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Abstract

Type error reports provide programmers with a description of type errors which
exist in their code. Such descriptions are frequently of poor quality, as they often
present just one point in the program, rather than all locations in the code which
contribute to that type error.

Skalpel is a type error report system for the Standard ML language which tack-
les this problem, by presenting all and only the locations in the program which
contribute to the type error. While the original Skalpel gives substantially better
error reports than comparable systems, it has a number of limitations such as a
lack of support for language features and poor efficiency.

In this research we have made a number of contributions, including a full critique
of both the Skalpel core theoretical system and its extensions, support for the
remaining features of Standard ML, an analysis and improvements to the efficiency,
and an investigation for the first time on Skalpel’s theoretical properties.
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Chapter 1

Overview

Skalpel is a tool for the Standard ML (SML) [MTHM98] programming language
designed to solve the problem of low quality reporting of type errors which is cur-
rently present in the available compilers for the language. This document outlines
progress made by a research project designed to combat these issues of low quality
reporting of type errors. This thesis used and extends the work of previous research
projects which have led the Skalpel project as a whole to its current state.

In section 1.1, we outline the structure of this thesis, and list contributions in
section 1.2. In section 1.3 we present the history of the project up to the point
before this thesis began.

1.1 Outline of this thesis

Below, we describe each of the following chapters which are present in this thesis.

• Chapter 2 gives a review of some of the more important literature relevant to
this project.

• Chapter 3 discusses the original presentation of the Skalpel core as described
in [Rah10], with minor edits made to fix any bugs that existed in the theory.

• Chapter 4 presents the newest version of the Skalpel core and a discussion of
the relevant changes.

• Chapter 5 gives some fully worked examples of the Skalpel machinery as
presented in chapter 4.

• Chapter 6 describes some extensions to the original version of the Skalpel
theory (chapter 3) that were present in [Rah10], and updates them to work

1



1.2. CONTRIBUTIONS

with the new version of the Skalpel core. We use these in the next chapter
(chapter 7).

• Chapter 7 presents further new extensions to the theory to enhance Skalpel’s
capability to detect and present errors.

• Chapter 8 discusses some of the properties of Skalpel, such as the termination
of algorithms.

• Chapter 9 lays out ideas for future work which could be done on the Skalpel
project extending from the work in this thesis, and concludes this thesis.

• Appendix A lists symbols used in this thesis, with a brief description and
gives a point of definition.

• Appendix B describes how a new tool has been developed in order to document
ML code and gives a critique of the other existing alternatives that were
unsuitable.

• Appendix C discusses the Skalpel implementation, and some of the changes
that were made to it.

• Appendix D Gives an extract of the LATEX version of the documentation that
is generated from the documentation tool described in appendix B.

• Appendix E shows the progression of both the external and constraint syntax
that is specified in the presentation of the Skalpel core and all of the Skalpel
extensions.

1.2 Contributions

This document presents the following contributions:

• Critique of the initial Skalpel presentation. In chapter 3 we discuss the
initial presentation of Skalpel and in chapter 6 we critique the extensions that
were made prior to this project.

• Several new extensions to the theory. We present several new extensions
to the existing theory surrounding Skalpel in chapter 7, adding support for
features such as equality types and type sharing. We build this theory on top
of the existing theory but we attempt to keep as much simplicity as possible.
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1.3. HISTORY OF SKALPEL

• Work on implementation efficiency. We present an approach in section
4.7 which shows how the Skalpel implementation can be modified to execute
faster by representing label sets in a new way, and discuss some other possible
means of representation. This is particularly important for our implementa-
tion as shortening the time we spend computing label sets is an attractive
area for optimization. We review the profiling state of the analysis engine,
the core Skalpel implementation component, and discuss the ways in which
the implementation can be enhanced using this information. As the Skalpel
implementation is very much a real project, and not a toy implementation,
implementation details such as these are extremely important. We use the
findings here to locate opportunities for future work.

• Developed meta-theory. We list properties of the theoretical parts of
Skalpel in chapter 8 which have never previously been made and justifications
on why such properties hold.

1.3 History of Skalpel

The start of an implementation which was designed to help programmers under-
stand and solve type errors in their Standard ML code took place in the duration
of Christian Haack’s work as a postdoctoral assistant with the ULTRA group at
Heriot-Watt University working with Dr. Joe Wells. Shortly after this, Sebastien
Carlier created the first version of a web demonstration of this implementation,
which allowed users to try the tool online.

In 2008, Dr. Vincent Rahli began work on the Skalpel implementation as part
of his Ph.D. studies. He started to extend the work already completed so that it
was capable of handling datatypes, type functions, and other various features of
the Standard ML programming language as described in the definition of Standard
ML [MTHM98].
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Chapter 2

Literature Review

In this chapter a discussion is presented of the other literature related to type
checking and type error slicing.

2.1 Type checking

A type is a role that can be assigned to different forms of data, (such as an integer

type representing numbers) which dictate what sort of values are available for that
type, how that type is used, and operations that be performed on values which
are defined to be of that type. A type checking algorithm verifies that all of the
constraints imposed by these types in a user program are solvable.

A type checker will check that all of the values of a program are used correctly
and will check the types of all expressions in the user program. Not all languages
have type checkers, and those that do are generally classified into two categories -
strongly typed and weakly typed. In the general case, programs which do not allow
loss of information when altering existing types are considered strongly typed, with
those that do considered weakly typed. Statically type checking languages can
bring benefits to the compiler as it knows more information about the program,
and can lead to more efficient code. Another major benefit is that it will catch
errors at compile time that would otherwise not be caught.

Type checking can either be performed statically, at compile time, or dynam-
ically, at run time. The approach to static vs dynamic type checking, and strong
vs weak typing has been a source of some debate [Han10]. Doing type checking at
compile time will mean that the incorrect use of types is detected by the program-
mer, whereby dynamic type checking will inevitably mean that some of these errors
will not be detected until run-time, possibly by end-users of software.
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2.2. IMPORTANCE OF THE EXPLANATION OF TYPE ERRORS

When a type system detects the use of types incorrectly, it will report a type
error. In the next section we discuss the importance of the explanation of these
type errors.

2.2 Importance of the explanation of type errors

The explanation of type errors in mainstream programming languages is generally
poor, especially when large amounts of type inference is involved. An example
of this can be seen in C++ in the template feature, and in the ML family of
languages where explicit typing is not mandatory and a sophisticated type inference
algorithm is used. The type checking algorithms used by these languages highlight
only one location in the program as the source of error, yet type errors reported
during compilation are composed of conflicting information at multiple points in
the program. Any explanation of a type error should contain multiple program
points.

A poor description of a type error will mean that the programmer may have
to locate all the points in their program that contributed to the type error they
received from the compiler manually, and this may be extremely time consuming
in complex cases. It is therefore important that type errors are explained in the
clearest and most precise way possible, as otherwise the real location of the error
can be situated a great distance away from the reported error location.

In the next section, the descriptions of [Yan01] are presented, which state what
factors of a type error report make that report of a high quality.

2.3 Criteria of Yang et al.

In [YMTW00], properties are discussed which make up a good error report. In this
section, we look at each of the properties that were highlighted in turn, and discuss
why we think these are good properties to have in a type error report.

Correct. This property means that errors are generated when the program is
illegal, and that all the locations of the user program present in the error actually
contribute to the type error. This is a property we believe should hold, as generating
errors for a legal program will waste programmer time looking for an error that
doesn’t actually exist, and having bogus locations in the error report would mean
that the programmer is looking at more program locations than they have to. By
minimizing the number of locations that the programmer should look at, their time
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and effort is focused only on areas of the program that can be modified in order to
repair the type error.

Precise. Yang et. al. state that a precise type error should include only the
smallest possible amount of programmer code and that the relationship between
that and conflicting type error information should be simple. This property is
important, as showing extra information to the programmer than they need to
understand the error is undesirable.

Succinct. A succinct error is said to be an error that maximizes useful infor-
mation, preferring short explanations to longer ones. We believe succinct errors are
also desirable, to shorten the time the programmer needs to spend to understand
the type error fully. Any additional information will spend extra programmer time
reading the error.

A-mechanical. An error report meeting this property is that which does not
contain inferred type information as a result of the internal unification process.
This is a particularly important property as breaking it can mean the programmer
is shown parts of a program which is artificial in nature, and does not directly
correspond to the programmer’s code. This leads to confusion as to what the error
report is actually demonstrating and causing overhead for the programmer to fix
the error, as they have to understand how this inferred portion of the error report
corresponds to the program.

Source-based. A source-based report gives the property that all the program-
mer should need to understand the error report is the error report itself (so that
no internals of the compiler syntax should be dumped upon the programmer).
Breaking this property would mean that the programmer could get different error
reports depending on which compiler they used, as each have their own internal
mechanisms, which is unacceptable.

Unbiased. A report which contains a bias is that which reports a different
location when the order that certain features in the user program is changed. This
is of importance as the reported error locations should be identical, irrespective of
the order that unification is done.

Comprehensive. This property means that any error report should report all
locations that contribute to the type error. This property should hold for type
error reports, as breaking it would mean that the programmer must inspect other
portions of the program that are not contained in the error report in order to
understand it, wasting programmer time.

6



2.4. MONOMORPHIC TYPE CHECKING

2.4 Monomorphic type checking

In monomorphic checking, each expression has a unique type, or alternatively no
type at all if it is not well-typed [Pie04]. This means that there are no need for type
variables when doing monomorphic type checking. Only expressions or functions
with a fixed type are supported [PRO].

The rules when using monomorphic type checking are straight-forward. If there
is a function defined F, which is of type Bool → Bool, then whenever an application
to that function is used f t, then t must be of type Bool and the type of the whole
expression must be of type Bool. If it is not, a type error is generated.

There are three stages which are present in monomorphic type checking, firstly
to derive type constraints from the program, to solve those constraints, and to
extract type definitions and type signatures from those solved constraints [SBG09a].
In monomorphic type checking, there are only two kinds of constraint - either the
types are equal, or in e.g. function application, one type is a case of another (so
they are not strictly identical, but still compatible). Given these rules, solving is
straight-forward - if types are not equal, and one is not a case of the other (e.g. in
function application), then checking halts with an error.

2.5 Polymorphic type checking and the W algo-

rithm

A polymorphic type system relaxes the rules for a monomorphic one, so that the
type signature of a function call is an instantiation of the signature [SBG09b]. The
way that the W algorithm works is to destructively modify (i.e. use substitution on)
the type information known at parts of the program, which gives high performance,
but poor quality error reporting information.

2.5.1 The Hindley/Milner type system

The Hindley/Milner type system is a type system for the lambda calculus, with
parametric polymorphism. This system was first written by Hindley [Hin69], and
later discussed by Milner [Mil78].

The syntax that makes up the various expressions that are to be types is the
λ-calculus, extended with let declarations. The syntax for this is shown in figure
2.1.
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Figure 2.1 Syntax of Hindley/Milner
exp ::= x Variable case

exp1 exp2 Application
λx.exp Abstraction
let exp1 in exp2 Let expression

Monomorphic types are represented as τ (referred to as primitive types in the
original paper), and can be either variables (α) or applications. Polymorphic forms
σ (referred to as type schemes in the original paper) are either a τ or a universally
quantified term ∀α.σ.

The typing rules for Hindley/Milner is shown in figure 2.2 [Pie04]. The variable
case is where if a variable x is typed to some type τ , then it is said to be of type
τ . Rule App is for application, where one expression is applied to another. If exp0

takes a expression of type τ , and returns something of type τ ′, then the result of
the application is of type τ ′.

Figure 2.2 Typing rules for Hindley/Milner [Pie04]

v : σ ∈ Γ

Γ ` v : σ
[Var]

Γ ` e0 : τ → τ ′ Γ ` e1 : τ

Γ ` e0 e1 : τ ′
[App]

Γ, v : τ ` e : τ ′

Γ ` λ v . e : τ → τ ′
[Abs]

Γ ` e0 : σ Γ, v : σ ` e1 : τ

Γ ` let v = e0 in e1 : τ
[Let]

Γ ` e : σ′ σ′ v σ
Γ ` e : σ

[Inst]

Γ ` e : σ α /∈ free(Γ)

Γ ` e : ∀ α . σ
[Gen]

The abstraction rule, Abs, describes that if we have a variable x of type τ , and
an expression e of type τ ′, then the function which could be constructed with the
variable x and the body e would be of type τ → τ ′. The rule for let expressions
states that for some expressions e0 and e1, if the result of e0 is set to some variable
x which is used in e2 and is of type τ , then the resulting type is τ .

Rule Inst handles instantiations, which deals with subtyping. If we have an
expression e of type σ′, and σ′ is a subtype of σ, then e is of type σ. Finally
Gen handles the generalization case, where if an expression e is of type σ, and the
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variable x is not in the free variables of the environment (where free is a function
which computes the free variables in its argument) γ, then x must be bound in e.

2.5.2 Algorithm W

In order to define algorithmW, Milner references the unification algorithm of Robin-
son [Rob65] to define W, given in figure 2.3. The W algorithm itself is provided in
figure 2.4 [DM82], and the algorithm fails whenever any of these rules are not met
(where A is a set of assumptions, and Id2 is the empty substitution).

Figure 2.3 Proposition of Robinson [Rob65]
There is an algorithm U which, given a pair of types, either returns a substitution V or
fails; further

• If U(τ, τ ′) returns V, then V unifies τ and τ ′, i.e. V τ = τ ′.

• If S unifies τ and τ ′ then U(τ, τ ′) returns some V and there is another substitution
R such that S = RV.

Moveover, V involves only variables in τ and τ ′.

Figure 2.4 Algorithm W [DM82]

The reason W gives poor error messages, although it is efficient, is that the sub-
stitution causes loss of information with respect to where types have been inferred.
It is also biased, as it operates left to right and halts whenever a problem occurs,
and the location where type checking stopped is reported. The same issues are true
with other algorithms such as M, where similar substitution approaches are used.

2.5.3 Other systems

Dowek [Dow01] gives a description of unification, and demonstrates that it is un-
decidable by looking at Hilbert’s 10th problem stated below.
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There is no algorithm that takes as arguments two polynomials P(x1, ..., xn) and
Q(x1, ..., xn) whose coefficients are of type N and answers if there existsm1, ...,mn ∈
N such that P(m1, ...,mn) = Q(m1, ...,mn).

It is also discussed how decidable sub-cases of the problem of unification can be
identified, whereby they can then be solved.

A unification algorithm is also presented by Martelli and Montanari [MM82],
which is presented as a non-deterministic algorithm which approaches the unifica-
tion problem as finding the solution to sets of equations. They define amultiequation
to be the generalization of an equation, which allows for the grouping of many terms
which should be unified. Any unifier to a multiequation is a solution that makes
the terms in the left and right hand side of the multiequation identical. Orderings
can they be applied to these multiequations with the goal of making the unification
algorithm more efficient. The algorithm presented is said to be more efficient than
Patterson and Wegman’s algorithm [Pur91], which achieves O(n) computational
complexity.

Hage and Heeren present a constraint based approach to the problem of type
checking in type systems [HH09]. In their presentation, constraint generation and
constraint solving phases are kept separate, and not interleaved.

The authors do not annotate program points with labels. It is for this rea-
son that their system will also locate a single point of error in a given untypable
program. However the way in which the authors allow the programmer to edit
their constraint solving approach allows for the detection of multiple points where
the error takes place by running the constraint solving algorithm with different
configurations, as explained later in this section.

The interesting part about the way that these constraints are represented is
that they are essentially trees. These trees typically have the same shape as the
abstract syntax tree, but the structure of the tree can be edited if chosen by the
programmer. By doing this, the bias in the ordering of how the program is traversed
can be changed at will, simply by rearranging these trees.

It is in this way that the system of [HH09] is able to replicate algorithms such
as algorithm W, but it is also able to represent algorithm M by rearranging the
constraint tree. It is reported in the paper in question that other more advanced
algorithms can also be used with this technique, such as H by Lee and Yi [LY00].

The programmer can specify in which order the attempt to solve constraints
should be made, and by selecting different ordering strategies they can locate dif-
ferent points where unification fails, and gain more information about the true cause
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of the error.

2.6 Attempts to provide better explanations from

the W algorithm

Several attempts have been made to provide better explanations from the W algo-
rithm, such as the work of [LG06], which describes how error suggestions may even
be presented by calling the compiler (i.e. running the W algorithm) multiple times
on a piece of user code. Their system is split up into three different pieces:

• Changer. The changer takes as input a program which contains a type error
and outputs changes that make the program well typed. It verifies such
changes make the program typable by replacing sections of user code with
dummy expressions that typecheck, then calling the compiler again to verify
that the code is then typable. This process is broken down further into an
enumerator which suggests syntax changes and a searcher, which guides where
changes should be attempted.

• Type checker. This remains unchanged from the original compiler implemen-
tation but is used to detect which changes that are output from the Changer
actually succeed in making the program typable.

• Ranker. The ranker will prioritize the changes that have been checked and
verified by the type checker and will display messages accordingly.

The reporting system described here is a wrapper around the compiler that
intercepts the type checker’s error messages and then produces better ones. This
approach is not entirely dissimilar to the approach taken by Braßel [Bra04], as
discussed below. As this is a patch on the Ocaml sources which simply looks at
the untypable program as reported by the Ocaml compiler, attempts some changes
by taking the point of error and replacing the code surrounding it by dummy
expressions, runs the type inference algorithm of the Ocaml compiler again, analyses
the results, and repeats as necessary, this approach has the following properties:

• Installation is trivial. The patch is simply added to the compiler and then
the build process is completed as normal.

• Any new features which are added to the language will automatically be sup-
ported, at least in some sense. Depending on the complexity and properties
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of the new language feature, it may be the case that errors involving this new
feature will perhaps not be of an excellent quality, but it is likely that it would
be able to provide the programmer with some assistance.

• If the type system is edited in some minor way, the error reporting of would
likely be unaffected.

• Use of the implementation is trivial, a command line argument is simply
added to the invocation of the Ocaml compiler.

In the approach given in [LG06], a better error is located in an untypable pro-
gram by identifying interesting nodes in the abstract syntax tree, by taking the root
of the tree and replacing a node with a wildcard character. If the code typechecks
after this is put in place, then this node is marked as interesting and recursion
moves to the children of that node in order to find further interesting nodes. Oth-
erwise, that node and its children are deemed uninteresting. It is pointed out that
this has some nice properties because it will always find interesting nodes (the root
is always going to be interesting, because replacing that with the wildcard opera-
tor will typecheck, naturally), and no recursion is done into subtrees which don’t
contain a type error (if the father of a given node is not interesting, then the given
node can’t be interesting either).

Given this approach however, there are the drawbacks that the error locations
located by this approach as when run of programs with multiple programming
errors, the results may be of a lesser quality. This is the case because these ap-
proaches look for any way to make the program typable, rather than looking for
all the locations that a program can be made typable.

Other techniques to locate possible fixes are used, such as replacing variables
with other variables which are in the same scope, swapping, removing or inserting
some arguments of functions involved in an error and removing type annotations,
etc. All of these techniques when used will attempt to locate better suggested fixes
for the user to look at.

Another related system is that of Braßel [Bra04] named TypeHope, which is a
system which runs on programs written in the logic language Curry with the objec-
tive of locating and providing possible solutions to type errors in those programs.
It is designed to operate in a similar way to human programmers when attempting
to locate the source of an error by replacing entire functions by dummy definitions
and then checking whether the program is now typable.

When this system is run on an untypable section of code, it locates regions
where a fix may be possible and assigns dummy types to expressions inside those
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locations. It then checks whether the code is made typable after making such a
change by repeating a call to the compiler, and if it is, repeats the process on
any sub-expressions of the expression that was turned into a dummy expression in
order to locate a more accurate source of error. In TypeHope, writing a constraint
generator and constraint solver is not necessary, as one can just send modified code
to the compiler to test if it is typable after a dummy expression has been added to
the program.

In order that the user is not flooded with lots of possible fixes for the program,
TypeHope assigns a weight to each possible solution it finds based on a compound
of factors (including how many types would need to be changed etc), and attempts
to show the most promising correction points first. To find these most promising
correction points, TypeHope prefers inner correction points to outer ones in a given
expression, and prefers fix points which are located in a function further away in
the call graph from the function which is deemed to contain an error.

Figure 2.5 shows the code example presented in the [Bra04], where

reverse (x:xs) = reverse xs ++ x

is mistakenly entered in the program instead of of

reverse (x:xs) = reverse xs ++ [x]

at line 2.

Figure 2.5 Example code for TypeHope to analyze

1 reverse [] = []
2 reverse (x:xs) = reverse xs ++ x
3
4 last ls = head (reverse ls)
5
6 init = reverse . tail . reverse
7
8 rotate ls = last ls : init ls

TypeHope begins searching for the error in the location that the compiler re-
ported, line 8, by replacing the right hand side with a dummy function. As this
removes the previous type error, TypeHope inspects the call graph for the right
hand side expression and notices that the farthest away function is reverse (as
both the last and init functions call reverse, and reverse calls no other function).

The right hand side definition of reverse is then replaced with a dummy function
call and it is noticed that the program is now typable, so the definition of this
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function is inspected. The deepest innermost expression here is the term xs, which
is replaced with a dummy expression but the error still exists, and so TypeHope
then does the same for x in line 2, and notices that the program is now made
typable. TypeHope uses this information to present a possible solution to the user
as shown in figure 2.6.

Figure 2.6 TypeHope output for figure 2.5

1 Function reverse , line 2
2 Change in reverse (x:xs) = reverse xs ++ x

3
affects reverse init last ...
current type [[a]] -> [a] [[[a]]] -> [a] [[a]] -> a ...
to type [a] -> [b] [a] -> [b] [a] -> b ...

4
5 by replacing the term x

6
with term of type [b]
type of x (after replacement) a
where b should depend on a

It is interesting to note that in both [LG06] and [Bra04], the criteria laid out by
[YMTW00] are not met, as they are not comprehensive, nor are they precise. Note
that the work of [Rah10] is entirely distinct from the work presented here, as it is
designed as a complete replacement to the W algorithm.

2.7 Pre-slice attempts to fix type errors

Several attempts to produce more helpful error messages are described in [McA02],
e.g. looking at the order used by type systems to infer types, and representing an
entire program as a graph first before later inspecting it in order to locate errors
(instead of just performing substitutions immediately).

McAdam notes that by changing the order that substitutions are made during
unification in algorithm W, different end points of error can be reported. This is
also backed up by the findings of Hage and Heeren [HH09]. This bias is called an
asymmetry in this text.

Also covered in this text is the idea of error repair suggestions instead of or in
addition to conventional type error reports. McAdam states that such information
helps programmers as it directly attempts to address their needs.

Again, the work here still falls into the category of focusing the programmer
on a particular point in the program in order to fix the error, which we believe
to be an insufficient way to report a type error. While this work is nevertheless
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important, as finding more accurate ways to give a “correct” error point is useful,
any one location reported by the compiler is insufficient to fully understand, and
often to fix, the type error that is present in the user program.

2.8 An overview of slicing

The more general approach to reviewing slicing techniques is undertaken by Tip
[Tip95], which includes a thorough description of the methods with which slices
can be generated, a discussion on how a higher accuracy of slices can be gained
using compiler optimization and symbolic execution techniques, and a description
on how slicing can be used in development areas such as debugging and data flow
testing.

Tip gives an overview of static and dynamic slicing techniques. In this work,
the text on static slicing is of the most interest. Tip describes how program slices
can be represented as a graph, with program points being represented as nodes,
and the connections between them representing data flow. This approach however
can give a confusing overall picture of the program slice, as the position of the
nodes may bear no resemblance to their position in the program text, and with any
significant amount of data flow, the number of lines which must then be made will
make the slice difficult to interpret. Furthermore, the format of this display would
mean that in practice the slice would be difficult to view in any source editor unless
it has image viewing capabilities, or unless it is somehow extended to render such
diagrams in the viewer.

System dependence graphs are also analyzed, whereby the slice is represented
as a directed graph. Such slices also suffer from the same problems are previously
described.

This work also discussed various other aspects of slicing such as distributed
slicing, concurrency, slices involving pointers, a range of topics for dynamic slicing
etc. which are not relevant to this thesis; the main benefit this text has for us is
demonstrating that graph-based approaches to program slicing are unsuitable for
us, as our slices can be large and would then be unreadable for the user.

2.9 Type error slicing

The work presented in [HW03] was the base used from which the work of [Rah10]
was built, which is in many ways the base for this document, so a number of the
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concepts introduced in this paper are discussed in chapter 4.

For example, the definitions of a type error slice, what it means for a slice to
be minimal, the assignment of constraints to program points (labels), the finding
of minimal unsolvable constraints sets, and the concept of having a minimiser and
enumerator are all present in both the paper but in this document, discussion on
these concepts does not take place here but instead in chapter 4.

The concept of overlapping error regions in type error slices are also discussed,
and the text on that discussion is still very much relevant, namely that if there
are two slices with overlapping regions the likely fix location is somewhere in the
overlapping region and this should somehow be presented differently so as not to
be hard to notice. The Skalpel analysis engine may generate multiple type error
slices for a given piece of source code in a file and it is entirely possible that two or
more different program slices will overlap. In this case it is indeed likely, though not
necessarily the case, that the place in the file where the slices overlap is a cause of
error, and fixing that spot in the while will often fix multiple problems that Skalpel
detected.

This work was extended by Rahli [Rah10], and that work is is the work from
which this thesis directly builds upon, and so the work present in that thesis is
discussed at length in this one in various places throughout this thesis. Here, a
discussion is given on the coverage of the Standard ML language that is present in
that document. The Skalpel core, as described in that document, is similar to the
core presented in this document and discussion is left until later in chapter 4. The
thesis includes a number of extensions that are not discussed here, namely:

• Identifier statuses;

• Local declarations;

• Type declarations;

• Non-recursive value declarations;

• Value polymorphism restriction;

• Type annotations;

• Signatures;

• Reporting unmatched errors;

• Functors;

• Arity clash errors.
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Local declarations, type declarations, type annotations, and signatures are dis-
cussed at length in chapter 7. A brief analysis is given here on the other sections.

The section on identifier statuses gives a more complete mechanism in which to
handle the distinction between value variables and datatype constructors. As such
a distinction is not possible to determine syntactically, it must be determined by
analyzing the user program. That section describes how errors made involving this
distinction can be correctly detected and presented to the user.

The section on non-recursive value declarations describe how Skalpel does con-
straint generation and solving on such declarations, the theory involved with this
is uncomplicated.

Value polymorphism restriction describes how features such as references are
handled in Standard ML. This is not discussed in this thesis as there is no need to
make use of any of this theory for other extensions to the Skalpel core.

The section on reporting unmatched errors describes how Skalpel handles errors
that can arise when a structure is constrained by a signature, but the structure
does not declare all of the variables that the signature dictates it must declare.

The sections on functors and arity clash errors describe as the titles suggest. We
do not include this theory in this thesis as the mechanisms that were constructed
to be able to handle such SML constructs are not needed in the new extensions
presented in this thesis.

2.10 An overview of Standand ML

This brief chapter is written for those to whom Standard ML (SML) is unfamiliar
and gives a short description of some of the language features. Readers wishing for
a thorough description of the language should read the definition of Standard ML
[MTHM98]. This chapter does not cover all features of Standard ML but describes
the features which are used in the core presentation of Skalpel.

Standard ML is a functional programming language which is strictly evaluating
and supports parametric polymorphism. This chapter will look at the following
features of Standard ML:

• Type variables;

• Function declarations;

• Structure declarations;
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• The open feature;

• Datatype declarations;

• Let bindings.

First, an overview of the history of Standard ML is given.

2.10.1 History of Standard ML

ML was created by Robin Milner among others in the 1970s at the University
of Edinburgh and was used to develop tactics in the LCF (Milner, Gordon and
Wadsworth, 1979) theorem prover [Gor00]. There are now a couple of major dialects
- such as Standard ML, Ocaml, and F#. In 1984 the module system was outlined
for Standard ML by McQueen [Mac84]. ML has influenced many different languages
since then such as Haskell, and more recently Rust.

2.10.2 Function declarations

In the Skalpel core presented in this thesis (in chapter 4), functions in Standard
ML can be defined using the following syntax:

val rec <name> = <fn expression>

The <fn expression> is of the form fn <pattern> = <expression>, which
can be seen in the example below demonstrating how the identity function is writ-
ten, where arg1 is an argument to the function myFunction:

val rec myFunction = fn arg1 => arg1

An alternative definition (which we do not use in the core) uses the fun keyword
in order to define functions. The equivalent identity function with the fun keyword
used is shown below:

fun myFunction arg1 = arg1

Note that functions can be partially applied in Standard ML (where a function
is not given all of its arguments) and that we do this in some of our examples.
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2.10.3 Let declarations

A let statement allows a programmer to define some declarations within a scope of
expressions (exp). A let statement has the form

let declarations in exp end

where the scope of the declarations ends at the end keyword, at which point
they are no longer accessible. In the core presentation of Skalpel, declarations can
be either:

• Function declarations (discussed in section 2.10.2);

• Open statements (see section 2.10.6);

• Datatype declarations (see section 2.10.4).

and expressions can be either:

• An application;

• An anonymous function (fn-expression);

• A value identifier (such as a datatype constructor, which we explain below);

An example use of a program containing a let statement can be seen in section
2.10.4.

2.10.4 Datatypes

Datatypes in the Skalpel core have exactly one constructor and exactly one type
variable (type variables in SML can be represented by one or more primes followed
by one or more alphanumeric characters) in order to simplify the core presenta-
tion. An example of a datatype declaration and a use in a let statement is given
below. In the let statements shown here, we allow an expression to also be a
sequence of expressions separated with the ; operator and surrounded with paren-
theses (exp1;exp2;...;expn), or a boolean.
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let
datatype ’a myDatatype = MyConstructor of ’a

in
(MyConstructor (fn x => x);
true)

end

Note that as the constructor MyConstructor takes a type variable argument in
its definition, we can supply anything to it as its argument. For example, instead
of giving a function as an argument, we could give a boolean such as shown below.

let
datatype ’a myDatatype = MyConstructor of ’a

in
(MyConstructor true;
true)

end

2.10.5 Ref types

Standard ML is not a pure functional programming language, and this can be seen
by looking at the ref feature of the language. This feature allows the programmer
to keep track of state, something which is not possible in some other functional
programming languages. An example of a ref type being declared and then printed
is shown below.

val myref = ref 5; myref := (!myref) + 1; print(Int.toString(!myref));

The ’ !’ operator allows the programmer to access the value that is stored in the
ref cell, and the ’:=’ operator allows assignment. Using this construct, programmers
may store state in SML.

2.10.6 Structures

Structures are part of what is known as the Standard MLmodule system. Structures
allow for any declaration, local declaration, structure declaration, or sequence of
any of these (which are simply space separated).

The open keyword

The open keyword takes a structure identifier as an argument and can be used to
bring declarations in the body of a structure definition into the current environment.
An example of this is shown below.
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structure S = struct val rec f = fn x => x end
open S
f (fn x => x)

When we open the structure S, the declarations inside it, in this case the function
f, become available for use in the current environment. Were we not to open the
structure f, there would be an error in the expression (f (fn x => x)), as the
function f would be undefined.

2.10.7 BNF Grammar

The BNF grammar for the Standard ML language is given in this section for refer-
ence. This includes everything in the language, and not just the syntax described
in the core. This is included so that in later chapters, when discussing parts of the
syntax, it is clearer to see how this fits in to the SML language as a whole.

atexp ::= scon

〈op〉
{〈exprow〉}
#lab

()

(exp1, ..., expn)

[exp1, ..., expn]

(exp1; ...; expn)

let dec in exp1; ...; expn end

(exp)

exprow ::= lab = exp 〈, exprow〉

appexp ::= atexp

appexp atexp

infexp ::= appexp

infexp1 vid infexp2
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2.10. AN OVERVIEW OF STANDAND ML

exp ::= infexp

exp : ty

exp1 andalso exp2

exp1 orelse exp2

exp handle match

raise exp

if exp1 then exp2 else exp3

while exp1 do exp2

case exp of match

fn match

match ::= mrule 〈| match〉

mrule ::= pat→ exp

dec ::= val tyvarseq valbind

fun tyvarseq fvalbind

type typbind

datatype datbind 〈withtype typbind〉
datatype tycon = datatype longtycon

abstype datbind 〈withtype typbind〉 with dec end
exception exbind

local dec1 in dec2 end

open longstrid1, ..., longstridn

valbind ::= pat = exp 〈and valbind〉
rec valbind

fvalbind ::= 〈op〉vid atpat11...atpat1n〈: ty〉 = exp1

|〈op〉vid atpat21...atpat2n〈: ty〉 = exp2

|... ...

|〈op〉vid atpatm1...atpatmn〈: ty〉 = expm 〈and fvalbind〉

typbind ::= tyvarseq tycon = ty 〈and typbind〉

datbind ::= tyvarseq tycon = conbind 〈and datbind〉

conbind ::= 〈 op 〉 vid 〈of ty〉 〈| conbind〉

exbind ::= 〈 op 〉 vid 〈of ty〉 〈and exbind〉
〈 op 〉 vid = 〈op〉 longvid 〈and exbind〉
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2.10. AN OVERVIEW OF STANDAND ML

atpat ::= _
scon

〈op〉 longvid
{ 〈patrow〉 }
()
(pat1, ..., patn)

[pat1, ..., patn]

(pat)

patrow ::= ...

lab = pat 〈, patrow〉
vid 〈: ty〉 〈as pat〉 〈, patrow〉

atpat ::= 〈op〉 longvid atpat
pat1 vid pat2

pat : ty

〈op 〉 vid 〈: ty〉 as pat

strexp ::= struct strdec end

longstrid

strexp : sigexp

strexp :> sigexp

funid(strexp)

let strdec in strexp end

strdec ::= dec

structure strbind

local strdec1 in strdec2 end

strdec1〈; 〉 strdec2

strbind ::= strid = strexp 〈and strbind〉

sigexp ::= sig spec end

sigid

sigexp where type tyvarseqlongtycon = ty

sigdec ::= signature sigbind

sigbind ::= sigid = sigexp 〈and sigbind〉
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2.10. AN OVERVIEW OF STANDAND ML

spec ::= val valdesc

type typdesc

eqtype typdesc

datatype datdesc

datatype tycon = datatype longtycon

exception exdesc

structure strdesc

include sigexp

spec1 〈; 〉 spec2

spec sharing type longtycon1 = ... = longtyconn

valdesc ::= vid : ty 〈and valdesc〉

typdesc ::= tyvarseq tycon 〈and typdesc〉

datdesc ::= tyvarseq tycon = condesc 〈and datdesc〉

condesc ::= vid 〈of ty〉 〈| condesc〉

exdesc ::= vid 〈of ty〉 〈and exdesc〉

strdesc ::= strid : sigexp 〈and strdesc〉

fundec ::= functor funbind

funbind ::= funid (strid : sigexp) = strexp 〈and funbind〉

topdoc ::= strdec 〈topdec〉
sigdec 〈topdec〉
fundec 〈topdec〉
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Chapter 3

Prior Technical Design of Skalpel
Core

Included in this chapter is a description of the Skalpel core prior to the start of this
research project similar to that presented in [Rah10], with some corrections made
to any problems that were noticed during analysis of the work for the purpose of
its extension (computation of polymorphic binders - this is discussed in the new
version of the core in section 4.4). First, the motivation for this research project is
given.

3.1 Motivation for the Skalpel Project

The existing compilers for Standard ML often give confusing type error messages
to the programmer. The original type checking algorithm for ML is Milner’s W
algorithm [DM82], which will usually show the programmer some information about
a node in the syntax tree which it was visiting when unification failed. Although
other algorithms exist which were developed to try to improve this (such as M
[OL98], W’ [Mca98] and UAE [Yan00]) all of these algorithms blame only one node
in the syntax tree (often one far away from the real source of the error) for a type
error which is really composed of conflicting information given by the programmer
at different parts of the program.

Rahli, Wells and Kamareddine [RWK10] pointed out that “The confusion is
worsened because these algorithms usually exhibit in error messages (1) an internal
representation of the program subtree at the blame[d] location which often has
been transformed substantially from what the programmer wrote, and (2) details
of inferred types which were not written by the programmer and which are anyway
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3.1. MOTIVATION FOR THE SKALPEL PROJECT

erroneous and therefore confusing”.

The aim of the Skalpel project is to combat this problem by locating type errors
in untypable code and then showing the user type error slices, which are a set of
program points which represent a type error. It is somewhere in this set of program
points that the user will want to make a change which will fix the type error, which
will make the code typable. These program fragments are then displayed to the
programmer by highlighting portions of the source file and by printing out type
error slices to the user.

The overall process works as follows. The user can write their Standard ML
source code in their editor of choice, then run a binary program which is currently
still in active development by the Skalpel project team and is referred to as the
analysis engine on this code which will output type error slices for untypable code.
The different stages of the analysis engine can be seen in figure 3.1.
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3.1. MOTIVATION FOR THE SKALPEL PROJECT

The green elements of the picture are external to the the analysis engine, and
represent the piece of code being sent to the analysis engine. After the code is
sent in, constraints are generated (see below for why a constraint-based approach is
used) for the piece of code (the pink elements in the picture), and then an attempt
is made to solve these constraints (the blue elements in the picture). If an error is
detected, then type error slices are generated (the red elements of the picture) and
send those back to the user interface. Some discussion of how this works in our
implementation can be seen in appendix C.

We use constraints to represent conditions that are applied by some parts of the
program to other parts of the program. For example, for the program

fun myFunction arg1 arg2 = arg1 + arg2

we will create internal constraints representing the fact that arg1 and arg2

must be numbers. These constraints are annotated with labels, which are locations
of the program, so that it is known where constraints come from. For example, a
constraint representing that arg1 is a number will be annotated with the program
location of the arg1 keyword and the + operator. The compilers for Standard ML
prefer a substitution-based approach, where the information representing the user
program is destructively modified to be updated with new information, such an
approach is not used as destructive modification of such information means that
blame cannot be tracked for conditions imposed by different parts of the program
effectively. A formal treatment on how we represent constraints is given in chapter
4.

There is support so that the user can use Emacs [EMA] as a front-end to the
analysis engine back-end, which can be done by loading some Emacs lisp files which
various Skalpel developers have helped prepare in previous projects as covered in
section 1.3. This is released as a separate package that the user can install at their
discretion. Skalpel is implemented in the Standard ML language itself.

3.1.1 An example demonstrating the use of Skalpel

An untypable program can be seen in figure 3.2.

In line 20, the number 1 (which is of type int), is passed to the function
find_best. 1 then becomes the value of the weight argument in line 8, which
is then passed to the function average in line 9. This then becomes the value of
the weight argument in line 1, but an error can be seen occurring at line 2. The
variable weight is constrained to be a function in line 2. The weight variable
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3.1. MOTIVATION FOR THE SKALPEL PROJECT

Figure 3.2 Untypable SML Program

1 fun average weight list =
2 let fun iterator (x,(sum ,length )) = (sum + weight x,
3 length + 1)
4 val (sum ,length) = foldl iterator (0,0) list
5 in sum div length
6 end
7
8 fun find_best weight lists =
9 let val average1 = average weight
10 fun iterator (list ,(best ,max)) =
11 let val avg_list = average1 list
12 in if avg_list > max
13 then (list ,avg_list)
14 else (best ,max)
15 end
16 val (best ,_) = foldl iterator (nil ,0) lists
17 in best
18 end
19
20 val find_best_simple = find_best 1

cannot be both a function and an integer, and so a Standard ML compiler (such as
SML/NJ [SMLc] or PolyML [POLeb]) will generate a type error for this.

SML/NJ (version 110.72) [SMLc], a compiler for Standard ML, reports the error
shown in figure 3.3. This is confusing because at line 6 of the compilation output
the compiler draws attention to line 20 of the code, but this might not be the source
of the error. Perhaps at line 2, the user meant to write sum + weight + x instead
of sum + weight x. Perhaps instead in line 9 they meant to write average (fn _

=> weight) instead of average weight.

Figure 3.3 Compiler output for figure 3.2

1 code1.sml :20.5 -20.35 Error: operator and operand don ’t agree
2 [literal]
3 operator domain: ’Z -> int
4 operand: int
5 in expression:
6 find_best 1

It is impossible to know where the user made the error so instead the user should
be presented with all of the places where they could possibly have made a mistake.
Skalpel has been designed to do this.

Figure 3.4 shows the highlighting Skalpel produces when run on this untypable
program. The highlighted regions show the minimum amount of information that
is responsible for the type error in the code. By looking at the highlighted regions,
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3.1. MOTIVATION FOR THE SKALPEL PROJECT

the user can be confident that they need to make a change in one of these places in
order to make the code typable, and in addition, that there are no other locations
in the file which are not highlighted where they could make changes in order to fix
the problem.

Figure 3.4 Highlighting shown for the code of figure 3.2

1 fun average weight list =
2 let fun iterator (x,(sum ,length )) = (sum + weight x,
3 length + 1)
4 val (sum ,length) = foldl iterator (0,0) list
5 in sum div length
6 end
7
8 fun find_best weight lists =
9 let val average1 = average weight
10 fun iterator (list ,(best ,max)) =
11 let val avg_list = average1 list
12 in if avg_list > max
13 then (list ,avg_list)
14 else (best ,max)
15 end
16 val (best ,_) = foldl iterator (nil ,0) lists
17 in best
18 end
19
20 val find_best_simple = find_best 1

3.1.2 A second example

We can see another untypable program in figure 3.5

Figure 3.5 A second untypable SML Program

1 let
2 datatype (’a,’b) T = C of (’a * ’b)
3 fun f (C (x,_)) (C (y,_)) z = (z x, z y)
4 in if true
5 then f (C (1,2)) (C (() ,4))
6 else
7 let
8 datatype U = f
9 fun x _ = f
10 in fn z => (z 1, z 2)
11 end
12 end;

In this example, at line 2 in can be seen that a datatype constructor C is defined
which takes a pair of any two values. At line 3, a function is defined which takes
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three arguments, the first two of them a pair wrapped in the constructor C, and a
final argument z, which is a function (we can see that it is a function from how
it is used in the function body). In the body of this function, it can be seen that
this function returns a pair, where the first element of the pair is the function z

applied to x, and the second element of the pair is a function z applied to y, where
x and y are bound to the first part of the pair of the first and second constructor
arguments to the function f respectively. This means that x and y must be of
the same type. However, at line 5, it can be seen that the function f is given the
first two arguments, where the first parts of the pair wrapped in the C constructor
are of different types. This causes a type error when attempting to compile this
program.

SML/NJ reports the error shown in figure 3.6. This presents only the location
at line 5, but this may not be not helpful for the user particularly if they made
the error at line 3 (for example if they wish the y in the body of the function f to
actually be x instead).

Figure 3.6 Compiler output for figure 3.5

1 [opening code13.sml]
2 code13.sml :7.9 -7.31 Error: operator and operand don ’t agree
3 [literal]
4 operator domain: (int ,’Z) ?.T
5 operand: (unit ,int) ?.T
6 in expression:
7 (f (C (1 ,2))) (C (() ,4))

Again, it is not known where the user made the error, and so we must present
all the possible locations where the programmer may have made their error.

We present the error reported by Skalpel in figure 3.7. Here, it is shown again
the minimum amount of information that is responsible for the error in the program,
including the declaration at line 2, the definition of f in line 3, and the application
in line 5.

We can see in line 5 that each of the arguments which cause a problem in line
3 are highlighted in gray and blue individually. This highlighting of what is called
endpoints can help the user to discern how types of int and unit were deduced
which then caused a problem at line 3.

It should be noted that it is very possible that type error slices can be presented
to the user which involve more than one file of source code. In this event, every file
which is attributed to the type error is shown in the type error slice, and highlighting
is given in all affected files.
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Figure 3.7 Highlighting shown for code in figure 3.2

1 let
2 datatype (’a,’b) T = C of (’a * ’b)
3 fun f (C (x,_)) (C (y,_)) z = (z x, z y)
4 in if true
5 then f (C (1,2)) (C ((),4))
6 else
7 let
8 datatype U = f
9 fun x _ = f
10 in fn z => (z 1, z 2)
11 end
12 end;

There are some cases where the code that is fed to Skalpel may contain multiple
separate type errors. In this case, multiple program slices are given. It is perfectly
possible that some of these program slices might overlap at a common point which
indicates that such a point is likely to be the spot in the program that the user
wishes to change to fix the type error (although this is not always the case). More
discussion about this is found in section 2.9 of the literature review, which discusses
a paper written by Haack and Wells [HW03].

We now discuss the notation used in Skalpel.

3.2 Definitions, notations and other symbol infor-

mation

This section gives some basic mathematical definitions which are used throughout
this thesis, followed by some information which may help the reader in recalling the
meaning of symbols defined anywhere in this document.

3.2.1 Definitions

We use symbols N and P(Q) to represent the set of natural numbers and a power
set of some set Q, respectively. Let i, j, k, l range over N, and if a metavariable v
ranges over Q, let v̄ range over P(Q), vx range over Q, where x is anything, and v′,
v′′ etc. range over Q.

Let S range over sets.

Relations
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Let Lx, yM be a pairing of x and y. If rel is a set of pairs, let (x rel y) iff Lx, yM ∈ rel.
Let the following operations be defined on relations:

dom(rel) = {x | Lx, yM ∈ rel}
ran(rel) = {y | Lx, yM ∈ rel}
rel−1 = {Ly, xM | Lx, yM ∈ rel}
S / rel = {Lx, yM ∈ rel | x ∈ S}
S . rel = {Lx, yM ∈ rel | y ∈ S}
S−C rel = {Lx, yM ∈ rel | x /∈ S}

Functions
Let f range over functions, and the notation x 7→ y be an alternative to Lx, yM used
when writing functions.

Let S1 → S2 = {f | dom(f) ⊆ S1 ∧ ran(f) ⊆ S2}.

Disjoint sets
Let dj(S1, S2, ..., Sn) mean that Si ∩ Sj = ∅ for all i 6= j where 1 ≤ i, j ≤ n. Let
S1 ] S2 be S1 ∪ S2 if dj(S1, S2).

Tuples
A tuple t is a function where dom(t) ⊂ N where for some i > 1, if (i, x) ∈ t then
there exists an x′ such that (i − 1, x′) ∈ t. Let t range over tuples. If v ranges
over S then let −→v range over tuple(S) = {t | ran(t) ⊆ S}. Let 〈xi0, xi1, ..., xin〉 be
an abbreviation for {0 7→ xi0, 1 7→ xi1, ..., n 7→ xin}. Let the @ operator append
tuples such that 〈x1, x2〉 @ 〈x5, x6〉 = 〈x1, x2, x5, x6〉. Let S1 × S2 × ... × Sn =

{〈x1, x2, ...xn〉 | ∀i ∈ {1, 2, ..., n}. xi ∈ Si}.

3.2.2 Symbol Look-up

To ease the difficulty that the reader may face in recalling the definitions of cer-
tain sets, functions, metavariables and various other concepts used throughout this
document, appendix A lists symbols used, sets they belong to (section A.1 is this
information sorted by symbol, with section A.2 sorted by set), a brief description
and location in the document where it was first defined. Sections A.3 and A.4 give
brief descriptions and location in the document of definition for functions and other
abbreviations used, respectively.

A thorough index is also present at the back of this document, which can be used
to locate where symbols and other concepts occur anywhere in this thesis.

The Skalpel system is made up of several pieces:
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• Labelling. Firstly, the program that the user submits to Skalpel is annotated
with labels, which are used to represent program points and track blame of
errors.

• Constraint generation. The constraint generator takes a labelled Standard
ML program as input and generates a set of constraints. The constraints that
are generated have program labels embedded into them, so it is known what
parts of the program a certain constraint has been generated for.

• Enumeration. The enumerator creates filters for the next phase, which are
effectively program points which should not be considered during constraint
solving. Initially, the empty filter set is used, so all labels in the program are
considered.

• Constraint solving. The constraints constructed during the constraint gen-
eration phase are taken and an attempt is then made to solve them. In the
event that all constraints can be solved, the program the user submitted is
deemed typable, otherwise, the program contains an error.

• Minimisation. In this phase an attempt is made to increase the precision
of the reported error locations which can be more precise in some cases than
the locations initially reported by the constraint solving stage. Less precise
locations are never during this phase.

• Slicing. Creates a description of any located errors known as a type error
slice (defined in 3.9) from the errors reported by the enumerator.

3.3 External (Input) Syntax

The external syntax is presented that is understood by the Skalpel core (formally
called the SML-TES core) in figure 3.8. Many of the forms in this figure are
annotated with labels, written l . These labels are created so that blame can be
tracked for errors that are generated. In some cases d and e symbols will be used to
surround a labelled term (parentheses are not used as they could be confused with
those of the Standard ML language syntax).

In this core, datatypes have exactly one constructor and exactly one type argument.
In the implementation however, the cases for multiple or nullary constructors and
multiple or no type arguments are handled. This can be seen from DatName in
figure 3.8.

The declarations supported by the core can be seen by looking at Dec in figure 3.8.
There exists support for recursive value declarations (functions), open declarations,
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and datatype declarations. Note that again in the implementation, far more dec-
larations are handled than just this subset which are used in order to present the
core.

Figure 3.8 External labelled syntax
external syntax (what the programmer sees, plus labels)

l ∈ Label (labels)
tv ∈ TyVar (type variables)
tc ∈ TyCon (type constructors)

strid ∈ StrId (structure identifiers)
vvar ∈ ValVar (value variables)
dcon ∈ DatCon (datatype constructors)

vid ∈ VId ::= vvar | dcon
ltc ∈ LabTyCon ::= tcl

ldcon ∈ LabDatCon ::= dcon l

ty ∈ Ty ::= tv l | ty1
l→ ty2 | dty ltcel

cb ∈ ConBind ::= dcon l
c | dcon of l ty

dn ∈ DatName ::= dtv tcel

dec ∈ Dec ::= val rec pat
l
= exp | openl strid

| datatype dn
l
= cb

atexp ∈ AtExp ::= vid l
e | letl dec in exp end

exp ∈ Exp ::= atexp | fn pat
l⇒ exp | dexp atexpel

atpat ∈ AtPat ::= vid l
p

pat ∈ Pat ::= atpat | dldcon atpatel

strdec ∈ StrDec ::= dec | structure strid
l
= strexp

strexp ∈ StrExp ::= strid l | structl strdec1 · · · strdecn end

extra metavariables
id ∈ Id ::= vid | strid | tv | tc

term ∈ Term ::= ltc | ldcon | ty | cb | dn | exp | pat | strdec | strexp

3.4 Constraint syntax

The constraint syntax for this presentation of the core is defined in figure 3.9.

Forms annotated with dependencies (labels) are called ‘dependent forms’. By at-
taching label sets to these forms it is possible to represent which program fragments
such a constraint is involved in.

In this presentation, type constructors take exactly one argument. This singular
argument is represented in the external syntax by tc and in the constraint syntax
by µ. This can be seen in the definition of τ (the τµ form).

The arr piece of constraint syntax is never generated during the initial constraint
generation phase. It can however be generated later, in constraint solving, to allow
us to represent constraints between the arrow type constructor and an unary type
constructor. This can be seen in rule (S6) of the constraint solver in this chapter.
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Figure 3.9 Syntax of constraint terms
ev ∈ EnvVar (environment variables)
δ ∈ TyConVar (type constructor variables)
γ ∈ TyConName (type constructor names)
α ∈ ITyVar (internal type variables)
d ∈ Dependency ::= l

µ ∈ ITyCon ::= δ | γ | arr | 〈µ, d〉
τ ∈ ITy ::= α | τ µ | τ1 � τ2 | 〈τ , d〉
σ ∈ Scheme ::= τ | ∀α. τ | 〈σ, d〉
c ∈ EqCs ::= µ1 = µ2 | e1 = e2 | τ1 = τ2

bind ∈ Bind ::= �tc=µ | �strid=e | �tv=α | �vid=σ
acc ∈ Accessor ::= �tc=δ | �strid=ev | �tv=α | �vid=α

e ∈ Env ::= > | ev | bind | acc | c | poly(e) | e2;e1 | 〈e, d〉
v ∈ Var ::= α | δ | ev

dep ∈ Dependent ::= 〈τ , d〉 | 〈µ, d〉 | 〈δ, d〉

The type schemes (σ) are subject to alpha conversion.

The functions strip and collapse are defined here. strip is a function that strips off
dependencies from a dependent term, and collapse unions all nested dependencies.
Both functions are defined in figure 3.10.

Figure 3.10 Definition of strip and collapse

strip(x) = strip(y), if x = 〈y, d〉, x otherwise.
collapse(x) = collapse(〈y, d1 ∪ d2〉) if x = 〈(〈y, d1〉), d2〉, x otherwise.

3.4.1 The constraint/environment form (e)

The form e should be considered as both a constraint and an environment. Such a
form can be any of the below:

• The empty environment / satisfied constraint. This is represented by
the symbol >.

• An environment variable. To abbreviate, [e] is written for (evdum = e),
where ev does not occur in e. This is a constraint which enforces the logical
constraint nature of e while limiting the scope of its bindings. Note that the
bindings can still have an effect if e constrains an environment variable.

• A composition environment. The operator ; is used to compose environ-
ments, which is associative. Note that e;>, >;e, and e are considered to be
equivalent.

• A binder/accessor. A binder is of the form �id=σ, and an accessor is of
the form �id=v . Binders represent program occurrences of an identifier id
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that are being bound, and accessors represent a place where that binding is
used. For example, in the environment

�vid=x;�vid=α

the internal type variable α is constrained through the binding of vid to be
an instance of x. It is often also the case that binders and accessors can be
connected without being next to each other. In an environment such as

�vid=x;...;�vid=α

it is possible that the binder and accessor of vid are connected. There are
some environment forms that can be in the omitted (...) section which will
mean that the accessor and the binder will be disconnected. Section 3.5.1 on
shadowing specifies which forms would cause this.

To abbreviate, �vid
y
= ct is written for 〈�vid=ct , y〉 (similarly for accessors).

• An equality constraint. A constraint which represents that two pieces of
constraint syntax are somehow equal.

• A polymorphic environment poly(e). This environment promotes binders
in the argument to poly to be polymorphic. This is discussed further in
section 3.7.

• Dependent form. An environment annotated with dependencies acts like
an environment only when the dependencies are satisfied.

3.4.2 Syntactic forms

The set atoms(x) is defined to be a syntactic form set belonging to Var ∪ Label ∪
Dependency and occurring in x for some x.

Function are defined to extract variables, labels, and dependencies from a constraint
term in figure 3.11.

Figure 3.11 Definition of sets of variables, labels and dependencies
vars(x) = atoms(x) ∩ Var (set of variables)
labs(x) = atoms(x) ∩ Label (set of labels)
deps(x) = atoms(x) ∩ Dependency (set of dependencies)
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3.4.3 Freshness

In this version of the core presentation dummy variables are used, which act like
fresh variables. The definition of the dummy set is defined below:

Dum ::= {αdum, ev dum, δdum}

Consider the environment (αdum = α1); (αdum = α2). In such an expression the
dummy variables are considered to be distinct from each other, and indeed from
α1 and α2. A function nonDums is also defined which extracts all the variables in
a term while excluding the dummy variables. This is defined as follows:

nonDums(x) = vars(x)\Dum

3.5 Semantics of constraints/environments

The set of unifiers, renamings, and substitutions are defined in figure 3.12. Note
that Ren ⊂ Unifier ⊂ Sub. Renamings are used to instantiate type schemes, and the
Unifier set contains unifiers generated by the constraint solver (see section 3.7). Sub-
stitution is defined in figure 3.13, where given a constraint term and a substitution,
a resulting constraint term is produced.

Figure 3.12 Renaming, unifiers, and substitutions
ren ∈ Ren = {ren ∈ ITyVar→ ITyVar | ren is injective

∧ dj(dom(ren), ran(ren))}
u ∈ Unifier = {f 1 ∪ f 2 ∪ f 3 | f 1 ∈ ITyVar→ ITy

∧ f 2 ∈ TyConVar→ ITyCon
∧ f 3 ∈ EnvVar→ Env}

sub ∈ Sub = {f 1 ∪ f 2 | f 1 ∈ Unifier ∧ f 2 ∈ TyConName→ TyConName}
∆ ∈ Context ::= 〈u, e〉

Defined also are constraint solving contexts ∆. Such contexts are used during
constraint solving and consist of the unifiers and an environment as a tuple. Also,
〈u, e〉(v) is written to represent u(v) and 〈u, e〉; e ′ to represent 〈u, e; e ′〉.

3.5.1 Shadowing

In the environment portion of a constraint solving context it may be the case
that some parts are inaccessible. For example, in the following constraint solving
context:

38
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Figure 3.13 Substitution semantics

v [sub] =

{
x, if sub(v) = x
v , otherwise

(τ µ)[sub] = τ [sub]µ[sub]
(τ1 � τ2)[sub] = τ1[sub]� τ2[sub]

xd [sub] = x[sub]d

(x1 = x2)[sub] = (x1[sub] = x2[sub])
(e1;e2)[sub] = e1[sub];e2[sub]
(∀v . x)[sub] = ∀v . x[sub] s.t. dj(v , atoms(sub))

(�id=v)[sub] =

{
(�id=v [sub]), if v [sub] ∈ Var
undefined, otherwise

(�id=x)[sub] = (�id=x[sub])
poly(e)[sub] = poly(e[sub])
x[sub] = x, otherwise

〈u, bind1; ev; bind2〉

if ev /∈ dom(u), it is said that ev shadows bind1 because ev could potentially be
bound to an environment which rebinds bind1. The predicate shadowsAll is defined
below.

shadowsAll(〈u, e〉) ⇐⇒



(e = ev ∧ (shadowsAll(〈u, u(ev)〉) ∨
ev 6∈ dom(u)))

∨ (e = (e1;e2) ∧ (shadowsAll(〈u, e1〉) ∨
shadowsAll(〈u, e2〉)))

∨ (e = 〈e ′, d〉 ∧ shadowsAll(〈u, e ′〉))
shadowsAll(e) ⇐⇒ shadowsAll(〈∅, e〉)

Below presents how to access the semantics of an identifier in a constraint solving
context.

〈u, (�id=x)〉(id) = x

〈u, (ed )〉(id) = collapse(〈u, e〉(id)d )

〈u, (e1;e2)〉(id) =

{
x, if〈u, e2〉(id) = x or shadowsAll(〈u, e2〉)
〈u, e1〉(id), otherwise

〈u, ev〉(id) =

{
〈u, e〉(id), if u(ev) = e

undefined, otherwise
e(id) = 〈∅, e〉(id)

3.5.2 Relations

Two instance relations are defined here, the use of which can be seen in constraint
solving.
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x −instance−−−−−→ yd [sub], if collapse(x∅) = (∀v0.y)d and dom(sub) = v0

x −instance−−−−−→ x, if collapse(x∅) is not of the form (∀v0.y)d

3.6 Constraint generation

The initial constraint generator is defined in figure 4.17. This is referred to as
the initial constraint generator because constraints are also generated during the
constraint solving process (section 4.4).

In this presentation the relation _ is used which is the smallest relation satisfying
the rules in the constraint generator.

The rules in figure 3.14 return either an environment e, or something of the form
〈v , e〉, where e constraints the variable v .

It can be seen that datatype declarations only have one constructor by looking at
rules (G18), (G14) and (G16). The core has been defined in this manner in order to
reduce its complexity. In rule (G13) the datatype names are defined to have exactly
one type variable argument.

Structure declarations are handled in rule (G20). In the core, signatures to constrain
these structures are not presented, but this extension to the core can be found in
section 6.4.

In order that environments can be sliced out correctly, environment variables are
annotated with labels, such as in rule (G4). Such environment variables must be
annotated with a label otherwise they could not be sliced out, and that environment
variable would then shadow any following environment, even if the program point
the label was assigned to was itself sliced out.
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Figure 3.14 Initial constraint generator
All rules of the form P ⇐⇐⇐ Q have to be read as P ⇐⇐⇐ (Q∧∧∧ dja(e, e1, e2, α, α

′, ev , ev ′))

Expressions (exp -. 〈α, e〉)
(G1) vid l

e -. 〈α, �vid
l
= α〉

(G2) letl dec in exp end -. 〈α, [e1; e2; (α
l
= α2)]〉 ⇐⇐⇐ dec -. e1 ∧ exp -. 〈α2, e2〉

(G3) dexp atexpel -. 〈α, [e1; e2; (α
l
= α1 → α2)]〉 ⇐⇐⇐ exp -. 〈α, e1〉 ∧ atexp -. 〈α2, e2〉

(G4) fn pat
l⇒ exp -. 〈α, [(ev = e1); ev l ; e2; (α

l
= α1 → α2)]〉 ⇐⇐⇐ pat -. 〈α1, e1〉 ∧ exp -.

〈α2, e2〉

Labelled datatype constructors (ldcon -. 〈α, e〉)
(G5) dcon l -. 〈α, �dcon

l
= α〉

Patterns(pat -. 〈α, e〉)
(G6) vvar l

p -. 〈α, �vvar
l
= α〉

(G7) dcon l
p -. 〈α, �dcon

l
= α〉

(G8) dldcon atpatel -. 〈α, e1; e2; (α1
l
= α2 → α)〉 ⇐⇐⇐ ldcon -. 〈α1, e1〉 ∧ atpat -. 〈α2, e2〉

Labelled type constructors (ltc -. 〈δ, e〉)
(G9) tcl -. 〈δ, �tc

l
= δ〉

Types(ty -. 〈α, e〉)
(G10) tv l -. 〈α, �tv

l
= α〉

(G11) dty ltcel -. 〈α′, e1; e2; (α′
l
= αδ)〉 ⇐⇐⇐ ty1 -. 〈α1, e1〉 ∧ ltc -. 〈δ, e2〉

(G12) α1 � α2 -. 〈α, e1; e2; (α
l
= α1 → α2)〉 ⇐⇐⇐ ty1 -. 〈α1, e1〉 ∧ ty2 -. 〈α2, e2〉

Datatype names(dn -. 〈α, e〉)
(G13) dtv tcel -. 〈α′, (α′ l

= αγ); (�tc
l
= γ); (�tv

l
= α)〉 ⇐⇐⇐ α 6= α′

Constructor bindings (cb -. 〈α, e〉)
(G14) dcon l

c -. 〈α, �dcon
l
= α〉

(G16) dcon of l ty -. 〈α, e1; (α′
l
= α1 → α); (α′

l
=α1 � α); (�dcon

l
= α′)〉 ⇐⇐⇐ ty -. 〈α1, e1〉

Declarations (dec -. e)

(G17) val rec pat
l
= exp -. (ev = poly(e1; e2; (α1

l
= α2))); ev l ⇐⇐⇐ pat -. 〈α1, e1〉 ∧ exp -.

〈α2, e2〉

(G18) datatype dn
l
= cb -. (ev = ((α1

l
= α2); e1; poly(e2))); ev l ⇐⇐⇐ dn -. 〈α1, e1〉 ∧ cb -.

〈α2, e2〉

(G19) openl strid -. (�strid
l
= ev); ev l

Structure declarations (strdec -. e)
(G20) structure strid

l
= strexp -. [e]; (ev ′ = (�strid

l
= ev)); ev

′l ⇐⇐⇐ strexp -. 〈ev , e〉

Structure expressions (strexp -. 〈ev , e〉)
(G21) strid l -. 〈ev , �strid

l
= ev〉

(G22) structl strdec1 · · · strdecn end -. 〈ev , (ev
l
= ev ′); (ev ′ = (e1; ...; en))〉

⇐⇐⇐ strdec1 -. e1 ∧ ... ∧ strdecn -. en ∧ dja(e1; ...; en, ev , ev ′)
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Each of the constraint generation rules are now discussed in turn.

3.6.1 Expressions

Rule (G1) generates accessors for value identifiers. For example, where a function
previously defined is applied to an argument, the accessor which connects the use
of this function to its definition is generated.

Rule (G2) handles let expressions, where some declarations are to be defined in the
scope of some expression. We accomplish this with the [e] notation - by encasing
the environments from the declaration inside square brackets, upon closing of these
brackets that environment is not exported (as described previously) and so binders
inside are not available to following expressions.

Applications are handled with rule (G3). Here the → piece of constraint syntax is
used to represent the expression part being used as a function.

Nameless functions are handled in rule (G4). We label the environment variable in
this rule (and similarly in other rules) in order that declarations which have been
sliced out do not shadow their context. If the environment variable was not labelled,
then it would shadow the context it was in irrespective if some environment was
sliced out or not.

3.6.2 Labelled datatype constructors

Labelled datatype constructors are handled in rule (G5). With this rule, an accessor
is created to a datatype constructor in the same way as in (G1). The way datatype
constructors and value identifiers are differentiated is enhanced in section 14.1 of
[Rah10].

3.6.3 Patterns

Rule (G6) creates bindings for value variables occurring in patterns (such as in
function declarations), while rule (G7) creates accessors to datatype constructors
occurring in patterns. Rule (G8) handles the use of datatype constructors in pat-
terns which have an argument.
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3.6.4 Labelled type constructors

Labelled type constructors can occur in rule (G9). An accessor is created for this
type constructor. This constraint can be generated for example in datatype con-
structor bindings.

3.6.5 Types

Rule (G10) handles the case where an external type variable occurring in a con-
structor binding is being dealt with. As a result, an accessor is generated (this
should be connected during solving to the binder occurring in the declaration of
the datatype which declares the constructor in which this explicit type variable
is used). Rule (G11) is for labelled datatype constructors occurring in definitions
of datatype constructors, and rule (G12) handles the case where an arrow type is
specified in the user program.

3.6.6 Datatype names

Datatype names are handled with rule (G13). By looking at this rule it can be
seen that datatype declarations have exactly one explicit type variable argument.
Binders are created for both the name of the datatype and for the specified type
variable argument in this rule.

3.6.7 Constructor bindings

Rules (G14) and (G16) give support for datatype constructor bindings to the con-
straint generator. (G14) is for a constructor which doesn’t take an argument and
rule (G16) is for constructors defined with the of keyword, where the type of the
argument for the datatype constructor is defined. In both cases, binders are created
for the name of the constructor.

3.6.8 Declarations

Functions are supported in the constraint generator with rule (G17). Function
declarations are not supported using the fun keyword in this presentation of the
core but the implementation does handle this, which is simply a syntactic variation.
In this rule, as in rule (G18), the novel poly environment is used to make function
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Figure 3.15 Syntactic forms used by the constraint solver
ek ∈ ErrKind ::= clash(µ1, µ2) | circularity
er ∈ Error ::= 〈ek , d〉

state ∈ State ::= slv(∆, d , e) | succ(∆, e) | err(er)

bindings and datatype declarations polymorphic. The open feature is handled with
rule (G19), where an accessor constraint is created using the structure identifier.

3.6.9 Structure declarations

Rule (G20) handles structure declarations. The environment generated for that
structure is wrapped with [e] to limit the scope of bindings occurring in that struc-
ture.

3.6.10 Structure expressions

Structure expressions are handled in rules (G21), which handles the case where the
structure expression is some identifier which an accessor is then created for, and
(G22) in the case of a struct expression, in which case environments are gener-
ated for each structure declaration and compose the results using the environment
composition operator (;).

3.7 Constraint solving

3.7.1 Syntax

Additional syntactic forms which are used by the constraint solver are defined in
figure 3.15. A constraint solving step is defined by the relation →, and where →∗

is its reflexive and transitive closure with respect to State.

Given an environment e to solve, the constraint solver starts in the state

slv(〈∅, >〉, ∅, e)

and either terminates in one of two states:

• A success state succ(∆) returning its current constraint solving context ∆.
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• A failure state err(er). In this case an error is returned of the one of the
kinds discussed in figure 3.15.

3.7.2 The build function

A function build is defined which is similar to the substitution function but with
the important change that it is recursively called in the variable case. Note that
this function also collapses dependencies and is undefined on universally quantified
terms and environments. Note that in the final case of the build defined below, the
build function is allowed to be defined on constraint solving contexts. Types are
built up in this way to avoid duplicating constraints in the system.

build(u, v) =

{
build(u, x), if u(v) = x

v , otherwise
build(u, τ µ) = build(u, τ) build(u, µ)

build(u, τ 1 � τ 2) = build(u, τ 1) � build(u, τ 2)

build(u, xd) = collapse(build(u, x)d)

build(u, x) = x, otherwise
build(〈u, e〉, x) = build(u, x)

3.7.3 Environment difference

In this presentation of the core the notion of environment difference exists, which is
a way to extract certain environments which have been generated in the constraint
solving machinery. This function is used in the constraint solver to determine what
has been added to an environment since a constraint solving call was made.

For example, let us assume that the constraint solver started with constraint solving
context 〈>, e〉 and ended in a success state with constraint solving context 〈>, e ′〉.
The environment difference operation computes the new parts of the environment,
by taking e ′ and discarding the pre-existing environment (the environment e) por-
tion of it.

This operation is defined below.

e\e = >
e1\(e2;e3) = (e1\e2);e3 if e1 6= (e2;e3)
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Figure 3.16 Monomorphic to polymorphic environment

toPoly(∆, �vid=τ) = (�vid
d
= ∀α. τ ′), if τ ′ = build(∆, τ)

∧ α = (vars(τ ′) ∩ ITyVar) \ (vars(monos(∆)) ∪ {αdum})
∧{d | αd0∪{d} ∈ monos(∆) ∧ α ∈ vars(τ ′) \ α}

toPoly(〈u, e〉, ed
0 ) = 〈u ′, (e; e\e ′d )〉 if toPoly(〈u, e〉, e0) = 〈u ′, e ′〉

toPoly(∆, e1;e2) = toPoly(∆′, e2), if toPoly(∆, e1) = ∆′

toPoly(∆, e) = ∆; e, if none of the above applies

3.7.4 Polymorphic environments

Here the function monos is introduced, which computes the set of dependent monomor-
phic type variables which occur in some environment given as an argument with
respect to a unifier.

monos(∆) = {αdeps(τ) | ∃vid .τ = build(∆,∆(vid)) ∧ α ∈ nonDums(τ)}

It is ensured that the value identifier in the definition of monos is monomorphic
by building it after looking the value identifier up in the current environment, as
the build function is undefined on quantified type schemes, which are present in the
case of a polymorphic binder.

The toPoly function is now defined, which is responsible for taking a monomorphic
binder and creating from it a polymorphic binder by quantifying the variables which
do not occur in the monomorphic binder. This function is defined in figure 3.16.

There are four cases presented in the toPoly function. In the case where the en-
vironment has been annotated with dependencies, the dependencies are added on
to the polymorphic version of the environment given as the argument by recursing.
In the case of environment composition, toPoly is called on the first environment,
add it to the constraint solving context, and then use that when calling toPoly with
the the second environment. In the case of an environment where no rules apply,
the environment is returned that was given as the argument. This leaves the case
where there is a monomorphic binder as an argument.

In the case where a monomorphic binder is being dealt with as the argument, three
things are calculated:

1. The built version of the type given in the monomorphic binder. This is τ ′.

2. The variables to be quantified over. To do this all of the variables are gathered
in the previously computed type τ ′, and take the intersection of those variables
with the set of the internal type variables. Discarded from this set are all of
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the monomorphic variables in the constraint solving context (computed by
calling monos), and also the dummy variables. This is written α.

3. The dependencies with which the new polymorphic binder should be anno-
tated. This is done by taking the dependencies which are annotated on the
internal type variables that are returned from the call to the monos where
those type variables occur in the built-up type τ ′ and are not in the com-
puted set α.

Given these three computed items, a polymorphic binder is created by quantifying
τ ′ with the set α and place the dependencies d on that binder.

3.7.5 Constraint solving rules

The constraint solver is presented in figure 3.17, and discuss some of the important
rules in the constraint solver below.

Discussion of some important rules

• Rule (S6) generates a type constructor clash if it notices two type constructor
names have an equality constraint constraining them, where the type con-
structors are not actually equal.

• Rule (U1) generates a circularity error. This error is generated where a vari-
able is constrained to be equal to some term where the variable occurs in that
term.

• Rule (U4) handles constraints where environment variables are assigned to
environments. In this case the environment is solved first, then a mapping is
added from the environment variable to this solved environment to the unifier
in the constraint solving context.

• Rule (C1) handles composition environments. In the case of such composition
environments the first environment that is composed with the second is solved,
then use the constraint solving context that was returned from the slv call
in order to call slv again with the second environment.

• Rules (A1) and (A3) deal with accessors. In the case of rule (A1) the accessors
are connected to their binders by looking the variable up in the constraint
solving context. In rule (A3) success is generated, but this can be used to
report free identifiers. If slv(∆, d , �id=v) → succ(∆) and ¬shadows(∆)

then there is no binder for id .
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Figure 3.17 Constraint solver
equality constraint reversing
(R) slv(∆, d , x= y) → slv(∆, d , y = x), if s = Var ∪ Dependent ∧

y ∈ s ∧ x 6∈ s
equality simplification
(S1) slv(∆, d , x= x) → succ(∆)

(S2) slv(∆, d , xd
′
= y) → slv(∆, d ∪ d

′
, x= y)

(S3) slv(∆, d , τ µ= τ ′ µ′) → slv(∆, d , (µ= µ′);(τ = τ ′))

(S4) slv(∆, d , τ1 → τ2 = τ3 → τ4) → slv(∆, d , (τ1 = τ3);(τ2 = τ4))

(S5) slv(∆, d , τ = τ ′) → slv(∆, d , µ= arr),
if {τ , τ ′} = {τ1 µ, τ2 � τ3}

(S6) slv(∆, d , µ1 = µ2) → err(〈clash(µ1, µ2), d〉),
if {µ1, µ2} ∈ {{γ, γ′}, {γ, arr}} ∧ γ 6= γ′

unifier access
Rules (U1) through (U6) have also the side condition v 6=x and y = build(u, xd ).
(U1) slv(〈u, e〉, d , v = x) → err(〈circularity, deps(y)〉),

if v ∈ vars(y)\(dom(u) ∪ Env ∪ Dum) ∧ strip(y) 6= v

(U2) slv(〈u, e〉, d , v = x) → succ(〈u, e〉),
if v ∈ vars(y)\(dom(u) ∪ Env) ∧ strip(y) 6= v

(U3) slv(〈u, e〉, d , v = x) → succ(〈u ⊕ {v 7→ y}, e〉),
if v /∈ (vars(y)\Dum) ∪ dom(u) ∪ Env

(U4) slv(〈u, e〉, d , v = x) → succ(〈u ′ ⊕ {v 7→ e\e ′}, e〉),
if v ∈ Env\dom(u) ∧ slv(〈u, e〉, d , x)→∗ succ(〈u ′, e ′)

(U5) slv(〈u, e〉, d , v = x) → err(er),
if v ∈ Env\dom(u) ∧ slv(〈u, e〉, d , x)→∗ err(er)

(U6) slv(〈u, e〉, d , v = x) → slv(〈u, e〉, d , z = x),
if u(v) = z

binders

(B1) slv(〈u, e〉, d , �id=x) → succ(〈u, (e;�id
d
= x)〉)

empty/dependent/variables
(E) slv(∆, d ,>) → succ(∆)

(D) slv(∆, d , ed
′
) → slv(∆, d ∪ d

′
, e)

(V) slv(〈u, e〉, d , ev) → succ(〈u, e; evd 〉)
composition environments
(C1) slv(∆, d , e1;e2) → slv(∆′, d , e2), if slv(∆, d , e1)→∗ succ(∆′)

(C2) slv(∆, d , e1;e2) → err(er), if slv(∆, d , e1)→∗ err(er)

accessors
(A1) slv(∆, d , �id=v) → slv(∆, d ∪ d

′
, v = τ [ren]),

if ∆(id) = (∀α. τ)d
′
∧ dom(ren) = α ∧ dj(vars(〈∆, v〉), ran(ren))

(A2) slv(∆, d , �id=v) → slv(∆, d , v = x),
if ∆(id) = x ∧ strip(x) is not of the form ∀α. τ

(A3) slv(∆, d , �id=v) → succ(∆), if ∆(id) undefined
polymorphic environments
(P1) slv(〈u1, e1〉, d , poly(e)) → succ(toPoly(〈u2, e1〉, e1\e2)),

if slv(〈u1, e1〉, d , e)→∗ succ(〈u2, e2〉)
(P2) slv(〈u1, e1〉, d , poly(e)) → err(er),

if slv(〈u1, e1〉, d , e)→∗ err(er)
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• Rule (P1) deals with the promotion of monomorphic binders to a polymorphic
status by calling the toPoly function.

The relations isErr and solvable are defined as shown below, which are used in the
definition of the minimisation and enumeration algorithms.

e −isErr−−→ er ⇐⇒ slv(〈∅, >〉, ∅, e)→∗ err(er)

solvable(e) ⇐⇒ ∃∆.slv(〈∅, >〉, ∅, e)→∗ succ(∆)

solvable(strdec) ⇐⇒ ∃e.strdec -. e ∧ solvable(e)

3.8 Minimisation and enumeration

3.8.1 Dummy binders

In the first phase of the minimisation algorithm, an attempt is made to try to
remove potentially large sections of code (such as structures, datatype definitions
etc). This is done by replacing binders with dummy binders. Let us define the
set lBinds, which will gather the labels of all binders in a given environment e be
defined as follows :

lBinds(e) = {l | bind l occurs in e}

3.8.2 Constraint filtering

The definition of the constraint filtering function filt can be seen in figure 3.18.
This function is used to check the solvability of constraints in the case that some
have been discarded, and label sets are used to accomplish this. In filt(e, l1, l2), e is
the environment to be filtered and l1 contains the labels that are to be kept. Any
accessors or equality constraints which are annotated with a label which is present
in the l2 set which is the set of labels not to be kept, if a binder label is in that
set then it is turned into a dummy binder. Any environment labelled with a label
which is not in l1∪ l2 is discarded. Note that binders that are discarded (any binder
with a label not in l1 ∪ l2) and the binders that are turned into dummy binders
(those in l2) are distinguished in order that when throwing away an environment,
care is taken so that accessors in the resulting environment do not get captured by
a different binder with the same name.

The set DepStatus is defined as follows:
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Figure 3.18 Constraint filtering
filtering function

filt(e l , l1, l2) =


e l , if l ∈ l1 \ l2

dum(e)∅, if l ∈ l2

>, otherwise
filt(ev = e, l1, l2) = (ev = filt(e, l1, l2))

filt(e1;e2, l1, l2) = filt(e1, l1, l2);filt(e2, l1, l2)

filt(poly(e), l1, l2) = poly(filt(e, l1, l2))

filt(>, l1, l2) = >
conversion of environments into dummy environments

dum(�id=x) = (�id=toDumVar(x))
dum(ev) = evdum

dum(e1;e2) = dum(e1);dum(e2)

dum(ed ) = dum(e)

dum(c) = >
dum(acc) = >
dum(>) = >

toDumVar(σ) = αdum
toDumVar(µ) = δdum
toDumVar(e) = evdum

ds ∈ DepStatus ::= keep | drop | keep-only-binders

and also the set DepEnv, which will map a dependency to a dependency status:

de ∈ DepEnv ::= Dependency→ DepStatus

Defined also is des on dependency sets as follows:

de(d) = {de(d) | d ∈ d}
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Figure 3.19 Minimisation and enumeration algorithms
minimisation

(MIN1) 〈e, l1, {l} ] l2〉 → test 〈e, l1 ∩ d , l2 ∩ d〉,
if filt(e, l1 ∪ l2, {l}) −isErr−−→ 〈ek , d〉

(MIN2) 〈e, l1, {l} ] l2〉 → test 〈e, l1 ∪ {l}, l2〉, if solvable(filt(e, l1 ∪ l2, {l}))
(MIN3) 〈e, er〉 −min−−→ er ′, if lBinds(e) = l

∧ 〈e, labs(er) \ l , labs(er) ∩ l〉 → ∗
test〈e, l1, ∅〉 (phase1)

∧ 〈e, ∅, l1〉 → ∗
test〈e, l2, ∅〉 (phase2)

∧ filt(e, l2, ∅) −isErr−−→ er ′

enumeration

(ENUM1) enum(e) → e enum(e, ∅, {∅})
(ENUM2) enum(e, er , ∅) → e errors(er)

(ENUM3) enum(e, er , l ] {l}) → e enum(e, er , l), if solvable(filt(e, labs(e), l))

(ENUM4) enum(e, er , l ] {l}) → e enum(e, er ∪ {〈ek , d〉}, l
′
∪ l),

if filt(e, labs(e), l) −isErr−−→ er

∧ 〈e, er〉 −min−−→ 〈ek , d〉
∧ l
′
= {l ∪ {l} | l ∈ d ∧ ∀l0 ∈ l .l0 6⊆ l ∪ {l}}

3.8.3 Justification of the minimisation algorithm

Here a variation on the example given by Rahli [Rah10] is presented, where the
notion of tuples have been removed so an example can be shown which is fully
supported by the core presented in this chapter.

Consider the program in figure 3.20.

Figure 3.20 Example program showing the need for minimisation

1 datatype ’a mydt = DUMMY
2 val rec e = fn x => fn y => DUMMY
3 val rec f = fn x => e (x (fn z => z)) (x (fn DUMMY => DUMMY ))
4 val rec g = fn y => y true
5 val u = f g

For this program, after the first constraint solving run the following error is pro-
duced:

51



3.8. MINIMISATION AND ENUMERATION

let
datatype ’a mydt = DUMMY
val rec e = fn x => fn y => DUMMY
val rec f = fn x => e (x (fn z => z)) (x (fn DUMMY => DUMMY))
val rec g = fn y => y true

in
f g

end

After the minimisation process however, the following error is generated:

let
datatype ’a mydt = DUMMY
val rec e = fn x => fn y => DUMMY
val rec f = fn x => e (x (fn z => z)) (x (fn DUMMY => DUMMY))
val rec g = fn y => y true

in
f g

end

As x is monomorphic, it is constrained by both z and by the datatype constructor
DUMMY. There is no known way yet to find this type of error without the help of a
minimiser, and investigation on this is left for future work.

3.8.4 Minimisation

There are some cases where when an error is discovered during constraint solving
it may not be minimal, that is, that some of the labels attributed to the error are
extraneous. The minimisation algorithm can be seen in figure 3.19.

The → test relation determines whether a given label can be removed from the set
of labels associated with an error without causing the error to no longer exist in
the user program. Let → ∗

test be the reflexive and transitive closure of → test.

The process of minimisation is separated into two phases (labelled phase1 and
phase2 in figure 3.19 respectively). In phase one binders are turned into dummy
binders which can potentially remove large sections of code, then in phase two labels
are removed one at a time until the minimal amount of labels are found that are
attributed to the error.

A minimisation step is represented as 〈e, l1, {l}] l2〉 −test−−→ 〈e, l3, l4〉, where l3 and l4

depend upon the solvability of filt(e, l1 ∪ l2, {l}), referred to now as e ′. The full set
of labels for the error the minimiser is working on is the set l1∪ l2∪{l}, and {l}] l2

is the label set where discard attempts must still be made. The new environment
e ′ is obtained from e by filtering out the constraints not labelled by l1∪ l2∪{l}, by
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filtering out out accessors and equality constraints annotated with the label l , and
by creating dummy binders and environment variables for binders and environment
variables which were annotated with this label. If the new environment is solvable,
then label l must be in the error’s label set for the error to occur, and so l3 = l1∪{l}
and l4 = l2, otherwise this label is extraneous and can be removed.

3.8.5 Enumeration

An enumeration step is denoted with the relation → e, with → ∗
e being its reflexive

(w.r.t. EnumState) and transitive closure. Enumeration states are defined below:

EnumState ::= enum(e) | enum(e, er , l) | errors(er)

The enumeration process always starts in the state enum(e) and ends in the state
errors(er). The enumeration algorithm creates filters, which form the search
space built when searching for errors, and starts with the empty filter (which causes
all constraints to be considered).

After an error has been found and the minimisation process has been completed,
the labels of the error that has been located are used to build new filters (see l ′ in
rule (ENUM4)). When all filters are exhausted the enumeration algorithm stops.

After the enumeration algorithm has stopped, the errors that have been found are
all the minimal type errors in the analyzed piece of code.

3.9 Slicing

3.9.1 Dot Terms

After an error has been located in the user program, a type error slice is made from
the labels and the error kind ek . This is done by the slicing function sl defined in
figure 3.25. Any program nodes which are annotated with labels not occurring in
the set of labels as part of the error are replaced by “dot” terms, which are used to
show that some program nodes have been thrown away as they do not contribute to
the error. As an example if a node is removed annotated with label l2 in d1l1()l2el3 ,
then d1l1dot-e(∅)el3 results. This is displayed as 1 〈..〉.

Any syntactic form that can be produced using the grammar rules defined in the
combination of figures 3.8 and 3.21 is referred to as a slice, and a type error slice
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Figure 3.21 Extension of the syntax and constraint generator to “dot” terms
extension of the constraint syntax

LabTyCon ::= · · · | dot-e(
−−→
term)

LabDatCon ::= · · · | dot-e(
−−→
term)

Ty ::= · · · | dot-e(
−−→
term)

ConBind ::= · · · | dot-e(
−−→
term)

DatName ::= · · · | dot-e(
−−→
term)

Dec ::= · · · | dot-d(
−−→
term)

AtExp ::= · · · | dot-e(
−−→
term)

Exp ::= · · · | dot-e(
−−→
term)

AtPat ::= · · · | dot-p(
−→
pat)

Pat ::= · · · | dot-p(
−→
pat)

StrDec ::= · · · | dot-d(
−−→
term)

StrExp ::= · · · | dot-s(
−−→
term)

extension of the constraint generator
(G24) Jdot-d(〈term1, . . . , termn〉)K = [Jterm1K; · · · ;JtermnK]
(G25) Jdot-p(〈pat1, . . . , patn〉), αK = Jpat1K; · · · ;JpatnK
(G26) Jdot-s(〈term1, . . . , termn〉), evK = [Jterm1K; · · · ;JtermnK]
(G27) Jdot-e(〈term1, . . . , termn〉), αK = [Jterm1K; · · · ;JtermnK]

Figure 3.22 Labelled abstract syntax trees
class ∈ Class ::= lTc | lDcon | ty | conbind | datname | dec | atexp

| exp | atpat | pat | strdec | strexp
prod ∈ Prod ::= tyArr | tyCon | conbindOf | datnameCon | decRec | decDat

| decOpn | atexpLet | expFn | strdecDec | strdecStr
| strexpSt | id | app | seq

dot ∈ Dot ::= dotE | dotP | dotD | dotS
node ∈ Node ::= 〈class, prod〉
tree ∈ Tree ::= 〈node, l ,

−−→
tree〉 | 〈dot ,

−−→
tree〉 | id

any slice for which the constraint generation algorithm (which has been extended
to dot terms) only generates unsolvable constraints.

An alternative definition of the external labelled syntax presented in 3.8 is given
here. In figure 3.22 the labelled abstract syntax trees are defined, where a node in
a tree tree can either be a labelled node of the form 〈node, l ,−−→tree〉, an unlabelled
”dot” node of the form 〈dot,−−→tree〉, or a leaf of the form id. toTree is defined in figure
3.23 which associates a tree with every term (toTree is also defined on a sequence
of terms).

Figure 3.24 also defines the function getDot which generates terms in Dot from
nodes. This function is used in the slicing algorithm to generate dot nodes from
labelled nodes.

3.9.2 Tidying

Defined here is flat, which flattens a series of terms. For example, flattening
〈..1..〈..()..〉..〉 becomes 〈..1..()..〉. Note that nested dot terms are not always flat-
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Figure 3.23 From terms to trees
toTree(tcl ) = 〈〈lTc, id〉, l , 〈tc〉〉
toTree(dcon l ) = 〈〈lDcon, id〉, l , 〈dcon〉〉
toTree(tv l ) = 〈〈ty, id〉, l , 〈tv〉〉
toTree(ty1

l→ ty2) = 〈〈ty, tyArr〉, l , 〈toTree(ty1), toTree(ty2)〉〉
toTree(dty ltcel ) = 〈〈ty, tyCon〉, l , 〈toTree(ty), toTree(ltc)〉〉
toTree(dcon l

c) = 〈〈conbind, id〉, l , 〈dcon〉〉
toTree(dcon of l ty) = 〈〈conbind, conbindOf〉, l , 〈dcon, toTree(ty)〉〉
toTree(dtv tcel ) = 〈〈datname, datnameCon〉, l , 〈tv , tc〉〉

toTree(val rec pat
l
= exp) = 〈〈dec, decRec〉, l , 〈toTree(pat), toTree(exp)〉〉

toTree(datatype dn
l
= cb) = 〈〈dec, decDat〉, l , 〈toTree(dn), toTree(cb)〉〉

toTree(openl strid) = 〈〈dec, decOpn〉, l , 〈strid〉〉
toTree(vid l

e) = 〈〈atexp, id〉, l , 〈vid〉〉
toTree(letl dec in exp end) = 〈〈atexp, atexpLet〉, l , 〈toTree(dec), toTree(exp)〉〉
toTree(fn pat

l⇒ exp) = 〈〈exp, expFn〉, l , 〈toTree(pat), toTree(exp)〉〉
toTree(dexp atexpel ) = 〈〈exp, app〉, l , 〈toTree(exp), toTree(atexp)〉〉
toTree(vid l

p) = 〈〈atpat, id〉, l , 〈vid〉〉
toTree(dldcon atpatel ) = 〈〈pat, app〉, l , 〈toTree(ldcon), toTree(atpat)〉〉
toTree(structure = 〈〈strdec, strdecStr〉, l , 〈strid , toTree(strexp)〉〉

strid
l
= strexp)

toTree(strid l ) = 〈〈strexp, id〉, l , 〈strid〉〉
toTree(〈term1, . . . , termn〉) = 〈toTree(term1), . . . , toTree(termn)〉
toTree(dot-e(

−−→
term)) = 〈dotE, toTree(

−−→
term)〉

toTree(dot-d(
−−→
term)) = 〈dotD, toTree(

−−→
term)〉

toTree(dot-p(
−→
pat)) = 〈dotP, toTree(

−→
pat)〉

toTree(dot-s(
−−→
term)) = 〈dotS, toTree(

−−→
term)〉

toTree(structl = 〈〈strexp, strexpSt〉,
strdec1 · · · strdecn end) l , toTree(〈strdec1, . . . , strdecn〉)〉

tened as different semantics can sometimes be produced, for example

〈..val x = false..〈..val x = 1..〉..x + 1..〉

is not flattened to become

〈..val x = false..val x = 1..x + 1..〉

as the semantics have changed- the first is a typable slice and the second is not.

The predicates below check the classes of trees:
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Figure 3.24 Definition of getDot

getDot(〈lTc, prod〉) = dotE

getDot(〈lDcon, prod〉) = dotE

getDot(〈ty, prod〉) = dotE

getDot(〈conbind, prod〉) = dotE

getDot(〈datname, prod〉) = dotE

getDot(〈dec, prod〉) = dotD

getDot(〈atexp, prod〉) = dotE

getDot(〈exp, prod〉) = dotE

getDot(〈atpat, prod〉) = dotP

getDot(〈pat, prod〉) = dotP

getDot(〈strdec, prod〉) = dotD

getDot(〈strexp, prod〉) = dotS

Figure 3.25 Slicing algorithm
(SL1) sl(〈node, l ,

−−→
tree〉, l) =

〈node, l , sl1(
−−→
tree, l)〉, if l ∈ l and getDot(node) 6= dotS

〈node, l , tidy(sl1(
−−→
tree, l))〉, if l ∈ l and getDot(node) = dotS

〈getDot(node), flat(sl2(
−−→
tree, l))〉, otherwise

(SL2) sl1(〈dot , 〈tree1, . . . , treen〉〉, l) = 〈dot , flat(〈sl2(tree1, l), . . . , sl2(treen, l)〉)〉
(SL3) sl2(〈dot , 〈tree1, . . . , treen〉〉, l) = 〈dot , flat(〈sl2(tree1, l), . . . , sl2(treen, l)〉)〉
(SL4) sl1(〈node, l ,

−−→
tree〉, l) = sl(〈node, l ,

−−→
tree〉, l)

(SL5) sl2(〈node, l ,
−−→
tree〉, l) = sl(〈node, l ,

−−→
tree〉, l)

(SL6) sl1(〈tree1, . . . , treen〉, l) = 〈sl1(tree1, l), . . . , sl1(treen, l)〉
(SL7) sl2(〈tree1, . . . , treen〉, l) = 〈sl2(tree1, l), . . . , sl2(treen, l)〉
(SL8) sl1(id , l) = id

(SL9) sl2(id , l) = 〈dotE, 〈〉〉

isClass(tree, {class} ∪ class) ⇐⇒ tree = 〈〈class, prod〉, l ,−−→tree〉
declares(tree) ⇐⇒ isClass(tree, {dec, strdec, datname, conbind})
pattern(tree) ⇐⇒ isClass(tree, {atpat, pat})

These can be used to check whether a given tree has any binders (declares), is a
pattern (pattern). With these in place, a formal definition of flat is defined below:

flat(〈〉) = 〈〉

flat(〈tree〉@−−→tree) =


〈tree1, . . . , treen〉@flat(

−−→
tree),

if tree = 〈dot , 〈tree1, . . . , treen〉〉
and (∀i ∈ {1, . . . , n}.¬declares(treei) or −−→tree = 〈〉)
〈tree〉@flat(

−−→
tree), otherwise

A function tidy is also defined which merges dot terms containing declarations in
structures. It is defined below.

tidy(〈〉) = 〈〉
tidy(〈〈dotD,−−→tree1〉, 〈dotD,

−−→
tree2〉〉@

−−→
tree)

= tidy(〈〈dotD,−−→tree1@
−−→
tree2〉〉@

−−→
tree), if ∀tree ∈ ran(

−−→
tree1).¬declares(tree)

tidy(〈〈dotD, ∅〉〉@−−→tree)

= tidy(
−−→
tree), if none of the above applies

tidy(〈tree〉@−−→tree)

= 〈tree〉@tidy(
−−→
tree), if none of the above applies
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3.9.3 Algorithm

Figure 3.25 formally defines the slicing algorithm. In this figure let sl(strdec, l) be
an abbreviation for sl(toTree(strdec), l).

3.9.4 Meeting criteria of Jun [YMTW00] et al.

Below, we discuss the properties of [YMTW00] with respect to program slicing, and
we show how Skalpel meets such properties.

Correct We believe that for an erroneous program as defined by the Definition
of Standard ML [MTHM98] where syntax supported by the core is used we will
always generate unsolvable constraints from the constraint generator. The correct-
ness of the Skalpel implementation is evaluated by the test framework discussed in
appendix section C.7.

Precise Before reporting final errors to the user, Skalpel runs its minimisation
algorithm which removes all extraneous labels (that is, labels which were initially
reported to be part of the error but were discovered later to be irrelevant), so
Skalpel is precise in the errors that it generates. Some work has been done with
experimenting in the implementation with a phase where Skalpel shows errors to
the user where those errors are not minimal, but this is present for implementation
reasons, as the time taken to generate a minimal error can be in some cases quite
high.

Succinct With respect to the formal type error slice, flattening Skalpel’s program
slices allows us to be succinct in our reports. With the highlighting, as we highlight
the code relevant to the error anyway and do not highlight anything in the program
which is irrelevant to the error, we are as succinct here as possible. For these reasons,
Skalpel is succinct in its error reporting.

A-mechanical. Unlike how the current compilers for Standard ML report error
messages, Skalpel will never report as part of its error some internal representation
which has been generated.

Source-based Skalpel can present to the user either highlighting or a formal repre-
sentation of a type error slice. The highlighting presented is entirely source-based,
however the type error slice contains characters which are used to show that some
portion of code has been sliced out (〈..〉). Removing this notation would not allow
us to be as succinct as we are now, and as the highlighting is entirely source based,
we meet this property.
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Unbiased Skalpel does not prioritise any error that it reports over any other error,
and so it is unbiased. The enumeration algorithm is responsible for this, as it con-
tinues to search for unique errors when some have already been found. While some
regions differently to others (e.g. end points of errors, which may be highlighted in
another colour), no region is prioritised over any other region, and so also in that
sense Skalpel is unbiased.

Comprehensive Skalpel presents all and only those pieces of code which are re-
sponsible for an error, and so it follows that the user will never need to modify any
code not presented by Skalpel in order to solve an error. For this reason, Skalpel is
comprehensive in nature.

3.10 Other Implementations

Some of the authors of papers reviewed in chapter 2 have prepared implementations
which are at least largely based on the work they have presented in their papers.
This section aims to give an overview of some implementations that are currently
available, whether they be simply improvements on algorithm W or more sophis-
ticated implementations where for example type error corrections are suggested to
the user.

The implementation of Goto and Sasano [GS12] can be found at the following URL1:

http://www.cs.ise.shibaura-it.ac.jp/lambda-mode/

In this implementation the user writes their Standard ML code in Emacs (the
implementation is an Emacs mode called Lambda-mode), as users of Skalpel are
able to do, but rather than calling an external binary as Skalpel does, everything
in this implementation is done in Emacs Lisp. A screenshot of what the software
looks like can be seen in figure 3.26.

While they gain the advantage that their software is extremely easy to install they
tie their users to Emacs, so if the user doesn’t use that editor they will not be able
to use the software. An advantage to implementing Skalpel in the current way is
that users are not tied to any specific editor.

There are two implementations of type inference algorithms in this work, one is
Milner’s type inference algorithm W [DM82], and the other is described as a type
inference algorithm V, which was an algorithm created by the authors. The W

1 In the README located in the tarball at that location, Goto and Sassano invite users
to try sample programs located in the ‘sample’ folder, but this directory does not exist. It is
recommended to enter the program shown in figure 8 of their paper as a sample program.
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Figure 3.26 Goto and Sasano Implementation

algorithm is used in the case of function applications, and in the case where there
is a let expression which has a body (in the case where there is a let expression
without a body the V algorithm is used).

In this implementation the way that candidates are checked whether they will make
the code typable is that they are inserted into the code and then the unification
algorithm is run with that candidate inserted. If unification succeeds, then this
candidate is presented to the user, if it does not, then it is removed from the set of
possible candidates2 that the user will be presented with. The authors essentially
check for valid candidates in a similar way that the Skalpel analysis engine finds
minimal type error slices. Each approach (ours and theirs) simply repeatedly run
its own unification algorithm and looks at the results.

Another interesting implementation is that of Seminal, written in Ocaml, which
detects type errors in untypable pieces of Ocaml code and provides suggestions to
the user.

A basic example is shown here. Suppose the user has the basic program shown in
figure 3.27.

Figure 3.27 A simple ill-typed Ocaml program

1 let
2 concatFunction s1 s2 = s1 ^ s2
3 in
4 print_string (concatFunction "hello ," 10)

This example is a simple case of a type error, as the user in this case has a function
concatFunction which takes two strings and concatenates them together. In line
4 however, the user has mistakenly given concatFunction a string and an int as
arguments.

2This can be seen in the enum-candidates-from-v-result-set and enum-candidates func-
tions in the lambda-candidates.el file of the implementation.
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Figure 3.28 shows the output of ocamlc without the use of seminal, and figure 3.29
shows the output with Seminal output enabled.

Figure 3.28 Output of ocamlc for code in figure 3.27

F i l e "/tmp/ t e s t . ml" , l i n e 4 , cha ra c t e r s 40−42:
This exp r e s s i on has type i n t but i s here used with type s t r i n g

Figure 3.29 Seminal output for code in figure 3.27

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
F i l e "/tmp/ t e s t . ml" , l i n e 4 , cha ra c t e r s 40−42:
This exp r e s s i on has type i n t but i s here used with type s t r i n g
Relevant code : 10
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
F i l e "/tmp/ t e s t . ml" , l i n e 2 , cha ra c t e r s 30−32:
Try r ep l a c i n g

s2
with

s1
o f type

s t r i n g
with in context

l e t concatFunct ion s1 s2 = s1 ^ s1 in
( p r in t_s t r ing ( concatFunct ion " he l l o , " 10) )

; ;
==============================

From these figures it be seen here that the compiler simply states that there is a
type clash between int and string, on line 4 of the file, between characters 40 and
42. While the figure containing the Seminal output does not attempt to describe
to the user precisely why this is an error (which is what Skalpel tries to do), it does
make an effort to look at other lines and suggest changes that could be made.

In this case, Seminal recommends that in line 2 of the code, s2 should be replaced
by s1. This would indeed make the code typable.

There is no support for handling syntax errors in Seminal, so no suggestions are
given for syntactic changes that the user might wish to make, and suggesting
changes is available for type errors only.

The Seminal patch changes a few of the existing files in places (the Makefile, the
configuration script and so on), but the bulk of the implementation comes in the
form of a structure called Seminal. This is certainly desirable when implementing
a system like this as a patch on compiler sources, if as little changes are made to
the current compiler sources as possible then the less has to be changed when a
new compiler release comes out and the code changes.
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The Seminal structure can be thought of as a function, with kinds of errors on the
left hand side and options to try out to fix the error on the right hand side. The
implementation seems to follow very closely what the paper describes. While the
implementation for Seminal is not currently active, it is suspected that there would
not be many changes needed in the implementation to make this work for the latest
version of the Ocaml compiler.

Whether Skalpel would eventually be extended to give the user code suggestions as
to what the user might change in order to fix their code is unknown at this time and
outside the scope of this research project, but it is certainly an area for potential
future work. It is an interesting aspect to consider however, as so much information
is generated by Skalpel about the program that the user supplies already as it is.

The Easy OCaml [EAS] implementation tarball can be downloaded from the below
URL:

http://forge.ocamlcore.org/frs/download.php/94/easyocaml-0.49.tar.bz2

This tarball contains a patched version of the Ocaml compiler (reported to be
version 3.10.2) in order to run EasyOCaml. A webdemo is also available at the
following URL at this time of writing:

http://easyocaml.forge.ocamlcore.org/demo.php

The bulk of the implementation files for EasyOCaml can be found in the ocaml-
3.10.2/easyocaml/ subdirectory of the downloaded tarball. In here are a number of
ML modules. A description of some of the more important ones is given here.

• ezyFeatures.ml. Contains many booleans allowing the user to restrict what
feature set EasyOCaml is to handle. The below is a short extract of the file.

. . . .
e_if_then : bool ;
e_if_then_else : bool ;
e_let_in : l e t_ f e a t s opt ion ;
e_let_rec_in : l e t r e c_ f e a t s opt ion ;
. . .

These flags would be enabled or disabled depending on the requested language
feature set that is to be supported as specified by the user.

• ezyAst.ml. Contains the abstract syntax tree.

• ezyConstraints.ml. Somewhat comparable to the Env.sml implementation file
present in Skalpel, which states how constraints can be used and manipulated.
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3.10. OTHER IMPLEMENTATIONS

Also has some code which implements techniques from [HW03], such as ap-
plying a derived environment to a type. A fragment of the code which handles
this is given in figure 3.30.

Figure 3.30 Code extract showing application of derived environment to a type

l e t r e c apply_to_ty e ty =
match ty with

| Ty . Var tyvar −>
begin try

l e t ty ’ , _ = TyVarMap . f i nd tyvar e in
apply_to_ty e ty ’

with Not_found −>
ty

end
| Ty . Constr ( l , k , tys ) −>

Ty . Constr ( l , k , L i s t .map ( apply_to_ty e ) tys )
| Ty . Tuple ( l , tys ) −>

Ty . Tuple ( l , L i s t .map ( apply_to_ty e ) tys )
| Ty . Arrow ( l , tx , tx ’ ) −>

Ty . Arrow ( l , apply_to_ty e tx , apply_to_ty e tx ’ )

• ezyTypingCoreTypes.ml. Comparable to the Ty.sml file in the Skalpel im-
plementation which contains definitions for how constraints are represented.
The type t is shown below:

type t =
| Var o f TyVar . t
| Tuple o f ExtLocation . t ∗ t l i s t
| Constr o f ExtLocation . t ∗ Path . t ∗ t l i s t
| Arrow o f ExtLocation . t ∗ t ∗ t

A TyVar.t is represented with an integer as shown below (some definitions at
the bottom have been omitted with ‘...’ characters).

module TyVar : s i g
type tyvar
in c lude PrintableOrderedType with type t = tyvar
va l f r e s h : un i t −> t
va l id : t −> in t
va l none : t

end = s t r u c t
type tyvar = in t
type t = tyvar
l e t counter = r e f 0
l e t f r e s h ( ) = in c r counter ; ! counter
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3.11. CRITIQUE OF THE SKALPEL CORE

. . . . . . . . . . . . . . .
end

• ezyTyping. Contains the unification algorithm, unifies constraints as gener-
ated by the constraint generation algorithm. An example where two tuples
are compared is shown below.

(∗ ( . . . ) , ( . . . ) ∗)
| Ty . Tuple (_, tys1 ) , Ty . Tuple (_, tys2 ) −>
begin t ry
l e t aux ds_rest ty1 ty2 =
ConstrSet . add ds_rest ( Constr . c r e a t e ty1 l o c s ty2 )

in l e t
new_ds = L i s t . f o l d_ l e f t 2 aux ConstrSet . empty tys1 tys2
in
(∗ . . . . . ∗)
un i f y_ fu l l env cs e ( ConstrSet . union ds_rest new_ds) l
with Invalid_argument " L i s t . f o l d_ l e f t 2 " −>
Result . Error ( EzyErrors . ArityClash ( tx ’ , ty ’ ,

L i s t . l ength tys1 , L i s t . l ength tys2 ) , l o c s , l )
end

Inside the implementation is also some work completed towards some language
packs, which is a framework designed to make OCaml easier to learn (and is a
motivation for this work as a whole anyway).

3.11 Critique of the Skalpel core

The next chapter demonstrates a number of improvements over the version of the
Skalpel core presented here. These are described below.

• Dummy variables are used in this presentation of the core, and care is al-
ways needed when using such a concept in our machinery such that dummy
variables are never constrained in the set of unifiers. The next chapter demon-
strates how the use of existential constraints eliminates that additional ma-
chinery.

• The rules handling polymorphism have a greater number of side conditions
than any other rule, and in the next chapter it is shown how part of that
machinery can be simplified.
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3.11. CRITIQUE OF THE SKALPEL CORE

• This version of the Skalpel core has the concept of a constraint solving context,
but when updated constraint solving contexts are received from recursive
constraint solver calls, there are also by design different versions of the unifier
set. This is not desirable, as there should only ever be one version of the set
of unifiers.

• The build function must be updated with every new extension to the theory,
but a better representation of the unifier set would mean that such updates
do not need to be presented so laboriously. A new representation is shown in
the next chapter.

• The concept of environment difference does not need to exist if environments
are handled correctly as a stack. This would mean that again so many external
functions need to be called in the constraint solver.

• Monomorphic variable computation requires an external call to a function
from the constraint solver. In the next chapter, it is shown how such a call
is unnecessary, as the information can be carried in the constraint solver as a
parameter.

In the next chapter an updated version of the Skalpel core is shown, and all the
stages of the process are investigated which were initially shown in this chapter
with the updated version of the theoretical presentation.
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Chapter 4

Current Technical Design of Skalpel
Core

This chapter discusses the most recent version of the Skalpel core, which includes
changes which were made to it during the course of this research project.

Directions are given at the start of each section to readers who have knowledge of
the original presentation of the core where the material in that section is unchanged.

Note that lemmas about this presentation are not given here, but occur instead in
chapter 8.

As in the original presentation of the core in 3, the system is made up of multiple
stages. These stages are repeated below:

• Labelling. Firstly, the program that the user submits to Skalpel is annotated
with labels, which are used to represent program points and track blame of
errors.

• Constraint generation. The constraint generator takes a labelled Standard
ML program as input and generates a set of constraints. The constraints that
are generated have program labels embedded into them, so it is known what
parts of the program a certain constraint has been generated for.

• Enumeration. The enumerator creates filters to run the next phase with,
which are effectively program points which should not be considered during
constraint solving. Initially, the empty filter set is used, so all labels in the
program are considered.

• Constraint solving. The constraints constructed during the constraint gen-
eration phase are taken and an attempt is made to solve them. In the event
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that all constraints can be solved, the program the user submitted is deemed
typable, otherwise, the program contains an error.

• Minimisation. In this phase an attempt is made to increase the precision
of the reported error locations which can be more precise in some cases than
the locations initially reported by the constraint solving stage. We will never
generate less precise locations during this phase.

• Slicing. Creates a description of any located errors known as a type error
slice (defined in 3.9) from the errors reported by the enumerator.

In our figure titles, we write x→ y to give domain and range information of defined
functions, where appropriate (where the domain is x and the range is y).

4.1 External Syntax

The external syntax for the core has not changed since its definition in chapter 3
(the same subset of SML is supported for this core presentation), but it is repeated
here for readers unfamiliar with that chapter.

The external syntax that is understood by the Skalpel core is presented (formally
called the SML-TES core) in figure 4.1. Many of the forms in this figure are
annotated with labels, written l . These labels are created so that blame can be
tracked for errors that are generated. In some cases the d and e symbols will be used
to surround a labelled term (parenthesis are not used as they could be confused
with those of the Standard ML language syntax).

In this core, datatypes have exactly one constructor and exactly one type argu-
ment. In the implementation however, cases are handled for multiple or nullary
constructors and multiple or no type arguments. We can see this from DatName in
figure 4.1.

The declarations supported by the core can be seen by looking at Dec in figure 4.1.
Here it can be seen there is support for recursive value declarations (functions), open
declarations, and datatype declarations. Note that again in the implementation, far
more declarations are handled than just this subset that is used in order to present
the core.
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Figure 4.1 External labelled syntax: The subset of SML that Skalpel handles
external syntax (what the programmer sees, plus labels)

l ∈ Label (labels)
PL ∈ ExtLabSynt (the union of all sets below)
tv ∈ TyVar (type variables)
tc ∈ TyCon (type constructors)

strid ∈ StrId (structure identifiers)
vvar ∈ ValVar (value variables)
dcon ∈ DatCon (datatype constructors)

vid ∈ VId ::= vvar | dcon
ltc ∈ LabTyCon ::= tcl

ldcon ∈ LabDatCon ::= dcon l

ty ∈ Ty ::= tv l | ty1
l→ ty2 | dty ltcel

cb ∈ ConBind ::= dcon l
c | dcon of l ty

dn ∈ DatName ::= dtv tcel

dec ∈ Dec ::= val rec pat
l
= exp | openl strid

| datatype dn
l
= cb

atexp ∈ AtExp ::= vid l
e | letl dec in exp end

exp ∈ Exp ::= atexp | fn pat
l⇒ exp | dexp atexpel

atpat ∈ AtPat ::= vid l
p

pat ∈ Pat ::= atpat | dldcon atpatel

strdec ∈ StrDec ::= dec | structure strid
l
= strexp

strexp ∈ StrExp ::= strid l | structl strdec1 · · · strdecn end

extra metavariables
id ∈ Id ::= vid | strid | tv | tc

term ∈ Term ::= ltc | ldcon | ty | cb | dn | exp | pat | strdec | strexp

4.2 Constraint syntax

The constraint syntax for the Skalpel core is defined in figure 4.1. The syntax
presented here is used throughout this document in order to represent constraints,
for example in the initial constraint generator where some initial constraints are
built (section 4.3) and in the constraint solver (section 4.4).

From the original definition in section 3.4, type schemes have been introduced along
with an existential constraint environment. Every binder produced by this syntax
is a kind of type scheme. This change brings us closer to removing the dummy
variable machinery as all variables are now quantified.

The following sub-sections explain the various parts of this syntax. Note the novel
hybrid constraint/environment forms e where binders, accessors and composition
environments interact. The motivation is to build environments that avoid duplica-
tion at initial constraint generation or during constraint solving. The binders and
accessors are also novel. Earlier systems (e.g.
([DPR05])) are too restrictive to represent module systems because they only sup-
port very limited cases of binders. With the constraints, a compositional constraint
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generation algorithm can be defined.

During analysis, a dependent form 〈CL, l〉 depends on the program nodes with labels
in l . For example, the dependent equality constraint 〈τ 1 = τ 2, l ∪ {l}〉 might be
generated for the labelled function application dexp atexpel, indicating the equality
constraint τ 1 = τ 2 need only be true if node l has not been sliced out. In order
to manipulate labels, two functions are defined strip and collapse below, which
respectively allow us to take all labels off any given term, and to union nested labels
of terms. Note that dom(strip) = dom(collapse) = IntLabSynt, and ran(strip) is any
piece of syntax which is not a dependent form, while ran(collapse) = IntLabSynt.

strip(CL) =

strip(y) if CL = 〈y, l〉

CL otherwise

collapse(CL) =

collapse(〈y, l ∪ l
′〉) if CL = 〈(〈y, l〉), l ′〉

CL otherwise

Note that 〈ct , l〉 can be written for 〈ct , {l}〉. Given a label or a set of labels y, cty

is written to abbreviate 〈ct , y〉, and ct1
y
= ct2 for 〈ct1 = ct2, y〉.

4.2.1 Internal types (τ) and their constructors (µ)

The ITy and ITyCon sets contain internal types and internal type constructors re-
spectively. In order to maintain some simplicity for the core, only unary type
constructors are supported1. A special kind of type constructor arr exists, which
is used to create a constraint in the constraint solving process (rule (S5)) between
a unary type constructor and an arrow (→) type.

4.2.2 Quantification and Schemes (σ)

In this presentation of the Skalpel core, there is no longer the concept of dummy
variables and instead all variables are quantified. This has the advantage of re-
moving the machinery surrounding freshness that was present in the original pre-
sentation of the core. There is no longer any use for the Dum set as all variables
are now quantified, and so it has been removed in this chapter. This means that
dummy internal type variables, dummy environment variables, and dummy type
constructor variables no longer exist.

There are three kinds of universally quantified schemes in this system - internal
1Section 14.10 in ([Rah10]) presents a solution whereby type constructors can have any arity.
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Figure 4.2 Syntax of constraint terms
CL ∈ IntLabSynt (the union of all sets below and Label) .
ev ∈ EnvVar (environment variables)
δ ∈ TyConVar (type constructor variables)
γ ∈ TyConName (type constructor names)
α ∈ ITyVar (internal type variables)
d ∈ Dependency ::= l

µ ∈ ITyCon ::= δ | γ | arr | 〈µ, d〉
τ ∈ ITy ::= α | τ µ | τ1 � τ2 | 〈τ , d〉

ts ∈ ITyScheme ::= ∀v . τ
tcs ∈ ITyConScheme ::= ∀v . µ
es ∈ EnvScheme ::= ∀v . e
c ∈ EqCs ::= µ1 = µ2 | e1 = e2 | τ1 = τ2

bind ∈ Bind ::= �tc=tcs | �strid=es | �tv=ts | �vid=ts
acc ∈ Accessor ::= �tc=δ | �strid=ev | �tv=α | �vid=α

e ∈ Env ::= > | ev | bind | acc | c | poly(e) | ∃a.e | e2;e1 | 〈e, d〉
ct ∈ CsTerm ::= τ | µ | e
σ ∈ Scheme ::= ts | tcs | es
v ∈ Var ::= α | δ | ev
a ∈ Atom ::= v | γ | d

dep ∈ Dependent ::= 〈ct , d〉

type schemes, type constructor schemes and environment schemes. All schemes are
subject to alpha-conversion (e.g. the schemes ∀α1. α1 and ∀α2. α2 are equivalent).

By not having dummy variables any longer, the issue of erroneously creating acci-
dental bindings to dummy variables and checking for dummy variables in conditions
of e.g. monomorphic variable computation (further discussion of this given in sec-
tion 4.6).

4.2.3 The constraint/environment form (e)

The form e should be considered as both a constraint and an environment. Such a
form can be any of the below:

• The empty environment / satisfied constraint. This is represented by
the symbol >.

• An environment variable. To abbreviate, [e] is written instead of (∃ev .ev =

e), where ev does not occur in e. This is a constraint which enforces the log-
ical constraint nature of e while limiting the scope of its bindings. Note that
the bindings can still have an effect if e constrains an environment variable.
This used to be a dummy variable assignment in the old presentation of the
core.
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• A composition environment. The operator ‘;’ is used to compose envi-
ronments, which is associative. Note that e;>, >;e, and e are considered to
be equivalent.

• A binder/accessor. A binder is of the form �id=σ, and an accessor is of
the form �id=v . Binders represent program occurrences of an identifier id

that are being bound, and accessors represent a place where that binding is
used. For example, in the environment

�vid=x;�vid=α

the internal type variable α is constrained through the binding of vid to be
an instance of x. It is often also the case that binders and accessors can be
connected without being next to each other. In an environment such as

�vid=x;...;�vid=α

it is possible that the binder and accessor of vid are connected. There are
some environment forms that can be in the omitted (...) section which will
mean that the accessor and the binder will be disconnected. Section 4.2.6 on
shadowing specifies which forms would cause this.

To abbreviate, �vid=ct is written instead of �vid=∀∅. ct , and �vid
y
= ct to

abbreviate 〈�vid=ct , y〉 (similarly for accessors).

• An equality constraint. A constraint which creates the condition of two
pieces of constraint syntax that they should be in some way equal.

• Existential environment. The form ∃v.e, binds all free occurrences of v
that occur free in e. The notation ∃〈v1, v2, v3. · · · , vn〉.e is used to abbreviate
∃v1.∃v2.∃v3. · · · ∃vn.e.

• A polymorphic environment poly(e). This environment promotes binders
in the argument to poly to be polymorphic.

• Dependent form. An environment annotated with dependencies acts like
an environment only when the dependencies are satisfied.

4.2.4 Syntactic forms

Defined here is atoms(CL), which is a syntactic form set belonging to Var ∪ Label ∪
Dependency and occurring in CL.
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Functions are defined to extract variables, labels, and dependencies from a con-
straint term in figure 4.3.

Figure 4.3 Definition of sets of variables, labels and dependencies
vars : CL → P(Var)
vars(CL) = atoms(CL) ∩ Var (set of variables)

labs : CL → P(Label)
labs(CL) = atoms(CL) ∩ Label (set of labels)

deps : CL → P(Dependency)
deps(CL) = atoms(CL) ∩ Dependency (set of dependencies)

4.2.5 Semantics of constraints/environments

The set of renamings and substitutions are defined in figure 4.4. Note that Ren ⊂
Sub. Renamings are used to instantiate type schemes, and substitution is defined in
figure 4.5, where given a constraint term and a substitution, a resulting constraint
term is produced.

Figure 4.4 Renaming and substitutions
Ren : ITyVar→ ITyVar
ren ∈ Ren = {ren ∈ ITyVar→ ITyVar | ren is injective

∧ dj(dom(ren), ran(ren))}

Sub : SubstTerm→ SubstTerm
sub ∈ Sub = {f 1 ∪ f 2 | f 1 ∈ Unifier ∧ f 2 ∈ TyConName→ TyConName}

The unifier set is defined as a directed acyclic graph as follows, where V = ITyVar∪
ITy ∪ ITyCon and E = P(V × V) which specify directional edges:

Unifier : ITyVar→ ITyVar

U ∈ Unifier = {V,E}

Note that for each Vx ∈ V, the edge Vx 7→ V ′x occurs at most once, and so U is
also considered as a function. When using an application U(Vx), vertex V ′x will be
returned where a path from Vx to V ′x exists (if it does not, Vx = V ′x) and V ′x 7→ V ′′x

does not exist. For example, where U = {{V1, V2, V3, V4, V5, V6}, {V1 7→ V3, V3 7→
V2, V4 7→ V5, V2 7→ V6}},U(V1) = V6. During application, if U(v) = CLx and
vars(CL) 6= {}, then for each v ′ ∈ vars(CL) if U(v ′) 6= v ′ then it is replaced by U(v ′).
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Figure 4.5 Substitution semantics

a[sub] =

{
x, if sub(a) = x
a, otherwise

(τ µ)[sub] = τ [sub]µ[sub]
(τ1 � τ2)[sub] = τ1[sub] � τ2[sub]

ctd [sub] = ct [sub]d

(ct1 = ct2)[sub] = (ct1[sub] = ct2[sub])
(e1;e2)[sub] = e1[sub];e2[sub]
(∀v . ct)[sub] = ∀v . ct [sub] s.t. dj(v , atoms(sub))
(∃a.e)[sub] = ∃a.e[sub] s.t. dj({a}, atoms(sub))

(�id=v)[sub] =

{
(�id=v [sub]), if v [sub] ∈ Var
undefined, otherwise

(�id=σ)[sub] = (�id=σ[sub])
poly(e)[sub] = poly(e[sub])
x[sub] = x, otherwise

4.2.6 Shadowing

In an environment it may be the case that some parts are shadowed and so inacces-
sible. Consider the environment bind1; ev; bind2. In the event that ev /∈ dom(U), it
can also be said that ev shadows bind1 because ev could potentially be bound to
an environment which rebinds bind1. The predicate shadowsAll is defined in figure
4.6. We write shadowsAll(e) for shadowsAll(〈∅, e〉).

Figure 4.6 Shadowing function : Unifier × Env→ {true, false}

shadowsAll(〈U , e〉) ⇐⇒



(e = ev ∧ (shadowsAll(〈U , U(ev)〉) ∨
ev 6∈ dom(U)))

∨ (e = (e1;e2) ∧ (shadowsAll(〈U , e1〉) ∨
shadowsAll(〈U , e2〉)))

∨ (e = 〈e ′, d〉 ∧ shadowsAll(〈U , e ′〉))
∨ (e = ∃a.e ′ ∧ shadowsAll(〈U , e ′〉)∧

a 6∈ dom(U))

Figure 4.7 shown the semantics of accessing an identifier in an environment , in the
context where there is access to a unifier set U during constraint solving.

Figure 4.7 Accessing the Semantics
(�id=σ)(id) = σ

(ed )(id) = ∀v . ctd , if (e)(id) = ∀v . ct

(e1;e2)(id) =


(e2)(id), if (e2)(id) is defined
undefined, if (e2)(id) is undefined ∧ shadowsAll(〈U , e2〉)
(e1)(id), otherwise

(ev)(id) =

{
(e)(id), if U(ev) = e
undefined, otherwise

(〈e〉)(id) = e(id)
(〈e1〉@〈e2〉)(id) = (e1; e2)(id)

Note that the application of an existential environment to an identifier is undefined
as such an environment represents incomplete information.
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4.2.7 Relations

Two instance relations are defined here, the use of which can be seen in constraint
solving. These have been updated from the definition in the original presentation
of the core to deal with the new use of type schemes and existential quantification
of terms.

∀v . ct , sub −instance−−−−−→ ct [sub] if dom(sub) = v

σ −e−→ ct if ∃sub.σ, sub −instance−−−−−→ e, ct

4.3 Constraint generation

The initial constraint generator is defined in figure 4.17. This is referred to as
the initial constraint generator because constraints are also generated during the
constraint solving process (section 4.4).

Let cstgen′(PL, v) be a function with two arguments, the first a labelled piece of
user program PL, and the second a set of free variables occurring in PL. Each
of the constraint generation rules is written either as JPLK = e (which abbrevi-
ates cstgen′(PL, {})) or as JPL, vK = e (which abbreviates cstgen′(PL, {v})). Let
cstgen(PL) = cstgen′(PL, {}).

It can be seen that datatype declarations only have one constructor by looking at
rules (G17), (G14) and (G16). The core has been defined in the manner in order
to reduce the complexity of the core. In rule (G13), datatype names are defined to
have exactly one type variable argument.

Structure declarations are handled in rule (G20). In the core, signatures to constrain
these structures are not presented, but this extension to the core can be found in
section 6.4.

In order that environments can be sliced out correctly, environment variables are
annotated with labels, such as in rule (G4). Such environment variables must be
annotated with a label otherwise it could not be sliced out, and that environment
variable would then shadow any following environment, even if the program point
the label was assigned to was itself sliced out.

Readers should see chapter 8 for lemmas and proofs concerning this constraint
generator. Each of the constraint generation rules are now discussed in turn.
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4.3.1 Expressions

Figure 4.8 Initial constraint generator (ExtLabSynt→ Env)

Expressions (exp)

(G1) Jvid l
e, αK = �vid

l
= α

(G2) Jletl dec in exp end, αK = [∃α2.JdecK;Jexp, α2K;(α
l
=α2)]

(G3) Jdexp atexpel , αK = ∃〈α1, α2〉.Jexp, α1K;Jatexp, α2K;(α1
l
=α2 � α)

(G4) Jfn pat
l⇒ exp, αK = [∃〈α1, α2, ev〉.(ev = Jpat , α1K);ev l ;Jexp, α2K;(α

l
=α1 � α2)]

Rule (G1) generates accessors for value identifiers. For example, where a function
previously defined is applied to an argument, the accessor which connects the use
of this function to its definition is generated in this rule.

Rule (G2) handles let expressions, where some declarations are to be defined in the
scope of some expression. We accomplish this with the [e] notation in this rule
- by encasing the environments from the declaration inside square brackets, upon
closing of these brackets that environment is not exported (as described previously)
and so binders inside are not available to following expressions.

Applications are handled with rule (G3). Here the → piece of constraint syntax is
used to represent the expression part being used as a function.

Nameless functions are handled in rule (G4). The environment variable is labelled
in this rule (and similarly in other rules) in order that declarations which have been
sliced out do not shadow their context. If the environment variable was not labelled,
then it would shadow the context it was in irrespective if some environment was
sliced out or not.

4.3.2 Labelled datatype constructors

Figure 4.9 Initial constraint generator (ExtLabSynt→ Env)

Labelled datatype constructors (ldcon)

(G5) Jdcon l , αK = �dcon
l
= α

Labelled datatype constructors are handled in rule (G5). With this rule, an accessor
is created to a datatype constructor in the same way as in (G1). The way datatype
constructors and value identifiers are differentiated is enhanced in section 14.1 of
[Rah10].
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4.3.3 Patterns

Figure 4.10 Initial constraint generator (ExtLabSynt→ Env)

Patterns (pat)

(G6) Jvvar l
p, αK = �vvar

l
= α

(G7) Jdcon l
p, αK = �dcon

l
= α

(G8) Jdldcon atpatel , αK = ∃〈α1, α2〉.Jldcon, α1K;Jatpat , α2K;(α1
l
=α2 � α)

Rule (G6) creates bindings for value variables occurring in patterns (such as in
function declarations), while rule (G7) creates accessors to datatype constructors
occurring in patterns. Rule (G8) handles the use of datatype constructors in pat-
terns which have an argument.

4.3.4 Labelled type constructors

Figure 4.11 Initial constraint generator (ExtLabSynt→ Env)

Labelled type constructors (ltc)

(G9) Jtcl , δK = �tc
l
= δ

Labelled type constructors can occur in rule (G9). An accessor is created for this
type constructor. This constraint can be generated for example in datatype con-
structor bindings.

4.3.5 Types

Figure 4.12 Initial constraint generator (ExtLabSynt→ Env)

Types (ty)

(G10) Jtv l , αK = �tv
l
= α

(G11) Jdty ltcel , α′K = ∃〈α, δ〉.Jty , αK;Jltc, δK;(α′ l
=α δ)

(G12) Jty1
l→ ty2, αK = ∃〈α1, α2〉.Jty1, α1K;Jty2, α2K;(α

l
=α1 � α2)

Rule (G10) handles the case where an external type variable is being dealt with
which occurs in a constructor binding. As a result, an accessor is generated (this
should be connected during solving to the binder occurring in the declaration of
the datatype which declares the constructor in which this explicit type variable
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is used). Rule (G11) is for labelled datatype constructors occurring in definitions
of datatype constructors, and rule (G12) handles the case where an arrow type is
specified in the user program.

4.3.6 Datatype names

Figure 4.13 Initial constraint generator (ExtLabSynt→ Env)

Datatype names (dn)

(G13) Jdtv tcel , α′K = ∃〈α, γ〉.(α′ l
=αγ);(�tc

l
= γ);(�tv

l
= α)

Datatype names are handled with rule (G13). By looking at this rule it can be
seen that datatype declarations have exactly one explicit type variable argument.
Binders are created for both the name of the datatype and for the specified type
variable argument in this rule.

4.3.7 Constructor bindings

Figure 4.14 Initial constraint generator (ExtLabSynt→ Env)

Constructor bindings (cb)

(G14) Jdcon l
c, αK = �dcon

l
= α

(G16) Jdcon of l ty , αK = ∃〈α′, α1〉.Jty , α1K;(α′
l
=α1 � α);(�dcon

l
= α′)

Rules (G14) and (G16) give support for datatype constructor bindings to the con-
straint generator. (G14) is for a constructor which doesn’t take an argument and
rule (G16) is for constructors defined with the of keyword, where the type of the
argument for the datatype constructor is defined. In both cases, binders are created
for the name of the constructor.
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4.3.8 Declarations

Figure 4.15 Initial constraint generator (ExtLabSynt→ Env)

Declarations (dec)

(G17) Jval rec pat
l
= expK =

∃〈α1, α2, ev〉.(ev = poly(Jpat , α1K;Jexp, α2K;(α1
l
=α2)));ev l

(G18) Jdatatype dn
l
= cbK =

∃〈α1, α2, ev〉.(ev = ((α1
l
=α2);Jdn, α1K;poly(Jcb, α2K)));ev l

(G19) Jopenl stridK = ∃ev .(�strid
l
= ev);ev l

Functions are supported in the constraint generator with rule (G17). Function
declarations are not supported using the fun keyword in this presentation of the
core but the implementation does handle this, which is simply a syntactic variation.
In this rule, as in rule (G18), the novel poly environments are used to make function
bindings and datatype declarations polymorphic. The open feature is handled with
rule (G19), where an accessor constraint using the structure identifier is created.

4.3.9 Structure declarations

Figure 4.16 Initial constraint generator (ExtLabSynt→ Env)

Structure declarations (strdec)

(G20) Jstructure strid
l
= strexpK = ∃〈ev , ev ′〉.[Jstrexp, evK];(ev ′ = (�strid

l
= ev));ev ′l

Rule (G20) handles structure declarations. The environment generated for that
structure is wrapped with [e] to limit the scope of bindings occurring in that struc-
ture.

4.3.10 Structure expressions

Figure 4.17 Initial constraint generator (ExtLabSynt→ Env)

Structure expressions (strexp)

(G21) Jstrid l , evK = �strid
l
= ev

(G22) Jstructl strdec1 · · · strdecn end, evK =

∃ev ′.(ev
l
= ev ′);(ev ′ = (Jstrdec1K; · · · ;JstrdecnK))

Structure expressions are handled in rules (G21), which handles the case where the
structure expression is some identifier which an accessor is created for, and (G22) in
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the case of a struct expression, in which case environments are generated for each
structure declaration and compose the results using the environment composition
operator (;).

4.4 Constraint solving

This section discusses the constraint solver, which takes constraints which were
generated during the previous section and terminates in either one of two states:

• A success state succ.

• A failure state err(er). In this case an error is returned of the one of the
kinds discussed in section 4.18.

Readers familiar with the earlier presentation of the Skalpel core in chapter 3 will
notice that there is no longer a constraint solving context returned by the constraint
solver (∆) when it terminates in success. The reason for this simplification is that
the set of unifiers is no longer bundled along with an environment (written 〈u, e〉)
as firstly the set of unifiers is now considered a global entity of the constraint
solver (discussed further in section 4.4.1), and secondly because of the new stack
mechanism to replace what used to be multiple constraint solving calls in the same
rule. The stack mechanism is discussed in section 4.6.3.

Let the set of monomorphic type variables be defined as follows:

m ∈ Monomorphic ::= 〈α, d〉

Figure 4.18 Additional syntactic forms used by constraint solver
er ∈ Error ::= 〈ek , d〉
ek ∈ ErrKind ::= clash(µ1, µ2) | circularity
state ∈ State ::= slv(−→e , d ,m,

−→
st , e ′) | succ | err(er)

Additional syntactic forms that are used by the constraint solver (defined in figure
4.19) are shown in figure 4.18. The symbol −→st is defined in section 4.6.3.

The constraint solving process starts in the form slv(〈>〉,∅,∅, 〈〉, e), and ends
either in the form succ, which indicates success, or in the state err(er) where er

is either a type constructor clash or a circularity error (figure 4.18).

The relations isErr and solvable are defined below, where → indicates a constraint
solving step and →∗ is the reflexive and transitive closure of →. The Solved is also
redefined as shown below.
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solvT ∈ Solved ::= Env ∪ StrDec

isErr : Env→ Error

e
isErr→ er ⇔ slv(>, d ,∅,∅, e)→∗ err(er)

solvable : State→ {true, false}
solvable(e) ⇔ slv(>, d ,∅,∅, e)→∗ succ

solvable : Solved→ {true, false}
solvable(strdec) ⇔ ∃e.strdec → e ∧ solvable(e)

4.4.1 Unifiers

In this constraint solving presentation (figure 4.19), unifiers are stored in U .

When constraint solving is started, U = ∅. During the constraint solving process,
nothing is ever subtracted from U , this set is only added to. The set of unifiers is
available for use by the constraint solver, and any associated functions called by it.

While U is a function, it can be considered as a special kind of directed acyclic
graph {V,E}, where V are vertices and E are edges, and where for each vertex Vx,
the edge Vx 7→ V ′x occurs at most once. When using an application U(Vx), vertex
V ′x will be returned where a path from Vx to V ′x exists (if it does not, Vx = V ′x) and
V ′x 7→ V ′′x does not exist. For example, where U = {{V1, V2, V3, V4, V5, V6}, {V1 7→
V3, V3 7→ V2, V4 7→ V5, V2 7→ V6}},U(V1) = V6. In the case where the term applied
to is an arrow type V1 → V2, this is computed as U(V1)→ U(V2) (and similarly for
an application).

The unifier set is defined in this way now so that it not hidden inside another
constraint solving form, which led to awkward expressions in the old presentation
where the ∆ had to be broken down into both its components in order to use each
of them, and when there were new and old versions of ∆ (e.g. ∆ and ∆′), there
then exists u and u ′, u would never be used and always use u ′. For these reasons it
was decided to break up the coupling of unifier sets with environment information.
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Figure 4.19 Constraint solver (1 of 2) : State→ State

equality constraint reversing

(R) slv(−→e , d ,m,
−→
st , ct = ct ′) → slv(−→e , d ,m,

−→
st , ct ′ = ct),

if s = Var ∪ Dependent ∧ ct ′ ∈ s ∧ ct 6∈ s
equality simplification

(S1) slv(−→e , d ,m,
−→
st , ct = ct) → isSucc(−→e ,m,

−→
st )

(S2) slv(−→e , d ,m,
−→
st , ctd

′
= ct ′) → slv(−→e , d ∪ d

′
,m,
−→
st , ct = ct ′)

(S3) slv(−→e , d ,m,
−→
st , τ1 µ1 = τ2 µ2) →

slv(−→e , d ,m,
−→
st , (µ1 = µ2);(τ1 = τ2))

(S4) slv(−→e , d ,m,
−→
st , τ1 � τ2 = τ3 � τ4) →

slv(−→e , d ,m,
−→
st , (τ1 = τ3);(τ2 = τ4))

(S5) slv(−→e , d ,m,
−→
st , τ1 = τ2) → slv(−→e , d ,m,

−→
st , µ= arr),

if {τ1, τ2} = {τ µ, τ3 � τ4}
(S6) slv(−→e , d ,m,

−→
st , µ1 = µ2) → err(〈clash(µ1, µ2), d〉),

if{µ1, µ2} ∈ {{γ, γ′}, {γ, arr}}∧γ 6= γ′

unifier access

Rules (U1) through (U4) have also the common side condition v 6= ct ∧ y = U(xd )

∧v /∈ dom(U)

(U1) slv(−→e , d ,m,
−→
st , v = ct) → err(〈circularity, deps(y)〉),

if v ∈ vars(y)\Env ∧ strip(y) 6= v

(U2) slv(−→e , d ,m,
−→
st , v = ct) → isSucc(−→e ,m,

−→
st ),

if v /∈ Env∧ strip(y) = v

(U3) slv(−→e , d ,m,
−→
st , v = ct) → isSucc(−→e ,m,

−→
st ),

if v /∈ vars(y) ∪ Env ∧ U = U ⊕ {v 7→ y}
(U4) slv(−→e , d ,m,

−→
st , v = ct) → slv(−→e @〈>〉, d ,m,

−→
st @
−→
st ′, ct),

if v ∈ Env ∧ −→st ′ = 〈〈new, d ,m, v〉〉
(U6) slv(−→e , d ,m,

−→
st , v = ct) → slv(−→e , d ,m,

−→
st , z = ct),

if U(v) = z

binders/empty/dependent/variables

(B) slv(−→e , d ,m,
−→
st , �vid=α) → isSucc(−→e ; �vid

d̄
= α,m ∪ {αd},−→st )

(B2) slv(−→e , d ,m,
−→
st , bind) → isSucc(−→e ; bindd ,m,

−→
st ),

if bind 6= �vid=α

(X) slv(−→e , d ,m,
−→
st ,∃a.e ′) → slv(−→e , d ∪ d

′
,m,
−→
st , e ′[{a 7→ a ′}]),

if a ′ /∈ atoms(〈U , e ′〉)
(E) slv(−→e , d ,m,

−→
st ,>) → isSucc(−→e ,m,

−→
st )

(D) slv(−→e , d ,m,
−→
st , e ′d

′
) → slv(−→e , d ∪ d

′
,m,
−→
st , e ′)

(V) slv(−→e , d ,m,
−→
st , ev) → isSucc(−→e ; ev d̄,m,

−→
st )

composition environments

(C1) slv(−→e , d ,m,
−→
st , e1;e2) → slv(−→e , d ,m,

−→
st @〈〈new, d , new, e2〉〉, e1)
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Figure 4.20 Constraint solver (2 of 2) : State→ State

accessors
(A1) slv(−→e , d ,m,

−→
st , �id=v) → slv(−→e , d ∪ d

′
,m,
−→
st , v = τ),

if −→e (id), ren −instance−−−−−→ τ , d
′ ∧ dj(vars(〈−→e , v〉), ran(ren))

(A3) slv(−→e , d ,m,
−→
st , �id=v) → isSucc(−→e ,m,

−→
st ),

if −→e (id) undefined

polymorphic environments

(P1) slv(−→e , d ,m,
−→
st , poly(�vid d

′

= α)) → isSucc(−→e ;σ,m,
−→
st ),

if α = ityvars(U(α))\
⋃
{ityvars(U(x)) | x ∈ m}

∧ d
′′

= d
′ ∪ deps(vars(U(α)) / {U(x ) | x ∈ m})

∧ σ = �vid=〈∀α.U(α), d
′′〉

(P2) slv(−→e , d ,m,
−→
st , poly(bind;e ′)) →

slv(−→e , d ,m,
−→
st @〈〈−→e , d ,m, poly(bind)〉〉, bind; e ′)

(P3) slv(−→e , d ,m,
−→
st , poly(ed

1 )) →
slv(−→e @〈>〉, d ,m,

−→
st @〈〈new, d , new, d〉〉, poly(e1))

(P4) slv(−→e , d ,m,
−→
st , poly(e1;e2)) →

slv(−→e , d ,m,
−→
st @〈〈new, d , new, poly(e2)〉〉, poly(e1))

if ∧e1 6= bind

(P5) slv(−→e , d ,m,
−→
st , poly(e ′)) →

slv(−→e , d ,m,
−→
st @〈〈−→e ; e ′, d ,m, done〉〉, e ′),if e ′ 6= ∃a.e ′′

(P6) slv(−→e , d ,m,
−→
st , poly(∃a.e ′)) → slv(−→e , d ,m,

−→
st , poly(e ′[{a 7→ a ′}]))

if a ′ /∈ atoms(〈U , e ′〉)

4.5 Discussion: Unifier representation

In the previous version of the core the set of unifiers were bundled along with an
environment in a constraint solving context. This complicated the constraint solving
rules, as this argument to the constraint solver was not atomic in nature.

It did not make sense to pass around the constraint solver a copy of the unifier
set, which we then kept track of multiple copies of during the constraint solving
rules for environment difference, when the unifier set is only ever added to and
we do not need to keep track of older (smaller) versions. We do not care about
any version of the unifier set other than the very latest version. Furthermore, it
meant that any constraint solving rule which needed to access portions inside the
constraint solving context first needed to decompose it and we wanted to be free
of this complication so that our theory could be presented as clearly as possible.
By having the set of unifiers considered to be a global entity that is available to
the constraint solving rules and any functions called by it, we remove the need for
decomposition of constraint solving contexts and indeed constraint solving contexts
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Figure 4.21 Monomorphic to polymorphic environment

toPoly(∆, �vid=τ) = (�vid
d
= ∀α. τ ′), if


τ ′ = build(∆, τ)
α = (vars(τ ′) ∩ ITyVar) \

(vars(monos(∆)) ∪ {αdum})
d = {d | αd0∪{d} ∈ monos(∆)∧

α ∈ vars(τ ′) \ α}
toPoly(∆, ed

0 ) = ed
1 , if toPoly(∆, e0) = e1

toPoly(∆, e1;e2) = e ′2, if toPoly(∆, e1) = e ′1 and
toPoly(∆;e ′1, e2) = e ′2

toPoly(∆, e) = e, if none of the above applies

themselves (instead they are replaced by the only remaining environment portion).

Furthermore, the set of unifiers is considered a graph as described in the new
presentation of the core in order to remove the complicated build machinery.

4.6 Discussion: Computation of monomorphic vari-

ables and changes to rules for polymorphism

In the previous version of the core given in [Rah10], we had the following constraint
solving rule for polymorphism:

(P1) slv(〈u1, e1〉, d , poly(e))→ succ(toPoly(〈u2, e1〉, e1\e2)),
if slv(〈u1, e1〉, d , e)→ ∗succ(〈u2, e2〉)

The environment difference is not used any longer in the new presentation due to
reasons discussed previously, so we do not discuss that here and instead look at the
definition of toPoly which is given again in figure 4.21.

Firstly, we need a new constraint solving rule in this version of the core to deal
with existential constraints. The new rule (P6) deals with this situation.

Secondly, the way we compute monomorphic variables has changed. In [Rah10], we
calculate which variables to quantify over with the following side condition:

α = (vars(τ ′) ∩ ITyVar) \ (vars(monos(∆)) ∪ {αdum})

The definition of the monos function is also repeated below:

monos(∆) = {αdeps(τ) | ∃vid .τ = build(∆,∆(vid)) ∧ α ∈ nonDums(τ)}

Firstly, it was noticed that the monos function returns a set of internal type variables
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annotated with dependencies. However, the elements of the set resulting in the
computation on the left hand side of the set subtraction in the computation of α
in the toPoly function can only contain variables. It is therefore the case that these
labels are thrown away, and after some analysis it can be seen that they do not need
to be computed, as the set of dependencies computed by another side condition of
toPoly are sufficient.

Secondly, it was verified that the only place where we generate α variables which
are on the right hand side of binders is in rule (B) (figure 4.19). With this in mind,
we simply add these internal type variables to a parameter of the constraint solver,
to save complexity while solving rules supporting polymorphism.

It would not however be acceptable to subtract just these internal type variables
from the internal type variables in the type we are to make polymorphic (τ ′ in
figure 4.21), as we first need to check further constraints involving these variables
were made and added to the set of unifiers. To solve this, we look up each of the
internal type variables that we keep track of in the constraint solver in the set of
unifiers, then take those away from the internal type variables of the internal type
variables in the result of looking up the right hand side of the binder to be made
polymorphic.

Notice also that instead of matching �vid=τ as the environment in the associated
rule for dealing with polymorphism, we now match the environment �vid=α. We
do this in order to be more precise and simplify the constraint solving rules, as we
only ever generate binders with internal type variables. (The definition in [Rah10]
is still valid, as internal types can be internal type variables as seen in figure 4.2).

Note also that additional rules have been added into the Skalpel core constraint
solver for forms such as environment composition inside a polymorphic environment.
This is a bug in [Rah10] where polymorphism on some generated environments could
be undefined, which is fixed with these new rules.

4.6.1 The Environment Tuple Parameter of the Constraint

Solver

In this presentation of the constraint solving mechanism, the first argument is now
a tuple. The reason for this is to remove the mechanism behind environment dif-
ference which was present in the initial presentation of the core. This environment
difference is present inside the original constraint solver, causing additional com-
plications to understanding the solver.
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With this new way to handle different scopes, the environment argument is a tu-
ple, and to enter a new scope, in order to deal with e.g. bindings assigned to an
environment variable, a new tuple element is simply created. When resulting bind-
ings are to be mapped to an environment variable, a mapping is added from the
environment variable to the bindings in the last element of the tuple, then join the
last two elements of −→e together with the environment composition operator (;).

4.6.2 Discussion: The Environment Tuple

Instead of having a single environment e in the first argument to the constraint
solving rules, we now have a tuple of environments. The reason for this change
was to remove the notion of environment difference, which complicated the rules of
constraint solving.

It was previously the case that we needed to keep track of two environments, the
one which resulted after solving some constraint term(s), and the one which existed
prior to when this solving took place. We would then take the difference of these
environments in order to see what had changed in the environment. As this en-
vironment was bundled inside a constraint solving context, we actually needed to
keep track of two constraint solving contexts.

This is no longer computed, as this information is now available in the constraint
solver immediately. With the environment being represented as a tuple, the new
portion of the environment which resulted in some constraint term(s) being solved
is the last element of the environment tuple, with the initial environment before
solving being in the second-last environment tuple element. This makes it easier to
map the new portion of the environment which exists to a value in the set of unifiers
- we create a mapping from some variable to whatever is in the last element of the
environment tuple rather than computing it first using environment difference that
was present in the old version of the core.

Another reason for removing such a complexity is that we needed to use environment
difference when handling rules involved with polymorphic calculations. As these
rules in the constraint solver are by far the most complicated, finding a way to
simplify this process is a necessary and valuable goal.

4.6.3 The stack parameter

The fourth argument to the slv function of the constraint solver, denoted as −→st , is
used as a stack of environments or other tasks which are still to be solved/completed
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in addition to the environment that is in the last parameter of slv, which is the
environment currently being solved.

Figure 4.22 Definitions for the environment stack
stackEv ∈ StackEv = e | new
stackMono ∈ StackMono = m | new
stackAction ∈ StackAction = e | v | d | done

This stack is a tuple where each element is itself a tuple which has four components.
Figure 4.22 defines some new metavariables used in the description of each below:

1. stackEv . This is used to represent which environment should be used when
taking action on the stackAction parameter. This can either be the symbol
new, in which case the environment of the constraint solver can be used when
the isSucc function was called which deals with handling stack items, or
instead it can be a specified environment e, in which case the environment
pushed to the stack at the time when this stack item was created is used.

2. d . A set of dependencies.

3. stackMono. Same as stackEv , but with monomorphic variable sets instead of
environments.

4. stackAction. What this argument contains affects which operation should
be performed. What is done in each case of stackAction can be seen in the
definition of isSucc′ in figure 4.23.

When solving the environment in the last position of the slv argument tuple is
completed, isSucc is called which solves the argument at the top of −→st stack,
otherwise if the stack is empty the constraint solver terminates in the success state.

The definition of isSucc is seen in figure 4.23, where given an tuple of environments,
a set of monomorphic variables and a stack of remaining environments still to
process, will either recurse, return the constraint solver success state, or run the
constraint solver on some environment.

The reason for using this new stack mechanism is to reduce the complexity needed
in the constraint solver when declaring rules. For example, in the extension on
local declarations in section 6.1, it can be seen that only one rule is used where in
the old presentation (section 6.1), it was necessary to use three rules to give the
same semantics. To give an example in the Skalpel core, in the old presentation
of the core (figure 3.17), there are rules (C1) and (C2) for handling composition
environments, but only one is needed in the new presentation in figure 4.19.
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Figure 4.23 Definition of isSucc and isSucc′

isSucc : tuple(Env)×Monomorphic× tuple(StackEv × Dependency × StackMono×
StackAction)→ ran(isSucc′)

isSucc(−→e ,m, 〈〉)→ succ

isSucc(−→e ,m,
−→
st @〈〈new, d , new, x〉〉)→ isSucc′(−→e , d ,m,

−→
st , x)

isSucc(−→e ,m,
−→
st @〈〈−→e 1, d , new, x〉〉)→ isSucc′(−→e 1, d ,m,

−→
st , x)

isSucc(−→e ,m,
−→
st @〈〈new, d ,m ′, x〉〉)→ isSucc′(−→e , d ,m ′,−→st , x)

isSucc(−→e ,m,
−→
st @〈〈−→e 1, d ,m

′, x〉〉)→ isSucc′(−→e 1, d ,m
′,
−→
st , x)

isSucc′ : Env × Dependency × Monomorphic × tuple(StackEv × Dependency ×
StackMono× StackAction)× StackAction→ State\err(er)

isSucc′(−→e @〈e1, e2〉, d ,m,
−→
st , v)→ isSucc(−→e @〈e1;e2〉,m,

−→
st ),

if U = U⊕{v 7→ e2}
isSucc′(−→e @〈e1, e2〉, d ,m,

−→
st , d)→ isSucc(−→e @〈e1;ed

2 〉,m,
−→
st )

isSucc′(−→e , d ,m,
−→
st , done)→ isSucc(−→e ,m,

−→
st )

isSucc′(−→e , d ,m,
−→
st , e ′)→ slv(−→e , d ,m,

−→
st , e ′)

The advantages of this new representation are even clearer when looking at [Rah10]
in the extension of the old version of the core to support functors. These rules have
a great number of side conditions attached to them, and these are duplicated as
both success and error cases need to be handled which might arise. By handling
both cases in a more linear style with this stack, the need for additional constraint
solving rules to handle error cases is bypassed. The stack also makes the constraint
solving rules much easier to follow; with the old presentation it was necessary to
know whether any future environments to be solved solve resulted in success or not
in order to know what to do next and this meant the reader needed to mentally
maintain the success status of any future environment to be solved, jumping back to
rules where necessary. This is no longer the case with this new stack representation.

Discussion: The Stack

The recent version of the Skalpel core presented in this thesis uses a stack in order to
hold information on which tasks are still to be completed by the constraint solver.
For example it was impossible to know which rule to use in some cases without
looking ahead.

As an example, consider ten environments all composed with one another using
the ‘;’ operator, all of which can be arbitrarily complicated. It was previously the
case that for each of these we would not know whether to use rule (C1) or (C2) of
the constraint solver, as these rules required knowledge of whether solving the first
environment (which the constraint solver was run on in a recursive manner) was
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solved successfully, or whether it resulted in an error.

We can see how a reduction in the number of constraint solving rules can be made
by looking at the constraint solving rules involving the theory for functors from
[Rah10] is given below.

Consider the constraint solving rules for functors given in figures 4.24 and 4.25.

Figure 4.24 Constraint solving rules for functors (1 of 2)
subtyping constraints
(SU1) slv(∆, d , σ1 � vid σ2) → succ〈u1⊕u2⊕u3, e′;�vid

d
= ∀ρ. cap′1 � τ〉,

if σ′1 = head(σ1) ∧ σ′2 = σ2

∧ ∀i ∈ {1, 2}.(σ′i = ∀ρi. capi � τ i
or (σ′i = τ i and ρi = capi = ∅ and τ i 6∈ Dependent))

∧ dom(ren1) = ρ1 ∧ dom(ren2) = {α | α ∈ ρ2} ∧ dj(vars(∆), ran(ren1), ran(ren2), {sv ′})
∧ slv(∆, d , τ1[ren1] = τ2[ren2])→∗ succ〈u1, e′〉
∧ τ = build(u1, τ ′2[ren2])

∧ ρ = (ρ1[ren1] ∪ ρ2[ren2]) ∩ svars(τ)

∧ 〈〈u1, e′〉, d , cap1[ren1]〉 −duplicate−−−−−→ u2 ∧ sv ′ 6∈ vars(u2)

∧ (if tail(σ1, u1⊕u2) = sv then u3 = {sv 7→ τ ·∩ sv ′} ∧ cap = {〈τ , sv ′〉} else u3 = cap = ∅)
∧ cap′1 = cap ∪ {〈τ ′0, sv0〉 | 〈τ0, sv0〉 ∈ cap1[ren1] ∧ τ ′0 = build(u1, τ0) ∧ ¬dja(vars(τ ′0), ρ)}

(SU2) slv(∆, d , σ1 � vid σ2) → err(er),
if σ′1 = head(σ1) ∧ σ′2 = σ2

∧ ∀i ∈ {1, 2}.(σ′i = ∀ρi. capi � τ i or (σ′i = τ i and ρi = capi = ∅ and τ i 6∈ Dependent))

∧ dom(ren1) = ρ1 ∧ dom(ren2) = {α | α ∈ ρ2} ∧ dj(vars(∆), ran(ren1), ran(ren2))

∧ slv(∆, d , τ1[ren1] = τ2[ren2])→∗ err(er)

(SU6) slv(〈u, e〉, d , σ1 � vid σ2 ·∩ σ3) → slv(〈u ′, e〉, d , σ1 � vid σ2),
if slv(〈u, e〉, d , σ1 � vid σ3)→∗ succ〈u ′, e′〉

(SU7) slv(〈u, e〉, d , σ1 � vid σ2 ·∩ σ3) → err(er),
if slv(〈u, e〉, d , σ1 � vid σ3)→∗ err(er)

87
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Figure 4.25 Constraint solving rules for functors (2 of 2)

binders
(B) slv(〈u, e〉, d , �id=x) → succ〈u, e〉;(�id

d
= x),

if id 6∈ FunId ∪ SigId ∪ TyCon

(B8) slv(〈u, e〉, d , �funid=fctsem) → succ〈u, e〉;(�funid
d
= fctsem ′),

if 〈build(u, fctsem), 〈u, e〉〉 −abstract−−−−−→ fctsem ′

accessors
(A1) slv(∆, d , �id=v) → slv(∆, d ∪ d

′
, v = x[ren]),

if ∆(id) = (∀svar . x)d
′
∧ dom(ren) = svar ∧ dj(vars(〈∆, v〉), ran(ren))

∧ id 6∈ VId

(A2) slv(∆, d , �id=v) → slv(∆, d , v = x),
if ∆(id) = x ∧ id ∈ StrId ∪ TyVar

(A5) slv(〈u, e〉, d , �vid=α) → succ〈u ′, e〉,
if ∆(vid) = σ ∧ slv(〈u, e〉, d , σ � vid α)→∗ succ〈u ′, e ′〉

(A6) slv(〈u, e〉, d , �vid=α) → err(er),
if ∆(vid) = σ ∧ slv(〈u, e〉, d , σ � vid α)→∗ err(er)

functor parameters

(FP1) slv(〈u1, e1〉, d , lazy(e)) → succ〈u2, e1;e ′〉,
if slv(〈u1, e1〉, d , e)→∗ succ〈u2, e2〉 ∧ e1\e2 −toLazy−−−−→ e ′

(FP2) slv(〈u1, e1〉, d , lazy(e)) → err(er),
if slv(〈u1, e1〉, d , e)→∗ err(er)

functor applications

(FA1) slv(〈u, e〉, d , fct · e) → succ∆′;genLazy(∆′, ed
′

2 ),
if build(u, fct) = (e1 e2)d

′
∧ slv(〈u, e〉, d ∪ d

′
, e:e1)→∗ succ∆′

(FA2) slv(〈u, e〉, d , fct · e) → err(er),
if build(u, fct) = (e1 e2)d

′
∧ slv(〈u, e〉, d , e:e1)→∗ err(er)

(FA3) slv(〈u, e〉, d , fct · e) → succ〈u, e〉,
if strip(build(u, fct)) ∈ Var

The stack can be used as shown in the core to remove rules which eventually result
in error. This means that in figures 4.24 and 4.25 presented above, we can remove
rules (A6), (SU2), (SU7), (FP2), and (FA2) by pushing elements to solve after
success has been generated on to the stack. If we use any of these rules during
constraint solving and we terminate in an error state, then we do not need to think
back any number of steps to a previous state in the constraint solver in order to
know what rule it turned out we needed to use. Instead, the constraint solver will
terminate with an error, and the future actions to be completed on the stack will
be thrown away as they are at that point irrelevant.
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4.6.4 Discussion of some important rules of the constraint

solver

• Rule (S6) generates a type constructor clash if it notices two type constructor
names have an equality constraint constraining them, where the type con-
structors are not equal.

• Rule (U1) generates a circularity error. This error is generated where a vari-
able is seen constrained to be equal to some term where the variable occurs
in that term.

• Rule (U4) handles constraints where environment variables are assigned to
environments. In this case environment is first solved, then add a mapping
from the environment variable to this solved environment to the unifier set.
This is done using the stack parameter.

• Rule (C1) handles composition environments. The solving of the second en-
vironment e2 is pushed on to the stack and then afterward recurse with the
new stack and solve e1.

• Rules (A1) and (A3) deal with accessors. In the case of rule (A1) accessors
are connected to their binders by looking the variable up in the constraint
solving context. In rule (A3) success is generated, but this can be used to
report free identifiers.

• Rule (P1) deals with the promotion of monomorphic binders to a polymorphic
status by calling the toPoly function using the new mechanism discussed in
this section.

4.7 Efficiency

This section will discuss the efficiency of Skalpel and shows areas where improve-
ments have been made. In section 4.7.1, we look at how profiling information is
generated. In section 4.7.2, we look at how the master branch of the Skalpel source
code repository represents label sets, and its performance information using the
profiling output of the MLton compiler when compiled on the master branch. Sec-
tion 9.3.2 looks at a proposal to have a variable amount of granularity with respect
to specificity of program labels. Section 4.7.3 does the same but for an alternative
implementation of labels sets. Finally, in section 4.7.4 we show how the speed of
the analysis engine can be sped up more than 70% in some cases by allowing the
user to focus Skalpel on specific kinds of error detection.
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4.7.1 Profiler choice and how profiling is generated

The profiler that has been used to generate profile information for Skalpel is that
which comes bundled with the MLton compiler installation. We chose this com-
piler because as we use MLton to prepare our Skalpel builds (MLton produces the
fastest binaries) it is advantageous to us to use the same compiler to generate pro-
filing information. This is principally because support may be dropped for other
compilers at some point in the near future and making improvements suggested
after profiling with the profiler bundled with e.g. the SML/NJ compiler may not
give us performance gains in the MLton binary, which is almost always used.

The output of this version of the analysis engine binary which supports profiling
generates output such as that shown in figure 4.26.

Figure 4.26 Example of generated profile information
9.57 seconds of CPU time (1.90 seconds GC)
function cur (raw) stack (raw) GC (raw)
————————————————————————- ———— —– ——- ————
<gc> 16.6% (1.90s) 0.0% (0.00s) 16.6% (1.90s)
getValOneState.<case onestate x> StateEnv.sml: 323 3.9% (0.45s) 6.9% (0.79s) 2.2% (0.25s)
splay.adj smlnj-lib/Util/splaytree.sml: 23 3.7% (0.42s) 3.7% (0.43s) 2.2% (0.25s)
unionExtLab.<case (x1, labs1 ...> ExtLab.sml: 82 2.9% (0.33s) 4.2% (0.48s) 0.0% (0.00s)
List.@ $(SML_LIB)/basis/list/list.sml: 55 2.8% (0.32s) 2.8% (0.32s) 2.2% (0.25s)
List.foldl.loop $(SML_LIB)/basis/list/list.sml: 40 2.8% (0.32s) 3.8% (0.44s) 5.8% (0.66s)
...

The first line specifies the total time taken for the binary to execute and how much
time was spent doing garbage collection (this is represented in figure 4.26 by the
initials GC). Following this functions are listed in descending order of how much
time was dedicated to them, including information of time taken, stack information
and garbage collection.

We currently do not generate profiling information on a daily basis, but this is an
area recommended for future work. It would be interesting to produce graphs of
profiling output from each month in order to track how developing features and
other changes to the implementation affect Skalpel performance.

4.7.2 Current performance on the master branch of the Skalpel

repository

In the master branch of the Skalpel repository, we represent label sets with binary
trees. In this section we look at profiling information for Skalpel which shows where
the implementation spends its time. We can see the profiling information for the
master branch in figure 4.27.

In this figure we can see that a significant amount of time is spent doing garbage
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collection, and also spent doing operations involving labels (the BinarySetFn functor
and SplayTree structure are both involved in representing program points). The
parts of the analysis engine which perform heavy operations involving label sets
are the portions of figure 3.1 which are highlighted in blue - these are (and for the
foreseeable future will be) the areas are interest with respect to improvement of
implementation efficiency.

The analysis engine for the Standard ML programming language takes a long time
to solve constraints for large programs and, with each new extension, Skalpel takes
longer to find errors as it generates more constraints which must then be solved.
Equality types are an example of an extension which has a noticeable impact on
performance. It is therefore important to look at the analysis engine in terms of per-
formance, and in other sections of this chapter we will look at different approaches
to handle the representation of program points with the goal of speeding up the
analysis engine.
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4.7.3 Hash tables to represent label sets

A new branch of the source repository has been created which represents the label
sets using hash tables (other representations were attempted, but these proved the
fastest results when running our analysis engine test database). In order to attach
labels to constraints, we now use a mapping from labels to booleans using a hash
table2 (the reason for having booleans in the map is discussed later).

In order to initially test this design, a small implementation was built which gen-
erated integer sets and integer to boolean maps, and then performed the union
operation for each approach many times. The results for that initial test can be
seen in figure 4.28.

Figure 4.28 Data for union operations of integer to boolean maps (1,000,000,000
iterations)
Total number of labels Time taken (original) Time taken (new)

5 < 0:01 < 0:01
30 < 0:01 < 0:01
1000 0:34 0:06
3000 1:58 0:19
15000 12:40 2:04

It was discovered however, that the implementation of hash tables in the SML/NJ
library is done using ref cells which caused problems, as when passing hash table
values to functions, the function did not get a copy of the hash table, but rather
the hash table itself. This meant that in order to be certain the old semantics were
preserved, one of the hash tables given as an argument to the union function inside
the analysis engine must be copied to an empty table of the same size (this will
give a new, unique hash table and avoid destructive modification of the original).
The time spent copying these hash tables is somewhat expensive.

Even with the time spent copying hash tables, this implementation still proved
faster while solving many of Skalpel’s test cases. Given the use of hashing, this
implementation will perform better than the original implementation in terms of
time taken to generate errors as the program input becomes more complex.

4.7.4 Targeting Skalpel to find Specific Error Types

Another branch has been created in the Skalpel implementation which allows Skalpel
to focus itself on targeting specific kinds of errors. For example, if the user runs

2A data structure mapping keys to value, where in this case here the labels are keys. A hash
tables uses a hash function (unique identifier generation) which can access the value associated
with a given key.

93



4.7. EFFICIENCY

their compiler and sees that a specific error has occurred, and they know no other
errors are occurring (or they just want answers much faster), by configuring Skalpel
to look at specific kinds of error, they will get results far faster.

As an example we look at equality types. Consider the case where a user has made a
small change to their program and their compiler reports that they have an equality
type error in their code, if the user wishes an answer quickly, we should be able to
target Skalpel to look for that kind of error specifically. By doing this, Skalpel will
run far faster than it otherwise would. In this branch that has been created, by
focusing Skalpel to find errors involving type constructors, and ignoring constraints
for e.g. equality types, the time taken for the implementation to run the first 104
tests in our analysis engine test database was reduced by more that 70%. This is
currently implemented by ignoring the relevant generated constraints at constraint
solving time, but by making the constraint generator modular and allowing the
user to toggle the language features we generate constrains for at will, we will be
able to see even bigger gains than this and Skalpel will become more effective for
the user.
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Chapter 5

Worked examples of Skalpel
Algorithms

This chapter shows two examples where we take some piece of SML code, we present
the labelled version of that code, generate constraints for it, and then solve those
constraints with the machinery described in chapter 4. In both cases, an error
exists in the code presented, and so the constraints generated are unsolvable, and
we demonstrate this.

This chapter is quite verbose in nature, and it is hoped that our system can be
better understood by analyzing worked examples such as these.

Note that we only demonstrate worked examples of the new version of the Skalpel
core described in chapter 4. We do not demonstrate examples on the old version of
the Skalpel core (chapter 3), as this new core is designed to supersede the old one.

These examples demonstrate the following features of the new core design:

• It is always known from the current state (environments left to solve, the
current set of unifiers, and current environment e), which rule must be used
next without the concept of having to look ahead.

• The stack of environments in the first parameter to slv.

• Our use of the existential forms, without any dummy variables.

We will show in this following examples some places where the new changes to the
core have been made and how this affects the solving of constraints. Note also that
throughout both examples variables are existentially quantified, so we no longer
need to remember which variables are dummy variables, and which are not and we
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can constrain. This improvement is not discussed explicitly in the examples as they
apple to every step.

5.1 Example One

Now let us consider an example for the program given below.

datatype ’a al2 =l1 Al3c
datatype ’a bl5 =l4 Bl6c
d(fn Al9p =>l8 Al10) Bl11e el7

5.1.1 Constraint generation

• We first generate constraints for the datatype a. We can see from figure 4.17
that rule (G18) handles datatype so we first apply that rule. Note that here
our label l1 is used as the label l . Then we see that the datatype name (’a
a) is matched with rule (G13). The constraint generation for the datatype
constructor is handled with rule (G14). From these rules, we generate the
following constraints:

∃〈α1, α2, ev〉.ev = ((α1
l1= α2)); (∃〈α3, γ〉.(α1

l
= α3 γ); (�a l2= γ); (�’a l2= α3));

poly(�A l3= α2); ev l1

• We also generate constrains for the datatype b, which is done the same way
as a. The generated constraints are as follows:

∃〈α4, α5, ev 2〉.ev 2 = ((α4
l1= α5));

(∃〈α6, γ2〉.(α4
l
= α6 γ2); (�b l2= γ2); (�’a l2= α6)); poly(�B l3= α5); ev l1

2

• Finally, we generate constraints for the application portion. Application is
handled with (G3), where the left hand side of the expression becomes the
anonymous function, and the right becomes the datatype constructor. We
use rules (G6) and (G1) to generate constraints for the function and rule (G5)

to handle the B constructor. The fully built constraints are shown below.

∃〈α7, α8〉.[∃〈α9, α10, ev 3〉.(ev 3 = �A l9= α9); ev l8
3 ; �A l10= α10; (α7

l8= α9 → α10)];

(�B l11= α8); (α7
l7= α8 → α)

The fully generated constraints are therefore:

∃〈α1, α2, ev〉.ev = ((α1
l1= α2)); (∃〈α3, γ〉.(α1

l
= α3 γ); (�a l2= γ); (�’a l2= α3));

poly(�A l3= α2); ev l1 ;
∃〈α4, α5, ev 2〉.ev 2 = ((α4

l1= α5));
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(∃〈α6, γ2〉.(α4
l
= α6 γ2); (�b l2= γ2); (�’a l2= α6)); poly(�B l3= α5); ev l1

2 ;
∃〈α7, α8〉.[∃〈α9, α10, ev 3〉.(ev 3 = �A l9= α9); ev l8

3 ; �A l10= α10; (α7
l8= α9 → α10)];

(�B l11= α8); (α7
l7= α8 → α)

5.1.2 Constraint solving

• We use rule (C1) to get the constraints for the first datatype declaration, then
rule (X) to remove the existential quantification. This results in:

ev ′ = ((α′1
l1= α′2); (∃〈α3, γ〉.(α′1

l
= α3 γ); (�a l2= γ); (�’a l2= α3));

poly(�A l3= α′2)); ev ′l1

• We use rule (C1), pushing ev ′l1 on the stack, use rule (U4) to handle the
environment variable mapping, then use rules (C1) and (U3) to handle α′1

l1=

α′2. Note that rule (U4) no longer has the notion of environment difference,
so there is no need to compute that. Instead, we just add a new environment
on to the environment stack. We then use (C1) to push the poly form to the
stack and then (X) to deal with the following existential quantifier.

(α′1
l
= α′3 γ

′); (�a l2= γ′); (�’a l2= α′3)

• Rules (C1), (U6) and (U3) are used to handle the first constraint, and rules
(C1), (D) and (B) are used twice to handle the second and third constraints.
We then have the poly constraint to handle from the stack:

poly(�A l3= α′2)

• We handle this with rule (P1). Again, note here that there is no longer any
need to use the build function as there is no need to call that function with the
new unifier representation described in chapter 4. The resulting expression
is mapped to the environment variable ev ′, and we then handle the variable
still on the stack, ev ′l1 , with rule (V).

At this point, the set of unifiers, U , is as follows:

U = {α′1 7→ α′2, α
′
2 7→ α′3 γ, ev ′ 7→ �a

{l1,l2}
= γ′; �’a

{l1,l2}
= α′3; �A

{l1,l2,l3}
= ∀α2. α2}

and the environment tuple is:

ev ′{l1,l2,l3}
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As the second datatype declaration is the same as the first but with the name
of constructors and labels changed, we execute the same rules as before to
leave us with the unifier set:

U = {α′1 7→ α′2, α
′
2 7→ α′3 γ

′, ev ′ 7→ �a
{l1,l2}

= γ′; �’a
{l1,l2}

= α′3; �A
{l1,l2,l3}

= ∀α2. α2,

α′4 7→ α′5, α
′
5 7→ α′6 γ

′
2, ev ′2 7→ �b

{l4,l5}
= γ′2; �’a

{l1,l5}
= α′6; �B

{l4,l5,l6}
= ∀α5. α5}

and the environment tuple is:

ev
′{l1l2,l3}
1 ev

′{l4,l5,l6}
2

• We then continue, solving the constraints for the application. We use rules
(X), (C1) and (U4) to deal with existential quantification and square brackets.
Note that here, we use the stack to handle the sequence of environments and
do not just compose them with the ’;’ operator.

(ev ′3 = �A l9= α′9); ev ′l83 ; �A l10= α′10; (α′7
l8= α′9 → α′10)

• We handle the first constraint with (C1), (U3), (D) and then (A1), and the
second with (D) and (V).

�A l10= α′10; (α′7
l8= α′9 → α′10)

• The accessor is handled with constraints (C1), (D) and (A1), and rule (U3)

handles the second constraint. We pop the remaining constraints from the
stack to leave us with:

(�B l11= α′8); (α′7
l7= α′8 → α)

• We handle the accessor again with rules (C1), (D) and (A1) to leave us with
our last constraint:

α′7
l7= α′8 → α

• We use rule (U6) as α′7 already exists in the unifier set. This gets us the
following constraint:
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α′3γ → α′3γ = α′6 γ2 → α

• We then use rules (S4) and (C1).

α′3γ = α′6 γ2

• Finally, we use rules (S3) and (S6), which generates a type constructor clash.

err(〈clash, {l1, l2, l3, l4, l5, l6, l7, l8}〉)

5.2 Example Two

Let us consider the following labelled program, and then generate and solve con-
straints for it with all steps shown.

fn yl2
l⇒ letl3 val rec fl8 =l7 fn xl9

l10⇒ dxl12 yl13el11 in dfl4 yl5el6 end

5.2.1 Constraint generation

In order to generate constraints for the labelled program listed above, we must
apply rule (G4) for the fn-expression, and rule (G6) to handle the pattern of the
anonymous function. These two rules are used to produce the below:

[∃〈α1, α2, ev〉.(ev = �y l2= α1); ev l ; Jexp, α2K; (α
l
= α1 → α2)]

The exp here represents the body of the function, which we can see is a let statement.
For this we use rule (G2) to produce:

[∃α3.JdecK; Jexp, α3K; (α2
l3= α3)]

where dec represents the declarations and exp represents the expression of the let
statement. We deal with the declarations first, applying rules (G17) to create
constraints for the val rec statement and (G6) to handle the name of the function
(f) to give:

∃〈α4, α5, ev 2〉.(ev 2 = poly(�f l8= α4; Jexp, α5K; (α4
l7= α5))); ev l7

2

where the expression exp is the nameless function taking the pattern x. To generate
constraints for this we apply rules (G4) and (G6) of the constraint generator again.
This produces the below.
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[∃〈α6, α7, ev 3〉.(ev 3 = �x l9= α6); ev l10
3 ; Jexp, α7K;α5

l10= α6 → α7]

The expression exp here is the application x y. This is handled with rule (G3) for
application and rules (G7) and (G1) to create accessors for x and y respectively.
After applying these rules we generate the following constraints:

∃〈α8, α9〉.�x
l12= α8; �y l13= α9; (α8

l11= α9 → α7)

Now we have finished dealing with the declaration portion of the let statement
in this program, we deal with the expression portion. In this portion of the let
statement, we see that we have the application f y. We use rules (G3), (G7) and
(G1) to handle this which produces:

∃〈α′, α′′〉.�f l4= α′; �y l5= α′′; (α′
l6= α′′ → α2)

We have now generated all of the constraints for this program. The final generated
constraints for this program are therefore:

[∃〈α1, α2, ev〉.(ev = �y l2= α1); ev l ; [∃α3.∃〈α4, α5, ev 2〉.(ev 2 =

poly(�f l8= α4; [∃〈α6, α7, ev 3〉.(ev 3 = �x l9= α6); ev l10
3 ;∃〈α8, α9〉.�x

l12= α8; �y l13=

α9; (α8
l11= α9 → α7);α5

l10= α6 → α7]; (α4
l7= α5))); ev l7

2 ;∃〈α′, α′′〉.�f l4= α′; �y l5=

α′′; (α′
l6= α′′ → α2); (α2

l3= α3)]; (α
l
= α1 → α2)]

5.2.2 Constraint Solving

We now show the start form of the constraint generator and proceed from there.
We start with the function call:

slv(〈>〉,∅,∅, 〈〉, e1) where e1 is the environment returned from the initial con-
straint generator, shown below.
[∃〈α1, α2, ev〉.(ev = �y l2= α1); ev l ; [∃α3.∃〈α4, α5, ev 2〉.(ev 2 =

poly(�f l8= α4; [∃〈α6, α7, ev 3〉.(ev 3 = �x l9= α6); ev l10
3 ;∃〈α8, α9〉.�x

l12= α8; �y l13=

α9; (α8
l11= α9 → α7);α5

l10= α6 → α7]; (α4
l7= α5))); ev l7

2 ;∃〈α′, α′′〉.�f l4= α′; �y l5=

α′′; (α′
l6= α′′ → α2); (α2

l3= α3)]; (α
l
= α1 → α2)]

In this step we apply rules (U4) and (X) to remove the [] notation and existential
quantification, renaming α1, α2 and ev to α0, α1 and ev ′ respectively.

slv(〈>〉,∅,∅, 〈〉, e2) where e2 is
(ev ′ = �y l1= α0); ev ′l ; [∃α3.∃〈α4, α5, ev 2〉.(ev 2 =

poly(�f l8= α4; [∃〈α6, α7, ev 3〉.(ev 3 = �x l9= α6); ev l10
3 ;∃〈α8, α9〉.�x

l12= α8; �y l13=

α9; (α8
l11= α9 → α7);α5

l10= α6 → α7]; (α4
l7= α5))); ev l7

2 ;∃〈α′, α′′〉.�f l4= α′; �y l5=

α′′; (α′
l6= α′′ → α1); (α1

l3= α3)]; (α
l
= α0 → α1)
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We now apply rules (C1) to break up the environment composition, then rules
(U4), (D) to strip off the dependency on the binder, and (B) to handle the binder.
Rules (C1), (D) and (V) are applied to handle the ev ′l expression. Note that this
the representaiton shown in the next step demonstrates how we have now kept
a monomorphic variable in the parameter of slv. Later, when a polymorphic
environment needs to be handled, it is the variables in this set that are used in
order to compute the labels that are annotated on to a polymorphic binder.

slv(〈ev ′{l,l2}〉, {l, l2}, {α0}, 〈〉, e3) where the set of unifiers U is {ev ′ 7→ �y l
= α0}

and e3 is
[∃α3.∃〈α4, α5, ev 2〉.(ev 2 =

poly(�f l8= α4; [∃〈α6, α7, ev 3〉.(ev 3 = �x l9= α6); ev l10
3 ;∃〈α8, α9〉.�x

l12= α8; �y l13=

α9; (α8
l11= α9 → α7);α5

l10= α6 → α7]; (α4
l7= α5))); ev l7

2 ;∃〈α′, α′′〉.�f l4= α′; �y l5=

α′′; (α′
l6= α′′ → α1); (α1

l3= α3)]; (α
l
= α0 → α1)

Rule (C1) is used, pushing the expression (α
l
= α0 → α1) onto the stack −→st , then

rules (U4) and (X) are used to remove the dummy environment variable expression
and existential quantification of α3. We then apply rules (C1) and (X) again to
remove further existential quantification, then apply rule (C1).

slv(〈ev ′{l,l2}〉, {l, l2}, {α0},
−→
st , e4) where the set of unifiers U is {ev ′ 7→ �y l

= α0}
and e4 is
ev 1 = poly(�f l8= α3; [∃〈α6, α7, ev 3〉.(ev 3 = �x l9= α6); ev l10

3 ;∃〈α8, α9〉.�x
l12= α8; �y l13=

α9; (α8
l11= α9 → α7);α4

l10= α6 → α7]; (α3
l7= α4))

We apply rule (U4), (P4) (computing the inside of the polymorphic expression
first), rules (C1), (D) and (B) to deal with the binder of f. Rules (C1), (U4) and
(X) remove quantification, and rules (C1), (U4), (D) and (B) are used to deal with
the binder of x.

slv(〈ev ′{l,l2}, �f
{l ,l1,l8}

= α3〉, {l , l1, l2, l8, l9}, {α0, α3},
−→
st , e5)

where the set of unifiers U is {ev ′ 7→ �y l
= α0, ev 2 7→ �x

{l ,l1,l8,l9}
= α5}

and e5 is ev l10
2 ;∃〈α8, α9〉.�x

l12= α8; �y l13= α9; (α8
l11= α9 → α6);α4

l10= α5 → α6

We use rules (C1), (D), and (V) to deal with the environment variable, (C1) and
(X) to deal with quantification, (C1), (D), (A1) and (U3) twice to deal with the
accessors.

slv(〈ev ′{l,l2}, �f
{l ,l1,l8}

= α3; ev
{l ,l1,l8,l9,l10}
2 〉, {l , l1, l2, l8, l9, l10, l12, l13}, {α1, α3},

−→
st , e6)

where the set of unifiers U is {ev ′ 7→ �y l
= α0, ev 2 7→ �x

{l ,l1,l8,l9}
= α5, α7 7→ α5, α8 7→

α0}
and e6 is (α7

l11= α8 → α6)

Rule (D), (U6) and then (U3) deal with the remaining environment, and we solve
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the constraints α4
l10= α5 → α6 and α3

l7= α4 from the stack, for which we use rules
(D), (U3) for the first rule, and (D), (U6) and (U3) for the second case. Now we have
completed the inside of the poly environment, so we restore the initial environment
and monomorphic variable set from the stack.

slv(〈ev ′{l,l2}〉, {l , l1, l2, l8, l9, l10, l12, l13}, α0,
−→
st , e7)

where the set of unifiers U is {ev ′ 7→ �y l
= α0, ev 2 7→ �x

{l ,l1,l8,l9}
= α5, α7 7→ α5, α8 7→

α0, α5 7→ α8 → α6, α4 7→ α5 → α6, α3 → (α0 → α6)→ α6}
and e7 is poly(�f l8= α3)

We apply rule (P1), and add the result to the unifier set. Here, when we need to
know the labels of all of the monomorphic binders that we have encountered, there
is no need for computation as they are stored in a set which we have access to via
a parameter of the constraint solver. We then resume to solve the final part of the
environment that is left on the stack.

slv(〈ev ′{l,l2}〉, {l , l1, l2, l8, l9, l10, l12, l13}, α0,
−→
st , e8)

where the set of unifiers U is {ev ′ 7→ �y l
= α0, ev 2 7→ �x

{l ,l1,l8,l9}
= α5, α7 7→ α5, α8 7→

α0, α5 7→ α8 → α6, α4 7→ α5 → α6, α3 → (α0 → α6)→ α6}, ev 1 7→ �f l8= ∀α6. (α0 →
α6)→ α6}
and e8 is ev l7

1 ;∃〈α′, α′′〉.�f l4= α′; �y l5= α′′; (α′
l6= α′′ → α1); (α1

l3= α2); (α
l
= α0 → α1)

Rules (C1), (D), (V) handle the environment variable, and rules (C1) and (X) handle
quantification.

slv(〈ev ′{l,l2}; ev
{l ,l1,l2,l7,l8,l9,l10,l12,l13}
1 〉, {l , l1, l2, l7, l8, l9, l10, l12, l13}, α0,

−→
st , e9)

where the set of unifiers U is {ev ′ 7→ �y l
= α0, ev 2 7→ �x

{l ,l1,l8,l9}
= α5, α7 7→ α5, α8 7→

α0, α5 7→ α8 → α6, α4 7→ α5 → α6, α3 → (α0 → α6)→ α6}, ev 1 7→ �f l8= ∀α6. (α0 →
α6)→ α6}
and e9 is �f l4= α9; �y l5= α10; (α9

l6= α10 → α1); (α1
l3= α2); (α

l
= α0 → α1)

Rules (C1), (D), and (A1) are applied twice to handle the accessors.

slv(〈ev ′{l,l2}; ev
{l ,l1,l2,l7,l8,l9,l10,l12,l13}
1 〉, {l , l1, l2, l4, l5, l7, l8, l9, l10, l12, l13}, α0,

−→
st , e10)

where the set of unifiers U is {ev ′ 7→ �y l
= α0, ev 2 7→ �x

{l ,l1,l8,l9}
= α5, α7 7→ α5, α8 7→

α0, α5 7→ α8 → α6, α4 7→ α5 → α6, α3 → (α0 → α6)→ α6}, ev 1 7→ �f l8= ∀α6. (α0 →
α6)→ α6, α9 7→ (α0 → α11)→ α11, α10 7→ α0}
and e10 is (α9

l6= α10 → α1); (α1
l3= α2); (α

l
= α0 → α1)

We now apply rules (C1), (D), (U6), (S4), (C1), (R), (U6), and rule (U1), which gen-
erates a circularity error. Below, we show the error that is produced.

err(〈circularity, {l , l2, l4, l5, l6, l7, l8, l9, l10, l11, l12, l13}〉)

102



Chapter 6

Modifications to Pre-existing
Extensions of Skalpel Core

This chapter presents pre-existing extensions which were present in [Rah10] to
the original version of the Skalpel core to increase support for the Standard ML
language, and shows how these extensions are modified to fit with the new version
of the Skalpel core and to fix any bugs. There are four extensions presented here,
which add support for the following Standard ML features:

• Local declarations.

• Type declarations.

• Type annotations.

• Signatures.
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6.1 Local declarations

6.1.1 External Syntax

In order to extend Skalpel with a new feature, first additions to the external syntax
must be made, to include any new program keywords that this extension is designed
to support.

The external syntax used by this extension to the existing theory is ExtLabSynt with
the additional extensions in this section. This will be referred to as ExtLabSyntloc,
which PL

loc ranges over.

In order to deal with local declarations, the external syntax should be extended as
follows:

dec ::= · · · | locall dec1 in dec2 end

Let us consider the following example, which gives an example of an error that can
occur when using local declarations in a program:

val x = true
local val x = 1 in val y = x end
val z = fn w => (w y, w x)

This code is erroneous, as w is applied to y which is an integer and x which is a
boolean, but w is a monomorphic type.

6.1.2 Constraint Syntax

In the same way that the external syntax has been extended, the constraint syntax
also needs to be extended (recall that the external syntax is the input (SML) syntax,
and that the constraint syntax is used to represent constraints internally).

The constraint syntax used in this extension is IntLabSynt with the extensions listed
in this section. This set is referred to as IntLabSyntloc, which CLloc ranges over.

The extension to the constraint syntax to support local declarations is given below:

e ::= · · · | loc e1 in e2
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This new piece of constraint syntax is introduced to allow us to have greater control
of the scope of the binders. In this new form, the binders that are defined in the
environment e1 are available to the environment e2, but are not exported outside
of the loc environment. The current mechanisms that exist for controlling the
availability of binders under certain environments is insufficient to cover this new
usage:

• Using e1;e2 is insufficient because although the binders in e1 are accessible in
e2, the binders of e1 are exported along with the binders of e2;

• Using [e1];e2 is insufficient because the binders in e1 are not accessible in e2;

• Using [e1; e2] is insufficient because neither of the binders from e1 nor e2 are
exported.

Applications of a substitution to a constraint term are extended with the following
rule:

(loc e1 in e2)[sub]=loc (e1[sub]) in (e2[sub]).

This allows substation to take place inside the loc environments, by applying the
substation to both environments contained inside.

6.1.3 Constraint Generation

In figure 6.1, the constraint generator is extended with three rules to handle local
declarations.

Figure 6.1 Constraint generation rule for local declarations
Declaration(dec -. e)
(G29) locall dec1 in dec2 end -. (ev = e1);loc ev l in e2

⇐⇐⇐ dec1 -. e1 ∧∧∧ dec2 -. e2 ∧∧∧ dja(e1, e2, ev)

This new constraint rule takes the two declarations from the external syntax con-
taining a local expression, and creates an internal representation using the loc

environment defined previously.

These rules have been modified so that they can work correctly with the new version
of the Skalpel core outlined in chapter 4, these updated rules can be seen in figure
6.2.
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Figure 6.2 Constraint generation rules for local declarations (new core) :
ExtLabSyntloc × P(Var)→ Env
Declaration
(G29) Jlocall dec1 in dec2 endK = ∃ev .ev = Jdec1K; loc ev l in Jdec2K

6.1.4 Constraint Solving

In figure 6.3, the constraint solver is extended with three rules to handle local
declarations. (Due to the new stack mechanism in the new version of the Skalpel
core defined in section 4.6.3, some of the rules dealing with the error case can be
removed as they are no longer necessary.)

Figure 6.3 Extension to constraint solving rules to support local declarations

local environments
(L1) slv(〈u, e〉, d , loc e1 in e2) → succ(∆),

if slv(〈u, e〉, d , e1)→∗ succ(〈u ′, e ′〉)
∧ slv(〈u ′, e ′〉, d , e2)→∗ succ(〈u ′′, e ′′〉)
∧ ∆ = 〈u ′′, e;e ′\e ′′〉

(L2) slv(〈u, e〉, d , loc e1 in e2) → err(er),
if slv(〈u, e〉, d , e1)→∗ succ(〈u ′, e ′〉)
∧ slv(〈u ′, e ′〉, d , e2)→∗ err(er)

(L3) slv(〈u, e〉, d , loc e1 in e2) → err(er),
if slv(〈u, e〉, d , e1)→∗ err(er)

During the solving of a local declaration, the environment e1 must be solved first,
and if that is solvable the environment e2 is solved; the binders in e1 are visible to
the environment e2 and then use environment difference to remove the binders in
e1 so they are not exported from the environment given after the local declarations
have been solved.

Note that in rules (L2) and (L3), if solving of either of the environments contained
in a loc environment leads to an error, then the constraint solver is terminated in
the error state, with the parameter of the error that was raised during the recursion
of the constraint solver.

For the new presentation of Skalpel, we must update the constraint solving rules.

To represent correctly the handling of environments, the stackAction must first be
extended, and a new case for isSucc′ must be added as shown below. With this
extension to the stack machinery, when a local environment is encountered the new
stack action (loc) is pushed on to the stack, as well as the environment e2. Next e1

is solved. After e1 has been solved, e2 is then solved, after which the environment
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e1 is discarded, so that its bindings are not exported. The newPush form is added
to StackEv to allow us to determine when the environments on the stack need to
be modified in order to control which environments to export correctly.

StackEv ::= ... | newPush
StackAction ::= ... | loc

isSucc(−→e ,m,
−→
st @〈〈newPush, d , new, x〉〉) → isSucc′(−→e @〈>〉, d ,m,

−→
st , x)

isSucc′(−→e @〈e1, e2, e3〉, d ,m,
−→
st , loc) → isSucc(−→e @〈e1; e3〉,m,

−→
st )

The constraint solving additions which have been modified to work with the latest
version of the Skalpel core can be seen in figure 6.4. It can be seen in this rule that
the stack is modified to hold the new stack action, and the environment e2, which
will both be dealt with after the solving of e1 is complete.

Figure 6.4 Constraint solving extension for local declarations (new core) : State→
State

(L1) slv(−→e , d ,m,
−→
st , loc e1 in e2)→ slv(

−−−−→
e@〈>〉, d ,m,

−→
st ′, e1),

if −→st ′ =
−→
st @〈〈new, d , new, loc〉〉@〈〈newPush, d , new, e2〉〉

6.1.5 Constraint Filtering (Minimisation and Enumeration)

Constraint filtering is extended as follows. This allows us to perform filtering in
both of the environments contained in a loc environment.

filt(loc e1 in e2, l1, l2) = loc filt(e1, l1, l2) in filt(e2, l1, l2)

Note that this extension is different from the semantics given in [Rah10] in order
to fix a bug where e2 was not filtered correctly.

6.1.6 Slicing

The tree syntax is first updated for programs below:

Prod ::= · · · | decLoc

The toTree function must also be extended to handle local declarations. This ex-
tension can be seen below.

toTree(locall dec1 in dec2 end) = 〈〈dec, decLoc〉, l , 〈toTree(dec1), toTree(dec2)〉〉
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6.1.7 Minimality

It should be noted that the extra initially generated labelled environment variable
in the constraint generation rule presented in this chapter is necessary. This la-
belled environment variable forces the binders of the locally defined environment
to be dependent on the label of the local declaration as a whole . If this labelled
environment variable was not used, typable slices could be produced as a result as
the environment variable could not be sliced out.
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6.2 Type declarations

6.2.1 External Syntax

This extension to the theory adds support for detecting errors involving type dec-
larations in Standard ML, which take one type variable argument. Theory from
the previous extension, local declarations, can be used in order to handle binder
control for support of type declarations.

The external syntax used by this extension to the existing theory is ExtLabSyntloc

with the additional extensions in this section. This set will be refereed to as
ExtLabSyntTypDec, which PL

TypDec ranges over.

The external syntax is extended as shown below.

Dec ::= · · · | type dn
l
= ty

Consider the program shown in figure 6.5, which shows an example of a program
which has a type error where type functions are involved:

Figure 6.5 Erroneous SML program involving the use of type functions

1 type ’a t = ’a -> ’a -> ’a
2 datatype ’a u = U of ’a t
3 val x = U (fn x => x)

This example is not typable as the datatype constructor U is defined to take an
argument of ’a -> ’a -> ’a, but it is applied to the identity function ’a -> ’a.

6.2.2 Constraint Syntax

The constraint syntax used in this extension is IntLabSyntloc with the extensions
listed in this section. This set is referred to as IntLabSyntTypDec, which CLTypDec
ranges over.

The constraint syntax is extended below to represent what pseudo type functions,
which are constraint terms of the form Λα. τ . These pseudo type functions are
considered normal type functions only when:

• the constraints on τ have been solved;
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• τ is fully built, that is, U(τ) = τ .

Internal type constructors are extended to contain pseudo type variables:

µ ∈ ITyCon ::= ... | Λα. τ

In such a pseudo type function, the parameter α can be connected to τ via some
constraints. Consider the initial constraints generated for type ’a t = ’a (some
constraints have been omitted for clarity):

(δ = Λα1. α2); loc (�’a=α1) in (�’a=α2;�t=δ)

It is important to note here that the internal type constructor Λα1. α2 is only a
type function via constraints. If no constraint is filtered out at constraint solving
then the binder �t=∀∅.Λα1. α1 will be generated, where Λα1. α1 is a type function.

Quantification over internal type constructors is allowed with the following decla-
ration:

κ ∈ TyConSem ::= µ | ∀α. µ | 〈κ, d〉

A modification is also made to type constructor binders as shown below.

�tc=µ −Bind−−_ �tc=κ

Here quantification over internal type constructors is allowed because internal type
variables can now occur inside internal type constructors through the use of pseudo
type functions. As an example, given the code fragment:

type ’a t = 〈..〉

the type function Λα1. α2 is generated at constraint solving. The internal type
variable α2 is not bound, and so it needs to be quantified so that it will be renamed
for accessors to t. Eventually the following binder is generated1:

�t=∀{α2}.Λα1. α2

1Dependencies are ignored here for readability purposes.
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Figure 6.6 Constraint generation rules for type functions
Datatype names(dn -. 〈δ, α, e1, e2〉)
(G13) dtv tcel -. 〈δ, α, �tc

l
= δ, �tv

l
= α〉

Declarations(dec -. e)
(G18) datatype dn

l
= cb -. (ev = ((δ

l
= γ);(α2

l
=α1 γ);e1;loc e ′1 in poly(e2)));ev l

⇐⇐⇐ dn -. 〈δ, α1, e1, e
′
1〉 ∧∧∧ cb -. 〈α2, e2〉 ∧∧∧ dja(e1, e2, γ, ev)

(G30) type dn
l
= ty -. (ev = ((δ

l
= Λα1. α2);loc e ′1 in (e2;e1)));ev l

⇐⇐⇐ dn -. 〈δ, α1, e1, e
′
1〉 ∧∧∧ ty -. 〈α2, e2〉 ∧∧∧ dja(e1, e2, ev)

For example, without quantification of α2, the following piece of code would gen-
erate an error, as that internal type variable would be bound to both the types int
and bool.

type ’a t = 〈..〉
val x = 5 : int t
val y = true : bool t

By replacing the sliced out section of code with ’a, this code becomes typable.

Some forms are also defined to state side conditions in the extension of the constraint
solver presented later in this section. They are shown below:

tyf ∈ TyFun ::= δ | Λα. τ | 〈tyf , d〉
app ∈ App ::= τ tyf

Finally, application of a substitution to a constraint term is extended:

(Λα. τ)[sub] = Λα. τ [{α} −C sub], if α /∈ vars({α} −C sub)

6.2.3 Constraint Generation

Changes are presented to the constraint generation algorithm in order to handle
type functions in figure 6.6.

Note the order that environments are generated in rules (G18) and (G30). In the
former, e1 is generated before e2 as datatype declarations can be recursive, whereas
it is generated the other way round in the latter rule, as type declarations are not
recursive.

The sets ShallowTyCon and LabCs are introduced which are defined as follows:
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stc ∈ ShallowTyCon ::= γ | Λα. α′

lc ∈ LabCs ::= · · · | δ l
= stc

To support the new version of the core, we must update the constraint generator
as shown in figure 6.7.

Figure 6.7 Constraint generation rules for type functions (new core) :
ExtLabSyntTypDec × P(Var)→ Env
Datatype names
(G13) Jdtv tcel , {α, δ}K = 〈�tc l

= δ, �tv
l
= α〉

Declarations
(G18) Jdatatype dn

l
= cbK = ∃〈α1, α2, δ, γ〉.(ev = ((δ

l
= γ); (α2

l
= α1γ); Jdn, {α, δ}K(0);

loc Jdn, {α, δ}K(1) in poly(Jcb, α2K))); ev l

(G30) Jtype dn
l
= tyK = ∃〈α1, α2, δ〉.(ev = ((δ

l
= Λα1. α2);

loc Jdn, {α, δ}K(1) in (Jty , α2K;Jdn, {α, δ}K(0)))); ev l

6.2.4 Constraint Solving

The build function is updated to handle the new type function form, which is shown
below.

build(u,Λα. τ) = Λα′. build(u, τ), if build(u, α) = α′

In the new presentation of the core, we do not need such an extension as our unifier
set is defined differently.

The function which calculates the free variables in a term is updated to handle this
new form, given below.

freevars(α) = {α} \ Dum

freevars(τ 1 � τ 2) = freevars(τ 1) ∪ freevars(τ 2)

freevars(τ µ) = freevars(µ) ∪ freevars(τ)

freevars(Λα. τ) = freevars(τ) \ {α}
freevars(xd) = freevars(x)

freevars(x) = ∅, if none of the above applies

Changes are presented to the constraint solving machinery in figure 6.8 in order to
support type functions. This is updated to support the new version of the Skalpel
core in figure 6.9.
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Figure 6.8 Constraint solving rules for type functions
equality simplification
(S9) slv(∆, d , τ 2 µ= τ) → slv(∆, d , τ ′[{α 7→ τ 2}] = τ),

if collapse(µ∅) = (Λα. τ 1)d
′
∧ τ ′ = build(∆, τ d

′

1 )

(S10) slv(〈u, e〉, d , τ 1 µ= τ) → succ(〈u, e〉),
if collapse(µ∅) = δd

′
∧ δ 6∈ dom(u)

(S11) slv(〈u, e〉, d , τ 1 µ= τ) → slv(〈u, e〉, d ∪ d
′
, τ 1 µ

′ = τ),
if collapse(µ∅) = δd

′
∧ u(δ) = µ′

(S12) slv(∆, d , τ 1 µ1 = τ 2 µ2) → slv(∆, d1 ∪ d2, γ1 = γ2;τ 1 = τ 2),
if collapse(µd

1 ) = γd1
1 ∧ collapse(µ∅2) = γd2

2

(S13) slv(∆, d , τ 1 = τ 2) → slv(∆, d , µ= arr),
if {τ 1, τ 2} = {τ µ, τ 0 � τ ′0} ∧ strip(µ) ∈ TyConName

equality constraint reversing
(R) slv(∆, d , x= y) → slv(∆, d , y = x),

if s = Var ∪ Dependent ∪ App ∧ y ∈ s ∧ x 6∈ s ,

binders
(B) slv(〈u, e〉, d , �id=x) → succ(〈u, e〉;(�id

d
= x)), if id 6∈ TyCon

(B6) slv(〈u, e〉, d , �tc=µ) → succ(〈u, e〉;(�tc
d
= ∀α. µ′)),

if µ′ = build(u, µ) ∧ α = freevars(µ′)

accessors
(A1) slv(∆, d , �id=v) → slv(∆, d ∪ d

′
, v = x[ren]),

if ∆(id) = (∀v . x)d
′
∧ dom(ren) = v ∧ dj(vars(〈∆, v〉), ran(ren))

(A2) slv(∆, d , �id=v) → slv(∆, d , v = x),
if ∆(id) = x ∧ strip(x) is not of the form ∀v . x

The constraint solving rules are updated for accessors so that they handle universal
quantification of internal type constructors and type schemes, and give a new rule
which creates binders for universally quantified type constructors.

Before reducing applications of type functions to arguments, arguments on the body
of the type function have been dealt with. Consider the two following environments,
where γ1 6= γ2:

Let e1 be ((α1 γ1) = (α2 γ2) (Λα′. α));(α = α′)

Let e2 be (α = α′);((α1 γ1) = (α2 γ2) (Λα′. α))

When solving e1, the first part of the composition environment is solved first and
no error is generated for this. We throw away α2 γ2 and α′ is constrained to be
equal to α1 γ1. Then, α=α′ is solved, and α is then also made to be equal to α1 γ1,
though again no error is generated. When dealing with the first constraint of e1, it
is not yet know if the constraint α = α′ and it is not yet know if more constraints
on α′ are present.
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Figure 6.9 Constraint solving rules for type functions (new core) : State→ State
equality simplification
(S9) slv(−→e , d ,m,

−→
st , τ2 µ = τ) → slv(−→e , d ,m,

−→
st , τ ′[{α 7→ τ2}] = τ)

if collapse(µ∅) = (Λα. τ1)d
′
∧ τ ′ = U(τd

′

1 )

(S10) slv(−→e , d ,m,
−→
st , τ1 µ = τ) → isSucc(−→e ,m,

−→
st )

if collapse(µ∅) = δd
′
∧ δ /∈ dom(U)

(S11) slv(−→e , d ,m,
−→
st , τ1 µ = τ) → slv(−→e , d ∪ d ,m,

−→
st , τ1µ

′ = τ)

if collapse(µ∅) = δd
′
∧ U(δ) = µ′

(S12) slv(−→e , d ,m,
−→
st , τ1 µ1 = τ2 µ2) → slv(−→e , d ∪ d ,m,

−→
st , γ1 = γ2; τ1 = τ2)

if collapse(µd1 ) = γd1
1 ∧ collapse(µ∅2 ) = γd2

2

(S13) slv(−→e , d ,m,
−→
st , τ1 = τ2) → slv(−→e , d ,m,

−→
st , µ = arr)

if {τ1, τ2} = {τ µ, τ0 � τ ′0} ∧ strip(µ) ∈ TyConName
equality constraint reversing
(R) slv(−→e , d ,m,

−→
st , x = y) → slv(−→e , d ,m,

−→
st , y = x)

if s = Var ∪ Dependent ∪ App ∧ y ∈ s ∧ x /∈ s
binders

(B1) slv(−→e , d ,m,
−→
st , �id=x) → isSucc(−→e ; �id

d
= x,m,

−→
st )

if id /∈ TyCon

(B6) slv(−→e , d ,m,
−→
st , �tc=µ) → isSucc(−→e ; (�tc

d
= ∀α. µ′),m,

−→
st )

if µ′ = U(µ) ∧ α = freevars(µ′)

accessors
(A1) slv(−→e , d ,m,

−→
st , �id=v) → slv(−→e , d ,m,

−→
st , v = x[ren])

if U(id) = ∀v . xd ′ ∧ dom(ren) = v ∧ dj(vars(〈U ,−→e , v〉), ran(ren))

(A2) slv(−→e , d ,m,
−→
st , �id=v) → slv(−→e , d ,m,

−→
st , v = x)

if U(id) = x ∧ strip(x) not of the form ∀v . x

When solving e2, an error is generated by the constraint solver. As the semantics of
solving e1 and e2 should be the same, an attempt is made to eliminate environments
of the form of e1. This is done in the initial constraint generator by generating
(α = α′) before ((α1 γ1) = (α2 γ2) (Λα. α′)).

Constraints of the form τ 1 δ = τ where δ is unconstrained (see rule (S10)) are
thrown away. This is done because δ could be of the form Λα. τ where the internal
type variable does not occur in τ . Note that as such constraints are discarded, all
the constraints on δ must be generated before τ 1 δ = τ from the initial constraint
generator and handled strictly before τ 1 δ = τ during solving.

6.2.5 Slicing

First, the dot terms in DatName are updated:

dot-e(
−−→
term)

DatName→ dot-n(
−−→
term)
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A new rule for terms of the form dot-n(
−−→
term) is given below.

(G31) dot-n(〈−−→term1, . . . ,
−−→
termn〉) -. 〈δ, α,>, [e1; · · · ;en]〉 ⇐⇐⇐

−−→
term1 -. e1 ∧∧∧ · · · ∧∧∧

−−→
termn -. en ∧∧∧ dja(e1, . . . , en, δ, α)

The tree syntax for programs is also updated, which is given below.

Prod ::= · · · | decTyp
Dot ::= · · · | dotN

The getDot function is updated as follows (the function now returns a dotN marker
when applied to a datname node):

getDot(〈datname, prod〉) = dotN

Finally, toTree is updated to handle type declarations:

toTree(type dn
l
= ty) = 〈〈dec, decTyp〉, l , 〈toTree(dn), toTree(ty)〉〉

toTree(dot-n(
−−→
term)) = 〈dotN, toTree(

−−→
term)〉
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6.3 Type annotations

6.3.1 External Syntax

In Standard ML, variables can be constrained by annotating them with a type. In
this case, the necessary constraints should be generated so that such a variable is
constrained to be of that type. The theory presented in this section achieves this.

The external syntax used by this extension to the existing theory is ExtLabSyntTypDec

with the additional extensions in this section. This set is referred to as
ExtLabSyntTypAnn, which PL

TypAnn ranges over.

The external syntax is extended as shown below. This handles annotations which
can take place in expressions and in patterns.

Exp ::= · · · | exp:l ty

Pat ::= · · · | pat:l ty

An example of a program using type annotations is given below.

val rec g : unit -> unit = fn x => x
val u = g true

Without the type annotation on g, this code fragment would be typable. With this
type annotation however, g is forced to take an argument of type unit and return
an argument of type unit, which makes this program erroneous.

Two new sets are defined below, LabTyVar and TyVarSeq.

ltv ∈ LabTyVar ::= tv l
l | dot-d(

−−→
term)

tvseq ∈ TyVarSeq ::= ltv | εlv | (ltv 1, . . . , ltvn)l | dot-d(
−−→
term)

In order to distinguish between explicit type variables in type variables sequences
and occurrences in types, they are subscripted in explicit type variables (tv l

l).

In order that type variable sequences can occur in value declarations, the definitions
for these are updated below.

val pat
l
= exp

Dec→ val tvseq pat
l
= exp

val rec pat
l
= exp

Dec→ val rec tvseq pat
l
= exp

Consider the following untypable piece of code:
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val rec ’a f = fn x =>
let val rec g : ’a -> ’a = fn x => x
in g true
end

As ’a is bound in the outer environment of the declaration of g, it is not generalised
when generalising the type of g. When applying g to true, the non-generalised
explicit type variable ’a clashes with the type bool. Removing the binding of ’a
in the outer environment, or changing the type of g to be ’b -> ’b will make the
code typable.

6.3.2 Constraint Syntax

The constraint syntax used in this extension is IntLabSyntTypDec with the extensions
listed in this section. This set is referred to as IntLabSyntTypAnn, which CLTypAnn
ranges over.

In the below extensions to sets representing binders and environments, the notion
of unconfirmed binders is introduced.

bind ∈ Bind ::= · · · | �tv=β

e ∈ Env ::= · · · | or(e, d)

The symbol �x is used to represent that x is an unconfirmed binder. Such binders
are needed because for example in the last code example presented an unconfirmed
binder is generated for ’a in the declaration of g. If at constraint solving it is
discovered that there exists a binder of the same name in the outer environment,
then this binder is discarded.

The form or(e, d) differs from ed ; when using the form or(e, d) only one of the
dependencies in the set d needs to be satisfied for e to be satisfied. To abbreviate,
e∨d is written for or(e, d).

6.3.3 Constraint Generation

The set labtyvars : ExtLabSynt×P(Var)→ P(ExtLabSynt) is defined which computes
the set of labelled explicit type variables in an explicit type as follows:
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labtyvars(vid l
e) = ∅

labtyvars(letl dec in exp end) = labtyvars(exp)

labtyvars(fn pat
l
= exp) = labtyvars(pat) ∪ labtyvars(exp)

labtyvars(dexp atexpel) = labtyvars(exp) ∪ labtyvars(atexp)

labtyvars(exp:l ty) = labtyvars(exp) ∪ labtyvars(ty)

labtyvars(vid l
p) = ∅

labtyvars(vid latpat) = labtyvars(atpat)

labtyvars(pat:l ty) = labtyvars(pat) ∪ labtyvars(ty)

labtyvars(tv l) = {tv l}
labtyvars(ty1

l→ ty2) = labtyvars(ty1) ∪ labtyvars(ty2)

labtyvars(dty ltcel) = labtyvars(ty)

This function does not extract all the explicit type variables occurring in an ex-
pression of a pattern, for example it does not extract the explicit type variables
occurring in nested declarations (see case for let-expressions).

The function labtyvarsdec : TyVarSeq × Pat × Exp → P(ExtLabSynt) is defined as
shown below. Note that in this definition, the tvseq , pat and exp are from those of
recursive value declarations. This function gathers type variables in the pattern and
expression arguments, not occurring in the type variable sequence, and annotates
them with as many labels as they apply to.

labtyvarsdec(tvseq , pat , exp) = {tv l | f(tv) = l}, where
f = d{tv 7→ {l} | tv does not occur in tvseq ∧ tv l ∈ labtyvars(pat) ∪ labtyvars(exp)}.

In rules (G48)-(G50), explicit type variable binders are constructed. These are
confirmed binders (�tv=β) and not unconfirmed binders (�tv=β) as type variable
sequences are not context dependent. Unconfirmed binders are generated in rule
(G17). These are generated after the confirmed binders, and this order is necessary.
Note that the order the unconfirmed binders are generated in does not matter as
the explicit type variables are all unique anyway.

In order to update the constraint generation for the new version of the Skalpel core,
we present the new version of the constraint solving rules in figure 6.11.

6.3.4 Constraint Solving

The updated constraint solver is given in figure 6.12.

Rule (OR) only picks one dependency from the dependency set labelling an en-
vironment of the form e∨d because only one of them is needed for the constraint
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Figure 6.10 Constraint generation rules for type annotations
Expressions(exp -. 〈α, e〉)
(G46) exp:l ty -. 〈α, e1;e2;(α

l
=α1);(α

l
=α2)〉 ⇐⇐⇐

exp -. 〈α1, e1〉 ∧∧∧ ty -. 〈α2, e2〉 ∧∧∧ dja(e1, e2, α)

Patterns(pat -. 〈α, e〉)
(G47) pat:l ty -. 〈α, e1;e2;(α

l
=α1);(α

l
=α2)〉 ⇐⇐⇐

pat -. 〈α1, e1〉 ∧∧∧ ty -. 〈α2, e2〉 ∧∧∧ dja(e1, e2, α)

Labelled type variables(ltv -. e)
(G48) tv l

l -. �tv
l
= β

Type variable sequences(tvseq -. e)
(G49) εlv -. >
(G50) (ltv 1, . . . , ltvn)l -. e1; · · · ;en ⇐⇐⇐ ltv 1 -. e1 ∧∧∧ · · · ∧∧∧ ltvn -. en ∧∧∧ dja(e1, . . . , en)

Declarations(dec -. e)
(G17) val rec tvseq pat

l
= exp -. (ev = e ′);ev l

⇐⇐⇐ tvseq -. e0 ∧∧∧ pat -. 〈α1, e1〉 ∧∧∧ exp -. 〈α2, e2〉
∧∧∧e ′ = poly(loc e0;e in (e1;e2;(α1

l
=α2)))

∧∧∧labtyvarsdec(tvseq , pat , exp) = ]ni=1{tv
li
i }

∧∧∧e = ((�tv 1
l
= β1)∨l1 ; · · · ;(�tvn

l
= βn)∨ln)

∧∧∧dja(e0, e1, e2, ev , β1, . . . , βn)

(G45) val tvseq pat
l
= exp -. (ev = e ′);ev l

⇐⇐⇐ tvseq -. e0 ∧∧∧ pat -. 〈α1, e1〉 ∧∧∧ exp -. 〈α2, e2〉
∧∧∧labtyvarsdec(tvseq , pat , exp) = ]ni=1{tv

li
i }

∧∧∧e = ((�tv 1
l
= β1)∨l1 ; · · · ;(�tvn

l
= βn)∨ln)

∧∧∧e ′ = expans(loc e0;e in (e2;e1;(α1
l
=α2)), expansive(exp))

∧∧∧dja(e0, e1, e2, ev , β1, . . . , βn)

represented by the dependency set to be satisfied (this is listed in [Rah10] as a
different rule but has been corrected in this thesis). Any dependency from d can
be chosen.

Our version of this constraint solver which supports the latest version of the Skalpel
core is given in figure 6.13.

6.3.5 Constraint Filtering (Minimisation and Enumeration)

The filt function is extended to support environments with dependencies where only
one needs to be kept for the environment to stay alive during filtering below. This
thesis presents a slight variation on this theory from that existing in [Rah10] to
remove a case involving a feature which was defined later in that document, and so
is not relevant for the presentation in this thesis.
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Figure 6.11 Constraint generation rules for type annotations (new core) :
ExtLabSyntTypAnn → Env

Expressions
(G46) Jexp:l ty , αK = ∃〈α1α2〉.Jexp, α1K;Jty , α2K; (α

l
= α1); (α

l
= α2)

Patterns
(G47) Jpat:l ty , αK = ∃〈α1α2〉.Jpat , α1K;Jty , α2K; (α

l
= α1); (α

l
= α2)

Labelled type variables
(G48) Jty l

lK = �ty
l
= α

Type variable sequences
(G49) JεlvK = >
(G50) J(ltv1, ...ltvn)lK = Jltv1K; ...; JltvnK
Declarations
(G17) Jval rec tvseq pat

l
= expK = ∃〈α1, α2, ev〉.(ev =

poly(loc JtvseqK; e in (Jpat , α1K; Jexp, α2K; (α1
l
= α2)))); ev l

∧ labtyvarsdec(tvseq , pat , exp) = ]ni=1{tv
li
i }

∧ e = ((�tv1
l
= α1)∨l1 ; ...; (�tvn

l
= αn)∨ln)

∧ dja(α1, ...αn)

Figure 6.12 Constraint solving rules to handle type annotations
binders
(B9) slv(∆, d , �tv=β) → succ(∆;(�tv

d
= β)), if ∆(tv) is undefined

(B10) slv(∆, d , �tv=β) → succ(∆), if ∆(tv) is defined
or environments
(OR) slv(∆, d , e∨{d}∪d

′
) → slv(∆, d ∪ {d}, e)

The function which generates dummy variables is also updated to support the new
notion of unconfirmed binders.

filt(e∨l , l1, l2) =


filt(e, l1, l2)∨l

′
, if l

′
= l ∩ (l1 \ l2) 6= ∅

dum(strip(e)), if dj(l , l1 \ l2) and ¬dj(l , l2)

>, otherwise
dum(�id=x) = (�id=toDumVar(x))

6.3.6 Slicing

As in the other extensions presented in this chapter, the tree syntax is updated to
handle type annotations below:

Class ::= · · · | labtyvar | tyvarseq
Prod ::= · · · | expTyp | patTyp | tyvarseqEm | tyvarseqSeq

The getDot function is then updated with type variable sequences:
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Figure 6.13 Constraint solving rules for type annotations (new core) : State →
State
binders
(B9) slv(−→e , d ,m,

−→
st , �tv = α) → isSucc(−→e ; (�tv

d
= α),m,

−→
st )

if −→e (tv) is undefined
(B10) slv(−→e , d ,m,

−→
st , �tv = α) → isSucc(−→e ,m,

−→
st )

if −→e (tv) defined
or environments
(OR) slv(−→e , d ,m,

−→
st , e∨{d}∪d

′
) → slv(−→e , d ∪ {d},m,

−→
st , e)

getDot(〈labtyvar, prod〉) = dotD

getDot(〈tyvarseq, prod〉) = dotD

Figure 6.14 Extension of the conversion function from terms to trees to deal with
type annotations and type variable sequences

Expressions
toTree(exp:l ty) = 〈〈exp, expTyp〉, l , 〈toTree(exp), toTree(ty)〉〉

Patterns
toTree(pat:l ty) = 〈〈pat, patTyp〉, l , 〈toTree(pat), toTree(ty)〉〉

Labelled type variables
toTree(tv l

l) = 〈〈labtyvar, id〉, l , 〈tv〉〉

Type variable sequences
toTree(εlv) = 〈〈tyvarseq, tyvarseqEm〉, l , 〈〉〉
toTree((ltv 1, . . . , ltvn)l) =

〈〈tyvarseq, tyvarseqSeq〉, l , toTree(〈ltv 1, . . . , ltvn〉)〉

The toTree function is extended in figure 6.14 to handle expressions and patterns
which have type annotations.
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6.4 Signatures

In this extension to the existing theory, Skalpel can be extended to support sig-
natures. Note that this extension does not present any machinery to handle the
following:

• Equality type specifications;

• Include specifications;

• Type sharing specifications.

The above extensions are presented later in sections 7.1, 7.4 and section 7.5 respec-
tively.

There are some kinds of errors that are not handled in this section e.g. unmatched
errors, where an identifier is specified in a signature but is not present in a structure
which is constrained by that signature. There is an extension to handle this kind
of error but it is not present in this document. Readers who wish to see how this
is handled should see section 14.8 of [Rah10].

6.4.1 External Syntax

The external syntax used by this extension to the existing theory is ExtLabSyntTypAnn

with the additional extensions in this section. This set will be referred to as
ExtLabSyntSig, which PL

Sig ranges over.

The external syntax is updated to include support for signatures as shown below.
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sigid ∈ SigId (signature identifiers)
sigdec ∈ SigDec ::= signature sigid

l
= sigexp

| dot-d(
−−→
term)

sigexp ∈ SigExp ::= sigid l | sigl spec1 · · · specn end

| dot-s(
−−→
term)

spec ∈ Spec ::= val vid :l ty

| type dn l

| datatype dn
l
= cd

| structure strid :l sigexp

| dot-d(
−−→
term)

cd ∈ ConDesc ::= vid l
c | vid of l ty

| dot-e(
−−→
term)

id ∈ Id ::= · · · | sigid

strexp ∈ StrExp ::= · · · | strexp :l sigexp | strexp :>l sigexp

topdec ∈ TopDec ::= strdec | sigdec

prog ∈ Program ::= topdec1; · · · ;topdecn

There are two types of signature constraint represented by this syntax.

1. Opaque signature constraints, written as strexp :>l sigexp

2. Translucent signature constraints, written as strexp :l sigexp

A structure which is constrained by a signature (either in an opaque or translu-
cent manner) must implement all the specifications that are in the signature it is
constrained by, and can define any additional identifiers in addition to this.

The distinction between a translucent and opaque signature constraint is that if a
type constructor is defined in the signature of an opaque signature constraint, then
the use of the type constructor in the structure constrained by that signature does
not constrain the definition in the signature.

An example demonstrating the difference between opaque and translucent signa-
tures can be seen in figure 6.15. In this figure, the difference between the structures
T1 and T2 is that T1 is constrained by the signature s in an opaque way, whereas
T2 is constrained by the same signature in a translucent way. There is an error in
this example - the application f true in the declaration of u1 is an error because
the function f takes an argument of type t and not of type bool. In u2 the same
application is not part of any error as the function f used there takes a bool as an
argument.
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Figure 6.15 Example showing difference between opaque and translucent signa-
tures

1 signature s =
2 sig
3 type t
4 val f : t -> t
5 end
6
7 structure S =
8 struct
9 type t = bool
10 val rec f = fn x => x
11 end
12
13 structure T1 = S :> s
14 structure T2 = S : s
15
16 val u1 = let open T1 in f true end
17 val u2 = let open T2 in f true end

6.4.2 Constraint Syntax

The constraint syntax used in this extension is IntLabSyntTypAnn with the extensions
listed in this section. This set is referred to as IntLabSyntSig, which CLSig ranges
over.

The constraint syntax is extended in figure 6.16.

Figure 6.16 Constraint syntax for signatures
β ∈ RigidTyVar (set of rigid type variables)
svar ∈ SVar ::= v | β
ρ ∈ FRTyVar ::= α | β
sig ∈ SigSem ::= e | ∀δ. e | 〈sig , d〉
bind ∈ Bind ::= ... | �sigid=sig
acc ∈ Accessor ::= ... | �sigid=ev
τ ∈ ITy ::= ... | β
µ ∈ ITyCon ::= ... | tv
subty ∈ SubTy ::= σ � vid σ2 | κ1 � tc κ2

e ∈ Env ::= ... | e1:e2 | ins(e) | subty

In this new constraint syntax rigid type variables are introduced, written β. These
act as constant types but can be renamed and quantified over, so they are referred
to as variables, but as they are considered as constant types they are not allowed
to be equal to e.g. arrow types. As these rigid type variables are not allowed to
be in the domain of the unifiers, they are not a member of the set Var. It is for
this reason that the set SVar is introduced (where “S” stands for “substitutable”) as
in the instantiation of type schemes β variables are allowed to be renamed. The
pre-existing type variables of the form α are now referred to as the flexible type
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variables, and the set FRTyVar contains both kinds of variable.

The definition of atoms(x) is extended to be the set of syntactic forms belonging to
SVar ∪TyConName∪Dependency and occurring in x whatever x is. Let svars(x) be
atoms(x) ∩ SVar. The forms of explicit type variable binders and type schemes are
extended as follows:

�tv=α −Bind−−_ �tv=ρ

�tv = α −Bind−−_ �tv = ρ

∀α. τ −Scheme−−−−_ ∀ρ. τ

In order to allow instantiation of different universally quantified forms, renamings
are redefined:

ren ∈ Ren = {ren | ren = f1 ∪ f2

∧ f1 ∈ FRTyVar→ ITyVar

∧ f2 ∈ TyConVar→ TyConVar

∧ ren is injective
∧ dj(dom(ren), dom(ren))}

Note that flexible and rigid type variables are both renamed to flexible ones. So
instantiating the type scheme ∀{α}. α → α or the type scheme ∀{β}. β → β both
result in a type of the form α′ → α′.

Substitutions are also redefined as shown below:

sub ∈ Sub = {sub | sub = U ∪ f ∧ f ∈ RigidTyVar→ ITy}

Substitution on constraint terms is also updated as shown below.

svar [sub] =

{
x, if sub(svar) = x

svar , otherwise

The set ins is also defined to handle ins environments, as defined below.

ins ∈ Ins = {f | f ∈ TyConVar→ TyConName ∧ f is injective}

The new environment form defined in this extension ins(e) is an instance of e where
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internal type constructor variables are instantiated to internal type constructor
names. The definition of ins defined above provides this instantiation.

The constraints of the form σ � vid σ2 and κ1 � tc κ2 are subtyping constraints. In
the definition of Standard ML [MTHM98], checking that one type is a subtype of
another results in building a new type scheme built from σ1 and σ2. It is important
to note therefore that σ � vid σ2 can be considered as both a constraint and as an
environment because it constrains σ1 to be a subtype of σ2 and can result in the
generation of a binder of the form �vid=σ at constraint solving, where σ is a new
type scheme that has been generated. These are used when handling constraints of
the form e1:e2 and are used to check signature constraints on structures.

In Skalpel, ∀α1 . τ 1 is a subtype of ∀α2 . τ 2 iff τ 1[ren1] can be made equal to τ 2[ren] for
some ren1 and ren2, where ren1 renames both the flexible and rigid type variables
of τ 1 to fresh flexible type variables, and where ren2 only renames the flexible
type variables of τ 2 to fresh flexible variables. Note that ren2 does not rename any
rigid type variables because in the case of type schemes the rigid type variables are
not allowed to be more specific whereas flexible type variables can be constrained
further.

Allowing explicit type variables to be rigid terms helps to catch too general errors,
where a structure defines a type which is less general in the structure than it is in
the signature. While βs have not been renamed, they are considered as constant
types with which is associated the name tv.

The role of rigid type variables are shown using the code presented in figure 6.17.
With this code, the enumeration algorithm would find the error that x is defined
in the signature s as a boolean, but inferred to be an integer in the structure
definition. Given this, the minimisation algorithm will attempt to slice out the
type bool out of the specification of x. This would mean that x has the form
∀{α}. α in its specification and would lead to the too general signatures error to
be generated. The issue is being able to tell whether this kind of error should be
generated because the signature is really too general, or whether the type scheme is
too general because information has been discarded. In order to avoid this, explicit
type variables occurring in a signature are not bound to flexible type variables but
to rigid type variables.

Figure 6.17 Example showing the use of the rigid type variables

1 signature s = sig val x : bool end
2 structure S = struct val x = 1 end
3 structure T = S :> s
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Let rigtyvars(CL) be the set of rigid type variables occurring in CL, and let tyconvars(CL)

be the set of internal type constructor variables occurring in CL. Let the function
tyvars : ExtLabSyntSig → P(ExtLabSyntSig) which computes the set of explicit type
variables occurring in an explicit type, be defined as below.

tyvars(ty) = {ty | ty l ∈ labtyvars(ty)}

The application of a substitution to a constraint term is extended below.

x1 � id x2[sub] = x1[sub] � id x2[sub]

(e1:e2)[sub] = e1[sub]:e2[sub]

ins(e)[sub] = ins(e[sub])

6.4.3 Constraint Generation

Extensions to the constraint generation algorithm is given in figure 6.18, which
add support for signature related constraints.

The version of the constraint generator which supports for the new core is given in
figure 6.19.

Figure 6.19 Constraint generation rules for signatures (new core - 1 of 2) :
ExtLabSyntSig × P(Var)→ Env

Signature declarations

(G32) Jsignature sigid
l
= sigexpK = ∃〈ev , ev ′〉.ev ′ = (Jsigexp, evK; �sigid

l
= ev); ev ′l

Signature expressions

(G33) Jsigid l , evK = �sigid
l
= ev

(G34) Jsigl spec1 · · · specn end, evK = ∃ev ′.(ev
l
= ev ′); (ev ′ = (Jspec1K; ...; JspecnK))

Specifications

(G35) Jval vid : tyK = ∃α.(ev = poly(loc �tv1
l
= β1...�tvn

l
= βn in

(Jty , αK; �vid
l
= 〈α, v〉)))⇐ tyvars(ty) = {tv1, ..., tvn}

(G36) Jtype dn lK = ∃〈α, δ〉.(ev = Jdn, {α, δ}K(0)); ev l

(G37) Jstructure strid :l sigexpK = ∃〈ev , ev ′〉.(ev ′ = (Jsigexp, evK; (�strid
l
= ev))); ev ′l

(G38) Jdatatype dn
l
= cdK = ∃〈δ, α1, α2, ev〉.(ev = ((α2

l
= α1 δ1); e1;

loc e ′1 in poly(Jcd , α2K))); ev l ∧ Jdn, {δ, α1}K = 〈e1, e
′
1〉

Structure expressions

(G39) Jstrexp :l sigexp, evK = ∃〈ev1, ev2〉.Jsigexp, ev2K; Jstrexp, ev1K; (ev
l
= ev1:ev2)

(G40) Jstrexp :>l sigexp, evK = ∃〈ev1, ev2, ev3〉.Jsigexp, ev2K; Jstrexp, ev1K; e; (ev
l
=

ins(ev2)) ∧ e = (ev3
l
= ev1:ev2)

127



6.4. SIGNATURES

Figure 6.18 Constraint generation rules for signatures
Signature declarations(sigdec -. e)
(G32) signature sigid

l
= sigexp -. ev ′ = (e;�sigid

l
= ev);ev ′l

⇒⇒⇒ sigexp -. 〈ev , e〉 ∧∧∧ dja(e, ev ′)

Signature expressions(sigexp -. 〈ev , e〉)
(G33) sigid l -. 〈ev , �sigid

l
= ev〉

(G34) sigl spec1 · · · specn end -. 〈ev , (ev
l
= ev ′);(ev ′ = (e1; · · · ;en))〉

⇐⇐⇐ spec1 -. e1 ∧∧∧ · · · ∧∧∧ specn -. en ∧∧∧ dja(e1, . . . , en, ev , ev ′)

Specifications(spec -. e)
(G35) val vid :l ty -. (ev = e2);ev l

⇐⇐⇐ ty -. 〈α, e〉 ∧∧∧ tyvars(ty) = {tv 1, . . . , tvn} ∧∧∧ dja(e, ev , β1, . . . , βn)

where e2 = poly(loc �tv 1
l
= β1; · · · ;�tvn

l
= βn in (e;�vid

l
= 〈α, v〉))

(G36) type dn l -. (ev = e);ev l ⇐⇐⇐ dn -. 〈δ, α, e, e ′〉 ∧∧∧ dja(e, e ′, ev)
(G37) structure strid :l sigexp -. e2 ⇐⇐⇐ sigexp -. 〈ev , e〉 ∧∧∧ dja(e, ev ′)

where e2 = (ev ′ = (e;(�strid
l
= ev)));ev ′l

(G38) datatype dn
l
= cd -. (ev = ((α2

l
=α1 δ1);e1;loc e ′1 in poly(e2)));ev l

⇐⇐⇐ dn -. 〈δ1, α1, e1, e
′
1〉 ∧∧∧ cd -. 〈α2, e2〉 ∧∧∧ dja(e1, e2, γ, ev)

Structure expressions(strexp -. 〈ev , e〉)
(G39) strexp :l sigexp -. 〈ev , e2;e1;(ev

l
= ev 1:ev 2)〉

⇐⇐⇐ strexp -. 〈ev 1, e1〉 ∧∧∧ sigexp -. 〈ev 2, e2〉 ∧∧∧ dja(e1, e2, ev)

(G40) strexp :>l sigexp -. 〈ev , e2;e1;(ev dum
l
= ev 1:ev 2);(ev

l
= ins(ev 2))〉

⇐⇐⇐ strexp -. 〈ev 1, e1〉 ∧∧∧ sigexp -. 〈ev 2, e2〉 ∧∧∧ dja(e1, e2, ev)

Programs(prog -. e)
(G41) topdec1; · · · ;topdecn -. e1; · · · ;en

⇐⇐⇐ topdec1 -. e1· · · ∧∧∧ topdecn -. en ∧∧∧ dja(e1, . . . , en, ev)

Figure 6.20 Constraint generation rules for signatures (new core - 2 of 2) :
ExtLabSyntSig × P(Var)→ Env

Labelled type variables

(G48) Jty l
lK = �ty

l
= β

Declarations

(G17) Jval rec tvseq pat
l
= expK = ∃〈α1, α2, ev〉.(ev =

poly(loc JtvseqK; e in (Jpat , α1K; Jexp, α2K; (α1
l
= α2)))); ev l

∧ labtyvarsdec(tvseq , pat , exp) = ]ni=1{tv
li
i }

∧ e = ((�tv1
l
= β1)∨l1 ; ...; (�tvn

l
= βn)∨ln)

∧ dja(β1, ...βn)

Programs

(G41) Jtopdec1, ..., topdecnK = Jtopdec1K, ..., JtopdecnK

Type variable binders are edited below to bind to ρ variables instead of α variables.

�tv
l
= α

LabBind→ �tv
l
= ρ
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Rules (G35), (G36), (G37), and (G38) give constraint generation rules for specifi-
cations inside signatures. Some aspects of this, for example constraint generation
for datatype declarations, can be seen to be very similar to the way that these are
handled in the core presentation. As a result of this thesis, the number of sup-
ported specifications is extended when handling extensions presented later, such as
include specifications, but note that the handling of other extensions with this old
presentation of the theory is not shown, which can now be considered deprecated.

Constraint generation (G39) and (G40) show the contrast between constraints gener-
ated for programs where opaque signature constraints are used and where programs
with translucent constraints are used. Note that in the latter rule, it can be seen
that the ins form is called to handle opaque constraints, which was discussed in
section 6.4.2.

6.4.4 Constraint Solving

The constraint solving states are extended to include a new kind of state, match,
and add new error kinds to support errors that can occur using signatures.

state ∈ State ::= · · · | match(∆, d , e1, e2)

ek ∈ ErrKind ::= · · · | tyVarClash(tv 1, tv 2) | tooGeneral(µ1, µ2)

For the new version of the core, we must edit this definition (shown below) as the
solver has changed:

state ∈ State ::= ... | match(−→e , d , e1, e2)

The new error kinds are described below.

• tooGeneral(µ1, µ2) describes errors where there is a signature constraint on
a structure where a signature specification is more general than that of the
structure.

• tyVarClash(tv 1, tv 2) describes errors which exist when explicit type variable
used in a signature specification do not directly correspond to that of the
structure declaration.

The set of unifiers are extended as shown below (note that this extension also
extends Sub):
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Figure 6.21 Monomorphic to polymorphic environment function generalising flex-
ible and rigid type variables

toPoly(∆, �vid=τ) = ∆;(�vid
d
= ∀ρ. τ ′),

if


τ ′ = build(∆, τ)
ρ = (vars(τ ′) ∩ FRTyVar) \ (vars(monos(∆)) ∪ {αdum})
d = {d | αd0∪{d} ∈ monos(∆) ∧ α ∈ vars(τ ′) \ ρ}

toPoly(〈u, e〉, ed
0 ) = 〈u ′, e;e\e ′d〉, if toPoly(〈u, e〉, e0) = 〈u ′, e ′〉

toPoly(∆, e1;e2) = toPoly(∆′, e2), if toPoly(∆, e1) = ∆′

toPoly(∆, e) = ∆;e, if none of the above applies

u ∈ Unifier = {
⋃4
i=1 f i | f 1 ∈ ITyVar→ ITy

∧ f 2 ∈ TyConVar→ ITyCon

∧ f 3 ∈ EnvVar→ Env

∧ f 4 ∈ SigSemVar→ SigSem}

When generating type schemes, both the flexible (α) type variables and the rigid
(β) type variables may be quantified over.

The toPoly function is extended in figure 6.21 with the addition that when calculat-
ing the type variable set to quantify over, rigid type variables can also be quantified
over in addition to the flexible ones.

Now flexible and rigid type variables may be to be quantified over when generating
type schemes, so the definitions are updated to achieve this. Let us also define the
function scheme : Unifier × P(SVar)× IntLabSyntSig → Scheme:.

scheme(U , svar , CLSig) = ∀svar ∩ svars(CL′Sig). CL′Sig, if CL′Sig = U(CLSig)

There is a need to be able to build up flexible and rigid type variables, and build up
compositions of environments for solving rules involving constraints on signatures.
This is done in the updated version of build shown below.

build(u, �id=x) = (�id=build(u, x))

build(u, e1;e2) = build(u, e1);build(u, e2)

The new constraint solver which has been updated to handle constraints generated
for signatures is presented in figure 6.22 and figure 6.23. In figure 6.22 rules are
shown which deal with the slv form and in figure 6.23 rules are shown which deal
with the match form.

In rules (SM1)-(SM12), the environments generated for signatures and structures
which are constrained by those signatures are compared, and check that the dec-
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Figure 6.22 Constraint solving for signature related constraints (1)

equality simplification
(S14) slv(∆, d , τ 1 = τ 2) → slv(∆, d , µ= tv),

if {τ 1, τ 2} = {τ µ, β} ∧ strip(µ) ∈ TyConName
(S15) slv(∆, d , τ 1 = τ 2) → slv(∆, d , tv = arr),

if {τ 1, τ 2} = {τ 0 � τ ′0, β}
(S16) slv(∆, d , β1 = β2) → err(〈tyVarClash(tv 1, tv 2), d〉),

if β1 6= β2

(S17) slv(∆, d , µ1 = µ2) → err(〈tooGeneral(µ1, µ2), d〉),
if {µ1, µ2} ∈ {{tv, arr}, {tv, γ}}

binders
(B) slv(〈u, e〉, d , �id=x) → succ(〈u, e〉;(�id

d
= x)),

if id 6∈ SigId ∪ TyCon
(B7) slv(〈u, e〉, d , �sigid=e1) →

succ(〈u, e〉;(�sigid
d
= ∀tyconvars(e2). e2)) , if e2 = build(u, e1)

instantiations
(I1) slv(〈u, e〉, d , ins(e0)) → succ(〈u, e;e1[ins ]〉),

if build(u, e0) = e1

∧ dom(ins) = tyconvars(e1) ∧ dj(vars(〈u, e〉), ran(ins))

signature constraints
(SC1) slv(〈u, e〉, d , e1:e2) → match(〈u, e〉, d , build(u, e1), build(u, e2))

subtyping constraints
(SU1) slv(∆, d , σ1 � vid σ2) →

succ(〈u ′, e ′;�vid
d
= scheme(u ′, ρ1[ren1] ∪ ρ2[ren2], τ 2[ren2])〉) ,

if ∀i ∈ {1, 2}.(σi = ∀ρi. τ i ∨ (σi = τ i ∧ ρi = ∅ ∧ τ i 6∈ Dependent))
∧ dom(ren1) = ρ1 ∧ dom(ren2) = {α | α ∈ ρ2}
∧ dj(vars(∆), ran(ren1), ran(ren2))

∧ slv(∆, d , τ 1[ren1] = τ 2[ren2])→∗ succ(〈u ′, e ′〉)
(SU2) slv(∆, d , σ1 � vid σ2) → err(er),

if ∀i ∈ {1, 2}.(σi = ∀ρi. τ i ∨ (σi = τ i ∧ ρi = ∅ ∧ τ i 6∈ Dependent))
∧ dom(ren1) = ρ1 ∧ dom(ren2) = {α | α ∈ ρ2}
∧ dj(vars(∆), ran(ren1), ran(ren2))

∧ slv(∆, d , τ 1[ren1] = τ 2[ren2])→∗ err(er)

(SU3) slv(∆, d , κ1 � tc κ2) →
succ(〈u ′, e ′;�tc

d
= scheme(u ′, α1[ren1] ∪ α2[ren2], µ2[ren2])〉) ,

if ∀i ∈ {1, 2}.(κi = ∀αi. µi ∧ dom(ren i) = αi) ∧
dj(vars(∆), ran(ren1), ran(ren2))

∧ slv(∆, d , µ1[ren1] = µ2[ren2])→∗ succ(〈u ′, e ′〉)
(SU4) slv(∆, d , κ1 � tc κ2) → err(er),

if ∀i ∈ {1, 2}.(κi = ∀αi. µi ∧ dom(ren i) = αi)
∧ dj(vars(∆), ran(ren1), ran(ren2))

∧ slv(∆, d , µ1[ren1] = µ2[ren2])→∗ err(er)

(SU5) slv(∆, d , x1 � id x2) → slv(∆, d ∪ d
′
, y1 � id y2),

if (x1 is of the form yd
′

1 ∧ y2 = x2) ∨ (x2 is of the form yd
′

2 ∧ y1 = x1)
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Figure 6.23 Constraint solving for signature related constraints (2)
structure/signature matching
(SM1) match(∆, d , e,>) → succ(∆)

(SM2) match(∆, d , e, e1;e2) → match(∆′, d , e, e2),
if match(∆, d , e, e1)→∗ succ(∆′)

(SM3) match(∆, d , e, e1;e2) → err(er),
if match(∆, d , e, e1)→∗ err(er)

(SM4) match(∆, d , e, �vid=σ1) → slv(∆, d , σ2 � vid σ1),
if e(vid) = σ2

(SM5) match(∆, d , e, �tc=κ1) → slv(∆, d , κ2 � tc κ1),
if e(tc) = κ2

(SM6) match(〈u1, e1〉, d , e, �strid=e0) → succ(〈u2, e1;e ′d〉),
if e(strid) = e ′0 ∧ match(〈u1, e1〉, d , e ′0, e0)→∗ succ(〈u2, e2〉)
∧ e ′ = (�strid=e1\e2)

(SM7) match(∆, d , e, �strid=e0) → err(er),
if match(∆, d , e(strid), e0)→∗ err(er)

(SM8) match(∆, d , e, �vid=is1) → succ(∆;(�vid=is)),

if e[vid ] = is2 ∧ (solvable(is1
d
= is2) ∨

strip(is1) = v) ∧ is = ifNotDum(is1, is
d
2 )

(SM9) match(∆, d , e, �vid=is1) → err(er),
if strip(is1) 6= v ∧ slv(∆, d , is1 = e[vid ])→∗ err(er)

(SM10) match(∆, d , e, �id=x) → succ(∆;(�id=y)),
if e(id) is undefined ∧ y = toDumVar(x)

(SM11) match(∆, d , e, ev) → succ(∆;ev)

(SM12) match(∆, d , e, e ′d
′
) → match(∆, d ∪ d

′
, e, e ′)

larations in the signature are present in the structure definition. This is done
irrespective of whether the signature constraint is opaque or translucent in nature.

In rules (SU1)-(SU5), subtyping constraints are handled. Note that in the updated
presentation of this theory, in section 6.4, the rules for handling this are made sim-
pler due to the way that error states are dealt with due to the new stack parameter
of the constraint solver.

In the newest version of the constraint solver which supports the new code, we
also make the following changes. A new stackAction value is defined for appending
environments as shown below, used in rules (SU1) and (SU3) of the constraint
solver:

StackAction ::= ... | append(e)

isSucc′(−→e , d ,m,
−→
st , append(e ′))→ isSucc(−→e ; e ′,m,

−→
st )
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Figures 6.24 and 6.25 define the constraint solving extensions to handle signatures.
Rules (S14) to (S17) handle equality constraints with rigid type variables. Rules
(SM1) to (SM12) handle matching structures with signatures, and rules (SU1) to
(SU5) handle subtyping constraints.
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Figure 6.24 Constraint solving rules to support signatures (new core - 1 of 2) :
State→ State
equality simplification
(S14) slv(−→e , d ,m,

−→
st , τ1 = τ2) → slv(−→e , d ,m,

−→
st , µ = α)

if {τ1, τ2} = {τµ, β} ∧ strip(µ) ∈ TyConName

(S15) slv(−→e , d ,m,
−→
st , τ1 = τ2) → slv(−→e , d ,m,

−→
st , tv = ar)

if {τ1, τ2} = {τ0 → τ ′0, β}
(S16) slv(−→e , d ,m,

−→
st , β1 = β2) → err(〈tyVarClash(, , d)〉)

. if β1 6= β2

(S17) slv(−→e , d ,m,
−→
st , µ1 = µ2) → err(〈tooGeneral(µ1, µ2), d〉)

if {µ1, µ2} ∈ {{tv, ar}, {tv, γ}}
binders
(B1) slv(−→e , d ,m,

−→
st , �id=x) → isSucc(−→e ; (�id

d
= x),m,

−→
st )

if id /∈ SigId ∪ ITyCon

(B7) slv(−→e , d ,m,
−→
st , �sigid=e1) →

isSucc(−→e ; (�sigid
d
= ∀tyconvars(U(e1)).U(e1)),m,

−→
st )

(B9) slv(−→e , d ,m,
−→
st , �tv = β) → isSucc(−→e ; (�tv

d
= β),m,

−→
st )

if −→e (tv) is undefined
(B10) slv(−→e , d ,m,

−→
st , �tv = β) → isSucc(−→e ,m,

−→
st )

if −→e (tv) defined
instantiations
slv(−→e , d ,m,

−→
st , ins(e0)) → isSucc(−→e ; e1[ins],m,

−→
st )

if U(e0) = e1 ∧ dom(ins) = tyconvars(e1)

∧ dj(vars(U) ∪ vars(−→e ), ran(ins))
signature constraints
slv(−→e , d ,m,

−→
st , e1:e2)→ match(−→e , d ,U(e1),U(e2))

subtyping constraints
(SU1) slv(−→e , d ,m,

−→
st , σ1 � vid σ2) →

slv(−→e , d ,m,
−→
st @〈〈new, d , new, append(e2)〉〉, e1)

if ∀i ∈ {1, 2}. (σi = ∀ρ. τ i ∨ (σi = τ i ∧ ρi = ∅ ∧ τ i /∈ Dependent))

∧ dom(ren1) = ρ1 ∧ dom(ren2) = {α | α ∈ ρ2}
∧ dj((vars(U) ∪ vars(−→e )), ran(ren1), ran(ren2))

∧ e1 = τ1[ren] = τ2[ren]

∧ e2 = �vid
l
= scheme(U , ρ1[ren1] ∪ ρ2[ren2], τ2[ren2])

(SU3) slv(−→e , d ,m,
−→
st , κ1 � tc κ2) →

slv(−→e , d ,m,
−→
st @〈〈new, d , new, append(e2)〉〉, e1)

if ∀i ∈ {1, 2}. (κi = ∀α. µi ∧ dom(reni) = αi)

∧ dj((vars(U) ∪ vars(−→e )), ran(ren1), ran(ren2))

∧ e1 = µ1[ren] = µ2[ren]

∧ e2 = �tc
l
= scheme(U , α1[ren1] ∪ α2[ren2], µ2[ren2])

(SU5) slv(−→e , d ,m,
−→
st , x1 � id x2) → slv(−→e , d ∪ d

′
,m,
−→
st , y1 � id y2)

if (x1 is of the form yd
′

1 ∧ y2 = x2) ∨ (x2 is of the form yd
′

2 ∧ y1 = x1)
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Figure 6.25 Constraint solving rules to support signatures (new core - 2 of 2) :
State→ State
polymorphic environments

(P1) slv(−→e , d ,m,
−→
st , poly(�vid d

′

= α)) → isSucc(−→e ;σ,m,
−→
st )

if ρ = frtyvars(U(α))\
⋃
{frtyvars(U(x)) | x ∈ m}

∧ d
′′

= d
′ ∪ deps(vars(U(α)) / {U(x ) | x ∈ m})

∧ σ = �vid=〈∀ρ.U(α), d
′′〉

structure/signature matching
(SM1) match(−→e , d ,m,

−→
st , e ′,>) → isSucc(−→e ,m,

−→
st )

(SM2) match(−→e , d ,m,
−→
st , e ′, e1; e2) → match(−→e ′′, d ,m,

−→
st , e, e2)

if match(−→e , d ,m,
−→
st , e ′, e1)→ succ(−→e ′′)

(SM3) match(−→e , d ,m,
−→
st , e ′, e1; e2) → err(er)

if match(−→e , d ,m,
−→
st , e ′, e1)→ err(er)

(SM4) match(−→e , d ,m,
−→
st , e ′, �vid=σ1) → match(−→e , d ,m,

−→
st , e ′, σ2 � vid σ1)

, if e ′(vid) = σ2

(SM5) match(−→e , d ,m,
−→
st , e ′, �tc=κ1) → match(−→e , d ,m,

−→
st , e ′, κ2 � vid κ1)

, if e ′(tc) = κ2

(SM6) match(−→e , d ,m,
−→
st , e ′, �strid=e0) → isSucc(−→eb ; yd ,m,

−→
st )

if e ′(strid) = e ′0

∧ match(−→e , d ,m,
−→
st , e ′0, e0)→ succ(

−→
e ′′)

∧
−→
e ′′ = −→eb@〈y〉

(SM7) match(−→e , d ,m,
−→
st , e ′, �strid=e0) → err(er)

if match(−→e , d ,m,
−→
st , e ′(strid), e0)→ err(er)

(SM10) match(−→e , d ,m,
−→
st , e ′, �id=x) → isSucc(−→e ; y,m,

−→
st )

if −→e (id) is undefined ∧y = dum(�id=x)

(SM11) match(−→e , d ,m,
−→
st , e ′, ev) → isSucc(−→e ; ev ,m,

−→
st )

(SM12) match(−→e , d ,m,
−→
st , e ′, ed

′

1 ) → match(−→e , d ∪ d
′
,m,
−→
st , e ′, e1)

(SM13) match(−→e , d ,m,
−→
st , e ′, ev = e ′′) → match(−→e , d ,m,

−→
st , e ′, e ′′)

(SM14) match(−→e , d ,m,
−→
st , e ′, ∃a.e ′′) → match(−→e , d ,m,

−→
st , e ′, e ′′[{a → a ′}]),

if a ′ /∈ atoms(〈U , e ′′〉)

Let us consider the piece of code in figure 6.26.

The code in this figure is not typable because c is declared in the signature to be
of type bool, whereas in the structure S which is constrained by this signature,
this value is applied to (). In this example, if at attempt is made to try to slice
out the specification of c, a dummy binding would exist for c in the environment
of the signature. Consider the case that τ 1 is used instead of τ 2 in rule (SU1) to
build the binder for c in the environment for the structure T. In this case the binder
�c=∀∅. bool is generated, which would clash with the arrow type generated for the
application c (), and the following slice would be produced as a result:
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Figure 6.26 Clash between bool and unit

1 signature s =
2 sig
3 val c = bool
4 end
5
6 structure S =
7 struct
8 val c = true
9 end
10
11 structure T = S : s
12 val x = let
13 open T
14 in
15 c ()
16 end

〈..structure S = struct val c = true end

..structure T = S : 〈..〉

..〈..open T..c ()..〉..〉

It is important to note that this is not a complete type error slice - in fact it is
typable! If S was constrained by a signature which did not specify c, then the last
occurrence of c would be free and there would therefore not be an error. A minimal
slice would be the following:

〈..signature s = sig val c : 〈..〉 end

..structure S = struct val c = true end

..structure T = S : c

..〈..open T..c ()..〉..〉

In rule (S1), from a subtyping constraint of the form σ1 � vid σ2 a new type scheme
σ is generated and used to create a binder �vid=σ.

Let us look more closely at the way these new type schemes are generated. Let
σ be of the form ∀ρ1 . τ 1 and σ2 be of the form ∀ρ2 . τ 2. Fresh instances of τ are
generated terms giving τ ′1 and τ ′2. The type τ ′1 is obtained from τ 1 by renaming
the flexible and rigid type variables in ρ1 . As τ 2 should be not more general than
τ 1, only the flexible type variables are renamed in ρ2. It is also verified that τ ′1
can be made equal to τ ′2. Finally, σ is generated by building up τ ′2 to obtain τ and
then by renaming the flexible and rigid type variables in ρ1 ∪ ρ2 and quantifying
over those variables in τ .
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6.4.5 Constraint Filtering (Minimisation and Enumeration)

The filtering functions are modified in order that it can filter new signature-related
environments. There is a need to filter unlabelled environment variables (which is
handled with the v case).

filt(e1:e2, l1, l2) = filt(e1, l1, l2):filt(e1, l1, l2)

filt(ins(e), l1, l2) = ins(filt(e, l1, l2))

filt(v , l1, l2) = v

The definition of toDumVar is edited in order to generate dummy variables for
signature environments:

toDumVar(sig) = ev dum

6.4.6 Slicing

The syntax for programs is extended below to include signatures and their specifi-
cations:

Class ::= · · · | sigdec | sigexp | spec
Prod ::= · · ·

| sigdecDec

| sigexpSig

| specVal | specTyp | specDat | specStr
| strexpTr | strexpOp

The getDot function is also extended to support signature declarations, signature
expressions, and specifications:

getDot(〈sigdec, prod〉) = dotD

getDot(〈sigexp, prod〉) = dotS

getDot(〈spec, prod〉) = dotD

The toTree function is extended in figure 6.27 for signature declarations, both sig-
nature and structure expressions, specifications in signatures and for programs.
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Figure 6.27 Extension of toTree to deal with signatures

Signature declarations

toTree(signature sigid
l
= sigexp) =

〈〈sigdec, sigdecDec〉, l , 〈sigid , toTree(sigexp)〉〉

Signature expressions
toTree(sigid l) = 〈〈sigexp, id〉, l , 〈sigid〉〉
toTree(sigl spec1 · · · specn end) =

〈〈sigexp, sigexpSig〉, l , 〈toTree(spec1), . . . , toTree(specn)〉〉

Specifications
toTree(val vid :l ty) = 〈〈spec, specVal〉, l , 〈vid , toTree(ty)〉〉
toTree(type dn l) = 〈〈spec, specTyp〉, l , 〈toTree(dn)〉〉
toTree(datatype dn

l
= cd) =

〈〈spec, specDat〉, l , 〈toTree(dn), toTree(cd)〉〉
toTree(structure strid :l sigexp) =

〈〈spec, specStr〉, l , 〈strid , toTree(sigexp)〉〉

Structure expressions
toTree(strexp :l sigexp) =

〈〈strexp, strexpTr〉, l , 〈toTree(strexp), toTree(sigexp)〉〉
toTree(strexp :>l sigexp) =

〈〈strexp, strexpOp〉, l , 〈toTree(strexp), toTree(sigexp)〉〉

Programs
toTree(topdec1; · · · ;topdecn) =

〈dotD, 〈toTree(topdec1), . . . , toTree(topdecn)〉〉

This chapter has shown how the pre-existing extensions have been modified in order
to support the new version of the Skalpel core. In the next chapter, we will show
how the new extensions build on top of the work presented both in this chapter
and in chapter 3.
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Chapter 7

Extensions to Skalpel Core

In chapter 4, the Skalpel core was presented which dealt with a subset of the
Standard ML language. There complicated extensions were avoided, which are
presented here. The extensions provided in this chapter are listed below.

• Equality types;

• Abstract Type Declarations;

• Duplicate Identifiers in Specifications;

• Include Specifications;

• Type Sharing;

• Infixity.

The first four of these extensions were already attempted in [Rah10] however since
there now exists a newer, more polished version of the Skalpel core, these extensions
have been updated to be correct for this new version, fixing any bugs where they
exist.

139



7.1. EQUALITY TYPES

7.1 Equality types

This section presents an extension to Skalpel which adds support for equality type
errors in Standard ML.

Only equality types in Standard ML may be checked for equality. Examples of
types that can are strings1 (eg "a"="b" is false), integers (eg 2=2 is true), and the
unit type (eg ()=() is true).

In Standard ML, an equality type can be defined in signatures by using the eqtype
keyword, or by using the type keyword under certain conditions. Using type
annotations with a special kind of type variable will also set an equality type
status.

7.1.1 External Syntax

The external syntax used by this extension to the existing theory is ExtLabSyntSig

with the additional extensions in this section. We will refer to this set as
ExtLabSyntEqtype, which PL

Eqtype ranges over.

The external syntax is extended to include a new set containing equality type
variables, and the eqtype keyword in signatures (defined in section 6.4) as follows:

eqtv ∈ EqTypeVar (Equality type variables)
spec ∈ Spec ::= ... | eqtype dnl

Note that TyVar ∩ EqTypeVar = ∅ to avoid ambiguity.

An example untypable program with an equality type error is shown below.

structure S : sig eqtype x end =
struct

type ’a x = ’a -> ’a
end;

This program is not typable because the type x in the structure is declared to
be a function type, which is not an equality type, but in the signature the type
x is constrained to be an equality type.

1This assumes the user has not rebound the string or int types from the default declaration
in the basis provided with the compiler in use or the one provided as part of Skalpel.
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7.1.2 Constraint Syntax

The constraint syntax used in this extension is IntLabSyntSig with the modifi-
cations to the constraint syntax listed in this section. We refer to this set as
IntLabSyntEqtype, which CLEqtype ranges over.

We introduce into the constraint syntax equality type variables, and a notion of
an equality type status. The set of internal types are also redefined to annotate
each internal type variable with an internal equality type variable. Furthermore,
we annotate rigid type variables with an equality type variable.

Figure 7.1 Extensions to Syntax of Constraint Terms
θ ∈ IEqTypeVar (equality type variables)
Σ ∈ EqTypeStatus ::= EQ_TYPE | NEQ_TYPE | SIG_TYPE

τ ∈ ITy ::= 〈α, θ〉 | 〈β, θ〉 | τ µ | τ1 → τ2 | 〈τ , d〉
µ ∈ ITyCon ::= ... | 〈δ, θ〉
acc ∈ Accessor ::= �tc=δ | �strid=ev | �tv=〈α, θ〉 | �vid=〈α, θ〉
v ∈ Var ::= ... | θ

The symbol Σ representing equality type status values is used to attribute infor-
mation to expressions which indicate whether they can be checked for equality
or not. We need to generate constraints with equality type status information
attached so that we are able to detect equality type errors (for example, when an
expression is constrained to be both NEQ_TYPE and EQ_TYPE simultaneously
there is an equality type error). The SIG_TYPE status is a special status used
when handling type declarations in signatures, which is discussed later in this
section.

The constraint syntax for pseudo type functions is redefined so that α variables
are paired with an equality type variable:

tyf ∈ TyFun ::= δ | Λ〈α, θ〉. τ | 〈tyf , d〉

as are substitutions to constraint terms involving pseudo type functions:

(Λ〈α, θ〉. τ)[sub] = Λ〈α, θ〉. τ [{α, θ} −C sub], if {α, θ} * vars({α, θ} −C sub)

7.1.3 Constraint Generation

The constraint generation rules can be seen in figures 7.2 and 7.3.
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Figure 7.2 Extension of constraint generation rules for equality types (1 of 2) :
ExtLabSynt× P(Var)→ Env

Expressions

(G1) Jvid l
e, {α, θ}K = �vid

l
= 〈α, θ〉

(G2) Jletl dec in exp end, {α, θ}K =

[∃〈α2, θ2〉.JdecK;Jexp, 〈α2, θ2〉K;(〈α, θ〉
l
= 〈α2, θ2〉)]

(G3) Jdexp atexpel , {α, θ}K = ∃〈α1, θ1, α2, θ2〉.Jexp, 〈α1, θ1〉K; Jatexp, 〈α2, θ2〉K;
(〈α1, θ1〉

l
= 〈α2, θ2〉� 〈α, θ〉)

(G4) Jfn pat
l⇒ exp, {α, θ}K = [∃〈α1, θ1, α2, θ2, ev〉.(ev = Jpat , 〈α1, θ1〉K); ev l ;

Jexp, 〈α2, θ2〉K; (θ
l
= NEQ_TYPE); (〈α, θ〉 l

= 〈α1, θ1〉� 〈α2, θ2〉)]

(G46) Jexp:l ty , {α, θ}K = ∃〈α1, α2, θ1, θ2〉.Jexp, 〈α1, θ1〉K;Jty , 〈α2, θ2〉K;
(〈α, θ〉 l

= 〈α1, θ1〉); (〈α, θ〉 l
= 〈α2, θ2〉); (θ1

l
= θ2)

Patterns

(G6) Jvvar l
p, {α, θ}K = �vvar

l
= 〈α, θ〉

(G7) Jdcon l
p, {α, θ}K = �dcon

l
= 〈α, θ〉

(G8) Jdldcon atpatel , {α, θ}K = ∃〈α1, θ1, α2, θ2〉.Jldcon, 〈α1, θ1〉K; Jatpat , 〈α2, θ2〉K;
(〈α1, θ1〉

l
= 〈α2, θ2〉� 〈α, θ〉)

(G47) Jpat:l ty , 〈α, θ〉K = ∃〈α1, α2, θ1, θ2〉.Jpat , 〈α1, θ1〉K;Jty , 〈α2, θ2〉K;
(〈α, θ〉 l

= 〈α1, θ1〉); (〈α, θ〉 l
= 〈α2, θ2〉); (θ1

l
= θ2)

Labelled type constructors

(G5) Jdcon l , {α, θ}K = �dcon
l
= 〈α, θ〉

(G9) Jtcl , {δ, θ}K = �tc
l
= 〈δ, θ〉

Types

(G10) Jtv l , {α, θ}K = �tv
l
= 〈α, θ〉

(G11) Jdty ltcel , {α′, θ′}K =

∃〈α, θ, δ〉.Jty , 〈α, θ〉K; Jltc, {δ, θ′′}K; (θ′
l
= θ′′); (〈α′, θ′〉 l

= 〈α, θ〉 δ)
(G12) Jty1

l→ ty2, {α, θ}K = ∃〈α1, θ1, α2, θ2〉.Jty1, 〈α1, θ1〉K; Jty2, 〈α2, θ2〉K;
(θ

l
= NEQ_TYPE); (〈α, θ〉 l

= 〈α1, θ1〉� 〈α2, θ2〉)

Datatype names

(G13) Jdtv tcel , {α, θ}K = 〈∃δ.�tc
l
= δ, �tv

l
= 〈α, θ〉〉

(G59) Jdeqtv tcel , {α, θ}K = 〈∃δ.�tc
l
= 〈δ, θ〉, (θ l

= EQ_TYPE); �tv
l
= 〈α, θ〉〉
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Figure 7.3 Extension of constraint generation rules for equality types (2 of 2) :
ExtLabSynt× P(Var)→ Env

Constructor bindings

(G14) Jdcon l
c, {α, θ}K = �dcon

l
= 〈α, θ〉

(G16) Jdcon of l ty , {α, θ}K = ∃〈α′, θ′, α1, θ1〉.Jty , 〈α1, θ1〉K(〈α′, θ′〉
l
= 〈α1, θ1〉� 〈α, θ〉);

(�dcon
l
= 〈α′, θ′〉)

Declarations

(G17) Jval rec tvseq pat
l
= expK = ∃〈α1, α2, θ1, θ2, ev〉.(ev = poly(loc JtvseqK; e in

(Jpat , 〈α1, θ1〉K; Jexp, 〈α2, θ2〉K; (〈α1, θ1〉
l
= 〈α2, θ2〉)))); ev l

∧ labtyvarsdec(tvseq , pat , exp) = ]ni=1{tv
li
i }

∧ e = ((�tv1
l
= 〈β1, θ1〉)∨l1 ; ...; (�tvn

l
= 〈βn, θn〉)∨ln)

∧ dja(β1, ...βn, θ1, ...θn)

(G18) Jdatatype dn
l
= cbK = ∃〈α1, α2, α3, θ1, θ2, θ3, δ, γ, ev〉.(ev = ((δ

l
= γ);

(〈α2, θ2〉
l
= 〈α1, θ1〉γ); Jdn, 〈α3, θ3〉K(0);

loc Jdn, 〈α3, θ3〉K(1) in poly(Jcb, 〈α2, θ2〉K))); ev l

(G30) Jtype dn
l
= tyK = ∃〈α1, α2, α3, θ1, θ2, θ3, δ, ev〉.(ev = ((δ

l
= Λ〈α1, θ1〉. 〈α2, θ2〉);

loc Jdn, 〈α3, θ3〉K(1) in ((θ2
l
= θ3); Jty , 〈α2, θ2〉K;

Jdn, 〈α3, θ3〉K(0)))); ev l

Specifications

(G35) Jval vid : tyK = ∃〈α, θ〉.(ev = poly(loc �tv1
l
= 〈β1, θ1〉...�tvn

l
= 〈βn, θn〉 in

(Jty , 〈α, θ〉K; �vid
l
= 〈α, θ〉))) ⇐ tyvars(ty) = {tv1, ..., tvn}

(G36) Jtype dn lK = ∃{α, θ, δ}.(ev = (θ
l
= SIG_TYPE); �y l2= 〈δ, θ〉); ev l

⇐ Jdn, {α, θ, δ}K(0) = �y l2= δ

(G60) Jeqtype dn lK = ∃〈α, θ, δ, ev〉.(ev = (θ
l
= EQ_TYPE); Jdn, {α, θ, δ}K(0)); ev l

(G38) Jdatatype dn
l
= cdK = ∃〈δ, α1, α2, α3, θ1, θ2, θ3, ev〉.(ev =

((〈α2, θ2〉
l
= 〈α1, θ1〉 δ1); Jdn, {α3, θ3, δ}K(0);

loc Jdn, {α3, θ3, δ}K(1) in poly(Jcd , 〈α2, θ2〉K))); ev l

A number of these constraint generation rules have been updated to annotate
internal type variables with an equality type variable, θ. Some have also been
updated in order to enforce certain equality type status constraints on the θ

variable. For example, in rule (G4), the θ variable in constrained to be of status
NEQ_TYPE. The reason for this is that functions cannot be checked for equality.
Similarly there are cases where an EQ_TYPE status is enforced. This happens
for example in rule (G59), where explicit equality type variables are used, and in
rule (G60), where a type is defined in in a signature using the eqtype keyword.

The ShallowTyCon set is redefined to pair equality type variables with internal
type variables:
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stc ∈ ShallowTyCon ::= γ | Λ〈α, θ〉. 〈α′, θ′〉

7.1.4 Constraint Solving

The definition of Unifier is redefined to handle the unification of equality type
variables and status values as follows:

u ∈ Unifier = {
⋃4
i=1 fi | f1 ∈ ITyVar→ ITy

∧f2 ∈ TyConVar→ ITyCon

∧f3 ∈ EnvVar→ Env

∧f4 ∈ IEqTypeVar→ (EqTypeStatus ∪ IEqTypeVar)}

We also must extend error kinds to represent equality type errors, as can be seen
by the extension to the set holding error kinds below.

ek ∈ ErrKind ::= ... | equalityTypeErr(Σ1,Σ2)

The set VarE is introduced to ease the definition of the constraint solving rules
which carries the same definition as the set Var but with the change that internal
type variables are annotated with a θ variable:

ve ∈ VarE ::= 〈α, θ〉 | δ | ev

In order to allow renaming of θ variables when making binders polymorphic, we
must extend the substitution semantics:

〈τ , θ〉[sub] = 〈τ [sub], θ[sub]〉

The function opaqueEq : Env → Env is used to change the equality type status
of SIG_TYPE which is initially assigned to type declarations in signatures af-
ter a signature has been checked against its structure. We do not generate a
NEQ_TYPE status straight away as if a type were declared as an equality type
is a structure, but using the type keyword in a structure, we would erroneously
generate an equality type error when these declarations are compared.
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opaqueEq(∃x.y) = ∃x.opaqueEq(y)

opaqueEq(ev = x) = ev = opaqueEq(x)

opaqueEq(ev) = ev

opaqueEq(e1; e2) = opaqueEq(e1); opaqueEq(e2)

opaqueEq(bind) = bind

opaqueEq(acc) = acc

opaqueEq(c) = c, if c 6= (θ
l
= SIG_TYPE)

opaqueEq(θ
l
= SIG_TYPE) = θ

l
= NEQ_TYPE

opaqueEq(poly(e)) = poly(e)

opaqueEq(loc e1 in e2) = loc e1 in e2

We define a new set ITyEqVar as ITyVar ∪ IEqTypeVar.

Figures 7.4 and 7.6 show how the constraint solving rules are extended to support
equality types.

Figure 7.4 Extension of constraint solving rules for equality types (1 of 3) :
State→ State

equality constraint reversing

(R) slv(−→e , d ,m,
−→
st , ct = ct ′) → slv(−→e , d ,m,

−→
st , ct ′ = ct),

if s = VarE ∪ Dependent ∪ App ∧ ct ′ ∈ s ∧ ct 6∈ s
equality simplification

(S4) slv(−→e , d ,m,
−→
st , 〈τ1 � τ2, θ1〉= 〈τ3 � τ4, θ2〉) →

slv(−→e , d ,m,
−→
st , (θ1 = θ2); (τ1 = τ3);(τ2 = τ4))

(S9) slv(−→e , d ,m,
−→
st , τ2 µ = τ) →

slv(−→e , d ,m,
−→
st , τ ′[{〈α, θ〉 7→ τ2}] = τ), if collapse(µ∅) = (Λ〈α, θ〉. τ1)d

′

(S14) slv(−→e , d ,m,
−→
st , τ1 = τ2) →

slv(−→e , d ,m,
−→
st , µ = 〈α, θ〉)

if {τ1, τ2} = {τµ, 〈β, θ〉} ∧ strip(µ) ∈ TyConName

(S15) slv(−→e , d ,m,
−→
st , τ1 = τ2) →

slv(−→e , d ,m,
−→
st , tv = ar), if {τ1, τ2} = {τ0 → τ ′0, 〈β, θ〉}

(S16) slv(−→e , d ,m,
−→
st , 〈β1, θ1〉 = 〈β2, θ2〉) →

err(〈tyVarClash(, , d)〉), if 〈β1, θ1〉 6= 〈β2, θ2〉
(S28) slv(−→e , d ,m,

−→
st , 〈δ1, θ1〉 = 〈δ2, θ2〉) →

slv(−→e , d ,m,
−→
st , (θ1 = θ2); (δ1 = δ2))
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Figure 7.5 Extension of constraint solving rules for equality types (1 of 3) :
State→ State

binders/empty/dependent/variables

(B) slv(−→e , d ,m,
−→
st , �id=〈α, θ〉) →

isSucc(−→e ; �id
d̄
= 〈α, θ〉,m ∪ {αd},−→st ), if id /∈ TyCon

(B2) slv(−→e , d ,m,
−→
st , bind) →

isSucc(−→e ; bindd ,m,
−→
st ), if bind 6= �id=〈α, θ〉

accessors
(A1) slv(−→e , d ,m,

−→
st , �id=ve) → slv(−→e , d ,m,

−→
st , ve = x[ren])

if U(id) = ∀v . xd ′ ∧ dom(ren) = v ∧ dj(vars(〈U ,−→e , ve〉), ran(ren))

(A2) slv(−→e , d ,m,
−→
st , �id=ve) → slv(−→e , d ,m,

−→
st , ve = x)

if U(id) = x ∧ strip(x) not of the form ∀v . x
instantiations

(I1) slv(−→e , d ,m,
−→
st , ins(e0)) → isSucc(−→e ; e2[ins],m,

−→
st )

if U(e0) = e1 ∧ e2 = opaqueEq(e1) ∧ dom(ins) = tyconvars(e2)∧
dj(vars(U) ∪ vars(−→e ), ran(ins))

structure/signature matching

(SM5) match(−→e , d ,m,
−→
st , e ′, �tc=κ1) → match(−→e , d ,m,

−→
st , e ′, κ2 � vid κ1),

if e ′(tc) = κ2 ∧ (κ1 6= 〈δ, θ〉 ∨ κ2 6= 〈δ′, θ′〉
(SM5) match(−→e , d ,m,

−→
st , e ′, �tc=κ1) → match(−→e , d ,m,

−→
st ′, e ′, κ2 � vid κ1),

if e ′(tc) = κ2 ∧ κ1 = 〈δ, θ〉 ∧ κ2 = 〈δ′, θ′〉 ∧ −→st ′ =
−→
st @〈〈new, d , new, θ = θ′〉〉

Figure 7.6 Extension of constraint solving rules for equality types (2 of 3) :
State→ State

polymorphic environments

(P1) slv(−→e , d ,m,
−→
st , poly(�vid d

′

= 〈α, θ〉)) → isSucc(−→e ;σ,m,
−→
st ),

if ȳ = ityeqvars(U(α))\
⋃
{ityeqvars(U(x)) | x ∈ m}

∧ d
′′

= d
′ ∪ deps(vars(U(α)) / {U(x ) | x ∈ m})

∧ σ = �vid=〈∀(ȳ ∪ {θ}). 〈U(α), θ〉, d ′′〉
equality types
(E1) slv(−→e , d ,m,

−→
st , 〈α, θ〉 = 〈τ , θ′〉) →

slv(−→e , d ,m,
−→
st @〈new, d , new, α = τ〉, θ = θ′)

(E2) slv(−→e , d ,m,
−→
st , 〈α, θ〉 = 〈τ1, θ1〉 → 〈τ2, θ2〉) →

slv(−→e , d ,m,
−→
st @〈new, d , new, α = τ1 → τ2〉, θ = θ1)

(E3) slv(−→e , d ,m,
−→
st , 〈α, θ〉 = 〈τ , θ′〉γ) →

slv(−→e , d ,m,
−→
st , α = τγ)

(E4) slv(−→e , d ,m,
−→
st ,Σ1 = Σ2) →

isSucc(−→e ,m,
−→
st ), if Σ1 = Σ2 ∨ {SIG_TYPE} ⊆ {Σ1,Σ2}

(E5) slv(−→e , d ,m,
−→
st ,Σ1 = Σ2) →

equalityTypeErr(Σ1,Σ2), if Σ1 6= Σ2 ∧ {SIG_TYPE} * {Σ1,Σ2}

Rule (E4) and (E5) handle the comparison of equality type statuses. In the case
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of a clash of statuses between EQ_TYPE and NEQ_TYPE we generate an error,
if the status values are the same or one of the status values is SIG_TYPE then
we succeed. Rule (I1) deals with turning equality constraints where equality type
variables are assigned to the SIG_TYPE status to an equality constraint where
NEQ_TYPE is the status mapped to instead. It is necessary to wait until after
the structure and signature have been compared to generate this status or types
declared as equality in the structure would clash with the signature, which would
be erroneous.

7.1.5 Slicing

The addition in figure 7.7 is made to the specifications section of toTree to handle
the eqType keyword in signatures.

Figure 7.7 Extensions to toTree
Specifications
toTree(eqtype dnl) = 〈〈spec, specEqtype〉, l, 〈toTree(cd)〉〉

7.1.6 Worked Example

Let us consider the program, written with labels included, shown in figure 7.8.

Figure 7.8 Ill typed code containing an equality type error

1 let l1

2 datatype d’’a mydtel3
l2
= A of l4”al9

3 in

4 dAl10(fn xl7
l6

=> xl8)el5
5 end

This is a basic example showing the presence of an equality type error using
only the external language syntax features presented in the Skalpel core. The
constraints that are generated for this example are given in figure 7.9.2

Using the new constraint solving rules defined in this section, we now solve the
following constraints to check whether this program is typable. Our set of unifiers
U is initialised to ∅, and we begin the solving algorithm:

slv(〈〉,∅,∅, 〈〉, e), where e is
2If the reader wishes to refresh their memory on how to run a constraint generator defined in

this document on a labelled program, it is recommend to review section 4.3 and example one in
chapter 5, which go into more detail on how to apply the constraint generation rules.
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Figure 7.9 Constraints generated for program in figure 7.8

[∃〈α2, θ2〉.e1; e2; (〈α, θ〉 l1= 〈α2, θ2〉)]

where e1 is:
∃〈α1, α2, α3, θ1, θ2, θ3, δ, γ, ev〉.ev

l2= ((δ
l2= γ); (〈α2, θ2〉

l2= 〈α1, θ1〉γ);

�mydt l3= 〈δ, θ3〉; loc (θ3
l3= EQ_TYPE); �”a l3= 〈α3, θ3〉 in poly(∃〈α′, θ′, α′′, θ′′〉.

�”a l9= 〈α′′, θ′′〉; (〈α′, θ′〉 l4= 〈α′′, θ′′〉 → 〈α2, θ2〉); (�A l4= 〈α′, θ′〉))); ev l2

and e2 is:
∃〈α3, θ3, α4, θ4〉.�A

l10= 〈α3, θ3〉; [∃〈α5, θ5, α6, θ6, ev〉.(ev = �x l7= 〈α5, θ5〉; ev l6 ; �x l9=
〈α6, θ6〉;
θ4

l6= NEQ_TYPE); (〈α4, θ4〉
l6= 〈α5, θ5〉 → 〈α6, θ6〉)]; (〈α3, θ3〉

l5= 〈α4, θ4〉 → 〈α2, θ2〉)

[∃〈α2, θ2〉.∃〈α1, α2, α3, θ1, θ2, θ3, δ, γ, ev〉.ev
l2= ((δ

l2= γ); (〈α2, θ2〉
l2= 〈α1, θ1〉γ);

�mydt l3= 〈δ, θ3〉; loc (θ3
l3= EQ_TYPE); �”a l3= 〈α3, θ3〉 in poly(∃〈α′, θ′, α′′, θ′′〉.

�”a l9= 〈α′′, θ′′〉; (〈α′, θ′〉 l4= 〈α′′, θ′′〉 → 〈α2, θ2〉); (�A l4= 〈α′, θ′〉))); ev l2 ;

∃〈α3, θ3, α4, θ4〉.�A
l10= 〈α3, θ3〉; [∃〈α5, θ5, α6, θ6, ev〉.(ev = �x l7= 〈α5, θ5〉; ev l6 ; �x l9=

〈α6, θ6〉; θ4
l6= NEQ_TYPE); (〈α4, θ4〉

l6= 〈α5, θ5〉 → 〈α6, θ6〉)]; (〈α3, θ3〉
l5= 〈α4, θ4〉 →

〈α2, θ2〉); (〈α, θ〉 l1= 〈α2, θ2〉)]

We apply rules (U4), (X) (renaming α2 and θ2 to α1 and θ1 respectively), (C1)

(moving the rest of the constraints from the let expression into the stack −→st ),
(X) (renaming α1, θ1, α2, θ2, α3, θ3, ev , δ, γ to α3, θ3, α4, θ4, α9, θ9, ev 1, δ9, γ9 respec-
tively) and (C1), where we then call:

slv(〈〉,∅,∅,−→st , (ev 1 = ((δ9
l2= γ9); (〈α4, θ4〉

l2= 〈α9, θ9〉γ9); �mydt l3= 〈δ9, θ9〉;
loc (θ9

l3= EQ_TYPE); �”a l3= 〈α9, θ9〉 in
poly(∃〈α′, θ′, α′′, θ′′〉.�”a l9= 〈α′′, θ′′〉;
(〈α′, θ′〉 l4= 〈α′′, θ′′〉 → 〈α4, θ4〉); (�A l4= 〈α′, θ′〉)))))

Rules (U4), (C1), (D), (U3), (C1), (D), (E3), (U3), (C1), (D), and (B2) are then
applied.

slv(〈�mydt {l2,l3}= γ1〉, {l2, l3},∅,
−→
st , �”a l3= 〈α1, θ1〉; θ1

l3= EQ_TYPE;

poly(∃〈α′, θ′, α3, θ3〉.�”a
l9= 〈α3, θ3〉;

(〈α′, θ′〉 l4= 〈α3, θ3〉 → 〈α4, θ4〉);
�A l4= 〈α′, θ′〉))

where the unifier U is {δ9 7→ γ9, α4 7→α9γ9}.

Rules (C1), (D), (B1), (C1), (D), (U3) are applied to leave the poly expression:

slv(〈�mydt {l2,l3}= γ1; �”a
{l2,l3}

= 〈α1, θ1〉〉, {l2, l3}, {α{l2,l3}1 },−→st ,

poly(∃〈α′, θ′, α3, θ3〉.�”a
l9= 〈α3, θ3〉; (〈α′, θ′〉 l4= 〈α3, θ3〉 → 〈α4, θ4〉); �A

l4=

〈α′, θ′〉))
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where the unifier U is now {δ9 7→ γ9, α4 7→α9γ9, θ1 7→EQ_TYPE}.

To solve this polymorphic call we apply rules (P6) (where α′, θ′, α3, θ3 are renamed
to α5, θ5, α6, θ6), (P4), (P5), (D), (A1), (E1), (U3), (U3), (P4), (P5), (D), (E2),
(U3), (U3), (P1). After these applications, we then call3:

slv(〈�mydt {l2,l3}= γ1; �”a
{l2,l3}

= 〈α1, θ1〉; �A
l4= ∀{α6, α4}. 〈α6 → α4, θ5〉〉,

{l2, l3, l9, l4}, {α{l2,l3}1 },−→st ,

ev l2 ;∃〈α3, θ3, α4, θ4〉.�A
l10= 〈α3, θ3〉; [∃〈α5, θ5, α6, θ6, ev〉.(ev = �x l7= 〈α5, θ5〉);

ev l6 ; �x l9= 〈α6, θ6〉; (θ4
l6= NEQ_TYPE); (〈α4, θ4〉

l6= 〈α5, θ5〉 → 〈α6, θ6〉)];
(〈α3, θ3〉

l5= 〈α4, θ4〉 → 〈α2, θ2〉); (〈α, θ〉 l1= 〈α1, θ1〉))

where the unifier U is now:

{δ9 7→ γ9, α4 7→α9γ9, θ1 7→EQ_TYPE, θ6 7→ θ1, α6 7→α1, θ5 7→ θ6, α5 7→ (α6 → α4)}

We apply rules (C1), (D), (V), (X), (C1), (D), (A1), (E1), (U3), (U3), (C1), (U4),
(X), (C1), (U4), (D), (B), (C1), (D), and (V) to yield:

slv(〈�mydt {l2,l3}= γ1; �”a
{l2,l3}

= 〈α1, θ1〉; �A
l4= ∀{α6, α4}. 〈α6 → α4, θ5〉; ev {l2,l3,l9,l4};

ev
{l2,l3,l9,l4,l10,l7}
2 〉, {l2, l3, l9, l4, l10, l7}, {α{l2,l3}1 },−→st ,

�x l9= 〈α10, θ10〉; (θ8
l6= NEQ_TYPE); (〈α8, θ8〉

l6= 〈α9, θ9〉 → 〈α10, θ10〉);
(〈α7, θ7〉

l5= 〈α8, θ8〉 → 〈α2, θ2〉); (〈α, θ〉 l1= 〈α1, θ1〉))

where the unifier U is now:

{δ9 7→ γ9, α4 7→α9γ9, θ1 7→EQ_TYPE, θ6 7→ θ1, α6 7→α1, θ5 7→ θ6,

α5 7→ (α6 → α4), θ7 7→ θ5, α7 7→α9 → α10, ev 2 7→ �x=〈α9, θ9〉}

Applying rules (C1), (D), (A1), (E1), (U3), (U3), (C1), (D), (U3), (C1), (D), (E2),
(U6), (R), (U3), (U3) leaves the following to be solved:

slv(〈�mydt {l2,l3}= γ1; �”a
{l2,l3}

= 〈α1, θ1〉; �A
l4= ∀{α6, α4}. 〈α6 → α4, θ5〉; ev {l2,l3,l9,l4};

ev
{l2,l3,l9,l4,l10,l7}
2 〉, {l2, l3, l9, l4, l10, l7, l6}, {α{l2,l3}1 },−→st ,

(〈α7, θ7〉
l5= 〈α8, θ8〉 → 〈α2, θ2〉); (〈α, θ〉 l1= 〈α1, θ1〉))

where the unifier U is now:

{δ9 7→ γ9, α4 7→α9γ9, θ1 7→EQ_TYPE, θ6 7→ θ1, α6 7→α1, θ5 7→ θ6,

α5 7→ (α6 → α4), θ7 7→ θ5, α7 7→α9 → α10, ev 2 7→ �x=〈α9, θ9〉, θ10 7→ θ9,

3The constraints in the stack have now been moved into the last argument of slv by isSucc.
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α10 7→α9, θ8 7→NEQ_TYPE, θ9 7→NEQ_TYPE, α8 7→α9 → α10}

Finally, rules (C1), (D), (E2), (U6), (R), (U6) are used, after which rule (E5)

generates an equality type error. After minimisation, the final slice presented is:

〈..datatype ’’a mydt = A of ’’a .. A (fn 〈..〉) ..〉

7.1.7 Tuples/records, and datatypes with more than one con-

structor

Let us look at another example involving equality type errors:

datatype ’a mydt = firstCons of ’a | secondCons of ’a;

fun getReal () = 5.0;

val x = firstCons (1, getReal (), 5);
val y = firstCons (2, getReal (), 6);

x = y

This is also not typable. The expression x = y results in constraints that x and
y should both be equality types, but the middle component of both the x and
the y tuple is the number of type real returned by getReal, which makes both x

and y not equality types, which causes an equality type error. The highlighting
produced by the Skalpel analysis engine is shown below.

datatype ’a mydt = firstCons of ’a | secondCons of ’a;

fun getReal () = 5.0;

val x = firstCons (1, getReal (), 5);
val y = firstCons (2, getReal (), 6);

x = y

The machinery for handling tuples, records, and datatypes with more than one
constructor is not presented in this document, but is considered in the imple-
mentation. The implementation has been extended to detect equality type errors
which might arise using such features too. When a tuple is used, the equality type
status of the tuple as a whole depends on the equality type status of each of the
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components of a tuple - if any of the individual components have an NEQ_TYPE

status then the tuple as a whole cannot be checked for equality. Similarly, when a
datatype is defined all of the constructors of that datatype must admit equality,
otherwise comparison between any two datatype constructors of that datatype
results in an equality type error.

We have demonstrated how equality types are supported in Skalpel, and edited
the majority of the existing theory to achieve this. We have also shown a full
worked example to demonstrate how this theory operates and locates equality
type errors in Standard ML code.
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7.2 Abstract type declarations

In this section we present an extension to the existing theory to add support for
abstract type declarations.

In order to do this, extensions need to be made to the external syntax and to
the constraint generation rules, but by making use of the extension to the Skalpel
core which allows for greater flexibly in deciding which binders to export in a
term defined in 6.1, no extensions are needed to the constraint solving algorithm.

7.2.1 External syntax

The external syntax used by this extension to the existing theory is ExtLabSyntSig

with the additional extensions in this section. We will refer to this set as
ExtLabSyntAbstype, which PL

Abstype ranges over.

We introduce the abstype keyword to the external syntax as follows:

dec ::= ... | abstype dn
l
= cb with dec end

An example SML program is shown in figure 7.10 where the abstype keyword is
used and part of an error.

Figure 7.10 Example SML program containing the abstype keyword

1 abstype ’a mydt = MyConstructor of int
2 with val rec f = fn x => MyConstructor x end;
3 f true;

This program is erroneous as the constructor MyConstructor is defined to take
an integer argument, but in the second line a boolean is passed to the function
f, which applies its argument to the constructor MyConstructor.

7.2.2 Constraint generation

We use the loc keyword from the extension to the core presented in 6.1 in the
new constraint generation rule which is shown below.

(G61) Jabstype dn
l
= cb with dec endK = ∃〈α1, α2, ev〉.(ev = ((α1

l
= α2);

Jdn, α1K; loc poly(Jcb, α2) in JdecK)); ev l
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The use of the loc environment will ensure that binders of datatype constructors
are visible to the declaration dec that is specified but not accessible outside of the
abstype definition. This constraint generation rule is a modification of the one
presented in the Skalpel core and other any errors that can occur (that is, errors
not a cause of the now restricted scope of abstract type constructor binders) have
already been reported on in chapter 4.

7.2.3 Slicing

We must first update the labelled abstract syntax tree forms to include a slice
containing the abstype keyword:

prod ∈ Prod ::= ... | abstype

Finally, we update toTree to include slices involving abstract type declarations,
as shown below.

toTree(abstype dn
l
= cb with dec end) =

〈〈dec, decAbstype〉, l , 〈toTree(dn), toTree(cb), toTree(dec)〉〉

We have added support for abstract declarations in this extension. The extension
also shows how a new language feature can be supported without necessarily
extending every stage of the engine and re-using previous components.
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7.3 Duplicate Identifiers in Specifications

Presented here is an extension to create errors for code where a typename is
defined more than once in specifications. For example, the following code is
untypable:

signature S =
sig

type x = int
type y = bool
type x = string

end

In the above example, the typename x is defined twice. The theory presented
here is also extended in section 7.4 in order to handle cases where typenames can
be defined in signature which are included with the include keyword.

No alterations need to be made to the external syntax, as the syntax for type
and datatype declarations is given in section 6.4, with the syntax for the eqtype

keyword given in section 7.1.

7.3.1 Constraint Syntax

The constraint syntax used in this extension is IntLabSyntSig with the exten-
sions listed in this section. We refer to this set as IntLabSyntDuplicateId, which
CLDuplicateId ranges over.

A new environment form duplicates is defined in figure 7.11.

Figure 7.11 Extensions to Syntax of Constraint Terms
e ∈ Env ::= ... | duplicates(e)

We create this environment during constraint generation to indicate that we need
to check the environment specified in the argument for bindings which contain
the same typename. We only use this environment during constraint generation
of signatures4.

4It is not necessary to check for duplicate identifier declarations inside of structure or functor
definitions, as these are perfectly legitimate, and identifiers are simply rebound in this case.
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7.3.2 Constraint Generation

Figure 7.12 Extension of constraint generation rules for detection of duplicate
binding of typenames in specifications
Signature expressions

(G34) Jsigl spec1 · · · specn end, evK = ∃ev ′.(ev
l
= ev ′); (ev ′ = (Jspec1K; ...; JspecnK));

duplicates(ev ′)

The only change to the rule specified originally in figure 6.19 is the addition of
environment composition with the new duplicates environment. We will act
upon this in constraint solving and attempt to detect errors there5.

7.3.3 Constraint Solving

First, we extend state with a new form as shown below.

state ∈ State ::= ... | sameId(−→e , d ,m,
−→
st ,P(id × l),

−→
e ′ )

We create a new set which holds value identifiers or type constructors, as either
can be part of a duplicate specification error:

vidTc ∈ VidTyCon ::= vid | tc

In order to represent errors that can be generated when the same identifier is
located more than once in the same signature, we need to extend the kinds of
error that we can represent as follows:

ek ∈ ErrKind ::= ... | duplicateIdErr(〈vidTc, l〉, 〈vidTc, l ′〉)

First we define the function sameId, which takes an environment as an argument
and checks for duplicate type or constructor names in bindings. In the event that
duplicates are found, an error is generated and we present the labels attributed
to the identifiers that we have found to be the same. Otherwise, we continue to
solve whatever else is left in the stack.

5While it would perhaps be simpler to just report errors at this phase (constraint generation),
by looking at the environments that have been generated, we choose not to do this in order to
keep our constraint generation and solving phases strictly separate.
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The extensions to the constraint solving rules for sameId are given in figures 7.13
and 7.14.

Figure 7.13 Extension of constraint solving rules for duplicate identifier checks
in signatures (1 of 2)

sameId(−→e , d ,m,
−→
st , idLabel,

−→
st ′@ev) →

sameId(−→e , d ,m,
−→
st , idLabel,

−→
st ′@U(ev))

sameId(−→e , d ,m,
−→
st , idLabel,

−→
st ′@e1; e2) →

sameId(−→e , d ,m,
−→
st , idLabel,

−→
st ′@e2@e1)

sameId(−→e , d ,m,
−→
st , idLabel,

−→
st ′@∃a.e ′) →

sameId(−→e , d ∪ d
′
,m,
−→
st , idLabel,

−→
st @e ′[{a 7→ a ′}]),

if a ′ /∈ atoms(〈U , e ′〉)
sameId(−→e , d ,m,

−→
st , idLabel,

−→
st ′@�vid

l
= ts) →

sameId(−→e , d ,m,
−→
st , idLabel ∪ {(vid , l)},−→st ′)

if vid /∈ dom(idLabel)

sameId(−→e , d ,m,
−→
st , idLabel,

−→
st ′@�vid

l
= ts) →

duplicateIdErr(〈vid , l〉, 〈vid , idLabel(vid)〉)
if vid ∈ dom(idLabel)

sameId(−→e , d ,m,
−→
st , idLabel,

−→
st ′@�tc

l
= tcs) →

sameId(−→e , d ,m,
−→
st , idLabel ∪ {(tc, l)},−→st ′)

if vid /∈ dom(idLabel)

sameId(−→e , d ,m,
−→
st , idLabel,

−→
st ′@�tc

l
= tcs) →

duplicateIdErr(〈tc, l〉, 〈tc, idLabel(vid)〉)
if vid ∈ dom(idLabel)

sameId(−→e , d ,m,
−→
st , idLabel, 〈〉) →

isSucc(−→e ,m,
−→
st )

sameId(−→e , d ,m,
−→
st , idLabel,

−→
st @e) →

sameId(−→e , d ,m,
−→
st , idLabel,

−→
st )

if e /∈ Bind ∪ Var ∧ e 6= 〈〉 ∧ e 6= ∃a.e ′

Figure 7.14 Extension of constraint solving rules for duplicate identifier checks
in signatures (2 of 2)
instantiations
(I1) slv(−→e , d ,m,

−→
st , ins(e0)) → isSucc(−→e ; e2[ins],m,

−→
st )

if U(e0) = e1

∧ e2 = opaqueEq(e1)
∧ dom(ins) = tyconvars(e2)
∧ dj(vars(U) ∪ vars(−→e ), ran(ins))

(I2) slv(−→e , d ,m,
−→
st , duplicates(e0)) → sameId(−→e , d ,m,

−→
st , {}, 〈e0〉)
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7.3.4 Slicing

No changes are required to the slicing functions, the extensions reported in section
6.4.6 are sufficient. We do not need to update our set that holds external syntax
keywords as the theory for duplicate identifiers does not require introduction of
any new external syntax.

In this extension we have demonstrated how support for errors involving duplicate
identifiers which have been declared in the same specification can be detected.
This extension, like the others, is tested by our analysis engine test database,
discussed further in appendix C.
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7.4 Include specifications

This section adds support for include specifications to the existing theory. There
was some pre-existing support for this feature in the Skalpel analysis engine
but nothing had been written formally to support include specifications. The
initial implementation support included the handling of errors where a signature
included a type which was involved in a type constructor clash, but not for
example the case where a signature was included which defined a type which had
already been defined in that signature.

Let us look at an example where a program has an error as a specification has
been included multiple times.

signature S = sig
type ’a a = ’a -> ’a

end
signature S’ = sig

include S
type ’b b = ’b -> ’b
include S

end

The error occurs in the signature S’ in this case, as they type a has been included
in the signature twice. A type can only be defined in a signature at most once.

7.4.1 External syntax

The external syntax used by this extension to the existing theory is
ExtLabSyntAbstype with the additional extensions in this section. We will refer to
this set as ExtLabSyntInclude, which PL

Include ranges over.

The external syntax has to be extended to also contain the include keyword:

Figure 7.15 External syntax for include specifications
spec ∈ Spec ::= include sigexp l

7.4.2 Constraint syntax

The constraint syntax used in this extension is IntLabSyntDuplicateId. No changes
are required to the constraint syntax, the constraint syntax extended in section
6.4 and section 7.3 is sufficient to represent the necessary constraints.
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7.4.3 Constraint generation

An extension to the initial constraint generation rules is made to extend Skalpel
with support for the include keyword in figure 7.16.

Figure 7.16 Constraint generation rules for include specification :
ExtLabSyntInclude × P(Var)→ Env

(G62) Jinclude sigexp lK = ∃ev1.Jsigexp, ev1K

7.4.4 Constraint solving

In order for us to locate type names inside signature expressions where the ex-
pression is a sigid , we must extend sameId to handle accessors as shown below.

Figure 7.17 Extension of constraint solving rules for duplicate identifier checks
in include specifications
sameId(−→e , d ,m,

−→
st , idLabel,

−→
st ′@�id=v) →

sameId(−→e , d ,m,
−→
st , idLabel,

−→
st ′@−→e (id)), if −→e (id) defined

sameId(−→e , d ,m,
−→
st , idLabel,

−→
st ′@�id=v) →

sameId(−→e , d ,m,
−→
st , idLabel,

−→
st ′), if −→e (id) undefined

7.4.5 Slicing

Finally, we must extend slicing to support the include keyword by extending
our syntax for programs and toTree as follows.

Prod ::= ... | specInclude

toTree(include sigexp l) = 〈〈spec, specInclude〉, l , 〈toTree(sigexp)〉〉

We have demonstrated how Skalpel handles include specifications. Next, we
will describe how errors involving type sharing specifications are detected and
presented in Skalpel.
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7.5 Type Sharing

In Standard ML, types can be ’shared’, where two types are equal to the same
type. Additional constraints need to be generated to achieve this, and how we
handle these kinds of errors is described below.

7.5.1 External syntax

The external syntax used by this extension to the existing theory is
ExtLabSyntInclude with the additional extensions in this section. We will refer to
this set as ExtLabSyntSharing, which PL

Sharing ranges over.

This extension adds support for type sharing, and this is achieved through the
use of the sharing keyword in Standard ML. We extend our external syntax to
include this new keyword as seen in figure 7.18.

Figure 7.18 Extension to external syntax for type sharing
spec ∈ Spec ::= ... | sharing type vid1 = vid2

There are some notable differences in this presentation to that as defined in the
definition of Standard ML [MTHM98]. They are:

• Only two value identifiers can be present in a sharing specification in this
presentation. In the definition, there is no limit to how many types can be
specified to be shared. We support this in our implementation.

• A sharing specification can only be defined after some other specification
has already been defined. We do not carry such restrictions here, as we will
generate errors when a sharing specification is the first specification in a
signature anyway (as the types which are shared will have not been defined
yet in that signature, which is erroneous).

7.5.2 Constraint syntax

The constraint syntax used in this extension is IntLabSyntDuplicateId with the
extensions listed in this section. We refer to this set as IntLabSyntSharing, which
CLSharing ranges over.

We extend the constraint syntax with two forms:

1. A form which allows us to represent two types which are connected with a
sharing constraint;
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2. A form which represents the need to check that the types which are to
be shared are defined in the signature in which the sharing specification
is present before the sharing specification is given. (The reason why this
cannot be done by generating accessors is given in section 7.5.4.)

Figure 7.19 Extensions to constraint syntax to support type sharing
e ∈ Env ::= ... | sharingSig(ev) | sharingType(e1, e2)

7.5.3 Constraint generation

Two rules are added to the constraint generation machinery. Rule (G34) wraps
the environment variable containing a sig-declaration in a call to the sharingSig
function, defined in section 7.5.4. This function will check that types which are
to be shared occur in the signature declaration before the point of the sharing
specification.

Rule (G35) is an entirely new rule, which takes the two value identifiers which
are to be shared and puts them in the internal constraint syntax environment
sharingType to represent this.

Figure 7.20 Changes to existing constraint generation rules : ExtLabSyntSharing×
P(Var)→ Env

(G34) Jsigl spec1 · · · specn end, evK = ∃ev ′.(ev
l
= ev ′); (ev ′ = (Jspec1K; ...; JspecnK));

sharingSig(ev ′)

Figure 7.21 New constraint generation rules : ExtLabSyntSharing × P(Var)→ Env

(G35) Jdsharing type exp1 = exp2elK =

∃ev .ev = sharingType(∃α1.Jexp1, α1K,∃α2.Jexp2, α2K); ev l

7.5.4 Constraint solving

The constraint solver is extended to support the new constraint syntax form
sharingSig. This extension can be seen in figures 7.23 and 7.24.

We extend state with a new form as follows:

state ∈ State ::= ... | vidSharingCheck(−→e ,m,
−→
st , d , vid , e ′)

The bulk of the machinery for handling errors involving undefined value identifiers
in type sharing specifications is handled in figure 7.24. We cannot check for
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these errors merely with accessors, as if the value identifier is defined before a
signature specification, but not defined in that signature which in turn contains
a specification sharing that type with another type, then this is illegal in ML.
Note however that it would technically be possible to do this by checking that
the label of binder connected to the connected accessor, and check that it is less
than the number of the label of the sig-expression, but while this would save
some complexity in the definitions here this would create a dependency on the
way that we label programs, which is undesirable.

We need to extend the stack mechanism for the new vidSharingCheck function
for operations such as environment composition and stack checking. When we
check the stack for success in this function, we want to keep track of the value
identifiers that we have detected so far in the signature, so that we can determine
whether any are designated to be shared which are not bound. We start by
extending stackEv with a new form:

stackEv ∈ StackEv = ... | sha(e)

We extend this form as when checking for value identifiers in vidSharingCheck,
we never change the environment in the constraint solving rules −→e . As this is
the case, this slot to designate if the initial environment that was present at the
time this stack item was pushed to the stack or if the most recent environment
present at the time the isSucc function was called is not needed. We recycle this
slot in this extension to contain an environment we still need to check for value
identifiers. We do not put this environment in the fourth slot of the stack (the
slot which can already hold an environment for solving), as such environments
get passed to the slv function.

We introduce the isSuccVSC function, which operates similarly to isSucc but
carries with it the current set of value identifiers that we have so far discovered
when analyzing the environment given to vidSharingCheck. The rules for this
are shown in figure 7.22.

In order to represent errors that can occur when using type sharing, we extend
the set of errors with a new form sharingErr as shown below:

ek ∈ ErrKind ::= ... | sharingErr

In constraint solving rules (VSC4), (VSC5), (VSC6) and (VSC7) we handle the
case where we detect a binder in the environment. We check these binders against
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Figure 7.22 Rules for isSuccVSC

isSuccVSC(−→e ,m,
−→
st ′@〈〈sha(e ′), d , new,>〉〉, found)→

vidSharingCheck(−→e ,m,
−→
st , d , found, e ′)

isSuccVSC(−→e ,m,
−→
st ′@next, found)→ isSucc(−→e ,m,

−→
st @next),

where next 6= 〈〈sha(e ′), d , new,>〉〉

Figure 7.23 New constraint solving rules for handling type sharing : State →
State
type sharing
(SH1) slv(−→e , d ,m,

−→
st , sharingSig(ev))→ vidSharingCheck(−→e ,m,

−→
st , d , {}, ev)

(SM15) match(−→e , d ,m,
−→
st , e ′, sharingType(∃α1.�vid1

l1= α1, �vid2
l2= α2))→

slv(−→e , d ′,m,
−→
st , e ′(vid1) = e ′(vid2)), where d

′
= d ∪ {l1, l2}

the set of binders we have been gathering (found), and if we detect a duplicate
then we raise an error.

7.5.5 Slicing

We must update our slicing mechanism involving signatures to handle the new
sharing keyword. First, our syntax of programs is updated as follows with a form
which will allow us tto represent type sharing:

Prod ::= ... | specSharing

Finally, toTree must be updated to handle the sharing type external syntax as
shown in figure 7.25.

Figure 7.25 Extension to toTree

toTree(dsharing type exp1 = exp2el ) =

〈〈sigexp, specSharing〉, l , 〈toTree(exp1), toTree(exp2)〉

We have shown how Skalpel handles errors involving type sharing specifications,
by extending our support for signatures. In the next and final extension to the
theory, we will demonstrate how errors involving infix operators and handled.
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Figure 7.24 Declaration of vidSharingCheck : tuple(Env) × P(Monomorphic) ×
tuple(tuple(StackEv) × P(Dependency) × P(StackMono) × tuple(StackAction)) ×
P(Dependency)× P(VId)× Env

(VSC1) vidSharingCheck(−→e ,m,
−→
st , d , found, ev)→

vidSharingCheck(−→e ,m,
−→
st , d , found,U(ev))

(VSC2) vidSharingCheck(−→e ,m,
−→
st , d , found, �vid=x)→

isSuccVSC(−→e ,m,
−→
st , found ∪ {vid})

(VSC3) vidSharingCheck(−→e ,m,
−→
st , d , found, ed

′
)→

vidSharingCheck(−→e ,m,
−→
st , d ∪ d

′
, found, e)

(VSC4) vidSharingCheck(−→e ,m,
−→
st , d , found,

sharingType(∃α1.�vid1
l1= α1,∃α2.�vid2

l2= α2))

→ err(〈sharingErr, d ∪ {l1, l2}), if {vid1, vid2} ∩ found = ∅
(VSC5) vidSharingCheck(−→e ,m,

−→
st , d , found,

sharingType(∃α1.�vid1
l1= α1,∃α2.�vid2

l2= α2))

→ err(〈sharingErr, d ∪ {l2}), if vid1 ∈ found ∧ vid2 /∈ found
(VSC6) vidSharingCheck(−→e ,m,

−→
st , d , found,

sharingType(∃α1.�vid1
l1= α1,∃α2.�vid2

l2= α2))

→ err(〈sharingErr, d ∪ {l1}), if vid2 ∈ found ∧ vid1 /∈ found
(VSC7) vidSharingCheck(−→e ,m,

−→
st , d , found,

sharingType(∃α1.�vid1
l1= α1,∃α2.�vid2

l2= α2))

→ isSuccVSC(−→e ,m,
−→
st , found), if {vid1, vid2} ⊆ found

(VSC8) vidSharingCheck(−→e ,m,
−→
st , d , found, e1; e2)→

vidSharingCheck(−→e ,m,
−→
st ′, d , found, e1),

where −→st ′ =
−→
st @〈〈sha(e2), d , new,>〉〉

(VSC9) vidSharingCheck(−→e ,m,
−→
st , d , found, e ′)→

isSuccVSC(−→e ,m,
−→
st , found),

where e ′ 6= ed ∧ e ′ 6= bind ∧ e ′ 6= ev ∧ e ′ 6= sharingType(e1, e2) ∧
e ′ 6= e1; e2
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7.6 Operator Infixity

This section presents an extension to Skalpel so that it can detect errors in
programs involving infix operators.

fun l1l (a,b) = "(" ^ a ^ "," ^ b ^ ")";
fun l2l (a,b) = "(" ^ a ^ "," ^ b ^ ")";
fun l3l (a,b) = "(" ^ a ^ "," ^ b ^ ")";
fun r1r (a,b) = "(" ^ a ^ "," ^ b ^ ")";
fun r2r (a,b) = "(" ^ a ^ "," ^ b ^ ")";
fun r3r (a,b) = "(" ^ a ^ "," ^ b ^ ")";

infix 1 l1l;
infix 2 l2l;
infix 3 l3l;
infixr 1 r1r;
infixr 2 r2r;
infixr 3 r3r;

It is important to note that one option of implementing infix operator error
detection would be to edit the internal representation of the user code during
parsing, with the aim that we would be spared complexity in our solver. We
have chosen not to do this, primarily for the reason that internal modification
of user programs in this way is partly responsible for the poor errors that are
produced by the available compilers in the first place, and we wish to ensure
that we never present an internally modified version of submitted code to any
programmer.

7.6.1 External syntax

The external syntax used by this extension to the existing theory is
ExtLabSyntSharing with the additional extensions in this section. We will refer to
this set as ExtLabSyntInfix, which PL

Infix ranges over.

There are four new keywords that exist in the external (Standard ML) syntax.
These are listed below.

• infix. Specifies an operator is infix, which associates to the left. Takes an
argument specifying how high the precedence is.

• infixr Specifies an operator is infix, which associates to the right. an
argument specifying how high the precedence is.
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• nonfix. Takes infixity status away from an operator.

• op. Allows an operator to be used in a nonfix manner, even though it is
still defined as infix.

We also must have some notion of expressing digits in the external syntax for
the purpose of specification of operator infixity precedence. The changes to the
external syntax are presented in figure 7.26.

Figure 7.26 External syntax changes to handle infixity
dec ∈ Dec ::= ... | infix digit vid | infixr digit vid | nonfix vid
vid ∈ VId ::= ... | op vvar | op dcon
digit ∈ Digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

7.6.2 Constraint syntax

The constraint syntax used in this extension is IntLabSyntSharing with the exten-
sions listed in this section. We refer to this set as IntLabSyntInfix, which CLInfix
ranges over.

We present the constraint syntax updated to handle an internal notion of operator
infixity in figure 7.27.

Figure 7.27 Edits to constraint syntax for infix operators

bind ∈ Bind ::= ... | �vid
l
= 〈α, dir , digit〉

dir ∈ Direction ::= L | R | NONE
e ∈ Env ::= infix(dir , digit , vid , l)

| infixCheck(−→α , digit , digit ′, dir ,
−→
α′ ,
−→
lc ,
−→
l )

We extend our internal representation of binders to have a form where we can
bind to an internal type variable, a direction indicating in which direction the
operator associates, and a digit expressing its precedence.

We create a new set dir which indicates the direction in which the infix operator
associates. This can be either L, R or NONE .

We introduce a new environment infix, which is used to represent internally an
infix operator. We also create a new environment, infixCheck, which is used
to detect errors involving infixity. This is discussed further in the section on
constraint solving.
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7.6.3 Constraint generation

Now that we have to consider the notion of infix identifiers, we must edit the
rule for application. We do this by editing rule (G3) (which handles application)
in the constraint generator, as shown in figure 7.28.

We also create some new rule rules, (G63), (G64) and (G65), which handle con-
straint generation for infixity specifications (eg. left infixity, no infixity).

Figure 7.28 Modifications to constraint generation rules : IntLabSyntInfix ×
P(Var)→ Env

(G3) Jexp l1
1 atexp l2

2 ...atexp ln
n , αK = ∃〈α1, ..., αn〉.Jexp1, α1K; Jatexp2, α2K; ...;

Jatexpn, αnK; infixCheck(〈〉, 9,L, 〈α1, α2, ..., αn, α〉, 〈l1, ..., ln〉),
where exp is not of the form expatexp.

(G63) Jinfixl digit vidK = infix(L, digit , vid , l)
(G64) Jinfixrl digit vidK = infix(R, digit , vid , l)
(G65) Jnonfixl vidK = infix(NONE , 0, vid , l)
(G66) Jopl vid exp1 ... expnK = loc infix(NONE , 0, vid , l) in Jvid exp1 ... expnK

One of the challenges that come with an extension such as this is ensuring that the
constraint generator is kept simple. We do not interleave constraint generation
and solving. With this change to the application rule we retain the (relative)
simplicity of the constraint generation algorithm.

7.6.4 Constraint solving

To represent errors that can arise when using operator infixity, we extend the
set of errors we can represent with two new forms. The first is infixAsNofix,
which allows us to represent an infix operator being used in a nonfix way without
the op keyword, and illegalInfixity for errors when two infix operators with
the same precedence but in a different direction are placed around a term. The
extensions to the set ErrKind are shown below.

ek ∈ ErrKind ::= ... | infixAsNofix | illegalInfixity

We extend the set of unifiers to allow mappings from internal type variables to a
direction, digit, and value identifier:
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u ∈ Unifier = {
⋃5
i=1 fi | f1 ∈ ITyVar→ ITy

∧f2 ∈ TyConVar→ ITyCon

∧f3 ∈ EnvVar→ Env

∧f4 ∈ IEqTypeVar→ (EqTypeStatus ∪ IEqTypeVar)

∧f5 ∈ TyConVar→ TyConVar × Direction× Digit}

The new constraint solving rules which handle operator infixity are given in
figures 7.29 and 7.30.
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Figure 7.29 Constraint solving rules for operator infixity (1 of 2) : State→ State
operator infixity
(IN1) slv(−→e , d ,m,

−→
st , infixCheck(

−→
α′ , 9, digit , dir , 〈α1, ..., αn〉,

−→
lc , 〈l1, ..., ln〉)) →

slv(−→e , d ,m,
−→
st , (α1

{l1,l2}
= α2 → α′2);

infixCheck(
−→
α′ , 9,L, 9,L, 〈α′2, α3, ..., αn〉,

−→
lc , 〈l1, l3, ..., ln〉)),

if U(α1) = α′1 → α′2

(IN2) slv(−→e , d ,m,
−→
st ,

infixCheck(〈〉, prevDigit , digit , dir , 〈α1, ..., αn〉,
−→
lc , 〈l1, ..., ln〉)) →

err(〈infixAsNofix, d ∪ {l1}〉),
if U(α) = 〈α′,L, digit〉 ∨ U(α) = 〈α′,R, digit〉

(IN3) slv(−→e , d ,m,
−→
st , infixCheck(

−→
α′ , prevDigit , prevDir , 0,R,−→α ,

−→
lc , 〈〉)) →

isSucc(−→e ,m,
−→
st )

(IN4) slv(−→e , d ,m,
−→
st ,

infixCheck(〈α′, ..., αn′〉,
prevDigit , prevDir , digit , dir , 〈α1, ..., αn〉, 〈l c1, ..., l cn〉, 〈l1, ..., ln〉)) →
slv(−→e , d ,m,

−→
st , ct;

infixCheck(〈α′, ..., α(n−1)′ , α′′′i )〉,
digit , dir , digit , dir , 〈α3, ..., αn〉, 〈l c1, ..., l c(n−1), l1〉, 〈l3, ..., ln〉),

if U(α1) = 〈αi, dir ′, digit ′〉 ∧ dir = dir ′ ∧ digit = digit ′

∧ ct = (α1
{lcn,l1,l2}

= αn
′ → a2 → a′′′i ) ∧ U(αi) = α′i → α′′i → α′′′i

(IN5) slv(−→e , d ,m,
−→
st ,

infixCheck(〈α′, ..., αn′〉,
prevDigit , prevDir , digit , dir , 〈α1, ..., αn〉,

−→
lc , 〈l1, ..., ln〉)) →

slv(−→e , d ,m,
−→
st , (α2

{l2,l3}
= α3 → α′2)

infixCheck(〈α′, ..., αn′〉,
prevDigit , prevDir , digit , dir , 〈α1, α

′
2, α4, ..., αn〉,

−→
lc , 〈l1, l4, ..., ln〉)),

if U(α1) = 〈α′, dir ′, digit ′〉 ∧ dir = dir ′ ∧ digit = digit ′

∧ dir ′ 6= NONE ∧ U(α2) = α′1 → α′2

(IN6) slv(−→e , d ,m,
−→
st , infixCheck(

−→
α′ ,

prevDigit , prevDir , digit ,L, 〈α1, ..., αn〉,
−→
lc , 〈l1, ..., ln〉)) →

err(〈illegalInfixity, d ∪ {l1}〉),
if U(α1) = 〈α′, dir ′, digit ′〉 ∧ prevDigit = digit ′ ∧ prevDir 6= dir ′

∧dir ′ 6= NONE
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Figure 7.30 Constraint solving rules for operator infixity (2 of 2) : State→ State

(IN7) slv(−→e , d ,m,
−→
st ,

infixCheck(
−→
α′ , prevDigit , prevDir , digit , dir , 〈α1, ..., αn〉,

−→
lc , 〈l1, ..., ln〉)) →

slv(−→e , d ,m,
−→
st ,

infixCheck(
−→
α′@α1,

prevDigit , prevDir , digit , dir , 〈α2, ..., αn〉,
−→
lc @l1, 〈l2..., ln〉)),

if U(α1) 6= 〈α′, dir ′, digit ′〉 ∧ U(α1) 6= τ1 → τ2

(IN8) slv(−→e , d ,m,
−→
st , infixCheck(

−→
α′ , prevDigit , prevDir , digit ,L, 〈〉,

−→
lc , 〈〉)) →

infixCheck(〈〉, digit ,R, digit ,R, rev(
−→
α′), 〈〉, rev(

−→
lc ))

(IN9) slv(−→e , d ,m,
−→
st , infixCheck(

−→
α′ , prevDigit , prevDir , digit ,R, 〈〉,

−→
lc , 〈〉)) →

infixCheck(〈〉, digit − 1,L, digit − 1,L, rev(
−→
α′), 〈〉, rev(

−→
lc )),

if digit 6= 0

(IN10) slv(−→e , d ,m,
−→
st , infix(dir , digit , vid , l)) →

isSucc(−→e ; �vid
d∪{l}

= 〈α, dir , digit〉,m,
−→
st )

if −→e (vid) = �vid
d
= α

We solve these constraints by handling the top precedence operators which as-
sociate to the left as described in the rules below. When we reach the end of
the applications, we reverse the order of the internal type variables, labels etc.
and then do the same thing again, this time checking for right associativity. By
reversing the order of the internal type variables, we can reuse the mechanism for
left associativity, rather that implementing machinery to handle right associativ-
ity directly. After we have finished this, we drop down to the next infixity level
(if it exists, succeed otherwise), reversing the set of internal type variables again
and handling left infix operators, and continue until we succeed.

Our environment infixCheck has seven arguments. The first is the tuple of
internal type variables which we have already processed for the current infixity
precedence and direction we are currently searching for. The second argument
indicates the previous digit of precedence for the last infix operator that we
detected. The third argument is the current digit of operator precedence we are
currently handling. The fourth argument is the direction of associativity which
we are currently dealing with, the fifth argument is the tuple of internal type
variables still to be processed. The sixth argument is the labels for the internal
type variables that we have already processed and the final argument is the label
tuple for the internal type variables which we have yet to process.

We discuss each constraint solving rule below.

• We generate errors involving infixity in rules (IN6), which handles the case
where we see that some value is surrounded by two infix operators of the
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same precedence but operating in a different direction, and in rule (IN2),
which detects that a function which is declared as an infix operator is being
used in a manner as if it were not infix.

• In rule (IN3), we handle the case where we are handling infix operators
which associate to the right with precedence 0 and we have no more internal
type variables yet to handle. This means that we have finished doing
applications, and we generate success. Similarly:

– Rule (IN8) handles the case where we have run out of internal type
variables to handle are we are checking for left-associativity, and so it
reverses the internal type variables we have found so far and we will
then go on to look for operators which associate to the right.

– Rule (IN9) is the case where we again have run out of internal type
variables to look for but we have just handled all operators which
associate to the right with some precedence greater than 0. In this case
we decrease the precedence number that we are looking for, reverse the
internal type variable and label sets, and start looking for operators
which associate to the left with this new precedence.

• In rule (IN7), we deal with the case where we are looking at an internal type
variable and we notice that it is not an infix operator, nor is it a function.
In this case, we do nothing, and move on to process the next internal type
variable.

• We handle the case of non-infix function application in rule (IN1). If we see
that the internal type variable that we are currently processing is an arrow
type, then we apply an argument to it.

• In rules (IN4) and (IN5), we handle the case where we are dealing with
an infix operator which matches the precedence and the direction that we
are looking for. If we see that the internal type variable to the right of
this is mapped to in the set of unifiers as an arrow type, then we apply
an argument to it in rule (IN5). Otherwise, we use rule (IN4) and apply
arguments to the infix operator.

• Finally, in rule (IN10), we handle the case where we are dealing with an
environment which specifies that a new infix status has been defined for
some value identifier. In this case we generate a new binder for that value
identifier so that we can keep track of its status correctly.
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7.6.5 Slicing

We must update our slicing mechanism involving signatures to handle the new
keywords that were introduced. First, our syntax of programs is updated as
follows:

Prod ::= ... | decInfix | decInfixr | decNonfix | decOp

We also update toTree to handle new keywords presented in this section.

toTree(ddecInfix digit videl) = 〈〈dec, decInfix〉, l , 〈digit , toTree(vid)〉〉

toTree(ddecInfixr digit videl) = 〈〈dec, decInfixr〉, l , 〈digit , toTree(vid)〉〉

toTree(ddecNonfix videl) = 〈〈dec, decNonfix〉, l , toTree(vid)〉

toTree(ddecOp videl) = 〈〈dec, decOp〉, l , toTree(vid)〉

In this chapter we have extended the theory defined in chapter 4 with several new
extensions all of which contribute to supporting the Standard ML language. Our
analysis engine has been enhanced to support all of the extensions shown here
and more, and handles cases which we do not present here so that the theory is
not vastly complicated, such as tuples and the equality types support for them,
datatypes with multiple arguments, mutual recursion etc. Note that e.g. equality
types are supported for all Standard ML features, and not just for the subset
presented in the theory. We believe that additional extensions can be written in
a similar way to that presented here, by defining rules which govern how each
Skalpel component operates, in order to target new languages.

7.7 Summary

This chapter has updated some previously-existing extensions to operate with
the latest version of thee Skalpel core described in this thesis. We have also
demonstrated a number of entirely new key improvements to Skalpel in order
to support more features that are present in the Standard ML programming
language such as equality types and type sharing. In the next chapter we shall
given an overview of the properties of Skalpel, and show that the extensions given
in this chapter to not break e.g. termination.
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Chapter 8

Properties of Skalpel

In this chapter, we discuss some of the properties of Skalpel. Section 8.1 gives
some discussion on the properties of the Skalpel core, section 8.2 gives discussion
on the properties of the extensions and section 2.3 discusses how Skalpel matches
the criteria which are laid out in [YMTW00] which describe how error reporting
should be approached.

8.1 Properties of the Skalpel Core and Extensions

8.1.1 Skalpel Core: Constraint Generator

Lemma 8.1.1 (Constraint generator compositionality).
The constraint generator shown in figure 4.17 is compositional.

Proof. The algorithm given in figure 4.17 is compositionally built on the syntax
of figure 4.2.

Next, we show that constraint generation is linear in size.

Lemma 8.1.2 (Size of Constraint Generation).
The constraint generator shown in figure 4.17 is linear in the program’s size.

Proof. By inspection of the rules. For a polymorphic (let-bound) function (rules
(G2), (G6) and (G17)) we do not eagerly copy constraints for the function body.
Instead, we generate poly and composition environments, and binders force solv-
ing the constraints for the body before copying its type for each use of the
function.

Lemma 8.1.3 (Termination of Constraint Generation Algorithm). The constraint
generator shown in figure 4.17 terminates.

173



8.1. PROPERTIES OF THE SKALPEL CORE AND EXTENSIONS

Proof. Let us define an atomic constraint generation rule as constraint genera-
tion rule which does not have a recursive call inside. For example, the atomic
constraint generation rules in figure 4.17 are (G1), (G5), (G6), (G7) (G9), (G10),
(G13), (G14), (G19) and (G21). For a constraint generation run

cstgen′(PL, v)

either PL will be atomic in nature or it will not. If it is not, we recurse with
cstgen′(PL′, v ′), on some PL′ inside PL, such that PL′ is strictly smaller than PL.
Rules which recurse with strictly smaller parts of external syntax are rules (G2)

(let syntax removed in recursive call), (G3) (application syntax removed), (G4)

(fn syntax removed), (G8) (application removed), (G11) (application removed),
(G12) (arrow removed), (G16) (of syntax removed), (G17) (val rec removed),
(G18) (datatype syntax removed), (G20) (structure syntax removed), and (G22)

(struct syntax removed). When we inevitably reach an atomic PL, we halt and
return the generated environment e.

8.1.2 Skalpel Core: Constraint Solver

Our constraint solver for the Skalpel core will always terminate.

Lemma 8.1.4 (Constraint Solving Terminates).
The constraint solver given in figure 4.19 terminates.

Proof. By inspection of the rules:

• (R) Flips constraints. Constraints which are flipped can never be re-flipped,
as it forces the variable on to the left hand side which will result in com-
pletely finishing the environment we are handling under rules (U4) or (U6),
otherwise rules (U1), (U2), and (U3) can be used which all result in com-
pletely resolving this environment by way of either success or error.

• (S1) Throws away argument/adds to environment or unifier, and checks for
success.

• (S2) Same as rule (D) but for equality constraints.

• (S3) Breaks two application into two equality constraint terms. We never
build new applications of constraints, so we cannot return to this point.

• (S4) Breaks two arrow types into two equality constraints. We never build
new arrow types and so cannot return to this point.
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• (S5) Breaks an equality constraint of an application and an arrow type
down into a new equality constraint containing no applications or arrow
types, with the right hand side set as an ‘arr’ form. The left hand side
of the equality constraint will always be a variable, an ‘arr’ form, or a
dependent. In the case of a dependent form, we use rule (D) and return to
either a variable form or an ‘arr’ form. In the case of an ’arr’ form, we will
completely solve this environment under rule (S1). In the case of a variable,
we rely on rules (U1-U6), none of which build equality constraints except in
the case of (U6), which will immediately take the result of the application
of the variable on the left hand side to the unifier function and map that
to the ‘arr’ form under rule (U3).

• (S6) Terminates immediately with an error

• (U1) Terminates immediately with an error.

• (U2) Throws away argument/adds to environment or unifier, and checks for
success.

• (U3) Throws away argument/adds to environment or unifier, and checks for
success.

• (U4) Breaks apart an equality constraint between a variable and some other
constraint, and assigns the variable in the unifier function to the result of
solving the constraint. The new environment to solve is strictly smaller.

• (U6) Applies the unifier function to a variable, and creates a new equality
constraint with a new left hand side. One of the other (U1)-(U4) rules will
be called, and as rules (U1)-(U3) all completely solve the environment we
are handling now, this rule hinges on (U4) to terminates.

• (B) Throws away argument/adds to environment or unifier, and checks for
success.

• (B2) Throws away argument/adds to environment or unifier, and checks for
success.

• (X) Simply removes existential quantification. We do not ever re-existentially
quantify a term.

• (E) Throws away argument/adds to environment or unifier, and checks for
success.

• (D) We remove labels in this rule, and do not put them on in any other
rule (except P1, but the resulting term is added to the environment in the
first argument, which we never subtract from).
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• (V) Throws away argument/adds to environment or unifier, and checks for
success.

• (C1) Breaks a composition environment down to solve the first part (e1),
then the second (e2). As e1 is never the same as e1; e2 (unless e2 is
top, in which case after solving e1 we terminate under rule (E)), it can
be considered strictly ‘smaller’, and we do not ever build environments
which are ‘larger’ than the initial environment we are solving (where a
‘large’ environment is deemed as having more composition operators than a
‘smaller’ environment, excluding the additions of the top symbol, which we
have mentioned already).

• (A1) Throws away an accessor to create an equality constraint. That equal-
ity constraint will always terminate under one of the unifier access rules,
and we never build any accessors during solving.

• (A3) Throws away argument/adds to environment or unifier, and checks for
success.

• (P1) Throws away argument/adds to environment or unifier, and checks for
success.

• (P2) Unwraps a polymorphic environment, but care must be taken as we
build another environment which is a subset of the one we are handling,
and put it on the stack. As the new stack element is a binder wrapped in
a polymorphic environment, which will strictly always result in rule (P1)
being called, which is already terminating, rules (P1) and (P5) make this
rule terminating.

• (P3) Same as rule (D) but inside polymorphic environments.

• (P4) Same as rule (C1) but inside polymorphic environments.

• (P5) Unwraps a polymorphic environment. The environment unrwapped
can in no case be re-wrapped and so solving on recursion is strictly smaller.

• (P6) Same as rule (X) but inside polymorphic environments.

8.1.3 Minimiser

The next lemma shows that no label which contributes to an error is removed
during minimisation and no remaining labels after minimisation are extraneous.
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Lemma 8.1.5. After a run 〈e, 〈ek , l〉〉 min→ 〈ek ′, l
′〉 of the minimisation algorithm

shown in figure 3.19, the following hold:

1. ∀l ∈ l
′
, it holds slv(>,∅,∅,∅, e ′)→∗ succ,

where e ′ = filt(e, labs(e)\{l}, l ′\{l})

2. slv(>,∅,∅,∅, e ′′)→∗ err(er),

where e′′ = filt(e, labs(e), l
′
).

Proof. In order for a label which contributes to an error to be removed erro-
neously, we must remove a label in l1 ∪ l2 ∪ {l} of a minimisation step. In the
case of l1 and l2 , we only take out elements which are not in the label set
that was reported by an additional run of the constraint solving algorithm (rule
(MIN1)). Any labels we take out from these sets are extraneous, as the con-
straint solver therefore managed to find the same error without these elements.
As {l} ⊂ l , and we have established we do not erroneously throw any labels
away from l , {l} is therefore not thrown away erroneously. Therefore no labels
are erroneously thrown away in l1 ∪ l2 ∪ {l}, and so the minimisation algorithm
only generates a strictly smaller error. Furthermore, as we test all labels during
minimisation, no label is untested, and so all labels remaining after minimisation
are part of the minimised error.

8.1.4 Enumeration

After the enumeration algorithm has stopped, the errors that have been found
are all the minimal type errors in the analyzed piece of code. The next lemma
shows that any errors found during enumeration and presented to the user will
always be minimal.

Lemma 8.1.6. Given an output errors(er) of the enumeration algorithm (figure
3.19), for all errors err in er it holds that err is a minimal error.
Proof. Any errors which are found by the enumeration algorithm (rule (ENUM4)

handles the case where an error is found) will always be minimal as errors in
this rule, the sole rule for dealing with errors, are passed to the minimisation
algorithm. Lemma 8.1.5 shows that this error will therefore be minimal. We
never add any extra labels to errors during minimisation, and so we retain the
property that these errors are minimal.

8.1.5 Slicing

We now show that in figure 3.23, only those parts of the program which they
wrote and contribute to the error are shown to the user (that is, syntax is not
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shown which was not written by the user and which does not contribute to the
error).

Lemma 8.1.7. Given an output of toTree (figure 3.23), treeout, it is the case that
for any tree inside inside treeout, if treeout or tree inside is of the form 〈node, l , id〉 or
〈dot , id〉 or id , then id is part of the program syntax the user wrote and was sent
as input to Skalpel.

Proof. By inspection of the definition of toTree in figure 3.23. For any rule match-
ing labelled program syntax PL shown in figure 3.23, it holds that if toTree(PL)

is of the form 〈node, l , id〉 or 〈dot , id〉 or id , then id = PL, or PL is a piece of
syntax containing id . As we only generate program labels (l) for parts of the
user program and nothing else (figure 4.1), and the input of toTree is syntax that
is represented by a program label l , it is the case that PL is a piece of labelled
syntax written by the user. We have established the output of toTree is equal to
or is part of PL, and we have established that PL is syntax written by the user,
so it follows that the output of toTree is a piece of syntax that was written by
the user and sent as input to Skalpel.

8.1.6 Overall system

Lemma 8.1.8. For an erroneous program taken as input, Skalpel produces minimal
type error slices of all errors present in the user program, which contain all and only
parts of the user program responsible for the errors.

Proof. Given a user program P , we produce a labelled program PL and start
the constraint generation algorithm with cstgen(PL), producing an environment
e. We start enumeration with enum(e) and generate a filter set l , and if
filt(e, labs(e), l) −isErr−−→ er we generate a minimal error with 〈e, er〉 min→ 〈ek , l

′〉, and
collect all such errors that arise using different filters in er . We then perform
slicing on all of the minimal errors in er and present them to the user. The
combination of lemmas 8.1.5, 8.1.6, and 8.1.7 show that this lemma holds.

8.2 Extensions to the Core

The extensions to the Skalpel core given in chapter 7 do not break any of the
properties given above. We give below lemmas and proofs which demonstrate
this to be the case.

There are some lemmas and proofs which are not affected and so we do not dis-
cuss those. These are the lemmas concerning compositionality of the constraint

178



8.2. EXTENSIONS TO THE CORE

generator, constraints being linear in the program size, and the minimization, enu-
meration and final lemmas which all operate at a higher level and so are therefore
unaffected by such extensions. Termination properties however are affected, and
so we inspect each extension and verify no properties are broken.

8.2.1 Local declarations

Lemma 8.2.1. The extension to constraint generation given in section 6.1 does
not break the termination property of the constraint generator.

Proof. Rule (G29) is not atomic in nature, and recurses only on two PL values,
both of which are smaller than some PL′ taken as input, as we remove the
loc syntax. Inevitably we will recurse with cstgen′(PL

1, v 1) and cstgen′(PL
2, v 2),

where PL
1 and PL

2 are atomic pieces of syntax by lemma 8.1.3 and we will
terminate.

Lemma 8.2.2. The extension to constraint solver given in section 6.1 does not
break the termination property of the constraint solver.

Proof. Rule (L1) recurses the constraint solver on two environments, e1 and e2,
both of which are smaller in size than some e taken as input as the loc environ-
ment is removed from e. This rule solves these environments consecutively. As
solving all other environments has been shown to terminate (lemma 8.1.4), this
property holds.

Lemma 8.2.3. Given an output of toTree (figure 3.23), treeout, it is the case that
for any tree inside inside treeout, if treeout or tree inside is of the form 〈node, l , id〉 or
〈dot , id〉 or id , then id is part of the program syntax the user wrote and was sent
as input to Skalpel.

Proof. We extend toTree to handle forms which represent part of the user syntax,
and so this lemma holds due to lemma 8.1.7.

8.2.2 Type declarations

Lemma 8.2.4. The extension to constraint generation given in section 6.2 does
not break the termination property of the constraint generator.

Proof. Rule (G13) is an atomic constraint generation rule and so terminates. Rule
(G18) recurses on a datatype name, and composes the resulting environment with
a loc expression. As both have been shown to terminate in lemmas 8.2.2 and
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8.1.4, this rule terminates. Rule (G30) recurses on a datatype name, an internal
type, and a loc environment, which have been shown to terminate in lemmas
8.2.2 and 8.1.4, and so the termination property holds.

Lemma 8.2.5. The extension to the constraint solver given in section 6.2 does not
break the termination property of the constraint solver.

Proof. Rule (R) flips constraints. Once flipped, constraints are never re-flipped,
so this rule is terminating. Rules (S10), (B1) and (B6) check for success and
so terminate. Rule (S9) performs substitution on internal type constructors and
builds an internal type. Once built, this type constructor can never again be
decomposed back to the initial type constructor, and so this rule terminates.
Similarly for rules (S11) and (S13). Rule (S12) breaks applications for internal
type constructors into two smaller constraints and recurses. As these are never
recomposed, this is terminating. Rules (A1) and (A2) deal with accessors and
create new constraints to be solved - as we never rebuild accessors and all other
rules are shown to terminate, termination holds.

Lemma 8.2.6. Given an output of toTree (figure 3.23), treeout, it is the case that
for any tree inside inside treeout, if treeout or tree inside is of the form 〈node, l , id〉 or
〈dot , id〉 or id , then id is part of the program syntax the user wrote and was sent
as input to Skalpel.

Proof. We extend toTree to handle forms which represent part of the user syntax,
and so this lemma holds due to lemma 8.1.7.

8.2.3 Type annotations

Lemma 8.2.7. The extension to the constraint generator given in section 6.3 does
not break the termination property of the constraint generator.

Proof. Rules (G46) and (G47) recurse on expressions and internal types, both of
which have been shown to terminate in lemma 8.1.3. Rules (G48) and (G49)

are atomic in nature and so terminate. Rule (G50) recurses on type variable
sequences, calling rule (G48) which is atomic so terminates. Rule (G17) creates
a poly form, which has already been shown to terminate, and all recursive calls
inside have already been shown also to terminate.

Lemma 8.2.8. The extension to the constraint solver given in section 6.3 does not
break the termination property of the constraint solver.

180



8.2. EXTENSIONS TO THE CORE

Proof. Rules (B9) and (B10) deal with their unconfirmed binder argument by
either adding them to the environment or throwing them away, and so terminate.
Rule (OR) deals with the dependencies annotated on an environment and union
them with the dependency set, then recursing on the environment argument. As
we never add dependencies back on to an environment given as an argument,
termination holds.

Lemma 8.2.9. Given an output of toTree (figure 3.23), treeout, it is the case that
for any tree inside inside treeout, if treeout or tree inside is of the form 〈node, l , id〉 or
〈dot , id〉 or id , then id is part of the program syntax the user wrote and was sent
as input to Skalpel.

Proof. We extend toTree to handle forms which represent part of the user syntax,
and so this lemma holds due to lemma 8.1.7.

8.2.4 Signatures

Lemma 8.2.10. The extension to the constraint generator given in section 6.4 does
not break the termination property of the constraint generator.

Proof. Rules (G33) and (G48) are both atomic constraint generation rules and
so terminate. Rules (G36), (G38), (G35) and (G17) have no new function calls
and so their termination property is unaffected. Rule (G37) strips and analyzes
each sigexp form using rules (G39) and (G40), as in ML there can only be a
finite number of these this rule terminates provided the other rules also terminate.
Rule (G34) decomposes each spec form and recurses, so this terminates providing
the other rules terminate. Rule (G32) has only one recursive call which has
already been shown to terminate. Rules (G39) and (G40) recurse on signature
and (strictly smaller) structure expressions and so will inevitably reach an atomic
form and terminate. Rule (G41) handles each topdec, of which there can only be
a finite number and each form has been shown to terminate therefore termination
holds.

Lemma 8.2.11. The extension to the constraint solver given in section 6.4 does
not break the termination property of the constraint solver.

Proof. Rules (S16), (S17), (B1), (B7), (B9), (B10), (I1), (P1), (SM1), (SM3),
(SM6), (SM7), (SM10) and (SM11) all either raise an error or check for success,
and so terminate. Rule (S14) decomposes an internal type into an application
of an internal type constructor to an internal type, and such constraints and
never recomposed, so this rule terminates. Similarly with rule (S15). Rule (SU5)
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strips dependencies off generality constraints and recurses, and such dependencies
are never re-applied, and so this rule is terminating. Rule (SM2) breaks apart
two environments, and solves each individually, rules (SM4), (SM5) and (SM6)

deal with binders for value identifiers and type constructors, creating generality
constraints between what exists in the set of unifiers. As we do this at most once
for that binder, these rules are terminating. Rule (SM12) deals with dependencies
on environments, which are stripped and never re-applied, rule (SM13) throws
away an equality constraint and deals only with the environment, and rule (SM14)

removes existential constraints which are not re-applied so these rules terminate.
Rules (SU1) and (SU3) build environments from generality constraints, this is
done strictly once as we never rebuild generality constraints in any other rules,
and so termination holds.

Lemma 8.2.12. Given an output of toTree (figure 3.23), treeout, for any tree inside

inside treeout, if treeout or tree inside is of the form 〈node, l , id〉 or 〈dot , id〉 or id ,
then id is part of the program syntax the user wrote and was sent as input to Skalpel.

Proof. We extend toTree to handle forms which represent part of the user syntax,
and so this lemma holds due to lemma 8.1.7.

8.2.5 Equality types

Lemma 8.2.13. The extension to the constraint generator given in section 7.1 does
not break the termination property of the constraint generator.

Proof. All constraint generation rules that have been extended are only extended
with atomic forms which require no additional recursion, and so the termination
property is not broken.

Lemma 8.2.14. The extension to the constraint solver given in section 7.1 does
not break the termination property of the constraint solver.

Proof. In all cases, where pre-existing rules have been modified such that variables
have been annotated with equality types, it is the case that the rules have
been changed to create new constraints between equality types, so termination
is deferred to rules which solve those constraints. We shall inspect each solving
rule for equality types in turn. Rule (E1) breaks its constraint to be solved
into two constraints to be solved individually. The constraint pushed onto the
stack has already been shown to terminate, so this rule terminates depending on
termination for constraints of equality between θ variables. The same applies to
rules (E2) and (E3). Rule (E4) checks for success and throws away its constraint so
terminates, and (E5) terminates immediately with error so termination holds.
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Lemma 8.2.15. Given an output of toTree (figure 3.23), treeout, it is the case that
for any tree inside inside treeout, if treeout or tree inside is of the form 〈node, l , id〉 or
〈dot , id〉 or id , then id is part of the program syntax the user wrote and was sent
as input to Skalpel.
Proof. We extend toTree to handle forms which represent part of the user syntax,
and so this lemma holds due to lemma 8.1.7.

8.2.6 Abstract type declarations

In this section no proof is needed that the constraint solver terminates, as it is
unchanged as a result of this extension. The same applies for the lemmas on
producing slices that are strictly only part of the user syntax.

Lemma 8.2.16. The extension to the constraint generator given in section 7.2 does
not break the termination property of the constraint generator.

Proof. Rule (G61) recurses on the constraint generator with pieces of constraint
syntax dn, cb and dec. As all recursions of this form have already been shown
to terminate in lemma 8.1.3, so this property holds.

8.2.7 Duplicate Identifiers in Specifications

Lemma 8.2.17. The extension to the constraint generator given in section 7.3 does
not break the termination property of the constraint generator.

Proof. The constraint generation rule (G34) is extended to be composed with
another environment which is not recursed upon, so the termination property
holds.

Lemma 8.2.18. The extension to the constraint solver given in section 7.3 does
not break the termination property of the constraint solver.

Proof. Rule (I1) checks for success and so terminates. Rule (I2) calls the sameId

function which handles environments in the same way as they are in the constraint
solver, and so the termination property holds.

Lemma 8.2.19. Given an output of toTree (figure 3.23), treeout, it is the case that
for any tree inside inside treeout, if treeout or tree inside is of the form 〈node, l , id〉 or
〈dot , id〉 or id , then id is part of the program syntax the user wrote.
Proof. We extend toTree to handle forms which represent part of the user syntax,
and so this lemma holds due to lemma 8.1.7.
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8.2.8 Include Specifications

In this section no proof is needed that the constraint solver terminates, as it is
unchanged as a result of this extension.

Lemma 8.2.20. The extension to the constraint generator given in section 7.4 does
not break the termination property of the constraint generator.

Proof. Rule (G62) simply existentially quantifies the result of a recursion on the
constraint generator with the sigexp it took as an argument. As Jsigexp, evK has
already been shown to terminate in lemma 8.1.3, this property holds.

Lemma 8.2.21. Given an output of toTree (figure 3.23), treeout, it is the case that
for any tree inside inside treeout, if treeout or tree inside is of the form 〈node, l , id〉 or
〈dot , id〉 or id , then id is part of the program syntax the user wrote and was sent
as input to Skalpel.

Proof. We extend toTree to handle forms which represent part of the user syntax,
and so this lemma holds due to lemma 8.1.7.

8.2.9 Type Sharing

Lemma 8.2.22. The extension to the constraint generator given in section 7.5 does
not break the termination property of the constraint generator.

Proof. Rule (G34) does not add any recursion since the rule was last examined in
lemma 8.1.3 and so terminates. Rule (G35) recurses on expressions, which have
been shown to terminate in lemma 8.1.3, so the termination property holds.

Lemma 8.2.23. The extension to the constraint solver given in section 7.5 does
not break the termination property of the constraint solver.

Proof. Rule (SM15) strips existential quantifiers from a constraint. As existential
quantifiers once stripped are never applied again in any other rule, this constraint
generation call is terminating. Rule (SH1) calls the vidSharingCheck function
and so termination depends on the termination of vidSharingCheck.

Rule (VSC1) looks up the environment variable given in the argument in the
unifier map. As this then calls one of the following rules, and they are shown to
terminate, this rule terminates. Rule (VSC2) checks for success immediately, and
so terminates. Rule (VSC3) strips dependencies off an environment and recurses,
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and as they are never added on to an environment again, this rule terminates.
Rules (VSC4), (VSC5) and (VSC6) raise an error and so terminate. Rule (VSC7)

checks for success and so terminates. Rule (VSC8) splits a composition environ-
ment into two parts and solves each individually - as they are never recomposed
this rule terminates. Rule (VSC9) checks for success and so terminates.

Lemma 8.2.24. Given an output of toTree (figure 3.23), treeout, it is the case that
for any tree inside inside treeout, if treeout or tree inside is of the form 〈node, l , id〉 or
〈dot , id〉 or id , then id is part of the program syntax the user wrote and was sent
as input to Skalpel.

Proof. We extend toTree to handle forms which represent part of the user syntax,
and so this lemma holds due to lemma 8.1.7.

8.2.10 Operator Infixity

Lemma 8.2.25. The extension to the constraint generator given in section 7.6 does
not break the termination property of the constraint generator.

Proof. Rules (G63), (G64) and (G65) are all atomic constraint generation rules
and so terminate. Rules (G66) and (G3) have been extended only with non-
recursive forms, and all recursive calls in these rules have already been shown to
terminate, so the termination property holds.

Lemma 8.2.26. The extension to the constraint solver given in section 7.6 does
not break the termination property of the constraint solver.

Proof. Rules (IN2), (IN3), (IN6) and (IN10) either raise an error or check for suc-
cess, and so terminate. Rule (IN9) changes the direction of analyzing the infixity
constraints at a lower precedence in a different direction. As we only decrement
the infixity precedence which we are analyzing, and rule (IN3) terminates at the
lowest precedence, rule (IN9) is terminating. Rule (IN8) flips the direction of
precedence that we are analyzing without decrementing the infixity precedence.
As we never re-flip direction of analysis without first decrementing the infixity
precedence (rule (IN9)), this rule is terminating. Rules (IN1), (IN4), (IN5) and
(IN7) all process the type variable they are analyzing and move forward to the
next variable to process, which is terminating due to rules (IN8) and (IN9) dealing
with reaching the 〈〉 case of type variables to handle.

Lemma 8.2.27. If the output of toTree (figure 3.23) or any sub-tree of that tree is
of the form 〈node, l , id〉 or 〈dot , id〉 or id , then id is part of the program syntax the
user wrote and was sent as input to Skalpel.
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Proof. We extend toTree to handle forms which represent part of the user syntax,
and so this lemma holds due to lemma 8.1.7.
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Chapter 9

Conclusions and Future Work

9.1 Conclusion

In this thesis, we have given a critique of and enhanced the initial Skalpel pre-
sentation in chapters 3 and 4 respectively. We have also updated the previously
existing extensions to be correctly defined on the latest version of the Skalpel
core in chapter 6, and created several new extensions to this theory in chapter
7. We have also looked at the properties of this theory, such as termination
of algorithms, which is present in chapter 8. In addition, the efficiency of the
implementation has been inspected, including a full profile of the Skalpel analysis
engine which can be found in section 4.7. Furthermore, we have also made a num-
ber of practical contributions, such as developing a new method of documenting
Standard ML code in appendix B, and developing frameworks for debugging and
testing designed to aid in future research in appendix C.

9.2 Abstracting parts of the implementation to sup-

port other languages

It is hoped that in the future Skalpel will support other languages than just
Standard ML. We believe the type error slicing techniques discussed in this thesis
make finding and fixing errors easier, and so use with other languages will allow
this work to benefit a greater number of users. Furthermore, with access to this
wider user base, we will be able to test the effectiveness of Skalpel more easily.

We now discuss options for future work. In order to get closer to this goal, one
approach could be to attempt to abstract away parts of the current implementa-
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tion, such as the parser for the language that we wish to handle, the constraint
generation rules, and so on. Ideally, we would take for example as arguments to
the analysis engine the parser, abstract syntax tree, constraint generation rules,
constraint solving rules etc. along with a program and from this produce slices
of the untypable parts of the supplied program if they exist.

It is believed that setting up a framework such as this would not cause a signif-
icant performance hit to the implementation, as the time spent interpreting the
various new files submitted by the user (e.g. constraint generator) would likely be
insignificant compared to the amount of time we spent solving constraints that
have been generated for the user program.

Some investigation would need to be carried out first to determine what would
be the best way that e.g. constraints could be represented. Ideally, the procedure
of constructing such files to allow Skalpel to support another language should not
be so arduous that it would have to be done by a Skalpel developer, and end
users would be able to build such files to support their own languages without a
great amount of effort.

9.3 Making the Skalpel implementation more effi-

cient

In its current state the Skalpel implementation can take an arbitrarily long time
to generate and solve constraints for programs with a large size.

Were the implementation to be made more efficient, we could be able to reach
the point where Skalpel could be run automatically whenever, for example, the
user saves their file of source code.

One route to this goal would be to enhance Skalpel so that it can use the results
of previous runs via some kind of cache (for example using hash consing). For
example, were a user to change part of a program and run Skalpel again, Skalpel
could filter out any constraints which were solved which have labels attached
which correspond to the program points which the user changed. It is quite
possible that we will not be able to have Skalpel run automatically when the user
saves their file without some kind of recycling of previous computations.

In addition, it would be interesting to see how different features of an SML
program have an impact on performance and what relationship that has to the
number of labels that were generated for that program, and how efficiency changes
affect each language construct.
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9.3.1 Booleans in hash table mapping

We introduced in chapter 4 an approach where maps from integers to booleans
are used to represent program points. Booleans have been chosen as the range
of this map with the goal that minimisation could be done in a cleaner way, by
toggling the boolean flag which represents whether this label is to be sliced out.
While yet untested as issues involving memory cost are currently more important,
it is very likely this will create a saving in the time taken to do minimisation, in
addition to the space saving that will be made. This approach is promising, and
further investigation is recommended, building on the work written in the source
code repository.

9.3.2 Different phases of slice specificity

The master branch of the source repository contains a system where the constraint
generator is executed once where all constraints are labelled with maximum pre-
cision. This allows us to be very specific in the error reports as we have a label
for every possible part of an error we wish to express.

Outlined here is an alternative approach, where multiple constraint generation
runs are completed to build constraints with increasing specificity with respect to
program points (labels).

The reason for doing this is that if there are less program labels for a given
program, the time taken to do all operations related to program labelling (such
as union operations) could be reduced significantly. However, it is not acceptable
for us to provide poor quality error reports to the user, so we must also generate
high quality error reports that adhere to the properties described discussed in
section 2.3.

Consider the case where a user has defined 1000 complicated functions, and
an error exists between a small number of them. With the current approach,
the time spent unioning the labels while dealing with the constraints of these
functions could be arbitrarily large and Skalpel could fail badly e.g. run out
of memory. We could either automatically, or at the users discretion, employ a
tactic whereby we only generate one label for a function and all the constraints in
that function are labelled with the same label. During unification, we would then
discover the same error as we would previously (as the same constraints exist),
but we would only be able to identify the e.g. 3 functions that are involved
in the generated error. We would then need to relabel the program again for
those 3 functions to some degree off specificity. If we assume that we then label
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the functions involved again with maximum precision, we would then perform
unification again and get a precise error which can then be presented to the user.

It is quite conceivable that the time spent doing unification twice (or more if
desired) would outweigh the benefit that may come from having far smaller label
sets, but it is possible such an approach may have some merit when configured
correctly (e.g. doing this for let-expressions at the user’s discretion). Most
importantly, this would allow us to be able to report errors faster at the cost of
lesser precision, where we would then present the user with a more precise error
when it is available. In the cases of complicated programs where Skalpel may run
out of memory, we would at least be able to produce some kind of error report,
even if it is not absolutely precise.

Experimenting with this approach to program labelling is left for future work.

9.4 Improve the communication mechanism between

Emacs and Skalpel

The Emacs front-end currently uses a file-based approach to communicate with
Skalpel, and in addition, this file-based approach creates files which are executed
by Emacs. Developing a solution to communicate with Emacs where we do not
execute files (so for example communication is all done via sockets), or better yet
do not use files at all, is desirable.

9.5 Extend the test framework

There are many useful extensions that can be made to the test framework so that
the implementation can become more robust than it currently is. Such extensions
include verifying that Emacs can actually display slices to the user, that SML/NJ
can build the Skalpel project, and daily profiling of the analysis engine binary.

In general, any addition to the test framework which tests some component of
the Skalpel project which was previously untested (such as which Emacs versions
we support, whether builds for supported operating systems can be constructed,
etc.) is desirable.
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Appendix A

List of Symbols, Sets, and Other
Abbreviations

This appendix gives a list of the various symbols, sets, functions, and other
abbreviations that have been used in this thesis.

Appendices A.1 and A.2 list symbols used, the set they range over (written N/A
in section A.1 if this is not applicable), a description and point of definition
(section A.1 sorts this information by symbol, A.2 sorts this information by set).
Sections A.3 and A.4 give brief descriptions and points of definition for function
definitions and other abbreviations used, respectively. Sections are denoted §
and figures are denoted F , with the section or figure in parenthesis denoting the
definition location in [Rah10], if applicable.
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A.1 Symbols

Symbol
Brief Description Definition

Set
• When used as fct • e, it means that a

functor is applied for an environment.
(§14.9.2)

N/A

 Works like the arrow type (→), but
works on environment variables to
work on functors.

(§14.9.2)
N/A

� Augments a type scheme with a set
of pairs, allowing further constraining
of τ .

(§14.9.2)
N/A

∀ρ.τ
Shorthand notation for ∀ρ.∅ � τ . (§14.9.2)

N/A

� σ1 � σ2 means that σ1 is at least as
general as σ2.

F6.16 (§14.7.2)
N/A

� An unconfirmed type variable binder
which can be discarded when doing
constraint solving.

F6.3.2 (§14.6.2)
N/A

·∩ Used to represent an intersection type
scheme.

(§14.9.2)
N/A

:>
An opaque signature constraint. F6.16 (§14.7.1)

N/A

:
A translucent signature constraint. F6.16 (§14.7.1)

N/A

Λ
Denotes a pseudo type function. §6.2.2 (§14.3.2)

N/A

_ When x _ y in a set S, syntactic
forms of the form x are replaced by y.

(§14)
N/A

�� Used before a name of a binder to
indicate that it is an unconfirmed
binder (can turn into a � or a �).

(§14.1.2)
N/A
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y
= If y is a d or d̄, �vid

y
= 〈σ, is〉

abbreviates �vid
y
= σ;�vid

y
= is .

§4.2 (§14.1.2)
N/A

] An infix operator which unions two
sets if they are disjoint as per the
definition of dj.

§3.2.1 (§1)
N/A

vl The subslice relation, can be used to
determine the minimality of a type
error slice of a structure declaration.

(§11.9)
N/A

↪→ The smallest possible relation that in
u, e . e1 ↪→ e2 it is the case that
u, e, e1 and e2 are satisfied.

(§11.9)
N/A

θ
Internal equality type variables. §7.1

IEqTypeVar

Σ Contains the values that an equality
type status can be set to.

§7.1
EqTypeStatus

⊕ Allows for the generation of unifiers
which do not contain dummy
variables.

§3.2.1 (§11.6.5)
N/A

→
Indicates a constraint solving step. §4.4 (§11.6.1)

N/A

→∗
Reflexive and transitive closure of →. §4.4 (§11.6.1)

N/A

Ψ Same as Φ, but including
dependencies.

(§11.4.3)
SemanticJudgementDep

〈x, d〉
Syntactic sugar for 〈x, {d}〉. §4.2 (§11.3.4)

N/A

xy Syntactic sugar for 〈x, y〉 provided y
is a d or d̄ .

§4.2 (§11.3.4)
N/A

x1
y
= x2 Syntactic sugar for 〈x1 = x2, y〉. §4.2.3 (§11.3.4)

N/A

�x1
y
= x2 =

Syntactic sugar for 〈�x1=x2, y〉. §4.2.3 (§11.3.4)
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N/A

∆ Known as a constraint solving
context, equivalent to 〈u, e〉.

(F11.4)
Context

�x1
y
= x2 =

Syntactic sugar for 〈�x1=x2, y〉. §4.2 (§11.3.4)
N/A

[e]
Syntactic sugar for (ev dum = e). §4.2.3 (§11.3.4)

N/A

Φ
Holds the form u, e . e1 ↪→ e2. (§11.4.3)

SemanticJudgement

-. The smallest relation satisfying
Skalpel’s constraint generation rules.

(§11.5.1)
N/A

; Used to compose environments and
considered to be associative.

§4.2.3 (§11.3.1)
N/A

F Denotes that the number following
this symbol refers to a latex figure
number.

§A
N/A

§ Denotes that the number following
this symbol refers to a latex section
number.

§A
N/A

> An empty environment and satisfied
constraint.

§4.2.3 (§11.3.1)
N/A

� Arises from the need to slice away
binders but take care of accessors
that might become captured.

(§14.8.1)
N/A

d e Placed around some terms in order to
make label placement clear, and so as
to not confuse the reader with ().

§4.1 (§11.2)
N/A

δ
Type constructor variables. F4.2 (F11.3)

TyConVar

γ
Type constructor names. F4.2 (F11.3)

TyConName
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α
Internal type variables. F4.2 (F11.3)

ITyVar

η Used disambiguate value variables
from datatype constructors.

(§14.1.2)
IdStatusVar

β Rigid type variables. Constant types
that can renamed/quantified.

F6.16 (§14.7.2)
RigidTyVar

φ
Functor variables. (§14.9.2)

FuncVar

ξ
Type variable sequence variables. (§14.10.2)

ITyVarSeqVar

ω
Type sequence variables. (§14.10.2)

ITySeqVar

ρ Consists of Flexible and Rigid type
variables.

F6.16 (§14.7.2)
FRTyVar

κ Allows internal type constructors to
be universally quantified, or
annotated with dependencies.

§6.2.2 (§14.3.2)
TyConSem

µ Internal type constructor, this can
appear anywhere inside a constraint.

F4.2 (F11.3)
LabName

τ An internal type, this can appear
anywhere inside a constraint.

F4.2 (F11.3)
LabTy

σ A type scheme, subject to alpha
conversion. This can be anywhere
inside a constraint.

F4.2 (F11.3)
Scheme

a
Atomic value. F4.2 (F11.3)

Atom

acc An accessor, which may or may not
be associated with a binder.

F4.2 (F11.3)
Accessor
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app Allows for application of type
functions to internal types.

§6.2.2 (§14.3.2)
App

arr Binary arrow constructor.The exists
to allow constraints between → and
any unary type constructor.

§4.1 (§11.3.1)
N/A

atexp Atomic expression, part of the
external labelled syntax.

F4.1 (F11.2)
AtExp

atpat Atomic pattern, part of the external
labelled syntax.

F4.1 (F11.2)
AtPat

bind Represents the bindings of values in
programs.

F4.2 (F11.3)
Bind

c A raw status variable representing
unary datatype constructors.

(§14.1.2)
N/A

c Equality constraints between different
two terms of the same type.

F4.2 (F11.3)
EqCs

cap Used to further constrain internal
types in constraints involving
functors.

(§14.9.2)
LazyCapture

cb Datatype constructor binding, part of
the external labelled syntax.

F4.1 (F11.2)
ConBind

cd
External syntax for value identifiers. §6.4.1 (§14.7.1)

ConDesc

cg Initial constraint generator. Returns
form of either an (e), or something of
the form 〈v , e〉 where e constrains v .

(§11.5.1)
InitGen

class A set defines the different classes that
can be assigned to nodes.

F3.22 (F11.15)
Class

conexp conexp must be either a datatype
constructor (that is not equal to ref)
or an exception constructor.

(§14.5)
ConExp

ct
Constraint terms. F4.2 (F11.3)
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CsTerm

d A raw status variable representing
nullary datatype constructors.

(§14.1.2)
N/A

d Dependancy. 〈term, d̄〉 means ’term’
depends on program nodes which
have labels in d̄.

F4.2 (F11.3)
Dependency

dcon Datatype constructors, part of the
external labelled syntax.

F4.1 (F11.2)
DatCon

de Holds relations from Dependency to
DepStatus values.

(§11.4.3)
DepEnv

dec A declaration in the external labelled
syntax.

F4.1 (F11.2)
Dec

dep Can be replaced by terms which can
be annotated with dependencies.

F4.2 (F11.3)
Dependent

dir A set containing directions of infix
precedence.

§7.6.2
Direction

dn Typename of a datatype, part of the
external labelled syntax.

F4.1 (F11.2)
DatName

dot
Holds dot markers, e.g. dotE. F3.22 (F11.15)

Dot

drop Given dependency environment de, if
de(d) = drop then dependency d is
unsatisfied.

(§11.4.3)
N/A

ds Holds different dependency statuses
(namely keep, drop, and
keep-only-binders).

(§11.4.3)
DepStatus

e A form which can act as both a
constraint and an environment.

F4.2 (F11.3)
Env

ek Holds all sorts of different kinds of
errors that the user can have made
(e.g. type constructor clashes).

F4.18 (F11.8)
ErrKind
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eqtv Equality type variables part of the
external syntax.

§7.1.1
EqTypeVar

er Represents errors that have been
detected.

F4.18 (F11.8)
Error

es An environment scheme, where
environments are quantified.

F4.2 (F11.3)
EnvScheme

ev Environment variables, can be
mapped to environments in the set of
unifiers.

F4.2 (F11.3)
EnvVar

exp An expression, part of the external
labelled syntax.

F4.1 (F11.2)
Exp

fct Allows for functor constraints to be
constructed.

(§14.9.2)
Func

fctsem Allows quantification of fct forms
with any member of the set v .

(§14.9.2)
FuncSem

fundec External syntax for functor
declarations.

(§14.9.1)
FunDec

funid
Functor identifiers. (§14.9.1)

FunId

ge
A restriction of e. (§11.5.3)

GenEnv

id An identifier, part of the external
labelled syntax.

F4.1 (F11.2)
Id

ins A set holding instantiations. Note
that Ins ⊆ Sub.

§6.4.2 (§14.7.2)
Ins

ipe
A restriction of e. (§11.5.3)

InPolyEnv
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is An identifier status, can either be a
status variable or a raw id status ris .

(§14.1.2)
IdStatus

k Holds different kinds of application,
either T (for ’Type’) or S (for
’Status’).

(§14.1.4)
AppKind

keep Given dependency environment de, if
de(d) = drop then dependency d is
unsatisfied.

(§11.4.3)
N/A

keep-only-binders A status, if an e has a dependancy d

with this status, e’s binders and e

variables and turned into dummies.

(§11.4.3)
N/A

l Labels, these are program locations
which we use to track blame for
errors.

F4.1 (F11.2)
Label

lacc
Labelled accessors; a restriction of e. (§11.5.3)

LabAcc

lazy Denotes a parameter of a functor,
used to control which type schemes
become lazy type schemes.

(§14.9.2)
N/A

lbind
A restriction of e. (§11.5.2)

LabBind

lc A restriction of e containing only
labelled equality constraints.

(§11.5.3)
LabCs

ldcon Labelled datatype constructor, part
of the external labelled syntax.

F4.1 (F11.2)
LabDatCon

lev Labelled environment variable, a
restriction of e.

(§11.5.3)
LabEnvVar

ltc Type constructor annotated with a
label, part of the external labelled
syntax.

F4.1 (F11.2)
LabTyCon

ltv Holds labelled type variables to
differentiate between occurrences in
types and in type variable sequences.

§6.3.1 (§14.6.1)
LabTyVar

lvid
Contains labelled value identifiers. (§14.1.1)
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LabId

node A node of the labelled abstract
syntax tree used when generating
program slices.

F3.22 (F11.15)
Node

nonexp
Holds non-expansive expressions. (§14.5)

NonExp

m Internal type variables annotated
with dependencies describing why it
is monomorphic.

§4.4
Monomorphic

p A raw status variable representing
unresolvable statuses.

(§14.1.2)
N/A

pat A pattern in the external labelled
syntax.

F4.1 (F11.2)
Pat

pe
A restriction of e. (§11.5.3)

PolyEnv

prod Holds different productions that can
occur in a slice.

F3.22 (F11.15)
Prod

prog External syntax for a sequence of
topdecs.

§6.4.1 (§14.7.1)
Program

ren Used to instantiate type schemes. A
strict subset of Unifier. Stands for
’renaming’.

F4.4 (F11.4)
Ren

ris Contains different types of statuses
for variables to disambiguate value
variables and datatype constructors.

(§14.1.2)
RawIdStatus

sbind A subset of Env containing binder
expressions.

(§11.6.6)
SolvBind

se
A solved environment. (§11.6.6)

SolvEnv

serhs Env + composing environments and
dependency annotation.

(§11.6.6)
SolvEnvRHS
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sfct Can be replaced by functor variables
or solved environments of the form
e1  e2.

(§14.9.4)
SolvFunc

sfctsem Allows for universal quantification
over sfct and annotation with
dependencies.

(§14.9.4)
SolvFuncSem

sig Allows universal quantification of
environments with δ variables.

F6.16 (§14.7.2)
SigSem

sigdec External syntax for the declaration of
a signature.

§6.4.1 (§14.7.1)
SigDec

sigexp External syntax for signature
expressions.

§6.4.1 (§14.7.1)
SigExp

sigid
Contains signature identifiers. §6.4.1 (§14.7.1)

SigId

sit
A restriction of the set τ . (§11.5.2)

ShallowITy

spec External syntax for the declarations
that can occur inside a signature.

§6.4.1 (§14.7.1)
Spec

sq
Sequences of internal types. (§14.10.2)

ITySeq

stackAction Contains forms which can be in the
last element of tuples in the stack
argument during constraint solving.

F4.22
StackAction

stackEv Contains forms which can be in the
first element of tuples in the stack
argument during constraint solving.

F4.22
StackEv

stackMono Contains forms which can be in the
third element of tuples in the stack
argument during constraint solving.

F4.22
StackMono

state Contains the various states that the
constraint solver can be in.

F4.18 (F11.8)
State
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stc Can be a type constructor name or
Λα.α′.

§7.1.3 (§14.3.2)
ShallowTyCon

strdec A structure declaration, part of the
external labelled syntax.

F4.1 (F11.2)
StrDec

strexp Structure expression (the body of a
structure), part of the external
labelled syntax.

F4.1 (F11.2)
StrExp

strid Structure identifiers, part of the
external labelled syntax.

F4.1 (F11.2)
StrId

sub Similar to the set Unifier (A.2), but
allows substitution of more syntactic
forms e.g. rigid type variables.

F4.4 (F11.4)
Sub

subty Used to represent subtyping
constraints.

F6.16 (§14.7.2)
SubTy

sv
Set of scheme variables. (§14.9.2)

SchemeVar

svar Substitutable variable. Same as the
set Var plus the rigid type variables.

F6.16 (§14.7.2)
SVar

tc Type constructors, part of the
external labelled syntax.

F4.1 (F11.2)
TyCon

tcs An internal type constructor scheme,
where internal type constructors are
quantified.

F4.2 (F11.3)
ITyConScheme

term A individual term, part of the
external labelled syntax.

F4.1 (F11.2)
Term

tfi Declared but thought to be now
unused.

(§14.3.2)
TypFunIns

topdec External syntax for top level
declarations. A strdec or strexp.

§6.4.1 (§14.7.1)
TopDec

tree A labelled abstract syntax tree, used
during slicing.

F3.22 (F11.15)
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Tree

ts An internal type scheme, where an
internal type is universally quantified.

F4.2 (F11.3)
ITyScheme

tv External type variables, part of the
external labelled syntax.

F4.1 (F11.2)
TyVar

tvdeps A function from internal type
variables to dependency sets.

(§11.6.7)
ITyVarToDeps

tvseq Holds sequences of labelled type
variables.

§6.3.1 (§14.6.1)
TyVarSeq

ty
An internal type. F4.1 (F11.2)

Ty

tyf A set holding representations for type
functions.

§6.2.2 (§14.3.2)
TyFun

u A raw status variable representing
unconfirmed context dependent
statutes.

(§14.1.2)
N/A

u The set of unifiers generated by
Skalpel’s constraint solver.

(F11.4)
Unifier

v A raw status variable representing
value variables.

(§14.1.2)
N/A

v
An extra metavariable definition. F4.2 (F11.3)

Var

ve Contains the set of variables like Var,
but α variables are annotated with a
Σ.

§7.1.4
VarE

vid Value identifier. Can be either a value
variable or a datatype constructor.
Part of the external labelled syntax.

F4.1 (F11.2)
VId

vidTc A set containing value identifiers and
type constructors.

§7.3.3
VidTyCon
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vsq
Sequences of internal type variables. (§14.10.2)

ITyVarSeq

vvar Value variables, part of the external
labelled syntax.

F4.1 (F11.2)
ValVar

A.2 Sets

Set
Brief Description Definition

Symbol
Accessor An accessor, which may or may not

be associated with a binder.
F4.2 (F11.3)

acc

App Allows for application of type
functions to internal types.

§6.2.2 (§14.3.2)
app

AppKind Holds different kinds of application,
either T (for ’Type’) or S (for
’Status’).

(§14.1.4)
k

AtExp Atomic expression, part of the
external labelled syntax.

F4.1 (F11.2)
atexp

AtPat Atomic pattern, part of the external
labelled syntax.

F4.1 (F11.2)
atpat

Atom
Atomic value. F4.2 (F11.3)

a

Bind Represents the bindings of values in
programs.

F4.2 (F11.3)
bind

Class A set defines the different classes that
can be assigned to nodes.

F3.22 (F11.15)
class

ConBind Datatype constructor binding, part of
the external labelled syntax.

F4.1 (F11.2)
cb

ConDesc
External syntax for value identifiers. §6.4.1 (§14.7.1)
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cd

ConExp conexp must be either a datatype
constructor (that is not equal to ref)
or an exception constructor.

(§14.5)
conexp

Context Known as a constraint solving
context, equivalent to 〈u, e〉.

(F11.4)
∆

CsTerm
Constraint terms. F4.2 (F11.3)

ct

DatCon Datatype constructors, part of the
external labelled syntax.

F4.1 (F11.2)
dcon

DatName Typename of a datatype, part of the
external labelled syntax.

F4.1 (F11.2)
dn

Dec A declaration in the external labelled
syntax.

F4.1 (F11.2)
dec

DepEnv Holds relations from Dependency to
DepStatus values.

(§11.4.3)
de

DepStatus Holds different dependency statuses
(namely keep, drop, and
keep-only-binders).

(§11.4.3)
ds

Dependency Dependancy. 〈term, d̄〉 means ’term’
depends on program nodes which
have labels in d̄.

F4.2 (F11.3)
d

Dependent Can be replaced by terms which can
be annotated with dependencies.

F4.2 (F11.3)
dep

Direction A set containing directions of infix
precedence.

§7.6.2
dir

Dot
Holds dot markers, e.g. dotE. F3.22 (F11.15)

dot

Dum Contains dummy variables, eacrh of
which acts like a fresh variable.

(§11.3.3)
N/A
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EnumState The set of states that the
enumeration algorithm can be in.

§3.8.5 (§11.7.5)
N/A

Env A form which can act as both a
constraint and an environment.

F4.2 (F11.3)
e

EnvScheme An environment scheme, where
environments are quantified.

F4.2 (F11.3)
es

EnvVar Environment variables, can be
mapped to environments in the set of
unifiers.

F4.2 (F11.3)
ev

EqCs Equality constraints between different
two terms of the same type.

F4.2 (F11.3)
c

EqTypeStatus Contains the values that an equality
type status can be set to.

§7.1
Σ

EqTypeVar Equality type variables part of the
external syntax.

§7.1.1
eqtv

ErrKind Holds all sorts of different kinds of
errors that the user can have made
(e.g. type constructor clashes).

F4.18 (F11.8)
ek

Error Represents errors that have been
detected.

F4.18 (F11.8)
er

Exp An expression, part of the external
labelled syntax.

F4.1 (F11.2)
exp

FRTyVar Consists of Flexible and Rigid type
variables.

F6.16 (§14.7.2)
ρ

FunDec External syntax for functor
declarations.

(§14.9.1)
fundec

FunId
Functor identifiers. (§14.9.1)

funid
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Func Allows for functor constraints to be
constructed.

(§14.9.2)
fct

FuncSem Allows quantification of fct forms
with any member of the set v .

(§14.9.2)
fctsem

FuncVar
Functor variables. (§14.9.2)

φ

GenEnv
A restriction of e. (§11.5.3)

ge

IEqTypeVar
Internal equality type variables. §7.1

θ

ITyConScheme An internal type constructor scheme,
where internal type constructors are
quantified.

F4.2 (F11.3)
tcs

ITyScheme An internal type scheme, where an
internal type is universally quantified.

F4.2 (F11.3)
ts

ITySeq
Sequences of internal types. (§14.10.2)

sq

ITySeqVar
Type sequence variables. (§14.10.2)

ω

ITyVar
Internal type variables. F4.2 (F11.3)

α

ITyVarSeq
Sequences of internal type variables. (§14.10.2)

vsq

ITyVarSeqVar
Type variable sequence variables. (§14.10.2)

ξ

ITyVarToDeps A function from internal type
variables to dependency sets.

(§11.6.7)
tvdeps

Id An identifier, part of the external
labelled syntax.

F4.1 (F11.2)
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id

IdStatus An identifier status, can either be a
status variable or a raw id status ris .

(§14.1.2)
is

IdStatusVar Used disambiguate value variables
from datatype constructors.

(§14.1.2)
η

InPolyEnv
A restriction of e. (§11.5.3)

ipe

InitGen Initial constraint generator. Returns
form of either an (e), or something of
the form 〈v , e〉 where e constrains v .

(§11.5.1)
cg

Ins A set holding instantiations. Note
that Ins ⊆ Sub.

§6.4.2 (§14.7.2)
ins

LabAcc
Labelled accessors; a restriction of e. (§11.5.3)

lacc

LabBind
A restriction of e. (§11.5.2)

lbind

LabCs A restriction of e containing only
labelled equality constraints.

(§11.5.3)
lc

LabDatCon Labelled datatype constructor, part
of the external labelled syntax.

F4.1 (F11.2)
ldcon

LabEnvVar Labelled environment variable, a
restriction of e.

(§11.5.3)
lev

LabId
Contains labelled value identifiers. (§14.1.1)

lvid

LabName Internal type constructor, this can
appear anywhere inside a constraint.

F4.2 (F11.3)
µ

LabTy An internal type, this can appear
anywhere inside a constraint.

F4.2 (F11.3)
τ

208



A.2. SETS

LabTyCon Type constructor annotated with a
label, part of the external labelled
syntax.

F4.1 (F11.2)
ltc

LabTyVar Holds labelled type variables to
differentiate between occurrences in
types and in type variable sequences.

§6.3.1 (§14.6.1)
ltv

Label Labels, these are program locations
which we use to track blame for
errors.

F4.1 (F11.2)
l

LazyCapture Used to further constrain internal
types in constraints involving
functors.

(§14.9.2)
cap

Monomorphic Internal type variables annotated
with dependencies describing why it
is monomorphic.

§4.4
m

Node A node of the labelled abstract
syntax tree used when generating
program slices.

F3.22 (F11.15)
node

NonExp
Holds non-expansive expressions. (§14.5)

nonexp

Pat A pattern in the external labelled
syntax.

F4.1 (F11.2)
pat

PolyEnv
A restriction of e. (§11.5.3)

pe

Prod Holds different productions that can
occur in a slice.

F3.22 (F11.15)
prod

Program External syntax for a sequence of
topdecs.

§6.4.1 (§14.7.1)
prog

RawIdStatus Contains different types of statuses
for variables to disambiguate value
variables and datatype constructors.

(§14.1.2)
ris

Ren Used to instantiate type schemes. A
strict subset of Unifier. Stands for
’renaming’.

F4.4 (F11.4)
ren
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RigidTyVar Rigid type variables. Constant types
that can renamed/quantified.

F6.16 (§14.7.2)
β

SVar Substitutable variable. Same as the
set Var plus the rigid type variables.

F6.16 (§14.7.2)
svar

Scheme A type scheme, subject to alpha
conversion. This can be anywhere
inside a constraint.

F4.2 (F11.3)
σ

SchemeVar
Set of scheme variables. (§14.9.2)

sv

SemanticJudgement
Holds the form u, e . e1 ↪→ e2. (§11.4.3)

Φ

SemanticJudgementDep Same as Φ, but including
dependencies.

(§11.4.3)
Ψ

ShallowITy
A restriction of the set τ . (§11.5.2)

sit

ShallowTyCon Can be a type constructor name or
Λα.α′.

§7.1.3 (§14.3.2)
stc

SigDec External syntax for the declaration of
a signature.

§6.4.1 (§14.7.1)
sigdec

SigExp External syntax for signature
expressions.

§6.4.1 (§14.7.1)
sigexp

SigId
Contains signature identifiers. §6.4.1 (§14.7.1)

sigid

SigSem Allows universal quantification of
environments with δ variables.

F6.16 (§14.7.2)
sig

SolvBind A subset of Env containing binder
expressions.

(§11.6.6)
sbind

SolvEnv
A solved environment. (§11.6.6)
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se

SolvEnvRHS Env + composing environments and
dependency annotation.

(§11.6.6)
serhs

SolvFunc Can be replaced by functor variables
or solved environments of the form
e1  e2.

(§14.9.4)
sfct

SolvFuncSem Allows for universal quantification
over sfct and annotation with
dependencies.

(§14.9.4)
sfctsem

Spec External syntax for the declarations
that can occur inside a signature.

§6.4.1 (§14.7.1)
spec

StackAction Contains forms which can be in the
last element of tuples in the stack
argument during constraint solving.

F4.22
stackAction

StackEv Contains forms which can be in the
first element of tuples in the stack
argument during constraint solving.

F4.22
stackEv

StackMono Contains forms which can be in the
third element of tuples in the stack
argument during constraint solving.

F4.22
stackMono

State Contains the various states that the
constraint solver can be in.

F4.18 (F11.8)
state

StrDec A structure declaration, part of the
external labelled syntax.

F4.1 (F11.2)
strdec

StrExp Structure expression (the body of a
structure), part of the external
labelled syntax.

F4.1 (F11.2)
strexp

StrId Structure identifiers, part of the
external labelled syntax.

F4.1 (F11.2)
strid

Sub Similar to the set Unifier (A.2), but
allows substitution of more syntactic
forms e.g. rigid type variables.

F4.4 (F11.4)
sub

SubTy Used to represent subtyping
constraints.

F6.16 (§14.7.2)
subty
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Term A individual term, part of the
external labelled syntax.

F4.1 (F11.2)
term

TopDec External syntax for top level
declarations. A strdec or strexp.

§6.4.1 (§14.7.1)
topdec

Tree A labelled abstract syntax tree, used
during slicing.

F3.22 (F11.15)
tree

Ty
An internal type. F4.1 (F11.2)

ty

TyCon Type constructors, part of the
external labelled syntax.

F4.1 (F11.2)
tc

TyConName
Type constructor names. F4.2 (F11.3)

γ

TyConSem Allows internal type constructors to
be universally quantified, or
annotated with dependencies.

§6.2.2 (§14.3.2)
κ

TyConVar
Type constructor variables. F4.2 (F11.3)

δ

TyFun A set holding representations for type
functions.

§6.2.2 (§14.3.2)
tyf

TyVar External type variables, part of the
external labelled syntax.

F4.1 (F11.2)
tv

TyVarSeq Holds sequences of labelled type
variables.

§6.3.1 (§14.6.1)
tvseq

TypFunIns Declared but thought to be now
unused.

(§14.3.2)
tfi

Unifier The set of unifiers generated by
Skalpel’s constraint solver.

(F11.4)
u
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VId Value identifier. Can be either a value
variable or a datatype constructor.
Part of the external labelled syntax.

F4.1 (F11.2)
vid

ValVar Value variables, part of the external
labelled syntax.

F4.1 (F11.2)
vvar

Var
An extra metavariable definition. F4.2 (F11.3)

v

VarE Contains the set of variables like Var,
but α variables are annotated with a
Σ.

§7.1.4
ve

VidTyCon A set containing value identifiers and
type constructors.

§7.3.3
vidTc

A.3 Mathematical functions

Function Short Description Definition
(if applicable)

abstract Used to rebuild the environment asso-
ciated with the parameter of a functor
and to abstract the functor over the
intersection types and type construc-
tor names defined in its paramter.

(§14.9.4)

app Given a ∆, an id and an element of
AppKind named k , will look through
∆ for a � id = x expression, returning
x which has kind type k .

(§14.1.4)

atoms Given an argument x, a syntactic form
belonging to set Var ∪ TyConName ∪
Dependency, and occurring in ’x’.

§4.2.4 (§11.3.2)

bindings Extracts the bindings between binders
and accessors in a given environment.

(§11.9)

build A substitution operation similar that
is recursively called in variable case,
undefined on ∀ schemes and environ-
ments, and it collapses dependencies.

(§11.6.2)
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collapse Combines nested levels of dependen-
cies. E.g. collapse(〈〈x, d̄1〉, d̄2〉) returns
〈x, d̄1 ∪ d̄2〉.

§4.2 (§11.3.1)

compatible Checks two value identifier status val-
ues are compatible with each other.

(§14.1.4)

complete Returns whether the environment in
its argument is fully defined or not
(i.e. not composed by an environment
variable, filtered binder or dummy
variable).

(§14.8.2)

declares True if the class at the root of the tree
is some kind of declaration.

§3.9.2 (§11.8.4)

deps Given an argument x, defined to be
atoms(x) ∩ Dependency.

§4.2.4 (§11.3.2)

diff Allows for getting back a solved ver-
sion of an environment, after all the
constants have been dealt with.

(§11.6.3)

dj Check sets are disjoint. dj(s1, ..., sn)

holds iff ∀i, j ∈ {1, ..., n}, if i 6= j then
si ∩ sj = ∅.

§3.2.1 (§1)

dja Freshens generated variables and type
constructor names.

(§11.3.3)

dom Domain of a set. Given a set of
pairs setOfPairs, dom(setOfPairs)
= {x | (x, y) ∈ setOfPairs}.

§3.2.1 (§1)

dot-d A function which takes as arguments
term values and outputs something of
the form [e1; ...; en].

§3.9.1 (F11.14)

dot-e A function which takes as arguments
term values and outputs something of
the form 〈α, [e1; ...; en]〉.

§3.9.1 (F11.14)

dot-i A function which takes terms as argu-
ments and outputs something of the
form 〈α, η, [e1, ..., en]〉.

§3.9.1 (§14.1.6)

dot-n A function which takes as arguments
term values and outputs something of
the form 〈δ, α,>, [e1; ...; en]〉.

§3.9.1 (F11.14)

dot-p A function which takes as arguments
pat values and outputs something of
the form 〈α, e1; ...; en〉.

§3.9.1 (F11.14)
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dot-s A function which takes as arguments
term values and outputs something of
the form 〈ev , [e1; ...; en]〉.

§3.9.1 (F11.14)

dum Deals with the conversion of environ-
ments into dummy environments.

§3.8.2 (F11.11)

duplicate Used to duplicate intersection types
when instantiating a type scheme that
captures intersection types (of the
form ∀ρ.cap � τ where cap 6= ∅).

(§14.9.4)

duplicates A form which holds an environment
which has to be checked for duplicate
value identifiers.

§7.3.1

e The relation for the enumeration algo-
rithm.

§4.2.7 (§11.7.5)

enum Enumerates the errors in a given envi-
ronment.

§3.8.5 (F11.12)

err Error state of the constraint solver. §4.18 (F11.8)
errors A state of the enumeration algorithm

representing found errors.
§3.8.5 (§11.7.5)

expans Given an environment and a set of
sets of dependencies, reports e as
monomorphic in one or the set in the
set of sets of dependencies is satisfied,
and is then a dependent poly(e) envi-
ronment.

(§14.5.2)

expansive Extracts the dependencies for an ex-
pression to be expansive.

(§14.5.1)

expansiveCon Helper function for expansive. (§14.5.1)
filt Used to check solvability of constraints

in which some constraints are dis-
carded.

§3.8.2 (F11.11)

flat Compresses sequences of terms of the
form 〈..x..〈..y..〉..〉 become 〈..x..y..〉.
Note that this cannot be done in such
a way that variables accidentally cap-
tured by binders.

§3.9.2 (§11.8.4)

freevars Calculates the free internal type vari-
ables of an internal type of an internal
type constructor.

§6.2.4 (§14.3.4)
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genLazy Given an application of a functor,
computes type schemes from those
generated for the functor’s body, the
head of which is ∀ρ.cap � τ depending
on the types in cap.

(§11.9.4)

getBinders Gets binders in a given environment. (§14.8.2)
getDeps Given arguments (α, τ , d̄), returns de-

pendency set occurring in τ on the
path from its root node to any occur-
rence of α.

(§11.6.7)

getDot Generates terms in dot from nodes. F3.24 (§11.8.3)
head Extracts the head from intersection

type schemes (e.g. head(σ1 ·∩ σ2) =
head(σ1).

(§14.9.2)

ifNotDum Ensures dummy status binder cannot
bind anything other than a dummy
status.

(§14.1.4)

infix A form which represents that an oper-
ator has some new infix/nonfix status.

§7.6.2

infixCheck A state of constraint solving which
checks for errors involving infixity
precedence/direction of value identi-
fiers.

§7.6.2

instance Allows generation of type schemes. §4.2.7 (§11.4.3)
inters Extracts the types (and their tails)

from the intersection types from a
given constraint solving context.

(§14.9.4)

isClass Used to check the class at the root of
the tree.

§3.9.2 (§11.8.4)

isErr Checks whether an environment con-
tains an error.

§4.4 (§11.6.5)

isSucc Checks whether the stack parameter
of the constraint solver has any un-
solved elements, and takes appropriate
action.

F4.23

isSucc′ A helper function called by isSucc

which takes action on the stack action
parameter.

F4.23

lBinds Extracts the labels labelling binders in
a given environment.

§3.8.1 (§11.7.1)
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labs Given an argument x, defined to be
atoms(x) ∩ Label.

§4.2 (§11.3.2)

labtyvars Computes set of labelled explicit type
variables in an explicit type.

§6.3.3 (§14.6.3)

labtyvarsdec Given a sequence of type variables, a
pattern and an expression will return
the labelled type variables occurring in
the pattern, or the expession, but not
the intersection.

§6.3.3 (§14.6.3)

min The relation for the minimisation al-
gorithm.

§3.19 (§11.7.4)

monos Returns a set containing the depen-
dent monomorphic type variables oc-
curring in an environment with respect
to a unifier.

(§11.6.4)

monos′ Similar to monos but gathers labels
more effectively using the getDeps

function.

(§11.6.7)

nonDums Given an argument x, gets the set of
variables in x after first extracting all
the dummy variables.

(§11.3.3)

opaqueEq Changes part of an equality constraint
from the temporary SIG_TYPE status
to a NEQ_TYPE status.

§7.1.4

or An environment of the form or(e, d̄) is
kept alive at constraint filtering if at
least one of the dependencies in d̄ is
satisfied. Can be written e∨d̄.

§6.3.2 (§14.6.2)

pattern True if the class at the root of the tree
is some kind of pattern.

§3.9.2 (§11.8.4)

poly Promotes bindings in argument to be
polymorphic.

§4.2 (§11.3.1)

putDeps Given arguments (τ , tvdeps), con-
strains every α ∈ dom(tvdeps) of the
occurrences of α in τ with dependence
set tvdeps(α).

(§11.6.7)

ran Range of a set. Given a set of
pairs setOfPairs, ran(setOfPairs)
= {y | (x, y) ∈ setOfPairs}.

§3.2.1 (§1)
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rebuild Builds up the type uses gathered (in
intersection type schemes) while solv-
ing the constraints generated for func-
tors.

(§14.9.4)

sameId A state of the constraint solver which
detects duplicate identifiers in signa-
tures.

§7.3.3

scheme Computes a ∀ quantified form from a
variable set, a variable and a constant
term.

§6.4.4 (§14.7.4)

sha A form used with the environment
stack −→st , used in vidSharingCheck.

§7.5.4

shadowsAll If given an argument e, then some of
the binders in e may be shadowed,
note that also in the case (e2; e1) e1

shadows the whole of the environment
e2.

§4.2.6 (§11.4.2)

sharingSig Takes an environment variable which
is used to create sharing equality con-
straints.

§7.3.3

sharingType Holds two types which are to be con-
strained to be equal.

§7.5.2

sl Constructs minimal type error slices
from errors found by the enumeration
algorithm. Has helper function sl1 and
sl2.

§?? (F11.17)

slv A state the constraint solver can be
in.

§4.6.3 (F11.8)

solvable Determines whether an environment is
solvable.

§4.4 (§11.6.5)

statusClash An error kind, which takes two status
as arguments and represents a clash
between these statuses.

(§14.1.4)

strip Takes outer dependencies away from a
term. E.g. strip(〈x, d̄〉) gives back x.

F4.2 (§11.3.1)

succ Success state of the constraint solver. §4.18 (F11.8)
tail Extracts the tail from intersection

type schemes (e.g. tail(σ1 ·∩ σ2, u) =
tail(σ2, u).

(§14.9.2)
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test Tests whether a label can be removed
from a slice.

§3.8.4 (§11.7.4)

tidy Cleans up slice representation of se-
quences of declarations in structure
expressions.

§3.9.2 (§11.8.4)

toLazy Transforms type schemes into lazy
types schemes.

(§14.9.2)

toPoly Given a ∆ and a dependent monomor-
phic value identifier binder, generates
a polymorphic binder by quantifying
type variables not occurring in types
of the monomorphic binders of ∆.

(F11.9)

toTree Associates a tree with each term. §3.23 (F11.16)
toV Takes an environment and turns the

unconfirmed binders ��vid = α in-
side that environment into confirmed
binders with a status variable � vid =

〈α, v〉.

(§14.1.3)

tyvars Computes the set of explicit type vari-
ables occurring in an explicit type.

§6.4.2 (§14.7.2)

vars Given an argument x, defined to be
atoms(x) ∩ Var.

§4.2 (§11.3.2)

vidSharingCheck A state of constraint solving, used to
detect if a type is to be shared that
does not exist.

§7.5.4

A.4 Other Abbreviations

Abbreviation Short Description Definition
Core-TES Core Type Error Slicer, refers to a

subset of the design of Skalpel which
handles datatypes, structures, and
pattern matching matching among a
select few other features.

(§10.3)

HW-TES The Type Error Slicer outlined by
Haack and Wells.

(§10.2)
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SML Standard MetaLanguage, the pro-
gramming language that Skalpel takes
as input which may or may not be
typable, and outputs type error slices
for.

§1 (§2.4.3)

SML/NJ Stands for Standard ML of New Jer-
sey. A compiler for Standard ML.

§1.3 (§2.4.3)

TES Type Error Slicer, a tool which will
take as input type errors and output
slices as defined in [HW03].

(§2.4.3)

ULTRA The research group at Heriot-Watt
university which develops Skalpel.

§1.3 (§2.4.3)
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Appendix B

Creating An Alternative Method For
ML Code Documentation

We believe that due to the size and complexity of the Skalpel analysis engine,
a powerful documentation tool is needed to adequately explain the structures,
signatures, functions, types, and other implementation information not only to
new users to the project but also to active developers who will over time lose
familiarity with features which have already been implemented. Over time and
with each new extension to the core it became increasingly important to have a
tool which had the capacity to generate documentation for the analysis engine,
which is written in Standard ML, and this appendix describes a new way of
documenting Standard ML code.

This appendix is structured as follows. We will begin with a review of two existing
ML code documentation tools, and explain why those tools were unsuitable for
our purposes. Following this there will then be a description of why we did
not choose a language-independent option, and discuss the alternative that was
created.

B.1 SMLDoc [SMLb]

SMLDoc [SMLb] is a tool which was distributed as part of the SML# [SMLa]
compiler written by Kiyoshi Yamatodani, but now is available on the Github
hosting site1. It is based closely on a version the Javadoc documentation system
and so the documentation produced closely resembles that.

Given a list of source files, SMLDoc will generate documentation for all structures,
1https://github.com/jhckragh/SMLDoc. Last accessed July 2013
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signatures and functors in the source code and allow browsing the documentation
by the name of the structure/signature/functor.

This documentation includes a full list of the declarations that are made (such as
value declarations, datatype declarations, exceptions, etc.) and creates sections
giving documentation extracted from special comments2 placed in the source code
in text format. Hyperlinks are created in the documentation whenever a type is
defined, so when for example it is used in another structure, the definition can
be reached easily.

Some special tags can be used in the special comments in the source code, figure
B.1 gives a full list of the tags which have been implemented (extracted from the
SMLDoc manual page).

Figure B.1 SMLDoc special tags
@author author of the entity
@copyright copyright
@contributor contributor
@exception indicates an exception the entity (a function) may raises
@params gives names to formal parameters of functions and value constructors
@param a description of a formal parameter
@return a description about return value of the function
@see related items (specified text is not analyzed in the current version)
@throws same as the @exception tag
@version a text which indicates the version of the entity

The documentation features available in SMLDoc seem stable, and the primary
reason we did not choose to use this documentation tool was because of its
limited feature set. In the approach discussed in section B.4 we have access to
many additional features, some of which are particularly useful because it allows
us to connect the implementation and the theory more easily. For example, some
of the additional features we gain in B.4 include:

• Ability to insert LATEXinto comments and have them rendered in the docu-
mentation. This is particularly useful as we can connect the formal presen-
tation with our implementation.

• Generation of diagrams (class diagrams etc).

• Source code browsing.

• Generation of LATEXdocumentation and man pages in addition to HTML
output, so we can include that in source releases.

2The format used is an extra star after a comment starting block, e.g. (** special comment
here *).

222



B.2. ML-DOC [MLD]

• A complete list of all type declarations in the project.

• Hyperlinks to the source code.

• Ability to include images.

Furthermore, the size of the user base for SMLDoc is unknown, and the last
update to the online repository was two years ago at this time of writing, which
is another reason why we chose to create our own solution. Where possible we
wish to use a method which has a large user base and so is constantly under
development. This concern is eliminated in Skalpel’s approach, as discussed in
section B.4.

B.2 ML-Doc [MLD]

ML-Doc [MLD] is described in its manual page as a system for producing ref-
erence manuals for Standard ML libraries. It is different from systems such as
Javadoc (and by extension, SMLDoc), because it is designed such that the doc-
umentation is what the authors refer to as “the primary artifact”, where source
code files are created from the documentation. This software is most useful for
creating documents like the SML Basis Library reference manual, but the ability
to document a project such as Skalpel is not its primary goal.

B.3 Code independent documentation tools

The reason we did not choose to use a code independent documentation tool,
where for example the syntax of comments is given and then all of the doc-
umentation exists within those comments without understanding the program
structure, is that the amount of information that would need to be contained
inside comments would be of a high volume, and it would be necessary to doc-
ument every single variable in order for it to show in the documentation. For
example, it would not be possible to tell whether a declaration is missing from
the documentation that has been produced because a comment did not exist for
it. It is for these reasons that we did not adopt such an approach.
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B.4 Extending Doxygen [DOX] to create a new al-

ternative for documenting ML code

Doxygen [DOX] is an active project with a large user base which allows users to
document their code in a feature-rich, flexible way. Doxygen already has built-in
support for numerous languages including C, C#, PHP, Java, and Python among
others. It has the ability to generate HTML and LATEX documentation, as well
as support for RTF, PostScript, hyperlinked PDF, compressed HTML and Unix
man page support. For these reasons it was decided that extending Doxygen
to support SML would be the best approach. In this section, we call Doxygen
extended with support for SML DoxygenSML. Note that although this work was
designed for Skalpel, it can be used to document other SML programs as we
demonstrate.

Doxygen operates by gathering all of the source code files it is to document in a
given directory, searching sub-directories where necessary, and parsing each source
code file. As Doxygen already understands the implementation language used, it
creates a skeletal outline of documentation for variables, classes etc. used in the
source code, and the comments placed before these are parsed and information
inside is then used to fill out the documentation.

The implementation of Doxygen is constructed such that extending it to support
a new language is done in a modular fashion. Adding the ability to support SML
included writing a lexer and parser for the SML language which is then processed
using the flex and YACC tools.

The entire analysis engine has been documented with this new tool by taking
pre-existing documentation and changing its format to suit Doxygen, or by the
creation of new documentation.

The special comment syntax that has been used is a left parenthesis followed by
two stars. There are too many special tags to list here3, but some interesting
ones are given below in order to convey the idea of how tags might be used and
what they might be used for.

• \f$. Marks the start and end of a LATEX expression. These will be rendered
and placed in the documentation.

• \image. Inserts an image into the documentation.
3A full list can be found at http://www.stack.nl/∼dimitri/doxygen/manual/commands.html.

Last accessed July 2013.
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• \exception. Starts an exception description.

• \defgroup. Allows definition of a group name, which entities can be added
to in order to build a new hierarchical structure.

• \brief. Starts a paragraph that is a brief description, used in for example
lists at the start of the documentation page.

Doxygen can be executed on the configuration files by running /path/to/doxygen

config-file-name in a terminal.

B.4.1 Brief discussion of patch

A crucial element of patching a system in development such as Doxygen is that
there should be as little change to the existing code as possible. This is the case
with the Standard ML patch that has been written. This can be seen from the
changelog of the existing files below, which we include to demonstrate that the
work here is not tightly bound to the currently existing implementation and so is
poorly engineered. Note that the file names beginning with the prefix “sml” are
entirely new contributions which result from this thesis, and so the large additions
to them shown at the bottom does not affect the pre-existing code base.

Doxyfile | 2 +
src/Makefile.in | 5 +-
src/config.l | 2 +
src/docsets.cpp | 1 +
src/doxygen.cpp | 3 +
src/libdoxygen.pro.in | 4 +
src/libdoxygen.t.in | 6 +
src/types.h | 3 +-
src/util.cpp | 6 +-
src/smlcode.h | 45 ++
src/smlcode.l | 1462 +++++++++++++++++++++++++++++++
src/smlscanner.h | 67 +++
src/smlscanner.l | 1513 +++++++++++++++++++++++++++++++

Knowledge of C++ was required to create this patch, and Flex and Bison are used
in order to parse the Standard ML language and determine what documentation
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should be generated. That said, some parts of this patch needed to be written
in a specific way to handle ML features, such as supporting the and keyword
in Standard ML, which can be used to bind e.g. functions and variables, but
determining precisely what is bound by the and keyword requires some care
when handling some expressions.

This can be demonstrated with let bindings. The way that let bindings are
handled is by the use of a stack. For example, consider the following Standard
ML code fragment:

fun myFunction1 arg1 arg2 = arg1
and myFunction2 arg1 arg2 = let

val myVal1 = 1
and myVal2 = 2

in
myVal2 - myVal1

end
and myValFunction3 () = ()

In this fragment it should be noted that inside the declarations of the let ex-
pression, the and keyword is binding value declarations, whereas directly after
it is binding function declarations. Keeping a stack of keywords which are be-
ing bound handles this problem. The same is true of local and abstract type
declarations.

Figure B.2 shows an example of a basic SML program which has been annotated
with Doxygen comments. Part of the Doxygen output for this example program
is shown in figure B.3. Function bodies are not shown in this screenshot but are
available via a hyperlink in the implementation.

B.4.2 Examples of generated output

An example of the HTML output that is generated by Doxygen is shown in figure
B.2. Man page output is shown in figure B.4, and an example of the LATEX output
can be seen in appendix D. The full LATEX documentation is not appended to
this thesis as at this time of writing it approaches 1000 pages in length.

It should be noted that only in the HTML version of the documentation is
source browsing available as bundling the entire analysis engine source code in
Man or PDF format would be completely unmanageable. HTML browsing of the
implementation is possible by the hyperlinks generated across the documentation
to the points in the source files at which they were defined, which can be useful
to see additional implementation detail about a definition.
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Figure B.2 An example of an ML program documented with Doxygen

1 (** A structure to handle feature x.
2 * Perhaps structure Y should be integrated into this? *)
3 structure MyStructure =
4 struct
5 (** A datatype to handle representation of names and ages. *)
6 datatype mydt = INT of int | STRING of string
7 (** The identity function.
8 * \deprecated Not used since feature B came out. *)
9 fun id x = x
10 (** Multiplies the first argument with the integer of
11 * mydt in the second argument.
12 * \arg a An integer.
13 * \arg b Something of type #mydt , which is used in structure
14 * Z, represented as \f$\alpha_1\f$ in the theory. *)
15 fun mulEx ’ a (INT (5)) = a * 5
16 | mulEx ’ _ _ = raise Fail("mulEx ’ called where second
17 argument is not of the form INT(_).")
18 end

B.4.3 Doxygen configuration file and layout for Standard

ML

There are two files which sit in the Standard ML analysis engine directory which
configure options to Doxygen. The first is doxygen-config-file and the second
is DoxygenLayout.xml. Both of these files are discussed below.

Doxygen Configuration file

This file configures Doxygen options such as the project name, its brief descrip-
tion, output directory, what formats of documentation to generate (e.g. HTML/-
Man) etc.

Other noteworthy features of this configuration file include a generated bug list
(triggered with the use of the \bug command in the parsed code), a TODO list
(\todo command), a deprecated list), warnings for undocumented parts of the
analysis engine, addition of a source code browser with hyperlink navigation, and
the linking to a LATEXstyle file for generating images for the LATEXembedded into
the comments of the code.

Doxygen Layout File

Doxygen allows special configuration in this file to allow the documentation gener-
ated to have the correct terminology for a specific language. For example instead
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Figure B.3 Part of Doxygen output for figure B.2.

of having classes and header files as exists in C++, we have structures and signa-
tures as somewhat approximate equivalents. The configuration that takes place
in this file allows us to create the correct terminology in the documentation. A
brief extract of this file is shown below:

<tab type="classlist" [...] title="Module list" intro="All structures, signatures and
[...]

<tab type="classindex" [...] title="Module index"/>
<tab type="hierarchy" [...] title="Module hierarchy" intro="This list of structures [...]

In the first line of the above fragment, the “Class list” terminology that is gen-
erated by default becomes “Module list”, the second line changes “Class Index”
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Figure B.4 Man Page Output from DoxygenSML

to “Module Index” and the third line changes “Heirarchy” to “Module Heirarchy”.
The description for each of these is changed from its default definition to some-
thing which is sensible for the Standard ML language. The rest of the XML tags
in this file are defined in a similar manner.

B.4.4 Type/Datatype declarations

A design decision was taken with type and datatype declarations that construc-
tors for type declarations would not be shown in the brief description of the
documentation at the top of the source files. The reason for this is that some of
the datatypes declarations in the analysis engine are quite sizable in their dec-
laration, and so documentation of these constructors should appear only in the
detailed documentation. An example of this is shown in figure B.5.

This decision was made to allow for cleaner descriptions of datatype constructors
without getting bogged down in technical details.
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Figure B.5 Figure showing a type declaration in Doxygen

B.4.5 Source Code Viewing and Deprecated list

Doxygen has been configured for source code viewing, and additional items as
mentioned previously such as a list of deprecated functions.

The current deprecated list for Skalpel is shown in figure B.6. This is a basic
example of how functions in Skalpel can be marked for future users not to use,
which we currently have no mechanism for. A description is given for each
deprecated feature. Currently deprecated functions in Skalpel are deprecated
because of either a new test database format, a new debugging mechanism, or
the removal of the concept of having different approaches of some algorithms
(known as ’solutions’), where one solution is now deemed better and support for
the others has been dropped.

Figure B.6 Doxygen Deprecated List
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B.5 Uses of this tool outside of Skalpel

It is hoped that this extension of a documentation tool to support Standard ML
will allow its use not only in the Skalpel implementation but also in other SML
projects whose authors wish for generated code documentation such as this. Any
developers that wish to do this will be able to access the patch to the Doxygen
source code in the publicly available Skalpel repository, and modify it to suit
their own needs if necessary.
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Skalpel implementation

This appendix discusses aspects which relate to the implementation of various
parts of Skalpel as a whole. Section C.1 gives an overview of which languages
and tools are used in this project. Section C.2 discusses changes to the command-
line interface, section C.3 describes changes made to the way we interact with
compilers in order to build the Skalpel analysis engine, and section C.4 describes
changes made to the way that we represent our test framework. Section C.5
looks at the implementation of Doxygen, section C.6 looks at the implementation
of the debug framework, and section C.7 looks at the implementation that was
associated with our test framework for the Skalpel project. Section C.8 discusses
implementation changes made to the way we handle errors that can occur during
parsing. Finally, section C.9 describes some of the implementation edits that
occurred while looking at how Skalpel could be evaluated through the means of
an experiment.

C.1 Languages and Tools used in the Skalpel project

We use a number of different languages and assorted technologies in the Skalpel
project. We list some of these below:

• Standard ML. The majority of this project is implemented in the Standard
ML language, as the analysis engine is itself implemented in Standard ML.

• Emacs Lisp. In order to to use Emacs as a front-end to Skalpel, there exists
an implementation in Emacs Lisp which is loaded by Emacs.

• Git. All of the work on Skalpel is stored in a Git repository to allow
sharing of the implementation easily with other developers, to allow version
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comparison, have automatic backups, maintain separate versions (branch-
ing), allow the importing of changes suggested by other developers (merge
request), tag changes with descriptions, and other vital functions.

• Vim script. This is used for the experimental Vim interface. This can
currently display a slice but future work is required to turn this into a fully
usable interface.

• C++. In order to extend Doxygen to support Standard ML, C++ was
used. Implementation for this can be seen inside the patch which should be
applied to the Doxygen source code.

• BASH Scripting. BASH is used to automate various tasks, such as building
packages for distributions, running test frameworks, etc.

• Autoconf and Make. The GNU build tools are used inside this project.
Wherever any implementation has to be built in some way there should be
a Makefile there to aid the user in building the implementation. Autoconf
is used to generate configure scripts, which in turn can be used to build
any Makefile files.

• NSIS. The NSIS tool is used to build the Windows installer which can
install Skalpel on a Windows computer.

• JSON. This is used to represent the results for our analysis engine test suite.
It is expected that in the future more of this will be used, for example in
our communication with the Emacs user interface.

• Perl. Initially, Perl was used to create a command-line interface for the
user. This has now been replaced so support is embedded inside the analysis
engine directly (and so is now implemented in Standard ML).

• XML. This is used to specify some settings for how the Doxygen documen-
tation should be generated for the analysis engine.

• LATEX. Much of the documentation surrounding Skalpel, including the user
guide, is written in LATEX.

• rpmbuild. This is used to build RPMs, which are packages for Linux
systems such as Red Hat.

• Doxygen. A patch on the Doxygen tool is used to document our analysis
engine. More information on this can be found in C.5.

• MLton. The MLton compiler builds the analysis engine. The SML/NJ
and PolyML compilers are also supported for the same purpose, but these
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compilers are less efficient than the MLton build and so these compilers are
not typically used to build Skalpel. Support for these compilers is however
present as they can sometimes be useful during the development of the
analysis engine due to their top-level read-eval print loop they provide and
their shorter build time.

C.2 Command-line interface

The command-line interface has been completely re-written since the start of this
project. In order to show there was a justification for doing this we examine the
original system below.

Initially, the Skalpel analysis engine binary was an entity which took 9 arguments
to run. This was not done by the way of command line options, and all 9
arguments needed to be present for Skalpel to run and this was documented
nowhere. There was no help available from the binary, and it was not intended
that the user would ever execute the binary directly. Instead they could use two
methods of interaction:

1. The Emacs user interface, which as it called the Skalpel analysis engine
binary protected the user from ever having to interact with it.

2. The command-line interface, a collection of shell scripts which did take
command-line options in a usable manner and allowed the user to see pro-
gram slices in the terminal.

The primary problem was that the analysis engine did not support exporting
program slices in a format that could be understood by the Bash [BAS] shell,
and the command-line interface added this support by calling the analysis engine
to output slices formatted in Perl, and then converted them to Bash scripts.
There were numerous problems with this approach:

• Were the user to attempt to interact with the Skalpel binary directly, they
would receive no help and would certainly not be able to guess the argu-
ments required for the analysis engine to operate. This was deemed to be a
likely outcome as the analysis engine binary was placed in standard $PATH
directories on Linux systems;

• The command-line interface would need to check the file-system periodically
for any Perl slices which had been output by the Skalpel binary;
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• If the Skalpel binary were to fail silently for any reason, the command-line
interface would not recognize this and hang;

• If the disk was full, strange errors would occur, and the command-line
interface would wait eternally for the analysis engine to output errors;

• There was the potential issue of security problems. After one of the collec-
tion of Bash scripts that made up the command-line interface had converted
the Perl output from the analysis engine to a Bash script, it would then
execute all the Bash scripts on the system matching a certain file name
format. Were this procedure to be hijacked, a script with any malicious
command could be executed;

• The command-line interface contained bugs, and when it crashed half way
through execution, left Perl and Bash output from the analysis engine and
the command-line interface itself on the file system;

• Packaging was made complicated as we needed to supply three scripts and
three manual pages to explain each one, and explain to the user why they
should not execute the Skalpel binary directly.

Firstly, the analysis engine was extended to understand the command-line inter-
face options in a similar format to the approach that was provided by the shell
script, then an extension was made so that program slices in Bash format could
be exported directly from the analysis engine. This solved all of the issues listed
above. In addition, this meant that the analysis engine would not need to write
to the file system at all as we could simply write the program slices to standard
output (stdout), eliminating any security concerns which existed.

C.3 Removal of cmtomlb dependency for pure 64-bit

support

It was previously the case that the analysis engine had a dependency that users
building Skalpel with a compiler other than SML/NJ needed to have both the
sources of the MLton compiler and the SML/NJ compiler installed. As the
SML/NJ compiler does not officially support 64-bit systems, this complicated the
process of building the Skalpel binary from the source code repository.

It is now possible to do this more easily, as PolyML, MLton, or SML/NJ users can
simply use whichever compiler they have installed, without needing the cmtomlb

utility from MLton and the SML/NJ compiler sources installed. We now generate
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the build files for each of the compilers from the .tes files that Skalpel uses
to operate on larger SML code bases. Converting the .tes files to .cm files
(SML/NJ), .mlb files (MLton), or .poly files (Poly/ML) requires no additional
tools other than those distributed with Skalpel. This will make the project
more accessible to developers using certain compilers, as they will not need such
additional tools from other compilers, and also solves such headaches for Skalpel
developers during the development of the Skalpel tool itself.

C.4 Test database format

The test database was initially written in SML, and as a result SML/NJ had to
be used in interactive mode in order to run tests on the Skalpel implementation.
This complicated automated daily testing of Skalpel and excluded users of other
compilers and so this approach was changed so that the entire test database was
converted to JSON [JSO] format. The biggest advantage to this is now tests on
the analysis engine can be checked easily from the command-line by users with
any of the SML compilers.

In addition to this a control file was created (the test-control file in Standard
ML analysis engine test directory of the Skalpel repository). This allows easy
configuration of tests which are to be run, in order that we can run a subset of
all of the tests we have easily. The format of this file is itself JSON, and contains
a list of tests to be checked. By simply creating a new test control file and using
the appropriate Skalpel command-line arguments, different configurations can be
run.

It is believed that by adding support for JSON to the analysis engine there is
scope to improve some of the other file communication that we do by also us-
ing the JSON format for it. An example of this would be our communication
mechanism with the Emacs user interface. At this current time, Skalpel outputs
executable Emacs lisp code to a file, and then Emacs will execute this file. It
is suggested that a better solution would be to output the correct information
in JSON format, which would remove any security concerns, and would be easy
to parse given the very small size of the JSON specification. It is highly rec-
ommended at this point that any future front-ends to Skalpel parse the output
JSON files in order to convey errors to users (that is, if a file-based communica-
tion method must be used).
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C.5 Doxygen documentation

The analysis engine is documented with comments understood by extension to the
Doxygen [DOX] system described in appendix B. All of this documentation exists
in the structure declarations, and not in the signature declarations (the patch
has been written so that declarations in signatures are linked to their structure
counterparts so information is still easy to find).

C.6 Debug Framework

A system has been put in place inside the analysis engine to allow a greater
degree of control while debugging. This was implemented as it became necessary
to be able to toggle the debugging of specific features on and off as opposed to,
for example, comment in and out potentially vast numbers of print statements.
This could be particularly true when debugging the abstract syntax tree or the
constraint generator, where there are many paths of execution.

Figure C.1 Path through the constraint generator for: fun x (y:real) z = y
= y
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Developers can use the -d command-line parameter to control what features they
wish to toggle. For example, by passing -d CONSTRAINT_PATH to the analysis
engine, a full path through the constraint generator can be seen in figure C.1 for
the program:

fun x (y:real) z = y = y

It is important to note that expensive debugging statements (such as when -d

STATE is passed to the analysis engine) are wrapped in anonymous functions and
then applied to unit if that debugging feature is enabled. Were that argument
to be used without wrapping the debug statement in a function, it would always
take an exceptionally long time (hours) to run Skalpel just once as it would
convert the entire internal state to a string every time the minimisation algorithm
was executed, irrespective of whether the debugging feature was enabled on the
command-line or not. Such functions are applied to unit if the debugging feature
associated with such a debug statement is enabled.

C.7 Test Framework

In order that we can have faith that Skalpel works correctly, it needs to be tested
regularly. This is done daily by means of a cron job which executes a script that
has been written which assesses various Skalpel attributes including:

• Cloning the repository;

• Building the Skalpel binary using the Poly/ML and MLton compilers;

• Running the test suite for the Skalpel analysis engine;

• Scanning the website for dead links;

Many extensions could and should be made to this test framework in the future.
Examples of future useful extensions include:

• Verifying that the Emacs interface works with Skalpel;

• Profiling the binary as discussed in section 4.7.1 and auto-generating profile
information;

• Testing the implementation for an experiment to evaluate Skalpel;
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• Testing that Doxygen can build documentation present inside the Skalpel
analysis engine.

C.7.1 Description of analysis engine portion of test frame-

work

As discussed in section C.4, the way that we store tests and check they are correct
has been updated. We have already discussed in this appendix the benefits to
using our new representation over our old one, so here we take a more in-depth
look at how tests in Skalpel are represented.

In the root of the Skalpel repository, there is a testing/ folder which has the
following structure:

1. analysis-engine-tests/

2. master-test-files/

3. scripts

4. skalpel-evaluation

We do not discuss the contents of the skalpel-evaluation implementation here
and this is left to section C.9.

Inside the analysis-engine-tests/standard-ml folder (we only currently sup-
port Standard ML, there are no other directories in analysis-engine-tests/),
tests are broken down into what feature they are testing, and each directory rep-
resents a feature being tested. For example, the equality-types sub-directory
contains a range of tests which test the implementation of the equality types
feature. For every test, we also have a solution file for that test, which is in
JSON format. Due to the somewhat verbose nature of the solution files, there is
not one included here verbatim, but they can be found by browsing our online
repository1.

In order to discuss the composition of the solution JSON files, we must first
define the notation used by JSON.

1The following URL provides a direct link to browsing the master branch of our source code
repository: https://gitorious.org/skalpel/skalpel/source/master. Last accessed May 2014.
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JSON notation

The notation for JSON is not complicated in nature, which allows for an elegant
representation of test files. We provide here the same syntax diagrams that are
provided by those who developed JSON [JSO].

• Strings. The strings supported are very similar to C-strings. The syntax
diagram for strings is shown in figure C.2.

Figure C.2 Syntax diagram for a JSON string [JSO]

• Numbers. The syntax diagram for strings is shown in figure C.3. We can
represent numbers in JSON using scientific notation.

Figure C.3 Syntax diagram for a JSON number [JSO]
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• Value. A value can either be a string, a number, an object (defined
below), an array (defined below), true, false or null. We show the
syntax diagrams for values in figure C.4

Figure C.4 Syntax diagram for a JSON value [JSO]

• Array. Arrays are an ordered lists of values. Arrays start with the char-
acter “[” and end with the character “]”. We show the syntax diagrams for
arrays in figure C.5.

Figure C.5 Syntax diagram for a JSON array [JSO]

• Object. An object is a set of string and value pairs (we will call the string
portion of these the name), each separated by commas. Objects begin with
the “{” character and end with the “}” character. We show the syntax
diagrams for objects in figure C.6.

Figure C.6 Syntax diagram for a JSON object [JSO]
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Structure of solution file

We have stated that for each test that is to be run, there is a solution file.
At the top level, we have an object with the following strings which have some
value associated with them: errors, time, tyvar, ident, constraint, labels,
minimisation, solution, basis, timelimit, labelling, final, name.

Each of these is now discussed in turn.

The “errors” top-level object name

The errors name has an array of objects as its value. Each object in the array
represents an error that was found, and has the following structure:

• identifier. The unique identifier associated with the error, represented as
a number.

• labels. An object with the names count which is the number of labels that
are part of the error (an integer) and labelNumbers which is an array of
integers which are the labels that contributed to the error.

• kind. An object with the fields errorKindName which contains the error
kind as a string, and errorKindInfo, which may or may not contain further
names which describe end point labels (integers) depending on the kind of
error.

• time. The time at which the this error was detected (an integer).

• slice. A string representing the program slice that was produced for this
error. Note that the unicode characters 〈 and 〉 appear in this string.

• assumptions. Holds an array of integers which holds labels representing
context dependent information.

• regions. Contains the regions of the source code which are part of the
error. Represented as an array of objects, each of which represents regions
for a given file of source code. Each object has the names fileName, which
is a string containing the name of the file containing the error regions,
and regionList, which is itself an array of objects. Each object in the
regionList array has the fields nodeType, a string representing the kind
of node, fromLine and fromColumn, representing the start point of the
region in the source file, toLine and toColumn, which represents the end
point of the region, color which represents the colour the region should be
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highlighted in and weight which is deprecated and now always set to the
integer 1.

The “time” top-level object name

The time name has an object as its value. This object is of the following structure:

• analysis. Has the value of a number indicating the time at which we
finished constraint generation.

• enumeration. Has the value of a number indicating the time at which we
finished enumeration.

• minimisation. Has the value of a number indicating the time at which we
finished minimisation.

• slicing. Has the value of a number indicating the time at which we finished
generating program slices.

• html. Has the value of a number indicating the time at which we finished
generating HTML output if applicable.

The “tyvar” top-level object name

This object has two fields, tyvar, which contains the number of internal type
variables that were generated for the source file containing the error, and assoc,
which is an array of objects each with two fields id and str, which contain
an integer representing an identifier and a string representing an explicit type
variable, structure or type name respectively.

The “ident” top-level object name

A deprecated field, containing the same information as tyvar but does not contain
the initial field holding the number of internal type variables that were generated.

The “constraint” top-level object name

A record with three names total, top, and syntactic, which are all integers rep-
resenting how many total, type, and syntactic constraints were generated during
execution respectively.
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The “labels” top-level object name

An integer representing how many labels were generated during Skalpel’s execu-
tion.

The “minimisation” top-level object name

A boolean representing whether the error is minimised or not.

The “solution” top-level object name

Deprecated. Contains an integer which is a number that was used during the
project of [Rah10] which was used to differentiate between different development
approaches used by Skalpel. Now a constant set to the integer 9 when solutions
are generated.

The “basis” top-level object name

An integer representing the configuration of the basis that was used when Skalpel
was executed.

The “timelimit” top-level object name

An integer representing the time limit that Skalpel was given to find errors.

The “labelling” top-level object name

A string representing internal dependency information that is generated during
Skalpel’s execution.

The “final” top-level object name

Represents whether this error is final as a boolean. Can be set to true if we are
reporting initial errors to the user, which at this time is always the case for end
users.
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The “name” top-level object name

A string representing the name that can be given to the test file. This is often
set to “dummy” as a placeholder value if we do not want to give a test a specific
name.

With this new JSON representation in place, we reduced our dependence on spe-
cific compilers, which allowed us to be more supportive of users using particular
compilers, reduced our dependency on a 32-bit architecture (due to the nature
of the SML/NJ source implementation), and made the project less dependent as
a whole on Standard ML, which is what must be done before the Skalpel analy-
sis engine can be extended to target any other languages. It allowed also easier
specification of tests that we choose to run by editing a master file which controls
which tests to run, which is helpful while developing the Skalpel tool itself.

C.8 Parser improvements

Skalpel has been hindered in the past by a poor quality parser. Given that it is
our belief that Skalpel produces better quality type errors than are given by the
available compilers, it was unfortunate that the case was previously that Skalpel
had significantly worse syntax error reporting. For example, consider the below
code fragment.

fn 1 => let in 1 end | 1 = 1

It was previously the case that Skalpel produce the error shown in figure C.7.
It can be seen from this figure that Skalpel would highlight the entire program,
which is an extremely poor error report.

Figure C.7 Skalpel’s previous poor parsing error
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It is clear that this syntax error is of a lesser quality than the one reported by
the Poly/ML compiler as follows 2:

> use "miss ing−darrow . sml " ;
Error− in ’ miss ing−darrow . sml ’ , l i n e 1 .
=> expected but = was found
Exception− Fa i l " S t a t i c Errors " r a i s e d

While the Skalpel project is focused on high quality type errors, and not high
quality syntax errors, this was nevertheless a problem which had existed for years
and became imperative to fix.

The new error that Skalpel reports is shown in figure C.8. Now Skalpel reports
an accurate error, and the user will be aided significantly more in fixing the
problem.

Figure C.8 Skalpel’s improved parsing error

Updates have been made to the parser so that these problems are now reported
correctly. The solution to this issue has fixed a number of parsing problems that
existed in Skalpel - this was done by editing the parsing mechanism in order to
allow it to attempt to replace what it suspects are erroneous program tokens with
other program tokens in order to pinpoint the source of the error.

In addition, changes were made to the way we parse our “magic comments”, which
are comments formed with a special syntax (a left parenthesis followed by two
stars) that can be used to specify additional options to Skalpel (such as other
files to be checked, though this can also be achieved by other means) inside
a source code file. This means slices for some information contained inside a
magic comment which is erroneous can be shown. Further information on magic
comments can be found in our user guide.

2This example shows the output from the Poly/ML compiler, but other compilers e.g. MLton
will give the same result.
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C.9 Evaluation of Effectiveness of Skalpel

Some implementation was necessary to design an experiment to evaluate Skalpel
in order to check the results that users submit are correct, and report an appro-
priate error otherwise.

In order to keep the implementation cost to an absolute minimum (as time spent
designing an elaborate framework was deemed to be the incorrect way to approach
this problem), functions were written somewhere inside the SML test files that
the user had to write3 which tested that the user had implemented the correct
semantics, and a bash script was written to compile the Standard ML code file to
a binary and execute it (reporting errors with Skalpel or MLton as appropriate).
The script is written in under 110 lines of code, and it is hoped that at such a
small size, maintenance of this implementation for any future experiments will be
trivial.

In this appendix we have given an overview of the work that has been done
on the Skalpel implementation. All of this work can be seen by inspecting the
Skalpel source code repository4, and by looking at the previous versions of the
Skalpel implementation available in Git. Furthermore, given the extensive work
that has been done in this area, including developing an entirely new method of
documenting ML code, we believe future researchers using this implementation
have been greatly aided in navigating and understanding the implementation
across the project as a whole as easily as can be made possible.

3These functions did not necessarily appear at the end of the file, as this could have introduced
a bias in the experiment due to the nature of the W algorithm.

4Our master branch of our source code repository can be found at the follows URL:
https://gitorious.org/skalpel/skalpel/source/master.
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Doxygen documentation extract in
LATEXformat

Below we show an example of the documentation that has been generated by
Doxygen for a small component of the Skalpel implementation in LATEX format.
We do not give the full documentation of the Skalpel implementation in PDF
format here, as at this current time of writing it approaches 800 pages in length.
A full version of this documentation (in other formats including HTML and man
pages) can be built from the Skalpel source code repository using the instructions
provided in the documentation/skalpel-developer-info folder which exists at
the root of the Skalpel source repository.
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5.93.1 Detailed Description

Definition at line 63 of file RunSlicer.sml.

Public Member Functions

• fun setWebDemo

Takes a boolean value b, if true then we are generating a binary for the web demo.

• fun finishedLispM

Enhance these messages with the messages from EH.DeadBranch (failure of the slicer) and add a message saying

if type errors have been discovered (success of the slicer)

• fun finishedLispMessage1

A message for lisp indicatng the slicer terminated successfully (but applogises for it...?).

• fun finishedLispMessage2

A message for lisp indicatng the slicer terminated with an error.

• fun finishedPerlM

Builds the finished perl message.

• fun finishedPerlMessage1

A message for perl indicatng the slicer terminated with success (but appologises for it..?).

• fun finishedPerlMessage2

A message for perl indicatng the slicer terminated with an error.

• fun getFileBasAndNum

Takes the basis flag and a file to be used as the basis.

• fun getDebugProblem

Called by preslicer’ if Tester.slicergen returns NONE.

• fun f

Takes unit as an argument, and returns a string indicating a problem occurred.

• fun getBoolFile

Returns a two tuple of a boolean (whether suff is a suffix of file), and the file name without the suffix (the empty string

if suff is not a suffix.

• fun genOutputFile

If suff is a suffix of ffile, then an output file will be created from the file name, concatenated with ’-’, the counter, and

the suffix, which contains the result of fdebug applied to str.

• fun genFinished

Generates the -finished file after the -counter files (see genOutputFile) have been generated.

• fun printIdError

Prints the integer value of iderror.

• fun printErrors

Prints the items in the errors list.

• fun printFound

Prints out the error it found, and how long it took to find the error.

• fun export

Calls the necessary functions to write the .html, .xml, .sml etc to the system.

• fun commslicerp’

The primary function in this file which calls the functions necessary to run the slicer, including the main Testing.slicing

function.

• fun run

Calls the slicing function in Tester.sml.

• fun slicerCheckDevMode

calls commslicerp’, if we are not developing (not dev) then the error is handled, otherwise we leave the error so we

can debug.
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• fun commslicerp

Called by the emacs interface; sets no tab and uses the solution from sol in utils/Solution.sml.

• fun slicerFull

The full version of the slicer function with all arguments.

• fun printLegend

Prints the legend that is used when we output slices into the terminal.

• fun printReset

A function which prints the sting argument and appnds the string #Debug.textReset.

• fun smlTesStrArgs

A function which has been created so that the slicer can be used in various ways without the need to program a new

function every time.

• fun printHelp

Prints the help text for the user (gives command-line options).

• fun checkFileSuffix

Checks the file suffixes of the files the user has specified (.html for HTML output, etc.).

• fun parse

Parses the arguments specified on the command-line.

• fun slicerGen

Used by the MLton and Poly/ML entry points.

• fun smlnjEntryPoint

Entry point for the SML/NJ compiler.

• fun mltonEntryPoint

Entry point for the MLton compiler.

• fun polymlEntryPoint

Entry point for the Poly/ML compiler.

Value declarations

• val webdemo

Set to true if we are building a binary for the webdemo.

• val error

Set to be the same as the error as defined in Tester (#Tester.error).

• val myfilehtml

Set to be the same as the myfilehtml as defined in Tester (#Tester.myfilehtml).

• val terminalSlices

Setting for showing slices in the terminal; we set the default setting to NO_DISPLAY.

• val SKALPEL_VERSION

A value which should not be manually edited, the git hash of the repository is automatically inserted here during

compilation.

• val file

File to be used as output.

• val file’

File to be used as output with a .tmp extension.

• val stout

Output stream.

• val fin

Filename to generate the finished file, indicating Skalpel has finished.

• val fin’

Filename to generate the finished file, indicating Skalpel has finished, with a .tmp extension.

• val dbghtml
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Appendix E

Progression of external and
constraint syntax from initial
definition

This appendix shows the additions that are made to the external syntax, and
to the constraint syntax, since its original definition in chapter 4. The portions
highlighted in red are the extensions which are new to that figure and were not
present in the previous associated external syntax / constraint syntax figure.
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E.1 Core definition

Figure E.1 External labelled syntax
external syntax (what the programmer sees, plus labels)

l ∈ Label (labels)
tv ∈ TyVar (type variables)
tc ∈ TyCon (type constructors)

strid ∈ StrId (structure identifiers)
vvar ∈ ValVar (value variables)
dcon ∈ DatCon (datatype constructors)

vid ∈ VId ::= vvar | dcon

ltc ∈ LabTyCon ::= tcl

ldcon ∈ LabDatCon ::= dcon l

ty ∈ Ty ::= tv l | ty1
l→ ty2 | dty ltcel

cb ∈ ConBind ::= dcon l
c | dcon of l ty

dn ∈ DatName ::= dtv tcel

dec ∈ Dec ::= val rec pat
l
= exp | openl strid | datatype dn

l
= cb

atexp ∈ AtExp ::= vid l
e | letl dec in exp end

exp ∈ Exp ::= atexp | fn pat
l⇒ exp | dexp atexpel

atpat ∈ AtPat ::= vid l
p

pat ∈ Pat ::= atpat | dldcon atpatel

strdec ∈ StrDec ::= dec | structure strid
l
= strexp

strexp ∈ StrExp ::= strid l | structl strdec1 · · · strdecn end

extra metavariables
id ∈ Id ::= vid | strid | tv | tc

term ∈ Term ::= ltc | ldcon | ty | cb | dn | exp | pat | strdec | strexp
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Figure E.2 Syntax of constraint terms
ev ∈ EnvVar (environment variables)
δ ∈ TyConVar (type constructor variables)
γ ∈ TyConName (type constructor names)
α ∈ ITyVar (internal type variables)
d ∈ Dependency ::= l

µ ∈ ITyCon ::= δ | γ | arr | 〈µ, d〉
τ ∈ ITy ::= α | τ µ | τ1 � τ2 | 〈τ , d〉

ts ∈ ITyScheme ::= ∀v . τ
tcs ∈ ITyConScheme ::= ∀v . µ
es ∈ EnvScheme ::= ∀v . e

c ∈ EqCs ::= µ1 = µ2 | e1 = e2 | τ1 = τ2

bind ∈ Bind ::= �tc=tcs | �strid=es | �tv=ts | �vid=ts
acc ∈ Accessor ::= �tc=δ | �strid=ev | �tv=α | �vid=α

e ∈ Env ::= > | ev | bind | acc | c | poly(e) | ∃a.e | e2;e1 | 〈e, d〉
extra metavariables

ct ∈ CsTerm ::= τ | µ | e
σ ∈ Scheme ::= ts | tcs | es

v ∈ Var ::= α | δ | ev
a ∈ Atom ::= v | γ | d

dep ∈ Dependent ::= 〈ct , d〉
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E.2 Extension for local declarations

Figure E.3 External labelled syntax
external syntax (what the programmer sees, plus labels)

l ∈ Label (labels)
tv ∈ TyVar (type variables)
tc ∈ TyCon (type constructors)

strid ∈ StrId (structure identifiers)
vvar ∈ ValVar (value variables)
dcon ∈ DatCon (datatype constructors)

vid ∈ VId ::= vvar | dcon

ltc ∈ LabTyCon ::= tcl

ldcon ∈ LabDatCon ::= dcon l

ty ∈ Ty ::= tv l | ty1
l→ ty2 | dty ltcel

cb ∈ ConBind ::= dcon l
c | dcon of l ty

dn ∈ DatName ::= dtv tcel

dec ∈ Dec ::= val rec pat
l
= exp | openl strid | datatype dn

l
= cb

| locall dec1 in dec2 end

atexp ∈ AtExp ::= vid l
e | letl dec in exp end

exp ∈ Exp ::= atexp | fn pat
l⇒ exp | dexp atexpel

atpat ∈ AtPat ::= vid l
p

pat ∈ Pat ::= atpat | dldcon atpatel

strdec ∈ StrDec ::= dec | structure strid
l
= strexp

strexp ∈ StrExp ::= strid l | structl strdec1 · · · strdecn end

extra metavariables
id ∈ Id ::= vid | strid | tv | tc

term ∈ Term ::= ltc | ldcon | ty | cb | dn | exp | pat | strdec | strexp
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Figure E.4 Syntax of constraint terms
ev ∈ EnvVar (environment variables)
δ ∈ TyConVar (type constructor variables)
γ ∈ TyConName (type constructor names)
α ∈ ITyVar (internal type variables)
d ∈ Dependency ::= l

µ ∈ ITyCon ::= δ | γ | arr | 〈µ, d〉
τ ∈ ITy ::= α | τ µ | τ1 � τ2 | 〈τ , d〉

ts ∈ ITyScheme ::= ∀v . τ
tcs ∈ ITyConScheme ::= ∀v . µ
es ∈ EnvScheme ::= ∀v . e

c ∈ EqCs ::= µ1 = µ2 | e1 = e2 | τ1 = τ2

bind ∈ Bind ::= �tc=tcs | �strid=es | �tv=ts | �vid=ts
acc ∈ Accessor ::= �tc=δ | �strid=ev | �tv=α | �vid=α

e ∈ Env ::= > | ev | bind | acc | c | poly(e) | ∃a.e | e2;e1 | loc e1 in e2

| 〈e, d〉
extra metavariables

ct ∈ CsTerm ::= τ | µ | e
σ ∈ Scheme ::= ts | tcs | es

v ∈ Var ::= α | δ | ev
a ∈ Atom ::= v | γ | d

dep ∈ Dependent ::= 〈ct , d〉
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E.3. EXTENSION FOR TYPE DECLARATIONS

E.3 Extension for type declarations

Figure E.5 External labelled syntax
external syntax (what the programmer sees, plus labels)

l ∈ Label (labels)
tv ∈ TyVar (type variables)
tc ∈ TyCon (type constructors)

strid ∈ StrId (structure identifiers)
vvar ∈ ValVar (value variables)
dcon ∈ DatCon (datatype constructors)

vid ∈ VId ::= vvar | dcon

ltc ∈ LabTyCon ::= tcl

ldcon ∈ LabDatCon ::= dcon l

ty ∈ Ty ::= tv l | ty1
l→ ty2 | dty ltcel

cb ∈ ConBind ::= dcon l
c | dcon of l ty

dn ∈ DatName ::= dtv tcel

dec ∈ Dec ::= val rec pat
l
= exp | openl strid | datatype dn

l
= cb |

locall dec1 in dec2 end | type dn
l
= ty

atexp ∈ AtExp ::= vid l
e | letl dec in exp end

exp ∈ Exp ::= atexp | fn pat
l⇒ exp | dexp atexpel

atpat ∈ AtPat ::= vid l
p

pat ∈ Pat ::= atpat | dldcon atpatel

strdec ∈ StrDec ::= dec | structure strid
l
= strexp

strexp ∈ StrExp ::= strid l | structl strdec1 · · · strdecn end

extra metavariables
id ∈ Id ::= vid | strid | tv | tc

term ∈ Term ::= ltc | ldcon | ty | cb | dn | exp | pat | strdec | strexp
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E.3. EXTENSION FOR TYPE DECLARATIONS

Figure E.6 Syntax of constraint terms
ev ∈ EnvVar (environment variables)
δ ∈ TyConVar (type constructor variables)
γ ∈ TyConName (type constructor names)
α ∈ ITyVar (internal type variables)
d ∈ Dependency ::= l

µ ∈ ITyCon ::= δ | γ | arr | Λα.τ | 〈µ, d〉
τ ∈ ITy ::= α | τ µ | τ1 � τ2 | 〈τ , d〉

ts ∈ ITyScheme ::= ∀v . τ
tcs ∈ ITyConScheme ::= ∀v . µ
es ∈ EnvScheme ::= ∀v . e

tfi ∈ TypFunIns ::= τ1.τ2

κ ∈ TyConSem ::= µ | ∀α. µ | 〈κ, d〉
tyf ∈ TyFun ::= δ | Λα. τ | 〈tyf , d〉

app ∈ App ::= τ tyf
c ∈ EqCs ::= µ1 = µ2 | e1 = e2 | τ1 = τ2

bind ∈ Bind ::= �tc=tcs | �strid=es | �tv=ts | �vid=ts
acc ∈ Accessor ::= �tc=δ | �strid=ev | �tv=α | �vid=α

e ∈ Env ::= > | ev | bind | acc | c | poly(e) | ∃a.e | e2;e1

| loc e1 in e2 | 〈e, d〉
extra metavariables

ct ∈ CsTerm ::= τ | µ | e
σ ∈ Scheme ::= ts | tcs | es

v ∈ Var ::= α | δ | ev
a ∈ Atom ::= v | γ | d

dep ∈ Dependent ::= 〈ct , d〉
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E.4. EXTENSION FOR TYPE ANNOTATIONS

E.4 Extension for type annotations

Figure E.7 External labelled syntax
external syntax (what the programmer sees, plus labels)

l ∈ Label (labels)
tv ∈ TyVar (type variables)
tc ∈ TyCon (type constructors)

strid ∈ StrId (structure identifiers)
vvar ∈ ValVar (value variables)
dcon ∈ DatCon (datatype constructors)

vid ∈ VId ::= vvar | dcon

ltc ∈ LabTyCon ::= tcl

ldcon ∈ LabDatCon ::= dcon l

ty ∈ Ty ::= tv l | ty1
l→ ty2 | dty ltcel

cb ∈ ConBind ::= dcon l
c | dcon of l ty

dn ∈ DatName ::= dtv tcel

dec ∈ Dec ::= val rec tvseq pat
l
= exp | openl strid

| datatype dn
l
= cb | locall dec1 in dec2 end

| type dn
l
= ty

atexp ∈ AtExp ::= vid l
e | letl dec in exp end

exp ∈ Exp ::= atexp | fn pat
l⇒ exp | dexp atexpel | exp:l ty

ltv ∈ LabTyVar ::= ty l
l | dot-d(

−−→
term)

tvseq ∈ TyVarSeq ::= ltv | εl v | (ltv , ..., ltvn)l | dot-d(
−−→
term)

atpat ∈ AtPat ::= vid l
p

pat ∈ Pat ::= atpat | dldcon atpatel | pat:l ty

strdec ∈ StrDec ::= dec | structure strid
l
= strexp

strexp ∈ StrExp ::= strid l | structl strdec1 · · · strdecn end

extra metavariables
id ∈ Id ::= vid | strid | tv | tc

term ∈ Term ::= ltc | ldcon | ty | cb | dn | exp | pat | strdec | strexp

258



E.4. EXTENSION FOR TYPE ANNOTATIONS

Figure E.8 Syntax of constraint terms
ev ∈ EnvVar (environment variables)
δ ∈ TyConVar (type constructor variables)
γ ∈ TyConName (type constructor names)
α ∈ ITyVar (internal type variables)
d ∈ Dependency ::= l

µ ∈ ITyCon ::= δ | γ | arr | Λα.τ | 〈µ, d〉
τ ∈ ITy ::= α | τ µ | τ1 � τ2 | 〈τ , d〉

ts ∈ ITyScheme ::= ∀v . τ
tcs ∈ ITyConScheme ::= ∀v . µ
es ∈ EnvScheme ::= ∀v . e

tfi ∈ TypFunIns ::= τ1.τ2

κ ∈ TyConSem ::= µ | ∀α. µ | 〈κ, d〉
tyf ∈ TyFun ::= δ | Λα. τ | 〈tyf , d〉

app ∈ App ::= τ tyf
c ∈ EqCs ::= µ1 = µ2 | e1 = e2 | τ1 = τ2

bind ∈ Bind ::= �tc=tcs | �strid=es | �tv=ts | �vid=ts | �tv = β
acc ∈ Accessor ::= �tc=δ | �strid=ev | �tv=α | �vid=α

e ∈ Env ::= > | ev | bind | acc | c | poly(e) | ∃a.e | e2;e1

| loc e1 in e2 | or(e, d) | 〈e, d〉
extra metavariables

ct ∈ CsTerm ::= τ | µ | e
σ ∈ Scheme ::= ts | tcs | es

v ∈ Var ::= α | δ | ev
a ∈ Atom ::= v | γ | d

dep ∈ Dependent ::= 〈ct , d〉
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E.5. EXTENSION FOR SIGNATURES

E.5 Extension for signatures

Figure E.9 External labelled syntax
external syntax (what the programmer sees, plus labels)

l ∈ Label (labels)
tv ∈ TyVar (type variables)
tc ∈ TyCon (type constructors)

strid ∈ StrId (structure identifiers)
vvar ∈ ValVar (value variables)
dcon ∈ DatCon (datatype constructors)
sigid ∈ SigId (signature identifiers)

vid ∈ VId ::= vvar | dcon

ltc ∈ LabTyCon ::= tcl

ldcon ∈ LabDatCon ::= dcon l

ty ∈ Ty ::= tv l | ty1
l→ ty2 | dty ltcel

cb ∈ ConBind ::= dcon l
c | dcon of l ty

dn ∈ DatName ::= dtv tcel

dec ∈ Dec ::= val rec tvseq pat
l
= exp | openl strid

| datatype dn
l
= cb | locall dec1 in dec2 end

| type dn
l
= ty

atexp ∈ AtExp ::= vid l
e | letl dec in exp end

exp ∈ Exp ::= atexp | fn pat
l⇒ exp | dexp atexpel | exp:l ty

ltv ∈ LabTyVar ::= ty l
l | dot-d(

−−→
term)

tvseq ∈ TyVarSeq ::= ltv | εl v | (ltv , ..., ltvn)l | dot-d(
−−→
term)

atpat ∈ AtPat ::= vid l
p

pat ∈ Pat ::= atpat | dldcon atpatel | pat:l ty

sigdec ∈ SigDec ::= signature sigid
l
= exp | dot-d(

−−→
term)

sigexp ∈ SigExp ::= sigid l | sigl spec1 · · · specn end | dot-s(
−−→
term)

spec ∈ Spec ::= val vid :l ty | type dn l |
datatype dn

l
= cd | structure strid :l sigexp

| dot-d(
−−→
term)

cd ∈ ConDesc ::= vid l
c | vid of l ty | dot-e(

−−→
term)

topdec ∈ TopDec ::= strdec | sigdec

prog ∈ Program ::= topdec1; ...topdecn

strdec ∈ StrDec ::= dec | structure strid
l
= strexp

strexp ∈ StrExp ::= strid l | structl strdec1 · · · strdecn end

| strexp :l sigexp | strexp :>l sigexp

extra metavariables
id ∈ Id ::= vid | strid | tv | tc | sigid

term ∈ Term ::= ltc | ldcon | ty | cb | dn | exp | pat | strdec | strexp
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E.5. EXTENSION FOR SIGNATURES

Figure E.10 Syntax of constraint terms
ev ∈ EnvVar (environment variables)
δ ∈ TyConVar (type constructor variables)
γ ∈ TyConName (type constructor names)
α ∈ ITyVar (internal type variables)
β ∈ RigidTyVar (set of rigid type variables)
d ∈ Dependency ::= l
ts ∈ ITyScheme ::= ∀v . τ

tcs ∈ ITyConScheme ::= ∀v . µ
es ∈ EnvScheme ::= ∀v . e
µ ∈ ITyCon ::= δ | γ | arr | Λα.τ | tv | 〈µ, d〉
τ ∈ ITy ::= α | τ µ | τ1 � τ2 | β | 〈τ , d〉

tfi ∈ TypFunIns ::= τ1.τ2

κ ∈ TyConSem ::= µ | ∀α. µ | 〈κ, d〉
tyf ∈ TyFun ::= δ | Λα. τ | 〈tyf , d〉

app ∈ App ::= τ tyf
svar ∈ SVar ::= v | β

ρ ∈ FRTyVar ::= α | β
sig ∈ SigSem ::= e | ∀δ. e | 〈sig , d〉

subty ∈ SubTy ::= σ � vid σ2 | κ1 � tc κ2

c ∈ EqCs ::= µ1 = µ2 | e1 = e2 | τ1 = τ2

bind ∈ Bind ::= �tc=tcs | �strid=es | �tv=ts | �vid=ts | �tv = β |
�sigid=sig

acc ∈ Accessor ::= �tc=δ | �strid=ev | �tv=α | �vid=α | �sigid=ev
e ∈ Env ::= > | ev | bind | acc | c | poly(e) | ∃a.e | e2;e1

| loc e1 in e2 | or(e, d) | 〈e, d〉
| e1:e2 | ins(e) | subty

extra metavariables
ct ∈ CsTerm ::= τ | µ | e
σ ∈ Scheme ::= ts | tcs | es

v ∈ Var ::= α | δ | ev
a ∈ Atom ::= v | γ | d

dep ∈ Dependent ::= 〈ct , d〉
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E.6. EXTENSION FOR EQUALITY TYPES

E.6 Extension for equality types

Figure E.11 External labelled syntax
external syntax (what the programmer sees, plus labels)

l ∈ Label (labels)
tv ∈ TyVar (type variables)
tc ∈ TyCon (type constructors)

strid ∈ StrId (structure identifiers)
vvar ∈ ValVar (value variables)
dcon ∈ DatCon (datatype constructors)
sigid ∈ SigId (signature identifiers)
eqtv ∈ EqTypeVar (Equality type variables)
vid ∈ VId ::= vvar | dcon

ltc ∈ LabTyCon ::= tcl

ldcon ∈ LabDatCon ::= dcon l

ty ∈ Ty ::= tv l | ty1
l→ ty2 | dty ltcel

cb ∈ ConBind ::= dcon l
c | dcon of l ty

dn ∈ DatName ::= dtv tcel

dec ∈ Dec ::= val rec tvseq pat
l
= exp | openl strid

| datatype dn
l
= cb | locall dec1 in dec2 end

| type dn
l
= ty

atexp ∈ AtExp ::= vid l
e | letl dec in exp end

exp ∈ Exp ::= atexp | fn pat
l⇒ exp | dexp atexpel | exp:l ty

ltv ∈ LabTyVar ::= ty l
l | dot-d(

−−→
term)

tvseq ∈ TyVarSeq ::= ltv | εl v | (ltv , ..., ltvn)l | dot-d(
−−→
term)

atpat ∈ AtPat ::= vid l
p

pat ∈ Pat ::= atpat | dldcon atpatel | pat:l ty

sigdec ∈ SigDec ::= signature sigid
l
= exp | dot-d(

−−−→
term)

sigexp ∈ SigExp ::= sigid l | sigl spec1 · · · specn end | dot-s(
−−−→
term)

spec ∈ Spec ::= val vid :l ty | type dn l |
datatype dn

l
= cd | structure strid :l sigexp

| eqtype dnl | dot-d(
−−−→
term)

cd ∈ ConDesc ::= vid l
c | vid of l ty | dot-e(

−−→
term)

topdec ∈ TopDec ::= strdec | sigdec

prog ∈ Program ::= topdec1; ...topdecn

strdec ∈ StrDec ::= dec | structure strid
l
= strexp

strexp ∈ StrExp ::= strid l | structl strdec1 · · · strdecn end

| strexp :l sigexp | strexp :>l sigexp

extra metavariables
id ∈ Id ::= vid | strid | tv | tc | sigid

term ∈ Term ::= ltc | ldcon | ty | cb | dn | exp | pat | strdec | strexp
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E.6. EXTENSION FOR EQUALITY TYPES

Figure E.12 Syntax of constraint terms
ev ∈ EnvVar (environment variables)
δ ∈ TyConVar (type constructor variables)
γ ∈ TyConName (type constructor names)
α ∈ ITyVar (internal type variables)
β ∈ RigidTyVar (set of rigid type variables)
θ ∈ IEqTypeVar (equality type variables)
d ∈ Dependency ::= l
ts ∈ ITyScheme ::= ∀v . τ

tcs ∈ ITyConScheme ::= ∀v . µ
es ∈ EnvScheme ::= ∀v . e
µ ∈ ITyCon ::= δ | γ | arr | Λα.τ | tv | 〈δ, θ〉 | 〈µ, d〉
τ ∈ ITy ::= 〈α, θ〉 | τ µ | τ1 � τ2 | 〈β, θ〉 | 〈τ , d〉
Σ ∈ EqTypeStatus ::= EQ_TYPE | NEQ_TYPE | SIG_TYPE

tfi ∈ TypFunIns ::= τ1.τ2

κ ∈ TyConSem ::= µ | ∀α. µ | 〈κ, d〉
tyf ∈ TyFun ::= δ | Λ〈α, θ〉. τ | 〈tyf , d〉

app ∈ App ::= τ tyf
svar ∈ SVar ::= v | β

ρ ∈ FRTyVar ::= α | β
sig ∈ SigSem ::= e | ∀δe | 〈sig , d〉.

subty ∈ SubTy ::= σ � vid σ2 | κ1 � tc κ2

c ∈ EqCs ::= µ1 = µ2 | e1 = e2 | τ1 = τ2

bind ∈ Bind ::= �tc=tcs | �strid=es | �tv=ts | �vid=ts | �tv = β |
�sigid=sig

acc ∈ Accessor ::= �tc=δ | �strid=ev | �tv=〈α, θ〉 | �vid=〈α, θ〉 |
�sigid=ev

e ∈ Env ::= > | ev | bind | acc | c | poly(e) | ∃a.e | e2;e1

| loc e1 in e2 | or(e, d) | 〈e, d〉
| e1:e2 | ins(e | subty)

extra metavariables
ct ∈ CsTerm ::= τ | µ | e
σ ∈ Scheme ::= ts | tcs | es

v ∈ Var ::= α | δ | ev | θ
a ∈ Atom ::= v | γ | d

dep ∈ Dependent ::= 〈ct , d〉

263



E.7. EXTENSION FOR ABSTRACT TYPE DECLARATIONS

E.7 Extension for abstract type declarations

Figure E.13 External labelled syntax
external syntax (what the programmer sees, plus labels)

l ∈ Label (labels)
tv ∈ TyVar (type variables)
tc ∈ TyCon (type constructors)

strid ∈ StrId (structure identifiers)
vvar ∈ ValVar (value variables)
dcon ∈ DatCon (datatype constructors)
sigid ∈ SigId (signature identifiers)
eqtv ∈ EqTypeVar (Equality type variables)
vid ∈ VId ::= vvar | dcon

ltc ∈ LabTyCon ::= tcl

ldcon ∈ LabDatCon ::= dcon l

ty ∈ Ty ::= tv l | ty1
l→ ty2 | dty ltcel

cb ∈ ConBind ::= dcon l
c | dcon of l ty

dn ∈ DatName ::= dtv tcel

dec ∈ Dec ::= val rec tvseq pat
l
= exp | openl strid

| datatype dn
l
= cb | locall dec1 in dec2 end

| type dn
l
= ty | abstype dn

l
= cb with dec end

atexp ∈ AtExp ::= vid l
e | letl dec in exp end

exp ∈ Exp ::= atexp | fn pat
l⇒ exp | dexp atexpel | exp:l ty

ltv ∈ LabTyVar ::= ty l
l | dot-d(

−−→
term)

tvseq ∈ TyVarSeq ::= ltv | εl v | (ltv , ..., ltvn)l | dot-d(
−−→
term)

atpat ∈ AtPat ::= vid l
p

pat ∈ Pat ::= atpat | dldcon atpatel | pat:l ty

sigdec ∈ SigDec ::= signature sigid
l
= exp | dot-d(

−−−→
term)

sigexp ∈ SigExp ::= sigid l | sigl spec1 · · · specn end | dot-s(
−−−→
term)

spec ∈ Spec ::= val vid :l ty | type dn l | datatype dn
l
= cd |

structure strid :l sigexp

| eqtype dnl | dot-d(
−−→
term)

cd ∈ ConDesc ::= vid l
c | vid of l ty | dot-e(

−−→
term)

topdec ∈ TopDec ::= strdec | sigdec

prog ∈ Program ::= topdec1; ...topdecn

strdec ∈ StrDec ::= dec | structure strid
l
= strexp

strexp ∈ StrExp ::= strid l | structl strdec1 · · · strdecn end

| strexp :l sigexp | strexp :>l sigexp

extra metavariables
id ∈ Id ::= vid | strid | tv | tc | sigid

term ∈ Term ::= ltc | ldcon | ty | cb | dn | exp | pat | strdec | strexp
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E.7. EXTENSION FOR ABSTRACT TYPE DECLARATIONS

Figure E.14 Syntax of constraint terms
ev ∈ EnvVar (environment variables)
δ ∈ TyConVar (type constructor variables)
γ ∈ TyConName (type constructor names)
α ∈ ITyVar (internal type variables)
β ∈ RigidTyVar (set of rigid type variables)
θ ∈ IEqTypeVar (equality type variables)
d ∈ Dependency ::= l
ts ∈ ITyScheme ::= ∀v . τ

tcs ∈ ITyConScheme ::= ∀v . µ
es ∈ EnvScheme ::= ∀v . e
µ ∈ ITyCon ::= δ | γ | arr | Λα.τ | tv | 〈δ, θ〉 | 〈µ, d〉
τ ∈ ITy ::= 〈α, θ〉 | τ µ | τ1 � τ2 | 〈β, θ〉 | 〈τ , d〉
Σ ∈ EqTypeStatus ::= EQ_TYPE | NEQ_TYPE | SIG_TYPE

tfi ∈ TypFunIns ::= τ1.τ2

κ ∈ TyConSem ::= µ | ∀α. µ | 〈κ, d〉
tyf ∈ TyFun ::= δ | Λ〈α, θ〉. τ | 〈tyf , d〉

app ∈ App ::= τ tyf
svar ∈ SVar ::= v | β

ρ ∈ FRTyVar ::= α | β
sig ∈ SigSem ::= e | ∀δe | 〈sig , d〉.

subty ∈ SubTy ::= σ � vid σ2 | κ1 � tc κ2

c ∈ EqCs ::= µ1 = µ2 | e1 = e2 | τ1 = τ2

bind ∈ Bind ::= �tc=tcs | �strid=es | �tv=ts | �vid=ts | �tv = β |
�sigid=sig

acc ∈ Accessor ::= �tc=δ | �strid=ev | �tv=〈α, θ〉 | �vid=〈α, θ〉 |
�sigid=ev

e ∈ Env ::= > | ev | bind | acc | c | poly(e) | ∃a.e | e2;e1

| loc e1 in e2 | or(e, d) | 〈e, d〉
| e1:e2 | ins(e | subty)

extra metavariables
ct ∈ CsTerm ::= τ | µ | e
σ ∈ Scheme ::= ts | tcs | es

v ∈ Var ::= α | δ | ev | θ
a ∈ Atom ::= v | γ | d

dep ∈ Dependent ::= 〈ct , d〉
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E.8. EXTENSION FOR DUPLICATE IDENTIFIERS IN . . .

E.8 Extension for duplicate identifiers in specifica-

tions

Figure E.15 External labelled syntax
external syntax (what the programmer sees, plus labels)

l ∈ Label (labels)
tv ∈ TyVar (type variables)
tc ∈ TyCon (type constructors)

strid ∈ StrId (structure identifiers)
vvar ∈ ValVar (value variables)
dcon ∈ DatCon (datatype constructors)
sigid ∈ SigId (signature identifiers)
eqtv ∈ EqTypeVar (Equality type variables)
vid ∈ VId ::= vvar | dcon

ltc ∈ LabTyCon ::= tcl

ldcon ∈ LabDatCon ::= dcon l

ty ∈ Ty ::= tv l | ty1
l→ ty2 | dty ltcel

cb ∈ ConBind ::= dcon l
c | dcon of l ty

dn ∈ DatName ::= dtv tcel

dec ∈ Dec ::= val rec tvseq pat
l
= exp | openl strid

| datatype dn
l
= cb | locall dec1 in dec2 end

| type dn
l
= ty | abstype dn

l
= cb with dec end

atexp ∈ AtExp ::= vid l
e | letl dec in exp end

exp ∈ Exp ::= atexp | fn pat
l⇒ exp | dexp atexpel | exp:l ty

ltv ∈ LabTyVar ::= ty l
l | dot-d(

−−→
term)

tvseq ∈ TyVarSeq ::= ltv | εl v | (ltv , ..., ltvn)l | dot-d(
−−→
term)

atpat ∈ AtPat ::= vid l
p

pat ∈ Pat ::= atpat | dldcon atpatel | pat:l ty

sigdec ∈ SigDec ::= signature sigid
l
= exp | dot-d(

−−−→
term)

sigexp ∈ SigExp ::= sigid l | sigl spec1 · · · specn end | dot-s(
−−−→
term)

spec ∈ Spec ::= val vid :l ty | type dn l |
datatype dn

l
= cd | structure strid :l sigexp

| eqtype dnl | dot-d(
−−→
term)

cd ∈ ConDesc ::= vid l
c | vid of l ty | dot-e(

−−→
term)

topdec ∈ TopDec ::= strdec | sigdec

prog ∈ Program ::= topdec1; ...topdecn

strdec ∈ StrDec ::= dec | structure strid
l
= strexp

strexp ∈ StrExp ::= strid l | structl strdec1 · · · strdecn end

| strexp :l sigexp | strexp :>l sigexp

extra metavariables
id ∈ Id ::= vid | strid | tv | tc | sigid

term ∈ Term ::= ltc | ldcon | ty | cb | dn | exp | pat | strdec | strexp
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E.8. EXTENSION FOR DUPLICATE IDENTIFIERS IN . . .

Figure E.16 Syntax of constraint terms
ev ∈ EnvVar (environment variables)
δ ∈ TyConVar (type constructor variables)
γ ∈ TyConName (type constructor names)
α ∈ ITyVar (internal type variables)
β ∈ RigidTyVar (set of rigid type variables)
θ ∈ IEqTypeVar (equality type variables)
d ∈ Dependency ::= l
ts ∈ ITyScheme ::= ∀v . τ

tcs ∈ ITyConScheme ::= ∀v . µ
es ∈ EnvScheme ::= ∀v . e
µ ∈ ITyCon ::= δ | γ | arr | Λα.τ | tv | 〈δ, θ〉 | 〈µ, d〉
τ ∈ ITy ::= 〈α, θ〉 | τ µ | τ1 � τ2 | 〈β, θ〉 | 〈τ , d〉
Σ ∈ EqTypeStatus ::= EQ_TYPE | NEQ_TYPE | SIG_TYPE

tfi ∈ TypFunIns ::= τ1.τ2

κ ∈ TyConSem ::= µ | ∀α. µ | 〈κ, d〉
tyf ∈ TyFun ::= δ | Λ〈α, θ〉. τ | 〈tyf , d〉

app ∈ App ::= τ tyf
svar ∈ SVar ::= v | β

ρ ∈ FRTyVar ::= α | β
sig ∈ SigSem ::= e | ∀δe | 〈sig , d〉.

subty ∈ SubTy ::= σ � vid σ2 | κ1 � tc κ2

c ∈ EqCs ::= µ1 = µ2 | e1 = e2 | τ1 = τ2

bind ∈ Bind ::= �tc=tcs | �strid=es | �tv=ts | �vid=ts | �tv = β |
�sigid=sig

acc ∈ Accessor ::= �tc=δ | �strid=ev | �tv=〈α, θ〉 | �vid=〈α, θ〉 |
�sigid=ev

e ∈ Env ::= > | ev | bind | acc | c | poly(e) | ∃a.e | e2;e1

| loc e1 in e2 | or(e, d) | 〈e, d〉
| e1:e2 | ins(e | subty)| duplicates(e)

extra metavariables
ct ∈ CsTerm ::= τ | µ | e
σ ∈ Scheme ::= ts | tcs | es

v ∈ Var ::= α | δ | ev | θ
a ∈ Atom ::= v | γ | d

dep ∈ Dependent ::= 〈ct , d〉
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E.9. EXTENSION FOR INCLUDE SPECIFICATIONS

E.9 Extension for include specifications

Figure E.17 External labelled syntax
external syntax (what the programmer sees, plus labels)

l ∈ Label (labels)
tv ∈ TyVar (type variables)
tc ∈ TyCon (type constructors)

strid ∈ StrId (structure identifiers)
vvar ∈ ValVar (value variables)
dcon ∈ DatCon (datatype constructors)
sigid ∈ SigId (signature identifiers)
eqtv ∈ EqTypeVar (Equality type variables)
vid ∈ VId ::= vvar | dcon

ltc ∈ LabTyCon ::= tcl

ldcon ∈ LabDatCon ::= dcon l

ty ∈ Ty ::= tv l | ty1
l→ ty2 | dty ltcel

cb ∈ ConBind ::= dcon l
c | dcon of l ty

dn ∈ DatName ::= dtv tcel

dec ∈ Dec ::= val rec tvseq pat
l
= exp | openl strid

| datatype dn
l
= cb | locall dec1 in dec2 end

| type dn
l
= ty | abstype dn

l
= cb with dec end

atexp ∈ AtExp ::= vid l
e | letl dec in exp end

exp ∈ Exp ::= atexp | fn pat
l⇒ exp | dexp atexpel | exp:l ty

ltv ∈ LabTyVar ::= ty l
l | dot-d(

−−→
term)

tvseq ∈ TyVarSeq ::= ltv | εl v | (ltv , ..., ltvn)l | dot-d(
−−→
term)

atpat ∈ AtPat ::= vid l
p

pat ∈ Pat ::= atpat | dldcon atpatel | pat:l ty

sigdec ∈ SigDec ::= signature sigid
l
= exp | dot-d(

−−−→
term)

sigexp ∈ SigExp ::= sigid l | sigl spec1 · · · specn end | dot-s(
−−−→
term)

spec ∈ Spec ::= val vid :l ty | type dn l | datatype dn
l
= cd |

structure strid :l sigexp | include sigexp l

| eqtype dnl | dot-d(
−−→
term)

cd ∈ ConDesc ::= vid l
c | vid of l ty | dot-e(

−−→
term)

topdec ∈ TopDec ::= strdec | sigdec

prog ∈ Program ::= topdec1; ...topdecn

strdec ∈ StrDec ::= dec | structure strid
l
= strexp

strexp ∈ StrExp ::= strid l | structl strdec1 · · · strdecn end

| strexp :l sigexp | strexp :>l sigexp

extra metavariables
id ∈ Id ::= vid | strid | tv | tc | sigid

term ∈ Term ::= ltc | ldcon | ty | cb | dn | exp | pat | strdec | strexp
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Figure E.18 Syntax of constraint terms
ev ∈ EnvVar (environment variables)
δ ∈ TyConVar (type constructor variables)
γ ∈ TyConName (type constructor names)
α ∈ ITyVar (internal type variables)
β ∈ RigidTyVar (set of rigid type variables)
θ ∈ IEqTypeVar (equality type variables)
d ∈ Dependency ::= l
ts ∈ ITyScheme ::= ∀v . τ

tcs ∈ ITyConScheme ::= ∀v . µ
es ∈ EnvScheme ::= ∀v . e
µ ∈ ITyCon ::= δ | γ | arr | Λα.τ | tv | 〈δ, θ〉 | 〈µ, d〉
τ ∈ ITy ::= 〈α, θ〉 | τ µ | τ1 � τ2 | 〈β, θ〉 | 〈τ , d〉
Σ ∈ EqTypeStatus ::= EQ_TYPE | NEQ_TYPE | SIG_TYPE

tfi ∈ TypFunIns ::= τ1.τ2

κ ∈ TyConSem ::= µ | ∀α. µ | 〈κ, d〉
tyf ∈ TyFun ::= δ | Λ〈α, θ〉. τ | 〈tyf , d〉

app ∈ App ::= τ tyf
svar ∈ SVar ::= v | β

ρ ∈ FRTyVar ::= α | β
sig ∈ SigSem ::= e | ∀δe | 〈sig , d〉.

subty ∈ SubTy ::= σ � vid σ2 | κ1 � tc κ2

c ∈ EqCs ::= µ1 = µ2 | e1 = e2 | τ1 = τ2

bind ∈ Bind ::= �tc=tcs | �strid=es | �tv=ts | �vid=ts | �tv = β |
�sigid=sig

acc ∈ Accessor ::= �tc=δ | �strid=ev | �tv=〈α, θ〉 | �vid=〈α, θ〉 |
�sigid=ev

e ∈ Env ::= > | ev | bind | acc | c | poly(e) | ∃a.e | e2;e1

| loc e1 in e2 | or(e, d) | 〈e, d〉
| e1:e2 | ins(e | subty) | duplicates(e)

extra metavariables
ct ∈ CsTerm ::= τ | µ | e
σ ∈ Scheme ::= ts | tcs | es

v ∈ Var ::= α | δ | ev | θ
a ∈ Atom ::= v | γ | d

dep ∈ Dependent ::= 〈ct , d〉
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E.10 Extension for type sharing

Figure E.19 External labelled syntax
external syntax (what the programmer sees, plus labels)

l ∈ Label (labels)
tv ∈ TyVar (type variables)
tc ∈ TyCon (type constructors)

strid ∈ StrId (structure identifiers)
vvar ∈ ValVar (value variables)
dcon ∈ DatCon (datatype constructors)
sigid ∈ SigId (signature identifiers)
eqtv ∈ EqTypeVar (Equality type variables)
vid ∈ VId ::= vvar | dcon

ltc ∈ LabTyCon ::= tcl

ldcon ∈ LabDatCon ::= dcon l

ty ∈ Ty ::= tv l | ty1
l→ ty2 | dty ltcel

cb ∈ ConBind ::= dcon l
c | dcon of l ty

dn ∈ DatName ::= dtv tcel

dec ∈ Dec ::= val rec tvseq pat
l
= exp | openl strid

| datatype dn
l
= cb | locall dec1 in dec2 end

| type dn
l
= ty | abstype dn

l
= cb with dec end

atexp ∈ AtExp ::= vid l
e | letl dec in exp end

exp ∈ Exp ::= atexp | fn pat
l⇒ exp | dexp atexpel | exp:l ty

ltv ∈ LabTyVar ::= ty l
l | dot-d(

−−→
term)

tvseq ∈ TyVarSeq ::= ltv | εl v | (ltv , ..., ltvn)l | dot-d(
−−→
term)

atpat ∈ AtPat ::= vid l
p

pat ∈ Pat ::= atpat | dldcon atpatel | pat:l ty

sigdec ∈ SigDec ::= signature sigid
l
= exp | dot-d(

−−−→
term)

sigexp ∈ SigExp ::= sigid l | sigl spec1 · · · specn end | dot-s(
−−−→
term)

spec ∈ Spec ::= val vid :l ty | type dn l | datatype dn
l
= cd |

structure strid :l sigexp | include sigexp l

| eqtype dnl | dot-d(
−−→
term)

| sharing type vid1 = vid2

cd ∈ ConDesc ::= vid l
c | vid of l ty | dot-e(

−−→
term)

topdec ∈ TopDec ::= strdec | sigdec

prog ∈ Program ::= topdec1; ...topdecn

strdec ∈ StrDec ::= dec | structure strid
l
= strexp

strexp ∈ StrExp ::= strid l | structl strdec1 · · · strdecn end

| strexp :l sigexp | strexp :>l sigexp

extra metavariables
id ∈ Id ::= vid | strid | tv | tc | sigid

term ∈ Term ::= ltc | ldcon | ty | cb | dn | exp | pat | strdec | strexp
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Figure E.20 Syntax of constraint terms
ev ∈ EnvVar (environment variables)
δ ∈ TyConVar (type constructor variables)
γ ∈ TyConName (type constructor names)
α ∈ ITyVar (internal type variables)
β ∈ RigidTyVar (set of rigid type variables)
θ ∈ IEqTypeVar (equality type variables)
d ∈ Dependency ::= l
ts ∈ ITyScheme ::= ∀v . τ

tcs ∈ ITyConScheme ::= ∀v . µ
es ∈ EnvScheme ::= ∀v . e
µ ∈ ITyCon ::= δ | γ | arr | Λα.τ | tv | 〈δ, θ〉 | 〈µ, d〉
τ ∈ ITy ::= 〈α, θ〉 | τ µ | τ1 � τ2 | 〈β, θ〉 | 〈τ , d〉
Σ ∈ EqTypeStatus ::= EQ_TYPE | NEQ_TYPE | SIG_TYPE

tfi ∈ TypFunIns ::= τ1.τ2

κ ∈ TyConSem ::= µ | ∀α. µ | 〈κ, d〉
tyf ∈ TyFun ::= δ | Λ〈α, θ〉. τ | 〈tyf , d〉

app ∈ App ::= τ tyf
svar ∈ SVar ::= v | β

ρ ∈ FRTyVar ::= α | β
sig ∈ SigSem ::= e | ∀δe | 〈sig , d〉.

subty ∈ SubTy ::= σ � vid σ2 | κ1 � tc κ2

c ∈ EqCs ::= µ1 = µ2 | e1 = e2 | τ1 = τ2

bind ∈ Bind ::= �tc=tcs | �strid=es | �tv=ts | �vid=ts | �tv = β |
�sigid=sig

acc ∈ Accessor ::= �tc=δ | �strid=ev | �tv=〈α, θ〉 | �vid=〈α, θ〉 |
�sigid=ev

e ∈ Env ::= > | ev | bind | acc | c | poly(e) | ∃a.e | e2;e1

| loc e1 in e2 | or(e, d) | 〈e, d〉
| e1:e2 | ins(e | subty) | duplicates(e)
| sharingSig(ev) | sharingType(e1, e2)

extra metavariables
ct ∈ CsTerm ::= τ | µ | e
σ ∈ Scheme ::= ts | tcs | es

v ∈ Var ::= α | δ | ev | θ
a ∈ Atom ::= v | γ | d

dep ∈ Dependent ::= 〈ct , d〉
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E.11 Extension for operator infixity

Figure E.21 External labelled syntax
external syntax (what the programmer sees, plus labels)

l ∈ Label (labels) tv ∈ TyVar (type variables)
tc ∈ TyCon (type constructors)

strid ∈ StrId (structure identifiers)
vvar ∈ ValVar (value variables)
dcon ∈ DatCon (datatype constructors)
sigid ∈ SigId (signature identifiers)
eqtv ∈ EqTypeVar (Equality type variables)
vid ∈ VId ::= vvar | dcon | op vvar | op dcon

ltc ∈ LabTyCon ::= tcl

ldcon ∈ LabDatCon ::= dcon l

ty ∈ Ty ::= tv l | ty1
l→ ty2 | dty ltcel

cb ∈ ConBind ::= dcon l
c | dcon of l ty

dn ∈ DatName ::= dtv tcel

digit ∈ Digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
dec ∈ Dec ::= val rec tvseq pat

l
= exp | openl strid

| datatype dn
l
= cb | locall dec1 in dec2 end

| type dn
l
= ty | abstype dn

l
= cb with dec end

| infix digit vid | infixr digit vid | nonfix vid

atexp ∈ AtExp ::= vid l
e | letl dec in exp end

exp ∈ Exp ::= atexp | fn pat
l⇒ exp | dexp atexpel | exp:l ty

ltv ∈ LabTyVar ::= ty l
l | dot-d(

−−→
term)

tvseq ∈ TyVarSeq ::= ltv | εl v | (ltv , ..., ltvn)l | dot-d(
−−→
term)

atpat ∈ AtPat ::= vid l
p

pat ∈ Pat ::= atpat | dldcon atpatel | pat:l ty

sigdec ∈ SigDec ::= signature sigid
l
= exp | dot-d(

−−−→
term)

sigexp ∈ SigExp ::= sigid l | sigl spec1 · · · specn end | dot-s(
−−−→
term)

spec ∈ Spec ::= val vid :l ty | type dn l | datatype dn
l
= cd |

structure strid :l sigexp | include sigexp l

| eqtype dnl | dot-d(
−−→
term) | sharing type vid1 = vid2

cd ∈ ConDesc ::= vid l
c | vid of l ty | dot-e(

−−→
term)

topdec ∈ TopDec ::= strdec | sigdec

prog ∈ Program ::= topdec1; ...topdecn

strdec ∈ StrDec ::= dec | structure strid
l
= strexp

strexp ∈ StrExp ::= strid l | structl strdec1 · · · strdecn end

| strexp :l sigexp | strexp :>l sigexp

extra metavariables
id ∈ Id ::= vid | strid | tv | tc | sigid

term ∈ Term ::= ltc | ldcon | ty | cb | dn | exp | pat | strdec | strexp
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Figure E.22 Syntax of constraint terms
ev ∈ EnvVar (environment variables)
δ ∈ TyConVar (type constructor variables)
γ ∈ TyConName (type constructor names)
α ∈ ITyVar (internal type variables)
β ∈ RigidTyVar (set of rigid type variables)
θ ∈ IEqTypeVar (equality type variables)
./ ∈ InfixVar (infixity variables)
d ∈ Dependency ::= l
ts ∈ ITyScheme ::= ∀v . τ

tcs ∈ ITyConScheme ::= ∀v . µ
es ∈ EnvScheme ::= ∀v . e
µ ∈ ITyCon ::= δ | γ | arr | Λα.τ | tv | 〈δ, θ〉 | 〈µ, d〉
τ ∈ ITy ::= 〈α, θ〉 | τ µ | τ1 � τ2 | 〈β, θ〉 | 〈τ , d〉

dir ∈ Direction ::= L | R | NONE
Σ ∈ EqTypeStatus ::= EQ_TYPE | NEQ_TYPE | SIG_TYPE

tfi ∈ TypFunIns ::= τ1.τ2

κ ∈ TyConSem ::= µ | ∀α. µ | 〈κ, d〉
tyf ∈ TyFun ::= δ | Λ〈α, θ〉. τ | 〈tyf , d〉

app ∈ App ::= τ tyf
svar ∈ SVar ::= v | β

ρ ∈ FRTyVar ::= α | β
sig ∈ SigSem ::= e | ∀δe | 〈sig , d〉.

subty ∈ SubTy ::= σ � vid σ2 | κ1 � tc κ2

c ∈ EqCs ::= µ1 = µ2 | e1 = e2 | τ1 = τ2

bind ∈ Bind ::= �tc=tcs | �strid=es | �tv=ts | �vid=ts | �tv = β |
�sigid=sig | �vid

l
= ./

acc ∈ Accessor ::= �tc=δ | �strid=ev | �tv=〈α, θ〉 | �vid=〈α, θ〉 |
�sigid=ev

e ∈ Env ::= > | ev | bind | acc | c | poly(e) | ∃a.e | e2;e1

| loc e1 in e2 | or(e, d) | 〈e, d〉
| e1:e2 | ins(e | subty) | duplicates(e) |
sharingSig(ev) | sharingType(e1, e2)

extra metavariables
ct ∈ CsTerm ::= τ | µ | e
σ ∈ Scheme ::= ts | tcs | es

v ∈ Var ::= α | δ | ev | θ
a ∈ Atom ::= v | γ | d

dep ∈ Dependent ::= 〈ct , d〉
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