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I 

Abstract 

Despite floods and droughts accounting for 80% and 70% disaster related deaths and 

economic loss respectively in Sub-Saharan Africa (SSA), there have been very few 

attempts in SSA to quantify flood-related vulnerability and risk, especially as they relate 

to the rural poor. This thesis quantifies and profiles the flood risk of rural communities 

in SSA focusing on the Lower Shire Valley, Malawi. Given the challenge of hydro-

meteorological data quality in SSA to support quantitative flood risk assessments, the 

work first reconstructs and extends hydro-meteorological data using Artificial Neural 

Networks (ANNs). These data then formed the input to a coupled IPCC-Sustainable 

Development Frameworks for quantifying flood vulnerability and risk. Flood risk was 

obtained by integrating hazard and vulnerability. Flood hazard was characterised in 

terms of flood depth and inundation area obtained through hydraulic modelling of the 

catchment with Lisflood-FP, while the vulnerability was indexed through analysis of 

exposure, susceptibility and capacity and linked to social, economic, environmental and 

physical perspectives. Data on these were collected through structured interviews 

carried out with the communities and stakeholders in the valley and later analysed. The 

implementation of the entire analysis within a GIS environment enabled the 

visualisation of spatial variability in flood risk in the valley. The results show 

predominantly medium levels in hazardousness, vulnerability and risk. The 

vulnerability is dominated by a high to very high susceptibility component largely 

because of the high to very high socio-economic and environmental vulnerability. 

Economic and physical capacities tend to be predominantly low but social capacity is 

significantly high, resulting in overall medium levels of capacity-induced vulnerability. 

Exposure manifests as medium. Both the vulnerability and risk showed marginal spatial 

variability. Given all this, the thesis argues for the need to mainstream disaster reduction 

in the rather plethoric conventional socio-economic developmental programmes in SSA. 

Additionally, the low spatial variability in both the risk and vulnerability in the valley 

suggests that any such interventions need to be valley-wide to be effective. 
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Chapter 1 Introduction 

1.1 Introduction 

The frequency, severity and damage costs of natural disasters are on the increase 

(Adikari and Yoshitani, 2009). This has been linked to a number of factors: population 

growth, urbanization and climate change and variability (Mathur, 2006; WMO, 2009). 

The significant increase has been in water-related natural disasters, particularly in floods 

and windstorms (Adikari and Yoshitani, 2009). Between, 1980 and 2006, floods have 

been the most recurrent water-related natural disaster. Floods have also accounted for 

the highest proportion of people affected by natural disasters. They have come second to 

windstorms in accounting for disaster-related economic damages and ranked second to 

droughts in accounting for natural disaster-related fatalities (Adikari and Yoshitani, 

2009).  

 

 

The increase in frequency, severity and associated damage costs in natural disasters in 

general, has spurred the call for sustainable disaster management strategies. This is 

exemplified in the agenda of international initiatives such as the International Decade 

for Natural Disaster Reduction (IDNDR, 1990 - 1999), the Second World Summit on 

Sustainable Development in Johannesburg in 2002 and the World Conferences on 

Disaster Reduction in Kobe, Japan in 2005. 

 

 

A shift in conceptualization and methodological approach in assessing risk to natural 

hazards has been one key outcome. In particular, there has been an emphasis on 

integrated and multi-dimensional assessments coupled with the use of metrics (ISDR, 

2005; Luers, 2005; Nelson et al., 2010; WMO/GWP, 2009). The Hyogo Framework for 

Action (HFA) 2005-2015 (ISDR, 2005) underscores this in the following statement: 

 

“the starting point for reducing disaster risk and for promoting a culture of 

disaster resilience lies in the knowledge of the hazards and the physical, social, 

economic and environmental vulnerabilities to disasters that most societies face, 

and of the ways in which hazards and vulnerabilities are changing in the short 

and long term, followed by action taken on the basis of that knowledge”.  
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The framework goes on to underscore the need for metrics: 

 

“develop systems of indicators of disaster risk and vulnerability at national and 

sub-national scales that will enable decision-makers to assess the impact of 

disasters on social, economic and environmental conditions and disseminate the 

results to decision-makers, the public and populations at risk”. 

 

 

The increasing support for such methodological approaches stems from their usefulness 

in supporting decision making and policy in ways pertinent to sustainable risk 

reduction. Several researchers (Gall, 2007; Luers, 2005; Nelson et al., 2010; Vincent, 

2004) assert that metric-based assessments allow identification of relative 

vulnerabilities of specific people and specific places. In this way, metric-based 

assessments support targeting of interventions and allocation of scarce resources, an 

important aspect for resource strapped developed countries. Besides, such approaches 

allow the monitoring of policy interventions. Cinner et al., (2012) have also argued in 

favour of dimensioning vulnerability or risk observing that specific dimensions demand 

different policy measures and therefore such an approach would lead to the institution 

of appropriate interventions. This has been echoed by Fussel  (2007) who cites the 

example of social vulnerability being important for the design of adaptation policies but 

limited in informing mitigation policy.   

  

 

Adoption of such approaches in vulnerability or risk assessments has been considerable 

in many parts of the world (Balica et al., 2012; Cutter and Finch, 2008; Cutter et al., 

2000; Dinh et al., 2012; Vincent, 2004). In contrast, in Sub-Saharan Africa (SSA) where 

floods alongside droughts are the dominant natural hazards accounting for 80% and 

70% of disaster related mortality and economic losses respectively (World Bank, 

2010a), assessing risk from this contemporary perspective has been limited and 

confined to climate change studies (Gbetibouo and Ringler, 2009; Hahn et al., 2009; 

Sullivan and Meigh, 2005; Vincent, 2004).  

 

 

Studies on flood risk in SSA have mainly been qualitative, addressing vulnerability in 

isolation by focussing on the identification of causal factors, impacts and coping 
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strategies (Adelekan, 2010; Armah et al., 2010; Campion and Venzke, 2013; Douglas et 

al., 2008; Khandlhela and May, 2006; Maheu, 2012; Nethengwe, 2007). Even in a few 

studies that have departed from this usual descriptive approach by adopting quantitative 

methods, the tendency has been to emphasise the social dimension (Kienberger, 2012; 

Musungu et al., 2012) or, to a small extent, the biophysical dimension (Ologunorisa, 

2004; Yahaya et al., 2010) without efforts to understand their confounding effects. 

 

 

A bias towards understanding vulnerability may stem from calls for vulnerability 

reduction at household and community level and a culture of building resilience 

(Birkmann, 2006). It follows the recognition that complete flood protection by structural 

measures (addressing the hazard) is an illusion due to cost implications, the inherent 

uncertainty in floods and a limitation with what may be achieved in modifying the 

hazard in comparison to modifying human behaviour (Cardona, 2004; Kundzewicz and 

Takeuchi, 1999). There are also concerns of sustainability of structural measures 

(Birkmann, 2006). Environmental concern is another factor (WMO, 2009).  

 

 

The bias towards vulnerability assessments has particularly been underscored for 

developing countries (Lumbroso et al., 2008). It is observed that cost implications from 

focussing on the hazard have more bearing on developing countries, as these countries 

face competing investment demands such as food and health (Herath et al., 2002). The 

beneficial side of flooding, though not confined to developing countries, has also been 

another drive for focussing on addressing vulnerability other than the hazard. It is 

estimated that about one billion people (one sixth of the world population), the majority 

of them being among the world’s poorest people, live on floodplains (WMO-UNESCO, 

2007). Floodplains provide them with deep fertile alluvial soils, space for development, 

and water availability for agriculture, navigation and recreation purposes besides 

sustaining ecosystems. However, a vulnerability emphasis discounts the hazard 

(Cardona, 2004). Cardona (2004) argues that without the hazard which is a triggering 

phenomenon, even if vulnerability is quantified, there is no risk and thus no possible 

future disaster.  
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Thus, research on flood risk in SSA has been deficient in some ways. Not only has it 

consistently ignored the interplay between hazard and vulnerability; it has also paid 

little attention to their quantification. A vulnerability emphasis has downplayed the 

physical factors that contribute to the risk of a system. Similarly, flood hazard studies, 

though few, have disregarded  the wider political, social and economic struggles that 

intensify vulnerability and ultimately the impact of a hazard (Birkmann, 2007; Cutter et 

al., 2009). In either case, a narrow view of risk results. 

 

 

The above deficiencies have implications for flood risk management considering the 

increasing need to link disaster assessment to decision making (Cardona, 2004; Nelson 

et al., 2010; Ribot, 2010). They impinge, in particular on appropriateness and adequacy 

of interventions, and on aspects of comparison, targeting and monitoring as earlier 

highlighted.   

 

 

Given the current direction of flood risk research in SSA, how vulnerability and 

ultimately flood risk for rural communities in SSA manifest in magnitudes and along 

different dimensions, particularly so within a contemporary disaster management 

discourse, remain unknown. There is therefore need for improved understanding of the 

flood risk problem in SSA. Focusing on the Lower Shire Valley, Malawi, the thesis first 

sets out to characterise vulnerability and ultimately risk to flooding of rural 

communities in the Lower Shire Valley, Malawi.  

 

 

The study contributes on two fronts. It proposes a methodology for reconstructing 

hydro-meteorological data, a major hindrance to water management in general in SSA 

and, hazard quantification in particular for complete risk analysis in this thesis. It further 

assesses the feasibility of such data for flood risk management through forecasting and 

warning. While hydrological data quality issues are not uncommon, the problem is more 

marked in developing countries; the extent of which may be unsuitable for application 

of traditional methods. The thesis further contributes, backed by a quantitative basis, 

through advancing the understanding of the flood risk of rural communities in SSA 

beyond the listing of  causes, impacts, perceptions and coping strategies. It measures 
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and profiles vulnerability and risk in respect of broader dimensions within the 

contemporary discourse of disaster management.   

 

 

1.2 Aim and objectives 

The aim of the thesis is to enhance understanding of vulnerability and risk to flooding of 

rural communities in the Lower Shire floodplain, Malawi for the purpose of supporting 

decision making for effective flood risk management. The objectives are to:  

 

� Develop an approach to augment and extend hydro-meteorological data in data 

poor catchments for the support of hydrological and hydraulic modelling.  

 

� Develop, verify and validate AI –based forecasting models for flow and water 

levels.  

 

�  Quantify the hazard, vulnerability and risk, as well as their dimensions, and 

determine how these manifest themselves spatially. 

  

� Make recommendations on flood mitigation and adaptation strategy for flood 

risk management.  

 

 

1.3 Thesis outline 

Chapter 1 provides a background and objectives of the study. It also outlines the 

structure of the thesis. 

 

 

Chapter 2 is a review of literature. It provides definitions with regard to hazard, 

vulnerability and risk as linked to different disciplines. It then draws attention to the 

different theoretical frameworks historically and contemporarily used in disaster 

management and highlights their weaknesses and strengths. The chapter goes on to 

outline approaches used in measuring risk in general and the trends exhibited in SSA. 

The chapter also brings the Lower Shire Valley in to context; highlighting flood risk 

factors, previous attempts to measure flood risk in this valley and flood risk 
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management in general. It further discusses the quality of hydrological data in the 

broader context of developing countries and how this impinges water management 

including flood assessment and mitigation.  

 

 

In Chapter 3, the methodological approach for the thesis is presented. Risk as a 

convolution of the hazard and vulnerability is distinguished. The chapter identifies the 

spatial unit of analysis. It describes and justifies data to be used in defining 

hazardousness, vulnerability and ultimately risk. Alongside the data needs, methods for 

collecting this data are presented. Finally, the chapter presents tools for the 

reconstruction of the data and forecasting, and for the analysis of the hazard, 

vulnerability and risk.  The methods used for data reconstruction have not hitherto been 

done for Malawi and in general not for data poor catchments in SSA. Neither have the 

IPCC framework been coupled with the Sustainable Development Framework for better 

understanding of vulnerability. These therefore constitute principal claims of the thesis 

to making an original contribution.  

 

 

Chapter 4 dwells in detail on how data was analysed. It details the exact data inputs 

used in the tools identified in chapter 3. It further presents parameters, thresholds and 

rankings used to give a degree of severity of hazardousness, vulnerability and 

consequently risk. The chapter also outlines means for validation where applicable.  

 

 

Chapter 5 outlines and discusses the results. This is with regard to the performance of 

developed ANN models in reconstructing data as well as in forecasting in such data-

poor environments. Further, the chapter provides magnitudes and spatial patterns of 

hazardousness, vulnerability and risk, across communities in the valley. The 

determinants of vulnerability to flooding on the basis of dimensions other than factors 

are identified. Likewise, the determinant of flood risk for these rural communities vis-à-

vis vulnerability or the hazard is also established. The chapter concludes with policy 

implications of the findings and limitations of the study.  
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Chapter 6 concludes the thesis and recommends areas for further research in order to 

promote evidence-based policy decision making in flood risk management.
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Chapter 2 Literature Review 

2.1 Vulnerability, hazard and risk – some definitions 

Hazard  

A hazard has been defined as a dangerous phenomenon, substance, human activity or 

condition that may cause loss of life, injury or other health impacts, property damage, 

loss of livelihoods and services, social and economic disruption, or environmental 

damage (ISDR, 2009). Hazards are often classified based on origin. In this regard 

therefore, hazards are classified as natural (floods, droughts, earthquakes, landslides, 

volcanoes), technological (explosions, spills, release of toxic chemicals) and social or 

human-induced hazards (wars, terrorism) (ISDR, 2004; Villagran de Leon, 2006). 

Natural hazards that are triggered or aggravated by a combination of natural events and 

human intervention are sometimes distinguished. These are referred to as socio-natural 

hazards (Villagran de Leon, 2006) and constitute hazards such as floods, landslides and 

bush fires.    

 

 

Vulnerability  

Vulnerability is a term that carries different and often contested meanings across 

disciplines. Nonetheless, in the natural hazard or the human-environment disciplines, 

the definitions accorded are normally not mutually exclusive; it is a matter of language 

(Adger, 2006; Brooks, 2003).  

 

 

In general, vulnerability has been linked to the weakness of a system in the face of a 

hazard. The International Strategy for Disaster Reduction (ISDR) (2004) defines 

vulnerability as the conditions determined by physical, social, economic, and 

environmental factors or processes, which increase the susceptibility of a community to 

the impact of hazards. According to Cardona (2004), vulnerability is an internal risk 

factor of the subject or system that is exposed to a hazard and corresponds to its 

intrinsic predisposition to be affected or to be susceptible to damage. Adger, (2006) 

looks at vulnerability as the state of susceptibility to harm from exposure to stresses 

associated with environmental and social change and from the absence of capacity to 

adapt. The Inter-Governmental Panel on Climate Change (IPCC) (IPCC, 2012) defines 

vulnerability as the propensity or predisposition to be adversely affected.  
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Whilst vulnerability has the general connotation of weakness, the inclusion of coping 

capacities also underlies most definitions. Therefore, vulnerability is a phenomenon also 

associated with such terms as coping capacity, coping, adaptive capacity, adaptation, 

resistance and resilience besides susceptibility, sensitivity and exposure (Adger, 2006; 

Birkmann et al., 2013; Fussel, 2007; IPCC, 2001; Smit and Wandel, 2006). 

 

 

Risk 

The term risk is associated with potential loss for a particular place and time, arising 

from the interactions of vulnerable conditions and the hazard. The ISDR (2004) for 

example defines risk as the probability of harmful consequences, or expected losses 

(deaths, injuries, property, livelihoods, economic activity disrupted or environment 

damaged) resulting from interactions between natural or human-induced hazards and 

vulnerable conditions. The term has been operationalized as: 

 

Risk = Hazard x Vulnerability  (ISDR, 2004)                           (2.1)  

 

or as Risk = Probability x Consequence (IPCC, 2012).                (2.2) 

 

 

The use of the terms vulnerability or risk is largely a function of the discipline. In social 

sciences, environmental hazards and climate change studies, the term of use is 

vulnerability. However, the social sciences discipline e.g. Blaike et al. (1994) reduces 

vulnerability to structural factors i.e. social, economic, political and institutional, that 

make the human system susceptible to harm. In contrast, in climate change studies, 

vulnerability is an all-encompassing term that besides social factors also includes 

biophysical factors such as rainfall, sea level rise, temperature etc. (Allison et al., 2009; 

Cutter et al., 2000; Hahn et al., 2009; Sullivan and Meigh, 2005). 

 

 

Similarly, as with the climate change community, the natural hazard discipline (Bollin 

et al., 2003; Cardona, 2004; ISDR, 2004) is also cognisant of both social factors and  

biophysical factors. However, unlike in the climate change literature where the term 

vulnerability is used, the all-encompassing term used in the natural hazard discipline is 

risk. Thus risk in natural hazards discipline is synonymous to vulnerability in climate 
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change literature with vulnerability in the natural hazard discipline being an integral 

component of risk, along with the hazard.  Vulnerability in the natural hazard discipline 

has been limited to the intrinsic disposition of a system to harm; independent of the 

hazard (Birkmann et al., 2013; Brooks et al., 2005) 

 

 

In a classification scheme of ‘vulnerability’ to climate change by Fussel (2007), Fussel 

(2007) identifies four categories: internal social vulnerability (e.g. household income, 

social networks, access to information), external social vulnerability (national policies, 

international aid, economic globalization), internal biophysical vulnerability 

(topography, environmental conditions, land cover) and external biophysical 

vulnerability (severe storms, earthquakes, sea level rise). Based on this classification, in 

environmental hazards and climate change studies, all four categories constitute 

vulnerability. In natural hazards however, only internal and external social vulnerability 

and, internal biophysical vulnerability define vulnerability; external biophysical 

vulnerability is a hazard 

 

 

2.2 Theoretical frameworks for ‘vulnerability analyses’ 

An extensive review of literature on ‘vulnerability’ has been given by Brooks (2003), 

Vincent (2004), Adger (2006), Eakin and Luers, (2006), Birkmann (2006), Fussel 

(2007) and Cutter et al. (2009) amongst others. It emerges from these reviews that 

‘vulnerability’ is polarised between two distinctive frameworks: a natural hazard 

framework and the social science frameworks. Other frameworks tend to be 

hybridizations. The two frameworks are synonymous to what has been referred to as 

“end point” and “start point” vulnerability (Kelly and Adger, 2000); “biophysical” and 

“social” vulnerability (Brooks, 2003) or “outcome” and “contextual” vulnerability . 

(O'Brien et al., 2007). 

 

 

2.2.1 The hazard framework 

The hazard framework focuses on the hazard. Until recently, this framework has been 

the domain of natural hazard and climate change scientists (Brooks, 2003; Fussel, 

2007).  The vulnerability of concern in this framework is that of the elements at risk 
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(population, physical infrastructure, places, sectors, activities) by virtue of their 

exposure to the hazard. Ultimately, the focus is the impacts of the hazard in terms of 

loss of life and property and hazard characteristics (Brooks, 2003; Cutter, 1996; Eakin 

and Luers, 2006). According to Cutter (1996), magnitudes, frequency, duration, impact 

and rapidity of onset of the hazard are characteristics of interest. Thus in this 

framework, ‘vulnerability’ is an outcome following the occurrence of the hazard and the 

occupancy of hazardous zone (floodplains, coastal zones, seismic regions etc). Summed 

up by Eakin and Luers (2006), the hazard framework addresses the following questions: 

what are we vulnerable to? what consequences might be expected? where and when will 

those impacts occur?  

 

 

Evaluation of vulnerability or risk from this perspective in many ways is advantageous. 

According to Dilley and Boudreau (2001), it allows monitoring of causal factors and 

predictions of impacts thereby creating opportunities for anticipating for them. 

Consequently, it enables the determination of the type of intervention needed, the 

location, timing, target population and level of effort needed to counter the impacts.  

 

 

The framework is nonetheless without flaws. Its major criticism has been on 

undermining political, social and economic struggles that intensify vulnerability and 

ultimately the impact of a hazard (Adger, 2006; Cutter et al., 2009; Turner II et al., 

2003). While the framework addresses to what, where, when and the consequences of 

the hazard, it does not address the why of vulnerability (Ribot, 2010). Another problem 

arises from treating the exposed system as uniform; without accounting for differences 

that result in differential impacts of the hazard (Birkmann, 2006; Turner II et al., 2003).  

 

 

Furthermore, from a flood risk management point view, viewing ‘vulnerability’ as a 

sole function of exposure to the hazard carry costly implications: the tendency is to take 

away the flood from people through predominantly structural mitigation measures 

(Nelson et al., 2010). Herath et. al. (2002), Plate (Plate, 2007) and Lumbroso et al. 

(2008) amongst others have all drawn attention to the aspect of costs and the inherent 

unsustainability of structural measures for developing countries in the face of  numerous 

competing socio-economic developmental demands for the available meagre resources.  
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2.2.2 The social framework 

In contrast to the hazard framework, social frameworks place the burden to explain 

‘vulnerability’ within the social system (Ribot, 2010). Vulnerability in this framework is 

attributed to historical, cultural, socio, economic and political processes that make 

people vulnerable (Adger, 2006; Eakin and Luers, 2006; Ribot, 2010). Consequently, as 

opposed to the hazard framework where vulnerability is an outcome, Eakin and Luers 

(2006) note that vulnerability in this framework is a state or condition of being 

moderated by existing inequities in resource distribution and access, the control 

individuals can exert over choices and opportunities, and historical patterns of social 

domination and marginalization.  The framework identifies who precisely is vulnerable, 

why they are vulnerable and how they are vulnerable (Cutter et al., 2009; Eakin and 

Luers, 2006). 

 

 

The social theoretical framework has been exemplified in a number of theories: the 

entitlement theory (Sen, 1981), sustainable livelihoods theory (DFID, 1999) (Figure 

2.1) and to some extent in the Pressure and Release  (PAR) model (Blaikie et al., 1994; 

Wisner et al., 2004) (Figure 2.2). The Entitlement theory explains vulnerability as a 

consequence of failure in means or avenues, both real and potential, of access to 

resources. The framework refers to these avenues as entitlements. Vulnerability 

variables of focus are the social realm of institutions, well-being, class and social status 

(Adger, 2006).  

 

 

In the Sustainable Livelihood Framework, two elements are important: livelihoods and 

sustainability (Birkmann, 2006). Chambers and Conwal (1992) defined livelihoods  as 

capabilities, assets (including both material and social resources) and activities required 

for a means of living. They observed that a livelihood is sustainable when it can cope 

with and recover from stresses and shocks, maintain or enhance its capabilities and 

assets, while not undermining the natural resource base. 
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Figure 2.1: Sustainable Livelihood Framework.  

 H=human capital, N=natural capital, F=financial capital, P=physical 

capital, S=social capital. Source: (DFID, 1999) 

 

Typically in this framework, the livelihoods are human capital (health, nutrition, 

education, knowledge and skills, capacity to work, capacity to adapt), natural capital 

(land and produce, water and the aquatic resources, biodiversity, trees and forest 

products, environmental services and wildlife); social capital (neighbours and kinship, 

mutual trust, formal and informal groups, common rules and sanctions, collective 

representation, mechanism for participation in decision making, leadership); physical 

capital (infrastructure - roads, vehicles, secure shelter and buildings, water supply and 

sanitation, communication and; tools and technology and financial capital (savings, 

credit/debts (formal and informal, non-governmental organizations), remittances, 

pensions and wages) (DFID, 1999). The Sustainable Livelihood Framework therefore 

conceptualizes vulnerability as failure to access and maintain livelihoods. The failure is 

often linked to transforming structures in the government system and private sectors and 

respective processes (laws, policies, culture, institutions) (Adger, 2006; Birkmann, 

2006). 

 

 

The PAR model (Figure 2.2) rather adopts a historical approach; it conceptualizes 

vulnerability as shaped by historical processes; from some ‘root causes’, intensified by 

some ‘dynamic processes’ which result in ‘unsafe conditions’ (vulnerability) 

Nonetheless, unlike other social models, the PAR model is cognisant of a disaster being 

a compounding function of the hazard and vulnerability.  
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Figure 2.2: The PAR model  

 Source: (Wisner et al., 2004) 

 

As with the hazard framework, a social framework has its own strengths. In identifying 

who precisely is vulnerable, why they are vulnerable and how they are vulnerable, the 

strength of these frameworks lies in revealing social differentiation in causes and 

outcome of vulnerability (Adger, 2006). Knowing why people are vulnerable helps 

design and modify interventions (Fussel, 2007; Ribot, 2010). In addition, the perception 

of vulnerability as being a structural outcome has implications for vulnerability redress 

that is less costly and therefore more befitting developing countries. Dunno (2011) 
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points out that because impacts are contingent upon society rather than nature in this 

framework, when people are in danger, an important aspect becomes their coping 

strategies rather than the severity of a damaging agent, and when disasters do occur, the 

focus is especially upon who is affected and their ability to withstand, mitigate and 

recover from damage.  

 

 

In spite of these advantages, the social framework has also not escaped criticisms. The 

human-centric element in this framework presents a major weakness; it ignores the 

physical processes that work to amplify vulnerability (Adger, 2006). There are other 

weaknesses. Eakin and Luers (2006) for example note that social frameworks 

sometimes fail to provide clearly defined vulnerability outcomes which, they observe, 

has produced in some research, generic descriptions of inequities in resource 

distribution and opportunity without demonstrating ties to differential susceptibility to 

harm. Wisner et. al (2004) also considers the framework emphatic of people’s weakness 

and limitation and therefore treats human beings as dormant members incapable of 

taking preventive and adaptive measures.   

 

 

In tandem with the growing recognition that social and human systems are integral to 

influencing ‘vulnerability’, ‘vulnerability’ research has in recent decades, also evolved. 

 

 

2.2.3 Contemporary frameworks 

‘Vulnerability’ research has in recent decades witnessed the emergence of theoretical 

frameworks that give a comprehensive and broader perspective of vulnerability to 

hazards (Adger, 2006). Their origins can be traced to the mid 90’s (Cutter et al., 2009). 

In his review of vulnerability, Adger (2006) makes the following observations about 

these contemporary frameworks: they are characterized by the recognition of the 

coupled human and environment system in the analysis of vulnerability; they analyse 

elements of a bounded system; analysis is scale-linked; there is explicit linkage to other 

factors and processes beyond the scale of analysis; and they do not only treat exposure 

and sensitivity, they are also cognisant of responses of the communities (coping, 

adaptation, resilience). A further characteristic of contemporary frameworks is a shift 

from qualitative to quantitative assessments. Consequently, there is emphasis on linking 
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‘vulnerability’ analysis to decision making in practice (Adger, 2006; Cutter et al., 2009; 

Gall, 2007).  

 

 

Contemporary conceptualization of ‘vulnerability’ is, to varied extents, exemplified in a 

number of models. The hazard-of-place framework (HOP) (Cutter, 1996; Cutter et al., 

2000) shown in Figure 2.3 is an archetype of these frameworks. The HOP is integrative 

of both the social framework and the biophysical framework but with emphasis on a 

specific geographic domain. 

 

 

Figure 2.3: A hazard of place framework 

   Source: (Cutter et al., 2003) 

 

The framework views the hazard potential as an outcome of risk (the likelihood of a 

hazard) and mitigation measures (measures to reduce risk or its impacts). The hazard 

potential is then filtered through the geographic context (site and situation, proximity) to 

produce biophysical vulnerability. The hazard potential is also filtered through the 

social fabric (socioeconomic conditions, risk perception, ability to respond). This 

generates social vulnerability. The overall ‘vulnerability’ for a place is the intersection 

of biophysical and social vulnerability. This further provides feedback loop to both risk 

and mitigation which may enhance or ameliorate the hazard potential. The HOP 

framework has mainly been used in the USA (Chakraborty et al., 2005; Cutter and 

Finch, 2008; Wu et al., 2002) but is applicable anywhere.  
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More recent integrative frameworks include the BBC (Bogardi and Birkmann, 2004; 

Cardona, 1999; Cardona, 2001) framework (Figure 2.4), the ISDR (2004) framework 

(Figure 2.5), and Turner II et al.’s (2003) model (Figure 2.6). 

  

 

The BBC framework (Figure 2.4) underscores a risk analysis that goes beyond the 

estimation of deficiencies and disaster impacts; it rather stresses a dynamic process that 

simultaneously and continuously focuses on vulnerabilities and interventions to reduce 

vulnerability whilst accounting for the hazards and potential events that  

 

 

Figure 2.4: The BBC model 
  Source: (Birkmann, 2006) 
 

the society is vulnerable to, the interaction with which leads to risk (Birkmann, 2006). 

The framework conceptualises vulnerability as a function of exposure, susceptibility 

and coping capacities. Besides, it underscores sustainable development elements. In this 

regard, it analyses vulnerability from a social, economic and environmental perspective. 

The incorporation of interventions to reduce vulnerability, both ext-ante and ex-post, 

and those to reduce hazard magnitudes and frequency makes the framework risk 

reduction-oriented (Birkmann, 2006).  
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Like the BBC framework, the ISDR (2004) framework (Figure 2.5) conceptualises 

vulnerability as independent of the hazard and therefore recognises risk as arising from 

vulnerability and the hazard. Its conceptualisation of vulnerability as having four 

dimensions: social, economic, environmental and physical. The framework is emphatic 

on disaster risk reduction processes i.e. hazard and vulnerability analysis, risk 

assessment and response (awareness, knowledge development, public commitment, 

application of risk reduction measures, early warning and preparedness). 

 

 

Turner II et al.’s (2003) model (Figure 2.6), like the HOP, is a place-based model that 

emphasizes coupled human-environmental systems. Unlike in the BBC and ISDR 

frameworks where vulnerability is retained for the social system, ‘vulnerability’ in  

Turner II et al.’s (2003) model, as with the HOP, is inclusive of the biophysical 

component. Vulnerability is defined in terms of exposure, susceptibility and responses 

(coping responses, impact responses and adaptation responses). Specifically, a system’s 

vulnerability to hazards in this framework consists of (i) linkages to the broader human 

and biophysical (environmental) conditions and processes operating on the coupled 

system in question; (ii) perturbations and stressors/stresses that emerge from this 

conditions and processes; and (iii) the coupled human – environment system of concern 

in which vulnerability resides, including exposure and responses (i.e. coping, impacts, 

adjustments, and adaptation) (Turner II et al., 2003). Unlike the HOP therefore, Turner 

et al’s model links place vulnerability to in-place, beyond place and cross scale factors. 
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Figure 2.5:  ISDR framework for disaster risk reduction ((ISDR, 2004) 
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Figure 2.6: Vulnerability framework based on Turner et al.’s (2003) model  

 

Despite being conceptually appealing, these contemporary frameworks are not without 

shortfalls. For instance, the HOP model (Figure 2.3) does not provide a causal 

explanation of the vulnerability; rather variables are adopted as is. Because it focuses on 

place-based interactions between biophysical and social systems, it also excludes the 

larger contexts within which such vulnerability exists (Cutter et al., 2009).  

 

 

In the case of Turner II et al.’s model, Gall (2007) argues it is theoretical and lacks 

specificity. She specifically questions what in the model constitutes human and 

environmental conditions that construct vulnerability and the mechanisms that cause 

variability and change in both systems. 

 

 

Similarly, the ISDR (2004)’s conceptualisation of vulnerability does not link 

vulnerability and preparedness response system and therefore is not explicit on how 

vulnerability and risk can be reduced (Birkmann, 2006).  
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Ultimately, the most important limitation of contemporary frameworks is the 

methodological difficulty of translation of some concepts into practice. For example, 

positing social and environmental processes within nested scales is one such difficulty 

in Turner‘s model (Eakin and Luers, 2006; Gall, 2007). In this regard, Gall (2007) 

argues against the generalizability of the cross-scale aspect observing that cross-scale 

integration would be more appropriate for global climate change studies.  

 

 

Indeed, cross-scale integration has been exemplified in global climate change studies 

e.g. O’Brien et al. (2004a). O’Brien et al. (2004a) assessed the vulnerability of 

agriculture in India not only in the context of climate change taking place in India but 

also due to global market forces. However, the cross interaction is not elaborate. Eakin 

and Luers  (2006) argues that in O’Brien et al. (2004a), the nature of the cross scale 

interaction between the two stressors, the relative importance of each at any given time, 

and the possible nonlinear responses of a system to multiple stressors study are elusive. 

 

 

As is the difficulty of integration of spatial scale, the incorporation of different links that 

exist between factors is also a difficulty that has also been elusive in most studies 

(Chakraborty et al., 2005; Cutter and Finch, 2008; Cutter et al., 2003).  

 

 

Besides these challenges, Eakin and Luers (2006) also observe that capturing the full 

dynamics of vulnerability in these contemporary models, would entail larger 

interdisciplinary teams and huge amount of financial resources which is a challenge in 

resource scarce areas.  

 

 

2.2.4 Summary  

Vulnerability, hazard and risk are terms associated with different disciplines. 

Vulnerability is a term more associated with the social sciences and climate change 

discipline although they carry different connotations. Risk on the other hand is used in 

the natural hazard literature and refers to the convolution of the hazard and 

vulnerability. Nonetheless, vulnerability in climate change is synonymous to risk in the 

natural hazards discipline.  
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Assessing risk to natural disasters has evolved in numerous ways. Among them is a shift 

from a traditional sole biophysical or social emphasis, to the integration of both 

systems. Further, contemporary disaster management accounts not only for exposure or 

sensitivity but is also inclusive of the adaptation capacity at hand. Associated with the 

paradigm shift in conceptualization, is also an emphasis on the quantification. This has 

been viewed as one of the pathways to sustainable disaster management as 

quantification informs policy and decision making. Despite advances in theoretical 

frameworks, not all contemporary frameworks are amenable to practical applications. 

 

 

This thesis draws largely from the disaster risk community. Hence, it adopts a natural 

hazard nomenclature where vulnerability and hazard are integral to risk. Drawing from 

Fussel’s (2007) classification, vulnerability in this study is confined to predisposition of 

a system to harm defined by internal and external socio-economic conditions including 

internal biophysical characteristics e.g. topography, soil. External biophysical such was 

flow depth, velocity, frequency constitute a hazard in this study. Due to methodological 

challenges, it disregards the links and synergies between factors. Further, the study is 

place-based - confined to factors as determined by the geography of the Lower Shire 

floodplain.  

 

 

2.3 Approaches to measuring risk 

Birkmann (2006) describes measuring risk as “translating the abstract concept of risk 

into practical tools to be applied in the field”. According to Birkmann, measuring risk is 

both quantitative and qualitative. 

 

 

The issue of measuring risk has steadily gained attention. In the face of increasing 

frequency and severity of disasters in recent years, measuring risk is increasingly seen 

as key to disaster reduction (Birkmann, 2006; Luers, 2005; Nelson et al., 2010). It 

provides a sound basis for risk reduction (Victoria et al., 2014): it enables the adoption 

of appropriate policies, the monitoring of such policies of what they may achieve over 

time and stirs the mobilization of local synergies for resilience building (Fussel, 2010; 

Luers, 2005; Victoria et al., 2014).  Brown et al. (2011) view measuring risk as 

important for targeted adaptation efforts and hence optimal allocation of resources; a 
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prerequisite for countries with scarce resources, notably developing countries. It has 

also been viewed as a step towards sustainable development, poverty alleviation and 

achieving Millennium Development Goals (Birkmann, 2006; Mathur, 2006) and this 

cannot be over emphasized for developing countries.  

 

 

2.3.1 A broader overview to measuring vulnerability 

A plethora of methods has been applied to measuring risk.  

 

Measuring vulnerability 

Measuring vulnerability objectively is difficult (Smith, 2013). The complexity of the 

human-ecological interactions, the multiple stressors to which a system is subjected, the 

multiple outcomes manifested by vulnerability, the dynamic nature of the different 

components in a system, the inclusiveness of variables, the qualitative nature of social 

variables, the need for thresholds and the difficulty of setting them all add to the 

difficulty of measuring vulnerability (Luers, 2005; Vincent, 2004). 

 

 

Despite the above measurement issues, using indicators has emerged as a prominent 

trend in the measurement of vulnerability risk in contemporary disaster management 

(Gall, 2007; Luers, 2005; Nelson et al., 2010); more particularly in social and integrated 

frameworks. Tate (2012) defines indicators as “quantitative variables intended to 

represent a characteristic of a system of interest”. They can be single e.g. income or 

composite (index) e.g. GDP.  

 

 

Quite common to the use of indices is the use of a dimensionless number to represent 

vulnerability e.g. the Social Vulnerability Index (Vincent, 2004), the Environmental 

Sustainability Index (Esty et al., 2005), the Prevalent Vulnerability Index (Cardona, 

2005) and the Climate Vulnerability Index. A variant is to equate variables deemed to 

influence vulnerability to a proxy variable of vulnerability, often mortality or economic 

damages, through some equation (Brooks et al., 2005; Fekete, 2009). The identification 

of the equation in the later follows some statistical analyses such as regression analysis 

and principal component analysis 
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Advantages of indicators as tools for measuring vulnerability are well documented by 

Vincent (2004), Gall (2007), Birkmann (2007) and Tate (2012) amongst others. These 

authors highlight a number of strengths. They note that indicators summarize 

complexity in simple figures, therefore, argue that indicators are relatively easy for 

understanding to non-experts making them attractive to stakeholders, practitioners and 

decision makers. They opine that indices use a diverse range of variables which 

encapsulate various dimensions of vulnerability, and therefore afford the opportunity to 

identify the root causes of vulnerability. They also argue that indicators can be used as a 

basis for setting targets for risk reduction. Furthermore, they also point out that 

indicators allow monitoring of changes over time and over different areas of what might 

have been achieved as a result of policy interventions or investments made. In general, 

measuring vulnerability with indicators is viewed as a systematic approach to discussing 

and addressing the various features of vulnerability  and therefore a sound basis for 

sustainable management (Birkmann, 2006; Birkmann and Fernando, 2008; ISDR, 2004; 

Nelson et al., 2010).  

 

 

In spite of these advantages and the associated increasing use, indicator-based 

vulnerability assessments are also not without criticism. From a methodological 

perspective, they suffer from subjectivity in terms of actual indicators used, definitions 

and units assigned, weightings used, aggregation process employed and thresholds set 

among other factors (Birkmann, 2007; Cutter et al., 2009; Esty et al., 2005; Gall, 2007; 

Vincent, 2004).  

 

 

This is exemplified in a number of studies. For example, the Social Vulnerability Index 

(SoVI) (Cutter et al., 2003) has been widely used in the USA but with different 

thresholds for vulnerability ranking. The SoVI first identifies dominant vulnerability 

factors from a large set of social vulnerability factors using principal component 

analysis. Factor loadings (correlations) of the variables selected are then scaled to 

ensure that those that increase vulnerability are positive and those that work to reduce 

vulnerability are negative. In case of ambiguous factors, absolute factors are used. The 

SoVI score for a place is a sum of scaled factors. For comparisons, quartiles or standard 

deviations are used. 
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In measuring social vulnerability of the whole USA at county level with the SoVI, 

Cutter et al. (2003) identified 11 dominant factors shown in Table 2.1.  

 

Table 2.1: Dimensions of social vulnerability 

Factor

1

2

3

4

5

6

7

8

9

10

11 %employed in 0.77

0.76

Ethnicity-Native 

Race-Asian

Occupation

Infrastructure 

4.1

3.9

3.2

2.9

%Native American 0.75

%asian 0.71

%employed in 

Density of the built 

Single-sector 

Housing stock and 

Race-African 

Ethnicity-Hispanic %Hispanic

11.9

11.2

8.6

7

6.9

4.2

Median age

No commercial 

%employed in 

%housing units that 

%African American

0.98

0.8

-0.75

0.8

0.89

Name

Personal Wealth

Age

Percent variation explained Dominant variable correlation

12.4 Per capita income 0.87

-0.9

 

 

The mean SoVI score from all 3141 USA counties was 1.54 and the standard deviation 

,σ 3.38.  A threshold of <- σ1  was used for the least vulnerable counties and +1σ  for 

the most vulnerable. In contrast, Cutter and Finch (2008) used ≥+2σ for high 

vulnerability and ≤-2σ as low vulnerability for the purpose of determining spatial and 

temporal patterns of social vulnerability in USA over the period 1960 to 2008.  

 

 

Similarly, while most studies (Allison et al., 2009; Balica and Wright, 2010; Cutter and 

Finch, 2008; Cutter et al., 2003) have avoided attaching weights to the variable or 

components arguing there is yet no real understanding of the relative value and nature of 

interaction amongst components, others have used weights to underline differential 

importance of variable in accounting for vulnerability. Sometimes the basis has been 

elusive. An example in question is the social vulnerability index to climate change, in 

particular for water availability (equation (2.3)), developed by Vincent (2004) for 

African countries. 

 

 vviviviiiiiiiiiiii WIWIWIWIWISVI ++++=                   (2.3) 

where I = sub-component and W = sub-component weight. Specifically,  

iI  = economic well-being and stability sub-component = 0.8 poverty indicator 

+0.2 percentage urban growth. 2.0=iW  
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2I  = demographic structure sub-component = dependent population + 

proportion of working population with HIV/AIDS, 2.0=iiW  

 

3I  = institutional stability and strength of public infrastructure sub-component 

= 0.8 health expenditure + 0.2 the number of telephones per 1000 population, 

4.0=iiiW  

 

4I  = global interconnectivity sub-component, 1.0=ivW  
 

5I  = natural resources sub-component, 1.0=vW  

 
 

In this index, indicators are first standardised based on min-max standardization scheme 

before application of equation (2.3). For a second version of this index, corruption is 

accounted for and 3I  = institutional stability and strength of public infrastructure = 0.6 

health expenditure + 0.2 corruption index +0.2 the number of telephones per 1000 

population. In applying these weights to this index, both at indicator aggregation level 

and at sub-component level, the basis is unclear. 

 

 

While the choice of the variables in Vincent (2004) as in others such as Hahn et. al 

(2009) is informed by a deductive framework (a rigorous conceptual understanding of 

vulnerability or adaptive capacity (Nelson et al., 2010)), others have used an inductive 

approach whereby statistical techniques are applied on an initial large number of factors 

to isolate only those factors that are statistically significant. For example, Cutter et al. 

(2003) as illustrated in Table 2.1 and Fekete (2009) have both used Principal 

Component Analysis (PCA) to identify important variables. Factors in the Disaster Risk 

Index (UNDP, 2004) and the flood vulnerability index by Connor and Hiroki (2005) 

arise from application of linear regression. Likewise, factors in the flood vulnerability 

index by (Balica and Wright, 2010) follow application of three reducing techniques on 

the initial index (Balica et al., 2009): the differentiation method, a questionnaire and 

then a correlation method. Thus ultimately, the factors used in an index either with 

deductive or inductive underpinnings are at the discretion of the researcher and are not 

exhaustive. 
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The other challenge in the index-based approach to measuring vulnerability also arise 

from the difficulty of defining and quantifying indicators which may sometimes lead to 

some indicators being left out in the analyses thus compromising on the efficacy of the 

model (Birkmann, 2007; Dinh et al., 2012; Fekete, 2009). Vincent (2004) highlights 

other limitations of index-based measurements. She observes that because indicators are 

a snapshot in time, they are limited to represent dynamic processes. She also points out 

that indicators do not account for feedbacks, non-linearities and synergies that may exist 

in real systems amongst indicators. In aggregating indicators to reduce complexity, 

Vincent (2004) opines that more room for subjectivity is created resulting in higher 

demand for critical appraisal although King and MacGregor (2000) have argued 

otherwise.  

 

 

The lack of a means for validation after the index has been developed is another big 

challenge and source of uncertainty for indices (Gall, 2007; Vincent, 2004). Even 

inductive models cannot remove subjectivity completely (Brooks et al., 2005). In fact, 

equating vulnerability factors to some proxy variable to validate vulnerability or risk, 

has attracted a lot of criticism. Commonly used proxy variables for validation are 

mortality or economic flood damages. In this case therefore, mortality or economic 

flood damages represent vulnerability. Most criticism has centred on quality of data. 

Researchers observe that disaster-related mortality figures are not systematically 

recorded and quite often are under-recorded, even in developed countries (Birkmann, 

2007; Downton and Pielke, 2005; Gall, 2007; Guha-Sapir and Below, 2002). Birkamann 

(2007) also argues that some regions may be highly exposed, have high poverty levels 

and subject to repeated and catastrophic floods and hence by virtue of these 

characteristics are highly vulnerable. Yet, he observes, these regions may not register 

significant deaths. Another point of contention is that damages may also arise from 

other factors other than the hazard in question e.g. typhoons in the event of a flood 

(Birkmann, 2007; Connor and Hiroki, 2005).  

 

 

Birkmann (2007) further draws attention to the aspect of thresholds. In international 

databases e.g. the Emergence Events Database (EM-DAT) maintained by the Center for 

Research on the Epidemiology of Disasters (CRED), which is a data source often for 

most global, regional and national studies, thresholds such as 10 deaths and/or 100 
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people affected and/or a call for international assistance are used. Birkmann (2007) 

observes that such thresholds underestimate chronic, creeping or low impact disasters. 

Gall (2007) further argues that since mortality and damage figures arise from actual 

events, using such proxy therefore measures actual vulnerability; potential vulnerability 

is therefore disregarded.  

 

 

Despite limitations of indices, they present a common and an increasingly used method 

for vulnerability in contemporary disaster management due to their relevance in 

informing decision-making and policy. Their weakness is downplayed on the basis that 

they are not an end in themselves but a means to the end; a pointer to more significant 

issues and approximate rather than absolute (Bollin et al., 2003; Esty et al., 2005; King 

and MacGregor, 2000). 

 

 

Community based assessments (CBA) have increasingly recently found a niche in 

vulnerability. Van Aalst (2008) describes CBA as assessments that use active 

participation of local communities in identifying the hazards, vulnerabilities and risks 

through such methods as transect walks, risk mapping, asset inventories, livelihood 

surveys, focus group discussions or key informant interviews. They have been 

particularly used in developing countries by Non-Governmental Organisations (NGO) 

as a means to foster their relationships with communities and as a basis for the design 

and operation of their projects (Izumi and Shaw, 2012; van Aalst et al., 2008). Outputs 

from CBA have also been used in index-based vulnerability assessments e.g. 

Kienberger (2012). 

 

 

Strong arguments for CBA have been that hazards, vulnerabilities, risks and associated 

adaptive measures are better identified and ranked by own communities and therefore 

results are likely to be more representative of situation. Consequently, CBA have been 

viewed as a means of instilling empowerment and a sense of ownership and therefore, a 

sustainable way towards disaster reduction (Guarin et al., 2005; van Aalst et al., 2008; 

Zhang et al., 2013).  
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Despite their popularity, CBA have limitations. CBA can be resource intensive in terms 

of time and human resource requirement. This arise from the need for large areas of 

investigation if results are to be meaningful (van Aalst et al., 2008; Zhang et al., 2013). 

The other challenge arises from the tendency of communities to incorporate factors 

unrelated to the hazard under investigation (van Aalst et al., 2008). In particular, Van 

Aalst (2008) notes that communities may prioritise issues related to everyday lives such 

as livelihoods over the hazard being investigated. Finally, CRA’s success depends on 

winning community participation (Shaw, 2014; Zhang et al., 2013) and to a certain 

extent, on the relationship between the government and community (Shaw, 2014). 

  

 

Measuring risk  

From a hazard framework perspective, where the focus is on impacts, risk has often 

been equated to mortality or economic damage costs (Buchele et al., 2006; Dilley et al., 

2005; Dutta et al., 2003; UNDP, 2004).  

 

 

It is common practice (Buchele et al., 2006; Dutta et al., 2003; World Bank, 2010b) to 

estimate the hazard (water depth, inundation area, velocity, duration and frequency) 

through models and overlay with the elements at risk i.e. population, roads, buildings 

etc. The resulting damage costs from this intersection constitute risk. The availability of 

spatial data on elements at risk made readily available through GIS has easily afforded 

risk measurement in this way. Guarin et al. (2005) notes that while good at depicting 

spatial and temporal dimensions of hazards, models are demanding in terms of data, 

technical expertise and capital costs, requirements often challenged in developing 

nations. 

 

 

Remote sensing has been another technique widely used in the hazard framework. In the 

context of measuring flood risk, it is ideal for sparsely gauged or ungauged areas (Khan 

et al., 2011; Sanyal and Lu, 2004) and therefore an alternative to data demanding 

models where flow, rainfall, topography, landuse, river channel sections and other data 

sets may be required. Besides, the availability of some satellite imagery at no cost e.g. 

Landsat and Moderate-resolution Imaging Spectroradiometer (MODIS) affords 

countries that suffer from resources constraints i.e. technology, and infrastructure 
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chance to conduct flood risk assessments (Ramirez-Herrera and Navarrete-Pacheco, 

2013). In the case of floods, for example, remote sensed imagery has advantage of 

capturing large flood inundation extents in a very cost effective way (Sanya and Lu, 

2004). It is also an ideal technique for rapid assessments, a critical factor for damage 

assessments, rescue operations and reconstruction efforts soon after the flood event 

(Ramirez-Herrera and Navarrete-Pacheco, 2013).   

 

 

Despite these advantages, the use of remote sensing for measuring risk is also subject to 

a number of limitations. Optical remote sensing imagery is the most widely used due to 

prohibitive costs associated with radar imagery. Yet optical imagery can be impeded by 

cloud cover (Leauthaud et al., 2012; Sanya and Lu, 2004). Therefore, the efficacy of 

remote sensed imagery for risk assessment depends on the availability of suitable 

imagery.   

 

 

The difficulty of determination of inundation depths, in the case of  the flood hazard, 

from optical satellite imagery further arise;  only visual judgment of depths can 

normally be made (Sanyal and Lu, 2005). The need for high spatial resolution imagery 

to determine the elements at risk and the inability of remote sensing to reveal 

characteristics of those elements, makes remote sensing unsuitable for vulnerability 

assessment (Lowe, 2010) and thus impinging on risk assessments. Consequently remote 

sensing has largely been confined to flood extent determination and for validation 

purposes on outputs from models (Islam et al., 2010; Khan et al., 2011; Schumann et al., 

2013). 

 

 

As with vulnerability assessments, employing indices for the measurement of risk is not 

uncommon (Bollin and Hidajat, 2006; Chakraborty et al., 2005; Dinh et al., 2012; 

Gbetibouo and Ringler, 2009; Hahn et al., 2009) though in climate-related studies such 

as Hahn et al. (2009) and Gbetibouo and Ringler (2009), this is referred to as measuring 

vulnerability. Again, as with vulnerability measurement, risk is also proxied on 

mortality or economic damage through an equation whose variables are deemed to 

influence risk (Brooks et al., 2005; Connor and Hiroki, 2005; Dilley et al., 2005; 

UNDP, 2004). Measuring risk with indices or with mortality and damage costs does not 



31 

escape criticisms raised in the previous section against similar measurements for 

vulnerability. 

 

 

CBA have also been used in risk assessment, though widely applied in building 

community resilience and therefore in addressing vulnerability rather than risk. For risk 

assessment, community’s past memory is used to reconstruct the flood hazard. 

Similarly, their knowledge of their social and geographical environment is used to 

construct vulnerability and ultimately risk  (Guarin et al., 2005; Hahn et al., 2009). 

 

 

The strengths and weaknesses associated with CBA, earlier raised also apply to 

measuring risk with CBA. In using CBA for risk quantification though, other aspects 

emerge. In data scarce regions, notably in developing countries where hydrological and 

meteorological data are a challenge, CBA may be the only form of risk assessment 

(Guarin et al., 2005). On the other hand, hazard information with CBA suffers 

distortion, incompleteness in accounts and, differences in the accounts among different 

people due to memory loss (van Aalst et al., 2008). Consequently, because hazard 

memories fade with time, CBA have been described as unsuitable for assessments of 

historically distant events. They are also unsuitable for the prediction of future risk and 

quantitative risk assessments in general (Guarin et al., 2005; van Aalst et al., 2008).  

 

 

2.3.2 Measuring flood hazardousness, vulnerability and risk in SSA 

Research in the domain of measuring flood risk in SSA is limited in several aspects: few 

studies have been conducted; the studies have largely addressed vulnerability and not 

risk and more so, they have strived to understand vulnerability characteristics in terms 

of causative factors, impacts, perceptions and coping capacities at hand. While 

understanding factors is important, it offers very little in terms of decision-making on 

targeting of scarce resources, comparison of risk across specific people and places and 

monitoring of interventions as earlier highlighted.  

 

 

The large body of literature on causes of vulnerability in the context of rural 

communities in SSA identifies causes as emanating from their socio-economic 
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disadvantage (Aboagye et al., 2013; Armah et al., 2010; Khandlhela and May, 2006; 

Nethengwe, 2007; Nyakundi et al., 2010). Whilst cognisant of heavy rainfall, these 

studies report that rural people have very low access to assets (land, livestock, farm 

equipment, income generating equipment) and basic services (water, sanitation); their 

incomes are very low because income generating activities tend to be informal; and 

illiteracy is high. Gwimbi (2009) adds, using the case of Zimbabwe, that the 

vulnerability of the rural people in SSA is a result of their livelihoods being intricately 

linked to natural resources, a factor that makes them more exposed to the flood hazard 

as they settle in flood prone areas.  

 

 

In certain contexts, these factors have been traced to issues of marginalisation. In  

Milaboni and Dzingahe villages in Thulamela Municipality of the Limpopo province of 

South Africa, Nethengwe (2007) using a political ecology framework found that 

vulnerability to flooding of rural households was socially constructed through the 

historical apartheid system that had resulted in differential access to household 

resources including land, income and housing quality. 

 

 

On impacts, the studies unanimously report loss of lives, destruction of property mainly 

loss of crop and livestock, food and water shortages, disease incidence, loss of income 

and psychological trauma. The studies also report a number of coping strategies 

exhibited by rural people. According to Armah et al (2010), Khandlhela and May 

(2006) and Nyakundi et al (2010), coping strategies to the flood hazard for rural people 

in SSA tend to be short-term and include modification to consumption behaviour, 

diversification to non-agricultural livelihoods, premature harvest of crops, social 

networks, relief items, remittances from migrant relatives, borrowing, minimization of 

expenditure, selling of assets and temporary migration. Nyakundi et al (2010) also 

reports of use traditional knowledge as anticipatory strategy. In  Nyando district, Kenya, 

they found that old people’s bones aching, a large number of cow egrets, loud persistent 

croaking of frogs, domestic animals making loud distraught noises, movement of ants to 

higher ground were forms of an early warning system. Nyakundi et al (2010) however 

noted that such strategies were underutilised. 
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In the urban context, causes of flooding have been reported as lack of drainage systems, 

poor drainage systems where existent, wanton solid waste disposal, unplanned and 

unregulated developments, weak housing, the hazardous nature of geographical 

locations the urban poor occupy, over-population and government indifference to their 

problems amongst other factors (Adelekan, 2010; Campion and Venzke, 2013; Douglas 

et al., 2008; Sakijege et al., 2012). In the informal neighbourhoods of Malika and Keur 

Massar districts in Dakar, Senegal, Maheu (2012) has also reported of differential 

access to knowledge as a dominant vulnerability determinant.  

 

 

Impacts for the urban poor have been found to include disease incidence, lack of 

portable water, smelly environments, blocked accessibility, diminished opportunities for 

economic activities, seasonal displacement and, ultimately mental stress (Adelekan, 

2010; Campion and Venzke, 2013; Douglas et al., 2008; Sakijege et al., 2012).  

 

 

As in the rural context, the urban poor vulnerable to flooding employ a number of 

coping strategies but these strategies are also short-term (Sakijege et al., 2012). 

According to the these studies, coping strategies for the urban poor include moving 

valuable items to higher heights in homes, use of water proof materials, bailing water 

out, digging trenches around the houses, blocking water at doors and treatment of water. 

Further, social relations, government and religious organizations act as important 

coping strategy for the urban poor. 

 

 

With climate change projections pointing to several parts of Africa being likely to be 

affected (IPCC, 2007), though with uncertainty, causation of vulnerability and flood 

risk has also been investigated in the context of climate change. In this regard, studies 

(Adeloye and Rustum, 2011; Campion and Venzke, 2013; Di Baldassarre et al., 2010) 

suggest that causal factors are anthropogenic (concentrated populations in hazardous 

regions through urbanization, a failure in the urban planning system and poverty) and 

may be exacerbating by the climate forcing. 
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In both rural and urban settings, the disaster management process has also been 

perceived to contribute to vulnerability (Mpofu, 2011; Nyakundi et al., 2010; Roth and 

Becker, 2011; Shela et al., 2008; Tempelhoff et al., 2009; World Bank, 2010a). 

According to these studies, effective disaster risk management in SSA is hampered by 

weak institutional frameworks that are characterised by lack of coordination, lack of 

preparation, poor stakeholder participation and more particularly inadequate resources 

i.e. financial, human and technical.  

 

 

Such qualitative understanding of causation, impacts, coping strategies in place and 

challenges provides a rich insight into the vulnerability and the risk problem. This, 

however, is only pertinent to the design of adaptation but not mitigation measures 

(Fussel, 2007). The lack of quantitative measurement in these kinds of studies is a 

limitation to supporting decision making and policy in aspects of comparisons across 

different people and different places, optimization of resources, targeting of 

interventions, monitoring of progress that may accrue from such interventions and 

setting of targets (Luers, 2005). The list of factors identified, rather than an aggregation  

to some common bracket, is also a practical challenge to work with in disaster 

management (Chakraborty et al., 2005). 

 

 

Quantitative approaches to measuring vulnerability or risk, perceived to address this 

gap, are few in SSA and often characterised by a social or a biophysical emphasis. 

Kienberger (2012) for example mapped the vulnerability to flooding of Buzi district of 

Mozambique on a scale of 0 – 1 with 1 denoting the most vulnerable. However, the 

assessment was limited to social and economic variables (access to health services, 

education, water services, capacity to anticipate, distance to rescue centres, distance to 

conflict points, access to local markets, road infrastructure and cities; crop density and 

ecosystem services). 

 

 

Similarly, in the informal settlement of Graveyard Pond in Cape Town, South Africa, 

Musungu et al. (2012) digitised shack outlines from aerial photographs and linked them 

to socio-economic information of the occupants, sourced through a questionnaire. The 

result was a spatial map of vulnerability for each of the four variables (type of exposure, 
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mitigation mechanism, disease type suffered and employment type) and of aggregate 

vulnerability - all linked to social vulnerability. 

  

 

To quantify the vulnearbility to flooding of the Hadejia-Jama’Are River basin in 

Nigeria, Yahaya et al. (2010) also used multicriteria evaluation techniques, specifically 

Boolean method, ranking method and pairwise comparison. The data used was annual 

rainfall, basin slope, drainage network, landcover and type of soil. Associated weights 

were found to be 33.9%, 25.5%, 19.7% 15.2% and 5.7% respectively. The result was a 

vulnerability map for Hadejia-Jama’Are River basin. As demonstrated by the choice of 

factors used, the study has a biophysical emphasis.  

 

 

Ologunorisa (2004) determined flood risk ( )R  in 18 settlements of the Niger Delta 

region of Nigeria based on the following relationship: 

 

 nwwwwR ...........321 ××=                                           (2.4)

                                                                

100<R  =Low,  600100 << R =medium,  600>R  =high.   

 

921 .,........., www  are the scores equal to 1 (low), 2 (medium) or 3 (high) scored by a 

settlement on a variable. n  = 9 and is the total number of variables investigated i.e. 

depth of flooding, duration of floods, perceived frequency of hazard flood occurrence, 

extent of damage, percentage deviation of seasonal rainfall from normal average, relief 

above sea level, proximity to hazard, perceived adequacy of flood control and dominant 

landuse or economic activity. The result was a map of spatial variation in risk, 

concentrated in the medium and high classes. While Ologunorisa (2004) claims to have 

measured flood risk of the Niger Delta region of Nigeria, the factors used clearly 

excludes the social dimension. 

 

 

Despite quantification of vulnerability in these studies i.e. Kienberger (2012), Musungu 

et al. (2012), Yahaya et al. (2010) and Ologunorisa (2004)  little attention has been paid 

to integration and multi-dimensioning. 
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2.4 Flood risk assessment and management in Malawi – perspectives from the 

Lower Shire Valley  

The National Adaptation Programmes of Actions (NAPA) (Governement of Malawi, 

2006) for Malawi lists natural hazards facing the country as intense rainfall, floods, 

seasonal and multi-year droughts, dry spells, cold spells, strong winds, thunderstorms, 

landslides, hailstorms, mudslides and heat waves. However, NAPA (2006) also 

highlights floods and droughts as the most prevalent natural hazards facing Malawi, an 

observation in line with the World Bank’s (2010a) assertion that floods and droughts are 

the most important natural hazards that face SSA. 

 

 

The Lower Shire Valley forms the basis of this study. It is the most affected region in 

the country in terms of severity and frequency of floods when compared to other five 

river systems affected by flooding in Malawi namely: Likangala/Thondwe, 

Limphasa/Luweya, Bwanje/Livulezi, Songwe and Linthipe (Malawi National 

Contingency Plan: 2009–2010, 2009; Nilson et al., 2010). 

 

 

2.4.1 Pathways to flood risk 

The flood risk in this valley stems from a complex web of factors; both physiological as 

and socio-economical as outlined in the sections below. 

 

Physical factors 

Location and topography 

The Lower Shire Valley, located on the lower section of the Shire River in the southern 

region of Malawi (Figure 2.7), sits on the Great East African Rift Valley. It is an 

elongated plain with a width of 8 to 40km at an elevation of between 30 and 150 meters 

above sea level (masl)  (Phiri and Saka, 2009) (Figure 2.7). The valley falls in two 

administrative districts: Chikwawa and Nsanje. At Chikwawa Boma, the valley is at an 

elevation of about 107 masl and at 61masl at Nsanje Boma (SVADD, 1975). Beyond 

Nsanje to the confluence with the Zambezi River, relief fluctuates around 30 – 40 masl  

(Shela et al., 2008). Slopes are gentle: 0.437m/km from below Chikwawa escarpments 
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 Figure 2.7: Geographical location of the Lower Shire Valley 

  (adapted from Saka and Phiri (2009)) 

 

to Chiromo and 0.125m/km from Chiromo to the confluence; making it very susceptible 

to flooding (Shela, 2000). The Lower Shire Valley is part of the Shire Basin, which 

extends into Mozambique and is drained by the only outlet of Lake Malawi, the Shire 

River with its tributaries. 
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Rainfall 

Rainfall amount in Malawi is a function of relief with highlands and windward sides 

receiving very high rainfall (Russell et al., 2008). The low relief of the Lower Shire 

Valley therefore translates into low rainfall of 400 – 700mm annually (Phiri and Saka, 

2009) and is the lowest in Malawi. However, the valley is bordered by escarpments and 

highlands to the east, north and west. Therefore despite its dryness, the valley receives 

much runoff from upper and middle sections of Shire River and from the Ruo, its sub 

catchment in the east (Figure 2.8). According to Shela et al. (2008), rainfall amounts to 

about 900 mm annually in the upper and middle section of the Shire River and exceeds 

2000 mm in the Ruo sub catchment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: Variation in rainfall across the Shire River Basin 
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The country receives early rains (between October and November) due to orographic 

effects on moist south east air masses producing convective thunderstorms as the air 

passes over the highlands and escarpment zones (Pike and Remington, 1965). The main 

rainfall type for Malawi however is the Inter-Tropical Convergence Zone (ITCZ) 

rainfall system, a convergence of moist air brought about by the South Easterly winds, 

the North Monsoon Easterlies and the North West Zaire winds (Pike and Remington, 

1965). Therefore the dominant type of rainfall received in the Lower Shire Valley, as is 

the case with the whole country, is the heavy convective rainfall. In some years, this has 

been intensified by cyclonic activity in the Mozambique Channel in the Indian Ocean 

(Pike and Remington, 1965). Rains occurring between April and May due to the moist 

south east trades that get re-established after the ITCZ has moved up north are light.  

 

 

Besides rainfall type, the distribution of rainfall over the year has implications for flood 

risk in the Lower Shire valley. Whilst the rainfall season stretches between November 

and April, 90% of the total rainfall is concentrated between December and March 

(Figure 2.8) when also much of the flooding occurs.  

 

 

Hydrology  

The Shire Basin is drained by the Shire River, the only outlet of Lake Malawi. The river 

is divided into three sections: the upper Shire, from the Mangochi to Matope; the middle 

Shire from Matope to Maganga and the Lower Shire from Maganga to the confluence 

with Zambezi River (Shela, 2000). The upper section of the river is characterized by 

low lying sand banks (Chimatiro, 2004). The middle section, 80 km long, is the steepest 

characterized by gorges, waterfalls and cataracts and has therefore been exploited in 

hydropower generation. The Lower Shire stretches 200 km from below Chikwawa 

escarpment to the confluence with Zambezi (Shela, 2000).  

 

 

Flow in the basin increases downstream towards the confluence with Zambezi (Figure 

2.7, 2.9). According to Shela (2008), average annual flow of the Shire River from the 

upper catchment measured at Matope is 450m3/s. At Maganga, which marks the 

boundary between the middle and lower section of the Shire River, the average annual 

flow estimated at Chikwawa gauge station just below Maganga is 550m3/s. At Chiromo 



40 

gauge station, some 60 km below Maganga, average annual flow is 460m3/s increasing 

to 520 m3/s at the border town of Marka further downstream.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9: Annual hydrographs at selected stations on the Shire River and at Sinoya 

on the Ruo 

 

 

The low average flow at Chiromo in comparison to the flow at Chikwawa (Figure 2.9 ) 

is due to the attenuating effect of the Elephant Marsh between them (see Figure 2.7). 

Just below Chiromo gauge station, the Shire River is joined from the eastern side by its 

major tributary, the Ruo River whose average annual flow is 54m3/s measured at 

Sinoya.  

 

 

While average daily flows measured at Chiromo and Sinoya are 460m3/s and 54m3/s 

respectively, flood flows in the Shire/Ruo River system can be extremely high. A list of 

flood events documented by Shela (2008) shows that historical flows measured at 

Chiromo and Sinoya have been as high as 1430 m3/s and 5400 m3/s respectively. 
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Soils  

The two districts of Chikwawa and Nsanje are associated with five broad land classes 

(SVADD, 1975):  marsh, floodplain, makande plain, drift plain and uplands (Figure 

2.10). According to Monjerezi (2012), marshes, which are permanently under water, 

consist of hydromorphics. The floodplain on the other hand, which is land seasonally 

flooded, is associated with stratified alluvium with varying proportions of sandy and 

heavy grey-black clays soils. Makande plains are associated with vertisols whilst drift 

plains consist of alluvial carcimorphic soils. Lithosols characterise uplands. The 

predominant soil types in the Lower Shire Valley (land less than 150masl) however are 

the alluvial carcimorphic soils and hydromorphics (Table 2.2) which account for 44.2% 

and 24.6% respectively of valley area. The fertile alluvial soils attract settlements in 

floodprone areas (Nilson et al., 2010) thus increasing exposure. The presence of 

hydromorphic soils also implies poor soil drainage thereby exacerbating the flooding 

problem. 

 

 

Landuse and landcover  

Land use and land cover (LULC) of the Shire Basin based on data obtained from the 

Department of Surveys of Malawi is shown in Figure 2.11(a). However, a standard 

classification based on the Food and Agriculture Organisation (FAO) Land Cover 

Classification System (LCCS) by Palamuleni et al. (2010) in the upper Shire River 

(between Mangochi and Liwonde gauge stations) identified eight land classes i.e. 

woody closed, woody open, savanna shrubs, grasslands, marshes, cultivated/grazing 

areas, built-up areas and fresh water (Figure 2.11)(b)). 

 

 

Like the rest of eastern, central and southern Africa, Miombo woodlands form the 

dominant vegetation cover (Desanker et al., 1997). However, several studies 

(Palamuleni et al., 2010; Place and Otsuka, 2001; Walkers and Peters, 2007) point to a 

declining forest cover in Malawi. This is attributed to a number of factors including 

expansion of land mainly for subsistence agriculture, charcoal selling, uncontrolled fire, 

tobacco curing, population density and growth, land tenure system, poverty, weak 

institutions, nature of political regime etc. However, the main cause of the declining 

vegetal cover in Malawi is the conversion to agricultural land (Chavula et al., 2011; 
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Mkwara and Marsh, 2009; Palamuleni et al., 2010; Place and Otsuka, 2001; Walkers 

and Peters, 2007). Chavula et al (2011) investigated LULC changes between 1982 – 

2005 in the Lake Malawi basin (upstream of Shire River basin) using both Advanced 

Very High Resolution Radiometer (AVHRR) imagery and Moderate Resolution 

Imaging Spectroradiometer (MODIS) imagery. 

 

 

 

 

  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10: Soils of the Lower Shire Valley.  

  Source: (SVADD, 1975) 
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Table 2.2:  Soil type and distribution across the Lower Shire Valley 

Land class Soil type Total area in 
Chikwawa 
and Nsanje 
districts 
(km2) 

Area in 
the valley 
(km2) 

Proportion 
in the 
valley (%) 

Floodplain 
and Marsh 

Hydromorphics 736 720.0 24.6 

Makande Lithomorphic vertisols 263.1 220.4 7.5 

Shallow lithomorphic 
vertisols/lithosols 

56.4 43.6 1.5 

Topovertisols 238.5 238.0 8.1 

Drift plains Alluvial calcimorphic 
soils and grey brown 
earths 

1588 1293.7 44.2 

Uplands (Shallow) ferruginous 
soils and lithosols 

741 42.3 1.4 

Ferrallitic soils, 
lithosols and 
intergrades 

266 - - 

Intergrades 190 - - 

Lithosols 2101 161.3 5.5 

Shallow grey brown 
earths 

713 207.0 7.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2.11: Landuse and landcover in the Shire Basin (a) based on Department of 

Surveys data and (b) FAO classification by Palamuleni et al. (2010) 
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Based on AVHRR imagery which was available for a longer period than MODIS 

imagery, they found that from an initial coverage of 43,681km2 in 1982, the area of 

savanna, shrubs and woodland had decreased by 87.8%  by 1995 (Table 2.3), with 

significant changes (75.6%) taking place between 1982 and 1985. Cropped area had 

almost doubled for the same period; again with drastic changes (88.6%) taking place in 

the period 1982 – 1985. However, thereafter, cropped area remained almost constant. 

The changes are visually illustrated in Figure 2.12. 

 

Table 2.3: Areal extent of LULC classes (in Km2) and lake level (meters above sea 
level) in Lake Malawi drainage basin 

 

 

 

 

 

 

 

1 savannah/shrubs/woodlands. Source: (Chavula et al., 2011) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12: LULC changes in four classes in Lake Malawi basin between 1982 and 

1995 based on AVHRR imagery. 

Source: (Chavula et al., 2011)  

 

Year Imagery Forest Cropland 

Water 

Bodies SSW1 

Lake 

Level 

1982 AVHRR 26741 45738 29040 43681 476.05 

1985 AVHRR 20086 86273 28193 10648 475.17 

1990 AVHRR 22264 87846 29403 5687 475.42 

1995 AVHRR 24442 83490 31944 5324 473.66 

2001 MODIS 33800 46408 29707 20091 474.51 

2005 MODIS 32739 40545 29799 26921 474.83 

 



45 

Similarly, Palamuleni et al. (2010) investigated LULC in the Shire River basin, between 

1989 – 2002 focusing on the upper Shire section (Figure 2.13). They found that as of 

2002, cultivated/grazing area was the largest class accounting for 25.7% of landuse. 

Their findings show an increase in cultivated/grazing area by 23% and a decrease in 

closed forests by 52% over this period. Both studies are unanimous on the increase in 

cropland at the expense of woodland.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13: Landuse and landcover changes between 1982 and 2002 in the upper 

Shire catchment 

         Source: (Palamuleni et al., 2010) 

 

These findings are not unexpected considering the predominance of a poor rural 

population in the basin. While findings on the rural poverty-land degradation nexus 

have been mixed, studies in developing countries and in Sub-Saharan Africa in 

particular, according to Nkonya et al. (2008), point to a general positive correlation 

between the two. A number of factors are identified. Barbier (2000) observes that rural 

poor farmers in Africa abandon land in the face of declining productivity and open new 

land; a cycle which repeats itself. In addition, Barbier observes that the prices of crops 

normally grown by these farmers are very low. Consequently, input use (irrigation, 
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fertilizer application) in these countries is also very low resulting in an agriculture 

system that is not highly productive and therefore a disincentive to invest in inputs and 

viable land management and cropping systems. Barbier (2000) also note that the 

situation is exacerbated by the  policy environment. In this regard, Barbier (2000) draws 

attention to the Malawian example where price increases for more erosive, 

monocropped crops ( maize, tobacco, cotton) throughout the 80’s meant less growing of 

less-erosive and nitrogen fixing crops (pulses and legumes). 

 

 

Nkonya et al. (2008) also point out that high population growth rates, occupation of 

marginal lands, weak institutions and policies associated with poverty are pathways to 

land degradation. A contrast is however drawn to a success story in Africa on land 

management – the Machakos Distrct in Kenya. According to Barbier (2000), farming in 

the Machakos is market other than subsistent oriented with crops grown including 

coffee, cotton, fruit and horticulture. He observes this has also gone hand in hand with 

adoption of new and affordable technologies and agricultural practices with the most 

striking land improvement being the terracing of 200,000 hectares of land. 

 

 

In the Shire basin, proximity to cities has been identified as another factor on land 

degradation as woodlands have been exploited to meet the demand for firewood and 

construction materials in the nearby cities of Zomba and Blantyre (Palamuleni et al., 

2010).  

 

 

The decrease in vegetal cover in the basin has no doubt had impacts on the flooding 

problem. In terms of flow responses, Palamuleni (2009) found that land use and land 

cover changes that had taken place in the upper Shire basin between 1989 and 2002 had 

altered surface runoff significantly. Her simulations of flow between 1979 and 1981 

under the 1989 and 2002 LULC at Liwonde gauge station (the upper Shire catchment 

outlet) (Figure 2.7), suggested an increase in maximum daily surface flows from 83m3/s 

to 154 m3/s; an increase in minimum daily surface flows from 1 m3/s to 3 m3/s and a 

general increase in average daily surface flows from 19 m3/s to 30 m3/s.  While there is 

dearth of studies on the measurement of soil loss and sediment yield in the Shire basin, 

evidence from quantitative studies in other catchments and observation within the basin 
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suggests there are substantial soil loss and sedimentation taking place. Sediment load 

and yield are sensitive to the degree of agricultural land use with high levels being 

associated with extensive agricultural activities (Hecky et al., 2003) which is the case in 

the Shire basin (Palamuleni et al., 2010).  

 

 

Further, Bojo (1996) characterized Malawi as one of the countries with the highest soil 

erosion rates in Sub-Saharan Africa. A crude  national level estimate by the World Bank 

(1992) put the average annual soil loss rate due to water-induced erosion in Malawi at 

20 tons/ha. In the Linthipe catchment, Mkanda (2002) estimated soil loss rates to be in 

the order of medium (3.1 – 12.7 tons/ha/year) to very severe magnitudes (19.1 – 29 

tons/ha/year). These rates surpass the maximum permissible soil loss rate of 12.7 

tons/ha/year that can be balanced by soil formation (Shaxson, 1970). Considering that 

adoption of soil conversation technologies by smallholder farmers in Malawi is low 

(Mangison, 2009; Mkanda, 2002), present soil loss rates in Malawi may actually be 

higher than these figures and the Shire Basin is no exception. 

 

 

The increased soil loss is intensifying sedimentation in the rivers leading to reduced 

carrying capacity of the channels. A report by the Ministry of Irrigation and Water 

Development in Malawi in 2003 (MoIWD, 2003) attests to increased sediment load in 

the rivers in the basin. The report observes that the zero gauge level at Sinoya river 

gauge station on Ruo tributary had moved from 54.428 masl in 1985 to 57.973 masl in 

2003 suggesting a loss of depth to silt of 3.545m in 18 years. Thus landuse and 

landcover practices in the basin have undoubtedly reduced the thresholds for flooding.  

 

  

Socio-economic factors  

Demographic factors 

According to the 2008 national census report (National Statistical Office, 2009), 

Chikwawa has a population of 438,895 and Nsanje, 238,089. Forty percent of the 

population in Chikwawa and 90% of that in Nsanje are affected by floods (Atkins, 

2012).   
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Besides physical exposure through population concentrations in the floodplain, 

noteworthy is also the susceptibility of this population. The female population in 

Chikwawa and Nsanje is 50.3% and 51.5% respectively. These proportions are not 

different from the rest of the country. However, Nsanje is one of the districts in Malawi 

with a high Female-Headed Household (FHH) population at 32% compared to the 

national average of 27%. The FHH in Chikwawa is 27.3%, also slightly higher than the 

national average. Besides, the dependency ratio of Nsanje i.e. the proportion of people 

outside the economically active age in a household (less than 15-year olds and greater 

than 65 years) to the economically active (15-64 year olds) is among the highest. Based 

on the 2008 population and housing data (National Statistic Office, 2009), Chikwawa 

had a dependency ratio of 1.03 and Nsanje 1.10, implying that there is an almost equal 

number of dependants for every economically active group.  

 

 

Literacy rates for Chikwawa and Nsanje stand at 53% and 52% respectively against a 

national average of 64% (National Statistic Office, 2009). Fertility rates of the two 

districts are above the national average of 6 with Nsanje at 6.8, making it one of highest 

rates in the country, and Chikwawa at 6.2 (National Statistical Office, 2009). Infant 

mortality rates are 84 per 1000 births for Nsanje and 85 per 1000 births in Chikwawa 

just below the national average of 87 deaths per 1000 births. UNICEF (2009) reported 

the nutritional status of the two districts as being the worst in comparison to any 

livelihood zone in Malawi. UNICEF (2009) also reported the two districts to be among 

districts worst affected by HIV/AIDS with prevalence greater than 30% against a 

national average of 12.4%.  

 

 

Access to basic services 

Platt (1995) defined lifelines as networks that provide for the circulation of people, 

goods, services and information upon which the health, safety, comfort and economic 

activity depend. Both districts are among those with the lowest access to phones; at 

19.6% in Chikwawa and 17.8% in Nsanje (National Statistical Office, 2012). Data 

obtained from Department of Surveys in 2010 showed that Chikwawa had only 83.6km 

of asphalted road from a total road network of 3323.4 km and Nsanje  88.9 km  from a 

total of 1057.5 km.  
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Access to safe water in the two districts, in terms of proportion of people having safe 

water is however significantly higher than the national average. In Chikwawa, access to 

safe water is at 83.6% and 81% in Nsanje (National Statistical Office, 2012). This high 

rate is attributed to boreholes drilled by non-governmental and international 

organizations in the 90’s when both districts played host to Mozambican refugees 

(Shela et al., 2008). Like the rest of the country, boreholes account for the highest 

proportion of safe water source (National Statistical Office, 2012). However, as noted 

by Shela et al. (2008), the actual level of access to potable water in the Lower Shire may 

be lower than reported due to abandonment of boreholes as a result of vandalism, 

damage caused by floods, lack of maintenance, improper siting of the borehole and 

salinity issues. 

 

 

The assertion by Shela et al.’s (2008) on the level of access has been supported by 

Kuotcha et al. (2012), who measured the level of access to basic facilities (water, 

schools, health centres, markets, mills and religious centres) of villages in Chikwawa 

based on distance. They found that most villages were located beyond recommended 

threshold distances to services. Based on straight line distance, (which assumes that 

people take footpaths to services and hence the shortest distance), 68% of villages were 

located beyond a 1 km distance threshold for the water service. On the basis of road 

network distance, the deprivation was higher at 92%.  

 

 

In consideration of access to improved sanitation (flush toilets, ventilated pit latrines 

and roofed traditional latrines), access in the Shire Valley is very low; the lowest in the 

country. In Chikwawa, access is at 32.6% and 27.5% in Nsanje against a national 

average of 72.4% (National Statistical Office, 2012). The low level of sanitation is 

explained by floodplain conditions: high water tables and poor soils (Shela et al., 2008).  

The level of accessibility to health centres is also low; 60% of the villages are outside 

the 6km threshold. When straight line distance is used however, only 38% are deprived 

(Kuotcha et al., 2012).  Accessibility to schools is the highest with only 23% of the 

villages located outside the threshold distance of 3km based on straight line distance. 

However, the figure rises to 65% when calculated based on road network (Kuotcha et 

al., 2012).  
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In view of Kuotcha’s results and taking into account that the roads are impassable 

during the rainy season compounded by the nature of soils, deprivation of access to 

basic services in the lower Shire is likely to be very high and a concern for 

vulnerability.     

 

 

Livelihoods  

Like the rest of the country, the livelihood base in the Lower Shire valley is very 

narrow. With the exception of few sugarcane and cotton small holder farmers, the 

majority of farmers are smallholder subsistence farmers who account for 90% of the 

agricultural sector (Tchale, 2009) and cultivate on less than a 1 hectare of land (World 

Bank, 2007). With population densities being higher in the southern region (National 

Statistical Office, 2009), land pressure is more pronounced in the south.  

 

 

Besides small land size, productivity on these farms is also low (Tchale, 2009). Tchale 

attributes this to low adoption and less intensive use of productive agricultural 

technologies, unreliable rainfall, production inefficiencies and poor soils. Tchale (2009) 

exemplifies this on hybrid maize, the main staple food of Malawi, whose potential yield 

is 5 to 8 tons/hectare but points out actual yields are only 1.5 to 2.5 tons/hectare and 

rarely exceeded.    

  

 

While the irrigation potential of the two districts is high and has been promoted by 

government and Non-Governmental Organisations (NGOs), productivity of existing 

irrigation schemes is also very low due to problems of siltation and flooding, failure to 

invest in operational and maintenance cost, land disputes, ownership and leadership 

wrangles (Shela et al., 2008). Therefore, as observed by Shela et al. (2008), success 

remains confined to large scale commercial farms owned by the Illovo Group, the 

largest in the country, and Kasinthula Irrigation Scheme, a large scale irrigation scheme 

supported by the government.  

 

 

There are other forms of livelihoods. These include fishing (Donda and Njaya, 2007; 

Hatlebakk, 2012) and livestock farming. However, fishing is mainly artisanal (Donda 
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and Njaya, 2007). Cattle rearing is also limited to the few well-off; the majority poor 

rear goats and chicken (Malawi National Vulnerability Assessment Committee, 2005). 

Casual labour, popularly known as ganyu is also an important livelihood mainly for the 

poor and accounts for 20% of their income source (Malawi National Vulnerability 

Assessment Committee, 2005). However, it is a livelihood source that deprives them of 

the necessary labour on own farm (Casale et al., 2008) trapping them in a cycle of food 

insecurity and poverty. 

 

 

Besides being narrow, livelihoods in the Lower Shire also tend to be fragile and face a 

number of stressors prevalent in the region, leading to a further decline in productivity. 

Traditional agriculture in the uplands is subject to droughts and loss of soil fertility 

(Casale et al., 2008; Chidanti-Malunga, 2011). Farming in the low wetland areas, used 

as a coping strategy against droughts, also repeatedly faces flooding (Casale et al., 

2008; Chidanti-Malunga, 2011). High livestock morbidity and mortality and stock theft 

are other major stressors that face the Lower Shire and impacts on people’s resilience. 

According to Casele et al. (2008), Chikwawa has the highest prevalence of livestock 

diseases; the most prevalent being Foot and Mouth Disease, Trypanosomiasis and Tick 

borne disease (Malekano, 2000). While petty theft of cattle is not uncommon, stock 

theft in this region can be massive with examples of a family losing 27 cattle in a night 

and 100 cattle in a month. Consequently, affected families may eventually sell off the 

remainder of cattle to pre-empt further theft (Malekano, 2000); stripping them of what is 

considered as the most important asset in this region. 

 

 

The role of this complex web of socio-economic factors in exacerbating vulnerability in 

the Lower Shire valley is summed up in the poverty profile. Poverty rates in the two 

districts  (calculated with respect to 37,002 Malawi Kwacha poverty line which is 

equivalent to US$0.40 per person per day as of 2012) are the highest in the country at 

over 80% (National Statistical Office, 2012), significantly exceeding the national 

average of 50.7%. The two districts also have the highest ultra-poverty rates; over 55% 

in comparison to the national average of 24.5% (measured against a food consumption 

poverty line of 22, 956 Malawi Kwacha; equivalent to US$0.25 per person per day as of 

2012). 
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2.4.2 Measuring flood risk and flood management 

Despite a general consensus, based on observations, that the Lower Shire is highly 

hazardous and vulnerable to floods, flood studies in this region have been scarce. In the 

few studies available, trends in the approaches to risk assessments are those exemplified 

in studies in SSA. While touching on both vulnerability and the hazard, flood risk 

studies in the Lower Shire are largely confined to the identification of causes, impacts, 

institutions in place, mitigation measures and their effectiveness. More so, the work 

remains largely descriptive; elusive of quantitative underpinnings. 

 

 

The most comprehensive studies in these aspects are those by Shela et al. (2008) and 

Nilson et al. (2010). In their analysis of the flood risk of the Lower Shire, Shela et al. 

(2008) reviewed the causes, impacts of floods, flood risk management and proposed 

risk reduction measures. They found that flooding in the Shire valley arose from a 

number of factors: heavy rainfall in the upper catchments sometimes compounded by 

cyclone movement, physiography of the floodplain, environmental degradation leading 

to siltation of rivers, high poverty levels pushing people to settle in marginal lands for 

livelihoods thus exacerbating environmental degradation; weak housing, low access to 

basic services (sanitation, schools, health centres), a high prevalence of such diseases as 

cholera, dysentery and HIV/AIDS and poor infrastructural services.  

 

 

Shela et al. (2008) further observed that flood risk in the valley was exacerbated by 

weak disaster management. They noted that flood management was characterised 

predominantly by relief and rehabilitation. Long-term mitigation and adaptation 

measures were low. In this respect, they observed inadequate and lack of properly 

designed structural measures (dams, levees) for flood mitigation. They found that only a 

manual warning system existed, based on which crude warnings were made, leading to 

false or late warnings or no warnings at all. They also found that government 

institutions were weak, characterised by a lack of financial resources and technical 

expertise for flood management. Consequently, government institutions were unable to 

implement disaster plans and had to rely on donors and NGOs.  
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The activities towards flood risk reduction implemented by NGOs according to Shela et 

al. (2008) were community education, sustainable livelihood enhancement via food 

security and agriculture, provision of clean water and sanitation facilities, and provision 

of flood related infrastructure works (dykes, levees). Nonetheless, Shela et al. (2008) 

found that NGOs equally lacked technical knowhow resulting in flimsy structural 

measures that lacked design  where  these structures had been implemented.  

 

 

Community behaviour was another impediment to flood risk management. Shela et al. 

(2008) observed that while community mobilization and education had been fairly high, 

communities in the Lower Shire valley had a dependency inclining; always expecting 

freely provided items thus retarding resilience-building towards floods. 

 

 

With respect to impacts, Shela et al. (2008) found that floods had devastating impacts 

on the communities in the valley. These included: loss of crops and livestock, decreased 

crop production and loss of farmland leading to loss of incomes and livelihoods; 

destruction of houses, loss of infrastructure (rail, roads, bridges, schools; irrigation 

systems, telephone lines, boreholes, electricity infrastructure), interrupted education 

system due to repeated shut down of schools, disease incidence and displacement of 

people.  

 

 

Other studies e.g. Kaonda (2009), Mijoni and Izadkhah (2009) and Nilson et al. (2010) 

have also undertaken descritpive studies in which they determine causes, impacts, 

community perceptions, coping and adaptation strategies. By and large, they also report 

same findings. Nilson et al. (2010) nonetheless draw attention to additional factors. 

They note that flood risk also arise from settlements along floodplains due to fertile 

soils that support agriculture, livestock production and fisheries; a subsistent type of 

agruclture with no tangible industries to provide employment and a general resistence 

by communities towards relocation. Nilson et al. (2010) further note that flood risk 

management faces other challenges besides a lack of resources. They observe that the 

Department of Disaster Management Affairs (DoDMA) is highly centralised at national 

level and only supported at district and sub-district levels with Civil Protection 

Committees (CPCs). These committees, they observe, have neither operational funds 
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nor staff management to implement disaster risk reduction activities. Neither are 

responsibilities pinned to particular members. There is limited availability of 

operational procedures. Nilson et al. also observe duplication of effort, conflicting 

policy and  limited awareness on existing plans and procedures for flood risk 

management by all stakeholders at different levels. They also report of a general lack of 

scientific flood risk assessments to support mitigation and adaptation, observing that 

any flood managment is based on observations. 

 

 

Quantitative assesmments of flood risk are very limited in this valley. The study by 

World Bank (2010b) and Atkins (2012) are probably the most comprehensive towards 

flood risk assessment in this valley. The World Bank measured the flood risk of the 

Lower Shire floodplain by intersecting elements at risk (population, households, roads, 

railway lines and agriculture (maize and tobacco)) and with flood inundation extents 

from 2, 5, 10, 20, 50, 100, 200 and 500 year floods. The flood inundation extents were 

derived with the 1D hydraulic model, HEC-RAS. 

 

 

The World Bank study provides two outputs: flood hazard maps for these return periods 

and Average Annual Loss (AAL), the latter representing flood risk. In respect of these 

annual losses, the World Bank study reports that flooding in combination with droughts 

in this valley accounts for a countrywide annual loss in GDP of 0.7%. It further 

indicates that flood-induced poverty due to crop losses to climatological shocks in the 

Shire Valley amounts to 17.4% for a 50-year flood event.  

 

 

Similarly, using the 1D-2D Infoworks software, Atkins (2012) derived flood hazard 

maps for the Lower Shire valley for different return periods i.e. 5, 10, 50,100 and 500 

including flood depths at critical villages. Unlike the World Bank that assessed 

damages, Atkins identified and assessed  mitigation measures (height and length of 

defence structures and impact of catchment improvement) on flood depths at critical 

villages. In this regard, they found that catchment improvement would have more 

impact in the Mwanza catchment with reduction in flood heights at critical villages in 

the range of 30mm to 290mm. Little or no effect on flood heights in the Ruo catchment 

was found which the study attributed to proximity of the villages to the confluence. 
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Provision of storage for flood waters was adjudged impractical considering that a 10 

year flood already required enomous storage that was difficult to provide in tems of 

physical provision of diversion, storage and release facilities. 

 

 

Whilst the World Bank study measures flood hazardouness by extent and depth and 

Atkins (2012), besides extent, uses a severity factor that incorporates velocity and 

debris factor based on Defra and Environmental (2006) guidelines,  these studies seem 

to agree on the spatial extent of flooding in the Lower Shire Valley (Figure 2.14(a), (b)). 

However, hazard severity between the two studies is incomparable quantitaively given 

that in both cases results were lmited to the visual display in a map. 

 

 

Approaches of this kind carry with them various well known limitations earlier 

presented. Both studies limit vulnerability to exposure – what is in the harm’s way. 

They do not account for the wider socio, economic, cultural and institutional factors that 

may work to intensify or ameliorate vulnerability. In this regard, the approach attracts 

mitigation measures that are structural and therefore deficient of more transformative 

and holistic opportunities to adapt (Nelson et al., 2010), an aspect already evident in 

Atkin’s (2012) study. The cost and sustainability implications of such measures for 

developing countries, is also something that have also been brought to attention e.g. 

Lumbroso et al.  (2008). Besides, use of damages as a proxy for risk in the World 

Bank’s (2010b) is likely to underestimate risk. Credibility of damage data as earlier 

discussed is another concern. 
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                                          (a)                                                                                      (b) 

Figure 2.14: A 100-year flood as modelled by (a) World Bank (2010b) and (b) Atkins (2012). 
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Linking risk assessments to appropriate scales and institutions is paramount for 

effective disaster risk reduction as risk reduction strategies are developed, promulgated 

and implemented through institutions (Ribot, 2010). Both studies are indifferent to the 

spatial scale of disaster management decision making, a deficiency for effective risk 

reduction and a gap addressed in this thesis. Because the whole Shire Valley forms the 

unit of analysis in the two studies, application of results for disaster risk reduction are 

limited in a number of aspects such as comparisons across places and people and 

targeting of resources and interventions.  

 

 

2.4.3 Hydrological data issues 

Hazards stem from different processes and agents; flood hazards in particular arise from 

the geomorphological and hydro-meteorological conception (Alca´ntara-Ayala, 2002). 

While quantifying vulnerability relies on socio-economic data that are richly available, 

the availability and quality of hydro-meteorological data in most developing countries 

are an impediment to flood hazard severity estimation and water management in 

general. Hydro-meteorological data in these developing nations are characterised by 

gaps, short durations and dubious quality (Adeloye, 2011; Dastorani et al., 2010; Gyau-

Boake and Schultz, 1994; Ilunga and Stephenson, 2005).  

 

 

The above deficiencies of hydrological and meteorological data arise from several 

factors. For example, observational networks for both hydrological and meteorological 

data have been declining over the decades globally (Smakhtin and Wichelns, 2009) but 

the decline is more marked for SSA (Giles, 2005). In their review of the operational 

status of observational points installed under the SADC HYCOS (Southern Africa 

Development Community – Hydrological Cycle Observation System) project, 

Houghton-Carr and Fry (2006) found that of the 48 data collection platforms installed 

between 1998 - 2000, only 7 were working by 2006 due to broken sensors, vandalism, 

theft, electrical and transmission faults, a general lack of maintenance and unavailability 

of resources.  

 

Recently, Phalira (2012) reviewed the capacity of weather stations in providing 

meteorological data in the Lake Chilwa basin in Malawi. They found that only 14 out of 
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the 20 stations investigated were operational and only 7 out of the 14 operational 

stations had standard equipment. There was also lack of trained personnel, limited 

equipment, inadequate or no funding resulting in failure to maintain or buy new 

equipment, failure to recruit and pay skilled labour and in some cases resulting in total 

closure of the station. Phalira further found that only secondary stations stored data 

electronically; primary stations stored data manually limiting retrieval and hence 

utilisation of data in the later and also leading to data loss. He observed that electronic 

databases were equally prone to loss due to computer viruses. Quality checks were also 

rarely carried out.  

 

 

In view of the above, hydrological data constitute a major problem to water 

management studies in developing countries. In their analysis of rainfall and flow 

variability in SSA, Conway et al. (2009) had to combine data from international data 

bases and national bases. Even then, the number of gauging stations used in some basins 

in the analyses is very small. For example, only two stations are used for the whole 

Zambezi River basin: Victoria Falls on the Zambezi and Mohembo on the Okavango, 

raising concerns over the reliability of their results.  

 

 

In her assessment of hydrological impacts of climate change and variability at sub basin 

scale in the Zambezi Basin, Tirivarombo (2012) is also confronted with ungauged 

basins and basins with sparse stations whose data is characterised by short durations and  

extensive gaps. Consequently, the work is significantly supported by global data sets: 

the Climate Research Unit (CRU TS2.1) rainfall of the University of East Anglia and 

flow from the Global Runoff Data Center (GRDC) (The Global Runoff Data Center, 

2003). While very important, global data sets may not always be available at a time 

resolution or spatial unit of analysis required.  

 

 

Due to unavailability of instantaneous flow values in some countries, Mkhandi et al. 

(2000) derived regional flood frequency distributions for 11 countries in Southern 

Africa (Angola, Botswana, Lesotho, Malawi, Mozambique, Namibia, South Africa, 

Swaziland, Tanzania, Zambia and Zimbabwe) based on annual maximum daily 

discharges. From 44 delineated regions, Mkhandi et al. (2000) found that 33 regions 
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failed the homogeneity test and attributed this to a large variance from short samples of 

data in these regions. 

 

 

The Lower Shire Valley in Malawi is no exception to hydrological data deficiencies.  

Due to hydrological data issues among other factors, the existing flood warning system 

is manual, dependant on manual observation of gauge readings and rainfall in the Shire 

and Ruo catchments (Nilson et al., 2010). The system has been described as inefficient 

and unreliable sometimes leading to false, late or no alert at all (MoIWD, 2003; Nilson 

et al., 2010; Shela et al., 2008). There have been efforts towards automated real time 

flood warning system. An automated system installed in the 1990’s failed due to 

vandalism, lack of maintenance, and lack of local support (Nilson et al., 2010). 

However, in the status report on flood warning and forecasting by the Ministry of 

Irrigation and Water Development (MoIWD, Undated), the report also points to 

hydrological data challenges that could not support the Hydrologiska Byråns 

Vattenbalansavdelning (HBV) conceptual model for forecasting.  

 

 

2.4.4 Summary  

It emerges from the foregone sections that patterns exhibited in flood risk studies in 

SSA are not atypical to the Lower Shire Valley. Previous work in the valley has been 

dominated by vulnerability assessments that have strived to understand causation, 

impacts, perceptions and coping strategies qualitatitively. It is also clear that availability 

and quality of the hydrological data is also a challenge to water resources assessments 

including flood risk assessments. Ultimately, several aspects on the flood risk of the 

rural subsistent people in the Lower Shire Valley and in SSA at large remain unknown. 

In particular, from a contemporary disaster management perspective, it emerges that the 

degree of vulnerability, hazardousness and ultimately risk and the broader dimensions 

rather factors driving these components have not been brought empirically into a 

strategic picture for disaster management.  
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Chapter 3 Methodology  

3.1 Methodology overview 

The whole methodological process is summarised in Figure 3.1 below. It specifies the 

scales of analysis, data needs and collection methods. It highlights the treatment of 

hydrological data and the subsequent analysis of both hydrological and socio-economic 

data for hazardousness and vulnerability and hence risk quantification. These aspects 

are discussed in fuller details in the following sections. 

 

 

3.2 Scale of assessment 

Vulnerability and hence risk, is a scale-dependant variable determined by spatial scale 

(individual, household, community, sub-national, national or regional) and specificity of 

a place, and time scale (over a period of time or for a specific moment in time) 

(Kienberger et al., 2013). Hence scale has methodological and practical implications.  

 

 

Vulnerability tends to be more conspicuous with micro scale (Fekete et al., 2010; 

O'Brien et al., 2004b; Queste and Lauwe, 2006). O'Brien et al. (2004b), for example, 

found that while Norway in the global context would be classified as a resilient nation 

to climate change and variability, vulnerability was quite marked in some regions and 

certain places at local levels.   

 

 

In addition, vulnerability and risk assessment outcomes at different scales serve 

different purposes. Global or regional scale assessments have national resolution 

(Cardona, 2005; Dilley et al., 2005; UNDP, 2004) that allow comparisons across 

nations, which is useful for flagging to aid and development agencies, prioritization of 

resources at global scale and also for bench marking purposes (Birkmann, 2007; Fekete 

et al., 2010). Similarly, sub-national scales and national scales are important for 

planning and distribution of resources (Queste and Lauwe, 2006).  
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Figure 3.1: Methodology overview 
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In contrast, the local scale is more important for the design of disaster risk reduction 

because it is a scale of disaster occurrence and thus an appropriate scale of unmasking 

vulnerability (Queste and Lauwe, 2006). 

 

 

Furthermore, it is important that assessment scale is matched with the scale of 

jurisdiction of decision making on disaster management (Ribot, 2010). According to 

Ribot (2010), disaster reduction measures are developed, promulgated and implemented 

through institutions. 

 

 

The implication of scale in the context of local, national and regional assessments as 

observed by Hagenlocher et al  (2014) is shown in Table 3.1. 

 

Table 3.1: Implications of spatial scales for spatial vulnerability assessments:  

 

 

 

 

 

 

 
 
 

 
(●) barely pose a challenge, (●●) pose medium challenge (●●●) pose major challenge 
Source: (Hagenlocher et al., 2014) 
 

 

In view of the above, the selection of scale is a crucial step in this study. Kienburger et 

al. (2013) describes four types of scale: 

� Intrinsic scale - scale at which the pattern/process typically operates and is 

defined by pattern/process itself. 

 

� Observational scale – the scale of measurement and sampling of the phenomena. 

Ideally, the observational scale is closely linked to the intrinsic scale, but may be 

adjusted if appropriate. 

Local scale National scale Regional scale

Data availability ● ●● ●●●

Data collection ● ●● ●●●

Uncertainity in the data ● ●● ●●●

Level of spatial detail ● ●● ●●●

Identification of root 

causes of vulnerabilityy ● ●●● ●●●

Availability/reliability of 

expert knowledge ● ●● ●●

Validation ● ●● ●●
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� Modelling scale - scale level at which the analysis is carried out. Data derived 

from the observational scale may be scaled to the appropriate modelling scale in 

a valid manner. 

 

� Policy scale - scale level for which policies (such as laws and regulations) are 

valid and implemented. 

 

 

Driven by a strong support for policy and decision making, selection of spatial scale of 

analysis of risk in this thesis follows the institutional framework for disaster 

management in Malawi. At national level, the Department of Disaster Management 

Affairs (DoDMA) coordinates and directs implementation of disaster management 

activities. The department is supported at the lower level by other local government 

structures: the District Level, Area Level and Group Village Level. The Lower Shire 

Valley falls into two district level units: Chikwawa with an area of 4755 km2 and Nsanje 

with an area of 1942 km2. Chikwawa District has 11 Area Development Committee 

levels (ADCs) and Nsanje 9, with each ADC corresponding to the area under the 

jurisdiction of a chief (Traditional Authority, TA). Further Chikwawa comprises 79 

Village Development Committees (VDC) and 593 villages. Nsanje on the other hand 

has 82 VDCs and 790 villages. The number of VDCs and villages in both districts are 

actually higher than these figures given the continual promotion of tradition leaders to 

chiefs and senior chiefs through political will. Each VDC level is a conglomerate of 

several villages. The basis for a number of villages making a VDC is elusive and 

explains the unexpected higher figures in Nsanje than Chikwawa despite Nsanje’s size. 

 

 

The district as the ultimate scale of analysis of risk was adjudged too large to unmask 

risk at a local scale. Conversely, while the VDC and village units would have provided 

a more representative picture of risk, the associated costs proved prohibitive. The ADC 

was therefore chosen as a working scale, also referred to as community in this study.  

 

 

For the vulnerability component, the ADC as a modelling scale has the added advantage 

of data availability. Socio-economic data gathered through nationwide surveys e.g. 

Population and Housing Census and Integrated Household Surveys are readily available 
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at this scale. In furtherance, developmental work in Malawi through NGOs, donor 

community or government is also much tied to administrative boundaries of TAs 

(Malcomb et al., 2014). For the purpose of reconstructing hydro-meteorological data, on 

the other hand, the Shire River Basin is used as the modelling scale. This takes 

advantage of multi-variate relationships that exist between hydro-meteorological data 

within hydrological boundaries. However, for the ultimate quantification of the hazard 

and risk, the Lower Shire Valley is the modelling scale as flooding is confined to the 

valley. Results are then linked to the associated ADC through GIS. 

 

 

3.3 Quantifying the flood hazard and forecasting 

3.3.1 Hydro-meteorological data and collection 

Hydro-meteorological data of particular interest to the study were flow, water levels and 

rainfall. All data were secondary. Flow and level data were collected from the Ministry 

of Irrigation and Water Development (MoIWD). Rainfall data on the other hand were 

sourced from the Department of Climate Change and Meteorological Services 

(DCCMS). Both institutions are government agencies. The MoIWD collects water 

levels manually using staff gauges. The water levels are then converted to flow using 

rating equations, some of which are shown in Table 3.2. 

 

Table 3.2: Rating equations at main stations in the Shire River Basin 

Station  Equation Period relevant Level 
covered 

Mangochi ( ) 817.1
379.3454.41 −= hQ  

1-Nov-1981-31-Oct-2007 Up to 8.3m 

Liwonde ( ) 3.1
986.2666.153 −= hQ   1-Nov-1989- 31-Oct-2009 6.31m 

Chikwawa ( ) 3.1
4.12.438 −= hQ  1 December 1983-31st 

October, 1984 
Up to 4.93m 

 ( ) 3.1
2.1563.114 −= hQ  1 April 1985-31 October, 

2010;  
Up to 8.03m 

Chiromo ( ) 494.1
025.043.152 −= hQ

  
 

1 November 1981-31 
October 2010 

Up to 3.9m 

Sinoya 

( ) 8.2
172.2828.22 −= hQ                    10 August 1979  - 3 

 November, 1981 
Up to 15m 

( ) 8.2
004.2333.10 −= hQ  4 November 1981-15 

September, 1986 
Up to 15m 

( ) 8.2
987.3936.51 −= hQ  16-Sep-1986- 31-Oct-2001 Up to 15m 

 



65 
 

The Shire River basin is a gauged basin but with poor quality hydrological data. While 

the adequacy of station density could not be ascertained, it is apparent from data made 

available to the study (Table 3.3) that hydro-meteorological data on tributaries in recent 

years has declined significantly.  

 

 

In addition, not all stations on the main river are calibrated for flow measurement; 

Tengani and Nsanje gauge stations have been calibrated for only water level 

measurement. Further, characteristic of stations in this basin in general is the significant 

proportion of missing data. The size of discontinuities, not evident from the table, can 

be in the order of some years. Besides these issues, due to resource constraints, the 

update of rating curves is rarely done (Shela et al., 2008).  

 

 

As with hydrological data, the DCCMS also collects rainfall data manually using 

manual rainfall gauges. However, in contrast to water levels and flows, rainfall series 

(Table 3.3) are long and the proportion of missing values and size of discontinuities are 

much lower. 

 

 

Determined by the recency of data at most stations at the start of the study, the study 

investigated the 2008 flood for the flood hazardousness of the valley. Consequently, 

gauge stations used were those on the Shire River; all indicated in Table 3.3. Due to the 

importance of Sinoya station as the most downstream on Ruo catchment, the later being 

very important in the flooding of the valley (Shela et al., 2008), the station was also 

included despite the shortness of the series, notably on flow data.  All rainfall stations in 

the table were included. 
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Table 3.3:  Gauge and meteorological stations used for flood risk analysis 

Station  Catchment 
size (km2) 

Variable Record 
length 
(daily data) 

Proportion 
of missing 
values 

Min Max Mean 
Standard 
Deviation 

Shire River Stations* 

Mangochi 126,500 

Water level 
(m) 

1953-2009 6.4 0.2 9.5 7.1 0.8 

Liwonde 130,250 1970-2010 1.6 0.9 4.7 2.2 0.6 

Chikwawa 138,600 1977-2009 14.0 0.9 5.9 2.5 0.7 

Chiromo 149,500 1970-2009 14.4 2.2 7.9 4.7 1.09 

Tengani 150,000 1970-2006 23.4 0.7 5.9 3.25 1.32 

Nsanje 154,000 1960-2005 41.4 0.6 8.1 4.8 1.67 

Mangochi  

Flow 
(m3/s) 

1956-2008 7.1 118.8 1096 492.5 178.9 

Liwonde 1948-2010 1.9 0.2 1073 378.3 191.9 

Chikwawa 1977-2009 18.3 53 2286 593.2 295.5 

Chiromo 1953-2009 6.0 0.8 2142 459.4 257.7 

Tributary Stations 

Mwanza  at Tomali 1650 Flow 
(m3/s) 

1970-2008 31 0.001 437.7 1.78 7.8 

Mkulumadzi at Mlongora 586 1980-2008 33 0.001 205 5.4 7.7 

Mwamphazi at Mpokonyola 311 1956-2001 11 0.01 86.1 7.2 10.2 

Chisombezi at Midima Rd 76.4 1962-2000 5 0.001 291.9 1.3 7.7 

Ruo at M1 Bridge 193 1956-2004 4 0.01 571 10.2 19.5 

Nswadzi at Chipungu 380 1956-2002 9 0.01 2144 14.3 07.3 

Nkhate at Irrigation works 1 2006-2008 3 0.03 20.4 0.89 1.59 

Ruo at Sinoya 4530 1980-1990 23.0 0 3683.4 92.4 196.9 

Water level 
(m) 

1962-2002 
21,1 0.8 10.2 4.74 1.57 

*Catchment area on stations on the Shire River includes Lake Malawi Basin area (126,500km2) upstream of the Shire River Basin 
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Table 3.4 (continued) 

Station Variable 

Record 

length 

(daily) 

Proportion of 

missing 

values (%) 

 

Minimum 

 

Maximum 

 

Mean 

 

Standard 

Deviation 

 

Nsanje 

Rainfall  

(mm) 

 

1973-2009 3.1 0 164.9 2.8 10.3 

Makhanga 1953-2010 4.7 0 138.5 2.0 8.1 

Ngabu 1981-2010 1.4 0 165.0 2.2 8.4 

Chikwawa 1979-2010 10.8 0 145.7 2.2 8.4 

Nchalo 1981-2010 3.8 0 100.4 2.0 7.4 

Neno 1980-2009 15.9 0 161.4 3.4 10.8 

Mwanza 1935-2006 17.7 0 150.9 3.0 9.6 

Mimosa 1958-2010 0.8 0 127.7 3.2 9.5 

Thyolo 1962-2010 0.0 0 169.5 2.4 8.5 

Bvumbwe 1953-2010 0.0 0 126.0 3.1 9.4 

Chileka 1961-2010 0.6 0 147.0 2.8 9.1 

Chichiri 1981-2010 15.7 0 182.5 2.8 9.4 

Makoka 1981-2010 1.4 0 144.7 2.4 9.1 

Chingale 1952-2010 0.0 0 153.0 2.0 7.5 

Balaka 1981-2010 4.4 0 185.2 4.5 12.5 

Mangochi 1961-2010 0.3 0 177.3 3.4 10.1 
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3.3.2 Hydrological analyses – Artificial Neural Networks (ANN) 

Traditionally, hydrological modelling for water management has employed traditional 

models i.e. blackbox models (Dutta et al., 2012; Yawson et al., 2005), conceptual 

models (Primožič et al., 2008; Rahman et al., 2012) and physically based models (Liu et 

al., 2005; Sahoo et al., 2006; Thielen et al., 2009). 

  

 

Blackbox models transform inputs to outputs using e.g. regression without reference to 

the internal physical processes controlling the transformation. Physically based models 

at the other extreme try to replicate the natural system using the basic mathematical 

representation of the flow at a point based on the principles of conservation of mass, 

momentum and energy. Conceptual models are those relying on a simple arrangement 

of a relatively small number of interlinked conceptual elements (the most common 

elements being storage elements), each representing a segment of the land phase of the 

hydrological cycle (Jain, 1993).   

 

 

These models have challenges. Physically-based models have been associated with 

complexity, long computational times, problems related to scale on the application of 

physical laws, extensive data demands and hence cost (O' Connor, 2005; Toth and 

Brath, 2007a). Whilst conceptual and simple blackbox models are more widely used in 

comparison to physically-based models, data requirements in conceptual models are still 

high and in many occasions, these data are unavailable or expensive and time 

consuming to collect (Chau et al., 2005; Singh, 2005). Traditional linear, blackbox 

models offer simplicity and sometimes parsimony, but they reduce the complex non-

linear system to a linear system and may thus inadequately represent the system. 

 

 

The above challenges with traditional modelling paradigms have resulted in increased 

attention towards data-driven models, with Artificial Neural Networks (ANN) being the 

most widely used data-driven techniques in water resources management. ANN are 

computational techniques that mimic the functioning of neural biological system of the 

human brain (Haykin, 1999). Their appeal has been well documented e.g. Thirumalaiah 

and Deo (1998), Dawson and Wilby (1998), Kneale et al. (2004), Lekkas et al. (2004), 

Minns and Hall (2004) and stems from their ability to: model complex nonlinear 
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patterns; work without a priori knowledge of the underlying process; self-adjust; to be 

speedy and be robust to the existence of missing data during training or calibration.  

 

 

ANNs have been used in water resources and environmental management for rainfall 

forecasting (Hung et al., 2009),  rainfall-runoff  modelling (Wu and Chau, 2011),  flow 

forecasting (Aquil et al., 2007; Wu et al., 2009), water level forecasting  (Alvisi et al., 

2006), reservoir parameters prediction (Adeloye and De Munari, 2006), groundwater 

level prediction (Nayak et al., 2006), sediment load estimation (Cigizoglu, 2004), water 

quality parameter prediction (Baxter et al., 2001; Diamantopoulou et al., 2005; Panda et 

al., 2004; Rustum and Adeloye, 2012), land use/land cover classification (Yuan et al., 

2009), land use and land cover change prediction (Ito and Murata, 2009), and land 

use/land cover change  impact on  water  resources (Isik et al., 2013). 

 

 

Like traditional models, ANNs are also not without difficulties either. One of the 

limitations of ANN has been their poor performance outside the calibration range; they 

therefore cannot be reliably used in situations where significant events outside the 

calibration range are important. Further, they are not transparent because their structure 

is hidden in computer code, which means they are less comprehensible to practitioners  

(Solomantine and Price, 2004). However, these limitations pale into insignificance 

when compared to its merits especially in data-poor catchments where the needed data 

and information for calibrating and validating traditional models do not exist. 

Consequently this study had adopted the ANN for hydrological modelling specifically 

for data reconstruction and the forecasting of river flows and levels. 

 

 

3.3.2.1 Self-Organizing Maps (SOM) as a basis for data 

reconstruction 

Numerous techniques of estimating missing values have been used. Their application  

depends on a number of factors: the length of the gaps, the availability of hydro-

meteorological data from neighbouring stations, the season of missing values, the 

climatic region under consideration, the knowledge and expertise of the person 

responsible for correcting data, length of existing data record, the importance of 
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prediction and hence consideration of the performance of the model to be used for 

infilling (Gyau-Boake and Schultz, 1994; Khalil et al., 1998; Rees, 2008).  

 

 

Simple arithmetic averages (Dinpashoh et al., 2011; Linacre, 1992) and linear 

interpolation techniques (Yawson et al., 2005) have normally been used when dealing 

with an auto-series (data from a station for which in-filling is to be made). However, it 

is probably more common to use other surrounding stations acting as donor sites. In this 

case, linear regression e.g. Abatzoglou et al. (2009) and weighted averages based on 

such variables as distance and correlation coefficient (Dastorani et al., 2010; Roudier et 

al., 2012) are often used. While most of these traditional methods offer simplicity, there 

are not without challenges which tend to be more profound in context of the quality of 

data in developing countries. Rees (2008) observes that serial interpolation techniques 

are only suitable in stable periods i.e. periods having neither flood events nor significant 

rainfall. In addition, their application is also limited to short lengths of the gap 

(Hydrology Project, 1999). 

 

 

For periods with variable flows and longer sequences of missing data, regression 

analysis and other forms of hydrological modelling are recommended (Hydrology 

Project, 1999; Rees, 2008). Regression analysis, however, demands a relatively long 

and reliable data set – a requirement not easily met in developing countries. Since 

augmentation by regression assumes that the predictor variables are always available, 

based on data from neighbouring stations, the approach will break down if the 

independent variable is also missing as noted by Adeloye (2009). Besides, classical 

regression methods normally analyse for one predictand; thus for a large number of 

variables requiring infilling, developing different predictive regression equations for 

each can be time consuming  (Rustum, 2009). 

 

 

While hydrological modelling-based infilling offers accurate estimates, the challenge of 

data availability for calibration and validation as earlier highlighted are a challenge to 

data-poor catchments, making ANN a powerful alternative. In particular, several recent 

studies e.g. Rustum and Adeloye, (2007) and Kalteth and Hjorth (2009) have found that 

SOM, an unsupervised ANN, performed better than the most widely used Multi-Layer 



71 
 

Perceptron Artificial Neural Networks (MLP-ANNs) in water resources. SOMs are also 

very robust to missing data during its training (Malek et al., 2008) whereas MLP-ANNs 

will require a complete data set for its training. Thus, if data are missing, an off-line pre-

processing to provide estimates of the data in the input space is mandatory before the 

training of MLP-ANNs can proceed (Rustum and Adeloye, 2007). 

 

 

Common to hydrological and meteorological data available in the Shire Basin and 

developing countries in general, is the considerable proportion of missing data which 

would naturally preclude the use of MLP-ANNs or other regression-based methods. As 

a result of the above attributes of SOM, this study uses the SOM for augmenting data in 

the Shire basin. 

 

 

Self-Organizing Maps  

Self-organizing maps (SOM) are a competitive, unsupervised form of artificial neural 

networks pioneered by the Finnish professor, Professor Teuvor Kohonen (Kohonen et 

al., 1996). They provide a means of compressing data from multi-dimensions to lower 

dimensions discrete map, usually two dimensions, although higher dimensions are 

possible but not as common (Haykin, 1999). They also cluster input patterns in such a 

way that similar patterns are represented by the same output neurons or by one of its 

neighbours. The information in a SOM is stored in such a way that any topological 

relationships within the training set are maintained. This implies that the SOM translates 

the statistical dependencies between the data into geometric relationships, therefore 

maintaining the most important topological and metric information contained in the 

original data (Rustum, 2009). 

 

 

Basics of SOM 

The SOM (also called feature map or Kohonen map) is one of the most widely used 

artificial neural networks algorithms (Kohonen et al., 1996). It is usually presented as a 

dimensional grid or map whose units (nodes or neurons) become tuned to different input 

data patterns. Its algorithms are based on unsupervised competitive learning, which 

means that training is entirely data driven and the neurons or nodes on the map compete 
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with each other (Alhoniemi et al., 1999). The principal goal of the SOM is to transform 

an incoming signal pattern of arbitrary dimension into a two-dimensional discrete map. 

It involves clustering the input patterns in such a way that similar patterns are 

represented by the same output neurons, or by one of its neighbours (Back et al., 1998). 

In this way, the SOM can be viewed as a tool for reducing the amount of data by 

clustering, thus converting complex, nonlinear statistical relationship between high 

dimensional data into simple relationship on low dimensional display (Kohonen et al., 

1996). This mapping preserves the most important topological and metric relationship 

of the original data elements, implying that not much information is lost during the 

mapping. 

 

 

The SOM consists of two layers: the multidimensional input layer and the competitive 

or output layer; both of these layers are fully interconnected as illustrated in Figure 3.2. 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: The architecture of SOM 

 

The output layer consists of M neurons arranged in a two-dimensional grid of nodes. 

Each node or neuron i  ( i  = 1,2,. . . , M ) is represented by an n -dimensional weight or 

reference or code vector iW  = [
1i

w , . . . ,
ni

w ], where n  is the dimension of each input 

vector, i.e. the maximum number of variables in the input vector. In other words, each 

neuron in the output layer of the SOM contains exactly the same set of variables 

contained in the input vectors and thus, unlike the MLP-ANNs, variables in the SOM 

are not partitioned into input or output variables. 
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Garcia and Gonzalez (2004) offer guidance on determining the optimum number of 

neurons, which is: 

  

NM 5=                       (3.1) 

 

where N  is the total number of data samples or vectors. Once M  is known, the number 

of rows and columns in the SOM can be determined. A guideline by Garcia and 

Gonzalez (2004) on the dimensions of M  is that: 
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                                (3.2) 

where 1l  and 2l  are the number of rows and columns respectively, 1e  is the biggest 

eigenvalue of the training data set and 2e  is the second biggest eigenvalue. 

 

 

Training the SOM 

The multi-dimensional input data is first standardized by deducting the mean and then 

dividing the result by the standard deviation. To start, the neurons in the output layer are 

seeded with randomly generated, standardized values. A standardized input vector is 

then chosen at random and presented to each of the individual neurons of the SOM for 

comparison with their code vectors in order to identify the code vector most similar to 

the presented input vector. The identification uses the Euclidian distance, which is 

defined as: 
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  Mi ........2,1=        (3.3) 

      

where iD  is the Euclidian distance between the input vector and the code vector i ; 
jx  

is the j th element of the current input vector; 
ijw  is the j th element of the code vector 

i ;  n  is the dimension of the input vector; and 
jm  is the so called ‘‘mask’’ which is 

used to include in ( )1=jm , or exclude from ( )0=jm , the calculation of the Euclidian 

distance, the contribution of a given element 
jx of the input vector. This is very useful 
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where the input vector contains missing elements because all that needs to be done is to 

set the mask ( )
jm  to zero for such elements. In this way, the SOM is able to handle 

missing values in the input vector without any problem. The neuron whose vector most 

closely matches the input data vector (i.e. for which the iD  is minimum) is chosen as a 

winning node or the best matching unit (BMU). The code vectors of this winning node 

and those of its adjacent neurons are then adjusted to match the input data using 

equation (3.4), thus bringing the code vectors further into agreement with the input 

vector  (Vesanto et al., 2000). 

 

( ) ( ) ( ) ( ) ( ) ( )[ ]twtxthttwtw iciii −+=+ α1
                (3.4) 

        

where t  denotes time, ( )tα  is the learning rate at t , ( )thci is the neighbourhood function 

centred in the winner unit c at time t  and all the other variables are as defined 

previously. In this manner each node in the map internally develops the ability to 

recognize input vectors similar to itself. This characteristic is referred to as self-

organizing, because no external information is supplied to lead to a classification (Penn, 

2005). The process of comparison and adjustment continues until the optimal number of 

iteration is reached or the specified error criteria are attained.  

 

 

Both the learning rate and the neighbourhood function affect the learning effectiveness 

of the SOM and must be chosen carefully. In particular, the learning rate decreases 

monotonically with increased number of iterations as in the following equations: 
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where 0α  is the initial learning rate and T  is the training length or the number of 

iterations (Vesanto et al., 2000), thus forcing the weight vector to converge. In general, 

best results are obtained by setting 
5.0

250
N

T = (SOM toolbox for Matlab 5 – see 

http://www.cis.hut.fi). The neighbourhood function is normally chosen to be Gaussian 

centred in the winner unit c, such that: 

 

 
( ) ( )( )( )trr

ci
icth

22 2||||exp σ−−
=

                    (3.8) 

          

where cr  and ir  are the positions of nodes c and i  on the SOM grid and ( )tσ  is the 

neighbourhood radius. Like the learning rate ( )tα , ( )tσ  also decreases monotonically as 

the number of iterations increases. 

 

 

A variant to the sequential training algorithm above is the batch training algorithm 

where all data are presented to the SOM and their winning neuron identified before 

adjustments take place. In this regard, the update takes the form: 
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where c is the index of the BMU of the data sample jx . 

 

In this study, the batch algorithm was used as it has been known to be significantly 

more computationally efficient in terms of speed than the sequential training algorithm 

(Pölzlbauer, 2004). Besides, it does not require a learning rate to converge thus 

eliminating the potential source of poor convergence (Silva and Marques, 2007).  

 

SOM quality measures 

The quality of the trained SOM is measured in many ways but two properties widely 

assessed are vector quantization and topology preservation (Pölzlbauer, 2004).  

Pölzlbauer (2004) describes vector quantization as finding a suitable subset that 

describes and represents a larger set of data. Topology preservation on the other hand 

relates to neighbourhood preserving (Van-Hulle, 2011). To assess the quality of SOM in 
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this study, two widely used measures were adopted: the total average quantization error 

and total topographic error respectively. The quantization error is given by: 

 

 
∑
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where eq  is the quantization error, iX  is the i th data sample or vector, cW  is the 

prototype vector of the best matching unit for iX  and ||.|| denotes the Euclidian distance 

(equation (3.3)). The topographic error is given by: 
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where ( ).iu  is a binary integer such that it is equal to 1 if the first and second best 

matching units for iX  are not adjacent units; otherwise it is zero. Thus a value of zero 

depicts total topology preservation (Pölzlbauer, 2004). 

 

 

Use of SOM for prediction 

Once the SOM has been fully and effectively trained as described above, it is now ready 

to be used for prediction. The application of the SOM for data record infilling is 

illustrated in  Figure 3.3 (see also (Rustum and Adeloye, 2007)). As evident in Figure 

3.3, there can be more than one variable needing to be predicted in a single input vector. 

In fact as illustrated in Figure 3.3, there are three variables of the input vector that need 

to be predicted. 
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Figure 3.3: Prediction of missing components of the input vector using SOM. 

    Source: (Rustum and Adeloye, 2007) 

 

This ability to simultaneously predict multiple variables is what makes the SOM a much 

more versatile tool than classical regression. The multivariate prediction using the SOM 

proceeds as follows: 

 

i.  Decide on the variables needing prediction in the input vector. These will be 

variables that are unavailable because they are actually missing (e.g. 

missing river stage and discharge) resulting in a depleted input vector. In 

the schematic of  

Figure 3.3 the input vector has three variables missing, which are represented by ‘‘?’’ 

 

ii.  Determine the Euclidian distance, iD , of the depleted vector from each of the 

nodes of the output layer of the trained SOM using equation (3.3). In doing this, 

the mask, jm , of each of the unavailable variables will be set to zero while  jm

will be set to unity for all the other variables in the input vector.  

 

iii.  Examine all the iD ’s for the minimum and hence isolate the SOM’s BMU for 

the depleted input vector. It should be noted that while the input vector in step 

(i) above is depleted, i.e. has variables missing, the BMU identified here is a 

node of a trained SOM and hence has the full complement of variables.  

 

iv.  Replace the missing values of the input vector by their corresponding values in 

the BMU identified in step (iii) above. 
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3.3.2.2 Multi-layer Perceptron ANN (MLP-ANN) as a basis for 

forecasting 

The feedforward MLP-ANN) (Figure 3.4) remains the most widely used ANN in water 

resources and more exclusively so in predictions and forecasting (Maier and Dandy, 

2000; Maier et al., 2010). 

 

 

Figure 3.4: Configuration of feedforward three layer ANN.  
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Figure 3.5: Schematic diagram of node. 

  Source: (ASCE, 2000)  

 

MLP-ANN consists of several layers: an input layer, one or more hidden layers and an 

output layer. Each layer has one or more nodes arranged in parallel and connected to 

other nodes (not in the same layer) through weight vectors (Figure 3.4).The number of 

nodes in the input layer and output layers are problem-dependent being equal to the 

independent and dependent variables respectively. The number of neurons in the hidden 

layer is subject to several propositions but the trial-and-error approach remains widely 

used method for establishing this (Maier et al., 2010). The use of one hidden layer in 

X1 
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  ●                       
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hydrological studies involving ANN is not atypical and has been considered complex 

enough to simulate non-linear patterns exhibited in hydrological problems (Demuth et 

al., 2009). In feedforward MLP-ANN, information flows in one direction i.e. from input 

side to the output side and therefore output information at a given node (Figure 3.5) is a 

function of weighted inputs from preceding nodes in a previous layer and the activation 

function in the node. The output signal at a given node is mathematically expressed as:  

 

 
( )jjj bWXfy −= .

                   (3.12) 

 

where jy  is the output at node j , f is the activation function, X  is the input vector of 

inputs ( )
ni xxx ,....,......1 , jW  is the weight vector ( )njijj www ,......,.....1  and ijw  is the 

weight connection from the ith node in the preceding layer to node j . jb  is the 

threshold value also called a bias which must be exceeded before the network can be 

activated (ASCE Task Committee, 2000). Non-linear activation functions such as the 

log or tan sigmoid transfer functions are normally used in the hidden layer as they are 

known to capture both linear and non-linear function (Demuth et al., 2009). In contrast, 

the output layer may contain either linear or non-linear activation functions. The 

commonly used activation function is the sigmoid function below with its popularity 

linked to the simplicity of its derivative which is used during the training process. 

 

 ( )
ne

nf
−+

=
1

1
    ( ) 10 << nf                          (3.13) 

 

Knowledge is acquired through training, also known as learning; a process by which 

connection weights are adapted continuously to minimise the error function so as to 

generate an output that is as close as possible to the target vector (ASCE Task 

Committee, 2000). The back-propagation training algorithm tends to be the most widely 

used in water resources problems. It is a computationally efficient mechanism for 

weight adjustments in feedforward networks (Maier and Dandy, 2000; Maier et al., 

2010). As illustrated earlier (see equation (3.12)), in the forward pass, the information at 

a particular node is a weighted sum of signals from the previous nodes plus a bias term 

calculated through a predetermined activation function. The network output is compared 

to the target and the error calculated. The error is propagated backwards through the 

network to each node. In this backward pass, weights are adjusted. Training continues 
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until a predetermined level of error is reached or when no further changes are observed 

in the error. A trained ANN ought to give reasonable results given new inputs. A 

comprehensive description of ANN can  be found in several publications including 

Haykin (1999), Maier and Dandy (2000), ASCE Task Committee (2000), Dawson and 

Wilby (2001), Maier et al. (2010). 

 

 

While ANN has been widely and successfully applied for various studies, application in 

data-poor African catchments is sparse. It is also faced with the challenge of data 

quality. MLP-ANN requires data that is complete. The presence of gaps therefore has to 

be addressed before MLP-ANN can be applied. Also, because MLP-ANN characterise 

systems response from data presented through training (Toth and Brath, 2007a), small 

data sets, often the case in these data poor catchments, will lead to inadequate learning 

due to reduced degrees of freedom available for parameter estimation (Khamis et al., 

2006). 

  

 

For example, in the application of MLP-ANN for the determination of sediment load 

transfer under different agricultural and land management practices in Bvumbwe, 

Mindawi I, Mindawo II and Mphezo areas of Malawi (Abrahart and White, 2001), 

controlled random noise had to be added to the small training set to increase data size 

and thus reduce the uncertainties in the parameter estimation.  

 

 

Similarly, Mazvimavi (2003) used MLP-ANN to predict flow characteristics from 

catchment characteristics in selected catchments of Zimbabwe. He estimated mean 

annual flow, baseflow index, annual hydrograph, mean monthly flows and flow duration 

curves using mean annual precipitation, lithology, slope, mean annual potential 

evaporation, land cover and drainage density as inputs. Due to data availability 

problems, Mazvimazi’s work was limited to flow stations with a minimum of ten years 

of data; an aspect that may impact on the learning process.  

 

It is important, therefore, to recognise that  catchments in developing countries pose a 

unique challenge in the sense that most are either ungauged or if gauged, have poor 

quality data characterised by gaps and short durations (Adeloye and Rustum, 2012; 
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Mazvimavi, 2003; Saliha et al., 2011).  Thus while the competence of MLP-ANN has 

been widely assessed in flow prediction, the Lower Shire floodplain of Malawi presents 

a unique situation in terms of data quality and availability. As noted above, much of this 

problem was overcome by using the SOM to infill and thus extends the available patchy 

data records. 

 

 

3.3.2.3 ANN evaluation 

It is important that the model represents as closely as possible the transformation of the 

input into output (Kachroo, 1992). A number of criteria has been used to evaluate ANN 

performance and take the form of visual inspection of graphical comparisons (scatter 

plots, times series) and statistical indices (ASCE, 1996). Visual inspection allows a 

quick assessment of model fit, capabilities and sensitivity to parameters something that 

may not be apparent in some statistical measures. On the other hand, visual inspection 

may be limited for example in ranking when performance of different models is nearly 

the same (Jain and Sudheer, 2008). Thus combination of both measures is important. 

 

 

Commonly used statistical indices in ANN are the squared errors (the sum of squared 

errors (SSE), root mean square error (RMSE) and the Nash Sutcliffe efficiency (NS)), 

absolute errors (total sum of absolute deviations (TSAD), mean sum of absolute 

deviations (MSAD),  total bias (TBIAS), mean bias (MBIAS)), relative error metrics 

(the average absolute relative error (AARE), the normalized root mean square error 

(NRMSE) and those based on correlation e.g.  the Pearson correlation coefficient (R) 

(Maier et al., 2010).  Squared errors provide a good measure of goodness of fit at high 

magnitudes; relative errors on the other hand provide a more balanced perspective 

moderate flows (Dawson and Wilby, 2001). While absolute errors provide magnitudes 

of the error, they are limited in providing information regarding under and over 

prediction (Maier et al., 2010).   

 

Error statistics used in this study are the Nash–Sutcliffe index, NS (Equation (3.14)); the 

correlation coefficient, R (equation (3.15)); and the mean squared relative error, MSRE 

(equation (3.16)). In these equations, n  is the number of observations, 
∧

iQ   is the 
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predicted value, iQ  represents observed flow and  iQ  denotes the mean of the observed 

values. 
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The NS is different from the R  in that, unlike R , it quantifies the proportion of the 

observed variance that is explained by the model but in doing this, it does not assume a 

priori a linear relationship between the inputs and outputs. For a simple regression 

model, NS is the same as the square of R . Additionally, following recommendations 

against relying on a single measure of accuracy (Dawson and Wilby, 2001; Jain and 

Sudheer, 2008; Legates and McCabe, 1999), MSRE was also used. The relative error 

measure was preferred to the absolute error because it removes any distortion that could 

result due to differences in units of output variables (Maier et al., 2010). Finally, time 

series plots and scatter plots were produced to confirm the relative efficacies of the 

different models. 

 

 

3.4 Hazardousness determination 

3.4.1 Model choice 

As discussed in the literature review, the flood hazard has been measured in a variety of 

ways notably by hydraulic modelling, remote sensing techniques and community based 
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approaches; often with the integration of GIS. Each of these methods has advantages 

and disadvantages already discussed. 

 

 

The present analysis used hydraulic modelling for flood hazard determination. 

Hydraulic modelling was considered appropriate given estimation of flood 

hazardousness in this study was based on a historic flood event, i.e. the 2008 flood 

event. The choice of the 2008 flood event follows the availability of hydrological data 

in basin which was mostly up to 2008 at the time of the research. The hydraulic model 

approach also allows objective quantification of the hazard in terms of flood depths, a 

difficult aspect to achieve if satellite imagery or community based approaches were to 

be used. 

 

 

Hydraulic models can be data intensive and quite complex requiring expert skill, 

requirements often not met in developing countries. A parsimonious hydraulic model is 

therefore paramount for the Lower Shire floodplain. A number of flood inundation 

models are available. These include one dimensional models such as MIKE II (DHI, 

1993), ISIS (ISIS, 1995) , HEC-RAS (HEC-RAS, 2002). These models consider flow to 

be longitudinal, thus approximating the domain as a series of cross sections 

perpendicular to flow. They are computationally very efficient (Hunter et al., 2007) and 

well suited to parameterization using traditional field surveys (Bates and De Roo, 2000; 

Horritt and Bates, 2001). However, these models fail to approximate the domain as a 

surface but rather use a series of cross section. Hence, they are also unable to simulate 

the lateral diffusion of the flood wave (Hunter et al., 2007). Areas between cross section 

are not explicitly represented (Bates and De Roo, 2000). Besides, the cross sections are 

under the subjectivity of location and orientation (Hunter et al., 2007). 

 

 

On the other extreme end are the 2D full Saint Venant equations- based models e.g. 

TELEMAC-2D (Bates and Anderson, 1993), MIKE 21 (DHI, 1996). These offer a 

better approximation of known hydraulic processes and require no secondary treatment 

to determine flood inundation as they are integrated for use with available satellite 

imagery. Despite these advantages, their computational costs and data requirements are 

high (Bates and De Roo, 2000).  
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Models from simplified full Saint Venant equation that neglect different aspects of the 

momentum equations have increasingly been used. Given typically available non-error 

free data used in model construction and validation, mathematically rigorous models 

may not be justified (Hunter et al., 2007). Such models include the volume spreading 

models such as the Rapid Flood Spreading Method (RFSM) (Gouldby et al., 2008) and 

dynamic models such as JFLOW (Bradbrook et al., 2004) and RFSM-EDA (Jamieson et 

al., 2012) 

 
 

 

Lisflood-FP (Bates and De Roo, 2000) is also one of the simplified versions of full 

Saint Venant equations. It simulates channel flow with kinematic or diffuse 

approximation of one dimensional St Venant equations while floodplain inundation is 

approximated with a 2D diffusion wave using Manning’s law and a storage cell concept 

applied over the raster grid (Bates and De Roo, 2000). A mathematical description of 

the model as given by Horritt and Bates (2001) is outlined below. 

 

 

Channel flow in Lisflood-FP is described by continuity and momentum equations: 
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where Q  is the volumetric flow rate in the channel, A  the cross-sectional area of the 

flow, x  is the distance between cross sections, q  the flow into the channel from other 

sources (i.e. from the floodplain or possibly tributary channels), oS the down-slope of 

the bed, n  is the Manning friction coefficient distinguished as cn  for channels and 
fpn  

for floodplains, P  is the wetted perimeter of the flow, and h is the flow depth. The 

term in brackets is the diffusion term, which according to Horritt and Bates (2001) 

forces the flow to respond to both the bed slope and the free surface slope, and can be 

switched on and off in the model, to enable both kinematic and diffusive wave 

approximations to be tested. The channel parameters required to run the model are its 
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width, bed slope, depth (for linking to floodplain flows) and Manning’s n value and 

these can be varied spatially along the reach. 

 

 

Over the floodplain, flows are also derived from the continuity and momentum 

equations applied to a grid of square cells. A cellular approximation is given by: 
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Where 
jih ,
is the water free surface height at the node ( )ji, , x∆  and y∆ are the cell  

dimensions, xQ and 
yQ  describe the volumetric flow rates between floodplain cells. 

From the various flow equations available that would be equally applicable, Lisflood-

FP uses Manning’s equation. 

 

 y
x

hh

n

h
Q

jiji
flowji

x ∆








∆

−
=

− 2

1
,,13

5

,
                 (3.20) 

 

yQ is treated analogous to xQ . The flow depth, 
flowh  represents the depth through which 

water can flow between two cells, and is defined as the difference between the highest 

water free surface in the two cells and the highest bed elevation. The model simulates the 

time evolution of water depth in each model grid cell at each time step in response to main 

channel flood waves and represents the simplest physical representation capable of 

simulating dynamic floodplain inundation (Wilson et al., 2007) 

 

A number of advantages have been associated with Lisflood-FP. It models floods with 

minimum representation of floodplain hydraulics often demanded in typical hydraulic 

models. Yet results from Lisflood-FP have been found to be comparable with those 

from other models including full St Venant based models. On their application on the 

35km stretch of the River Meuse in The Netherlands, for example,  Bates and De Roob 

(2000), found that Lisflood-FP outperformed both the simpler planar approximation to 

the free surface based on a linear interpolation of maximum water surface elevations 

recorded at two gauge stations, and the steady state simulation with a two dimensional 

finite element model. Lisflood-FP and TELEMAC-2D also achieved similar results in 
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terms of fit and mass balance error over a 40km stretch on River Thames, UK with 

Lisflood-FP further emerging computationally efficient on speed (Horritt and Bates, 

2001). Fewtrell et al.(2009) compared Lisflood-FP with SOBEK, a fully 2D 

hydrodynamic model, in the prediction of the flood inundation on the River Thames in 

Greenwich, UK. Flood extent from the two models was comparable. 

 

 

In addition, Lisflood-FP results are easily compared to typically available hydraulic data 

such as flow, stage data and satellite imagery; it requires relatively little hydraulic 

modelling expertise and is more computationally efficient than full St Venant models  

(Bates and De Roo, 2000; Fewtrell et al., 2009; Neal et al., 2012). 

 

 

Furthermore, Lisflood-FP has been applied to a diverse set of conditions. It is applicable 

to fluvial, coastal and estuarine flooding and is executable in 1D, coupled 1D/2D and 

2D (Neal et al., 2012). It has been extensively tested including in topographically 

complex regions, very large catchments and data scarce regions e.g. in the Amazon 

(Wilson et al., 2007), the Niger River (Neal et al., 2012) and the Ob (Biancamaria et al., 

2009).  

 

 

While JFLOW is very similar to Lisflood-FP (Bradbrook et al., 2004), Lisflood-FP is 

used in this study owing to its wider applicability in African catchments (Coulthard et 

al., 2013; Phanthuwongpakde, 2011; Zahera et al., 2011) where data availability and 

quality  pose a bigger challenge. For a detailed discussion of Lisflood-FP, one is 

referred to Bates and De Roob (2000); Neal et al. (2012) amongst others. 

 

 

3.4.2 Data inputs 

Lisflood-FP is a parsimonious hydraulic model, a further advantage over its use and 

pertinent to data-poor catchments. At minimum, Lisflood-FP requires only an input 

flow hydrograph at the upstream boundary, topographic data, being readily available 

from remotely sensed topographic data, and flow resistance defined in the model by 

Manning’s coefficient (Bates and De Roo, 2000). An estimate of flow resistance can be 

made from widely available literature such as those published by Chow (1959) 
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(Appendix A). Therefore, these three data sets were used. The downstream boundary 

condition was defined as a free uniform surface. 

 

 

3.4.3 Flood hazardousness parameters 

Analysis and understanding of hazards is based on certain characteristics.  Literature on 

the flood hazard (Hamilton et al., 2004; Islam and Sado, 2002; Lung et al., 2013; 

Mosquera-Machado and Ahmad, 2007; Sanyal and Lu, 2005; Tingsanchali and Karim, 

2010) identify flood depth, inundation area, frequency of occurrence, flow velocity, 

duration and rate of rise of water level as characteristics that can be used to measure 

flood hazardousness of an area. This study employs flood inundation extent and depth, 

the most widely used parameters in literature (Hamilton et al., 2004; Mosquera-

Machado and Ahmad, 2007; Pelletier et al., 2005; Sanyal and Lu, 2004). 

 

 

3.4.4 Model calibration and evaluation 

The only variant used in the calibration process was the Manning’s floodplain friction 

factor ( )nfp . As stated in the foregone section, Lisflood-FP results are easily compared 

to typically available hydraulic data such as flow, stage data and satellite imagery. 

Evaluation of inundation extent in this study was done by comparison to inundations in 

the satellite imagery using the degree of fit  ( )%Fit  (equation (3.21)) as suggested by 

Bates and De Roo (2000). 
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=                                 (3.21) 

where obsA  is the observed inundation area from the satellite image and modB  is the 

modelled area, ∩ is the intersection and ∪ is the union. The fit is 100% for an exact 

match. 

 

 

Validating flood depths on the other hand was constrained by lack of quality data, a 

challenge also faced in previous studies in the valley i.e. World Bank (2010b) and 

Atkins (2012). As earlier stated, water levels are manually collected. The collection of 
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data during flooding is in most cases unlikely or intermittent. On the other hand, the 

Lower Shire Valley is rural and largely unobstructed by structural flood mitigation 

measures (Shela et al., 2008). In this regard, as discussed by Hunter et al (2007), a 

satisfactory match between observed and modelled inundation extent is a reasonable 

indicator of the match between observed and modelled water levels.  

 

 

3.5 Measuring vulnerability 

3.5.1 Vulnerability factors 

Vulnerability is affected by social, economic, cultural and institutional factors. Cutter et 

al. (2003) and Collins et al. (2009) reviewed a number of literature on social 

vulnerability factors. They found that social vulnerability had been defined by such 

variables as age, gender, race; socioeconomic status (income, power, prestige); whether 

the population is rural or urban; special-needs population and minorities (the physically 

or mentally challenged, immigrants, the homeless, transients, and seasonal tourists); 

livelihoods, family structure, education, population growth and densities, access to 

medical services, access to information, institutional capacity, quality of human 

settlements  in terms of housing type and construction and, infrastructure, and lifelines. 

The relationship between these factors and vulnerability according to Cutter et al. 

(2003) and Collins et al. (2009) is summarised in Table 3.4. 

 

 

While developed and developing countries share many typical vulnerability 

characteristics, developing countries are also unique in some ways. For example, some 

factors in Table 3.4 also exhibit other pathways to vulnerability for developing 

countries. A dependency on the primary sector (agriculture, fisheries and forestry) for 

example by the predominantly rural population in SSA has implications on settlement 

patterns. People settle in marginal lands (where the livelihood is) making their physical 

exposure high (Gwimbi, 2009; Wisner et al., 2004). Their dependence on natural 

resources also undermines the environmental integrity of the land. 
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Further, the very narrowness of their livelihood base, undermines their resilience to 

hazards as they cannot draw on other resources should their livelihoods be under the 

shock of a hazard (Adger, 2000; Vincent, 2004). 

 

 

Higher vulnerability for the young and the elderly does not only arise from 

physiological susceptibility and inability to render service to others as indicated in 

Table 3.4. These groups have impaired livelihoods and lack resources due to absence  of 

social grants and inability of the elderly to significantly contribute income generating 

activities (van Riet, 2006). Thus the groups have few resources if any, to anticipate and 

cope with hazards. This carries a societal impact too. Vincent (2004) observes that as 

the young and the elderly draw on the resources of the working class, they reduce 

societal resilience.  

 

 

In recent times, HIV/AIDS has become another humanitarian crisis for SSA, whose 

incidence increases population susceptibility and also reduces societal resilience. People 

living with HIV/AIDS in SSA account for 70% of those infected worldwide (UNAIDS, 

2000). The impacts of HIV/AIDS on vulnerability are well documented. Van Riet 

(2006) and FANRPAN (2007) draw attention to the following impacts: 

 

� an increase in widow-headed families and orphanhood and hence an increase in 

dependency 

� Financial strain through medical bills, funerals and absenteeism from work 

� Diminished access to resources due to stigmatization that limits social linkages 

and networks 

� Lack of labour to maintain livelihoods and productive activities as the disease is 

debilitating. 
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Table 3.4: Social-economic indicators of vulnerability in natural disasters 

Basic concept Influence on vulnerability 

Socio-economic status (income, 
political power and prestige) 

Wealth enables communities to absorb and recover from losses more quickly due to 
insurance, social safety nets, and entitlement programs. 

Gender Women may lack resources to cope due to discrimination, sector-specific employment, lower 
wages and family care responsibilities. Female headed households also face a myriad of 
challenges to providing familial security as well as preparing for and recovering from 
hazards events. 

Race and ethnicity Processes of marginalisation, language and cultural barriers reduce their access to resources 
for coping with hazards, and inhibit their ability to recover from disasters.  

Age Mobility for the very young and very old is difficult which impinges on their evacuation. 
This age group has to be cared for; children depend on decisions made by others for survival 
and the elderly have limited income. 

Commercial and industrial 
development 

The value, quality, and density of commercial and industrial buildings provides an indicator 
of the state of economic health of a community, and potential losses in the business 
community, and longer-term issues with recovery after an event. 

Employment loss The potential loss of employment following a disaster exacerbates the number of 
unemployed workers in a community, contributing to a slower recovery from the disaster. 

Rural/urban Rural residents may be more vulnerable due to lower incomes and more dependent on 
locally based resources extraction economies (e.g. farming, fishing). High-density areas 
(urban) complicate evacuation out of harm's way. 

Residential property Expensive homes are costly to replace; mobile homes are easily destroyed and less resilient 
to hazards. 

Access to information The ability to receive radio and television broadcasts or telephone alerts can facilitate 
resilience by helping people make better-informed decisions. 

Infrastructure and lifelines Loss of infrastructure may place an insurmountable financial burden on smaller communities 
that lack the financial resources to rebuild. 
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Table 3.4 (continued) 

Renters People that rent often lack financial resources and access to financial aid information. 
Without property insurance, they are likely to be displaced without recovering any of their 
losses. Sometimes, they may be left without shelter altogether. 

Occupation People in certain jobs such as self-employed fishing, agriculture, low-skilled service jobs 
such as housekeeping, childcare, and gardening are severely impacted by a hazard; they may 
lack the physical and financial capital to resume the work soon after a disaster. 

Family structure Families with large numbers of dependents or single-parent households have to juggle work 
responsibilities and care for family members, which affect the resilience to and recovery 
from hazards. 

Education Low educational attainment result in lower earnings. It also constrains the ability to 
understand warning information and access to recovery information. 

Population growth Rapid population growth may outstrip provision of housing and other basic services. 
Immigrants are the most likely to be affected by bureaucracies for obtaining relief or 
recovery information. 

Medical services Lack of readily available medical services may prolong recovery from disasters. 

Social dependence A high social dependence reflects a community already marginalised economically and 
socially and thus a need for additional support. 

Special needs populations Special needs populations (infirm, institutionalised, transient, homeless) are 
disproportionately affected during disasters and mostly ignored during recovery. Like the 
very young and old, the survival of special needs population depend on decisions made by 
others. 

Institutional capacity The capacity of institutions to provide social support to its residents will affect the degree of 
susceptibility and recovery. 

Source:  Cutter et al. (2003) and Collins et al. (2009) 
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� Selling of productive assets which impairs future productivity  

� Abandonment of school by children as they shoulder adult responsibilities 

� Food insecurity 

� Malnutrition 

� Poverty 

 

 

Furthermore, while according to Cutter et al. (2003) and Collins et al. (2009), 

destruction of public infrastructure exerts insurmountable financial pressure on small 

communities towards rebuilding, for developing countries, this impact is not necessarily 

confined to small communities; it is ubiquitous. In addition, in these countries, the 

failure of infrastructure or lack thereof is also much of a reflection of the weakness of 

institutions in terms of preparedness and coping capacity (Vincent, 2004).  

 

 

In vulnerability studies of rural communities to climatological hazards in SSA in 

particular, vulnerability has been found to be a complex web of factors related to 

poverty, health, AIDS, mortality, livelihoods, food, water and environmental 

degradation. This is exemplified in Malcomb et al.’s (2014) study conducted Malawi 

(Figure 3.6, Table 3.5). Similarly, in measuring vulnerability to climate change in 

Mozambique, Hahn et al. (2009) draw indicators from five dimensions: Social 

demographic factors, livelihoods, health, social networks, food and water, shown in 

Table 3.6. 

 

 

It is evident that vulnerability arises from a number of factors. These factors are often 

linked. Nonetheless, as several authors point out (Gall, 2007; Tate, 2012; Vincent, 

2004), what factors ultimately go into measuring vulnerability is a function of several 

aspects: the objective of the assessment, the scale of analysis, the relative ease of 

measurement of an indicator, data availability, validity of the variable and 

methodological approach in building the index i.e. whether deductive, hierarchical or 

inductive.  
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The factors used in measuring the vulnerability to flooding in the study area are broadly 

classified as social, economic, environmental and physical. They draw from 

vulnerability literature as discussed in the above section. The actual variables ultimately 

used however depend on the vulnerability index to be used, identified in the section 

below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: The vulnerability web for Malawi. Source: (Malcomb et al., 2014) 

 

Table 3.5: Vulnerability indicators to climate change in Malawi based on Malcomb 

et al. (2014) 

Theory Indicator

Arable Land Amount of Arable land per HH

Livestock Number of Animals per HH (by type)

Money Wealth index (based on owned assets)

Good Health Sick in the past 12 mos

Orphan Care Number of orphans or vunerable children

Access Basics Electricity (Y/N)

Cooking fuel type                             

Water(time to source)

Market access Rural, peri-urban

Technology sharing Own radio (Y/N)

Media and information Own a cellphone (Y/N)

Power and decision making Female-headed HH (Y/N)

Income source % Poor income from labor

Ability to meet food needs % Food intake from personal farm

Cash crop exposure % Non-food crop (cotton, tobacco, tea)

Ecological coping effect Access to alternative forms of income

Floods and rain variability Flood events

Drought and dry spells Drought indices

Asset

Access 

Livelihood sensitivity

Biophysical exposure

 

CLIMATE 
Hazards, Variability, Perceived change 

ENVIRONMENTAL 
COPING 

POVERTY 
 

LIVELIHOOD 
Land, Labour and Livestock 

FOOD 
Availability, Access, Utilization 

WATER 
Quality and Access 

HEALTH 
Disease, Nutrition 

MORTALITY 

AIDS 
ORPHAN CARE 
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Table 3.6: Vulnerability indicators in Hahn et al.’s (2009) study 

Major Sub-component 

Socio- demographic 
profile 

Dependency ratio 

Percent of female-headed households 

Percent of households where head of family has not attended 
school 

Percent of households with orphans 

Livelihood 

Percent of households with family member working in a 
different community 

Percent of households dependent solely on agriculture as a 
source of income 

Average Agricultural Livelihood Diversification index 

Health 

Average time to health facility 

Percent of households with family member with a chronic 
illness 

Percent of households where a family had to miss work or 
school in the last 2 weeks due to illness 

Average malaria exposure prevention index 

Social Networks 

Average Receive: Give ratio (range: 0 – 15) 

Average Borrow: Lend Money (range: 0.5-2) 

Percent of households that have not gone to their local 
government for assistance for the past 12 months 

Food 

Percent of households dependent on family farm for food 

Average number of months households struggle to find food 
(range: 0-12) 

Average crop diversity index (range: >0-1) 

Percent of households that do not save crops 

Percent of households that do not save seeds 

Water 

Percent of households reporting water conflicts 

Percent of households that utilize a natural water source 

Average time to water source (minutes) 

Percent of households that do not have a consistent water 
supply 

Inverse of the average number of litres of water stored per 
household (range:>0-1) 

 

 

3.5.2 Conceptual framework for vulnerability analysis 

This study draws from the natural hazard community, (Bollin et al., 2003;  ISDR, 2004), 

also referred to as the disaster risk discipline (Birkmann et al., 2013). Therefore 

vulnerability herein is limited to the intrinsic disposition of a system to harm; 

independent of the hazard (Birkmann et al., 2013) and is also inclusive of internal 

biophysical factors i.e. topography, forest cover, soil etc (Bollin et al., 2003). 

Dimensional components used are exposure, susceptibility and capacity/resilience 
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perspectives as championed in the IPCC framework and disaster risk community 

(Birkmann et al., 2013; IPCC, 2012).  The following definitions are used: 

 

• exposure - the presence of people; livelihoods; environmental services and 

resources; infrastructure; or economic, social and cultural assets in places that could 

be adversely affected.  

 

• susceptibility - the predisposition of elements at risk to suffer harm. 

 

• resilience - the ability of a system and its components to anticipate, absorb, 

accommodate, or recover from the effects of a hazardous event (Birkmann et al., 

2013; IPCC, 2012). Resilience is a term also used synonymously to capacity 

(Birkmann et al., 2013). Consequently, the two are used interchangeably in this 

study.   

 

Characterising the disaster risk framework are sustainable development concepts 

(Birkmann et al., 2013). Therefore exposure, susceptibility and resilience components in 

this study are further examined within four major thematic sustainable development 

dimensions: social, economic, environment and physical (ISDR, 2004). This is 

illustrated in Figure 3.7. 

 

 

 

 

 

 

 

 

  

Figure 3.7: Conceptual framework for vulnerability analysis 

 

 

3.5.3 The vulnerability index 

The study adapts an existing index from the plethora of indices used in the measurement 

of vulnerability.  Some vulnerability indices are outlined in Table 3.7 . Indices such as 

the Disaster Risk Index  (UNDP, 2004), the Hot spot project index (Dilley et al., 2005), 

the Predictive Indicators of Vulnerability (Adger et al., 2004; Brooks et al., 2005) and 

Vulnerability 

Resilience  Susceptibility Exposure 

Social  Economic Physical  Environment
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the Environmental Sustainability Index (Esty et al., 2005) have a global focus though 

with a national resolution, which precludes their application to the study. Similarly, 

other indices are regional. For example, the Environment Vulnerability Index (Pratt et 

al., 2004) was specifically developed for Small Islands Developing States (SIDS); the 

Prevalent Vulnerability Index (Cardona, 2005) for 12 Latin American states and the 

Social Vulnerability Index for African nations (Vincent, 2004). While advantageous in 

various aspects such as bench marking or flagging to the international development or 

aid community, these global or regional assessments at a national resolution masks the 

micro-level factors, an interest in this study, which are very pertinent to vulnerability 

and hence risk reduction.  

 

 

A number of indices developed address climate change and hence this aspect precludes 

their application to this study irrespective of resolution of scale. Such indices include 

the Climate Vulnerability Index (Sullivan and Meigh, 2005), the Social Vulnerability 

Index (Vincent, 2004) and Predictive Indicators of Vulnerability (Adger et al., 2004; 

Brooks et al., 2005), the Livelihood Vulnerability Index (Hahn et al., 2009). 

 

 

Few indices have been flood-specific. Connor and Hiroki (2005), through a multi-

variate analysis, developed a basin scale flood vulnerability index (FVI) for Japan 

where the vulnerability is measured in terms of mortality (FVIH) and  economic loss 

(FVIM) as below.  
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where y = total casualties in millions, 
popx = total population in the floodplain in 

millions, 
1x = TV penetration rate (%), 

2x = investment amount (Y100 million) in flood 

control infrastructure, 3x = advancement rate in % of people completing high school,  
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Table 3.7: Examples of natural disaster-related vulnerability indices 

Index  Definition 

Prevalent Vulnerability Index 

(PVI) (Cardona, 2005) 

LRFSES PVIPVIPVIPVI ++=
 

LRFSES ,, correspond to Exposure and Susceptibility, Socio-economic Fragility and Lack of Resilience.
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where, iw  is the weight assigned to each indicator, derived by Analytic Hierarchy Process (AHP), 

t

icI corresponds to each normalized indicator as in the equations below. These represent the 

conditions of vulnerability for each situation (ES, FS, LR) respectively. 
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t

icx  is the original data for the variable for country c during time period t, and 
t

ix  is the variable 

considered jointly for all countries. 
t

Mx is the maximum value defined for the variable at t period, 
t

mx  

is the minimum value defined for the variable at t period,  

t

ix  rank is the difference between the maximum and minimum value ( )t

m

t

M xx −   at t period.  

The indicators in the sub-components are: 
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=ESPVI  Population growth, avg. annual rate (%),  Urban growth, avg. annual rate (%), Population 

density, people/5 Km2; Poverty-population below US$ 1 per day PPP; Capital stock, million US$ 

dollar/1000 km2; Imports and exports of goods and services, % GDP; Gross domestic fixed 

investment, % of GDP; Arable land and permanent crops, % land area. 

 

=FSPVI Human Poverty Index, HPI-1; Dependents as proportion of working age population, 

Inequality as measured by the Gini coefficient, Unemployment, as % of the total labour force, Annual 

increase in food prices (%), Share of agriculture in total GDP growth (annual %), Debt service burden 

as a % of GDP, Soil degradation resulting from human activities (GLASOD). 

=LRPVI  Human Development Index, HDI [Inv], Gender-related Development Index, GDI [Inv], 

Social expenditure; on pensions, health, and education, % of GDP [Inv], Governance Index 

(Kaufmann) [Inv], Insurance of infrastructure and housing, % of GD [Inv], Television sets per 1000 

people [Inv], Hospital beds per 1000 people [Inv], Environmental Sustainability Index, ESI [Inv].  

[Inv] = inverse. 

Predictive Indicators of 

Vulnerability 

(PVI) (Adger et al., 2004; 

Brooks et al., 2005) 

Vulnerability ( ) =V country score on 11 socio-economic indicators i.e. population with access to 

sanitation, literacy rate of 15-24year olds, maternal mortality, literacy rate of over 15 year olds, 

calorie intake, voice and accountability, civil liberties, political rights, government effectiveness, 

literacy ratio (female to male) and life expectancy at birth. 
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, 551 << V         where x is a score, ranging from 1 to 5, that a country scores on a 

particular vulnerability variable, w  is weight allocated to the variables determined by a group of 

experts and ranges from 1 (least important, corresponding to the last ranking variable) to 11 (most 

important, corresponding to the first ranking variable) and 11=N . 

Climate vulnerability index 

(CVI) 

(Sullivan and Meigh, 2005), 
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=           ECAR ,,,  and G refer to resource, access, capacity, 

environment and geospatial component. ris a factor representing the relevance of a component in a 

specific place obtainable through expert opinion or stakeholder consultations. 

Livelihood Vulnerability Index 

(LVI) (Hahn et al., 2009). 
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LVI   ,   5.00 << LVI , dM = one of the seven major 

components i.e. Social Demographic Profile (SDP), Livelihood Strategies (LS), Social Networks 

(SN), Health (H), Food (F), Water (W), Natural Disasters and Climate Variability (NDCV), =index

normalized indices that make up each major component, =n  number of indicators in each major 

component, =
iMw weight of each major component and is equal to .n  

Social Vulnerability Index 

(Vincent, 2004) 

viviiiiii IIIIISVI 1.01.04.02.02.0 ++++=
 where viviiiiii IIIII 5.,,,,

 are the dimensionless sub-

components corresponding to Economic wellbeing and stability, Demographic structure, Institutional 

stability and strength of public infrastructure, Global connectivity, and Natural Resource Dependence 

respectively as explained in section 2.3.1
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4x = proportion of elderly population (%) and 5x = specific discharge (m3/s/100km2), z

= damage amount (Y1 million), 
prox = total property in the floodplain (Y1 million),  6x

= frequency of heavy rainfall (number of days per year receiving more than 100 mm 

precipitation). 

 

 

The success of Connor and Hiroki’s (2005) FVI in Japan was only confined to the 

national scale; replication at basin level was sub-optimal (coefficient of determination = 

0.46) calling for an improvement in the equation (Connor and Hiroki, 2005). The poor 

performance may be attributed to the empirical nature of the equation. Empirical 

equations are subject to boundary conditions under which they were developed and 

therefore application to basin level from a national scale is likely to violate boundary 

conditions resulting in sub-optimal performance. Besides, as an inductive approach, it is 

also sensitive to scale of application. Tate (2012) tested the robustness of deductive, 

hierarchical and inductive indices. He found that results from inductive models were 

highly influenced by scale of analysis unlike deductive and hierarchical models.  These 

aspects aside, equating vulnerability to mortality or damage costs has serious 

weaknesses earlier discussed.  

 

 

Another flood specific index is one by Balica et al (2009); subsequently improved 

(Balica and Wright, 2010) to achieve parsimony. Unlike the FVI by Connor and 

Hiroki’s (2005), Balica et al (2009) developed several FVIs; each for a specific scale i.e. 

basin FVI, the sub-catchment FVI, urban FVI and coastal FVI. This addresses the issue 

of scale encountered in Connor and Hiroki’s (2005). Consequently, it has been widely 

applied to river basins, urban units and coastal areas (Balica et al., 2014; Balica et al., 

2009; Balica et al., 2013; Balica and Wright, 2010; Balica et al., 2012; Dinh et al., 

2012). The index is also the basis for the automated web-based interface 

(http://unescoihefvi.free.fr/vulnerability.php) for vulnerability assessment managed by 

UNESCO IHE Institute of Water Education.  

 

 

Besides addressing the issue of scale to a certain extent, the derivation of Balica and 

Wright’s (2010) FVI has the advantage that it is not linked to mortality or damage 
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estimates. Further, the index dimensions vulnerability by social, economic, 

environmental and physical components and conceptualises vulnerability as arising 

from exposure ( )E , susceptibility ( )S  and resilience ( )R . Thus in this regard, the FVI by 

Balica and Wright’s (2010) is more in sync with contemporary disaster management 

than one by Connor and Hiroki. 

 

 

Despite the scale-specificity advantage and its conformity to contemporary approaches 

to measuring vulnerability, depending on context, the spatial resolution of a sub-

catchment may still be large to capture micro-level vulnerability. Besides, hydrological 

boundaries are not always units of disaster management, as is the case in the Lower 

Shire Valley. The mathematical construction of the index also raises some issues. Using 

the sub-catchment FVI for discussion purposes, variables in each sub-component are 

first normalised based on the maximum of the variable from n spatial units under 

consideration (equation (3.24)):  

 

( )
ini

i

i
RVMax

RV
NV

,1=

=                              (3.24)  

where iNV = normalized value of the indicator i; iRV = raw value of the indicator i  and 

( )ini RVMax ,1=
 = maximum value from a set of n raw values for the indicator under 

consideration and n  is equal to number of sub-catchments. The sub-component 

vulnerability ( )
componentsubFVI −

, i.e. social, economic, environmental and physical, is 

calculated for each sub-catchment based on equation (3.25). All exposure and 

susceptibility variables appear in the numerator and all resilience factors in the 

denominator as the vulnerability is directly proportional to exposure and susceptibility 

and inversely proportional to resilience.   
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The 
componenetsubFVI −

 resulting from equation (3.25) can be any number. Therefore, the 

values are normalised again (equation (3.26)) to get a final normalized sub-component 

score i.e. socialNFVI , economicNFVI , tenvironmenNFVI and 
physicalNFVI  whose value is 

between 0 and 1. 
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                        (3.26) 

The overall vulnerability for a given sub-catchment is a dimensionless simple arithmetic 

average of the four standardised components as below: 

 

( )
physicaltenvironmeneconomicsocialaverage NFVINFVINFVINFVIFVI +++=

4

1
           (3.27) 

10 << averageFVI                       

   

It is observed that the multiplicative model in equation (3.25) is subject to the nullity 

problem. If the exposure or susceptibility factor is a zero, then the outcome is a zero. If 

the resilience factor is a zero, the outcome is indeterminate. Besides, the multiplicative 

model skews the outcome heavily towards the indicator with the smallest score. In 

addition, the second normalization (equation (3.26)), undertaken to ensure that the sub-

component vulnerability is between 0 and 1, always leads to a sub-component 

vulnerability of 1 (very high vulnerability) for a catchment having the maximum 

multiplicative score from equation (3.25). This mathematical weakness and the spatial 

resolution issue led to its exclusion for potential use in this study.  

 

 

In view of pro-local vulnerability and risk assessment in contemporary disaster 

management (Lumbroso et al., 2008; Malcomb et al., 2014; Nelson et al., 2010) and 

cognisant of the context of vulnerability in developing countries, the Livelihood 

Vulnerability Index (LVI) by Hahn et. al. (2009) and the Community Based Disaster 

Risk Index (CBDRI) by Bollin et al. (2003) presented potential indices for the Shire 

Valley. The LVI by Hahn et. al. (2009) however has been specifically developed for 

measuring vulnerability with respect to climate change and variability. The CBDRI on 

the other hand, though not specific to flooding, is an index that can be applied to any 
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hazard. Though developed for risk measurement, its additive form as shown in equation 

(3.28) makes it possible to disaggregate the index into hazard and vulnerability 

components and thus vulnerability can be extracted. The index has been used in 

developing countries e.g. Guatemala (Bollin et al., 2003) and Indonesia (Bollin and 

Hidajat, 2006). The CBDRI was therefore adopted for the Lower Shire Valley.  

 

 

The CBDRI 

Bollin et al. (2003) operationalizes the CBDRI by equations (3.28) and (3.29). 

( )CSEHvCBDRI −++=                                                    (3.28) 
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where H, E, S and C are the hazard, exposure, susceptibility and capacities sub-

components with a range from 0 to 100; 33.0=v . This factor keeps the final value of 

risk within 0 and 100. x is a score allocated to the variable in the sub-component and is 

equal to either 1 (low), 2 (medium) or 3 (high). w  is the weight attached to the variable 

reflecting its significance in contributing to the sub-component and zrqh ,,,  are the 

total number of variables in the hazard, exposure, susceptibility and capacity 

components respectively. 

 

 

It is also important to note that the CBDRI in Bollin et al. (2003) rather uses 

vulnerability V in place of susceptibility S in equation (3.28); suggesting exposure and 

capacity are independent of vulnerability. However, an examination of variables in this 

sub-component in Table 3.8 (labelled accordingly as (S)) shows that the variables 

essentially describe susceptibility. In a common conceptualisation of vulnerability in 

contemporary disaster management (Adger, 2006; Birkmann et al., 2013; Fussel, 2007; 

Smit and Wandel, 2006), exposure, susceptibility and capacities underlie vulnerability. 

In this study therefore, susceptibility S is used in equation (3.28), as vulnerability is an 

all-encompassing term that includes exposure, susceptibility and capacity.  
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3.5.4 Data collection 

Vulnerability data for this study is defined by the data needs of CBDRI shown in Table 

3.8. Community opinion formed the basis for this study. It follows strong arguments for 

community disaster management that vulnerabilities and associated adaptive measures 

are better identified and ranked by own communities (van Aalst et al., 2008; Zhang et 

al., 2013). Data were sourced through a structured questionnaire (Appendix B).  

 

 

The questionnaire was administered to a group of experts and knowledgeable people as 

recommended by Bollin et al. (2003). In this case, the Area Development Committee 

(ADC) was used as the knowledgeable group. The ADC draws membership from the 

Area Executive Committee (AEC), the Area Civil Protection Committee (ACPC), Non- 

Governmental Organisations (NGOs), Community Based Organisations (CBO) and 

ordinary people. 

 

 

The AEC is a technical arm of the ADC. It consists of government extension workers 

notably from Forestry Department, Ministry of Agriculture, Ministry of Health, 

Ministry of Education, Community Development and Police. The ACPC on the other 

hand is a sub-committee of the ADC with the mandate over disasters. Ordinary 

members include chiefs and members of the community. 

 

 

Some data (population density, population growth rate, access to water services and 

literacy levels) could not be obtained from administering the questionnaire and were 

obtained from the 2008 Population and Housing Census data (National Statistical 

Office, 2009) and the third Integrated Household Surveys (National Statistical Office, 

2012). The percentage of forested area for a given community on the other hand was 

derived with GIS from Malawi land cover database (FAO, 2013). 
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Table 3.8: Vulnerability factors in the CBDRI 

 

 
 

In total, 14 communities (ADCs) were initially considered for assessment: Ngabu, 

Katunga, Chapananga, Maseya, Makhuwila, Ngowi and Lundu in Chikwawa District 

and Mbenje, Mlolo, Tengani, Ngabu, Malemia, Ndamela and Nyachikhadza in Nsanje 

District. These communities comprised 7 of the 11 ADCs in Chikwawa and 7 of the 9 

ADCs in Nsanje (Table 3.9).  

 

 

Economic capacity

(C11) Local emergency funds.                                       

(C12) Access to local emergency funds.                   

(C13) Access to international emergency funds. 

(C14) Insurance market.                                                     

(C15) Mitigation loans.                                                 

(C16) Reconstruction loans.                                          

(C17) Public works.

Local emergency funds as % of local budget.                                                

Release period of national emergency funds.                                                

Access to international emergency funds.                                            

Availability of insurance for buildings.                                                

Availability of loans for disaster risk reduction measures.               

Availability of construction credits.                                                                 

Magnitude of local public works programmes.

Management and 

institutional capacity

(C18) Risk management committee.                       

(C19) Risk map.                                                                 

(C20) Emergency plan.                                                  

(C21) Early warning system.                                             

(C22) Institutional capacity building.                                        

(C23) Communication.

Meeting frequency of a commune committee.                                       

Availability and circulation of risk maps.                                                        

Availability and circulation of emergency plans.                                          

Effectiveness of early warning systems.                                                       

Frequency of training for local institutions.                                           

Frequency of contact with district level risk institutions.

CAPACITY & MEASURES

Physical planning 

and engineering

(C1) Land use planning.                                                   

(C2) Building codes.                                                         

(C3) Retrofitting/maintenance.                                   

(C4) Preventive structures.                                           

(C5) Environmental management.

Enforced land use plan or zoning regulations.                                           

Applied building codes.                                                                                     

Applied retrofitting and regular maintenance.                                            

Expected effect of impact-limiting structures.                                                   

Measures that promote and enforce nature preservation.

Societal capacity

(C6) Public awareness programs.                                

(C7) school curricula.                                                          

(C8) Emergency response drills.                                     

(C9) Public participation.                                                  

(C10) Local risk management groups

Frequency of public awareness programmes.                                                  

Scope of relevant topics taught at school.                                                              

Ongoing emergency response training and drills.                                       

Emergency committee with public representatives.                                          

Grade of organisation of local groups.

Economic

(S10) Local resource base.                                          

(S11) Diversification.                                                     

(S12) Stability.                                                                         

(S13) Accessibility

Total available local budget in US$.                                                                  

Economic sector mix for employment.                                                                   

% of businesses with fewer than 20 employees.                                                  

Number of interuption of road access in last 5 years

Environmental

(S14) Area under forest.                                              

(S15) Degraded land.                                                      

(S16) Overused land

% Area of the commune covered with forest.                                                     

% Area that is degraded/eroded/desertified.                                                     

% of agricultural land that is overused.

SUSCEPTIBILITY

Physical / 

Demographic

(S1) Density.                                                                        

(S2) Demographic pressure.                                         

(S3) Unsafe settlements.                                                     

(S4) Access to basic services

People per km2.                                                                                             

Population growth rate.                                                                                       

Homes in hazard prone areas (ravines, river banks, etc).                                

% of homes with piped drinking water.

Social

(S5) Poverty level.                                                  

(S6) Literacy rate.                                                              

(S7) Attitude.                                                                     

(S8) Decentralisation.                                                     

(S9) Community participation

% of population below poverty level.                                                                     

% of adult population that can read and write.                                         

Priority of a population to protect against a hazard.                                           

Portion of self generated revenues of the total budget.                                

% of voter turn out at last commune elections.

Population (E3) Total resident population Total resident population

Economy (E4) Local gross domestic product Total locally generated GDP in constant currency

EXPOSURE

Structures
(E1) Number of housing units.                                        

(E2) Lifelines

Number of housing units                                                                

% of homes with piped drinking water

Component Indicator Name Indicator
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Table 3.9: Communities under study 
 Communities under study 

District Community 

Chikwawa 

Ngabu 

Katunga 

Chapananga 

Maseya  

Makhuwila 

Ngowi 

Lundu 

Nsanje 

Mbenje 

Mlolo 

Tengani 

Ngabu 

Malemia 

Ndamela 

Nyachikhaza 

 
 

 

Community selection was done with the help of personnel from the respective District 

Assembly who confirmed flooding in the ADCs chosen. Ngowi was subsequently 

dropped as it acted as a pilot ADC, leaving only 13 communities. The exclusion of the 

other six followed resource constraints. The number of participants in each group varied 

between 10 and 16.  The questionnaire administered is shown in Appendix B. 
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Chapter 4 Data Analysis 

4.1 SOM application 

The analysis period of hydro-meteorological data was taken as 1978–2008. As shown 

earlier in Table 3.3, available data had different record lengths. This period was selected 

on the basis of substantial overlap of data. The variables infilled are shown in Table 4.1 

 

Table 4.1: Hydro-meteorological variables infilled with SOM 

Hydrological data Rainfall 

Mangochi Flow Nsanje 

Water level Makhanga 

Liwonde Flow Ngabu 

Water level Chikwawa 

Chikwawa Flow Nchalo 

Water level Neno 

Chiromo Flow Mwanza 

Water level Mimosa 

Sinoya Flow Thyolo 

Water level Bvumbwe 

Tengani Flow Chileka 

Nsanje Flow Chichiri 

  Makoka 

 Chingale 

 Balaka 

 Mangochi 

 

Before SOM application, data were arranged in columns with each column representing 

a variable to be infilled e.g. Mangochi rainfall, Chikwawa flow, etc. Each row 

constituted an input vector. In this exercise, there were 28 variables (shown in Table 

4.1) in a single input vector. In total, there were 11231 such vectors corresponding to 

the number of daily observations (complete and incomplete) in the record. Entries 

without data were recorded as NaN (Not a Number) to meet Matlab requirements. 
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The SOM tool box developed at the Laboratory of Information and Computer Science 

(CIS) at Helsinki University of Technology (http://www.cis.hut.fi/projects/somtoolbox) 

was used in MATLAB environment by Mathworks Inc. A batch training algorithm was 

adopted.  

 

 

Based on the multivariate relationship that exist between rainfall and runoff data, all 

data i.e. flow, water level and rainfall data for all stations constituting 28 variables were 

first trained together. This was referred to as Case 1. However, Kalteth and Berndtsson 

(2007) investigated the ability of SOM to interpolate rainfall data in a region with high 

spatial and temporal variability in Iran. They found that SOM performance was 

influenced by the homogeneity of data in question.  Therefore, two more scenarios were 

investigated and these were called Cases 2 and 3 respectively. In Case 2 flow and water 

level data were trained separate from rainfall data. This resulted in two sets of data for 

independent training: 12 variables of flow and level data with 11231 input vectors and; 

16 variables of rainfall having 11231 vectors. Case 3 only dealt with rainfall. In this 

scenario, rainfall stations were split into three clusters. 

 

 

The clusters used were those established by Ngongondo et al. (2011b). According to 

Ngongondo et al.(2011a), rainfall in Malawi is highly variable with spatial correlations 

being highest only within 20 km of a station. In the southern region, in which the study 

area falls, three homogeneous rainfall regions can be found according to Ngongondo et 

al. (2011b). The regions are the predominantly semi-arid low lying Shire valley that 

occupies the southern arm of the Malawi Rift Valley with an average altitude of 84 m 

above sea level (cluster 1), the southern highlands with an altitude of above 1000 m 

above sea level (cluster 2), and areas along Lake Malawi, the upper Shire River basin 

and the surrounding medium altitude and plain areas with average altitude of 632 m 

above sea level (cluster 3).  

 

 

Based on the information in Table 4.1, Cluster 1 comprised Nsanje, Makhanga, Ngabu, 

Chikwawa, Nchalo stations. Stations in cluster 2 were Neno, Mwanza, Mimosa, Thyolo, 

Bvumbwe, Chileka, Chichiri, Makoka while Chingale, Balaka and Mangochi fell in 

cluster 3.   
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As indicated in Chapter 3, SOM quality was evaluated on the basis of quantization and 

topographic errors. Its predictive ability was further assessed through the coefficient of 

correlation R , the Nash Sutcliff index NS and the visual inspection of scatter and time 

series plots. 

 

 

4.2 MLP-ANN application 

4.2.1 Input gauge stations 

Gauge stations in Lower Shire Valley along the Shire and Ruo Rivers are Chikwawa, 

the most upstream; Chiromo just upstream of the confluence; Sinoya, on the Ruo just 

before the confluence and, Tengani and Nsanje below the confluence Figure 4.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1: The gauging network in the Shire Valley assessed for forecasting at 

Chiromo 
 
Upstream of Chikwawa station are Liwonde station and Mangochi stations. The greatest 

impact on water levels in the floodplain, measured at Chiromo, has been found to be 

from the Ruo River ( )9.02 =r  and Chikwawa station ( )5.02 =r  (Chimatiro, 2004). 
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Therefore, stream flow and water level were modelled for Chiromo gauging station 

using Chikwawa station upstream and Sinoya station on the Ruo. 

 

 

4.2.2 Data inputs 

MLP-ANN was applied on data that had been reconstructed with SOM. Determining the 

right inputs to an ANN model is an important exercise as not all inputs are equally 

informative: some inputs may be correlated, others may be noisy or may actually have 

no relationship to the output being modelled (Bowden et al., 2005). In flow, water level 

or rainfall runoff modelling, normally model inputs tend to be flow, stage or rainfall and 

their corresponding lagged inputs. Therefore these were the variables used. 

 

 

The hydrological year in Malawi starts in November and ends in October. Thus data 

used for prediction in MLP-ANN was data from November 1978 and not January 1978 

as used in SOM. Therefore, for the period November 1978 to August 2008, a total of 

10,891 daily data records were available for training.  

 

 

4.2.3 Network development 

It follows from section 4.2.1 that water levels at Chiromo and their corresponding flows 

are correlated with current and lagged levels and flow respectively at Chikwawa, and 

levels and flows at Sinoya on the tributary. Catchment rainfall becomes another variable 

as flooding in this catchment arises from rainfall. Input rainfall was taken as average 

basin rainfall calculated by Thiessen Polygon method on stations shown in Figure 2.8. 

 

 

The number of lagged inputs to include were determined through autocorrelation (acf), 

partial correlation (pacf) and cross-correlation (ccf) functions as suggested by Sudheer 

et al. (2002). The acf for Chiromo levels and flows (Figure 4.2(a) and (c)) shows 

dominant autoregressive processes in both. The pacf (Figure 4.2(b) and (d)) nonetheless 

revealed that only six lags of water levels are statistically significant at 95% confidence 

level. Similarly, only five day lags on flow series are statistically significant. Therefore, 

from Chiromo, a total number of 11 lags were used.  
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Figure 4.2: ACF on (a) Chiromo water levels with the dashed lines representing the 

95% confidence bound; and (c) Chiromo flows; PACF on (b) Chiromo 

water levels; and (d) Chiromo flows. 

 

As for exogenous variables, that is, flows and levels at Chikwawa and Sinoya and 

catchment rainfall, their lagged inputs were identified through ccf with Chiromo station 

flow and water level series and the appropriate number of lags identified as those up to 

the maximum cross-correlation (Figure 4.3). This approach has been used by 

Solomantine & Dulal (2003), Teschl & Randeu (2006) and Wu & Chau (2011). Lags 

corresponding to maximum correlation have been equated to travel times to the point of 

interest in the catchment. Figure 4.3 reveals that the maximum cross-correlations for 

both Chikwawa and Sinoya with Chiromo levels (Figure 4.3(a)) and Chiromo flows 

(Figure 4.3(b)) occur at zero lag. Thus only the current day’s flow and water level from 

both Chikwawa and Sinoya were incorporated. As for rainfall, the maximum cross-

correlation with Chiromo flows (Figure 4.3(b)) corresponded to a maximum of 18 days 
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suggesting a concentration time of about 18 days. This is in agreement with results from 

a test carried out by the MoIWD in 1981 (Figure 4.4) which suggest a travel time of 17 

days between Liwonde, 87 km from the river source, and Chiromo. The long 

concentration time is attributed to the Elephant marsh between Chikwawa and Chiromo 

 

 

Figure 4.3: Cross correlations of (a) Chikwawa and Sinoya levels with Chiromo 

water levels and (b) Chikwawa and Sinoya flows, and rainfall with 

Chiromo flows. 

 

Figure 4.4: Hydrographs of Shire River flows at Liwonde, Chikhwawa and Chiromo 

following a test run at Liwonde barrage upstream in 1981.  

  Source: MoIWD. 
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Nonetheless, as earlier indicated, flooding at Chiromo is more influenced by Ruo River 

flows and therefore the concentration time of Ruo catchment is more relevant than that 

from the headwater catchments. The average slope of the Ruo catchment, derived with 

GIS, is 9.64%. The river has a total length of 130 km. An estimate of concentration time 

of the Ruo catchment at the confluence with Shire River with the Kirpich equation 

(Kirpich, 1940) yields a value of 6.9 hours validating the general view that flooding 

from Ruo is flash flooding. Since data used is available at a daily time step, no lag was 

applied to the rainfall and the day’s rainfall was thus used.  

 

 

Based on this analysis therefore, the total number of inputs to the ANN model for flow 

and level forecasting at Chiromo was determined as 18 (a day’s flow at Chiromo and 

flow on each of previous 5 days: sub-total = 6; a day’s water level at Chiromo and the 

water level on each of previous 6 days: sub-total = 7; a day’s flow and water level at 

both Chikwawa and Sinoya: sub-total = 4; and a day’s average catchment rainfall: sub-

total = 1). The model had two outputs; the next day’s water level and flow at Chiromo. 

Thus mathematically, the model is defined by the following equation: 

 

Model 1: 

( ) ( )tttttttttttt RSFSLCKFCKLCRFCRFCRFCRLCRLCRLfCRFCRL ,,,,,.......,,........,, 5,16111 −−−−++ =
  (4.1) 

  

where CR= Chiromo, CK = Chikwawa, S  = Sinoya; ,L F and R are water level, flow 

and rainfall, respectively. t  is the point in time at which forecasting is being made and 

,1−t 2−t  etc are the lags. 

 

 

In search of a parsimonious model, further investigations were carried out. PACF on 

both flow and water level data at Chiromo (Figure 4.2(b) and (d)) show that over 90% 

of the variance in both variables are explained by their 1-day lag, which is not 

unexpected. Therefore a second model (Model 2) with only one lag for both flow and 

water level from the Chiromo series was investigated. Inputs from Chikwawa and 

Sinoya were excluded. Rainfall was retained as prediction accuracy has been found to 

be better when rainfall is included other than when flow is modelled solely on flow 

variable (Toth and Brath, 2007a; Wu and Chau, 2011)  
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Model 2: 
( ) ( )ttttttt RCRFCRFCRLCRLfCRFCRL ,,,,, 1,111 −−++ =

                (4.2) 

On the same basis of parsimony, it was further investigated whether Chiromo levels and 

flows can be modelled with just ‘today’s’ variables. This model is referred to as Model 

3. 

 

Model 3 
( ) ( )

ttttt RCRFCRLfCRFCRL ,,, 11 =++                                        (4.3) 

                                              

As justified earlier, the MLP feedforward neural network with three layers was used, i.e. 

with just one hidden layer. The tan-sigmoid transfer function was used in the hidden 

layer. A major criticism of ANN has been their failure to generalise beyond the 

calibration range and it has been suggested that the use of a linear function in the output 

layer circumvents this problem to a certain extent (Maier and Dandy, 2000; 

Solomantine and Dulal, 2003). A linear transfer function was therefore used in the 

output layer. 

 

 

4.2.4 Network parameters 

The training adopted the early stop approach (Maier et al., 2010) and to achieve this, the 

10891 daily data record was partitioned in the ratio of 60%, 20% and 20% for training, 

validation and testing, respectively. Thus, 6,535 samples were used for training, 2,178 

for validation and 2,178 for testing. Random sampling was applied for the partitioning 

to ensure representative data was used for training. In early stopping, errors on both the 

training and validation sets are monitored during network training and training is 

stopped when the validation error starts increasing following a period of continuous fall. 

In this way, over-fitting is avoided. 

 

 

The Levenberg–Marquardt backpropagation algorithm was chosen as the training 

algorithm. The traditional backpropagation training algorithm has been associated with 

problems of lengthy training processes and possibilities of getting trapped in a local 

minima (ASCE Task Committee, 2000). In contrast, the Levenberg–Marquardt 

backpropagation training algorithm has performed better than the standard 

backpropagation algorithms: it is more accurate, faster and more reliable (Adeloye and 

De Munari, 2006; Aquil et al., 2007; Okkan, 2011).  
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To identify the best architecture for each of the three models, the number of neurons in 

the hidden layer was progressively increased from 2 to 15 at a time step of one hidden 

neuron and the best architecture in terms of the hidden neurons was picked based on 

best performance on test data using the performance indices discussed in section 3.3.2. 

 

 

4.3 Lisflood-FP application 

4.3.1 Data inputs 

With limited resources for high resolution DEM, developing countries rely on freely 

available global data sets (Fan, 2002). These DEMs contain errors that arise from 

acquisition technology and processing technology with respect to particular terrain and 

landcover type. Model outputs are therefore dependant on the amount of error in the 

DEM (Mukherjeea et al., 2013). In low relief terrain such as floodplains, the Shuttle 

Radar Topography Mission (SRTM) DEM has been found to outperform other open 

source DEMs in terms of accuracy. In the Lower Limpopo basin of Mozambique which 

has similar terrain as the Lower Shire Valley as both are part of the Lower Zambezi 

Basin, Karlssom and Arnberg (2011) reported better vertical accuracy in the STRM 

DEM than in HYDRO1K DEM. Similarly, in a comparison between SRTM DEM and 

Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER) DEM in 

Zaria and Kajuru in Northern Nigeria, vertical accuracy was higher in the SRTM DEM 

over the flat terrain town of Zaria (Isioye and Yang, 2013). The STRM DEM was 

therefore used for Lisflood-FP application in this study. The STRM DEM is a 90m 

DEM. It was however resampled to 270m resolution for this study. Resampling 

improves surface representation cognisant of the errors in the DEM; it also reduces 

computational time of the model (Schumann et al., 2013).  

 

 

Incoming flows into the model domain were taken as flows at Chikwawa station on 

Shire River. This data is available as average daily data. The hydrograph at the station 

from November 2007 to May 2008 is shown in Figure 4.5. Wolman and Leopold  

(1957) have shown that bankful flow has a return period of 1-2 years. A regional flood 

frequency analysis in the Shire basin (World Bank, 2010b) based on Extreme Variate 

Type 1 (EV1) distribution  suggests that a 2 year flood at Chikwawa gauge station is  

932m3/s (Figure 4.6). Therefore this value was taken as bankfull flow and subtracted 
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from flows. The maximum flood flow reached (1483m3/s) in this year suggests a 4-5 

year flood event. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Flow hydrographs at Chikwawa and Sinoya in the 2008 flood season 

 

 

Figure 4.6: Flood frequency distribution at Chikwawa based on EV1 

 

While flows from the Ruo catchment are dominant in the flood regime of the Lower 

Shire valley (Chimatiro, 2004; Shela et al., 2008), flow data at Sinoya gauge station 

were below bankful levels during the 2008 rainy season, estimated as 822m3/s using the 
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Extreme Value Type 1. Consequently, input flows into Lisflood-FP were limited to 

Chikwawa data. 

 

 

4.3.2 Mode of application 

Cross sectional data on both the Shire and Ruo Rivers are elusive. Only recently did 

Atkins commission some limited cross sectional surveys on the Shire and Ruo Rivers 

for the Shire Integrated Flood Risk Management Project under World Bank funding 

(Atkins, 2012). Nonetheless, the cross sections cover only a distance of 5km upstream 

of the confluence on the Ruo, at 200m spacing and, a distance of 12.5km on the Shire at 

500m spacing. Even then, the surveys on the Ruo do not extend into the Mozambican 

territories. Yet the valley is about 150km in length (Shela et al., 2008). 

 

 

To reduce further introduction of uncertainty into the model due to data challenges of 

the river channel, Lisflood-FP in this study was applied in 2D mode. Schuman et al. 

(2013) recently also applied Lisflood-FP to the Lower Zambezi of which the Lower 

Shire Valley is part, for a large scale flood forecasting system. However, only the area 

from Chiromo and downstream was covered by this exercise, thus excluding a 

significant portion of the Lower Shire floodplain i.e. between Chikwawa and Chiromo. 

The application of Lisflood – FP in this study covers the whole Lower Shire Valley: 

from Chikwawa gauge station to some arbitrary boundary just beyond Malawi-

Mozambique border within Malawian territories (see Figure 4.1).  

 

 

4.3.3 Model calibration and evaluation 

A uniform coefficient was assumed for the whole domain, for a given simulation. Land 

cover in the region consists of savannah, herbaceous and degraded vegetation, and 

agricultural fields (Fernandes et al., 2006). Therefore Manning’s values  used fell in the 

range of 0.025 to 0.07 based on published values of Chow (1959) (Appendix A). For a 

given Manning’s n, Lisflood-FP was run for five months, from 1st December 2007 to 

30th April, 2008. 
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The imagery used for evaluation was the 250m 7-2-1 terra Moderate Resolution 

Imaging Spectroradiometer (MODIS) imagery. In this band combination, water appears 

black and the sediments dark blue. The image used was acquired on the 4th February, 

2008. This date provided the best cloud free image for the 2008 flood season. MODIS is 

an instrument aboard Aqua and Terra satellites that orbit around the earth and managed 

by the United States National Aeronautics and Space Administration (NASA). The cost 

issue limits studies in developing countries to freely available optical imagery, notably 

MODIS and Landsat. While Landsat has the advantage of high resolution i.e. 30 m, in 

comparison to MODIS (250m – 1km), the orbital repeat cycles for Landsat is much 

lower (16 days). MODIS has a frequent overpass (1 to 2 days) making it ideal for flood 

inundation studies (Leauthaud et al., 2012). The flooded area in MODIS imagery was 

manually digitised.  

 

 

4.3.4 Hazard severity ranking 

Flood hazard ranking was based on the designation by Dinh et al. (2012) shown in 

Table 4.2.  Dinh et al. (2012) combines degree of property damage and difficulty to 

daily lives to define flood hazard severity. 

 

Table 4.2: Flood severity designation  

1.0  - 2.0 High

This is the case in which damage to property is quiet extensive and the 

probability of having dead and injured people is high. The social disruption is 

also very high

> 2.0 Very high This is the case in which, at all levels, severe damages are expeted. 

Buildings and houses are the most affected and nothing is safe any longer

0.2 - 0.5 Low

This is the case in which the number of casualties due to floods, interms of 

death or injuries, is insignificant, and the damage to property is expected to 

be relatively low. Moreover, in this case, vehicles transport is affected, but 

wading is safe.

0.5 - 1.0 Medium

This is the case in which casualties, interms of death and injuries, are 

considerable, relative to the number of people living in the area under study. 

Moreover, the peoperty damage is expected to be high. Vehicle transport 

and wading are not safe

Flood Depth (m) Hazard zone Definition of hazard zone

0 - 0.2 Very low This is the case in which the damage to property is expected to be very low

 

Source: (Dinh et al., 2012) 
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4.4 The community vulnerability index 

4.4.1 Vulnerability parameters 

As justified earlier in Chapter 3, this study used the CBDRI for vulnerability. Details of 

the CBDRI were given in Chapter 3 (see equations (3.28) and (3.29)) and Table 3.10. 

However, for the current study, the Number of housing units and total resident 

population in the exposure sub-component were not used due to the difficulty of 

thresholds given the differences in community size. Total Gross Domestic Product was 

replaced with average per capita income per day. In the susceptibility sub-component, 

unsafe settlements was not accounted for due to the challenge of thresholds. Similarly, 

degraded land and overused land were not included due to the difficulty of definitions. 

Thus environmental susceptibility was limited to amount of forest cover. 

 

 

As the name implies, CBDRI was developed to measure risk directly; however, its 

additive form as shown in equation (3.28) makes it possible to disaggregate the index 

into hazard and vulnerability components. The adaptation of the index carried out in the 

current study was to quantify the vulnerability from the E, S and C components. Thus, 

to measure vulnerability in this study, E, S and C were first calculated using equation 

(3.29).  

 

 

The CBDRI uses a weighting scheme to reflect differential importance of indicators 

towards risk. Therefore, besides measuring the variable by a score of 1, 2 or 3, the 

community also weights the variables in the sub-component. The weights used in the 

study ranged from 1 to 10 with 10 being very important. For example, lack of building 

codes gets a score ( )x  of 1 signifying low capacity with respect to this variable. The 

community may feel nonetheless building codes is a very important indicator in 

contributing to the overall capacity in anticipating floods. In this case they would give 

the indicator ‘building codes’ a weight ( )w  of 9. Similarly, incorporation of disaster 

studies in the school curriculum in all grades may attract a 1 signifying low contribution 

to susceptibility. However, the community may weight the indicator with a 4 signifying 

it is not a very important variable in contributing to their societal capacity. Given that 

13 communities were assessed for the Lower Shire as explained earlier in section 3.5. 4, 

there are 13 weights for a given variable. To attach a common perception to a given 
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variable for comparison purposes, the weight for a particular variable is the mode of 13 

weights.  

 

 

The CBDRI was developed to ensure that the total sum of weights in each sub-

component equal 33 (so that the final sub-component value is between 0 and 100). 

Therefore, a final weight w for the variable in a given sub-component used in equation 

(3.29) is one derived by a simple proportion on 33. For example, if the sum of weights 

in the capacities sub-component is 80, then the weight of indicator ‘building codes’ is 

9/80*33 = 4 assuming 9 was the mode.  

 

 

The aggregate vulnerability ( )V  was then estimated using the widely used arithmetic 

aggregation scheme (Allison et al., 2009; Cardona, 2005; Hahn et al., 2009)  as follows: 

  

( )[ ]CSEV −++= 1
3

1

                    (4.4) 

where (1-C) represents lack of capacity or lack of resilience
 

 

 

A second adaptation to the CBDRI follows the fact that while exposure, susceptibility 

and capacities are directly measured through equation (3.29), the CBDRI does not 

provide a direct measure of social, economic, environment and physical vulnerability 

despite variables being identified as such (see Table 3.10). To dimension vulnerability 

by the social, economic, environment and physical dimensions, variables in the 

exposure, susceptibility and capacities sub-components in Table 3.10 were rearranged 

into social, economic, environment and physical sub-components as shown in Table 4.3. 

Vulnerability by social, economic, environment and physical characteristics was then 

measured by equations (4.5).  
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Table 4.3: Vulnerability by social, economic, environmental and physical 

dimensions 

Indicator

Structures % of homes with piped drinking water

Economy Total locally generated GDP in constant currency

People per km2.     

Population growth rate (%)

% of homes with piped drinking water.

Enforced land use plan or zoning regulations.                   

Applied building codes.            

Applied retrofitting and regular maintenance.   

Expected effect of impact-limiting structures.                        

Measures that promote and enforce nature preservation.

% of population below poverty level

 % of adult population that can read and write.   

Priority of a population to protect against a hazard.   

Portion of self generated revenues of the total budget.

% of voter turn out at last commune elections.

Frequency of public awareness programmes.  

 Scope of relevant topics taught at school.               

Ongoing emergency response training and drills.    

Emergency committee with public representatives.    

Grade of organisation of local groups.

Meeting frequency of a commune committee.     

Availability and circulation of risk maps.       

Availability and circulation of emergency plans.   

Effectiveness of early warning systems.  

Frequency of training for local institutions.  

Frequency of contact with district level risk institutions.

Total available local budget in US$.           

Economic sector mix for employment.                 

% of businesses with fewer than 20 employees.  

Number of interuption of road access in last 5 years

Local emergency funds as % of local budget.  

Access to international emergency funds.

Release period of national emergency funds.

Availability of insurance for buildings.

Availability of loans for disaster risk reduction measures.        

Availability of reconstruction credits. 

Magnitude of local public works programmes.

% Area of the commune covered with forest.   

Indicator Name

(E2) Lifelines

(E4) Economy

(S7) Attitude

(S8) Decentralization

(C22) Institutional capacity building

(C23) Communication

(S9) Community participation 

Social susceptibility

(S1) Density

(S2) Demographic pressure

(S4) Access to basic services

(C1) Landuse planning

(C2) Building codes

(C3) Retrofitting/Maintenance

(C4) Preventive measures

(C5) Environmental management

(S5) Poverty level

(S6) Literacy

Physical susceptibility

Physical capacity

(S14) Environmental

Exposure

(C11) Local emergency fund

(C12) Access to national emergency fund

(C13) Access to international emergency 

(C14) Insurance market

(C15) Mitigation loans

(C16) Reconstruction loans

(C17) Public works

(S10) Local resource base

(S11) Diversification

(S12) Stability

(S13) Accessibility

(C18) Risk management/emergency 

Economic capacity

Environmental

Factor component

ENVIRONMENTAL

ECONOMIC

SOCIAL

PHYSICAL

Management and Institutional 

Capacity

Economic  susceptibility

(C6) Public awareness programs

(C7) School curriculum

(C8) Emergency response drills

(C9) Public participation

(C10) Local risk management/emergency 

Societal capacity

(C19) Risk map

(C20) Emergency plan

(C21) Early warning system

 
 
 

( )( )[ ] 3/1
jCjSEj VVVV

j
−++=                     (4.5) 
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jEV , 
jSV and 

jCV are the vulnerability due to exposure ( )
jE , susceptibility ( )

jS , and 

capacities ( )
jC , within the newly defined social, economic, environmental and physical 

sub-component 
jV  as per the rearranged variables in Table 4.3; ix

 
and iw  are the score 

and weight respectively as originally allocated to the variable i  in equation (3.29); m , 

n  and p  are the number of variables in the exposure ( )
jE , susceptibility ( )

jS , and 

capacities ( )
jC  respectively of the sub-component 

jV . As in equation (3.29), 
jEV , 

jSV  

jCV  and 
jV  range from 0 to 100 or alternatively 0 and 1. 

 

 

4.4.2 Vulnerability ranking 

Once the vulnerability was quantified dimensionally (exposure, susceptibility, 

resilience, social, economic, environmental, physical) and aggregately, the quintile scale 

was used:  0 – 0.2 = very low, >0.2– 0.4 = low, >0.4 – 0.6 = medium, >0.6 – 0.8 = high 

and >0.8 – 1.0 = very high.  

 

 

4.5 Risk analysis 

Underpinned by the conceptualization from the disaster risk community, risk ( )R  in this 

study is expressed as a convolution of the hazard ( )H  and vulnerability ( )V  through 

equation (4.6). A critical aspect in the equation is that even in the presence of a high 

magnitude hazard, there can only be risk when there is a vulnerable population. 

Conversely, a vulnerable population will only experience risk when faced with a hazard 

(Cardona, 2004; Wisner et al., 2004). 
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 VHR ×=                       (4.6) 

 

In this study, risk is measured on a scale of 0 to 1. Since the hazard (m) and 

vulnerability (dimensionless) carry different dimensions, flood depths were first 

standardised to a scale of 0 to 1, commensurate with the vulnerability scale before 

calculating risk. The hazard scale (Table 4.2) was divided by 3.3 m, the maximum 

inundation depth simulated with LisFlood-FP. Classes of risk severity were then defined 

by multiplicative scores on corresponding hazard and vulnerability classes, an approach 

also shared by Tingsanchali and Karim (2005), Mimi and Assi (2009) and Dinh et al. 

(2012). This is shown in Table 4.4.  

 

Table 4.4:  Risk rating 

Class Vulnerability  

(dimensionless) 

Hazard  

(m) 

Hazard 

(dimensionless) 

Risk 

(dimensionless) 

Very low 0.0 – 0.2 0.0 – 0.2 0.0-0.06 0.00 – 0.012 

Low 0.2 – 0.4 0.2 – 0.5 0.06 – 0.15 0.012 – 0.06 

Medium  0.4 – 0.6 0.5 – 1.0 0.15 – 0.3 0.06 - 0.180 

High  0.6 -0.8 1.0 – 2.0 0.3 – 0.61 0.18 – 0.50 

Very high  0.8-1.0 >2 0.61-1.0 0.50 - 1.0 
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Chapter 5 Results and Discussion 

5.1 SOM quality analysis 

As indicated in the methodology section, SOM was used to reconstruct hydro-

meteorological data (flow, water level and rainfall) given the enormity of gaps, 

discontinuities and short durations in the data; an aspect that precluded the use of 

traditional techniques (weighted averages, regression techniques). Besides, the amount 

of data involved, (daily data from 28 variables over a period of 30 years), would have 

been time consuming with traditional techniques. 

 

 

The batch training algorithm was used. The initial neighbourhood radius was set to 

( ) 4/,max 21 ll  where 1l and 2l are the dimensions of the map determined through 

equation (3.2). The parameters and quality of the output map are shown in Table 5.1. 

 

Table 5.1: Trained SOM characteristics 

Data  Map size 

( )21 ll ×  

Map size, M  

(Number of 

neurons) 

Final 

quantization 

error 

( )QE  

Final 

topographic 

error 

( )TE  

Case 1 

Flow, water levels 

and rainfall 

25 x 21 525 1.803 0.093 

Case 2 

Flow and water 

level 

35 x 16 560 0.520 0.093 

All rainfall 35 x 15 525 0.801 0.085 

Case 3 

Cluster 1 rainfall 35 x 16 560 0.027 0.035 

Cluster 2 rainfall 37 x 15 555 0.551 0.067 

Cluster 3 rainfall 32 x 17 544 0.097 0.340 

 

Table 5.1 shows that actual map sizes used in the SOM training are slightly different 

from an estimate based on Garcia and Gonzalez’ (2004) suggestion i.e. NM =  

(equation (3.1)) where N  in this case is 10891. Such a difference arises from 
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adjustments on map size in the SOM toolbox that ensures that M is exactly 21xll . The 

values of both quantization and topographic errors on all four maps are small suggesting 

a properly adapted SOM to the training data. This is further examined in the sections 

below. 

 

 

5.2 Performance on flow, water level and rainfall 

Case 1 

Performance of the SOM for Case 1 in which all 28 variables (flow, water level and 

rainfall) are trained together is summarized in Table 5.2. On observation of Table 5.2, it 

is evident when flow, water levels and rainfall are trained together, SOM predictions are 

only fairly strong on flow and water level data but unsatisfactory on rainfall data.  

 

Table 5.2: SOM performance based on Case 1 

Station Variable R  NS Station Variable R NS  

Mangochi 

Water level 

0.93  0.87 Nsanje 

Rainfall 

0.59 0.35  

Chikwawa 0.93  0.88 Makhanga 0.68 0.44  

Liwonde 0.95  0.91 Ngabu 0.73 0.55  

Chiromo 0.90  0.82 Chikwawa 0.72 0.53  

Nsanje 0.94  0.90 Nchalo 0.77 0.61  

Tengani 0.93  0.90 Neno 0.66 0.46  

Sinoya 0.89  0.82 Mwanza 0.76 0.73  

Mangochi 

Flow 

0.94  0.89 Mimosa 0.65 0.42  

Chikwawa 0.93  0.86 Thyolo 0.77 0.59  

Liwonde 0.95  0.90 Bvumbwe 0.78 0.60  

Chiromo 0.94  0.90 Chileka 0.71 0.49  

Sinoya 0.68  0.87 Chichiri 0.74 0.55  

     Makoka 0.69 0.48  

     Chingale 0.64 0.47  

     Balaka 0.72 0.50  

     Mangochi 0.67 0.43  

 

All gauge stations, except Sinoya, register coefficient of correlation values equal or 

above 0.9. Sinoya flow has a value of 0.68. Corresponding NS values all exceed 0.8 

pointing to very good SOM predictions. In contrast, the R values for rainfall data range 

from 0.59 to 0.78. Associated NS values fall in the range of 0.35-0.76. Moriasi et al. 

(2007) rated as very good a model with 0.75<NS≤1.0; good for 0.65<NS ≤0.75; 

satisfactory for 0.5<NS≤0.65 and unsatisfactory for NS≤0.5. R values of ≤0.35 are 
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generally considered to represent low or weak correlations, 0.36 to 0.67 modest or 

moderate correlations, and 0.68 to 1.0 strong or high correlations with R coefficients ≥ 

0.90 very high correlations (Taylor, 1990). While R values on rainfall suggest good 

predictions, it is evident from corresponding NS values that SOM performance on 

rainfall was largely unsatisfactory. 

 

 

An examination of component planes of flow, water level and rainfall data shows little 

or no correlation between flow/water level and the rainfall data in Case 1(Figure 5.1). A 

component plane shows the values of one variable as determined by each unit in the 

map (Vesanto et al., 2000) and therefore each component plane can be thought of as a 

slice of a SOM (Adeloye et al., 2011). Component planes are color or gray shaded in a 

two dimensional lattice. Thus component planes help to visually identify relationships, 

in terms of correlations, between the variables involved in the analysis. For example, if 

the color gradients of two planes are parallel, that is an indication of high positive 

correlation; anti-parallel gradients imply negative correlation between variables.  

 

 

From Figure 5.1, it can be observed that the coloration of flow and water level 

component planes is similar except for Sinoya flow suggesting all gauge stations are 

correlated except for the latter. This is expected as all stations lie on the Shire River 

whilst Sinoya is a gauge station on Shire’s tributary, the Ruo. Similarly, rainfall 

component planes are distinct from flow/water level planes suggestive of little or no 

correlation between rainfall and flow/water levels in the basin.  

 

 

The outcome of the SOM on case 1 as noted earlier (see Table 5.2) where the rainfall 

was relatively poorly simulated is therefore to be expected and agrees with the earlier 

findings by Kalteth and Berndtsson (2007) that showed that the predictive ability of 

SOM was affected by the correlation in the data set. For the purpose of reconstruction 

of data in this study therefore, results obtained particularly on rainfall would be 

unsuitable.  
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Figure 5.1: Component planes of flow, water level and rainfall from case 1 (F= flow, 

L = water level and R = rainfall 
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Case 2 

SOM performance when flows and levels are trained separately from rainfall is 

summarized in Table 5.3.   

 

Table 5.3: SOM performance based on Case 2 

Station Variable R NS Station Variable R NS  

Mangochi 

Water level 

0.98 0.99 Nsanje 

Rainfall 

0.72 0.52  

Chikwawa 0.98 0.99 Makhanga 0.79 0.61  

Liwonde 0.98 0.96 Ngabu 0.75 0.58  

Chiromo 0.97 0.94 Chikwawa 0.75 0.56  

Nsanje 0.97 0.98 Nchalo 0.80 0.67  

Tengani 0.98 0.98 Neno 0.71 0.53  

Sinoya 0.98 0.99 Mwanza 0.73 0.63  

Mangochi 

Flow 

0.98 0.97 Mimosa 0.79 0.62  

Chikwawa 0.98 0.96 Thyolo 0.83 0.68  

Liwonde 0.97 0.98 Bvumbwe 0.84 0.71  

Chiromo 0.97 0.97 Chileka 0.79 0.62  

Sinoya 0.97 0.99 Chichiri 0.78 0.63  

    Makoka 0.83 0.63  

    Chingale 0.68 0.51  

    Balaka 0.80 0.64  

    Mangochi 0.76 0.56  

         

Table 5.3 shows that there is a significant improvement in the predictive capacity of 

SOM on both flow/level and rainfall. The range of R  on flow and water levels jumps 

from 0.89 - 0.95 in Case 1 to 0.97 - 0.98. Similarly, R  on rainfall, moves from 0.59  – 

0.78 to 0.68 – 0.84. The improvement is also reflected in NS values. The results further 

accords with Kalteth and Berndtsson’s (2007) findings and are strongly supported by a 

marked distinction in component planes of flow and water levels  (Figure 5.2 (a)) and 

rainfall (Figure 5.2 (b)). Similarities between some component planes are more 

conspicuous. For example, flow and water levels at Mangochi and Liwonde appear 

strongly related. Similarly, Nsanje, Makhanga, Ngabu, Chikwawa and Nchalo rainfall 

stations are correlated and different from the rest. 
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             (b) 

Figure 5.2: Component planes for flow and water level (a) and rainfall (b) resulting 

from Case 2. 

Ultimately, SOM results in predicting flow and water levels when trained separate from 

rainfall are very good. In contrast, while SOM show an improvement from the previous 

case, based on NS, the overall SOM prediction on rainfall is just satisfactory. This is 

despite similarity in component planes.  

 

 



  130 
 

Case 3 

Table 5.4 shows results when SOM is applied on clustered rainfall (Case 3) from which 

it is apparent that rainfall results improve with clustering. R  values now range from 

0.81 - 0.96; an improvement from 0.68 – 0.84.  Similarly, NS values improve from 

largely satisfactory to good and very good. The modelling skills of SOM are the most 

satisfactory in cluster 3 with stations attaining R  in excess of 0.9. This may suggest 

much correlation in this cluster though not evident in Figures 5.3 (a) – (c).  

 

Table 5.4: SOM performance on clustered rainfall 

Station R NS Cluster 

Nsanje 0.93 0.85 

Cluster 1 

Makhanga 0.95 0.90 

Ngabu 0.91 0.82 

Chikwawa 0.87 0.77 

Nchalo 0.88 0.78 

Neno 0.84 0.71 

Cluster 2 

Mwanza 0.81 0.74 

Mimosa 0.87 0.74 

Thyolo 0.88 0.76 

Bvumbwe 0.89 0.79 

Chileka 0.88 0.76 

Chichiri 0.87 0.76 

Makoka 0.87 0.76 

Chingale 0.95 0.91 

Cluster 3 Balaka 0.96 0.92 

Mangochi 0.96 0.92 

 

 

Despite good predictions on rainfall following clustering, the predictive capacity of 

SOM on hydro-meteorological data in the Shire remains superior on flow and water 

level data in comparison to rainfall. 
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                                                            (c) 

Figure 5.3: Component planes for rainfall clusters 1 (a), 2 (b) and 3 (c)   
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Given that cases 2 and 3 presented the best SOM prediction for flow and water level, 

and rainfall data respectively, they provided the basis for reconstructing gaps and 

discontinuities in flow and water level data, and rainfall data respectively. The quality 

of SOM predictions on the basis of Cases 2 and 3 is further visually shown in Figure 

5.4(a), (b) and (c).  

 

 

(a) – Flows 

 

 

(b)  – Water levels 
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       (c) 

Figure 5.4: A comparison of observed and predicted data on (a) flows, (b) daily water 

levels and (c) rainfall  

CLUSTER 1 

CLUSTER 2 

CLUSTER 3 
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As shown in Figure 5.4, the degree of scatter about the best fit axis is low in both cases. 

Correlation coefficients ( )R  are also high: about 0.98 for flow and water levels and 0.8 

– 0.96 for rainfall. This shows a strong relationship between SOM predicted values and 

observed values; further underscoring the high predictive capacity of SOM. However, 

with Figure 5.4, is becomes apparent that SOM ability is limited at high values. The 

deficiency is more pronounced on rainfall data (Figure 5.4 (c)).  

 

  

A further analysis with time series plots (Figures 5.5, 5.6 and 5.7) shows that SOM 

predictive ability is also high in respect of reproducing trends in flows, water levels and 

rainfall respectively. In addition, predicted missing values interpolate well within the 

original series. As noted earlier, while peak flow and water values are reasonably 

replicated, high rainfall values (Figure 5.7) are overly under-predicted.  

 

 

The basic statistics in consideration of predicted and raw data (Table 5.5) are also 

evidential of the powerful predictive ability of SOM. This is demonstrated in the means,   

standard deviations and in the prediction of low values. Its failure on high values 

notably on rainfall is also confirmed. The general under-performance exhibited in 

rainfall in comparison to hydrological data is in support of Ngongondo et. al’s (2011a) 

findings of high variability of rainfall in Malawi even within shortest distances. 

According to Ngongondo et al., spatial correlations in rainfall are only observable 

within 20km of a station.   
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Figure 5.5: A time series comparison of SOM –predicted and observed water levels 
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Figure 5.6: A time series comparison of SOM –predicted and observed flow   
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Figure 5.8: Time series comparison of SOM- predicted data and observed rainfall  

 

Table 5.5: A basic static comparison of SOM- predicted data and observed data over 

analysis period   

Flow and Water levels 

Variable Minimum Maximum Mean 
Standard 
Deviation 

Raw SOM Raw SOM Raw SOM Raw SOM 

Mangochi_L 5.2 5.5 9.5 9.0 7.3 7.3 0.9 0.8 

Chkwawa_L 0.9 1.3 5.9 3.9 2.5 2.5 0.7 0.6 

Liwonde_L 2.1 3.7 10.7 8.7 4.9 4.9 1.1 1.0 

Chiromo_L 2.2 2.8 8.8 6.5 4.8 4.8 1.1 1.0 

Nsanje_L 0.7 1.3 7.0 6.1 4.5 4.5 1.4 1.2 

Tengani_L 0.7 1.0 6.0 5.3 3.3 3.3 1.3 1.3 

Sinoya_L 3.0 3.2 10.2 8.3 5.3 5.5 1.4 1.3 

Mangochi_F 123.1 162.3 1107.3 953.6 505.8 510.4 210.9 192.5 

Chikwawa_F 127.1 216.8 2139.2 1136.5 598.2 602.2 246.7 222.0 

Liwonde_F 27.2 101.9 1073.0 868.4 344.8 345.3 204.7 193.4 

Chiromo_F 41.5 142.0 2142.0 1653.1 583.6 611.3 315.9 264.7 

Sinoya_F 3.0 11.4 3683.4 3230.5 94.3 280.4 198.2 417.6 
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Table 5.5 (continued) 
Rainfall 

Station Minimum Maximum Mean 
Standard 
Deviation 

Raw SOM Raw SOM Raw SOM Raw SOM 

Nsanje 0 0 167.5 87.6 2.8 2.8 10.6 8.9 

Makhanga 0 0 138.5 70.4 2.0 1.9 8.0 6.9 

Ngabu 0 0 165.0 49.0 2.2 2.1 8.4 6.7 

Chikwawa 0 0 145.7 51.3 2.1 2.0 8.3 6.3 

Nchalo 0 0 100.4 53.7 1.9 1.8 7.4 5.6 

Neno 0 0 276.1 75.6 3.4 3.0 11.1 7.9 

Mwanza 0 0 131.5 57.7 3.3 2.7 10.2 6.9 

Mimosa 0 0 185.2 74.1 4.5 4.5 12.6 9.7 

Thyolo 0 0 177.3 61.2 3.3 3.1 9.9 7.8 

Bvumbwe 0 0 127.7 56.5 3.2 3.0 9.3 7.5 

Chileka 0 0 169.5 44.5 2.4 2.3 8.5 6.5 

Chichiri 0 0 126.0 48.2 3.1 3.0 9.3 7.2 

Makoka 0 0 147.0 51.2 2.8 2.7 9.1 6.8 

Chingale 0 0 182.5 69.7 3.1 2.4 9.9 7.9 

Balaka 0 0 144.7 72.6 2.4 2.2 9.1 7.6 

Mangochi 0 0 153.0 66.4 2.1 2.0 7.8 6.9 

 

 

In general, results show that the SOM is a powerful predictive tool that handles large 

data sets and high proportions of missing values. However, as indicated by Kalteth and 

Berndtsson (2007), the quality of prediction depends on the correlation of data in the 

training set. In this study, the predictive capacity of SOM in this catchment is better on 

flow and water level data in comparison to rainfall data. Nonetheless, the fact that flow 

prediction has been better with the SOM is to be welcome because although flow data 

are the preferred ones to have for effective water resources assessment, they are also the 

most difficult and expensive to measure. They are thus the ones most likely to be 

missing and the result of the study reported here offers a significant re-assurance for 

data sparse regions of the world.  

 

 

Similar work however, conducted by Adeloye and Rustum (2012) in the Osun basin of 

south west Nigeria, whereby runoff and rainfall were trained together yielded very good 

results, warranting no further clustering. They confirm the effectiveness of SOM in 

predictions, which can be much improved if the variables exhibit low spatial variability 

and/or high correlations, which was the case for the Osun basin (Adeloye and Rustum, 
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2012). Where this is not the case, e.g. with the rainfall data for the Shire catchment 

analyzed, working with clusters of homogeneous regions proves useful in improving the 

predictability of the SOM. 

 

 

5.3 Flood hazardousness of the Lower Shire Valley 

5.3.1 Model performance 

Table 5.6 shows Lisflood-FP performance in modelling the flood hazard of the Shire 

Valley based on the 2008 flood season and using SOM-reconstructed flow data. The 

match between modelled flood extent and that observed from MODIS ranges from 64% 

to 71%. The results are acceptable (Bates and De Roo, 2000) for a greater proportion of 

Manning’s coefficient tested ( nfp >0.04).  However, the steady improvement in fit with 

increase in floodplain friction in the results is surprising. 

 

Table 5.6: Lisflood-FP performance with respect to floodplain friction ( )nfp  

nfp  0.025 0.030 0.035 0.040 0.045 0.050 0.055 0.060 0.065 0.070 

( )%F  
64.3 65.4 66.5 67.6 68.6 68.9 69.70 69.7 70.6 71.1 

 

 

Higher Manning’s nfp reduces velocity, resulting in flow accumulation and increase in 

flood inundation extent (Biancamaria et al., 2009). Results therefore indicate that the fit 

improves on the basis of increase in flood extent from flow accumulation. Flood water 

accumulation is more likely for the Lower Shire Valley given the presence of the 

Elephant marsh, in between Chikwawa and Chiromo and the Ndindi marsh southward 

of Nsanje Boma. The increase in fit with increase in flood extent may also be 

attributable to the higher flood extent in the imagery than in Lisfood-FP as the latter did 

not account for tributary flows.  

 

 

Therefore to determine a representative floodplain frictional factor and therefore a more 

representative flood inundation extent, unobtainable in Table 5.6 due to the gradual 

increase, the model was re-calibrated with two different frictional coefficients for any 

given simulation: one assigned to the Elephant marsh and the other to the rest of the 
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domain. The degree of fit for the variable-friction model is shown in Table 5.7. The 

values are also compared to those obtained from a uniform friction model in Table 5.6.  

 

 

As Table 5.7 shows, the degree of fit is generally higher when the presence of the marsh 

is accounted for, underscoring the influence of the marsh. However, for a given uniform 

floodplain Manning’s nfp, the differences in the values of fit between the two models 

tend to be small except for 025.0=n . Mason et al.’s  (2003) made similar observations 

on the River Severn in UK. They found that flood extents from spatially varied and 

uniform Manning’s coefficients differed marginally. 

 

Table 5.7: Lisflood-FP performance with varied Manning’s coefficient 

Floodplain 

friction

0.04 0.045 0.05 0.055 0.06 0.065 0.075 0.085 0.1

0.025 67.5 67.6 67.4 68.7 69.1 69.5 70.1 70.5 70.2 64.3

0.035 67.9 68.3 68.1 69.4 69.8 69.0 70.2 70.3 71.6 66.5

0.045 68.2 68.5 69.2 70.5 70.2 71.3 71.0 71.3 72.8 68.6

0.055 68.4 68.6 68.7 69.0 70.1 70.3 70.9 71.4 72.2 69.0

0.065 69.2 69.0 70.2 70.7 70.4 70.6 71.8 71.7 73.0 70.6

Fit (%) with uniform 

floodplain frictionwetland friction

 

 

 

The varied-friction model does not address the vagaries of trends observed in fit values 

in a constant-friction model. As in constant-friction model, the degree of fit also 

increases with increase in wetland friction. Therefore, the gradual increase in the degree 

of fit with increase in Manning’s nfp observed in this study may largely be due to other 

issues discussed below, other than the presence of the wetland.  

 

 

Flood extent determination 

The actual extent of the flooded area in this study is determined by digitizing the 

MODIS image, guided by visual inspection. This is in consideration of uncertainty also 

associated with thresholds in using spectral water indices e.g. the Normalized 

Difference Water Index (NDWI) (McFeeters, 1996) or Normalized Difference 

Vegetation Index (NDVI), indices often employed in extracting the observed flood 

extents from satellite images (Khan et al., 2011; Schumann et al., 2013; Wang et al., 
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2003). NDVI for water bodies is less than zero and greater than zero for other surfaces. 

With the NDWI, water features have a NDWI of greater than zero (McFeeters, 1996). 

However, Ji et al. (2009) have shown that the thresholds defining water features are not 

static but dependent on the relative proportion of soil and vegetation with respect to 

water. 

 

 

Therefore, in manually digitizing the flood extent, the flood extent digitized is larger in 

comparison to one modelled by Lisflood-FP. This could be a true reflection of flood 

extent given that MODIS imagery is inclusive of tributary flows; uncounted for in 

Lisflood-FP due to the unavailability of hydrological data on tributary stations in recent 

years. On the other hand, the visual inspection in digitizing the spatial extent could 

over-estimate the flood extent.  

 

 

Flow data 

The study uses flow data as input into the domain. As pointed out earlier, flows in this 

basin are derived from water levels through rating curves. Water levels are manually 

collected with staff gauges and therefore quality of the data is subject to human error. 

The rating curve also presents another source of errors. Shela et al. (2008) has reported 

siltation issues in the basin but as Shela et al. (2008) notes, there has been no re-

calibration on rating curves over the years due to lack of resources. Another aspect is 

the availability of this data in average form; instantaneous hydrographs are not 

available. Very high values are therefore likely to be missed. 

 

 

Topographical data 

Developing countries lack national digital elevation models data sets and have to rely on 

global data sets (Fan, 2002). The DEM adopted in the study is a global data set; the 

widely used (Neal et al., 2012; Schumann et al., 2013; Zahera et al., 2011) 90m STRM 

DEM. According to Karlsson and Arnberg (2011), globally available data sets have 

quality issues that can lead to an under-estimation or over-estimation of modelled 

results. Over the Lower Limpopo in Mozambique, which is close to this study area, 

Karlsson and Arnberg (2011) found that the SRTM DEM had a vertical mean error of 



146 
 

1.95m. Although they found that flood modelling over this DEM led to a reasonable 

representation of flooding, they also observed that flood extent and depths were over or 

under estimated in some areas. 

 

 

In the face of these factors, errors in the results are likely which impacts on Manning’s 

nfp estimation. Therefore, the choice of floodplain frictional factor in this study follows 

the value found by Schumann et al.’s (2013).  Schumann et al.’s (2013) found that a 

value of 0.05 better represented this region. Schumann et al. (2013) used the European 

Centre for Medium-Range Weather Forecasts (ECMWF) data in the VIC (Variable 

Infiltration Capacity) hydrological model for flow generation at Lisflood-FP’s upstream 

boundary stations. Besides the degree of fit as an evaluation measure, Schumann et al. 

(2013) also evaluated model results using distance between modelled flood edge cells 

and Landsat flood edge points taken off the flooded area perimeter. Therefore, the 0.05 

floodplain friction might be more representative. 

 

 

5.3.2 Hazardousness magnitudes, areal extent and spatial variation 

A valley perspective 

Adopting a uniformly distributed Manning’s coefficient of 0.05, the fit of the predicted 

flood inundation extent was 69% (Table 5.6). The resulting simulated flood extent, the 

observed extent from 7-2-1 MODIS imagery and a comparison of the two are shown in  

 

 

Figure 5.9 (a), (b) and (c) respectively. A quantified distribution of hazardousness based 

on the maximum flood levels reached during the flood event is shown in Figure 5.10. 

The highest proportion of the flooded land in the Lower Shire Valley (38%) falls under 

the medium hazardous depths (0.5-1.0m). The high class (1.0-2.0m) and the low class 

(0.2-0.5m) follow at 30% and 23% respectively. The very low hazard zone (<0.2m) and 

the very high hazard zones (>2.0m) are the smallest segments of the valley constituting 

7.5% and 1.7% respectively. 
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Figure 5.9:  (a) Observed inundation extent from the 7-2-1 MODIS image, (b) Modelled flood extent and (c) a comparison of the two. 
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Figure 5.10: Flood inundation extent in the Lower Shire Valley by severity. 

 

The results therefore suggest that the Lower Shire is a region predominantly affected by 

low to high flood levels but with a dominance of medium levels. However, the flood 

levels may however actually be higher than found, given that flooding from tributaries, 

were not accounted for in this study.  

 

 

Below Chikwawa to just beyond the border with Mozambique (Figure 5.9(b)), flooding 

affects about 708 km2 of land area. About 553 km2 of the flooded area falls inside 

Malawi territory, accounting for about 78% of the flooded area. 

 

  

While the three flood classes i.e. very low, low and medium occur throughout the valley; 

very high hazard areas (>2m) tend to cluster around the confluence at Chiromo. 

Concentrations of high hazard levels on the other hand occur just upstream of the 

confluence and just downstream indicative of more severe flood hazard around the 

confluence and downstream (Figure 5.9(b)), corroborating the perceived degree and 

locations of the most severe flooding on the Shire Ruo/River System (Shela et al., 

2008).  

 

 

While the flood hazard of the Lower Shire Valley has also been quantitatively 

highlighted in two World Bank studies, one by World Bank (2010b) and the other by 
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Atkins (2012), the two studies lack depth in the description of flood depths and extent 

affecting the Shire Valley; flood extents and depths in their findings are only visually 

interpreted.  

 

 

A community perspective 

When viewed through the community lens (Figure 5.11), Makhuwila and Mlolo alone 

account for 59% of the total flooded area in the Lower Shire valley. Makhuwila has the 

highest proportion of the flooded area (38.7%). It is followed by Mlolo (20%), 

Nyachikhadza (7.5%) and Mbenje (7.4%). The rest of the communities account for less 

than 5% of the flooded area each with Malemia being the least affected (0.7%).  
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Figure 5.11: Flood inundation extent across communities  

 

 

The dominance of Makhuwila, Mlolo,  Nyachikhadza and Mbenje in the proportion of 

area affected correlates with geographical location of the Elephant marsh, the Shire/Ruo 

confluence and the Ndindi marsh. Makhuwila covers the biggest portion of the Elephant 

marsh, which extends from below Kapichira Falls to the Shire/Ruo confluence. The size 

of the marsh under normal dry conditions is approximately 500 km2 but may swell to 

90km in length and 30km in width  during flooding (Tweddle et al., 1978). The marsh 

also falls into Mlolo and Mbenje.  

 

Mlolo and Mbenje are further affected by the back-flow effect of Ruo on Shire at the 

confluence. Flow in Ruo can be a multifold of the flow in the main river during 
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flooding. As pointed out earlier, Shela et al. (2008) reports  historical flood flows in the 

Ruo being as high as 5400m3/s, in contrast to the maximum flood flows of 1430 m3/s 

recorded in the Shire. They further point to flow in the 1952 flood, one of the worst 

flood episodes, being only 850m3/s in the Shire River upstream of the confluence and 

2000 m3/s on the Ruo resulting in a flow downstream of the confluence of about 2850 

m3/s. Nyachikhaza is an island community on Ndindi Marsh. Thus a spatial 

concentration of the flooded area with these communities is not unlikely. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12: Flood extents across communities in the Lower Shire Valley 

 

 

5.3.3 Average community hazardousness 

As observed in Figure 5.11, a given community will have several flood hazard classes 

with each class having a particular areal extent. Therefore an average hazard index 

(AHI) is used to define the average flood hazard severity of a community. The AHI 
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accounts for areal extent of a given flood depth and is calculated based on equation 

(5.1).  

 

( )
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∑
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==
n

i
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n

i

ii

A

AHI

AHI

1

1                                                       (5.1) 

where iA
 
is the land area (km2) in a community under the flood hazard class iHI  

(meters);  n =5 and is the number of hazard categories. For the purpose of this 

calculation, the hazard classes iHI  was taken as the average depth in a hazard class as 

shown in Table 5.8 

 

Table 5.8: Flood depth and associated hazard index 

Flood depth, D (m) Hazard index level Average hazard 

depth (HI) (m) 

D<0.2 Very low 0.1 

0.2<D<0.5 Low  0.35 

0.5<D<1.0 Medium 0.75 

1.0<D<2.0 High  1.5 

>2 Very high 2.1 

 

The average hazard index (AHI- estimated according to equation (5.1)) is shown in 

Table 5.9.  

 

Table 5.9: Average community flood hazardousness in the Lower Shire Valley 

Community AHI 

(m) 

Designation 

Maseya 1.12 H 

Mbenje 1.06 H 

Katunga 1.08 H 

Tengani 1.03 H 

Ngabu_Nsanje 0.9 M 

Ndamera 0.77 M 

Nyachikadza 0.94 M 

Mlolo 0.86 M 

Malemia 0.99 M 

Lundu 0.82 M 

Makhuwira 0.84 M 

Ngabu_Chikwawa 0.68 M 
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Viewed against the classes in Table 5.8, results reveal a predominance of AHI 

concentrations in the medium to high flood hazardousness. Nonetheless, medium 

hazardousness tends to dominant. Of the 12 communities affected by Shire flooding, 

there are eight communities in the medium class and four in the high class.  

 

 

Communities accounting for higher proportions of the flooded area (Figure 5.11), are 

not necessarily the most hazardous. In examining Figure 5.11, Makhuwila, Mlolo and 

Nyachikhadza, the most affected in terms of areal extent come out in the medium range 

on average flood hazardousness (Table 5.14). Except for Maseya, characteristic of all 

communities in the Lower Shire valley is the significant proportion (>50%) of their 

flooded area falling in the very low to medium category of hazardousness. In particular, 

all but Mbenje, Katunga and Malemia have 70-98% of flooded area in the very low to 

medium zones with Mbenje, Katunga,and Malemia scoring 55%, 54%  and 51% 

respectively. The proportion is the highest in Ngabu (Chikwawa) (93%) explaining its 

overall low average hazardousness 

 

 

As shown in Table 5.9, community hazardousness in the Lower Shire Valley is one 

characterised by relative homogeneity. However, the geographical distribution of 

medium and high hazardousness differs (Figure 5.13). Medium hazardous communities 

are ubiquitous across the valley. In contrast, high hazardous communities tend to be 

localized: around the confluence in Nsanje and in Katunga and Maseya in Chikwawa. 

 

 

A dearth on studies in this valley that have attempted to attach a metric to flood severity 

and more so, within the scale of decision making for flood risk management, prevents a 

critical analysis of the results. In the World Bank (2010b) and Atkins (2012) studies, 

due to the confinement of results to visual interpretation, the severity of hazardousness 

within scales of disaster management in the two studies cannot be ascertained. 
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Figure 5.13:  Spatial variation in flood hazardousness in the Lower Shire  
  Valley 

 

This study attaches magnitudes to the flood hazardousness of the Lower Shire Valley. It 

also determines the geography of this hazardousness as linked to community scale, a 

scale of disaster management decision making. These aspects have not been addressed 

in  World Bank (2010b) and the other by Atkins (2012). The resulting degree of flood 

severity and the associated geography are nonetheless subject to data used and 

modelling assumptions made. The study relies on manually collected hydrological data 

whose quality is further compromised by a significant proportion of gaps and 

discontinuities. This is nonetheless addressed with powerful data driven models. Also, 

flow values used are average daily values other than the instantaneous values and 

therefore actual maximum flows reached are likely to be missed.  Further, velocity is 

disregarded in the hydraulic model on the basis of the flatness of the valley and 

simplicity. However, flash flooding has been reported on the Ruo/Shire confluence area 
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(Shela et al., 2008). This is therefore likely to underestimate hazardousness for some 

communities. 

 

 

5.4 Flow and water level forecasting 

Besides use for flood hazardousness estimation, SOM-reconstructed data were also used 

for the development of a flood forecasting MLP-ANN model given increasing attention 

towards non-structural measures for flood mitigation but also cognisant of the data 

challenges in developing countries to support traditional forecasting models. Results are 

outlined in the sections below. 

 

 

5.4.1 1-day ahead forecasting 

As noted in section 4.2, forecasting models were developed using ANN. These models 

are: 

 

Model 1 – this forecasts flow and water levels at Chiromo based on average catchment 

rainfall, endogenous flows and water levels, including lagged inputs, and flows, water 

levels and their lagged inputs from Chikwawa upstream, and Sinoya on the tributary.  

 

Model 2 – this forecasts flow and water levels at Chiromo based on average catchment 

rainfall and flow and water level including lagged inputs from only Chiromo station. 

  

Model 3 – this replicates Model 2 but with the exclusion of lagged inputs from flow and 

water levels.  

 

 

It was observed that the MSRE, in comparison to NS and R, was more sensitive to the 

number of hidden neurons in the MLP-ANN model (Figure 5.14 (a), (b), (c)). 

Consequently, the selection of best MLP-ANN structure in terms of hidden neurons was 

based on MSRE. Average MSRE values from flow and water level were used. The 

selected optimal ANN structures, from each of the three models assessed, are shown in 

Table 5.10. Figure 5.15  and Figure 5.16  show corresponding scatter plots and time 

series.  
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      (c) 

Figure 5.14: Model performance with increasing number of hidden neurons 
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 Table 5.10: Performance of the three models in the testing phase 

Model  Best 

architecture 

Water level Flow Average values 

  MSRE R NS MSRE R NS MSRE R NS 

1 18-8-2 0.0018 0.9818 0.9638 0.0189 0.9746 0.9498 0.0104 0.9782 0.9568 

2 5-7-2 0.0019 0.9801 0.9604 0.0190 0.9784 0.9572 0.0104 0.9793 0.9588 

3 3-3-3 0.0029 0.9732 0.9472 0.0242 0.9797 0.9596 0.0136 0.9765 0.9534 

 
 

 

As shown in Table 5.10, all three models selected exhibit high performance in 

modelling both flow and water levels at Chiromo with respect to all the three statistics. 

Besides guidance on R  and NS given in section 5.2, Moriasi et al. (2007) also rated as 

very good a model with a relative error of <± 10%, ‘good’ for ±10–15%, ‘satisfactory’ 

for ±15–25% and ‘unsatisfactory’ for >± 25%. In all the three models, R and NS are 

above 0.9 and the maximum value of the average MSRE is below 2%. Similarly, high 

and low flows in the time series plots (time series plots are based on the whole data set) 

are well reproduced in all models.  

 

 

A comparison of the models (Table 5.10) shows nonetheless that Model 2 performs 

better than the other two based on the average values of three statistics. Nonetheless, the 

differences are small, an aspect also reflected in the scatter plots (Figure 5.15) and time 

series plots (Figure 5.16). Therefore, on the basis of parsimony, model 3 presents the 

best model and is chosen.  

 

 

Model 3 shows that remarkably good forecasts of the following day’s water level and 

flow can be obtained at Chiromo with a parsimonious MLP-ANN model using only 

three inputs on a particular day: flow, water level and catchment rainfall. Forecasts of 

water levels are generally better compared with flows. This could be related to the 

quality of data.   
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Figure 5.15: A scatter plot comparison between observed and forecasted 1-day ahead 

data for selected ANN structures  
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Figure 5.16: A 1-day ahead time series comparison of observed and forecasted data on 

the selected ANN structures 

 

In the light of considerable noise that characterise hydrological data from data-poor 

catchments, Model 3 (the best model identified in the previous section was also tested 

for forecasting but based on features (SOM predicted values) as training data. With 

three inputs and two outputs as before, the number of hidden neurons was also 

systematically increased from 2 to 15 at a step of one.  

 

 

Results are shown in Figure 5.17. ANN’s prediction accuracy significantly improves 

with feature data. With MSRE, results are mixed; in some cases ANN trained on SOM 

features emerges as better, in other cases ANN is superior on raw data. Nevertheless, 

both R and NS show the modelling skills of ANN are enhanced when trained on feature 

data, supporting findings by Rustum & Adeloye (2012). This is important for data-poor 

areas where data is characterised by noise. By using SOM to first pre-process the data to 

obtain the error-free features, which are then used to drive the MLP-ANN, results can 

be enhanced.  
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Figure 5.17: ANN performance when trained on raw data and SOM features. 

 

 

5.4.2 Flow and water level forecasting for 2 to 5 day leads 

While a day’s forecast is good, a longer lead prediction would be far more important for 

flood warning. The results on the 1-day ahead forecasts presented in the previous 

section confirmed that Model 3, with just the day’s level, flow and rainfall will give 

satisfactory forecasts. This is an indication that for longer lead times, there is no need to 

consider longer memory models. Consequently, further ANNs were trained to forecasts 

2–5 days ahead levels and flows at Chiromo using the day’s measurement of two of the 

same inputs employed for model 3 for the 1-day lead forecasts. The input variable 

excluded was the catchment rainfall on the day. This was because, although the 

inclusion of rainfall as an input has been found to improve flow predictions (Toth and 

Brath, 2007b; Wu and Chau, 2011), Wu & Chau (2011) observed that including rainfall 

in the input space only improved the results for lead times within the concentration time 

of a catchment. Otherwise, the impact of rainfall was insignificant. Since the time of 

concentration of Ruo catchment at Chiromo is less than a day, the day’s rainfall was 

omitted and a series of 2-3-2 ANN models were trained on both raw data and the SOM 

features as before for 2 to 5 days’ lead. The forecasts are mathematically expressed as 

follows: 

 

 2 day lead ( ) ( )
tttt CRFCRLfCRFCRL ,, 22 =++                  (5.2)
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 3 day lead ( ) ( )
tttt CRFCRLfCRFCRL ,, 33 =++                  (5.3)

 

 4 day lead ( ) ( )
tttt CRFCRLfCRFCRL ,, 44 =++                  (5.4)

 

 5 day lead ( ) ( )
tttt CRFCRLfCRFCRL ,, 55 =++                  (5.5)

 

 

Both the raw data and SOM features were used. The results are summarized in Table 

5.11. It is clear from Table 5.11 that in general, model performance decreases with 

increasing lead time. The MSRE on both raw and feature data increases with increasing 

lead time. Similarly, R and NS decrease with increasing lead. This behaviour is not 

unexpected. According to Solomantine & Dulal (2003) as the lead time increases, the 

inputs used are the remotest and, therefore, do not contain the recent information. 

 

Table 5.11: Comparison of raw and SOM-trained 2-3-2 MLP-ANN for forecasting 

Lead 

time 

(days) 

MSRE  

Water level  Flow Average  

Raw SOM raw SOM raw SOM 

2 0.0039 0.0029 0.0286 0.0223 0.0163 0.0126 

3 0.0055 0.0030 0.0443 0.0275 0.0249 0.0153 

4 0.0068 0.0038 0.0542 0.0334 0.0305 0.0186 

5 0.0079 0.0044 0.0675 0.0394 0.0377 0.0219 

Lead 

time 

(days) 

NS  

Water level Flow Average 

Raw SOM raw SOM raw SOM 

2 0.9214 0.9523 0.9244 0.9577 0.9229 0.9550 

3 0.8873 0.9507 0.8723 0.9494 0.8798 0.9501 

4 0.8779 0.9329 0.8723 0.9268 0.8751 0.9299 

5 0.8393 0.9176 0.8469 0.9099 0.8431 0.9138 

Lead 

time 

(days) 

R  

Water level Flow Average 

Raw  SOM raw SOM raw SOM 

2 0.9599 0.9759 0.9615 0.9787 0.9607 0.9773 

3 0.9420 0.9750 0.9343 0.9744 0.9382 0.9747 

4 0.9370 0.9660 0.9363 0.9627 0.9367 0.9644 

5 0.9162 0.9580 0.9203 0.9540 0.9183 0.9560 
 

 

As before, there is a significant improvement in forecast accuracy when ANN is trained 

on feature data. SOM features also increases lead time. With raw data, remarkably good 

forecasts were obtained up to two days ahead (based on the worst indicator, NS) with 
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fairly satisfactory 3, 4 and 5-day forecasts. In contrast, with ANN trained on features, 

very satisfactory results for short-term forecasts of up to five days are attained.  

 

 

The availability and quality of data in developing countries poses a big challenge for 

hydrological modelling; data-driven models such as ANN present alternatives. While 

most hydrological studies have stalled due to data demands posed by traditional models, 

coupling SOM and MLP-ANN offers an alternative for these data-scarce countries. 

SOM is quite robust to missing data and can therefore infill for large gaps, something 

that would be impossible with traditional infilling methods, thus presenting a relatively 

long series needed for hydrological modelling. With most of the data characterised by 

noise, SOM filtered data also present an alternative way of enhancing results. In this 

study, flows and water levels at Chiromo are reproduced to a high accuracy with a 

parsimonious MLP-ANN model. When SOM features are used, not only are forecasts 

very good for short lead times, the results are enhanced for longer lead times. 

 

 

5.5 The vulnerability profile of the Lower Shire Valley 

As underscored by Cardona (2004), the hazard is one determinant of risk whose sole 

occurrence does not translate to risk. Only when the hazard intersects in space with 

vulnerability is risk realised. This section provides results of the vulnerability 

component. 

 

5.5.1 Vulnerability magnitudes 

As described in the methodology section, the measurement of vulnerability was based 

on the combination of scores and weights. A score gave the actual measure of the 

variable. The weights on the other hand, gave the importance of the variable in 

contributing to exposure, susceptibility or capacity.  

 

 

The perceptions of communities as to the importance of the variables in contributing to 

vulnerability, on a scale of 1 – 10, (with 10 being very important) are shown in Table 

5.12. As expected, there are differences in weights accorded to the variables by 

communities. However, for the majority of variables and for a given variable, the 
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differences between weights tend to be insubstantial suggesting similar perceptions for a 

given variable. Further, results suggest that communities perceive the variables captured 

by the CBDRI as being very important in contributing to their vulnerability. Of the 38 

variables used, 34 had a mode in the range of 7-9 (Table 5.12). A similar pattern emerge 

when mean values are considered.  

 

 

It nonetheless emerges from the results that while perceived important; some indicators 

of the CBDRI are not applicable to the Lower Shire Valley and probably to most 

developing countries. These indicators are notably those economic in nature, e.g. access 

to national emergence fund, access to international emergency fund, existence of an 

insurance market and existence of mitigation and reconstruction loans. Further, in a 

region where businesses are mainly small-scale and family-run, the indicator measuring 

economic stability i.e. the proportion of businesses with a workforce of less than 20 

employees is the same across the valley. This would call for substitution with more 

befitting indicators.  

 

 

In the context of Lower Shire Valley and with regard to economic capacity, the 

magnitude of public works by direct labour proves a more appropriate indicator instead. 

Although not used, access to relief and rehabilitation is also ideal. Nevertheless, in such 

a country where public works pay MK300 per day (less than 1USD per day as of 2013) 

and is delayed to coincide with the planting season and where relief and response trickle 

in much later after the flood has stricken (appendix C), the use of such variables would 

not alter the magnitude of economic incapacity associated with rural people in the 

Lower Shire anyway. Besides, the indicators used in the adapted CBDRI are those 

likely to be readily available in other countries with different spectra of vulnerability 

conditions thus making the wider implementation of the CBDRI much more feasible. 

 

 

With the CBDRI as implemented in this study, the ultimate weights for the variables 

and the corresponding scores are shown in Table 5.13; resulting calculated levels of 

total vulnerability are shown in Figure 5.18. Figure 5.19 on the other hand shows 

vulnerability by exposure, susceptibility and lack of capacities. 
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Table 5.12: Perceived importance of variables in contributing to vulnerability 

 

 

Factor component Indicator Mbenje Mlolo Tengani Ngabu Malemia Ndamela Nyachikhaza Ngabu Katunga Chapananga Maseya Makhuwila Lundu MODE AVERAGE

EXPOSURE

Structures % of home with potable water 3 7 7 8 5 2 2 3 2 3 5 4 7 3 4

Economy average income per capita/day 8 8 8 8 8 7 8 7 8 7 6 7 10 8 8

People per km
2

8 5 5 10 8 7 8 9 8 9 9 5 6 8 7

Population growth rate 6 5 5 10 8 7 8 8 8 9 9 5 6 8 7

% of home with potable water 4 7 2 5 5 4 10 10 4 5 7 5 4 4 6

% of population below poevrty line 7 9 7 10 8 9 9 9 8 8 7 3 9 9 8

% of people that can aread and write 5 9 7 8 7 7 8 10 8 8 8 6 9 8 8

priority of population to protect against a hazard 2 9 5 6 8 2 7 10 9 7 7 7 7 7 7

proportion of self geranated revenue of total budget 9 10 9 9 8 6 7 9 9 9 8 8 9 9 8

% of voter turnout at at last commune elections 2 8 9 9 8 2 2 10 7 3 5 3 4 2 6

Total available budget 8 10 9 8 7 7 7 10 9 9 8 8 9 8 8

Economic sector for employment 5 8 7 8 7 7 7 10 9 9 8 8 9 8 8

% business with fewer than 20 employees 7 8 8 7 7 7 7 9 4 9 8 8 9 7 8

Number of interruption of roads in the last 2 years 5 9 5 4 4 7 9 10 4 4 6 7 9 4 6

Environmental Area under forest 5 4 7 8 8 9 9 10 7 7 8 6 9 7 7

Enforced landuse planning or zoning regulations 7 9 9 9 7 9 9 10 10 9 8 7 8 9 9

Applied building codes 7 9 9 9 7 9 9 10 10 9 8 7 8 9 9

Applied retroffiting and regular maintenance 7 9 8 9 8 9 9 10 10 9 6 7 8 9 8

Expected effect of impact-limiting structures 6 8 9 8 9 9 10 9 9 8 7 10 9 9

Maesures that promote and enforce nature conservation 9 9 8 9 8 9 9 10 9 9 8 6 10 9 9

Frequency of public awareness programs 8 10 8 9 10 9 9 10 8 9 8 9 10 9 9

Scope of relevant topics taught at school
7 7 8 7 8 4 9 10 8 9 8 7 10 7 8

Ongoing emergency response training and drills 8 10 8 8 8 9 9 9 8 9 8 8 10 8 9

Emergence committee with public representatives 9 10 7 9 10 9 9 10 8 9 7 9 9 9

Grade of organisation of local groups 8 10 9 8 10 9 9 9 9 9 8 9 9 9 9

Local emergency fund as % of local budget
9 10 9 9 10 9 9 9 9 9 8 9 10 9 9

Release period of national emergency fund 5 10 9 9 10 9 9 9 9 9 8 9 10 9 9

Access to international emergency funds 7 10 9 8 10 9 9 9 9 9 8 9 10 9 9

Availability of loans for disaster risk reduction measures 8 10 9 9 10 9 9 9 9 9 8 9 10 9 9

Availability of loans for disaster risk measures 8 10 7 8 10 9 9 9 9 9 8 9 10 9 9

Availability of reconstruction credit for affected households
9 10 7 9 10 9 9 9 9 9 9 9 10 9 9

Magnitude of local public works programm 7 10 9 9 10 9 9 9 10 9 9 9 10 9 9

Meeting frequency of a community committee 9 9 9 9 10 9 9 10 10 8 9 9 10 9 9

Availability and circulation of maps
7 9 9 8 7 8 9 10 10 8 9 8 10 9 9

Availability and circulation of emergency plans 5 9 9 9 9 8 9 10 10 9 8 8 3 9 8

Effectiveness of early warning system 9 10 9 9 8 8 9 9 10 8 7 5 9 8

Frequency of training of local institutions 6 10 9 9 8 9 10 10 10 9 8 8 10 10 9

Frequency of contact with district level institutions 7 10 9 9 8 9 8 10 10 10 8 9 10 10 9

Economic capacity

(C11) Local emergency fund

(C12) Access to national 

(C13) Access to international 

(C22) Institutional capacity building

(C23) Communication

Management and 

Institutional Capacity
(C20) Emergency plan

Indicator Name

(E1) Lifelines

(E2) Economy

Physical (S1) Density

(S2) Demographic pressure

SUSCEPTIBILITY

(S3) Access to basic services

(S9) Local resource base

(S10) Diversification

(S11) Stability

(S12) Accessibility

Economic 

Social (S4) Poverty level

(S5) Literacy

(S6) Attitude

(S7) Decentralization

(S8) Community participation 

(C21) Early warning system

(C14) Insurance market

(C15) Mitigation loans

(C16) Reconstruction loans

(C17) Public works

(C18) Risk management/emergency 

(C19) Risk map

(S13) Environmental

Physical capacity

Societal capacity

(C6) Public awareness programs

(C7) School curriculum

(C8) Emergency response drills

(C9) Public participation

(C10) Local risk 

(C5) Environmental management

(C1) Landuse planning

(C2) Building codes

 CAPACITIES AND MEASURES

(C3) Retrofitting/Maintenance

(C4) Preventive measures
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Table 5.13: Scores and associated weights as allocated by communities 

Factor component

EXPOSURE score

w
*

score

w

score

w

score

w

score

w

score

w

score

w

score

w

score

w

score

w

score

w

score

w

score

w

Structures 3 9 3 9 3 9 3 9 3 9 3 9 1 9 3 9 3 9 2 9 3 9 3 9 3 9

Economy 1 24 1 24 1 24 1 24 1 24 1 24 1 24 1 24 1 24 1 24 1 24 1 24 1 24

SUSCEPTIBILITY

2 3 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2

2 3 2 3 2 3 2 3 1 3 1 3 1 3 2 3 3 3 2 3 2 3 1 3 1 3

2 1 1 2 1 2 1 2 1 2 1 2 3 2 1 2 1 2 2 2 1 2 1 2 1 2

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

2 3 2 3 2 3 2 3 2 3 2 3 3 3 2 3 2 3 2 3 2 3 2 3 1 3

2 3 1 3 1 3 2 3 2 3 2 3 2 3 3 3 3 3 3 3 3 3 3 3 1 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 2 1 1 1 1 1 1 1 1 1

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 1 3 2 2 2 3 2 3 2 3 2 3 2 3 2 2 2 3 2 2 2 3 2 3 2

Environmental 1 3 3 3 1 3 2 3 1 3 1 3 3 3 2 3 2 3 1 3 1 3 3 3 3 3

CAPACITIES & MEASURES

1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1

1 2 2 1 3 1 1 1 1 1 1 1 2 1 2 1 3 1 2 1 2 1 2 1 2 1

3 2 3 1 1 1 2 1 2 1 2 1 2 1 1 1 3 1 1 1 3 1 2 1 2 1

3 1 3 1 3 1 3 1 3 1 3 1 1 1 3 1 3 1 3 1 3 1 3 1 3 1

3 1 3 1 1 1 2 1 3 1 3 1 3 1 1 1 1 1 2 1 1 1 2 1 2 1

3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2

3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 3 1 3 1 3 1 2 1 2 1 3 1 1 1 1 1 1 1 1 1

2 1 2 1 2 1 2 1 3 1 2 1 3 1 1 1 1 1 1 1 2 1 1 1 3 1

2 1 1 1 1 1 3 1 3 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 2 1 3 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 3 1

1 1 2 1 1 1 2 1 1 1 1 1 3 1 1 1 2 1 3 1 1 1 2 1 1 1

1 2 2 2 1 2 1 2 2 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

3 2 3 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2

Physical 

Ngabu Malemia

Social

(V5) Literacy

(V6) Attitude

(V7) Decentralization

(V8) Community participation 

(V13) Environmental

(C3) Retrofitting/Maintenance

Economic (V9) Local resource base

(V10) Diversification

(V11) Stability

(V12) Accessibility

Physical capacity (C1) Landuse planning

(C4) Preventive measures

(C5) Environmental 

management

(C2) Building codes

Societal capacity

(C9) Public participation

(C10) Local risk 

management/emergency groups

(C22) Institutional capacity 

(C23) Communication

(C18) Risk 

management/emergency 

(C19) Risk map

(C20) Emergency plan

(C21) Early warning system

Nyachikhaz

a

Mbenje Mlolo Tengani

Management and 

Institutional Capacity

(C14) Insurance market

(C13) Access to international 

(C12) Access to national 

(C11) Local emergency fund

(C6) Public awareness 

(C8) Emergency response drills

Economic capacity

(C16) Reconstruction loans

(C17) Public works

(C15) Mitigation loans

(C7) School curriculum

LunduIndicator Name

(E1) Lifelines

(E2) Economy

(V1) Density

(V2) Demographic pressure

(V3) Access to basic services

(V4) Poverty level

Chapananga Maseya MakhuwilaNgabu KatungaNdamela
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Total vulnerability scores for communities fall in the range of 0.53 - 0.64 suggesting that the Lower 

Shire Valley is a region in the medium to high category of vulnerability to flooding. Surprisingly, 

results show a predominance of medium aggregate vulnerability levels.  

 

 

Susceptibility, quite marked from exposure and capacities, manifests as high (0.6-0.8) to very high 

(0.8-1.0) and has the greatest contribution to the vulnerability. It is followed by exposure and 

capacity-related vulnerability in the medium range (0.4 – 0.6).   

 

 

From a Sustainable Development Framework (Figure 5.20) i.e. a social, economic, environmental 

and physical perspective, the economic sub-component, manifesting as high to very high, emerges, 

in general, as a dominant component. Either physical or social vulnerability tend to follow in the 

medium to high ranges. Environmental vulnerability can be the least contributing component in 

some communities; it may also surpass other dimensions in other communities.  

 

 

When viewed from a coupled IPCC and Sustainable Development Framework perspective (Figure 

5.21), it is apparent that high susceptibility levels observed are driven by economic and social 

susceptibilities and to a considerable extent by environmental susceptibility. Physical susceptibility 

is the lowest contributing dimension to susceptibility. In particular, economic susceptibility is 

predominantly very high linked to factors such as a lack of economic resources, an undiversified 

economy and lack of employments opportunities (appendix C).  Social susceptibility falls in the 

high to very high levels linked to factors of poverty and literacy levels. Environmental susceptibility 

is also predominantly high to very high but manifest as low in certain communities. Physical 

susceptibility manifests as medium to high. 

 

 

 



168 
 

Mbenje Mlolo Tengani Ngabu Malemia Ndamela Nyachikhaza Ngabu Katunga Chapananga Maseya Makhuwila Lundu
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 Figure 5.18: Aggregate vulnerability across communities in the Lower Shire Valley 
   (CoV= Community Vulnerability) 

  

Mbenje Mlolo Tengani Ngabu Malemia Ndamela Nyachikhaza Ngabu Katunga Chapananga Maseya Makhuwila Lundu

E 0.51 0.51 0.51 0.51 0.51 0.51 0.33 0.51 0.51 0.42 0.51 0.51 0.51

S 0.78 0.80 0.65 0.77 0.75 0.75 0.83 0.85 0.82 0.79 0.80 0.83 0.71

LoC 0.42 0.43 0.55 0.47 0.44 0.44 0.44 0.57 0.50 0.53 0.53 0.52 0.49
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          Figure 5.19: Vulnerability magnitudes from exposure, susceptibility and a lack of capacity across communities. 
                 (LoC =Lack of capacity) 
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Mbenje Mlolo Tengani Ngabu Malemia Ndamela Nyachikhaza Ngabu Katunga Chapananga Maseya Makhuwila Lundu

Physical 0.59 0.53 0.51 0.55 0.55 0.55 0.45 0.57 0.60 0.46 0.57 0.53 0.48

Social 0.49 0.45 0.57 0.53 0.51 0.50 0.55 0.68 0.61 0.62 0.60 0.59 0.47

Economic 0.83 0.83 0.81 0.78 0.78 0.78 0.81 0.81 0.77 0.83 0.81 0.83 0.83

Environmental 0.33 0.99 0.33 0.66 0.33 0.33 0.99 0.66 0.66 0.33 0.33 0.99 0.99
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  Figure 5.20: Vulnerability of the Lower Shire from Sustainable Development Framework 
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Figure 5.21: Vulnerability profile from a coupled IPCC-Sustainable Development Framework 
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In examining capacity-induced vulnerability, results show that capacity-related 

vulnerability is determined by high limitations in economic and physical capacities, 

both of which  tends to be medium to high. In other words, economic and physical 

capacities are low. Viewed against appendix C, local emergency funds, access to 

national funds, loans for mitigation or reconstruction are non-existent. In addition, as 

with many developing countries an insurance market does not exist. In contrast, social 

capacity including management and institution surprisingly manifests as high resulting 

in low social capacity-related vulnerability (Figure 5.21) which, undoubtedly has an 

attenuating effect on  overall capacity-induced vulnerability observed in Figure 5.19.  A 

low capacity-related social susceptibility emanates from what comes out as substantial 

public awareness, public participation, existence of disaster-mandated local institutions, 

existence of non-conventional warning flood systems (whistling, drumming, use of text 

messages) and substantial coordination amongst local institutions (appendix C). These 

institutions called Civil Protection Committees (CPC) exist at all levels: at district level 

(DCPC), area level (ACPC) and at group village level (VCPC).  

 

 

The context-specific nature of vulnerability, coupled with the differences in the indices 

used and a dearth in general on studies that have attempted to quantify vulnerability to 

flooding in SSA, limits a discussion of these results in the wider context. Nonetheless, 

the findings on the vulnerability to flooding presented in this study mirrors, in several 

aspects, findings of other studies on the vulnerability of the rural population in SSA to 

other climatological hazards. 

  

 

While measurement of vulnerability from a social, economic, environmental and 

physical perspective is elusive, the predominance of environmental vulnerability 

magnitudes in the high and very high categories is consistent with the state of the 

environment not only in the region but also in the country. The dominant driver of 

landcover change in SSA has been agriculture and much of the changes has taken place 

in the Zambezia region, a region covering the study area (Brink and Eva, 2009). A study 

by Bandyopadhyay et al. (2011) confirms Malawi is a country in biomass distress with 

the southern region where the study area falls, being the most stressed. In fact, Minde et 

al. (2001) earlier observed that in the southern region of Malawi, there is little forest left 

outside forest reserves. Further, given the demand of forest products placed on the Shire 
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Basin due to its proximity with the city of Blantyre  (Palamuleni et al., 2010), the levels 

of environmental vulnerability found in communities in this study most which fall in 

Chikwawa, are  not unexpected. It is however difficult to explain from this study the 

low levels of environmental vulnerability observed in other communities such as 

Maseya and Chapananga in Chikwawa and, Mbenje, Tengani, Malemia and Ndamela in 

Nsanje. This may require an in-depth analysis. 

 

 

In general, the vulnerability of communities in SSA to climatological hazards has been 

perceived as high. According to World Bank (2010a), SSA lacks fiscal resources to 

commit to disaster risk management. The economy is largely driven by rainfed 

agriculture and therefore highly vulnerable to climatological shocks. Infrastructure is 

poor. This does not only make SSA very prone to damage, it also impinges on relief and 

recovery. Institutional and policy frameworks and knowledge base in general are weak.  

The situation is exacerbated by population pressure in marginal lands (Di Baldassarre et 

al., 2010; World Bank, 2010a). Thus measured vulnerability to flooding in this study 

supports this perception.   

 

 

Studies that have attempted to quantify vulnerability to other climatological hazards, 

notably climate change, albeit with different indices, have also reached similar 

conclusions of medium to high vulnerability for the rural communities in SSA. 

Gbetibouo and Ringler’s (2009) found that in comparison to more developed provinces 

(Western Cape, Gauteng), provinces characterised by a rural subsistent and agriculture-

dependent population, high unemployment and high illiteracy (Limpopo, KwaZulu 

Natal and Eastern Cape) exhibited a sensitivity (susceptibility) level that fell in the 

‘high’ category in contrast to a ‘low’ level for the developed provinces. They also found 

that adaptive capacity in the provinces of Limpopo, KwaZulu Natal and Eastern Cape 

was ‘low’. Reference to exposure is eluded as their exposure variables are analogous to 

the hazard in this study, the incorporation of which would constitute risk.  

 

 

In Mozambique, Hahn et al. (2009) measured the vulnerability to climate change of two 

districts: Moma and Mabote. While they also measured vulnerability by exposure, 

sensitivity and adaptive capacity, a lack of categorization on the severity of 
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vulnerability from this perspective prevents insightful comparisons. However, on the 

basis of  Livelihood Vulnerability Index (LVI) alternatively used and on account of its 

five components deemed vulnerability components in the context of this study i.e. 

Socio-Demographic Profile (SDP), Livelihood Strategies (LS), Social Networks (SN), 

Health (H), Food (F) and Water (W), the scores found, in general, did not reflect low 

vulnerability. On a scale of 0 - 0.5, aggregate vulnerability scores were 0.316 and 0.306 

respectively. Further, except for the Socio-Demographic Profile in Moma and the Water 

component in Mabote that measured 0.175 and 0.099 respectively, the rest of the 

dimensions fell in the range of 0.25 – 0.48 suggesting medium to high vulnerability.  

 

 

While the results in both studies ought to be treated with caution as the values were 

relative amongst the provinces and districts investigated, the population in both studies 

was rural and therefore may be representative of other rural communities in SSA 

including the Shire Valley. 

 

 

In a recent study on the vulnerability to climate change covering the whole Malawi, 

Malcomb et al. (2014) measured vulnerability from the equation: Adaptive Capacity + 

Livelihood Sensitivity - Physical Exposure with Adaptive Capacity and Livelihood 

according to the authors constituting resilience. As with Gbetibouo and Ringler’s 

(2009), the exposure element in Malcomb et al.’s study is disregarded for vulnerability 

discussion, on the basis it constitutes a hazard component. Their resilience map is 

shown in Figure 5.22 from which it is apparent that while resilience is variable across 

the Lower Shire Valley, it falls on the lower end of the resilience scale, pointing to 

vulnerability that is high.  
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Figure 5.22: Resilience to climate change based on assets, access and livelihoods 

Source: (Malcomb et al., 2014) 

 

While vulnerability magnitudes found in this study are in tandem with other studies in 

SSA highlighted above, in coupling exposure, susceptibility and capacity to sustainable 

developments elements, the study brings to light significant results. Results show the 

low capacity  associated with rural communities in SSA is economic and physical in 

nature;  societal capacity, often unaccounted for in these studies (Gbetibouo and 

Ringler, 2009; Malcomb et al., 2014) tends to be substantially higher. 
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5.5.2 Spatial trends 

Spatial trends are shown in Figure 5.23 and Figure 5.24. While there are differences in 

actual vulnerability scores (Figure 5.19), there is a general pattern of homogeneity in the 

levels of vulnerability across communities suggesting insubstantial differences between 

communities. The pattern is observed in aggregate community vulnerability, exposure, 

susceptibility and capacity related vulnerability. It also manifests when vulnerability is 

viewed as social, economic and physical. Environmental vulnerability however is the 

exception; it presents the most spatially differentiated dimension of vulnerability.  

 

 

In spite of a relative uniform degree of vulnerability for a given dimension, there is a 

clear trend of extreme ends of vulnerability being concentrated in Chikwawa. Very high 

susceptibility levels are associated more with communities in Chikwawa than Nsanje.  

In the same way, few communities that emerge as highly vulnerable on aggregate 

vulnerability are also found in Chikwawa. A possible explanation is the spatial 

distribution of environmental vulnerability whereby high and very high levels of 

aggregate vulnerability tend to be concentrated in Chikwawa. 

 

 

The concentration of environmental vulnerability in Chikwawa, amongst many factors, 

stem from its proximity to the city of Blantyre. Severity of deforestation in the Shire 

Basin has been linked to distance from urban centres (Palamuleni et al., 2010) with 

cities providing a lucrative market for charcoal and wood to meets the energy needs of 

the urban poor, and the urban masses in general in the face of constant power cuts. The 

impact of household energy needs in cities on the deforestation of outskirt areas have 

been also reported in Masvingo city in Zimbabwe (Mapira and Munthali, 2011).  
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Figure 5.23: Spatial variation in community vulnerability arising from exposure, 

susceptibility and capacity 
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Figure 5.24: Spatial variability in community vulnerability - a social, economic, 

environment and physical perspective 

 

Vulnerability is a spatially differentiated variable. Except for the environmental 

vulnerability, this is generally not supported for the Lower Shire Valley in this study. 

There are several possible explanations. Vulnerability is a scale-dependent variable that 

become more conspicuous with fineness in scale. Differences in vulnerability in the 

Lower Shire Valley may operate at a much smaller scale such as a village or at 
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household level. The spatial scale used of the ADC level used therefore may be too big 

to unmask heterogeneity in vulnerability across the valley. Again, the scores used from 

1 to 3 to define what is low, medium or high may too coarse to differentiate markedly 

between communities. 

 

  

On the other hand, homogeneity in vulnerability for communities in the Shire Valley is 

somewhat not unexpected. Nsanje and Chikwawa are very similar districts in their 

social and economic profile as summed up in their poverty levels, which also happen to 

be the highest in the country (National Statistical Office, 2009; National Statistical 

Office, 2012). This is further evident in the raw data presented in appendix C where it 

can be seen that most respondents are on below 1USD per day. In addition, their 

economic capacity for disaster management in general is similar: both are served with 

non-governmental organisations and like the rest of the country, with local government 

decentralised institutional structures. In this respect, vast diversity in vulnerability in the 

Lower Shire valley at this scale is unexpected.  

 

 

A lack of vast diversity in vulnerability amongst clusters of rural communities has also 

been observed in other parts of SSA though notably with respect to climate change. In 

Gbetibouo and Ringler’s (2009) study in the Republic of South Africa, the differences 

in susceptibility and capacities (considered to constitute vulnerability in this study) was 

only marked between the predominantly rural provinces (Limpopo, KwaZulu Natal and 

Eastern Cape) and the economically developed provinces i.e. Western Cape and 

Gauteng, on the other end. However, amongst the predominantly rural provinces, the 

outcome was similar for both components. Similarly, in Hahn et al.’s (2009) study, the 

difference between for Moma (0.316) and Mabote (0.306)  was marginal. Thus, the lack 

of differences across rural communities in the Shire Valley is not unlikely. Nonetheless, 

this study does highlight marked differentiation in environmental susceptibility with 

those communities on the high end of the spectrum being very close to the city. 

 

 

5.6 The flood risk of the valley 

Previous sections in this study have so far examined the hazard and vulnerability in 

isolation. As emphasised by Cardona (2004) and Collins et. al (2009) amongst others, 
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understanding and attempting to remediate risks to environmental hazards demands a 

consideration of the biophysical and social contexts that place people and property in 

harm’s way. This underscores the fact that flood risk is much a hazard problem as a 

vulnerability issue. To measure the flood risk, a multiplication of hazard and 

vulnerability scores (Table 4.4) was used. 

 

 

5.6.1 Risk magnitudes and profile 

Table 5.14 shows the results of the flood risk of the Lower Shire floodplain. As shown 

in the table, risk to flooding in the Lower Shire Valley is in general in the medium to 

high categories of the risk spectrum. However, it is predominantly medium as 

demonstrated by the higher proportion (67%) of communities in the medium risk class 

in comparison to 33% in the high class.  

 

Table 5.14: Risk to flooding across the Lower Shire Valley 

Community AHI 

 (m) 

Standardised 

AHI 

Vulnerability  Risk  Risk rating 

Maseya 1.12 (H) 0.34  0.61 (H) 0.21 H 

Mbenje 1.06 (H) 0.32 0.57 (M) 0.18 H 

Katunga 1.08 (H) 0.33 0.61 (H) 0.20 H 

Tengani 1.03 (H) 0.31 0.57 (M) 0.18 H 

Ngabu-Nsanje 0.92 (M) 0.28 0.58 (M) 0.16 M 

Ndamera 0.77 (M) 0.23 0.56 (M) 0.13 M 

Nyachikadza 0.94 (M) 0.28 0.53 (M) 0.15 M 

Mlolo 0.86 (M) 0.26 0.58 (M) 0.15 M 

Malemia 0.99 (M) 0.30 0.56 (M) 0.17 M 

Lundu 0.82 (M) 0.25 0.56 (M) 0.14 M 

Makhuwira 0.84 (M) 0.25 0.62 (H) 0.16 M 

Ngabu-Chikwawa 0.68 (M) 0.21 0.64 (H) 0.13 M 

H =  High,     M = Medium,  L=Low 

 

 

From the table, four patterns describe the flood risk of the Lower Shire valley: high 

hazard-medium vulnerability combination, high hazard-high vulnerability combination, 
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combinations of medium hazard and medium vulnerability, and lastly, medium hazard-

high vulnerability combinations. Communities exposed to medium hazard/ medium 

vulnerability combinations are the most prevalent (Ngabu of Nsanje, Ndamera, 

Nyachikhadza, Mlolo, Malemia and Lundu) accounting for 50% of the communities 

studied. High hazard-medium vulnerability pattern is associated with 16.7% of the 

communities (Mbenje and Tengani). A further 16.7% is exposed to medium hazard-high 

vulnerability combination (Makhuwila, Ngabu of Chikwawa). Similarly, only 16.7% 

exhibit a profile of high hazardousness intersecting with high vulnerability (Maseya, 

Katunga). It therefore follows that neither process, hazardousness nor vulnerability, is 

noticeably dominant in the risk profile for a significant proportion of communities in the 

Lower Shire Valley.   

 

 

The dominant medium magnitudes of flood risk in the Lower Shire brought to light in 

this study are unanticipated in consideration of historic flood flow magnitudes on both 

the Shire and the Ruo documented by Shela et al. (2008) and also in respect of the poor 

socio-economic indicators of the region highlighted in many studies (Kaonda, 2009; 

Nilson et al., 2010; Shela et al., 2008). This may be mainly explained by the hazard 

component. The level of hazardousness measured might have been under-estimated 

given that tributary flows were not accounted for as flow data available suggest below-

bankfull flows at Sinoya gauge station for the 2008 rainy season. Similarly velocity was 

not accounted for on the basis of flatness of the Shire valley.  

 

 

The overall findings are nonetheless consistent with both perceived and quantified risk 

of other studies in the valley and more particularly those of the rural population at large 

in SSA though measured to other climatological hazards. In the Lower Shire valley, the 

level of flood risk has always been perceived as ‘high’ though in general, with no link to 

quantification (Governement of Malawi, 2006; Shela et al., 2008) 

 

  

In a more similar study in Malawi of Malcomb et al.’s (2014),  although measured with 

respect to climate change, Malcomb et al. also place the risk (referred in their study as 

vulnerability) of the Lower Shire in the low to high categories (Figure 2.5).  
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Figure 5.25:  Quantified risk to climate change in Malawi 

  Source: (Malcomb et al., 2014) 

 

Elsewhere in SSA where climatologigcal risk has been measured in this way, it has also 

been found to be predominantly medium to high. In South Africa, Gbetibouo and 

Ringler’s (2009) found that all predominantly rural provinces (Kwazulu Natal, Eastern 

Cape and Limpopo) were associated with medium to high risk (referred to in their study 

as vulnerability). Similarly, in measuring risk to climate change in Moma and Mabote 

districts in Mozambique, (also referred to in their study as vulnerability), on the basis of 

fragility of livelihoods and health systems, people’s capacity to alter the strategies and 

the actual climatic exposures, Hahn et al. (2009) found risk values of 0.316 and 0.326 

The Lower Shire Valley 



181 
 

respectively (on a scale of 0 to 0.5). Although Hahn et al. (2009) do not attach  severity 

to the magnitudes, the values suggest medium to high risk to climate impacts. 

 

 

Besides magnitudes, the risk profile to the flood hazard found in this study is also 

consistent with the risk profile of rural communities in SSA to climate change. 

Gbetibouo and Ringler’s  (2009)  found that the coastal rural provinces of South Africa 

(Kwazulu Natal and Eastern Cape) were associated with risk that was defined by a 

combination of high levels of social vulnerability (low adaptive capacity and high 

sensitivity) and a high level exposure (synonymous to the hazard in this study). 

Limpopo, the inland province on the other hand exhibited risk that was characterized by 

medium exposures (hazard in this study) and high social vulnerability. Besides, they 

also found that areas of high hazardousness to flooding were not necessarily areas of 

high vulnerability.  

 

 

In Hahn et al.’s (2009) study, sub-components used were not explicitly classified as 

either vulnerability or hazard. However, the Socio-Demographic Profile, Livelihood 

Strategies, Social Networks, Health, Food and Water define the intrinsic disposition of 

the system to harm and therefore constitute vulnerability. Aggregate values for two 

districts measured on the basis of these components as earlier indicated were 0.316 and 

0.306 respectively.  The Natural Disasters and Climate Variability component on the 

other hand included factors of frequency of floods, droughts and cyclone and statistical 

values of temperature and rainfall, factors exogenous to the system. In this respect, the 

component constituted the hazard. Associated values were 0.312 and 0.409 

respectively. On this basis and in respect of the 0-0.5 scale used, their results also 

suggest that risk to climatic impacts in rural Mozambique is defined by medium to high 

value combinations of hazardousness and vulnerability. 

 

 

Nonetheless, while the flood risk profile in this study is consistent with risk profiles in 

the above two studies,  the smaller number of rural units involved in these two studies 

(3 rural provinces in Gbetibouo and Ringler’s  (2009) study and 2 districts in Hahn et al. 

(2009)) precludes establishing a dominant  profile of risk to climate change. This study 

however finds that in the context of flood risk, for medium risk affecting the majority of 
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communities, risk is much a function of the hazard as it is for vulnerability. However, at 

high risk, hazardousness is dominant.  

 

 

5.6.2 Spatial trends of risk 

The degree of risk is spatially illustrated in Figure 5.26. The illustration is confined to 

parts of the assessed ADCs that fall in the valley (150 – 30masl).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.26: Spatial variation in flood risk across the valley 

 

It is apparent from Figure 5.26 that communities exhibiting high risk occur both in 

Chikwawa and Nsanje. However, they are localised: concentrated in Katunga and 

Maseya and around the Shire/Ruo confluence and downstream (Mbenje and Tengani). 

Medium risk on the other hand is ubiquitous across the valley, an indication of relative 

homogeneity in flood risks in the communities. High risk geographically intersects with 

areas of high hazardousness (Figure 5.13) thus being associated with hazardousness 

dominance.  
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Results in general, as with the spatial variation in hazardousness and vulnerability, show 

little differentiation in risk indicating relative similarities across communities. 

 

 

5.7 Policy implications and caveats 

5.7.1 Introduction  

As evident in the foregoing sections, this study has successfully implemented an index-

based approach to quantify flood risk in Malawi despite the challenges faced by the 

paucity of hydro-meteorological data. Such challenges are common in SSA and the 

relative success recorded in this particular case study is therefore a ray of hope that 

better policy interventions, informed by objective and quantitative assessments, to 

contain the menace of floods and other natural hazards, are possible in SSA. Some of 

the policy implications and their associated caveats are summarized in the following 

sub-sections. 

 

5.7.2 Policy implications 

The Lower Shire is one of the poorest parts of the country. There have been numerous 

efforts in the region towards conventional developmental projects and flood risk 

reduction programs, notably by Non-Governmental Organizations and donor partners.  

The levels of socio-economic and environmental susceptibility (high to very high) 

uncovered highlight the critical need for mainstreaming flood risk reduction measures 

into the plethora of conventional developmental programs. This, to some extent, also 

addresses the issue of economic incapacity that arises from implementing lone flood 

risk reduction programs.  

 

 

Given relatively similar influence of the hazard and vulnerability in defining this risk 

for greater section of the valley (67%), a significant proportion (16.7%) of communities 

in the valley falling on the high end of the risk spectrum for which hazardousness is 

dominant and an equal 16.7% of the communities exhibiting vulnerability dominance, 

there is need for broad-based approaches that integrate both mitigation and adaptation. 

In this regard, reducing physical vulnerability through exposure reduction (such as 

relocation) is likely to prove challenging given communities derive their livelihoods 

from the floodplain an observation also made by Gwimbi (2009) in Zimbabwe. 
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Forecasting with MLP-ANN offers an alternative to data demanding traditional models 

for a macro scale flood warning system. 

 

 

As evidenced by the results, despite a limited economic capacity, communities exhibit 

higher level societal capacity in diverse forms. These include availability of 

decentralised institutions, considerable coordination amongst institutional structures, 

public participation and awareness and to a smaller extent, the existence of 

unconventional warning systems such as drumming, whistling, and using of text 

messages. Therefore, programs that expand and strengthen this societal capacity will 

provide the much needed leverage for risk reduction.  

 

 

Hazardousness, vulnerability and consequently risk are variables that are spatially 

differentiated – linked to a differentiation in socio-economic and biophysical conditions. 

A general homogenous pattern exhibited in these components in the Shire Valley does 

not justify targeted interventions; it calls for universally applied interventions to all 

floodprone areas in the basin. Chikwawa in the Shire Valley nevertheless offers a 

leverage point in vulnerability reduction through environmental responses. 

 

 

5.7.3 Limitations of the study 

A number of caveats need to be noted regarding the study. The estimation of the hazard 

in this study focussed on water depth and spatial extent as hazard parameters. 

Consideration of other parameters such as velocity (assumed very low in this study due 

to flatness of the area) and duration may yield different results. Further, the study was 

limited to flooding from the Shire River; incorporation of tributary flows, may also 

possibly reveal much higher hazard values than found. The flood depths found were not 

validated due to lack of quality hydrological data. Nonetheless, the match between 

observed and modelled inundation extent provides reasonable agreement between 

modelled and observed depths given that the Lower Shire Valley remains largely 

unimpeded by structural measures. 
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Vulnerability data is also a source of weakness. Primary data sourced from communities 

through a structured questionnaire is potentially subjective. In addition, some secondary 

data used in the vulnerability index are data recorded at different points in time. The 

study used 2008 as a reference year, determined by the record length of hydrological 

data available at the start of the research. However, other data sets occur at different 

points in time. For example, forest cover data used is based on satellite imagery from 

LANDSAT ETM sensor for 2010-2011 (FAO, 2013); population density on the other 

hand was based on 2008 population census. Interviews were conducted in 2012. This 

may misrepresent vulnerability as vulnerability is a dynamic phenomenon. Nonetheless, 

most vulnerability factors are structural; significant change over a 2-3 year period over 

which the data span is unlikely as exemplified by a meagre 1.4% decline in poverty 

between 2005 and 2011 (National Statistical Office, 2012). 

 

 

Further, indices are subject to a number of shortfalls despite their relevance and 

popularity in decision making. Among them, the outcome is dependent on the variables 

used, the thresholds set, the aggregation processes applied and the scale of application. 

Besides, there are no means for validation. Use of validly different indices and threshold 

may reveal a different picture. This is a problem nonetheless shared by all index-based 

vulnerability and risk analyses. 
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Chapter 6 Conclusions and Recommendations for Future Research 

6.1 Conclusions  

Before concluding this thesis, it is important to first review the aim and objectives with 

a view to ascertaining the extent to which they have been achieved. The aim of the 

project as stated in Chapter 1 was to enhance the understanding of vulnerability and risk 

to flooding of rural communities in SSA, particularly from the perspectives of 

contemporary disaster management. Specifically, the thesis had the following 

objectives: 

 

(i) Develop an approach to augment and extend hydro-meteorological data in 

data scarce catchments for the support of hydrological and hydraulic 

modelling.  

 

(ii) Develop, verify and validate AI–based forecasting models for flow and 

water levels.  

 

(iii) Quantify the hazardousness, vulnerability and risk, as well as their 

dimensions, and determine how these manifest themselves spatially. 

 

(iv) Make recommendations on flood mitigation and adaptation strategy for 

flood risk management.  

 

 

The first objective was achieved in sections 3.3.1, 3.3.2.1, 3.3.2.3 (Chapter 3), section 

4.1 (Chapter 4) and sections 5.1 and 5.2 (Chapter 5). The second objective was achieved 

in sections 3.3.2.2, 3.3.2.3 (Chapter 3), 4.2 (Chapter 4) and 5.4 in Chapter 4.  The third 

objective was covered by sections 3.2, 3.3.3, 3.4 (Chapter 3), 4.3, 4.4, 4.5 (Chapter 4), 

and 5.3, 5.5 and 5.6 (Chapter 5). Finally, the last objective was covered in section 5.7.2 

of Chapter 5. 

 

 

It is therefore clear that all of the objectives have been achieved. Based on the entire 

work, the following conclusions have emerged: 
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6.1.1 Hydro-meteorological data were reconstructed using data driven models, in 

particular, SOM. This follows the limitation of traditional infilling methods in 

the face of large gaps and short durations that characterise hydro-meteorological 

data in the catchment and not uncommon in developing countries. The study 

shows that SOM is a powerful technique for infilling and extension in the 

prevalence of large gaps, discontinuities and short durations. It has a further 

advantage of handling large data sets. The magnitudes of the coefficient of 

correlation R  were in excess of 0.97 for water levels and flows and 0.8 - 0.96 

for rainfall.  

 

 

However, the modelling ability of SOM is highly dependent on the homogeneity 

in the data in question as observed herein, with the performance being highest 

on flow and water level in comparison to rainfall data; the latter being quite 

uncorrelated in the Shire River basin. 

 

 

6.1.2 MLP-ANN was used for water level and flow forecasting on SOM 

reconstructed-data. Coupling SOM and MLP-ANN proves to be powerful 

strategy in such data-poor catchments. Results were very satisfactory with both 

the Nash–Sutcliffe index and coefficient of correlation being in excess of 0.9 for 

lead times of up to 2-days. This is to be welcome in the face of increasing focus 

on non-structural measures for risk reduction and the potential of flood 

forecasting as one such non-structural measure. The use of traditional conceptual 

models in such data-poor environments is limited. Even when the data has been 

reconstructed, it is still subject to noise, an aspect quite prevalent in hydrological 

data in developing countries. Using SOM features (SOM-predicted data) other 

than raw data improves the predictive capacity of the model thus allowing 

accurate predictions, an important element in forecasting. In the present analysis, 

with forecasting based on SOM filtered data other than the reconstructed raw 

data, very satisfactory forecasts (NS>0.9) are obtained up to 5 days from 2 days. 

 

 

6.1.3 Based on SOM reconstructed data and hydraulic modelling with Lisflood-FP, 

results show that the Lower Shire is a region in the medium (0.5 – 1m) to  high 
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(1-2m) levels of hazardousness but with a predominance of a medium hazard 

class. High hazardous communities were found to be Mbenje, Maseya, Katunga 

and Tengani. Medium hazardous communities were Ngabu (Nsanje), Ndamera, 

Mlolo, Makhuwila, Nyachikhadza, Malemia, Lundu and Ngabu (Chikwawa). In 

Nsanje, spatial mapping shows concentration of high hazardous communities 

around the confluence, affirming to some extent, long standing perceptions of 

the location of most severe flooding in the Lower Shire floodplain. In 

Chikwawa, high hazardousness is concentrated in Katunga and Maseya. It 

should be pointed out that such magnitudes pertain to the 4-5 year flood event 

investigated. For more rare events, higher magnitudes in hazardousness and 

consequently risk are expected. 

 

 

6.1.4 The study finds the vulnerability to flooding of rural communities in the Lower 

Shire Valley to be medium (0.4-0.6) to very high (0.8 – 1.0) but with a 

predominance of medium to high levels. In particular, aggregate vulnerability 

emerges as medium to high but surprisingly predominantly medium. 

Susceptibility manifests as high (0.6-0.8) to very high (0.8-1.0) and exerts a 

dominant influence on overall vulnerability, reflecting fragility of communities 

in the Lower Shire from several angles: health, literacy, poverty, livelihoods, 

access to basic services, employment opportunities etc. Exposure tends to be 

medium (0.4-0.6) which the study links to limited infrastructure in the 

floodplain. Similarly, capacity-induced vulnerability manifests as medium.  

 

  

 From a sustainable development framework perspective, magnitudes of social, 

economic and to a large extent, environmental vulnerability are predominantly 

high to very high. Physical vulnerability generally tends to be medium. 

 

 

 Viewed from a coupled IPCC and Sustainable Development perspective, it 

becomes evident that susceptibility has a strong socio-economic and 

environmental dimension, all manifesting predominantly as high to very high. 

Capacity-induced vulnerability on the other hand has a strong economic and 

physical bearing, both falling in the high categories. Surprisingly societal 
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capacity emerges as high, attenuating the overall capacity-induced vulnerability 

to medium levels. For any given dimension except environmental vulnerability, 

the study finds marginal differences in magnitudes across communities, an 

indication of relative homogeneity in vulnerability in the communities.   

 

 

6.1.5 On the question of risk, the intersection of the hazard and vulnerability, results 

show flood risk is medium to high, but predominantly medium. It is 

characterized by high and medium combinations, medium and medium 

combinations and high and high combination from the two components. Patterns 

of medium hazardousness combining with medium vulnerability are the most 

predominant, pointing to a relative similar role of both hazardousness and 

vulnerability in the risk profile. However, at high risk, hazardousness tends to be 

dominant. In general, vulnerability, hazardousness and risk all tend to be 

marginally differentiated across the communities 

 

 

6.2 Recommendations for Future Research 

Beyond describing the causes, impacts, perceptions and coping strategies, vulnerability 

to flooding and associated risk in SSA is a subject that has not been addressed from a 

quantitative perspective, particularly within a contemporary disaster management 

discourse. While this thesis set out to provide a comprehensive quantitative overview of 

risk in consideration of both the hazard and vulnerability, and of vulnerability 

dimensions, it limited hazard parameters to water depths and inundation extent and to 

flooding emanating from the main river, the Shire. To provide more comprehensive and 

robust findings of flood hazard severity in the valley, future research should incorporate 

other hazard parameters such as velocity and duration and should account for tributary 

flows, though the challenge of flow data is likely to remain given the paucity of data on 

tributary gauge stations.  

 

 

6.2.1 The paucity and quality of hydrological data in SSA is an impediment to robust 

risk assessments. The need for investment in hydrometry in SSA to support 

holistic and sustainable flood risk management advanced in contemporary 

disaster management cannot be over-emphasised. 
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6.2.2 Vulnerability in this study was dimensioned on the basis of exposure, 

susceptibility and capacities and in further consideration of social, economic, 

physical and environmental underpinnings. This was informed by the discourse 

in contemporary disaster management. Further research in SSA should also 

examine the vulnerability profile of rural communities along sectoral dimensions 

i.e. land/forest, water, agriculture, health, education etc. A sectoral approach will 

link vulnerability directly to responsible institutions and therefore offers another 

platform for evidence-based policy making, especially that although disaster 

management institutions exist, they have no budgets for implementation of any 

activity. 

 

 

6.2.3 While the thesis found little heterogeneity in vulnerability dimensions and risk, 

except for environmental vulnerability, the findings do not offer conclusive 

evidence. The thesis used an Area Development level as a unit if analysis. This 

is the next level below the district level in the hierarchy of decentralized 

institutional structure. This level may be coarse to uncover micro-scale 

vulnerability. A much smaller unit such as Group Village Headman (GVH) level 

or Village level should be considered in future work. It would be of policy 

relevance to uncover any spatial differentiation in vulnerability and risk. 

 

 

6.2.4 In furtherance, given the importance of this region in the disaster profile of 

Malawi and the findings herein that suggest some aspects of flood risk in this 

valley e.g. susceptibility remains relatively high despite a number of 

interventions from notably NGOs and other development partners, it would be 

of policy relevance to institute interventional studies and assess vulnerability 

and risk dynamics over a longer period of time. 
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Appendix A: Manning’s Roughness Coefficient based on Chow (1959) 
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Appendix B: Questionnaire used for the CBDRI in Chikwawa and Nsanje   

Districts 

This questionnaire is part of a study undertaken for the purposes of measuring 

vulnerability and subsequently risk, in the Lower Shire Floodplain of Malawi.  The 

overall objective of the study is to establish quantitatively the degree of vulnerability to 

the flood hazard and  how this is disaggregated along exposure, susceptibility and 

capacity dimensions and further from a social, economic, economic and physical 

perspective. The study goes on to  determine how such characteristics manifest spatially 

across the floodplain. The questionnaire in particular serves to elicit the community’s 

ratings and weightings on vulnerability indicators indicated in the table below. The 

information provided is solely for academic purposes. 

 
 

Date and Time of meeting……………………………………………………………… 

 

Place……………………………………………………………………………………… 

 

ADC 

Name…………………………………………………………………………………….. 
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2.1

Low

Medium

High

2.2

Low

Medium

High

3.1

Low

Medium

High

Low

Medium

High

Low

Medium

High

3.2

Low

Medium

High

Low

Medium

High

Economy

(E2) average income per capita/day

<$2.8

$2.8 - $11

>$11/capita/day

STRUCTURES

(E1) Lifelines

% of homes with piped drinking 

water/borehole? <20%

20%-50%

>50%

2. EXPOSURE

Physical/demographic

(S1) Density

How many people per km
2
 live in the 

<100

100-500

>500

3. SUSCEPTIBILITY

(S3) Access to basic services

% of homes with piped drinking water

>50

20-50

<20

(S2) Demographic pressure

Population growth rate 

<2%

2-4%

>4%

(S5) Literacy

Percentage of adult population able to read and write

>70%

40-70%

<40

Social

(S4) Poverty level

Percent of population below poverty level 

(1USD/day)

<10%

10-30%

>30%
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Low

Medium

High

Low

Medium

High

Low

Medium

High

3.3

yes/no

Low

High

Low

Medium

High

Low

Medium

High

Low

Medium

High

3.4

Low

Medium

High

(S7) Decentralization

What is the portion of self generated revenues of the total available 

budget

>50%

20 - 50%

<20%

(S6) Attitude

What priority does the general population give the protection against a 

threat from a hazard

High priority. Protection against a hazard 

is an often expressed needConcerned, but only if a disaster has hit.

Not concerned. Other issues (food, work 

etc are much more important)

Economic

(S9) Local resource base

Does the community have a budget

 Enough to help the most affected

Insufficient 

(S8) Community participation B53

% voter turnout on last commune 

elections
>70%

50-70%

<20%

(S11) Small business

Percentage of businesses with fewer than 20 

employees

<50%

50-80%

>80%

(S10) Diversification

Source of livelihood comes from one, two or three 

sectors?

Mix of 3 sectors

Mix of 2 sectors

More than 80% in 1 sector (e.g. 

agriculture)

Environmental

(S13) Area under forest

How much of the total territory of the commune is covered with forest?

>30%

10-30%

<10%

(S12) Accessibility

0 - time

1-5 times

>5 times

How often in the last 5 years was the commune isolated through 

interruption of access roads for more than 2 days
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4.1

Their enforcement 

is

Evaluation

 Low  Low 

High High

<30%  Low 

30-70% Medium  

>70% High

Measures 

implemented 

Few     Low 

Some Medium

                                                               

Many                                                                      

             

High        

 Low  Low 

Medium  Medium  

High High

Few  Low 

Some Medium  

Many High

4.2

Frequency  

(annual)          

once Low 

Sometimes  Medium 

regular High

The topics are  

taught at:

one grade only  Low

2-3 grades Medium  

all grades High

Drills take place: 

One level  Low 

2 levels Medium

all levels High

Does a land use plan or zoning 

regulations exists that keeps local 

product ion and housing out of 

hazardous areas?

YES/NO                                                                  

(C2) Building codes Percent of buildings in threatened area complying to 

code/standards 

Do building codes, design 

standards, and performance 

specifications for facilities exist 

that guarantee the use of flood 

resistant methods, techniques and 

material building codes?

YES/NO                                                                  

4. CAPACITIES AND MANAGEMENT

Physical planning and 

engineering

(C1) Landuse planning

Expected effect on damage:             

Do flood exposure- limiting 

mechanisms/ structures exist  

(dykes, retaining walls, dams, 

barrages, rock fall barriers, 

terraces, drainage)?

YES/NO                                                                  

(C5) Environmental 

management

Number of activities and 

projects 

(C3) 

Retrofitting/Maintenance

Are existing infrastructure (e.g. 

bridges, roads) and buildings 

(schools, hospitals etc) 

retrofitted to withstand flooding 

and /or are regular maintenance 

carried out (River dredging, flood 

canals etc)

YES/NO                                                                  

(C4) Preventive  measures

Are public awareness programs 

executed?

YES/NO                               

(C7) School curriculum

Are risk, disaster, environment 

and development topics part of 

taught lessons at school?

YES/NO                              

Are there activities to promote 

and enforce conservat ion of 

natural resources in risk areas 

(e.g. protection of water reserves 

, natural resources, desert ificat ion 

control techniques,  

reafforestat ion)

YES/NO                                                                  

Societal measures

(C6) Public awareness 

programs

(C8) Emergency response 

drills

Is emergency response training 

and drills at multiple levels 

ongoing?

YES/NO                               

Level 1: administration

Level 2: relevant response institutions (civil defence, police, fire brigade, emergence health)

Level 3: the public (hospitals, schools, large buildings etc
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It is composed of  

only level 1    Low  

2 levels  Medium 

mix of 3 levels High

<30%   Low 

                                                                        

30 - 60%
Medium

                                                               

>60%

             

High            

4.3

Fund as % of local 

budget: 

Evaluation

<10% Low 

                                                                     

10-50% 
Medium

                                                                  

>50%                        

             

High            

How fast can it be 

re leased/received                

  >7 days Low 

3-5 days Medium 

< 3 days High

Access to funds is:  

 Difficult   Low 

Easy High

Use

Not common Low    

common High

Use

                                                                                                 

not common

                

Low    

common High

With collateral Low

Without High

Magnitude:    

Low   Low 

Medium  Medium   

High High

(C9) Public participation

Is the public represented as 

member in the risk 

management/emergency 

commit tee?

YES/NO                             

Level 1: administration (mayor's office, planning department

Level 2: relevant response institutions (police, fire brigade, education,  emergence health)

Level 3: the public (business, civil society, NGO'S)

Economic measures (Risk Transfer)

(C11) Local emergency fund

Does a local fund for emergency 

exist?

YES/NO                                                                  

(C10) Local risk 

management/emergency 

groups

% of villages at risk with local 

emergency group.

Do local groups exist, that have 

organized members with specific 

tasks (e.g. emergency response?

YES/NO                                                                  

Is there access to international              

emergency funds?

YES/NO                                                                  

D180

(C14) Insurance market

Is disaster risk insurance coverage 

for buildings available?

YES/NO                                                                  

(C12) Access to national  

emergency fund

Is there access to a 

national/district emergency fund?

YES/NO                                                                  

(C13) Access to international 

emergency funds

Are there reconstruction credits 

for affected households?

YES/NO                                                                  

(C17) Public works

Do local public works programs 

(e.g. food for work) exist to 

support risks reducing measures 

(retrofitting, preventive 

structures, reconstruction)?

YES/NO                                                                  

(C15) Mitigation loans

Do private banks (including 

micro-credit institutes) or the 

government offer loans or 

subsidies for disaster risk 

reduction measures (relocat ion, 

YES/NO                                                                  

(C16) Reconstruction loans
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4.4

Meeting 

frequency:  

only during 

emergency
Low 

once a year Medium   

at least quarterly High

only level 1   Low 

                                              

also at  level 2
Medium   

                                                  

also at  level 3
High

One                                                                                                                                           Low 

few Medium   

many High

Does it  work

Low Low 

Medium  Medium   

High High

Sometimes  Low 

Often Medium   

Constant High

Sometimes  Low 

Often Medium   

Constant High

Management and 

institutional  measures

(C18) Risk 

management/emergency 

Does a community risk 

management or emergency 

commit tee exist, that deals with 

prevent ion, mitigation, 

preparedness and response?

YES/NO                                                                  

(C19) Risk map

Availabili ty of maps at 

different levels:  

Is there a worked out and 

circulated emergency plan?

YES/NO                                                                  

(C21) Early warning system

Is an early warning system in 

place?

YES/NO                                                                  

The map is available  at 

different levels: 

Does a risk map exist? YES/NO                                                                  

D107

Level 1: administration (mayor's office, planning department)

Level 2: relevant  response institutions (police, fire brigade, educat ion,  emergence health)

Level 3: the public (business, civil society, NGO'S)

Is there coordination with 

national level risk management 

organizations (national 

committees, government etc.)?

YES/NO                                                                  

(C22) Institutional capacity 

building

Do local institutions 

(administration, police, fire 

brigade, hospitals, building sector) 

receive training on risk 

management?

YES/NO                                                                  

(C23) Communication

(C20) Emergency plan

 
 
Shaded data were sourced from third Integrated Household Surveys (National Statistical 
Office, 2012), the 2008 population and housing census data (National Statistic Office, 
2009) and the Malawi land cover database (FAO, 2013). 
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Appendix C:  Community responses to the questionaire 

Factor 

component 

Indicator Name Indicator  Mbenje Mlolo Tengani Ngabu Malemia Ndamela Nyachikhaza Ngabu Katunga Chapananga Maseya Makhuwila Lundu 

EXPOSURE 
                            

Structures (E1) Lifelines % of home with potable water 97.5 90.5 97.9 62.5 100 56.3 0 89.8 100 34.4 71.9 96.9 100 

Economy (E2) Economy average income per capita/day <US$ 1 <US$ 1 <US$ 1 <US$ 1 <US$ 1 <US$ 1 <US$ 1 <US$ 1 <US$ 1 <US$ 1 <US$ 1 <US$ 1 <US$ 1 

SUSCEPTIBILITY 
                          

Physical  (S1) Density 
People per km2 136 169 100 189 125 141 47 138 153 103 183 135 232 

(S2) 
Demographic 
pressure Population growth rate (%) 2.7 2.2 3.8 2.3 1.3 1.3 1.7 3.1 5.0 3.3 3.9 0.7 0.3 

(S3) Access to 
basic services 

% of home with potable water 97.5 90.5 97.9 62.5 100 56.3 

water sourced 
from swamp, 
no boreholes 89.8 100 34.4 71.9 96.9 100 

Social (S4) Poverty 
level % of population below poverty line many many many many many many many many many many many many many 

(S5) Literacy 
% of people that can read and write 41.7 46.9 41.7 46.9 50.0 50.0 very few 50.0 46.9 40.6 46.9 42.0 79.2 

(S6) Attitude 
priority of population to protect against a 
hazard medium 

high 
priority, 

people 
relocating 

at own will 
High 

priority 

concerned 
but mainly 

when 
disaster hits 

concerned 
but mainly 

when 
disaster hits 

concerned 
but mainly 

when 
disaster hits 

concerned but 
mainly when 
disaster hits 

not 
concerned, 

other issues 
very 

important 

not 
concerned, 

other issues 
very 

important 

not 
concerned, 

other issues 
very 

important 
high 

priority 

not 
concerned, 

other issues 
very 

important 
high 

priority 

(S7) 
Decentralization 

proportion of self- generated revenue of 
total budget no budget no budget no budget no budget no budget no budget no budget no budget no budget no budget 

no 
budget no budget 

no 
budget 

(S8) Community 
participation  

% of voter turnout at last commune 
elections >70% >70% >70%   

many, but 
mostly 

motivated 
by 

incentives >70% >70% <20% 

medium, 
people 

participate 
mainly if 
there are 
benefits >70% <50% >70% >70% 

Economic  (S9) Local 
resource base 

Total available budget no budget no budget 

no budget, 
poverty 

levels very 
high no budget no budget no budget no budget no budget no budget no budget 

no 
budget no budget 

no 
budget 

(S10) 
Diversification Economic sector for employment agriculture agriculture agriculture agriculture agriculture agriculture agriculture agriculture agriculture agriculture 

agricultu
re agriculture 

agricultu
re 

(S11) Stability 
% business with fewer than 20 employees most most most most most most most most most most most most most 

(S12) 
Accessibility 

Number of interruption of roads  
in the last 2 years every year every year every year every year every year 

every year, 
high every year every year medium every year medium every year 

every 
year 

Environmenta
l 

(S13) 
Environmental 

Area under forest (%) 
34.9 2.3 58.9 10.7 57.4 44.2 0.0 11.8 10.8 30.5 33.4 5.3 2.8 
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Factor 
component 

Indicator 

Name 

Indicator  Mbenje Mlolo Tengani Ngabu Malemia Ndamela Nyachikhaz
a 

Ngabu Katunga Chapananga Maseya Makhuwila Lundu 

 CAPACITIES AND MEASURES                           

Physical 
capacity 

(C1) Landuse 
planning 

Enforced landuse planning or zoning 
regulations 

forest 
reserves, 

low 
enforcement 

yes, related 
to 

agriculture 
and forestry yes, low 

yes, but 
settlements 

and 
cultivation 

in flood-
prone areas, 

low 
enforcement 

yes, forestry 
reserve, no 
cultivation 
along river 
banks, low 

enforcement 

yes, 
targets 

rivers, low none none none none yes, low yes, low yes, low 

(C2) Building 
codes 

Applied building codes 
none none none none none none none none none none none none none 

(C3) 
Retrofitting/ 
Maintenance 

Applied retrofitting and regular 
maintenance 

yes, few yes, many yes, few 

yes, limited 
to minor 

works,  few 

yes, 
supported 
by NGOs, 

few very few none none none yes, few yes, few 
yes, applied to 

boreholes,  few yes, few 

(C4) 
Preventive 
measures 

Expected effect of impact-limiting 
structures.                         

yes, 
desiltation, 

afforestation
, medium 

yes, earth 
dykes, 

medium no measures 

yes, NGO or 
public 
works 

supported, 
low quality,  
low impact yes, low 

yes, but 
small 

activities, 
low yes, low yes, low yes, low yes, medium none 

yes, earth 
embarkments, 

low impact 
yes, 

medium 

(C5) 
Environmental 
management 

Measures that promote and enforce 
nature preservation. yes, few 

yes, tree 
planting, 

some 

many, 
project 
based yes,  few yes, few yes, few yes, many yes, some yes, many 

yes, by 
NGOs, few yes, some yes, some yes, some 

Societal 
capacity 

(C6) Public 
awareness 
programs 

Yearly frequency of public awareness 
programs 

yes, regular yes, regular 
yes, few, 

once 
yes, 

sometimes 
yes, 

sometimes 

yes, 
assisted 

with 
NGOs, 

sometimes 
yes, 

sometimes yes, once yes, regular yes, once yes, regular yes, sometimes 

yes, 
sometime

s 

(C7) School 
curriculum 

Scope of relevant topics taught at 
school.     

taught in 
most grades 

of primary 
school 

taught in 
most grades 

of primary 
school 

taught in 
most grades 

of primary 
school 

taught in 
most grades 

of primary 
school 

taught in 
most grades 

of primary 
school 

Taught 
 in most 

grades of 
primary 

school 
there is no 

school 

taught in 
most grades 

of primary 
school 

taught in 
most grades 

of primary 
school 

taught in 
most grades 

of primary 
school 

taught in 
most grades 

of primary 
school 

taught in most 
grades of 

primary school 

taught in 
most 

grades of 
primary 

school 

(C8) 
Emergency 
response drills 

On-going emergency response training 
and drills 

yes, all 
levels 

yes, all 
levels, with 

help of 
NGOs no 

yes, 
supported 

by NGOs, at 
2 levels 

yes, all 
levels 

yes, all 
levels 

yes, all 
levels no drills 

yes, at 2 
levels 

yes, at 2 
levels 

yes, all 
levels 

yes, one level, 
local level 

yes, up to 
2 levels 

(C9) Public 
participation 

Emergence committee with public 
representatives 

mix of all 
levels 

Mix of all 
levels 

mix of all 
levels 

mix of  all 
levels 

mix of all 
levels 

mix of 
levels 

mix of all 
levels 

mix of all 
levels 

mix of all 
levels 

mix of all 
levels 

mix of all 
levels 

mix of all 
levels 

mix of all 
levels 

(C10) Local 
risk 
management/ 
emergency 
groups 

Grade of organisation  
of local groups 

local risk 
groups exist 

at district, 
ADC and 

VDC levels 

local risk 
groups exist 

at district, 
ADC and 

VDC levels 

local risk 
groups exist 

at district, 
ADC and 

VDC levels 

local risk 
groups exist 

at district, 
ADC and 

VDC levels 

local risk 
groups exist 

at district, 
ADC and 

VDC levels 

local risk 
groups 
exist at 
district, 

ADC and 
VDC 
levels 

local risk 
groups exist 

at district, 
ADC and 

VDC levels 

local risk 
groups exist 

at district, 
ADC and 

VDC levels 

local risk 
groups exist 

at district, 
ADC and 

VDC levels 

local risk 
groups exist 

at district, 
ADC and 

VDC levels 

local risk 
groups exist 

at district, 
ADC and 

VDC levels 

local risk 
groups exist at 
district, ADC 

and VDC 
levels 

local risk 
groups 
exist at 
district, 

ADC and 
VDC 
levels 
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Factor 

component 

Indicator Name Indicator  Mbenje Mlolo Tengani Ngabu Malemia Ndamela Nyachikhaza Ngabu Katunga Chapanang
a 

Maseya Makhuwila Lundu 

Economic 
capacity 

(C11) Local 
emergency fund 

Local emergency fund as % of 
local budget 

no fund no fund no fund 

no funds, 
 but relief 

items, come 
after 4 months 

from flood 
occurrence no fund no fund no fund no fund no fund no fund no fund no fund no fund 

(C12) Access to 
national 
emergency fund 

Release period of national 
emergency fund 

no access to 
funds 

no access to 
funds 

no access 
to funds 

no access to 
funds 

no 
access to 

funds 

no access to 
funds but 

relief items. 
However, 
take long 

no access to 
funds but 

relief, takes 
very long to 

arrive 
no access 

to funds 
no access 

to funds 
no access 

to funds 
no access to 

funds 
no access to 

funds 
no access to 

funds 

(C13) Access to 
international 
emergency funds 

Access to international  
emergency funds 

no access no access no access no access no access no access no access no access no access no access no access no access no access 

(C14) Insurance 
market 

Availability of insurance for 
buildings no insurance no insurance 

no 
insurance no insurance 

no 
insurance 

no 
insurance no insurance 

no 
insurance 

no 
insurance 

no 
insurance no insurance 

no 
insurance no insurance 

(C15) Mitigation 
loans 

Availability of loans for  
disaster risk reduction 
measures 

not 
available not available 

not 
available not available 

not 
available 

not 
available not available 

not 
available 

not 
available 

not 
available not available 

Not 
 available not available 

(C16) 
Reconstruction 
loans 

Availability of  
reconstruction credit not 

available not available 
not 

available not available 
not 

available 
not 

available not available 
not 

available 
not 

available 
not 

available not available 
not 

available not available 

(C17) Public  
works 

Magnitude of local public  
works programs 

yes, low yes, low 

yes, 
K300 per 
day,  low yes, high yes, high yes, low yes, medium 

yes, 
medium 

yes, 
targets 

afforestatio
n, high yes, low yes, low yes, low 

yes, towards 
road 

reconstruction, 
low 

Management 
and 

Institutional 
Capacity 

(C18) Risk 
management 
/emergency 
committee 

Meeting frequency of a 
community committee 

yes, once a 
year 

yes, only 
during 

emergence 
yes, once a 

year 
meet but not 

regularly 

yes, at 
least 

quarterly 
yes, at least 

quarterly 
yes, at least 

quarterly 

yes, only 
during 

emergenc
y 

yes, only 
during 

emergency 

yes, only 
during 

emergency 
meet, 

 once a year 

yes, meet 
only an 

emergency 
yes, at least 

quarterly 

(C19) Risk map Availability and circulation of 
maps 

yes, only 
level 1 

yes, only 
level 2 no map 

yes, 
 many levels 

yes, also 
level 3 

yes, also 
level 4 

yes, also at 
level 3 no maps no maps no maps 

yes, also at 
level 3 none 

yes, 
only level 1 

(C20) Emergency 
plan 

Availability and circulation of 
emergency plans yes, many yes, one yes, one yes, many 

yes, 
many yes, many yes, many no plans 

yes, one 
level no plans no plans none yes, many 

(C21) Early 
warning system 

Effectiveness of early  
warning system 

yes, 
traditional 

systems, 
low yes, medium 

yes, only 
on Shire 

River, 
works 

sometimes 

yes, weather 
forecasting, 

river gauges, 
phones, 

drumming, 
whistles, 
medium yes, low 

yes, 
whistles, 

drums, staff 
gauges, low 

impact 

yes, radios, 
drums, 
whistle no system 

yes, from 
meteorolog

ical 
department, 
sometimes yes, high 

yes, low 
impact 

yes, radio, 
medium 

yes, phones, 
,staff gauges, 

drums, low 

(C22) Institutional 
capacity building 

Frequency of training of local 
institutions 

yes, 
sometimes, 

yes, 
sometimes, 

organised by 
NGOs 

yes, 
sometimes 

yes, 
sometimes 

yes, 
often 

yes, 
sometimes 

yes, 
sometimes no 

yes, 
sometimes 

yes, 
sometimes no training 

yes, 
sometimes 

yes, offered by 
NGOs, 

sometimes 

(C23) 
Communication 

Frequency of contact with 
 district level institutions 

yes, 
constant 

yes, 
constant yes, often yes, often 

yes, 
sometim

es 
yes, 

constant yes, often yes, often 

often, but 
during 

rainy 
season yes, often yes, often 

yes, 
constant yes, often 

 

 


