectable switch. An analogue RMS output was integrated into this unit, 

with selectable RMS averaging settings, although measurements in this work used the 

raw signal output. 

4.2.4 Connectors and coupling 

High vacuum grease couplant, from Dow Corning, was used to ensure good contact 

between the sensor and the surface. The couplant enhances the transmission of the 

acoustic waves through the surface of the transducer. This high vacuum grease has good 

heat stability over the range -40
o
C to 200

o
C. 

A number of different holders (shown in Figure  4.13) were used to hold the sensors in 

contact with the surface of the cylinder head or injector, including magnetic and screw-

down holders. 

A number of custom PAC cables with BNC connectors were used to transfer the 

amplified AE signals. All were coaxial cables with shielding against external EMI 

noise. 

A NI-BNC-2120 shielded connector block with BNC connectors was used to carry the 

outputs from the SCU and route them to the data acquisition card. 
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Figure  4.13: Sensor holders. 

4.2.5 Data acquisition and processing units 

The input data was acquired by using 4 high speed input channel, 10 MS/s per channel, 

two 12-Bit output Simultaneous-Sampling Multifunction DAQ card (NI PCI-6115). AE 

signals were managed using a LABVIEW program, while several MATLAB codes have 

been produced to analyse the AE signals (discussed in detail later).  

4.2.6 Shaft encoder 

An Omron shaft encoder model E5C2-CWZ6C, delivering 360 pulses per revolution 

was coupled to the fuel injection pump in order to record the angular position and 

determine the in-cycle and between cycle rotational speed. The shaft encoder was 

connected directly to the shaft of the injection pump using a flexible coupling 

(Figure  4.14). A TDC marker was used to identify the position of TDC point so that it 

could be displayed as a double height pulse as shown in Figure  4.15. 

 

Figure  4.14: Shaft encoder (left) and TDC signal can be identified by the TDC marker (right). 
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Figure  4.15: Typical signal from the shaft encoder where TDC signal can be identified by threshold 

crossing of the signal peaks identified by the TDC marker. 

4.3  Calibration 

Because the analysis of the results relies on the time series obtained from multiple 

sources to an array of sensors, it is important to calibrate the sensors, the transmission 

paths and also any uncontrolled variables, such as sensor placement. To this end, a 

series of calibration tests were carried out on a simple steel block and also on each of 

the engines and the injection rig. The calibration tests, as well their results, are 

described in the following sections. 

Three AE sensors were consistently used throughout the work, and their calibration 

certificates (which describe their frequency response) are shown in Appendix A. All of 

the calibrations used a pencil lead break (Hsu-Nielsen source [143]), as shown in 

Figure  4.16, as a reasonably reproducible step unload source which can be applied 

easily at a precise location on the steel block, engine or rig.  
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Figure  4.16: Hsu-Nielsen source test [143]. 

 

4.3.1 Calibration of AE sensors on steel block and plate 

Two sets of calibration were carried out on the solid steel cylinder shown schematically 

in Figure  4.17. The calibration consisted of breaking pencil leads in the centre of the top 

face with the three sensors arranged at the same radial position Rs. In the first 

calibration, the three sensors (AES1, AES2 and AES3) were arranged at positions P1, 

P2 and P3, respectively on a pitch circle radius of 70mm. The sensors were removed 

and replaced five times, and 20 records of pencil lead breaks were acquired for each 

placement. Analysis of these records allows an assessment of the reproducibility of the 

sensor placement (coupling) and of the pencil lead breaks themselves, as well as giving 

an inter-sensor sensitivity calibration. In the second calibration, the sensors were moved 

to different positions on a pitch circle radius of 100mm, making three arrays; [AES1/P1, 

AES2/P2, AES3/P3]; [AES1/P2, AES2/P3, AES3/P1] and [AES1/P3, AES2/P1, 

AES3/P2]. For each array, 10 pencil lead records were acquired for each sensor, the 

sensors removed and replaced and a further 10 pencil lead records acquired for each 

sensor. This second calibration was used to distinguish between the effects of the sensor 

sensitivity and any systematic variations between the positions on the block.  Each 

pencil lead record was acquired at a sampling rate of 5 MHz for 0.1 second using a 

fixed gain (28dB) with the same amplifier and channel for each sensor (Table  B.1 in 

Appendix B). 
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Figure  4.17: AE sensor calibration set-up, showing pencil lead source (X) and sensor positions (P1, 

P2 and P3). (All dimensions in mm.) 

Figure  4.18 shows a typical 0.1 second record from the sensor calibration tests, with a 

zoom in on the first two hundred or so microseconds. As can be seen, the signal decays 

quite slowly but there are clear returns at around 40μs and around 100μs, corresponding 

to reflection of a surface wave from the cylinder edge and a bulk wave from the bottom 

surface. Thus, the whole record contains multiple reflections and modes of propagation, 

but the first few tens of microseconds contain the essential information about the 

source.  Figure  4.19 shows the mean and the standard deviation of the energy of the 

whole record for each of the re-mounts for each of the sensors when their positions are 

kept the same. It appears that the energy from a pencil lead break can vary by around 

±30% for any sensor without it being removed, and that removal and replacement can 

result in a variation in energy of about ±10%. It is also evident that AES1 records 

energies a factor of about 3 times higher than AES2 and AES3 seems to lie between the 

two. Figure  4.20 shows the same data as Figure  4.19, but plotted against signal arrival 

time relative to AES1 which is used as the acquisition trigger. It is clear that there is a 

difference in the signal arrival time which is correlated quite well (given the variability 

of pencil lead breaks and re-mounts) with energy using a relationship as suggested by 

Equation  2-24. It might be noted in passing that the time difference between AES2 and 

AES1 corresponds to around 5mm for a Rayleigh wave travelling at 3000ms
-1

 and also 

that there may be coincidental differences in sensor sensitivity which enhance the 

variations in energy. Figure  4.21 shows the results of the second calibration test, where 

the sensors were moved between the positions. It is clear that there is a shift in mean 
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energy between positions for any given sensor, and that position 2 gives consistently 

higher energies than the other two positions. Coupled with the findings shown in 

Figure  4.20, this would suggest that the shift in mean between positions is partly due to 

the accuracy of placement of the sensors and partly due to different reflection conditions 

at the bottom surface (mounting blocks under positions 1 and 3).  Overall, it can be said 

that there is a variability of about ±10% in what might be recorded by a given sensor 

with a given source strength in a nominally identical experiment, this being due to 

inaccuracy in the placement of the sensor and also in variations in its coupling to the 

surface. Figure  4.21 suggests that AES3 is about twice as sensitive as AES2 with AES1 

being intermediate between the two. Similar studies, in which the same block has been 

used, have suggested irregularity of the support and the materials [144, 145] 

 

 

Figure  4.18: Typical raw AE signal of the sensor calibration experiment for AES1 with a 0.1 s 

record (top) and with window of 0.2 ms (bottom). 
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Figure  4.19: Effect of re-mounting and variation of pencil lead breaks for each of the sensors in 

first calibration test. 

 

 

 

 

Figure  4.20: Data from Figure  4.19 re-plotted to show arrival time relative to AES1 along with best 

fit exponential function. 
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Figure  4.21: Effect of sensor position and variation of pencil lead breaks for each of the sensors in 

the second calibration test. 

A 1m × 1m steel plate of thickness of 6 mm was used to assess arrival time estimation 

over longer distances. Two of the same sensors and preamplifiers as used in the cylinder 

test were also used here, although relative amplitude calibration is not important here as 

the first sensor merely acted as a trigger for capture at the second sensor. The two 

sensors were mounted 400 mm apart and the gap divided into seven segments of 50 mm 

spacing (Figure  4.22). Ten pencil leads were broken at each interval (Table  B.2 in 

Appendix B), the AE signal at the target sensor being acquired and processed as before. 

 

Figure  4.22: Schematic layout on thin steel plate with two AE sensors. (All dimensions in mm.) 
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Figure  4.23 shows an example of the recorded signal for the two sensors for a particular 

source position, illustrating how the difference in arrival time was estimated. As can be 

seen, each signal commences with a short segment of relatively low amplitude AE, 

followed by a second “arrival” of higher amplitude AE, and the length of the initial 

segment increases with source-sensor distance, implying that it is moving faster from 

the source. The arrival of two (or more) waves travelling at different speeds has been 

noted by a number of researchers, e.g. Shehadeh et al. [146] and algorithms have been 

suggested for separating the two. For the purposes of the current work, where there is 

significant background noise and the need is to pick out stronger locatable sources 

within this background, it is sufficient simply to find the first emergence of a source 

above the noise. Accordingly, the arrival time is estimated by calculating the absolute 

value of the signal since the cessation of the previous source and comparing this with 

the instantaneous amplitude, arrival being defined as the time at which the amplitude 

exceeds 1.5 of the maximum absolute value of the background noise which is estimated 

from the first 500 sampling points (of 1000 points pre trigger value).  Figure  4.24 shows 

the resulting arrival time differences plotted against source-sensor distance difference 

and the best-fit straight line suggests a propagation speed of 5128 ms
-1

 which compares 

to the speed of the fast wave of 5119 ms
-1

 in similar steel plate reported by El-Shaib 

[144].   

 

Figure  4.23: Raw AE signal of pencil lead break on a thin steel plate at the fifth position (A). 
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Figure  4.24: Measured arrival time difference vs source-sensor distance difference for thin plate. 

4.3.2 Calibration on engines and injectors 

As well as the calibration of the sensors and the development of thresholding 

algorithms, it was necessary to carry out some propagation studies on each of the 

experimental objects, the detail varying with the particular experiment envisaged.  

4.3.2.1 Injector attenuation 

One of the injectors was removed and cleaned and one sensor was mounted on the end 

which normally protrudes from the cylinder head as shown in Figure  4.25. Twenty five 

pencil lead records were then acquired at each of four source positions, using a 

sampling rate of 2.5MHz and a record length of 0.1 second (Table  B.10 in Appendix B). 

 

Figure  4.25: Attenuation measurements on injector body. 

Figure  4.26 shows the results of the attenuation tests on the injector plotted against axial 

distance. Here the attenuation with distance along the injector is much smaller than for 

the cylinder head (as seen later), most likely because of the dimensions of the injector 

which will reduce geometric spreading. 

y = 0.2009x 
R² = 1 

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300 350

Δ
t a

ri
va

l (
μ

s)
 

IΔSIsource-sensor (mm) 



81 

 

 

Figure  4.26: Attenuation measurements on injector body. 

4.3.2.2 Calibration on Stuart Turner engine (Engine A) 

Pencil lead break tests were performed on the cylinder head of Engine A with the 

engine cold, hot (immediately after a running engine test) and with the engine warm, 

approximately one hour after a test. At each temperature, a pencil lead was broken at 

nine different positions (P1-P9) with sensors at two positions (AES1 and AES2) as 

shown in Figure  4.27, and five records were captured for each source position. The AE 

signals were acquired at a sampling rate of 2.5MHz over a record length of 0.1 second, 

using a fixed signal gain of 28dB (Table  B.3 in Appendix B). 

 

Figure  4.27: Schematic diagram of sensor array and positions of pencil lead break (x) in signal 

transmission test on Stuart Turner diesel engine (Engine A). (All dimensions in mm.) 
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Figures 4.28 and 4.29 show the resulting AE energy recorded at Sensor 1 and 2, plotted 

on logarithmic-linear axes for the cold (room temperature- approximately 20
o
C), warm 

(approximately 40
o
C) and hot (approximately 70

o
C) engine. As can be seen, the engine 

temperature has a noticeable effect on the overall transmission over the cylinder head 

surface, although the attenuation slopes are quite similar at the three temperatures, 

suggesting that the temperature simply reduces the sensitivity of the sensor [147-151]. 

 

Figure  4.28: Attenuation of cylinder head (P1-P9) sources recorded at AES1 on Engine A vs source-

sensor projected distance at three different surface temperature conditions; Cold (≈20
o
C), Warm 

(≈40
o
C) and Hot (≈70

o
C). 

 

Figure  4.29: Attenuation of cylinder head (P1-P9) sources recorded at AES2 on Engine A vs source-

sensor projected distance at three different surface temperature conditions; Cold (≈20
o
C), Warm 

(≈40
o
C) and Hot (≈70

o
C).  
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Figure  4.30 shows the arrival time difference at the two sensors plotted against the 

projected path difference. The apparent wave speed is somewhat higher than for the 

steel block, but consistent with the slower of two speeds (2650±41ms
-1

) measured on a 

different cylinder head to the one studied here. 

 

Figure  4.30: arrival time and the projected distances. 

4.3.2.3 Perkins T1004 (Engine C): sensor array 1 

Three sets of transmission tests were performed on the cylinder head of Engine C; cold 

(before running the engine; room temperature- approximately 20
o
C), hot (immediately 

after the engine has run for 30 minutes, approximately 70
o
C) and warm (30 minutes 

after turning off the hot engine, approximately 40
o
C), Table  B.4 in Appendix B. Pencil 

leads were broken at nine different positions (P1 to P9 , shown in Figure  4.31), five 

records being acquired at each sensor in the array, again using a sampling rate of 

2.5MHz and a record length of 0.1 second. Because of the very wide range of 

attenuation across the cylinder head it was necessary to vary the gain settings between 

28 and 60dB (as shown in Table  4.2). Figures 4.32 to 4.34 show the results of the 

energy transmission on the engine for the three surface temperatures for Sensors 1 and 

2, respectively. The effect of engine surface temperature was not as distinct as it was in 

Engine B, and, in fact, in the Cylinder 3 window (Sensor 2) the effect of temperature in 

sensitivity appears to be opposite to what it is in Engine B. 
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Figure  4.31: Schematic diagram of sensor array 1 on Perkins T1004 (engine C) and simulated 

source positions (P1-P9) for cylinder head calibration. (All dimensions in mm.) 

 

Position 
Signal Gain (dB) 

Sensor1 Sensor2 Sensor3 

P1 28 48 60 

P2 34 46 60 

P3 34 40 54 

P4 40 28 48 

P5 48 28 48 

P6 48 28 40 

P7 54 40 34 

P8 60 46 34 

P9 60 48 28 

Table  4.2: Signal amplification gain settings of AE sensors in the signal transmission experiment of 

sensor array1 on Perkins T1004 (engine C). 
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Figure  4.32: Attenuation of cylinder head (P1-P9) sources recorded at AES1 on Engine C (sensor 

array1) vs source-sensor projected distance at three different surface temperature conditions; Cold 

(≈20
o
C), Warm (≈40

o
C) and Hot (≈70

o
C). 

 

 

Figure  4.33: Attenuation of cylinder head (P1-P9) sources recorded at AES2 on Engine C (sensor 

array1) vs source-sensor projected distance at three different surface temperature conditions; Cold 

(≈20
o
C), Warm (≈40

o
C) and Hot (≈70

o
C). 
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Figure  4.34: Attenuation of cylinder head (P1-P9) sources recorded at AES3 on Engine C (sensor 

array1) vs source-sensor projected distance at three different surface temperature conditions; Cold 

(≈20
o
C), Warm (≈40

o
C) and Hot (≈70

o
C). 

4.3.2.4 Perkins T1004 (Engine C): sensor array 2 

Two cylinder head calibration tests were carried out on this engine, one to check 

sensing reproducibility on the less regular (than the cylindrical steel block) structure of 

the engine and the other to measure time-of-flight and attenuation between various  

possible source locations and the sensor array shown in Figure  4.35. The sensing 

reproducibility test involved acquiring 10 records (2.5MHz sampling rate for 0.1 second 

using a fixed signal gain of 48dB) at each sensor of pencil leads broken at the position 

PR. This was repeated four more times, each time removing and replacing the sensors in 

the same positions. In the transmission tests (Table  B.5 in Appendix B), pencil leads 

were broken at eight different positions (P1 to P8 in Figure  4.35), five records being 

acquired at each sensor in the array, again using a sampling rate of 2.5MHz and a record 

length of 0.1 second. Because of the very wide range of attenuation across the cylinder 

head it was necessary to vary the gain settings between 20 and 66dB (as shown in 

Table  4.3), and this had to be corrected after processing in order to plot the attenuation.  
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Figure  4.35: Schematic diagram of sensor array 2 on Perkins T1004 (engine B) and simulated 

source positions (PR and P1-P8) for cylinder head calibration. (All dimensions in mm.) 

Position 
Signal Gain (dB) 

Sensor1 Sensor2 Sensor3 

P1 48 34 54 

P2 54 28 54 

P3 46 34 54 

P4 54 40 48 

P5 20 54 66 

P6 60 54 66 

P7 66 66 60 

P8 66 66 66 

Table  4.3: Signal amplification gain settings of AE sensors in the signal transmission experiment of 

sensor array1 on Perkins T1004 (engine B). 

Figure  4.36 summarises the results of the reproducibility tests on the cylinder block for 

the 10 breaks for each of the re-mounts for each of the sensor positions.  The variation 

of about ±30% between individual breaks for a given mounting is similar to that found 

on the calibration block, but that between the means of the re-mounts is ±30-60% for 

the cylinder head positions and ±75% for the injector position. This reflects the relative 

difficulty of securing a good attachment and coupling on the cylinder head compared 

with the flat surface of the calibration block, although there may well be an effect of 

positioning error as well.   
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Figure  4.36: Averaged AE energy of the pencil lead break in the signal reproducibility experiment 

on the cylinder head of Perkins T1004 diesel engine. 

The effective transmission path difference between AES3, and AES2 and AES1 was 

determined using the estimated arrival time (which was calculated using a threshold of 

1.5 of the maximum absolute value of the background noise as per discussed in the thin 

plate experiment Figure  4.23) with the higher of the two speeds (4500ms
-1

) obtained by 

Nivesrangsan et al. [152]. Figure  4.37 shows the same data as Figure  4.36 plotted as an 

attenuation curve, and it can be seen that the energy follows an exponential decay with 

effective path difference, within the variability apparent in Figure  4.37. The effective 

path differences can be estimated from Figure  4.35 by simply using the projected 

distances between the source and the sensors on the plan view of the cylinder head. 

∆𝑆𝑝𝑟𝑜𝑗
23 = (𝑃𝑅 → 𝐴𝐸𝑆3) − (𝑃𝑅 → 𝐴𝐸𝑆2) ≅ 90𝑚𝑚 

∆𝑆𝑝𝑟𝑜𝑗
13 = (𝑃𝑅 → 𝐴𝐸𝑆3) − (𝑃𝑅 → 𝐴𝐸𝑆1) ≅ 80𝑚𝑚 

As can be seen from Figure  4.37, the effective path difference between AES2 and AES3 

is very close to the projected distance across the cylinder head, whereas that for the 

injector-mounted sensor is much longer, far more so than could be accounted for by the 

additional distance out of plane. This discrepancy is likely to be a combination of the 

main transmission path not being over the surface of the block and an element of 
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“structural filtering”, both of which would make the effective wave speed different to 

those obtained for the cylinder head surface. 

 

Figure  4.37: Average AE energy and effective path length difference of cylinder head attenuation 

experiment where the values of Sp represent the projected distances between PR and the sensors 

(in mm). 

Figure  4.38 shows a similar plot to Figure  4.37, this time for the main transmission tests 

on the cylinder head (see Figure  4.35) where the source is on the surface of the cylinder 

head (P1-P4). As can be seen, sources on the surface of the cylinder head arrive last at 

AES3 and earliest at AES2, which is consistent with the projected distances 

(Figure  4.35), as was the case in the reproducibility tests. Also as was the case in the 

reproducibility tests, the effective path length difference is greater than the projected 

path length difference for the injector-mounted sensor. 
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Figure  4.38: AE energy and effective path length difference for cylinder head attenuation 

experiment with source at positions P1-P4. 

When the source is on an injector (P5-P8), the arrival times are broadly as would be 

expected from the projected distances, Figure  4.39a. However, the average energy 

arriving at the sensors in the array is dominated by the effect of crossing from an 

injector to the cylinder, other effects being relatively small. Interestingly, the injector-

mounted sensor shows the highest energy for all injector sources, despite it being the 

least sensitive of the three, suggesting that there is an alternative transmission path on 

the injector side. 
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(a) 

 

(b) 

Figure  4.39: Arrival time (a) and average energy (b) for injector sources (P5-P8) at the sensor array 

in the cylinder head attenuation experiment. 

Figure  4.40 shows the same energy data as in Figures 4.38 and 4.39, this time plotted 

against the measured source-sensor projected distance. In Figure  4.40a, only signals 

which do not cross between the cylinder head and the injectors are included (i.e. source 

positions 1 to 4 with sensors at CH3 and CH1, and source position 5 with sensor at 

Inj1). The slope of this (logarithmic) curve is reasonably compatible with that shown in 

Figure  4.37, given the additional effects of relative sensor sensitivity and the difference 

between projected and effective source-sensor distances. Figure  4.40b includes the data 

from Figure  4.40a (plus the regression line) as well as energies where there is a crossing 

between cylinder head and injector (i.e. source positions 5 to 8 with all sensors, except 

source position 5 with sensor at Inj1). The regression line through these latter energies 
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shows a much weaker correlation with source-sensor projected distance, both in terms 

of a lower slope and a reduced correlation coefficient. 

 

(a) 

 

(b) 

Figure  4.40: Attenuation of cylinder head (P1-P5) and injector (P5-P8) sources at the sensor array 

in the cylinder head attenuation experiment using projected distances from Figure  4.35: (a) where 

wave does not cross between injector and cylinder head (b) all data. 

Taken together, the attenuation tests indicate that there are two sources of effective time 

delay in the cylinder head, one associated with projected distance travelled and one 

associated with crossing interfaces between engine components. Also each of these 

components is associated with a different type of attenuation, the first being “normal” 

attenuation with propagation distance and the second not being particularly sensitive to 

distance or, for that matter, number of apparent “crossings”. 
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4.4 Running engine and injector rig experiments 

The experimental strategy was to carry out a series of tests on structures of increasing 

complexity in order to identify the parts of the multi-source signal on a running engine 

that are associated with the fuel delivery processes. Thus, experiments were first carried 

out on an injector rig so that the AE associated with fuel flow through the injectors 

could be isolated from the other sources in a running engine. Next, running tests were 

carried out on a very simple 2-cylinder 2-stroke engine over a range of running 

conditions (speed and load). Next, experiments were carried out on normally-aspirated 

four-stroke diesel, before the most complex engine, a turbocharged four stroke, was 

studied. 

4.4.1 Injector rig experiments  

Three different sets of experiments were performed on this rig, with two sensor arrays 

and with and without a pressure transducer in the fuel line. Figure  4.41 shows the 

schematic diagram for the experimental rig used to simulate the diesel injection process. 

One AE sensor (Sensor 1) was attached to the shank of the monitored injector while a 

second sensor (Sensor 2) was attached to the pump outlet port. The monitored injector 

was connected to the pump using a 105 cm long feed line, where its rotational speed 

represented the engine operating at twice this speed. The first set of experiments 

(Experiment1) was carried out with a pressure transducer mounted onto the solid block 

half way along the fuel line as shown in Figure  4.42. In total, five different motor 

speeds were used, ranging from 1500 rpm to 2500 rpm with increments of 250 rpm, 

under two different fuel throttle positions (minimum and maximum, as shown in 

Table  B.12). Experiment 2 used the same sensor array but without a pressure transducer 

installed to the feed line of Injector 1 and the range of motor speed was varied between 

950 rpm to 2500 rpm. In Experiment 3, Sensor 2 was moved to the shank of one of the 

injectors mounted to the return tank and six motor speeds were used in the range of 700-

2100 rpm. At each speed and each throttle position, 1 sec of raw AE at each sensor and 

shaft encoder input were acquired at sampling rate of 2.5MHz. The same 360-segment 

shaft encoder was used to record the average motor speed and to provide a measure of 

instantaneous speed of the motor shaft. 
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Figure  4.41: Schematic diagram of the experimental diesel injection rig showing sensor positions.  

 

Figure  4.42: Experimental diesel injection rig with pressure transducer. 

4.4.2 Stuart Turner engine (Engine A) 

Two sets of experiments were performed on the running Stuart Turner engine, one using 

diesel fuel and the other using bio-diesel. Each set used 14 load settings where the 

engine was incrementally loaded from the no load condition and then unloaded at the 
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same nominal settings, each setting resulting in a specific engine speed, as shown in 

Table  B.6 in Appendix B.  After allowing the engine 5 seconds to settle at a given 

setting, five one-second records were captured for each condition using a sampling rate 

of 2.5MHz and a gain of 14dB. AE was recorded from two AE sensors; sensor 1 near 

Injector 1 and sensor 2 near injector 2 as shown in Figure  4.43 and the instantaneous 

speed of the crankshaft was recorded via the shaft encoder synchronously with the AE. 

The injection pump was set to deliver a constant amount of fuel during the experiment 

and the change in speed was simply due to the applied load from the eddy current 

dynamometer. 

 

Figure  4.43: Sensor array set up on Stuart Turner diesel engine (Engine A). 

4.4.3 Perkins A4.270 (Engine B) 

This engine was very similar in design and construction to the turbo-diesel engine and 

used to give some comparative data for a normally-aspirated engine. Accordingly, 

experiments were performed with no load at five different nominal crankshaft speeds; 

900, 1200, 1500, 1800, and 2100 rpm (equivalent to 450, 600, 750, 900, and 1050 rpm 

of the camshaft). AE was recorded for two sensors mounted on equivalent positions on 

the cylinder head, Sensor 1 being adjacent to Injector 1 and Sensor 2 adjacent to Injector 

3 as shown in Figure  4.44. For each speed range, five records were captured at a 

sampling rate of 2.5 MHz for one second and using a total gain setting of 28dB for each 

sensor (Table  B.7 in Appendix B). The same shaft encoder was connected to the shaft of 

the injector pump to record the angular position synchronously with the AE. 

AE sensor 1 

AE sensor2 
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Figure  4.44: Sensor array set up for Perkins A4.270 diesel engine (Engine B). 

4.4.4 Perkins T1004 (Engine C) 

As the most sophisticated of those studied, this engine was subjected to the most 

intensive set of experiments, although the extent of the experiments was limited to the 

no-load condition. Two distinct sets of experiments were done, using two different 

sensor arrays. 

The first set of experiments was performed on this engine with a linear sensor array 

(sensor array 1), in which sensors 1, 2 and 3 were placed on the top of the cylinder head 

surface next to injectors 1, 2 and 3, respectively (as shown in Figure  4.45) in a similar 

style to the tests on Engine C. The engine was again run with no load but with seven 

different throttle positions of the injection pump, delivering engine speeds of around 

730, 850, 1050, 1430, 2060, 2250 and 2500 rpm. Five records were captured for each 

speed range at a sampling rate of 2.5 MHz for one second, using a total gain setting of 

14dB for each sensor (Table  B.8 in Appendix B). 

The main series of experiments involved monitoring of the running engine using the 

sensor array shown in Figure  4.46 (sensor array 2), where AE Sensor 1 was placed on 

the protruding body of Injector 1, and AE Sensors 2 and 3 were placed on similar flat 

areas on the cylinder head adjacent to Cylinders 1 and 3, respectively. The engine was 

run with no load at five different throttle positions of the injection pump associated with 

five camshaft speed ranges around 420, 530, 735, 995 and 1130 rpm. At each speed 

range, five records were captured at a sampling rate of 2.5 MHz for one second, 

AE Sensor2 
AE Sensor1 
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corresponding to between seven and nineteen cycles depending on the engine speed. 

Sensor AES1 used 8dB total signal gain while both AES2 and AES3 required a total 

signal gain of 14dB (Table  B.9 in Appendix B).  Again, the crankshaft angular position 

was acquired synchronously with the AE using the shaft encoder on the injector pump. 

 

Figure  4.45: Cylinder head linear sensor array 1 set up on Perkins T1004 (Engine C). 

AE sensor1 AE sensor2 AE sensor3 



98 

 

 

Figure  4.46: Sensor array 2 set up on Perkins T1004 (Engine C). 

 

4.5 Signal Processing 

The signal processing used in this work was developed specifically to address the 

source identification problem for multi-sensor data where there may be multiple sources 

distributed in time and space. Another feature of the data is that it is structured in a way 

that is dictated by the (known) behaviour of the engine.  

The techniques are described below in three sub-sections, firstly those which have been 

applied to a single sensor time-series, involving averaging, thresholding, re-sampling, 

energy analysis and demodulating. Next, a novel application of the canonical correlation 

technique is described as a way of cross-correlating two time series which are known to 

represent the same processes.  
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4.5.1 Single time-series methods 

All of the data were acquired above the Nyquist frequency for raw AE, given that the 

preamplifiers contained analogue filters between 0.1 and 1MHz. This gives enough time 

resolution to capture the complete waveform of an impulsive source (important in the 

calibration and time-of flight measurements) as well as providing 3-channel continuous 

raw capture for around ten cycles in the running engine tests (governed by the 

performance of the data acquisition system). For such a time series of y as a function of 

t, the average energy over a time interval from T1 to T2 can be calculated as the root 

mean square voltage (RMS) [54]  

 𝑦𝑅𝑀𝑆 = √
1

𝑁
∑ 𝑦𝑖

2

𝑛

𝑖=1

= √
1

𝑇1 − 𝑇2
∫ [𝑦(𝑡))]2𝑑𝑡

𝑇2

𝑇1

  4-1 

In all of the measurements, it is necessary to determine the energy of all or part of a 

time series, and this was done using the area under the AE waveform 

 𝐸 = ∫ 𝑉2

𝑡𝑙𝑖𝑚

0

(𝑡)𝑑𝑡  4-2 

where E is the acoustic emission energy in V
2
.s, V(t) is the amplitude of the AE signal 

in volts as a function of time t and tlim is the length of the time period of interest in 

seconds. Before any processing, all of the signals were re-scaled to unit gain so that the 

energy is comparable across all tests. 

Often, it is of more interest to view signal in the crank angle domain, since most of the 

processes of interest in the engine are related to angle. Since shaft encoder data was 

sampled synchronously with AE, it was possible to re-sample the data for constant 

angle difference (as opposed to time difference) using the scheme shown in Figure  4.47, 

which is a short segment of raw shaft encoder data, which contains n points, depending 

on engine speed.  

First, two thresholds were set, one of which is only crossed in the upward direction 

every 360° of engine rotation and the other being crossed every degree of engine 

rotation. An algorithm was written, which searched for the first upward crossing of 



100 

 

Threshold 1, assigning to that point an angle of 0°. Subsequent crossings of Threshold 2 

were assigned to 1°, 2° and so on. Next, the intermediate points were assigned angles by 

linear interpolation. In general, points will now no longer be an equal angle apart, and 

so each angle was resampled to a length of 800 points. 

 

Figure  4.47: Identifying the position of the TDC signal and individual angles using threshold 

crossing. 

Once the AE has been resampled, it is then possible to re-cast the AE energy equation 

as: 

 𝐸𝜃 = ∫ 𝑉2

𝜃2

𝜃1

(𝜃)𝑑𝜃  4-3 

 

When dealing with the propagative aspect of AE, two key pieces of signal processing 

are of considerable value. The first of these is about relating the energy content of the 

signal measured at a specific place on a structure to the energy of the corresponding 

event(s) [153-156], which needs to take into account various mechanisms of 

attenuation. In this work, the simplifying assumption is made that most of the AE 

energy is transmitted in surface waves with the block (solid cylinder, plate or cylinder 

head) as a semi-infinite medium, and that attenuation can be expressed by a simple 

absorption law [157] 
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 𝐸(𝑥) = 𝐸𝑜𝑒−𝑘𝑥  4-4 

where E(x) is the AE energy a distance x (m) from the source (V
2
.s), Eo is the effective 

AE source energy (V
2
.s) and k is an attenuation factor (m

-1
). Rewriting Equation  4-4: 

 ln 𝐸(𝑥) = ln 𝐸𝑜 − 𝑘𝑥  4-5 

which allows k to be determined for a given structure by placing multiple sensors at 

various distances from a source of fixed energy and short duration (e.g. a pencil lead). 

The second important technique in spatial analysis is the location of an “arrival time”.  

More generally, and of more relevance to engine signals where there are a succession of 

arrivals from different sources with different locations relative to the sensor, this 

reduces to finding local peaks in the input data [158]. 

Finally, there are a few instances where a frequency domain analysis of the signal is 

useful. For the raw AE, where the signal is biopolar, this is a simple matter of 

performing an FFT on the analogue-filtered signal, yielding a spectrum over the 

bandwidth of 0.1 to 1MHz. However, the signals in an engine are also modulated at the 

engine speed, where specific sources appear in a periodic fashion once (or more) per 

engine revolution and it is of interest to carry out a demodulated spectral analysis. This 

was done by averaging the signal within a time/angle window to obtain the RMS 

convolution of the signal which maintains the fundamental features of the original 

signal, followed by an FFT.  

4.5.2 Analysis of pulse train signals  

Using Fourier analysis, any periodic signal, x(t), can be represented as a series of cosine 

and sine waves, which can be written [159] 

 𝑥(𝑡) =  𝑎𝑜 + ∑ 𝑎𝑛 cos(2𝜋𝑓𝑡𝑛)

∞

𝑛=1

− ∑ 𝑏𝑛 sin(2𝜋𝑓𝑡𝑛)

∞

𝑛=1

  4-6 
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where: 𝑎𝑜 =
1

𝑇
∫ 𝑥(𝑡)

𝑇
2⁄

−𝑇
2⁄

𝑑𝑡 
 

 

𝑎𝑛 =
2

𝑇
∫ 𝑥(𝑡)

𝑇
2⁄

−𝑇
2⁄

cos (
2𝜋𝑡𝑛

𝑇
) 𝑑𝑡 

 

 

𝑏𝑛 =
−2

𝑇
∫ 𝑥(𝑡)

𝑇
2⁄

−𝑇
2⁄

sin (
2𝜋𝑡𝑛

𝑇
) 𝑑𝑡 

 

Figure  4.48 illustrates an example of a pulse train signal which has a time period of T 

(between -T/2 to T/2) and duty cycle d = k/T. The frequency domain shows the 

fundamental frequency and harmonics of the waveform. 

 

 
Figure  4.48: Pulse train representation in time and frequency domains. [159]    

4.5.3 Canonical correlation analysis (CCA) 

Statistical analysis approaches which deal with multivariable problems, such as 

Principal Component Analysis (PCA) and Partial Least Squares (PLS), have been used 

widely in process monitoring and fault diagnosis [160]. This study explores a new AE 

signal processing approach, canonical correlation analysis (CCA), traditionally used in 

learning applications, particularly image recognition [161]. As far as the author is 

aware, this application is novel and so it has been named Source Identification using 

Canonical Correlation Analysis (SICCA). 

Frequency Domain 

Time Domain 
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Canonical correlation analysis (CCA) finds the optimum linear relationship between 

two multidimensional variables, and can be seen as an extension of Principal 

Component Analysis, where principal components are first identified from a data set 

and CCA is a kind of cross-correlation between the PCs of two (or more) data sets 

[162]. The proposed technique uses CCA to compare two signals at different relative 

windows to find the optimum relation between these two signals and the corresponding 

matching features. The important thing about this technique is how it links the 

multivariate analysis in terms of CCA and the allocation of the signal sources/events in 

a very accurate manner. In this technique, a set of multi-layer analyses has been 

implemented to scan the signal where there is very little information provided (e.g. TDC 

position). The output from each layer was used to improve the next stage, in which the 

values of the key parameters such as the shift window were improved to increase the 

accuracy of the output.   

The algorithm for the CCA operates to describe the correlation between two sets of 

variables by finding the optimal bases for the corresponding maximum correlation. For 

given two sets of variables X and Y, the general form of the canonical correlation can 

be written as    

 𝑋1 + 𝑋2 + 𝑋3+. . +𝑋𝑛 = 𝑌1 + 𝑌2 + 𝑌3+. . +𝑌𝑛  4-7 

Two sets of canonical coefficients (one for each set of variables) will be calculated to 

obtain the maximum bases. By applying a1,a2,…,an to Xn and b1,b2,..,bn to Yn the 

maximum correlation will be obtained as  

 

𝐶𝑈1 = 𝑎1𝑋1 + 𝑎2𝑋2 + 𝑎3𝑋3+. . +𝑎𝑛𝑋𝑛 

𝐶𝑉1 = 𝑏1𝑌1 + 𝑏2𝑌2 + 𝑏3𝑌3+. . +𝑏𝑛𝑌𝑛 

 4-8 

where CU1 and CV1 are the first canonical variates (bases) and a and b are the canonical 

coefficients.   

The residuals of the first pair of the canonical variates are then processed similarly to 

obtain the second pair of the canonical variates. This process will continue until the 

number of pairs equals n or a significant set point has been achieved.  
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Similarly, this concept can be applied to two sets of data matrices, x of size (m×n1) and 

y of size (m×n2). First, both x and y need to be normalised  

 

∑ 𝑥𝑖𝑗

𝑚

𝑖=1

= 0,     𝑗 = 1, … , 𝑛1 

∑ 𝑦𝑖𝑗

𝑚

𝑖=1

= 0,     𝑗 = 1, … , 𝑛2 

 4-9 

The applied CCA algorithm runs through the data matrices to find the best correlation 

where the best matched linear combination pair of the x and y coordinates has been 

found. This will be achieved by obtaining the largest coefficient of correlation which 

maximises the correlation between the linear composites (canonical variates). The 

search for other best pairs (second-best, third-best, tec.) will continue in the orthogonal 

subspaces until the number of pairs is d= min [n1, n2]. The result will be two matrices 

representing the canonical variates; u of size n1 × d and v of size n2 × d [163] 

 𝑢 = 𝑥𝑎, 𝑣 = 𝑦𝑏  4-10 

where a and b are the canonical coefficients. 

Both u and v are orthogonal matrices in successive orthogonal subspaces, so it can be 

represented as 

 𝑢𝑇𝑢 = 1𝑑 ,    𝑣𝑇𝑣 = 1𝑑  4-11 

where 1d is the identity matrix in d dimensions 

Furthermore, all the columns of u and v are cross-orthogonal. Thus,  

 𝑢𝑇𝑣 = 𝐷  4-12 

where D is a diagonal matrix in d dimensions. 
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The best single linear correlation located in the first columns of a and b, expressed as a1 

and b1, and can be represented as [163] 

 (𝑎1 𝑏1 ) = 𝑎𝑟𝑔𝑚𝑎𝑥 [
𝑢1

𝑇 𝑣1

√𝑢1
𝑇 𝑢1√𝑣1

𝑇 𝑣1

]  4-13 

where u1 and v1 are the representation of the maximum canonical variates corresponding 

a and b, respectively. 

The canoncorr MATLAB function has been used to calculate the coefficients and 

variates of the canonical correlation for the data matrices x and y. The function can be 

represented as [164] 

 [𝐴, 𝐵, 𝑟, 𝑈, 𝑉]  =  𝑐𝑎𝑛𝑜𝑛𝑐𝑜𝑟𝑟(𝑥, 𝑦)  

Where A and B are the canonical coefficients for x and y, respectively, r is the column 

matrix containing the canonical correlations and U and V are the canonical variates for 

A and B, respectively 

The U and V are n by d matrices computed as [164] 

 

𝑈 =  (𝑥 − 𝑟𝑒𝑝𝑚𝑎𝑡(𝑚𝑒𝑎𝑛(𝑥), 𝑁, 1)) ∗ 𝐴 

𝑉 =  (𝑦 − 𝑟𝑒𝑝𝑚𝑎𝑡(𝑚𝑒𝑎𝑛(𝑦), 𝑁, 1)) ∗ 𝐵 

 

 

Figure  4.49 show the results of applying the algorithm to a pair of signals, from a 

running Perkins T1004 engine (sensor array 2), in which an angle shift has been applied 

to examine the correlation. The values of the corresponding U and V were shown (right) 

along with the confections of regression which are summarised in Figure  4.50, in which 

there is a significant decrease in the correlation as the angle shift increases. Similarly, 

shifting the signals in the opposite direction has the same effect as shown in Figures 

4.51 and 4.52. This outcome has shown a clear advantage of using CCA to demonstrate 

a clear correlation which was the inspiration of developing the SICCA algorithm.  
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Figure  4.49: Running engine RMS signals (Engine C sensor array2) with different angle shift (left), 

and the corresponding regression of U-V using canonical correlation (right). 

 

Figure  4.50: Coefficients of regression for the different values of the angle shift in Figure  4.49. 
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Figure  4.51: Running engine RMS signals (Engine C sensor array2) with different angle shift (left), 

and the corresponding regression of U-V using canonical correlation (right). 

 

Figure  4.52: Coefficients of regression for the different values of the angle shift in Figure  4.51. 
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The essential problem to which the SICCA algorithm is to be applied is to take two time 

series (recorded at two sensor locations) both of which contain transient features arising 

from one or more sources, potentially at different distances from each of the sensors. 

Thus, these features will be shifted in time (and angle) as seen by the two sensors, will 

have different amplitudes (due to attenuation) and multiple features may even have 

different arrival time differences within each of the time series. Because it is essentially 

a correlation technique, it was felt best to assess how the analysis performs by 

simulating a set of different time series, finally testing the algorithm on a well-defined 

segment of real engine data.  

The simplest test consisted of two identical Gaussian pulses with zero mean: 

𝑦 =
𝐴

𝜎√2𝜋
 𝑒

−(𝑥)2

2𝜎2  

and unit standard deviation (σ), unit amplitude (A), with a 160
o
 phase shift. Figures 4.53 

and 4.54 show the time series of two pairs of signals with A = 1,1 and A = 3,1, 

respectively. These figures also show the SICCA output, expressed as the R
2
 value for 

the correlation as the angle difference is stepped (0.08
o
) from 0 to 360°. As can be seen, 

each signal pair generates the same narrow peak centred at 160° with a height of R
2
 = 1 

and a peak width approximately the same as the width of the original peaks in the time 

series, indicating a perfect correlation at the simulated angle shift, irrespective of the 

relative “attenuation” of the signals.  
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Figure  4.53: Simulated signals (Gaussian pulses) with a phase shift of 160
o
 where both signals have 

same amplitude (top) along with the corresponding regression using canonical correlation analysis 

(bottom). 
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.  

 

Figure  4.54: Simulated signals (Gaussian pulses) with a phase shift of 160
o
 where signals have 

different amplitudes (top) along with the corresponding regression using canonical correlation 

analysis (bottom). 
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produce a precise identification of the angle difference, but with maximum values of R
2
 

which vary from 0.9 to 0.43. The highest value R
2
 occurs when the signals are identical 

(Figure  4.55), although it might be noted that the peak is very narrow with side peaks 

arising from the damped oscillations. If the frequency remains the same but one signal 

is more heavily damped (Figure  4.56), the maximum value of R
2
 reduces a little and the 

peak becomes asymmetric. If the frequencies are different but the attenuation coefficient 

remains the same, the maximum value of R
2
 reduces significantly, although the 

magnitude of the frequency change appears to have little effect, Figures 4.57 and 4.58. 

Finally, if both the frequency and attenuation coefficient are changed (Figure  4.59), the 

maximum value of R
2
 reduces still further.  

 

 

Figure  4.55: Simulated identical damped waveform signals with a phase shift of 103
o
 (top), and the 

corresponding regression using canonical correlation (bottom). 
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Figure  4.56: Simulated damped waveform signals with a phase shift of 103
o
 and different 

attenuation factors B1 = 5 and B2 = 10 (top), and the corresponding regression using canonical 

correlation (bottom). 
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Figure  4.57: Simulated damped waveform signals with a phase shift of 103
o
 with f1 = 20Hz, f2 = 

50Hz and the same attenuation coefficient B = 5 (top), and the corresponding regression using 

canonical correlation (bottom). 
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Figure  4.58: Simulated damped waveform signals with a phase shift of 103
o
 with f1 = 20Hz, f2 = 

120Hz and the same attenuation coefficient B = 5 (top), and the corresponding regression using 

canonical correlation (bottom). 
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Figure  4.59: Simulated damped waveform signals with a phase shift of 103
o
 with f1 = 20Hz,  f2 = 

30Hz and attenuation coefficients B1 = 5 and B2 = 10 (top), and the corresponding regression using 

canonical correlation (bottom). 
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For convenience, all of these simulations used the same frequency and damping 

coefficient (f = 20Hz and B = 5) while the amplitude factors and phase delays are 

varied. Figure  4.60 illustrates the case where A2 = 0.7A1 and φ = 39º for both simulated 

signals with the second signal lagging by 133
o
. As can be seen, the SICCA algorithm 

shows R
2
 = 1 at the expected phase shift, but also shows two secondary peaks with R

2
 ≈ 

0.2, corresponding to the matching of the second peak in Signal 1 with the first peak in 

Signal 2 and the matching of the first peak in Signal 1 with the second peak in Signal 2. 

 

Figure  4.60: Simulated two-component compound damped waveform signals (top), and the 

corresponding regression using canonical correlation (bottom). A2 = 0.7A1 and φ = 39º for both 

simulated signals with the second signal lagging by 133
o
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In Figure  4.61, the second waveform of Signal 2 has been shifted to φ = 76
o
 retaining φ 

= 39º for the first waveform. Since the signal can no longer be made to map exactly by a 

single phase shift, the R
2
 value at 133

o
 is considerably reduced (just below 0.4). There 

are now three alternative (incorrect) mappings, two corresponding to the mapping of the 

second peak in Signal 1 with the first peak in Signal 2 and the mapping of the first peak 

in Signal 1 with the second peak in Signal 2, as before, again with R
2
 ≈ 0.2. The third 

mapping is at a slightly lower R
2
 value and corresponds to the mapping of the second 

peak in Signal 1 with the second peak in Signal 2. 

 

 

Figure  4.61: Simulated two-component compound damped waveform signals with the second signal 

lagging by 133
o
 (top), and the corresponding regression using canonical correlation (bottom). A2 = 

0.7A1 for both simulated signals, φ = 39º for Signal 1 and φ = 76º for Signal 2. 
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Figure  4.62 shows the effect of reducing the significance of the second waveform in the 

series, keeping the other parameters the same. As can be seen, this increases the 

confidence of the correct interpretation to R
2
 ≈ 0.7, whereas the incorrect interpretation 

values are diminished, the correlation between the two minor peaks being almost zero 

(as the square of the two minor amplitudes). It might be noted that the focus could be 

put on the minor peaks simply by windowing the time (or angle), as will be discussed 

later. 

 

 

Figure  4.62: Simulated two-component compound damped waveform signals with the second signal 

lagging by 133
o
 (top), and the corresponding regression using canonical correlation (bottom). 
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The final stage of testing the algorithm was carried out using an example of actual AE 

signals captured from a running engine. Figure  4.63 shows a half-cycle angle series of 

raw AE from Engine B, for sensors mounted on the side face of the cylinder head 

adjacent to cylinders 1 (CH1) and 3 (CH3). At this relatively coarse angle scale it can be 

seen that there are two pulses, separated by 90
o
, corresponding to TDC in Cylinder 1 

and Cylinder 3 (firing order 1, 3, 4, 2). The SICCA algorithm has indicated a high (R
2
 ≈ 

0.7) confidence that the two series are either separated by 0
o
 or 90

o
, as opposed to the 

known outcome that they are approximately 0
o
 apart. The reason for the ambivalent 

answer is that, unlike the simulation shown in Figure  4.60, the smaller and larger peaks 

are in the opposite sequence. This shows the need to combine calibration data with 

CCA, which, in this case would have been able to correct the two series to show pulses 

of approximately equal height in each series. However, as will be seen later, the strength 

of CCA lies in a more detailed analysis at the event level to explore the structure of the 

two sub-peaks visible in Figure  4.63, where the source location is unknown.  

 

 
Figure  4.63: Running engine signals (Engine C sensor array1) (top), and the corresponding 

regression using canonical correlation (bottom). 
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Chapter 5 

Analytical discussion of the results of a two stroke Diesel engine and injector rig 

experiments 

Despite the fact that AE has been found useful in engine condition monitoring, there 

remain challenges in detailed, automated AE signal interpretation from more complex 

sources such as the injection and combustion events in diesel engines. In this chapter the 

experiments with the fewest sources/events are considered; the injector rig, where there 

is only fuel injection event and associated activity in the pump, and the two stroke 

engine which is less complex than the four stroke engines considered in the next 

chapter.  

First, the results from injector rig experiments are discussed with a view to isolating the 

AE characteristics of diesel injection, isolated from the closely related valve and 

combustions events. Next, the two stroke engine is considered using both conventional 

time and frequency domain techniques and also to introduce the SICCA algorithm to 

study the injection/combustion events.  

5.1 Injector rig experiments 

Figures 5.1 to 5.3 show the three sensor arrays used on the injector rig; Experiments 1 

and 2 using sensors on the output part of the pump and on the injector with and without 

a pressure transducer in the line, and Experiment 3 using sensors mounted on one of the 

dummy injectors as well as the test injector. The injection events, identifiable from the 

shaft encoder signal, were observed clearly for all pump (camshaft) speeds at both 

sensors (Figures 5.4 to 5.6).  Figure  5.4 shows clear pulses at the injector shortly after 

the pulse in the pressure in the delivery pipe, but also shows significant AE recorded at 

the pump, not only associated with delivery to Injector 1. This can be seen more clearly 

in Figure  5.5 (where the pressure transducer is absent) re-cast into the angle domain. 

The pulses at the pump are quite complex, but are clearly spaced about 90° apart and are 

probably associated with the opening and closing of the respective pressure ports. There 

are clearly also seen (much attenuated) at the injector, but there is additional AE at the 

injector around its expected opening. Comparing two different injectors over a longer 

timescale (Figure  5.6) shows the injector signal closer to the pump to be more heavily 

contaminated by AE from the pump.  
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Figure  5.1: Schematic diagram of the experimental injector rig for Experiment 1 showing the AE 

sensor array. 

 

Figure  5.2: Schematic diagram of the experimental injector rig for Experiment 2 showing the AE 

sensor array. 

 
Figure  5.3: Schematic diagram of the experimental injector rig for Experiment 3 showing the AE 

sensor array. 
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Figure  5.4: Raw AE signals acquired from the injector rig (Experiment 1) at a pump (camshaft) 

speed of 1525rpm. 

 

Figure  5.5: Example of the raw AE signal for one complete injection pump cycle from the injector 

rig, Experiment 2 at a pump (camshaft) speed of 1272rpm. 
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Figure  5.6: Raw AE signals acquired from two injectors on the injector rig, Experiment 3 at a 

pump (camshaft) speed of 1517rpm. 
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pulse has to travel from the transducer (mid-way along the fuel line) to the injector and 

this is consistent with the delay being longer (in crank angle terms) when the motor is 

running faster. The extended duration is more apparent at the higher speeds and seems 

to be associated with the secondary peaks seen in the pressure traces. These secondary 

peaks could be caused by reflections of the primary pressure wave causing re-opening 

of the injector. Overall, the evidence seems to be consistent with the AE resulting from 

flow of fuel through the injector, although a contribution from spring rubbing or 

scratching cannot be ruled out.  

 

Figure  5.7: Pressure transducer outputs around the time of opening of the monitored injector on 

the injector rig Experiment 1. (Curves offset vertically for clarity.) 

 

Figure  5.8: Acoustic emission recorded at Sensor 1 around the time of opening of the monitored 

injector in the injector rig Experiment 1. (Curves offset vertically for clarity.) 
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Figure  5.9 shows a typical raw AE angle series for the region around injection for each 

of the speeds used in Experiment 3 and it is clear that increased speed leads to increased 

amplitude and duration, suggesting that a simple energy analysis would show a clear 

effect with speed. To study each individual injection event, a constant time window of 

9.5 ms was applied to the peak raw AE signal corresponding to injection event 1 which 

was selected based on the information acquired from the shaft encoder signal, 

Figure  5.10. A more automated algorithm was implemented to detect the individual 

injection events which used the RMS convolution obtained by applying a moving 

average of 100 points to the raw signal and split the event window, auto-selected based 

on the detected engine speed, into two adjacent phases, representing the starting and 

ending of the event, as shown in Figure  5.11. A different adaptive threshold was then 

applied to each of these phases, its value depending on the running speed, the type of 

the window (start or end), the peak value of the event window and the positions of the 

local maximum and minimum signal values within each phase. This provides an 

objective and automatable way of identifying the start and end points of the injection 

event and the AE energy calculated in this way is compared with that determined by 

inspection. 

Figures 5.12 and 5.13 show, for Experiments 1 and 3, the effect of camshaft speed on 

energy of the injection event using a fixed time window as well as the adaptive 

threshold time window. Although there are some differences between the two types of 

threshold, it is clear that the adaptive one, which can be used automatically, is adequate 

for showing evolutions of energy in a way that does not involve the (subjective) 

judgement of the user.  
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Figure  5.9: Raw AE signal recorded at Injector1 from Experiment 3 showing the injection window 

for all the acquired speeds in the angle domain. 

 

Figure  5.10: Fixed time window of 9.5ms applied to the raw AE signal from injector rig Experiment 

2 at 1272 rpm in the time domain. 
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Figure  5.11: Adaptive threshold technique applied to the 100-point RMS signal from injector rig 

Experiment 2 at 1272 rpm in the time domain. 

  

Figure  5.12: Averaged AE energy of the Injector1 event recorded at pump and injector during 

injector rig Experiment 1, calculated using fixed-time (Tcon) and adaptive threshold (Tvar) 

windows. 
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Figure  5.13: Averaged AE energy of the Injector 1 and Injector 2 events recorded during injector 

rig Experiment 3, calculated using fixed-time (Tcon) and adaptive threshold (Tvar) windows. 
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Figure  5.14: Angular AE energy of the Injector 1 event (for a fixed 45° camshaft window) for 

injector rig Experiment 3.  
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density at the fundamental (running) frequency, so this aspect alone could be used in 

diagnostics, for example to filter out the main source of interest. 

 

 

Figure  5.15: Demodulated AE signals recorded at Injectors 1 and 2 in injector rig Experiment 3 for 

injection pump (camshaft) speed of 1517rpm. 
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(a) 

  

  

  

(b) 

Figure  5.16: Frequency content of the demodulated AE signals from injector rig Experiment 3 for 

each pump (camshaft) speed used: (a) sensor on Injector 1 and (b) sensor on Injector 2. 
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(a) 

 

(b) 

Figure  5.17: Frequency content of the demodulated AE signals from injector rig Experiment 2 for 

each pump (camshaft) speed used: (a) sensor on Injector 1 and (b) sensor on pump port at Injector 

1 outlet. 
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Figures 5.18 and 5.19 show the instantaneous injector pump speed versus angle for 

injector rig Experiments 2 and 3. At the higher average rotational speeds, the 

instantaneous speed oscillates around the average, but with a strong dip at the port 

opening followed by an oscillatory return to the controlled value. At the lower speeds 

the pressure becomes almost sinusoidal with a period equal to the injector opening 

period and not strong dip and recovery, which could indicate that the pump is not 

delivering sufficient pressure to open the injector. The secondary oscillations 

(approximately every 15° camshaft angle) are thought to be an interaction between the 

motor rotational stiffness and the hydraulic properties of the fuel line and are hence of 

limited interest in terms of engine performance. 

 

 

Figure  5.18: Angular speed versus angle (expressed as equivalent camshaft values) for injector rig 

Experiment 2. 
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Figure  5.19: Angular speed versus angle (expressed as equivalent camshaft values) for injector rig 

Experiment 3. 

 

5.1.3 Summary findings from injector rig  

The foregoing analysis has shown that the injection process itself generates a significant 

amount of acoustic emission, which can be recorded by mounting a sensor on the 

injector.  It is also seen that the injection pump generates AE and some of this can travel 

to the injector to be recorded there. 

The energy associated with the injection process can be quite simply calculated using a 

fixed (by inspection) time or angle window and this energy increases in a fairly reliable 

way with pump (hence crankshaft) speed. The duration of the injection process also 

changes with speed, being drawn out over a longer angle window as pump speed 

increases. The observations on energy and window indicate that the AE is generated by 

the passage of fuel through the injector.  
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5.2 Running engine experiments: Engine A  

Engine A was the simplest of the three examined in this work, having only two 

cylinders and also being a two-stroke. As shown in Figure  5.20, the sensors were 

identically positioned with respect to the two cylinders. 

 

Figure  5.20: Schematic diagram of the running Stuart Turner engine (Engine A) experiment 

showing the positions of AE sensor array. 

 

Figures 5.21 and 5.22 show typical time- and angle-series for the two sensor positions. 

These are broadly as might be expected, with Sensor 1 showing a stronger signal 

associated with Cylinder 1 and Sensor 2 showing Cylinder 2 more strongly. There are 

also clear similarities (albeit attenuated) between the same events as viewed by the two 

sensors. It is also evident that, despite a certain cycle-to-cycle variation, the 

“fingerprint” of Cylinder 2 is distinct from that of the nominally identical Cylinder 1. 
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Figure  5.21: Typical AE signal from Stuart Turner engine (Engine A) at a camshaft speed of 738 

rpm in the time domain (0.2 second window). 

 

Figure  5.22: Typical AE signal from Stuart Turner engine (Engine A) at a camshaft speed of 738 

rpm in the angle domain (three complete engine cycles). 
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the exhaust port closes (EPC1, shown for the succeeding cycle in Figure  5.23) and 

compression of the air taken in between IPO1 and IPC1 (again shown for the 

succeeding cycle in Figure  5.23) commences. The AE activity commences shortly after 

injection with a very low amplitude pulse which suggests this to be linked to the fluid 

flow and the build up pressure associated with the injection event (the sensor placement 

affected the signal attenuation where a direct placement on the injector body should 

reveal more detailed injection information), followed by three strong pulses and then 

some minor, seemingly erratic activity up to the opening of the exhaust port (EPO1). 

This pattern is reflected at AE sensor 2 with a small angle delay which seems to be 

slightly different for each of the main pulses, possibly indicating that they are associated 

with different locations. The relative attenuation of the three pulses between Sensors 1 

and 2 is also different, again suggesting different source locations. The AE activity 

associated with Cylinder 2 shows similar characteristics, except that there are four 

strong pulses and at least four substantial but weaker ones. The effect of closing and 

opening the exhaust ports can be seen more clearly in the signal from Sensor 2 where 

the position of the exhaust manifold close to the cylinder 2 as shown in Figure  5.24. The 

time delays are this time in the opposite direction, as would be expected for sources 

located nearer to Sensor 2. 

 

Figure  5.23: One complete engine cycle in the angle domain showing the engine event map and the 

AE signals from both sensors on the Stuart Turner engine (Engine A) at a camshaft speed of 738 

rpm. 
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Figure  5.24: Side view of the Stuart Turner engine showing the air intake and exhaust gas systems 

(left) and schematic diagram shows the flow of the air inside the cylinder blocks [166] (right).   

5.2.1 AE energy analysis; Engine A 

Figures 5.25 and 5.26 show typical angle series for each of the speeds for the local 

sensor recording on Cylinders 1 and 2, respectively. These behave in a broadly similar 

way to the injector rig measurements, with the amplitude and duration of the AE 

activity increasing with speed although, in the case of the engine, there are some 

anomalies in this progression.  

 

Figure  5.25: Raw AE signal recorded by sensor 1 from Engine A showing the Cylinder 1 injection 

window for all the acquired speeds in the angular domain. 

Exhaust manifold  

Cylinder1   
Cylinder2   
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Figure  5.26: Raw AE signal recorded by sensor 2 from Engine A showing the Cylinder 2 injection 

window for all the acquired speeds in the angular domain. 

As described previously, the AE energy of each raw signal was calculated over a 

constant time window of 20 ms within the longer TDC1 window, selected by inspection 

only to include the injection-combustion event of cylinder 1 where the energy results 

were compared to those obtained using the  adaptive thresholding method. 

 Figures 5.27 and 5.28 show the averaged energy (for 175 cycles) on a time basis using 

both fixed and adaptive threshold windows for both sensors over the Cylinder 1 active 

stroke and the Cylinder 2 active stroke, respectively. Clearly, both sensor positions 

record the same evolution and the same relative attenuation is seen between the 

respective curves in the two figures. Also, the fixed and variable windows show similar 

results for average energy. A slightly puzzling aspect of these results is the reversal of 

the generally increasing trend at low speeds in Cylinder 1 and at high speeds in Cylinder 

2, reflecting the anomalies visible in Figures 5.25 and 5.26.  Given that these are 

measured by both sensors, they must be associated with a genuine aspect of engine 

behaviour, and so some further analysis is merited. 
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Figure  5.27: Averaged AE energy (time basis) in the injection/combustion event for Cylinder1 

calculated using fixed-time (Tcon) and adaptive threshold (Tvar) windows for Engine A. 

 

Figure  5.28: Averaged AE energy (time basis) in the injection/combustion event for Cylinder2 

calculated using fixed-time (Tcon) and adaptive threshold (Tvar) windows for Engine A. 
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AE energy on an angle basis for each of the cylinders and each of the sensors. The result 

of this is shown in Figures 5.31 and 5.32 and these can be directly compared with 

Figure  5.14 for the injector rig. The main thing to note is that, although the correlation is 

poorer in all cases, the slope of the logarithm of angle-based energy is very similar for 

the two cylinders and also between the engine and the injector rig.  

 

Figure  5.29: Typical AE signal from Stuart Turner engine (Engine A) showing the window of 

injection/combustion events of Cylinder 1. 

 

Figure  5.30: Typical AE signal from Stuart Turner engine (Engine A) showing the window of 

injection/combustion events of Cylinder 2. 
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Figure  5.31: Angular AE energy of the Cylinder 1 event (for a fixed 90° camshaft window) for 

Engine A.  

 

 

Figure  5.32: Angular AE energy of the Cylinder 2 event (for a fixed 90° camshaft window) for 

Engine A. 
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5.2.2 Demodulated frequency analysis; Engine A 

As for the injector rig, the AE signals from Engine A were averaged using an averaging 

time of 2ms, an example being shown in Figure  5.33. As can be seen from the shaft 

encoder output, the cycle-to-cycle engine speed is relatively constant, so it was decided 

to proceed with the averaging on a time-basis.  The resulting spectra are shown in 

Figure  5.34 for each of the sensor positions, with the fundamental frequency (running 

speed) circled. As for the injector rig, these spectra are typical of pulse trains and are 

slightly less complex since the inter-pulse “noise” this time comes from the second 

cylinder. Thus, many of the spectra have a stronger second harmonic and the ratio of 

first to second harmonic (compensating for the inter-cylinder attenuation and relative 

sensitivity of sensors) could, in principle, be used to characterise the relative 

characteristics of the two cylinders. Also, it might be expected that the 3-pulse and 5-

pulse fingerprints of the two cylinders, observed in Figures 5.22 and 5.23, might also be 

reflected in the spectra, although some type of pattern recognition would probably be 

required to achieve the diagnosis. The demodulated frequency analysis has shown a 

significant strength in using the frequency analysis as a signal encoder with high 

accuracy.  

 

Figure  5.33: Demodulated AE signal from Engine A at a camshaft speed of 1479 rpm. 
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(a) 

 
(b) 

Figure  5.34: Frequency content of the demodulated AE signals acquired in the running experiment 

of Engine A over the range of camshaft speed; (a) recorded at Sensor1, and (b) recorded at 

Sensor2. 
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5.2.3 Identification using canonical correlation analysis; Engine A 

Figures 5.35 and 5.36 show the result of applying the SICCA algorithm to the RMS AE 

angle series over the Cylinder 1 and Cylinder 2 windows, respectively. The curves of R
2
 

versus angle shift, over the range of -12
o
 to +12

o
 camshaft angle, are superimposed for 

175 cycles, depending on the engine speed. Clearly all correlations have a strong peak 

close to zero and this corresponds to the small angle differences seen in Figure  5.23. As 

well as the main peak with an R
2
 close to unity, there are a number of secondary peaks 

over the range ±10° which are indicative of various false mappings of the multiple 

pulses seen in Figure  5.23. These could, in principle, be used to carry out a more 

detailed diagnosis, but it is more useful to subdivide the window to allow different angle 

shifts for different sources as seen in the next chapter. 

 
 

  

  

 

Figure  5.35: Distribution of R
2
 with camshaft angle (over the range -12

o
 to +12

o
) for Cylinder 1 

window (35
o
cms BTDC1 - 55

o
cms ATDC1) for the running Engine A. 
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Figure  5.36: Distribution of R
2
 with camshaft angle (over the range -12

o
 to +12

o
) for Cylinder 2 

window (35
o
cms BTDC1 - 55

o
cms ATDC1) for the running Engine A.  

Figure  5.37 shows the maximum R
2
 values from the canonical correlation which are 

relatively constant at around 0.7, slightly deteriorating with engine speed. Figure  5.38 

shows the angle shift to be around ±0.6°cms, increasing slightly with speed. Figure  5.39  

shows the angle shifts converted to time differences by detecting the time required for 

each 45
o
 and assigning the corresponding angle shift. 
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Figure  5.37: Averaged maximum regression coefficients between Cylinder 1 and 2 windows from 

the canonical correlation of the running experiment on Stuart Turner engine (Engine A). 

 

Figure  5.38: Corresponding camshaft angle shifts for maximum regression coefficients between 

Cylinder 1 and 2 windows from the canonical correlation of the running experiment on Stuart 

Turner engine (Engine A). 

y = -0.0001x + 0.92 
R² = 0.69 

y = -0.0001x + 0.91 
R² = 0.48 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

600 800 1000 1200 1400 1600

R
2 

Camshaft speed (rpm) 

Window 1

Window 2

Linear (Window 1)

Linear (Window 2)

y = -0.0003x - 0.19 
R² = 0.31 

y = 0.0002x + 0.41 
R² = 0.50 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

600 800 1000 1200 1400 1600

C
am

sh
af

t 
an

gl
e

 (
d

e
gr

e
e

s)
 

Camshaft speed (rpm) 

Window 1

Window 2

Linear (Window 1)

Linear (Window 2)



148 

 

 

Figure  5.39: Corresponding time shifts for maximum regression coefficients between Cylinder 1 

and 2 windows from the canonical correlation of the running experiment on Engine A. 

5.2.4 Summary of findings on Engine A 
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Chapter 6 

Analytical discussion of the results of four stroke engine experiments 

This chapter builds on the analysis carried out in Chapter 5 on the injector rig and on the 

simple two-stroke engine. Both engines considered here are four-stroke, four-cylinder 

engines, and potentially have several sources even within one stroke of the engine cycle. 

The most intensive study has been reserved for Engine C, the most sophisticated of all 

the engines studied and the one on which canonical correlation has most to offer. For 

Engine B (discussed first) the analysis is less detailed, concentrated on assessing the 

differences in signal nature and potential sources when moving from two-stroke to four-

stroke engines. 

6.1 Running engine experiments: Engine B  

Figure  6.1 shows a reminder of the sensor positions and Figure  6.2 shows a typical 

record of raw AE, highlighting events around the top dead centre (TDC) of Cylinders 1 

and 3 as recorded at Sensors 1 and 2, respectively. There is an ambiguity in four-stroke 

signals, in that it is not known which of the two TDC positions is associated with firing 

and which associated with inlet and exhaust valve movements. However, Figure  6.3, 

which includes an engine event map, taken with Figure  6.1, shows that the most likely 

interpretation is the one indicated, where events at firing diminish in amplitude in the 

order 1, 2, 3, 4 when seen from AES1 and in the order 3, 2, 4, 1. The nature of the 

signals, with multiple pulses, is also similar to that seen for Engine A, which does not 

have valve movements. 

A preliminary indication of multiple sources within the TDC1 and TDC3 windows is 

given by Figures 6.4 and 6.5. There is a relatively strong pulse at about 3°ATDC1 in the 

CH3 record in Figure  6.4, which is either absent or buried in the CH1 record. Similarly, 

the pulse at about 3°ATDC1 in the CH1 record in may or may not be present in the CH3 

record. These secondary pulses could be associated with the closure of EV4 and EV2, 

respectively, although this can only be tested by looking at a larger set of the data. 
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Figure  6.1: Schematic diagram of the Perkins A4.270 engine (Engine B) showing the positions of the 

AE sensors. (All dimensions in mm.)  

 

 

Figure  6.2: Raw AE signals acquired from Perkins A4.270 engine (Engine B) at a camshaft speed of 

600 rpm for a time record of one second. 
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Figure  6.3: Example of one complete engine cycle of the running Perkins A4.270 engine (engine B) 

in angular domain. (Camshaft speed is 600 rpm) 

 

 

Figure  6.4: Example of Perkins A4.270 (Engine B) Cylinder 1 window. (Camshaft speed is 600 rpm) 
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Figure  6.5: Example of Perkins A4.270 (Engine B) Cylinder 3 window. (Camshaft speed is 600 pm) 
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Figure  6.6: Raw AE signal recorded by sensor1 from Engine B showing the Cylinder 1 injection 

window for all the acquired speeds in the angular domain.  

 

 

Figure  6.7: Raw AE signal recorded by sensor2 from Engine B showing the Cylinder 3 injection 

window for all the acquired speeds in the angular domain. 
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Figure  6.8: AE energy and time duration of the injection/combustion event (45° camshaft) at 

cylinder 1 in the running Perkins A4.270 engine (engine B) experiment. 

 

 

Figure  6.9: AE energy and time duration of the injection/combustion event (45° camshaft) at 

cylinder 3 in the running Perkins A4.270 engine (engine B) experiment. 
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6.1.2 Signal frequency demodulation analysis for engine B 

Figure  6.10 shows the signal from Figure  6.2 averaged to reveal frequencies in the 

range of the engine running speed. As might be expected, the demodulated spectra 

(Figure  6.3) are more complex, although it is possible to see a secondary periodicity. 

The fundamental frequency is clearly reflecting the camshaft speed while four 

harmonics are evident with the fourth harmonic always having the maximum power (as 

shown in Figure  6.11). It has been seen in the two stroke engine that the second 

harmonic has the maximum peak value. 

 

 

Figure  6.10: Demodulated AE signal for injection pump speed of 588 rpm. 
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(a) 

 
(b) 

Figure  6.11: Frequency domain of demodulated AE signal from sensor1 (a) and sensor2 (b). 
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6.1.3 Identification of diesel engine events using canonical correlation analysis; 

Engine B 

The Cylinder 1 and Cylinder 3 windows shown in Figures 6.4 and 6.5 were used to 

apply the SICCA algorithm to the RMS AE signal. Figures 6.12 and 6.13 show 

examples of the canonical correlation analysis in which the distribution of R
2
 over the 

range of shift in camshaft angle from -12
o
 to +12

o
 for the different engine running 

speeds. Figure  6.14 shows the maximum values of R
2
 for both windows where Cylinder 

3 has relatively constant, but poor, value, whereas, for Cylinder 1, the correlation 

deteriorates significantly with speed. As can be seen from Figure  6.15 the maximum 

correlation peak is always between -1° and 3° shift for Cylinder 3 but this is only valid 

for Cylinder 1 at the lowest and the highest speeds, the maximum being found at a 

larger angle shifts for the three intermediate speeds. Figure  6.16 shows the 

corresponding time shifts for maximum regression by converting the angle shift using 

the ICAV values. 

In order to improve the results, a finer angle shift range (-5
o
 to +5

o
 camshaft angle) was 

introduced to focus on more localised sources and avoid the interference with other 

engine events. As seen in Figure 6.17, this had very little effect on the results from 

Cylinder 3 or the results at the lowest and highest speed Cylinder 1, as it would be 

expected. Figures 6.18 and 6.19 show that the angle shift corresponding to the 

maximum regression for the three intermediate speeds in Cylinder 1 are now consistent 

with the remaining results, albeit with lower maximum regression values.    
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Figure  6.12: Example of the distribution of the regression coefficients over the Cylinder 1 window 

(15
o
cms BTDC1 - 45

o
cms ATDC1) from the canonical correlation (range of -12

o
 to +12

o
 cms shift) 

in the running experiment for Engine B. 
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Figure  6.13: Example of the distribution of the regression coefficients over the Cylinder 3 window 

(15
o
cms BTDC1 - 45

o
cms ATDC1) from the canonical correlation (range of -12

o
 to +12

o
 cms shift) 

in the running experiment on Engine B. 

-10 -5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (cms degrees)

R
2

R
2

max
 at  = -0.375

o

459rpm

-10 -5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (cms degrees)

R
2

R
2

max
 at  = 2

o

590rpm

-10 -5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (cms degrees)

R
2

735rpm

R
2

max
 at  = 0.875

o

-10 -5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (cms degrees)

R
2

R
2

max
 at  = -0.125

o

894rpm

-10 -5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (cms degrees)

R
2

R
2

max
 at  = 1.5

o

1044rpm



160 

 

 

Figure  6.14: Regression coefficients of Cylinder 1 and 3 windows (15
o
cms BTDC1 - 45

o
cms ATDC1) 

from the canonical correlation (range of -12
o
 to +12

o
 cms shift) in Engine B. 

 

 

Figure  6.15: Corresponding camshaft angle shift for the maximum regression coefficients for 

Cylinder 1and 3 windows (15
o
cms BTDC1 - 45

o
cms ATDC1) from the canonical correlation (range 

of -12
o
 to +12

o
 cms shift) in Engine B. 
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Figure  6.16: Corresponding time shift for the maximum regression coefficients for Cylinder 1 and 3 

windows (15
o
cms BTDC1 - 45

o
cms ATDC1) from the canonical correlation (range of -12

o
 to +12

o
 

cms shift) in Engine B. 

 

 

Figure  6.17: Regression coefficients for Cylinder 1 and 3 windows (15
o
cms BTDC1 - 45

o
cms 

ATDC1) from the canonical correlation (range of -5
o
 to +5

o
 cms shift) in Engine B. 
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Figure  6.18: Corresponding camshaft angle shift for the maximum regression coefficients for 

Cylinder 1and 3 windows (15
o
cms BTDC1 - 45

o
cms ATDC1) from the canonical correlation (range 

of -5
o
 to +5

o
 cms shift) for Engine B. 

 

 

Figure  6.19: Corresponding time shift for the maximum regression coefficients Cylinder 1 and 3 

windows (15
o
cms BTDC1 - 45

o
cms ATDC1) from the canonical correlation (range of -5

o
 to +5

o
 cms 

shift) in Engine B. 
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6.1.4 Summary of findings on Engine B 

The analysis of Engine B has shown the added complexity associated with identifying 

the events in four-stroke four-cylinder engines which highlights the need for a more 

robust identification technique to tackle the problem of multiple sources more 

effectively. This is seen in particular from the results of the energy analysis which is 

affected by event overlap with increase in speed in some cylinders.  

The application of the SICCA algorithm has provided promising results in terms of the 

identification of sources in engines. However, the technique requires further 

development as will be demonstrated on Engine C. 

 

6.2 Running engine experiments: Engine C (sensor array1)  

The first set of experiments on the Perkins T1004 engine (Engine C) used three sensors 

placed on the top surface of the cylinder head in an inline arrangement, similar to the 

experiments on Engines A and B, as shown in Figure  6.20. Figure  6.21 shows an 

example of a typical raw AE signal for four complete engine cycles in the angular 

domain where the maximum peaks are seen to occur according to the firing order, as 

expected.  

 

Figure  6.20: Schematic diagram of the running PerkinsT1004 (Engine C) sensor array1 experiment 

showing the positions of AE sensor array. 
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Figure  6.21: Typical AE signals from PerkinsT1004 (Engine C) sensor array1 experiment showing 

each cylinder window in the firing order 1-3-4-2. 

 

6.2.1 AE energy analysis for engine C (sensor array1) 

Figures 6.22 to 6.24 show typical raw AE angle series for the injection/combustion 

windows for Cylinders 1, 2 and 3, respectively. In all series, the advance in injection is 

evident for speeds over 1000 rpm (as per VE Bosch pump [7]), when the advance 

device starts to work, and the length of the signal increases in the angular domain due to 

the constant injection and ignition time lags. 

Figures 6.25 to 6.27 show the results of the AE energy calculated using the 9.5 ms fixed 

time window for Cylinders 1, 2 and 3, respectively. It is clear that the energy values 

reflect the sensor position with the exception of Cylinder 1 at higher speeds which could 

mean further energy analysis is required. 
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Figure  6.22: Raw AE signal recorded by Sensor1 from Engine C (sensor array1) showing the 

Cylinder 1 injection window for all the acquired speeds in the angular domain. 

 

 

Figure  6.23: Raw AE signal recorded by Sensor2 from Engine C (sensor array1) showing the 

Cylinder 2 injection window for all the acquired speeds in the angular domain. 
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Figure  6.24: Raw AE signal recorded by Sensor 3 from Engine C (sensor array1) showing the 

Cylinder 3 injection window for all the acquired speeds in the angular domain. 

 

 

Figure  6.25: Averaged AE energy in the injection/combustion event for Cylinder1 calculated using 

a fixed-time window for PerkinsT1004 (Engine C), sensor array1. 
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Figure  6.26: Averaged AE energy in the injection/combustion event for Cylinder 2 calculated using 

a fixed-time window for PerkinsT1004 (Engine C), sensor array1. 

 

 

Figure  6.27: Averaged AE energy in the injection/combustion event for Cylinder 3 calculated using 

a fixed-time window for PerkinsT1004 (Engine C), sensor array1. 

 

-20

-19

-18

-17

-16

-15

-14

-13

-12

-11

-10

300 500 700 900 1100 1300 1500

ln
(E

/r
e

la
ti

ve
 u

n
it

s)
 

Camshaft speed (rpm) 

CH1 (AES1)

CH2 (AES2)

CH3 (AES3)

-20

-19

-18

-17

-16

-15

-14

-13

-12

-11

-10

300 500 700 900 1100 1300 1500

ln
(E

/r
e

la
ti

ve
 u

n
it

s)
 

Camshaft speed (rpm) 

CH1 (AES1)

CH2 (AES2)

CH3 (AES3)



168 

 

6.2.2 Signal frequency demodulation analysis for engine C (sensor array1) 

The demodulated AE signal (Figure  6.28) highlights the injection/combustion events 

clearly as a pulse train.  Again, the frequency analysis of the demodulated signals 

exhibits the fundamental frequency (associated with the running speed) as shown in 

Figures 6.29 to 6.31. As with Engine B, a four-peak pulse train characteristic is seen in 

all demodulated signals irrespective of the sensor used. 

 

Figure  6.28: Demodulated AE signal from Engine C (sensor array1) at a camshaft speed of 

1026rpm. 
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Figure  6.29: Frequency content of the demodulated AE signals acquired in the running experiment 

of Engine C (sensor array1) over the range of camshaft speed recorded at Sensor 1. 

 

Figure  6.30: Frequency content of the demodulated AE signals acquired in the running experiment 

of Engine C (sensor array1) over the range of camshaft speed recorded at Sensor 2. 
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Figure  6.31: Frequency content of the demodulated AE signals acquired in the running experiment 

of Engine C (sensor array1) over the range of camshaft speed recorded at Sensor 3. 
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relative sensors distance. This effect is examined more closely with reference to array 2, 

which has a sensor mounted on one of the injectors.  

 

Figure  6.32: Correlation coefficients of AES2 (Cylinder 2) vs. AES1 (Cylinder 1) from the canonical 

correlation of the injection/combustion event of Cylinder 1 (10
o
cms BTDC1 - 35

o
cms ATDC1) for 

PerkinsT1004 (Engine C) sensor array1 experiment. 

 

 Figure  6.33: Regression coefficients of cylinder head 1 window from the canonical correlation of 

the injection/combustion event of cylinder 1 (10
o
cms BTDC1 - 35

o
cms ATDC1) for PerkinsT1004 

(engine C) sensor array1 experiment. 
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 Figure  6.34: Averaged regression coefficients of cylinder head 3 window from the canonical 

correlation of the injection/combustion event of cylinder 1 (10
o
cms BTDC1 - 35

o
cms ATDC1) for 

PerkinsT1004 (engine C) sensor array1 experiment. 

 

Figure  6.35: Averaged cam angle difference corresponding to maximum regression coefficients of 
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cylinder 1 (10
o
cms BTDC1 - 35

o
cms ATDC1) for engine C sensor array1 experiment. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

300 500 700 900 1100 1300 1500

R
2

 

Camshaft speed (rpm) 

CH2-CH1

CH3-CH1

CH3-CH2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

300 500 700 900 1100 1300 1500

C
am

sh
af

t 
an

gl
e

 (
d

e
gr

e
e

s)
 

Camshaft speed (rpm) 

CH2-CH1

CH3-CH1

CH3-CH2



173 

 

 

Figure  6.36: Averaged cam angle difference corresponding to maximum regression coefficients of 

cylinder head 3 window from the canonical correlation of the injection/combustion event of 

cylinder 1 (10
o
cms BTDC1 - 35

o
cms ATDC1) for engine C sensor array1 experiment. 
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considered to be exact. To maintain a common treatment across all the data, 5 cycles 

were processed for each record, and analysis was carried out in both the angle and time 

domains. Figure  6.39 shows a typical record for all four sensors (3 AE plus shaft 

encoder) for a single cycle along with an engine map of the main mechanical events, 

noting that the injection (and hence combustion) timing is subject to variations with 

engine speed. Figure  6.39 also identifies the four “injection-combustion windows”, 

constituting the angle (or time) period over which fuel enters and is burned in a given 

cylinder. It might be noted that other engine events occur within this window, but none 

of them concern the cylinder in question. Focusing on the cylinder 1 window, it can be 

seen that the highest amplitude signal is shown by the sensor mounted on injector 1 

(AES1), especially significant given that the sensor mounted on the cylinder head 

adjacent to cylinder 1 (AES2) is about twice as sensitive as AES1, suggesting that the 

main source of AE in the window propagates more easily to the injector than to the 

cylinder head. It is also clear (for example by comparing AES3 and AES1) that the 

structure and the relative amplitudes of parts of the window are different as seen by 

different sensors. Finally, comparing AES3’s response in the cylinder 3 window with 

AES1’s response in the cylinder 1 window shows the structure to be different for 

nominally identical source-sensor relationships. These last two observations indicate 

that a given window contains contributions from more than one source, not necessarily 

all of which are within the given cylinder. It might also be noted that one event (e.g. 

injection) may have more than one source (e.g. contact during needle lift and spray 

formation) at different locations (e.g on the injector body and within the cylinder). 

 

Figure  6.37: Schematic diagram of the running PerkinsT1004 (engine C) sensor array2 experiment 

showing the positions of AE sensor array. 
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Figure  6.38: Raw AE signal of four complete engine cycles at camshaft speed of 997 rpm in the 

angular domain. 

 

Figure  6.39: Raw AE signals for one complete engine cycle at camshaft speed of 736 rpm in the 

angular domain. 
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6.3.1 AE energy analysis for engine C (sensor array2) 

Figure  6.40 shows examples of records of the cylinder 1 window as seen by the 

injector-mounted sensor for the range of engine speeds examined, and includes a 

magnified version of the relevant part of the engine map. Figure  6.41 shows the 

corresponding records as seen by the sensor mounted on the cylinder head adjacent to 

cylinder 1. These two sets of records show some important similarities, in that, with 

increasing engine speed, the general signal level increases, the signal commences 

earlier, and the trailing, low amplitude activity is spread out over later angles. There are 

also important differences between the two sensor record sets in both the timing and 

relative amplitudes of sections of the records, suggesting that there is more than one 

source location in the window. It is unlikely that there is a significant contribution from 

other cylinders; for example, EVC1 does not give a very strong signal at AES1 

(Figure  6.39) and so EVC4 is even less likely to contribute significantly to the energy in 

the cylinder 1 window for this sensor. 

As a first analysis, Figure  6.42 shows the AE energies of parallel records in the cylinder 

1 window (10
o
BTDC to 35

o
ATDC) versus engine speed for each of the sensor 

locations, along with an (arbitrarily chosen) exponential fit. As might be expected, more 

AE energy is generated within this window as the engine speed increases and, 

interestingly, the growth constants for both the inj1 and CH1 sensors are very close, the 

injector sensor giving significantly higher AE levels across the whole speed range. Also 

interesting is the fact that the growth constant for the CH3 sensor is significantly higher 

than for the other two and this may be associated with an increasing contribution from 

the IVC3 event, which also occurs within the cylinder 1 window. Figure  6.42 also 

shows the angular duration of the activity in the cylinder 1 window, again with an 

arbitrarily chosen exponential fit, this time of decay. 
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Figure  6.40: Raw AE signal recorded at Injector 1 over the Cylinder 1 window for all five speeds in 

the angular domain. 

 

 

Figure  6.41: Raw AE signal recorded at Cylinder Head 1 over the Cylinder 1 window for all five 

speeds in the angular domain. 
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Figure  6.42: AE energy and time duration of the injection/combustion event (45° camshaft) at 

cylinder 1. 

Figure  6.43 shows the AE energy from the three sensors using fixed time window and 

adaptive thresholding, where they can be seen to be almost identical, except for the 

measurements made adjacent to cylinder 3, where the lower signal-to-noise ratio (SNR) 

affects the performance of the automated algorithm slightly. However, all methods and 

sensor positions show the AE energy content of the event window to increase with an 

increase in the amount of fuel added (which is also increases the engine speed).  The 

behaviour with engine speed is, of course, not entirely passive, due to the extra advance 

introduced by the VE injection system [62]. 

 

Figure  6.43: Averaged AE energy in the injection/combustion event for cylinder1 calculated using 

fixed-time (Tcon) and adaptive threshold (Tvar) windows. 
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6.3.2 ICAV and peak analysis 

Instantaneous crankshaft angular velocity has shown to correlate well with average AE 

energy in diesel engines under a range of operating conditions, on the basis that the 

combustion of fuel generates the relevant accelerations of the pistons [167]. To test this 

hypothesis at a more detailed level in the injection/combustion event, the data from the 

shaft encoder was used to calculate the ICAV, instantaneous camshaft angular velocity 

(Figure  6.44), used here in preference to the more conventional crankshaft angular 

velocity to maintain consistency with the rest of the analysis. The ICAV waveform 

within the event window at TDC1 (10
o
BTDC1-35

o
ATDC1), highlighted in Figure  6.44, 

has been extracted for more detailed analysis. Figure  6.45 shows one example of the 

ICAV response and the corresponding AE signals from the two cylinder 1 sensors over 

the 45
o
 event window around TDC1. As can be seen, there is a peak in the AE recorded 

at the injector, which seems to correlate with the minimum ICAV. 

 

Figure  6.44: Averaged instantaneous camshaft angular velocity of one complete engine cycle for all 

five different speeds. 
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Figure  6.45: Averaged values of AE RMS signal from sensors mounted near cylinder 1 and ICAV 

waveform at a camshaft speed of 735rpm. 

To investigate further the relationship between the AE signals and the ICAV waveform, 

a narrower window (between 2ºBTDC and 2ºATDC) was chosen and a cross-correlation 

algorithm applied between the AE records and the ICAV using [168]: 

 
𝐶𝑘 = {

∑ 𝑥𝑖+𝑘𝑦𝑖
∗

𝑛−𝑘

𝑖=1

, 𝑘 ≥ 0

𝐶−𝑘
∗ ,                     𝑘 ≤ −1

 
 6-1 

where x and y are the vectors of n numbers, Ck is the cross-correlation function and k 

represents the period [-n : n]. Because the AE and ICAV time series have different 

resolutions, it was necessary to further average the AE to match the ICAV resolution 

before applying the cross-correlation. The resulting functions shown in Figure  6.46 

show that there is a definite peak at TDC for both cylinder 1 sensors but the resolution 

of the ICAV is not sufficiently good to be able to identify the individual peaks in the 

AE, although it can be seen that the approach to the peak becomes steeper as the engine 

speed increases. 
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Figure  6.46: Averaged cross-correlation between AE signals at cylinder1 and the corresponding 

ICAV waveform over the cam angle range (-2
o
) to 2

o
. 

 

A more successful approach is shown in Figure  6.47, which shows the cam angle 

positions of the minimum ICAV values along with the cam angle positions of the 

starting points of the cylinder 1 AE signals (obtained using the adaptive threshold 

method). Here it can be seen that the AE start is associated with the minimum ICAV, 

and that both are advanced relative to TDC as the engine speed increases. The lower 

slope and reduced correlation coefficient for the ICAV minimum are probably due to its 

lower angular resolution relative to the AE, represented by the larger error bars. 

-4 -2 0 2 4
0

0.5

1
421 rpm

Lag

C
o
rr

e
la

ti
o
n
 c

o
e
ff

ic
ie

n
t

-4 -2 0 2 4
0

0.5

1
528 rpm

Lag

C
o
rr

e
la

ti
o
n
 c

o
e
ff

ic
ie

n
t

-4 -2 0 2 4
0

0.5

1
735 rpm

Lag

C
o
rr

e
la

ti
o
n
 c

o
e
ff

ic
ie

n
t

-4 -2 0 2 4
0

0.5

1
996 rpm

Lag

C
o
rr

e
la

ti
o
n
 c

o
e
ff

ic
ie

n
t

-4 -2 0 2 4
0

0.5

1
1130 rpm

Lag

C
o
rr

e
la

ti
o
n
 c

o
e
ff

ic
ie

n
t

 

 

Inj1 CH1



182 

 

 

Figure  6.47: Averaged cam angle positions of the starting points of AE signals and the minimum 

value of ICAV around TDC1. Error bars indicate range of values over the 6 cycles analysed. 

6.3.3 Diesel engine events and signal peaks interpretation 

Having established that at least two features of the AE signal correlate with two 

different features of the ICAV, it remains to be seen if further diagnostic information 

can be obtained by comparing the AE sensor responses with each other. One simple 

way in which this can be done is illustrated by the example in Figure  6.48 where the 

sensor record on the cylinder head has been re-scaled to give the same total energy in 

the TDC1 window as does the sensor record for the injector-mounted sensor. In this 

way, the effects of attenuation and sensor sensitivity are eliminated and the energy 

distribution across the window can be compared simply by subtracting one record from 

the other. Figure  6.49 shows the effect of this subtraction averaged across all of the data 

for each speed, and it can clearly be seen that the injector sensor generally records less 

energy at the start of the injection-combustion event and more towards the end. This is 

somewhat contrary to what might be expected, but is consistent with the time lag seen 

between cylinder head sources and injector sensors in the calibrations, suggesting that 

the source for most of the early AE is within the cylinder rather than in the body of the 

injector. 
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Figure  6.48: Examples of AE RMS signals from CH1 and Inj1, showing re-scaling of CH1 signal. 

(Camshaft speed is 996 rpm) 

As can be seen from Figure  6.48 the signal from the injector-mounted sensor has a more 

detailed structure than the one mounted on the cylinder head, although the latter has 

clearer peaks, so it was used to segment the injection-combustion window. This was 

done using an algorithm which located the local peaks of the RMS signal by applying a 

sliding window with a width of 0.50 cam angle (1 crank angle). Figure  6.50 shows ten 

local peaks (M1 - M10) and the concomitant segmentation into five event windows (A, 

B, C, D and E) which are assumed to be linked to the injection/combustion stages under 

different operating conditions. 
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Figure  6.49: Averaged values of difference between Inj1 and re-scaled CH1 records for each 

camshaft speed. 

 

Figure  6.50: Example of AE RMS signal from sensor mounted near cylinder 1 showing 

segmentation of window and local peaks. 
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Figures 6.51 and 6.52 show how the AE peaks are distributed (as cumulative height 

over the 0.50 cam angle increment) for the 125 complete engine cycles over the five 

different speeds for each of the sensors. The bar charts are overlain rather than added in 

order to highlight areas of the crankshaft window in which peaks are concentrated and, 

as can be seen, the distribution is much broader for the injector mounted sensor than for 

that mounted on the cylinder head. With both sensors, there are clear changes in the 

peak pattern with speed, but the pattern is much more marked with the cylinder head 

mounted sensor, which moves from a concentration in three zones at low speed, to 

between four and six zones at higher speed. 

 

Figure  6.51: Re-scaled AE peak distribution at CH1 for each of the running speeds. 
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Figure  6.52: AE peak distribution at Inj1 for each of the running speeds. 

The narrower distribution of peaks at CH1, allowed a more systematic investigation of 

the temporal structure across the TDC1 window and its changes with engine running 

speed. To do this, the cam angle position of each local peak (M1 to M10 in Figure  6.50) 

was automatically detected and stored in a matrix, each pair of peaks (M1/M2, M3/M4 

etc.) being assigned to an event window (A to E in Figure  6.50). The event windows 

were decided by inspection of representatives of all records as being likely to indicate 

different processes in the engine. The position of each event (the mean angle of its two 

peaks), the average energy (angular integral over the event window) and the angular 

difference between the event peaks were then calculated for each example of each 

window at each speed and the results are shown in Figures 6.53-6.55. 

 

-10 0 10 20 30
0

0.2

0.4

Cam angle (cms degrees after TDC1)

A
m

p
lit

u
d
e
 (

A
U

)

421 rpm 
 TDC 

-10 0 10 20 30
0

0.2

0.4

Cam angle (cms degrees after TDC1)

A
m

p
lit

u
d
e
 (

A
U

)

528 rpm 
 TDC 

-10 0 10 20 30
0

0.2

0.4

Cam angle (cms degrees after TDC1)

A
m

p
lit

u
d
e
 (

A
U

)

735 rpm 
 TDC 

-10 0 10 20 30
0

0.1

0.2

0.3

0.4

Cam angle (cms degrees after TDC1)

A
m

p
lit

u
d
e
 (

A
U

) 996 rpm 

 TDC 

-10 0 10 20 30
0

0.1

0.2

0.3

0.4

Cam angle (cms degrees after TDC1)

A
m

p
lit

u
d
e
 (

A
U

) 1130 rpm 
 TDC 



187 

 

 

Figure  6.53: Averaged cam angle positions of the five event windows from AE RMS records at 

CH1. 

 

Figure  6.54: Averaged angular AE energy of the five event windows from AE RMS records at CH1. 
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Figure  6.55: Averaged cam angle peak angular separation for the five event windows from AE 

RMS records at CH1. 

The rather complicated behaviour exhibited in Figures 6.53 to 6.55 is summed up in 

Table  6.1, which shows how each of the event window indicators changes with engine 

speed. 

 Rate of change with camshaft speed (10
4
 r.p.m.

-1
) 

Event window Angular position Angular energy Relative peak position 

A -15 23 24 

B -20 32 13 

C -38 84 55 

D -21 49 -47 

E -23 95 -40 

Table  6.1: Trends with camshaft speed of each of the event indicators derived from the AE RMS 

records at CH1. 
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injected, hence being more to do with spray formation than the mechanical movement 

of the injector parts. The longer and wider duration of the corresponding angular 

window recorded on the injector (Figures 6.51 and 6.52) would tend to support the 

suggestion that the Inj1 sensor is recording more than the spray formation, probably 

also the injector mechanical movements.  The event window that is most sensitive to 

engine speed is C and its position within the overall TDC1 window, its rapid increase in 

energy and its relatively rapid angular advance would all suggest that this event window 

is associated with combustion. Event windows D and E show a similar rate of advance 

to A and B, suggesting that they are also associated with the injectors. However, in 

contrast to A and C, D and E show a rapid increase in energy with engine speed and, 

exceptionally, the two peaks move closer to each other as engine speed increases, 

suggesting that they are separated by a fixed time. One explanation of these events, 

which occur rather late in TDC1 window, that they are associated with pressure waves 

between the pump and the injector, which are known to travel at a speed of sound [9]. 

The pressure waves may be wholly or partially reflected back at the nozzle as a 

compression wave if the nozzle is closed which would lead to a fixed time difference, 

and the intensity of the waves might be expected to increase with the rate of closure of 

the injector valve. 

6.3.4 Identification of diesel engine events using canonical correlation; engine C 

(sensor array2) 

Figures 6.56 to 6.58 show the distribution of the maximum regression values for the 

three sensor pairs in a 45
o
 camshaft window for Cylinder 1, using shift angles in the 

range of (-10
o
) to 10

o
 camshaft. The correlation results for each of the pairs in the 

Cylinder 1 and Cylinder 3 windows are summarised in Figures 6.59 and 6.6. As for 

sensor array 1 there is a substantial difference in correlation between the sensor pairs 

across the entire window, indicating that a more detailed analysis is needed, particularly 

in Cylinder 1. Figure  6.61 shows an example of raw AE signal recorded around TDC on 

Cylinder 1 by the two cylinder head mounted sensors. Figure  6.62 shows the correlation 

distribution over this window indicating four distinct peaks, with different heights, 

suggesting multiple events. Accordingly, the injection/combustion window was divided 

into three sub-windows (this was done by inspection Figure  6.63, although the process 

could easily be automated) and CCA has been applied to each sub-window separately. 

Figure  6.64 shows the results of this second CCA, showing three distinct angle shifts. 
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Repeating the process with the other sensor pairs and the other windows can easily be 

seen to be able to provide a set of arrival time differences which could be related to the 

time differences recorded in the attenuation experiments. 

 

Figure  6.56: Regression coefficients of AES2 vs. AES1 from the canonical correlation of the 

injection/combustion window for Cylinder 1 (45° camshaft). 

 

Figure  6.57: Regression coefficients of AES3 vs. AES1 from the canonical correlation of the 

injection/combustion window for Cylinder 1 (45° camshaft). 
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Figure  6.58: Regression coefficients of AES3 vs. AES2 from the canonical correlation of the 

injection/combustion window for Cylinder 1 (45° camshaft). 

 

Figure  6.59: Regression coefficients from the canonical correlation of the injection/combustion 

window for Cylinder 1 (10
o
cms BTDC1 - 35

o
cms ATDC1). 
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Figure  6.60: Regression coefficients from the canonical correlation of the injection/combustion 

window for Cylinder 3 (10
o
cms BTDC1 - 35

o
cms ATDC1). 

 

Figure  6.61: Typical raw AE signal from Engine C sensor array2. 
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Figure  6.62: Example of the distribution of the regression coefficients over the Cylinder 1 window 

(15
o
cms BTDC1 - 45

o
cms ATDC1) from Engine C, sensor array2. 

 

Figure  6.63: Segmentation of AE signal from Engine C, sensor array2 at camshaft speed of 736 

rpm. 
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Figure  6.64: Example of the distribution of the regression coefficients for Cylinder 1 window 

(15
o
cms BTDC1 - 45

o
cms ATDC1) from Engine C, sensor array2. 

6.3.5 Summary of findings on Engine C (sensor array 2) 

This final set of data has exhibited a range of signals from diverse sources recorded at 

sensors placed in an asymmetrical array. A two-stage process is used here, with CCA 

being used for the events around TDC of a cylinder to identify if there is sufficient 

doubt about the best correlation between some or all pairs of sensors to obtain a single 

angle shift. This signal can then be segmented as many times as are necessary to 

identify optimally the most likely angle shifts for each sub-event in the time series. It 

can easily be seen, that combining this with appropriate calibration measurements will 

allow a fully automated adaptive analysis of multi-source, multi-sensor data in 

machines. 
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Chapter 7 

Conclusions and Recommendations  

7.1 Conclusions 

This detailed study of the temporal and spatial structure of the AE during the injection-

combustion window of a diesel engine has thrown up a number of new insights into the 

potential for AE monitoring of machines where multiple sources are involved. These 

conclusions are summarised in the following: 

 The signal transmission in such a complex geometry (i.e. cylinder head) occurs 

in multiple paths which means that an energy analysis technique is not generally 

sufficient for signal separation and has to be complemented with other methods 

to exploit the high temporal resolution offered by AE. 

 The transmission paths from the potential sources to a surface mounted sensor 

array give enough time delay to be separated in a raw, or lightly averaged 

record, even in small diesel engine. 

 The AE energy has a some sensitivity to the surface temperature which may 

affect the source identification of adjacent (in time and space) engine events 

(e.g. injection and combustion) especially in small high speed diesel engines. 

 The AE record is critically sensitive to the sensor position changing not only in 

amplitude, but also in temporal structure with quite small changes even within 

the surface of the cylinder head. 

  There is an identifiable AE signature around the time of the injection events in 

the experimental injection rig which can also be seen in a running diesel engine. 

 Taking simple features of the pulses, such as their energy, shows similar trends 

with crankshaft speed on both the injector rig and on the running engine. 
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 Detailed analysis of one sensor position has allowed deductions to be made 

about which parts of the AE time series are associated with injection, 

combustion and with pressure waves set up in the injector rails. 

 The canonical correlation has the capacity to add to more conventional time-

based analysis, allowing time (or angle) differences between different parts of a 

signal recorded at two sensors to be identified automatically for on-line 

monitoring. 

 The ability to have a dynamic measure of phase as well as energy adds 

considerably to the potential for automated source location in machinery and 

moves closer to automated spatial location of time-series in mechanically-

regulated AE records. 

7.2 Future work 

This new method (SICCA) of processing multi-source, multi-sensor AE data shows the 

potential to be implemented more widely in condition monitoring of machines. The next 

step towards a complete diagnostic kit is to improve SICCA to work in a fully 

automated way by integrating an ICA algorithm into an advanced version of SICCA 

(which includes the adaptive threshold and automated peak finder). Also, work is 

needed on investigating the relationship between the fuel line pressure profile and the 

structure of the AE in the injector rig. This should help to form a time series model of 

the injector AE signal which will allow it to be used as a means of metering the fuel 

entering the engine in each injection cycle. Further work should be focused on the 

pulsatile structure of the time series in order to account for the pressure wave that are 

evident in the injector rig, and to better separate injection from combustion (and from 

other AE-generating events) in the engine. Further development of this technique 

should consider studying the effect of using alternative fuels in terms of identifying the 

corresponding features and the significant differences. Finally, SICCA has shown a 

significant potential to be incorporated to the control system in the automotive 

engineering which is the most appropriate venue for further development. 
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Appendix A 

AE Sensor Calibration Certificates 

A1. AE sensor calibration certificate for sensor 99 

 

A2. AE sensor calibration certificate for sensor 115 
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A3. AE sensor calibration certificate for sensor 119 

 

A.4 AE sensor calibration certificate for sensor 127 
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Appendix B 

Experimental data Settings 

B.1 Calibration of AE sensors 

No. of 

Ch. 

No. of 

Points 

Sampling 

Rate 

(Hz) 

Pre 

trigger 

Trigger 

level 

Pre Amp 

Gain 

(dB) 

SCU 

Gain 

(dB) 

3 5 * 10
5
 5 * 10

6
 10

3 
0.2 40  -12 

       

File Name Position Description 

A1-A10 

1
ST

 mounting 

Distance 

between centre 

and each sensor 

is 70 mm 

 

B1-B10 

Re-mounting 

Distance 

between centre 

and each sensor 

is 70 mm 

C1-C10 

1
ST

 mounting 

Distance 

between centre 

and each sensor 

is 70 mm 

 

D1-D10 

Re-mounting 

Distance 

between centre 

and each sensor 

is 70 mm 

E1-E10 

1
ST

 mounting 

Distance 

between centre 

and each sensor 

is 70 mm 

 

F1-F10 

Re-mounting 

Distance 

between centre 

and each sensor 

is 70 mm 

Table  B.1: The settings of three AE sensors calibration experiment. 
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B.2 Study the behaviour of AE signal through a thin steel plate 

File 

Name 

Position No. of 

Ch. 

No. of 

Points 

Sampling 

Rate 

(Hz) 

Pre 

trigger 

Trigger 

level 

Pre 

Amp 

Gain 

(dB) 

SCU 

Gain 

(dB) 

A1 - 

A10 
A 2 5 * 10

4
 5 * 10

6
  10

3
 0.2 40  0 

B1 - 

B10 
B 2 5 * 10

4
 5 * 10

6
  10

3
 0.2 40  0 

C1 - 

C10 
C 2 5 * 10

4
 5 * 10

6
  10

3
 0.2 40  0 

D1 - 

D10 
D 2 5 * 10

4
 5 * 10

6
  10

3
 0.2 40  0 

E1 - 

E10 
E 2 5 * 10

4
 5 * 10

6
  10

3
 0.2 40  0 

F1 - 

F10 
F 2 5 * 10

4
 5 * 10

6
  10

3
 0.2 40  0 

G1 - 

G10 
G 2 5 * 10

4
 5 * 10

6
  10

3
 0.2 40  0 

Table  B.2: The experimental settings of AE signal behavior through a thin steel plate. 

B.3 Attenuation and calibration experiments of engine cylinder head 

File 

Name 

Position No. 

of 

Ch. 

No. of 

Points 

Sampling 

Rate 

(Hz) 

Pre 

trigger 

Trigger 

level 

Pre Amp 

Gain 

(dB) 

SCU 

Gain 

(dB) 

A1-A5 P1 2 2.5*10
5 

2.5*10
6 

10
3 

0.2 40  -12 

A6-

A10 
P2 2 2.5*10

5 
2.5*10

6 
10

3 
0.2 40  -12 

A11-

A15 
P3 2 2.5*10

5 
2.5*10

6 
10

3 
0.2 40  -12 

B1-B5 P4 2 2.5*10
5 

2.5*10
6 

10
3 

0.2 40  -12 

B6-

B10 
P5 2 2.5*10

5 
2.5*10

6 
10

3
 0.2 40  -12 

B11-

B15 
P6 2 2.5*10

5 
2.5*10

6 
10

3
 0.2 40  -12 

C1-C5 P7 2 2.5*10
5 

2.5*10
6 

10
3 

0.2 40  -12 

C6-

C10 
P8 2 2.5*10

5 
2.5*10

6 
10

3
 0.2 40  -12 

C11-

A15 
P9 2 2.5*10

5 
2.5*10

6 
10

3
 0.2 40  -12 

Table  B.3: The experimental settings of AE signal transmission through the cylinder head of Stuart 

Turner engine (using both Diesel and Bio-diesel fuel experiments). 
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No. of Ch. No. of Points 
Sampling Rate 

(Hz) 
Pre trigger Trigger level 

3 2.5*10
5 

2.5*10
6 

10
3 

0.2 

     

File Name Position 
Pre Amp Gain (dB) SCU Gain (dB) 

Sensor1 Sensor2 Sensor3 Sensor1 Sensor2 Sensor3 

A1-A5 P1 40 60 60 -12 -12 0 

B1-B5 P2 40 40 60 -6 6 0 

C1-C5 P3 40 40 60 -6 0 -6 

D1-D5 P4 40 40 60 0 -12 -12 

E1-E5 P5 60 40 60 -12 -12 -12 

F1-F5 P6 60 40 40 -12 -12 0 

G1-G5 P7 60 40 40 -6 0 -6 

H1-H5 P8 60 40 40 0 6 -6 

I1-I5 P9 60 60 40 0 -12 -12 

Table  B.4: The experimental settings of AE signal transmission experiment of sensor array1 on 

Perkins T1004 (engine C). 

No. of Ch. No. of Points 
Sampling Rate 

(Hz) 
Pre trigger Trigger level 

3 2.5*10
5 

2.5*10
6 

10
3 

0.2 

     

File Name Position 
Pre Amp Gain (dB) SCU Gain (dB) 

Sensor1 Sensor2 Sensor3 Sensor1 Sensor2 Sensor3 

A1-A5 P1 60 40 60 -12 -6 -6 

B1-B5 P2 60 40 60 -6 -12 -6 

C1-C5 P3 40 40 60 6 -6 -6 

D1-D5 P4 60 40 60 -6 0 -12 

E1-E5 P5 20 60 60 0 -6 6 

F1-F5 P6 60 60 60 0 -6 6 

G1-G5 P7 60 60 60 6 6 0 

H1-H5 P8 60 60 60 6 6 6 

Table  B.5: The experimental settings of AE signal transmission experiment of sensor array2 on 

Perkins T1004 (engine C). 
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B.4 Running engine experiments 

 

Table  B.6: The experimental settings of Stuart Turner (Engine A) running engine experiment. 

No. of Ch. No. of Points Sampling Rate (Hz) Pre trigger Trigger level 

3 2.5*10
6 

2.5*10
6 

10
3 

0.2 

     

File Name 
Engine speed 

(rpm) 

Pre Amp Gain (dB) SCU Gain (dB) 

Sensor1 Sensor2 Sensor1 Sensor2 

A1-A5 900 40 40 -12 -12 

A6-A10 1200 40 40 -12 -12 

A11-A15 1500 40 40 -12 -12 

A16-A20 1800 40 40 -12 -12 

A21-A25 2100 40 40 -12 -12 

Table  B.7: The experimental settings of Perkins A4.270 (Engine B) running engine experiment. 

 

 

 

 

 

 

 

File Name Condition Engine speed 

(rpm) 

Torque 

(N.m) 

Current 

(Amp) 

Voltage 

(Volts) 

Texh   

(
o
C) 

Tamb 

(
o
C) 

Engine 

oil temp  

(
o
C) 

Water 

in/out 

temp  

(
o
C) 

A1-A5 No load 1494-1500 3.6 0 0 100 20 37 9/13 

B1-B5 1 Load  1468-1475 30.3-30.5 11 180 151 20 39 10/13 

C1-C5 2 Loads 1435-1436 58.2-59.1 21 180 217 20 40 10/14 

D1-D5 3 Loads 1388-1395 86.6-87.5 30 175 283 20 39 10/14 

E1-E5 4 Loads 1300-1315 107.7-109.2 38 160 336 20 40 10/15 

F1-F5 5 Loads 1200-1204 111.6-113.5 39 150 331 20 41 10/33 

G1-G5 6 Loads 1075-1077 108.6-110.9 38 130 303 20 42 10/60 

FF1-FF5 5 Loads 1189-1199 109.5-110.5 39 150 319 20 42 10/15 

EE1-EE5 4 Loads 1295-1299 107.4-108 37 160 352 20 44 10/37 

DD1-DD5 3 Loads 1390-1393 88.3-87.1 30 180 313 21 46 10/16 

CC1-CC5 2 Loads 1435-1436 60.2-60.7 21 180 250 21 48 10/38 

BB1-BB5 1 Load  1463-1465 31-31.3 10 190 180 21 49 10/46 

AA1-AA5 No load 1515-1526 2.5-3.1 0 190 141 21 51 10/14 
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No. of Ch. No. of Points Sampling Rate (Hz) Pre trigger Trigger level 

4 2.5*10
6 

2.5*10
6 

10
3 

0.2 

     

File Name 

Engine 

speed 

(rpm) 

Pre Amp Gain (dB) SCU Gain (dB) 

Sensor1 Sensor2 Sensor3 Sensor1 Sensor2 Sensor3 

A1-A5 728 20 20 20 -6 -6 -6 

B1-B5 851 20 20 20 -6 -6 -6 

C1-C5 1048 20 20 20 -6 -6 -6 

D1-D5 1432 20 20 20 -6 -6 -6 

E1-E5 2057 20 20 20 -6 -6 -6 

F1-F5 2249 20 20 20 -6 -6 -6 

G1-G5 2577 20 20 20 -6 -6 -6 

H1-H5 2918 20 20 20 -6 -6 -6 

GG1-GG5 2592 20 20 20 -6 -6 -6 

FF1-FF5 2237 20 20 20 -6 -6 -6 

EE1-EE5 1940 20 20 20 -6 -6 -6 

DD1-DD5 1524 20 20 20 -6 -6 -6 

CC1-CC5 1068 20 20 20 -6 -6 -6 

BB1-BB5 847 20 20 20 -6 -6 -6 

AA1-AA5 761 20 20 20 -6 -6 -6 

Table  B.8: The experimental settings of sensor array 1 in running Perkins T1004 (engine C) 

experiment. 
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No. of Ch. No. of Points Sampling Rate (Hz) Pre trigger Trigger level 

4 2.5*10
6 

2.5*10
6 

10
3 

0.2 

     

File Name 

Engine 

speed 

(rpm) 

Pre Amp Gain (dB) SCU Gain (dB) 

Sensor1 Sensor2 Sensor3 Sensor1 Sensor2 Sensor3 

A1-A5 837 20 20 20 -6 -6 -6 

B1-B5 1057 20 20 20 -12 -6 -6 

C1-C5 1473 20 20 20 -12 -6 -6 

D1-D5 1990 20 20 20 -12 -6 -6 

E1-E5 2262 20 20 20 -12 -6 -6 

DD1-DD5 1960 20 20 20 -12 -6 -6 

CC1-CC5 1530 20 20 20 -12 -6 -6 

BB1-BB5 1068 20 20 20 -12 -6 -6 

AA1-AA5 819 20 20 20 -12 -6 -6 

Table  B.9: The experimental settings of sensor array 2 in running Perkins T1004 (engine C) 

experiment. 

B.5 Injector rig experiments 

File 

Name 

position No. 

of Ch. 

No. of 

Points 

Sampling 

Rate 

(Hz) 

Pre 

trigger 

Trigger 

level 

Pre 

Amp 

Gain 

(dB) 

SCU 

Gain 

(dB) 

A1-

A25 
1 1 2.5*10

6 
2.5*10

6 
10

2 
0.2 40 -12 

B1-

B25 
2 1 2.5*10

6 
2.5*10

6 
10

2 
0.2 40 -12 

C1-

C25 
3 1 2.5*10

6 
2.5*10

6 
10

2 
0.2 40 -12 

D1-

D25 
4 1 2.5*10

6 
2.5*10

6 
10

2 
0.2 40 -12 

Table  B.10: The experimental settings of AE signal transmission through a diesel injector. 
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No. of Ch. No. of Points 
Sampling Rate 

(Hz) 
Pre trigger Trigger level 

4 2.5*10
6 

2.5*10
6 

10
3 

0.2 

     

File Name 
Injection pump 

speed (rpm) 

Pre Amp Gain (dB) SCU Gain (dB) 

Sensor1 

 

Sensor2 Sensor1 

 

Sensor2 

A1-A5 1510 20 20 0 -6 

A6-A10 1700 20 20 0 -6 

A11-A15 1956 20 20 0 -6 

A16-A20 2135 20 20 0 -6 

A21-A25 2335 20 20 0 -6 

A26-A30 2609 20 20 0 -6 

Table  B.11: The experimental settings of running injector rig with pressure transducer 

(Experiment 1). 

 

No. of Ch. No. of Points 
Sampling Rate 

(Hz) 
Pre trigger Trigger level 

3 2.5*10
6 

2.5*10
6 

10
3 

0.2 

     

File Name 

Injection pump 

speed (rpm)/ 

throttle position 

Pre Amp Gain (dB) SCU Gain (dB) 

Sensor1 

 

Sensor2 Sensor1 

 

Sensor2 

A1-A5 1523 (Min) 20 20 -12 -12 

B1-B5 1455 (Max) 20 20 -12 -12 

C1-C5 2207(Min) 20 20 -12 -12 

D1-D5 2199 (Max) 20 20 -12 -12 

Table  B.12: The experimental settings of running injector rig with pressure transducer at different 

throttle position (Experiment 1). 
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No. of Ch. No. of Points 
Sampling Rate 

(Hz) 
Pre trigger Trigger level 

3 2.5*10
6 

2.5*10
6 

10
3 

0.2 

     

File Name 
Injection pump 

speed (rpm) 

Pre Amp Gain (dB) SCU Gain (dB) 

Sensor1 

 

Sensor2 Sensor1 

 

Sensor2 

A1-A5 1020 20 20 -12 +6 

A6-A10 1517 20 20 -12 +6 

A11-A15 1612 20 20 -12 +6 

A16-A20 2110 20 20 -12 +6 

A21-A25 1076 20 20 -12 +6 

A26-A30 703 20 20 -12 +6 

Table  B.13: The experimental settings of running injector rig without pressure transducer 

(Experiment 2). 

No. of Ch. No. of Points 
Sampling Rate 

(Hz) 
Pre trigger Trigger level 

3 2.5*10
6 

2.5*10
6 

10
3 

0.2 

     

File Name 
Injection pump 

speed (rpm) 

Pre Amp Gain (dB) SCU Gain (dB) 

Sensor1 

 

Sensor2 Sensor1 

 

Sensor2 

A1-A5 954 40 40 -12 -12 

A6-A10 1272 40 40 -12 -12 

A11-A15 1664 40 40 -12 -12 

A16-A20 2120 40 40 -12 -12 

A21-A25 2438 40 40 -12 -12 

Table  B.14: The experimental settings of running injector rig without pressure transducer 

(Experiment 3). 
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